3. Charts 2 and 3 contain the +sum of the residues rp (k2 − k + 2 − 3n) in the special cases excluded in such +theorem. +Corollary 5.3 If n > 3 and p = 4n − 1 is prime then +23 + +n +p−1 +� +k=0 +rp +� +k2 − k + 2 − 3n +� +p−1 +� +k=0 +rp +� +k2� ++ p +1 +5 +5 +2 +21 +21 +3 +55 +55 +Table 2: Sum of residues rp (k2 − k + 2 − 3n) in special cases. +n +2n +� +k=0 +rp +� +k2 − k + 2 − 3n +� +2n +� +k=0 +rp +� +k2� ++ 2n + 1 +1 +5 +5 +2 +14 +14 +3 +32 +32 +Table 3: Sum of residues rp (k2 − k + 2 − 3n) in special cases. +p−1 +� +k=1 +�k2 − k + 2 − 3n +p +� += +p(p − 5) + 6 − n +3 +− 1 +p +p−1 +� +k=1 +rp +� +k2� +. +2n +� +k=1 +�k2 − k + 2 − 3n +p +� += +n(2n − 1)(4n − 7) +3p +− 1 +p +2n +� +k=1 +rp +� +k2� +. +n +� +k=1 +�k2 − k + 2 − 3n +p +� += +(n + 1)(2n2 − 23n + 6) +3p +− 1 +p +n +� +k=1 +rp +� +k2� ++ Jn − M. +Proof. From x = p +� +x +p +� ++ rp (x) , we obtain that if y = �p−1 +k=1 +� +k2−k+2−3n +p +� +then +p−1 +� +k=1 +� +k2 − k + 2 − 3n +� += py + +p−1 +� +k=1 +rp +� +k2 − k + 2 − 3n +� +. +From Theorem 5.1, +(p − 1)p(2p − 1) +6 +− (p − 1)p +2 ++ (p − 1)(2 − 3n) = py + +p−1 +� +k=1 +rp +� +k2� ++ 3n − 2, +then +p · p · (p − 5) + 6 − n +3 += py + +p−1 +� +k=1 +rp +� +k2� +. +24 + +The result follows. The proofs of the other two sums are done similarly. +□ +The purpose of the following lemma and remark is to find a formula for +�n +k=0 +� +k2−k+2−3n +p +� +. +Lemma 5.4 Let Qm = 1 + √4mp + 12n − 7 +2 +as in Notation 2.2. Then +⌊Qm⌋ = max{k ∈ N : k2 − k + 2 − 3n ≤ mp}. +Proof. +Clearly ⌊Qm⌋ ≤ Qm < ⌊Qm⌋+1 and since Qm is the non-negative root of +x2−x+2−3n = mp, k0 = ⌊Qm⌋ satisfies 0 ≤ k0 ≤ Qm and k2 +0 −k0+2−3n ≤ +mp. Hence k1 = ⌊Qm⌋ + 1 satisfies 0 ≤ k1 and k2 +1 − k1 + 2 − 3n > mp. If +k0 = 0 then k1 = 1 and hence p ≤ mp < 2−3n which is impossible, therefore +k0 ∈ N. +□ +Observation 5.5 By Lemma 2.5, there are no integers k, m, n such that +⌊Qm⌋ = Qm, i.e. k2 − k + 2 − 3n ̸= mp regardless of k, m, n. +Theorem 5.6 Let n > 3 and p = 4n − 1 prime. Then +n +� +k=1 +�k2 − k + 2 − 3n +p +� += (M − 1)n − +M−1 +� +m=0 +⌊Qm⌋ . +Proof. Since n > 3, 1 ≤ M. Define, tm = ⌊Qm⌋ and +Hm = + + + + + +� +1, ..., t0 +� +if m = 0, +� +tm−1 + 1, tm−1 + 2, ..., tm +� +if 1 ≤ m ≤ M − 1, +� +tM−1 + 1, tM−1 + 2, ..., n +� +if m = M. +By Lemma 5.4, k = ⌊Qm⌋ satisfies k2 − k + 2 − 3n ≤ mp and from +Observation 5.5, k2 −k + 2 −3n < mp. Therefore by Lemma 5.4, for k ∈ Hm +we have +(m − 1)p < k2 − k + 2 − 3n < mp. +For such k necessarily ⌊(k2 − k + 2 − 3n)/p⌋ = m − 1. +25 + +Notice that {H0, H1, ..., HM} is a partition of {1, 2..., n} as QM−1 < n < +QM (see Lemma 2.5 in [3]). Therefore +n +� +k=1 +�k2 − k + 2 − 3n +p +� += +M +� +m=0 +n +� +k=0 +k∈Hm +�k2 − k + 2 − 3n +p +� +, += +M +� +m=0 +(m − 1)|Hm|, += +−t0 + 0(t1 − t0) + 1(t2 − t1) + · · · , ++(M − 2)(tM−1 − tM−2) + (M − 1)(n − tM−1), += +− +M−1 +� +m=0 +⌊Qm⌋ + (M − 1)n. +□ +Corollary 5.7 If n > 3 and p = 4n − 1 is prime then +n +� +k=0 +�k2 +p +� ++ +n +� +k=1 +�k2 − k + 2 − 3n +p +� += n(n − 5) +6 ++ M − 1 +2p +p−1 +� +k=1 +rp +� +k2� +. +Proof. From [6] (page 253) we have +M +� +m=1 +⌊Rm⌋ = Mn − +n +� +k=0 +�k2 +p +� +. +(5.20) +Corollary 2 in [3] states +1 +2 +p−1 +� +k=1 +rp +� +k2� += p +� M +� +m=1 +⌊Rm⌋ + +M−1 +� +m=0 +⌊Qm⌋ +� +− Mp(2n − 1) + p · (n2 + n) +6 +. +(5.21) +Using Theorem 5.6 and Equation 5.20 in Equation 5.21 we obtain +1 +2 +p−1 +� +k=1 +rp +� +k2� += +p +� +(2M − 1)n − +n +� +k=1 +�k2 +p +� +− +n +� +k=1 +�k2 − k + 2 − 3n +p +�� +−Mp(2n − 1) + p · (n2 + n) +6 +. +26 + +The result now follows. +□ +Compare Corollary 5.7 with Theorem 2.2 (case p = 4n + 1) in [4] which +can be rewritten as +n +� +k=0 +�k2 +p +� ++ +n +� +k=1 +�k2 + k + 1 − n +p +� += (n + 3)(n + 2) +6 ++M − 1 +2p +p−1 +� +k=1 +rp +� +k2� ++un. +Corollary 5.8 If n > 3 and p = 4n − 1 is prime then +M +� +m=1 +⌊Rm⌋ − +M−1 +� +m=0 +⌊Qm⌋ = Jn − M − 1. +Proof. From Lemmas 2.10, 4.3 and 3.5 we obtain +Jn += +|C[−−)| + |C≥| = |D[−−)| + 2 + |C≥|, += +M0 + 2 + +M0 +� +m=0 +(ℓm − km) , += +M + 1 + +M0 +� +m=0 +(⌊Rm+1⌋ − ⌊Qm⌋) , += +M + 1 + +M +� +m=1 +⌊Rm⌋ − +M−1 +� +m=0 +⌊Qm⌋ . +□ +Compare Corollary 5.8 with Theorem 5.3 (case p = 4n + 1) in [4] +M +� +m=1 +⌊Rm⌋ − +M +� +m=0 +⌊Sm⌋ = jn + 2 − n − un. +27 + +6 +Class Number Identities +In this section, we establish some identities involving the class number h = +h(−p) of the imaginary quadratic field Q(√−p) when p is of the form p = +4n−1. These identities are based on the previous formulas we have developed +in previous sections. +In [3], we have +h += +(2M + 1)(2n − 1) − 2 +� M +� +m=1 +⌊Rm⌋ − +M−1 +� +m=0 +⌊Qm⌋ +� +− n2 + n +3 +. +h += +p − 1 +2 +− 1 +p +p−1 +� +k=1 +rp +� +k2� +. +From Corollaries 5.3, 5.7 and �p−1 +k=1 rp (k2) = 2 �2n +k=1 rp (k2) − 2n we obtain +Corollary 6.1 +p−1 +� +k=1 +�k2 − k + 2 − 3n +p +� += +h + 16n2 − 35n + 15 +3 +. +2n +� +k=1 +�k2 − k + 2 − 3n +p +� += +h +2 + 4n2 − 14n + 9 +6 +. +n +� +k=1 +�k2 − k + 2 − 3n +p +� += +h +4 + Jn +2 + n2 − 17n − 3 +12 +. +n +� +k=1 +�k2 − k + 2 − 3n +p +� += +h +2 + M + n2 − 11n + 3 +6 +− +n +� +k=1 +�k2 +p +� +. +n +� +k=1 +�k2 − k + 2 − 3n +p +� += +h +2 + +M +� +m=1 +⌊Rm⌋ + M(1 − n) + n2 − 11n + 3 +6 +. +From Corollary 5.8, we have +28 + +Corollary 6.2 +Jn +2 + M(n − 1) += +h +4 + +M +� +m=1 +⌊Rm⌋ + n2 − 5n + 9 +12 +. +−Jn +2 + Mn += +h +4 + +M−1 +� +m=0 +⌊Qm⌋ + n2 − 5n − 3 +12 +. +Jn +2 + +n−1 +� +k=1 +�k2 +p +� += +h +4 + n2 − 5n + 9 +12 +. +From Theorem 5.1, we conclude +Corollary 6.3 +p−1 +� +k=1 +rp +� +k2 − k + 2 − 3n +� += +p · (2n − h) − n − 1. +2n +� +k=1 +rp +� +k2 − k + 2 − 3n +� += +p · (2n − h) + 1 +2 +. +n +� +k=1 +rp +� +k2 − k + 2 − 3n +� += +p +4(3n + 2 − 2Jn − h) − (n + 1)(n − 1) +4 +. +Finally, combining this last formula with Theorem 5.1 we have +Corollary 6.4 +n +� +k=1 +rp +� +k2� += p +4(2Jn + 2n − 3 − 4M − h) + n(n + 1) +4 +. +The numerical data we have allow us to pose the following +Conjecture 6.5 Consider all n such that p = 4n−1 a prime number. Then +lim +n→∞ +Jn +n = 3 +8. +29 + +Conjecture 6.6 Consider all n such that p = 4n−1 a prime number. Then +lim +n→∞ +�M +m=1 ⌊Rm⌋ + �M−1 +m=0 ⌊Qm⌋ +Mp + 2n += 1 +3. +Also a good estimate of �M +m=1 ⌊Rm⌋ + �M−1 +m=0 ⌊Qm⌋ is ⌊(Mp + 2n)/3⌋ . +30 + +References +[1] H. Cohen, A course in computational algebraic number theory, vol. 138 +of Graduate Text in Mathematics., Springer-Verlag, New York, 1993. +[2] P. G. L. Dirichlet, Beweis des satzes, dass jede unbegrenzte arith- +metische progression, deren erstes glied und differenz ganze zahlen ohne +gemeinschaftlichen factor sind, unendlich viele primzahlen enth¨alt. ab- +handlungen der k¨oniglich preussischen akademie der wissenschaften von, +Abhandlungen der K¨oniglich Preussischen Akademie der Wissenschaften +von, (1837), pp. 45—-81. +[3] J. Garcia, A computable formula for the class number of the imaginary +quadratic field Q(√−p), p = 4n − 1, Electronic Research Archive, 29 +(2021), pp. 3853–3865. +[4] +, Sums involving quadratic residues modulus a prime of the form +p = 4n + 1., 2022. +[5] W. Narkiewicz, Elementary And Analytic Theory Of Algebraic Num- +bers, Springer, 2004. +[6] C. Zeller, Ueber Summen von gr¨ossten Ganzen bei arithmetische Rei- +hen., Nachricten von der K. Gesselschaft der Wissenschaften und der +Georg- Augusts Universitat, May 14, 1879. +31 + diff --git a/XdE1T4oBgHgl3EQfJQP0/content/tmp_files/load_file.txt b/XdE1T4oBgHgl3EQfJQP0/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..8e8e4c970868a50729ba10285fc96c553035fabd --- /dev/null +++ b/XdE1T4oBgHgl3EQfJQP0/content/tmp_files/load_file.txt @@ -0,0 +1,685 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf,len=684 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='02951v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='NT] 8 Jan 2023 Class Number of the Imaginary Quadratic Field and Quadratic Residues Identities Jorge Garcia January 10, 2023 Abstract A formula for the sum of quadratic residues modulus a prime p = 4n − 1 is studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' We relate some terms on this formula with roots of quadratics and provide an exhaustive analysis of new con- cepts based on these roots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' A number of formulas for the sum of the quadratic residues are obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' We finalize the paper by obtaining several identities involving h(−p) the class number of the imaginary quadratic field Q(√−p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 1 Introduction Consider a prime p = 4n − 1 and 1 ≤ k ≤ p − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' By rp (k2) , we denote the remainder of k2 when we divide by p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' We call this number rp (k2) the quadratic residue of k2 modulus p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' When we add all these residues we obtain the sum of quadratic residues relative to the prime number p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' There is a complicated formula for such sum, p−1 � k=1 rp � k2� = �p 2 � − p · h(−p), (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='1) where h(−p) is the class number of the imaginary quadratic field Q(√−p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Important formulas for the class number when the prime is of the form p = 4n − 1 > 3 include Dirichlet class number formula 1 h(−p) = √p 2π ∞ � r=1 χ(r) r , (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='2) where χ is the Dirichlet character.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Formula 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='2 can be found in [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Another formula that involves the Kro- necker symbol � p r � can be found in [5] (Corollary 1 p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 428).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Finally a formula developed by Cohen [1] [Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='16] provides the class number too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' The main purpose of this paper is to obtain some identities for this num- ber h(−p) by computing the quadratic residues in a different manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Here we provide a summary of the main formulas obtained in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Here Qk = � 1 + √4kp + 12n − 7 � /2, M = ⌊n2/p⌋ and Jn is the number of jumps (see Section 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' M � k=1 �� kp � − M−1 � k=0 ⌊Qk⌋ = Jn − M − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' n � k=1 �k2 − k + 2 − 3n p � + M−1 � k=0 ⌊Qk⌋ = (M − 1)n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' p−1 � k=1 rp � k2 − k + 2 − 3n � = p−1 � k=1 rp � k2� + 3n − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 2n � k=1 rp � k2 − k + 2 − 3n � = 2n � k=1 rp � k2� + n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' n � k=1 rp � k2 − k + 2 − 3n � = n � k=1 rp � k2� + n(n + 1) 2 − p(Jn − 1 − M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' p−1 � k=1 �k2 − k + 2 − 3n p � = p(p − 5) + 6 − n 3 − 1 p p−1 � k=1 rp � k2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 2n � k=1 �k2 − k + 2 − 3n p � = n(2n − 1)(4n − 7) 3p − 1 p 2n � k=1 rp � k2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' n � k=1 �k2 − k + 2 − 3n p � = (n + 1)(2n2 − 23n + 6) 3p − 1 p n � k=1 rp � k2� + Jn − M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 2 This is a summary of the identities involving the class number h = h(−p) found on this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Jn 2 + M(n − 1) = h 4 + M � k=1 �� kp � + n2 − 5n + 9 12 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' −Jn 2 + Mn = h 4 + M−1 � k=0 ⌊Qk⌋ + n2 − 5n − 3 12 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Jn 2 + n−1 � k=1 �k2 p � = h 4 + n2 − 5n + 9 12 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' p−1 � k=1 rp � k2 − k + 2 − 3n � = p · (2n − h) − n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 2n � k=1 rp � k2 − k + 2 − 3n � = p · (2n − h) + 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' n � k=1 rp � k2 − k + 2 − 3n � = p 4(3n + 2 − 2Jn − h) − (n + 1)(n − 1) 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' n � k=1 rp � k2� = p 4(2Jn + 2n − 3 − 4M − h) + n(n + 1) 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' p−1 � k=1 �k2 − k + 2 − 3n p � = h + 16n2 − 35n + 15 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 2n � k=1 �k2 − k + 2 − 3n p � = h 2 + 4n2 − 14n + 9 6 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' n � k=1 �k2 − k + 2 − 3n p � = h 4 + Jn 2 + n2 − 17n − 3 12 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' n � k=1 �k2 − k + 2 − 3n p � = h 2 + M(1 − n) + n2 − 11n + 3 6 + M � k=1 �� kp � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 3 In Section 2 we provide the main definitions and the notation used in the whole paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Here, we develop the concepts of jump and total residue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' We also identify when these jumps occur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' In Section 3 we organize the jumps on six different sets and we state the main lemmas that will be used to count the jumps which is done in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' It is here where we define bijective functions among different pairs of sets to compute their cardinalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' In Section 5 we obtain the sums of quadratic residues of terms of the form k2 − k + 2 − 3n where k ranges on the different intervals [1, 4n − 2], [1, 2n] or [1, n].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' In this section we also count to total amount of jumps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Finally in Section 6 we establish several identities involving the class number h(−p) of the imaginary quadratic field Q(√−p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' These identities are based on the sums found in previous sections and in some of these identities the jumps quantity appears.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Whereas in [4] we computed several sums of quadratic residues when p = 4n + 1, in this paper, we perform a similar but different analysis when p = 4n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' It is on this paper where the class number is involved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' On some occasions we present both formulas (p = 4n − 1 and p = 4n + 1) for comparison purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 2 Sum of Quadratic Residues and Jumps Consider p = 4n − 1 a prime number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' It will be understood that when we write n, we mean a natural number n ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='1 Let q be a positive integer and x ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' By rq(x) we denote the remainder of x when we divide by q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Hence rq(x) ∈ {0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=', q − 1} satisfies x = m · q + rq(x), for some m ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Clearly, m = ⌊x/q⌋ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' The following notation found in [3] will be useful during the whole paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 4 Notation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='2 For m ∈ Z, p = 4n − 1 prime and m ≥ 0 we denote Qm = 1 2 + 1 2 � 1 + 4 [(m + 1)p − n − 1] = 1 2 + 1 2 � 4mp + 3p − 4 , Rm = √mp , M = �n2 p � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' In [3], we obtained a theorem that involves the sum of quadratic residues when p = 4n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' For reference purposes, we write here such theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='3 Let p = 4n − 1 be prime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Using Notation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='2 we have 1 2 p−1 � k=1 rp � k2� = p � M � m=1 ⌊Rm⌋ + M−1 � m=0 ⌊Qm⌋ � − Mp(2n − 1) + p · (n2 + n) 6 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' A concept arises naturally when we study the term Qm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' This term is the positive root of the quadratic polynomial x2 − x + 2 − 3n − mp which is the same as (x − 1)2 + x + 1 − 3n − mp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='4 Let p = 4n − 1 be a prime and 0 ≤ k ≤ p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' The total residue of k is defined and denoted by Γ(k) = rp � (k − 1)2� + rp (k + 1 − 3n) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' We also say that k is a jump if its total residue is p or more, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' if Γ(k) ≥ p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' What is the importance of the jumps?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Firstly, in the proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='3 (see [3]), a key technique is adding rp (k2) and rp ((2n − k)2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' It happens that when k ∈ (Rm, Qm] this sum is constant, but as soon as k exceeds Qm, we need to subtract p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore knowing when we need to subtract p is key to comprehend better the formula in Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Secondly, the amount of jumps in the interval [2, n+2] will allow us to establish a formula to compute the terms �M−1 m=0 ⌊Qm⌋ , �M m=1 ⌊Rm⌋ as well as �n k=0 rp (k2) as a function of n, h(−p) and the number of jumps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' This is achieved in Corollaries 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='2 and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' The following three lemmas allow us to identify some jumps and when they occur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' For notation purposes we define Z0 = {0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 5 Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='5 Let p = 4n − 1 be a prime and m ∈ Z0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Then ⌊Qm⌋ < Qm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Assume there is j ∈ Z such that j = � 1 + � 4mp + 12n − 7 � /2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Then j2 − j + 2 − 3n = mp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Taking x0 = 2n − j gives x2 0 = 4n2 − n + mp + j − 4nj + n + 3n − 2 = (n + m − j + 1)p − 1, hence x2 0 ≡ −1 (mod p) which contradicts Fermat Little Theorem as p = 4n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' □ Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='6 By using the same argument, there is no integer k with k2 − 3k + 4 − 3n = mp, else taking k − 1 = j we obtain j2 − j + 2 − 3n = mp which leads to a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='7 Let p = 4n − 1 be a prime with n ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Let m ∈ Z0 with 0 ≤ m ≤ �n2 − 4n + 5 p � and km = 1 + �1 + √4mp + 12n − 7 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Then (i) 3 ≤ km ≤ n + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (ii) 1 + √4mp + 12n − 7 < 2km < 3 + √4mp + 12n − 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (iii) km is a jump and (iv) 3n − km − 1 < rp � (km − 1)2� = (km − 1)2 − mp ≤ 3n + km − 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (i) Notice that 4mp + 12n − 7 ≤ 4n2 + 4n + 1, hence km ≤ n + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Since 2 ≤ n, 9 ≤ 4mp + 12n − 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore 3 ≤ km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (ii) Notice that km is strictly above the positive root of x2−x+2−3n−mp, hence k2 m − km + 2 − 3n > mp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='3) 6 Now km ≤ n + 2 ≤ 3n and 2 ≤ n imply (km−1)2−mp = k2 m−km+2−3n−mp+3n−km−1 ≥ 3n−km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='4) From Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='5, km < � 3 + √4mp + 12n − 7 � /2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' The other inequal- ity is obvious.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (iii) From (ii), km is less than the positive root of x2 − 3x + 4 − mp − 3n, hence k2 m − 3km + 4 − mp − 3n ≤ −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore (km − 1)2 − mp ≤ 3n + km − 4 ≤ 4n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='5) It is impossible that (km−1)2−mp = 4n, otherwise (km−1)2−1 = (m+ 1)p, hence p would divide (km − 2)km which forces km = 0 or km = 2, which contradicts km ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Hence (km − 1)2 − mp ≤ 4n − 1, however, if (km − 1)2 − mp = 4n − 1, then km = 1 which is again, impossible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Then (km − 1)2 − mp < p and hence rp ((km − 1)2) = (km − 1)2 − mp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Now Γ(km) = rp ((km − 1)2) + rp (km + 1 − 3n) = (km − 1)2 − mp + km + 1 − 3n − p as km ≤ n + 2 ≤ 3n − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Now Inequality 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='3 implies Γ(km) = k2 m − km + 2 − 3n − mp + p ≥ p, hence km is a jump.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (iv) To finish the proof, we observe that from Inequalities 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='4 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='5 we obtain 3n − km ≤ rp � (km − 1)2� = (km − 1)2 − mp ≤ 3n + km − 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' □ The following lemma allows us to find more jumps based on the ones found in Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='8 Consider km be the jump in Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='7 and k ≤ n + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' If km < k ≤ 1 + �√mp + p − 1 � then k is a jump and 3n + k − 3 < rp � (k − 1)2� = (k − 1)2 − mp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Clearly km < k implies mp ≤ (km − 1)2 < (k − 1)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Since k ≤ �√mp + p − 1 � , (k −1)2 ≤ mp+p−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Hence rp ((k − 1)2) = (k −1)2 −mp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 7 Since k ≤ n+2, rp (k + 1 − 3n) = k+1−3n−p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' We know that k is strictly above the positive root of x2 −x+2−3n−mp, hence k2 −k +2−3n > mp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' This implies that Γ(k) =rp � (k − 1)2� + rp (k + 1 − 3n) = (k − 1)2 − mp + k + 1 − 3n + p =k2 − k + 2 − 3n − mp + p ≥ p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' and then k is a jump.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' From Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='7, � 1 + √4mp + 12n − 7 � /2 < km ≤ k−1, hence � 3 + √4mp + 12n − 7 � /2 < k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore 0 < k2 − 3k + 4 − mp − 3n, then 3n + k − 3 < (k − 1)2 − mp = rp � (k − 1)2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' □ Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='9 Note that by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='7, the jumps km satisty 3n − km − 1 < rp ((k − 1)2) ≤ 3n + km − 4 and by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='8, the jumps k > km satisfy 3n + k − 3 < rp ((k − 1)2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Now if k is not a jump and 2 ≤ k ≤ n + 2, then necessarily rp ((k − 1)2) < 3n − k − 1 as the following lemma shows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' The following two lemmas are about the total residues and will help us to count the total amount of jumps in the interval [1, 4n].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' We will only prove the fist one as the proof of the second one is similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='10 Let n ≥ 2 and 2 ≤ k ≤ n + 2 and p = 4n − 1 prime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (a) If rp ((k − 1)2) < 3n − k − 1 then Γ(k) < p and Γ(p + 2 − k) < p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (b) If 3n−k −1 ≤ rp ((k − 1)2) < 3n+ k −3 then Γ(p + 2 −k) < p ≤ Γ(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (c) If 3n + k − 3 ≤ rp ((k − 1)2) then p ≤ Γ(p + 2 − k) and p ≤ Γ(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Note that −(4n − 1) ≤ k + 1 − 3n ≤ −1, therefore rp (k + 1 − 3n) = k + 1 − 3n + p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Similarly, k ≤ n + 2 implies 0 ≤ p + 3 − k − 3n ≤ p − 1 and hence rp (k2) p + 3 − k − 3n = p + 3 − k − 3n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 8 (a) Clearly Γ(k) =rp � (k − 1)2� + rp (k + 1 − 3n) , =rp � (k − 1)2� + p + k + 1 − 3n < p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Γ(p + 2 − k) =rp � (p − (k − 1))2� + rp (p + 3 − k − 3n) , =rp � (k − 1)2� + p + 3 − k − 3n < p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (b) Here Γ(k) = rp ((k − 1)2) + p + k + 1 − 3n ≥ p and Γ(p + 2 − k) = rp ((k − 1)2) + p + 3 − k − 3n < p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (c) Finally Γ(k) = rp ((k − 1)2) + p + k + 1 − 3n ≥ p and Γ(p + 2 − k) = rp ((k − 1)2) + p + 3 − k − 3n ≥ p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Note that 2 ≤ k ≤ n + 2 implies 0 ≤ p + 2 − k ≤ p, hence Γ(p + 2 − k) is defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Also when k = 0 or k = 1, rp (k2) < 3n − k − 1 and Γ(k) < p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Then Γ(p + 2 − k) is not defined as p + 2 − k > p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' □ Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='11 Let n ≥ 2, p = 4n − 1 prime and n + 3 ≤ k ≤ 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (a) If rp ((k − 1)2) < k − n − 2 then Γ(k) < p and Γ(p + 2 − k) < p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (b) If k − n − 2 ≤ rp ((k − 1)2) < 3n − k − 1 then Γ(k) < p ≤ Γ(p + 2 − k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (c) If 3n − k − 1 ≤ rp ((k − 1)2) then p ≤ Γ(k) and Γ(p + 2 − k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (very similar to the one of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=') □ 3 Splitting the Jumps For future reference we define the following sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 9 Notation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='1 For p = 4n − 1 prime, denote C< = � k ∈ {2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=', n + 2} : rp � (k − 1)2� < 3n − k − 1 � , C[−−) = � k ∈ {2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=', n + 2} : rp � (k − 1)2� ∈ [3n − k − 1, 3n + k − 3) � , C≥ = � k ∈ {2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=', n + 2} : rp � (k − 1)2� ≥ 3n + k − 3 � , D< = � k ∈ {n + 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=', 2n} : rp � (k − 1)2� < k − n − 2 � , D[−−) = � k ∈ {n + 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=', 2n} : rp � (k − 1)2� ∈ [k − n − 2, 3n − k − 1) � , D≥ = � k ∈ {n + 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=', 2n} : rp � (k − 1)2� ≥ 3n − k − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='2 Let ℓ ∈ Z and p = 4n − 1 prime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (a) Let ℓ ≥ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' If n = 4ℓ + 2 or n = 4ℓ + 3 then n − 3, n − 1, n + 1 ∈ C[−−) and n − 2, n, n + 2 ∈ C<.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (b) Let ℓ ≥ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' If n = 4ℓ + 1 or n = 4ℓ + 4 then n − 3, n − 1, n + 1 ∈ C< and n − 2, n, n + 2 ∈ C[−−).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Table 1 summarizes the residues of (k − 1)2 for k = n − 3, n − 2, n − 1, n, n + 1 and n + 2 given the four different cases for n which are 4ℓ + 1, 4ℓ + 2, 4ℓ + 3 and 4ℓ + 4, ℓ ≥ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' We only verify the first column of Table 1, that is, we will compute the residues of (k − 1)2 when k = n − 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (4ℓ − 3)2 = (16ℓ + 3)(ℓ − 2) + 5ℓ + 15, 0 ≤ 5ℓ + 15 ≤ 16ℓ + 2, (4ℓ − 2)2 = (16ℓ + 7)(ℓ − 2) + 9ℓ + 18, 0 ≤ 9ℓ + 18 ≤ 16ℓ + 6, (4ℓ − 1)2 = (16ℓ + 11)(ℓ − 2) + 13ℓ + 23, 0 ≤ 13ℓ + 23 ≤ 16ℓ + 10, (4ℓ)2 = (16ℓ + 15)(ℓ − 1) + ℓ + 15, 0 ≤ ℓ + 15 ≤ 16ℓ + 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' For a given n, k, denote Ik n = [3n−k −1, 3n+k −3) and ∆k n = rp ((k − 1)2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (a) Consider n = 4ℓ+2 and k = n−3 then Ik n = [8ℓ+6, 16ℓ+2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' According to Table 1, ∆k n = 9ℓ + 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' We observe that if ℓ ≥ 3, ∆k n ∈ Ik n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Similarly, if k = n − 1, Ik n = [8ℓ + 4, 16ℓ + 4) and ∆k n = 9ℓ + 7 ∈ Ik n for ℓ ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' If k = n + 1, Ik n = [8ℓ + 2, 16ℓ + 6) and ∆k n = 9ℓ + 4 ∈ Ik n for ℓ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Hence for ℓ ≥ 6, n − 3, n − 1, n + 1 ∈ C[−−).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Notice that if k = n − 2, ∆k n = ℓ + 8 /∈ [8ℓ + 5, 16ℓ + 3) = Ik n when ℓ ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Likewise, if k = n, ∆k n = ℓ + 1 /∈ [8ℓ + 3, 16ℓ + 5) = Ik n when ℓ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 10 k n − 3 n − 2 n − 1 n n + 1 n + 2 n = 4ℓ + 1 p = 16ℓ + 3 5ℓ + 15 13ℓ + 10 5ℓ + 4 13ℓ + 3 5ℓ + 1 13ℓ + 4 n = 4ℓ + 2 p = 16ℓ + 7 9ℓ + 18 ℓ + 8 9ℓ + 7 ℓ + 1 9ℓ + 4 ℓ + 2 n = 4ℓ + 3 p = 16ℓ + 11 13ℓ + 23 5ℓ + 11 13ℓ + 12 5ℓ + 4 13ℓ + 9 5ℓ + 5 n = 4ℓ + 4 p = 16ℓ + 15 ℓ + 15 9ℓ + 16 ℓ + 4 9ℓ + 9 ℓ + 1 9ℓ + 10 Table 1: Residues of (k − 1)2 when k = n − 3, n − 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=', n + 2 for the different cases of n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Finally, if k = n + 2, ∆k n = ℓ + 2 /∈ [8ℓ + 1, 16ℓ + 7) = Ik n when ℓ ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore n − 2, n, n + 2 /∈ C[−−) when ℓ ≥ 1, in fact, n − 2, n, n + 2 ∈ C< for ℓ ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' The case n = 4ℓ + 3 is analogous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (b) This case is done analogously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' □ Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='3 If n > 3 either Γ(n + 2) < p ≤ Γ(n + 1) or Γ(n + 1) < p ≤ Γ(n + 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' From Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='2, if n = 4ℓ + 2 or n = 4ℓ + 3 and ℓ ≥ 6, then n + 1 ∈ C[−−) and n + 2 ∈ C<.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' By Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='10, Γ(n + 2) < p ≤ Γ(n + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' From Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='2, if n = 4ℓ + 1 or n = 4ℓ + 4 and ℓ ≥ 4, then n + 1 ∈ C< and n + 2 ∈ C[−−).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' By Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='10, Γ(n + 1) < p ≤ Γ(n + 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' We only need to verify the cases n = 5, 6, 8, 11, 12, 15 and 18 as the cases n = 4, 7, 9, 10, 13, 16 and 19 do not give prime numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (i) If n = 5 then n + 2 ∈ C[−−) = {5, 7} and n + 1 ∈ C< = {2, 3, 4, 6}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (ii) If n = 6 then n + 1 ∈ C[−−) = {5, 7} and n + 2 ∈ C< = {2, 3, 4, 6, 8}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 11 (iii) If n = 8 then n+2 ∈ C[−−) = {6, 8, 10} and n+1 ∈ C< = {2, 3, 4, 5, 7, 9}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (iv) If n = 11 then n + 1 ∈ C[−−) = {7, 10, 12} and n + 2 ∈ C<.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (v) If n = 12 then n + 2 ∈ C[−−) = {7, 10, 12, 14} and n + 1 ∈ C<.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (vi) If n = 15 then n + 1 ∈ C[−−) = {8, 11, 14, 16} and n + 2 ∈ C<.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (vii) If n = 18 then n + 1 ∈ C[−−) = {8, 12, 15, 17, 19} and n + 2 ∈ C<.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' An application of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='10 gives us the result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Observe that when n = 3, C[−−) = {4, 5}, C< = {2, 3}, in this case both Γ(n + 1) = 16 and Γ(n + 2) = 13 are greater than p = 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' □ The following two lemmas allow us to compute specifically the cardinality of C≥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='4 Let n > 3, p = 4n − 1 prime and M0 = ⌊(n2 − 4n + 5)/p⌋.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Define ℓm = 1 + �√mp + p − 1 � and consider km defined as in Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Let 2 ≤ k ≤ n + 2 and 0 ≤ m ≤ M0 − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' If k < k0, k > ℓM0 or ℓm < k ≤ km+1 then k /∈ C≥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Also if k < k0 or ℓm < k < km+1 then k is not a jump.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Consider k < k0 = 1+ � (1 + √12n − 7)/2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Then (2k−1)2 < 12n−7 from which (k − 1)2 < 3n − k − 1 ≤ 4n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Hence rp ((k − 1)2) = (k − 1)2 < 3n − k − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='10, k ∈ C< and k is not a jump.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Consider k > ℓM0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Notice that ℓM0 = 1 + �√Mp � ≥ n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='2, either k ∈ C[−−) or k ∈ C<.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' If k = km+1, by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='7 (iv), k ∈ C[−−).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Finally consider ℓm < k < km+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Then 1 + � (m + 1)p < k < 1 + � 4(m + 1)p + 12n − 7 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Hence (m + 1)p < (k − 1)2 < (m + 1)p + 3n − k − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore rp ((k − 1)2) = (k−1)2−(m+1)p < 3n−k−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' By Lemmas 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='10 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='2, k is not a jump and k ∈ C<.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' □ 12 Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='5 Consider n, p and M0 as in Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Then k ∈ C≥ if and only if there is m ∈ {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=', M0} such that km < k ≤ 1 + �√mp + p − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' From Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='8, if km < k ≤ ℓm then k is a jump and rp ((k − 1)2) > 3n + k − 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Note that 2 ≤ k0 < k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Since m ≤ M0 we have ℓm ≤ n + 2, hence 2 ≤ k ≤ n + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore k ∈ C≥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Conversely, let k ∈ C≥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Then 2 ≤ k ≤ n+2 and rp ((k − 1)2) ≥ 3n+k−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Observe that [2, n + 2] = [2, k0] ∪ (k0, ℓ0] ∪ (ℓ0, k1] ∪ (k1, ℓ1] ∪ · · · ∪ (kM0, ℓM0] ∪ (ℓM0, n + 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' If k < k0, k > ℓM0 or ℓm < k ≤ km+1, by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='4, k /∈ C≥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' This forces k to be in (km, ℓm] for some m ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=', M0}, which is what we wanted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' □ 4 Counting the Jumps In this section we will relate the jumps in the different sets C<, C[−−), C≥, D<, D[−−) and D≥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' We will compute different cardinalities when possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' In this section we consider n > 3 and p = 4n − 1 a prime number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='1 The function f : C≥ −→ D< defined by f(k) = 2n + 2 − k, is well-defined and bijective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Consider k ∈ C≥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' By Lemmas 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='8, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='5 and Observation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='9, there is m ∈ {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=', M0} with M0 = ⌊(n2 − 4n + 5)/p⌋ such that km < k ≤ 1 + �√mp + p − 1 � and 3n + k − 3 ≤ (k − 1)2 − mp = rp ((k − 1)2) , where km is the jump given in Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Hence 0 ≤ k2 − 3k − 3n + 4 − mp, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='6) k2 − 2k + 1 − mp ≤ 4n − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='7) 13 Let kf = f(k) = 2n + 2 − k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' We will first prove that kf ∈ D<.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Now (kf − 1)2 = (n − k + m + 2)p + (k − 1)2 − mp + n − k + 1 − p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Let w = (k − 1)2 − mp + n − k + 1 − p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' From Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='6, w ≥ −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' From Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='6, k2 − 3k + 4 − 3n − mp ̸= 0, hence w ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Note that in the case of equality in Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='7, we would have (k−1)2 = mp + p − 1, hence the congruency x2 ≡ −1 (mod p) would have a solution, which is impossible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore k2 − 2k + 1 − mp < 4n − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='8) From Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='7, w = k2 − 2k + 1 − mp + 2 − k − 3n < n − k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='9) Clearly n − k ≤ 4n − 2, hence w < p − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore rp ((kf − 1)2) = w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' From Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='9, 0 ≤ w < n−k, this forces k ≤ n−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Also from Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='9, since kf − n − 2 = n − k, we conclude that rp ((kf − 1)2) = w < kf − n − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Finally, 2 ≤ k ≤ n − 1 implies n + 3 ≤ kf ≤ 2n, hence f is well defined as kf ∈ D<.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Clearly f is injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Take now �k ∈ D<.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Then n + 3 ≤ �k ≤ 2n and rp � (�k − 1)2� < �k − n − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='10) Consider k = 2n + 2 − �k and �m ∈ Z with �m ≤ (�k − 1)2 < �m · p + p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='11) Then 2 ≤ k ≤ n − 1 and (k − 1)2 = (n − �k + �m) · p + (�k − 1)2 − �mp + n − �k + 1 − p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Consider m = n − �k + �m and u = (�k − 1)2 − �mp + n − �k + 1 − p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Since �k ≤ 5n, Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='11 implies 0 ≤ n − �k + 1 − p ≤ (k − 1)2 − �mp + n − �k + 1 − p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='12) Also from Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='10, we have (k − 1)2 − �mp + n − �k + 1 − p < p − 1, therefore 0 ≤ u < p − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Hence rp ((k − 1)2) = (k − 1)2 − mp = u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Finally Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='12 implies u ≥ 5n − �k ≥ 5n − 1 − �k = 3n + k − 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore rp ((k − 1)2) ≥ 3n + k − 3, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' k ∈ C≥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Clearly f(k) = �k, then f is bijective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' □ 14 Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='2 Let y, z be the last two elements in C[−−).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' If k ∈ C[−−) − {y, z} then mp + p ≤ (n − 2)2 + 1, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='13) where m = m(k) = ⌊(k − 1)2/p⌋ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (a) Case n = 4ℓ + 2 or n = 4ℓ + 3, ℓ ≥ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='2, k ∈ C[−−) − {y, z} implies k ≤ n − 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Hence m ≤ ℓ − 2 = ⌊(n − 4)2/p⌋ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' If n = 4ℓ + 2 then mp + p ≤ (ℓ − 1)(16ℓ + 7) ≤ 16ℓ2 + 1 = (n − 2)2 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' If n = 4ℓ+3 then mp+p ≤ (ℓ−1)(16ℓ+11) ≤ 16ℓ2+8ℓ+2 = (n−2)2+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (b) Case n = 4ℓ + 1 or n = 4ℓ + 4, ℓ ≥ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='2, k ∈ C[−−) − {y, z} implies k ≤ n − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' If n = 4ℓ + 1 then m ≤ ⌊(n − 3)2/p⌋ = ℓ − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Hence mp + p ≤ (ℓ − 1)(16ℓ + 3) ≤ 16ℓ2 − 8ℓ + 2 = (n − 2)2 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' If n = 4ℓ+4 then m ≤ ⌊(n − 3)2/p⌋ = ℓ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Hence mp+p ≤ ℓ·(16ℓ+15) ≤ 16ℓ2 + 16ℓ + 5 = (n − 2)2 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (c) The only left cases are n = 5, 6, 8, 11, 12, 15 and 18 as the choices n = 4, 7, 9, 10, 13, 14, 16, 19, 22, 23 do not provide prime numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (i) If n = 5 or 6 then C[−−) has only two elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Hence Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='13 is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (ii) If n = 8 then C[−−) = {6, 8, 10} and k = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore m(k) = 0 = ⌊(k − 1)2/p⌋ = ⌊25/31⌋ clearly satisfies Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (iii) If n = 11 then C[−−) = {7, 10, 12} and k = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore m(k) = 0 clearly satisfies Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (iv) If n = 12 then C[−−) = {7, 10, 12, 14}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' If k = 10, then m(k) = 1 = ⌊(k − 1)2/p⌋ = ⌊81/47⌋ clearly satisfies Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='13 as 94 ≤ 101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Clearly m(7) also does.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (v) If n = 15 then C[−−) = {8, 11, 14, 16}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' If k = 11, then m = 1 = ⌊(k − 1)2/p⌋ = ⌊100/59⌋ clearly satisfies Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='13 as 118 ≤ 169.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Clearly m(8) also does.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (vi) If n = 18 then n + 1 ∈ C[−−) = {8, 12, 15, 17, 19}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' If k = 15, then m(k) = 2 = ⌊(k − 1)2/p⌋ = ⌊196/71⌋ clearly satisfies Inequal- ity 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='13 as 213 ≤ 256.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Clearly m(8), m(12) also satisfy Inequal- ity 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 15 □ Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='3 k ∈ D[−−) if and only if there is an integer m with 1 ≤ m ≤ ⌊(n2 − 4n + 5)/p⌋ and k = 2n − �� mp − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' ⇒) Let k ∈ D[−−) and define α = 2n + 1 − k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Hence 1 ≤ α ≤ n − 2 and (k − 1)2 = 4n2 + α2 − 4nα = (n − α + m)p + α2 + n − α − mp, where m satisfies mp ≤ α2+n−α < (m+1)p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore rp ((k − 1)2) = α2+n−α−mp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Since k−n−2 ≤ rp ((k − 1)2) < 3n−k−1, mp−1 ≤ α2 and (α − 1)2 < mp − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Hence √mp − 1 ≤ α < √mp − 1 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Since x2 ≡ −1 (mod p) has no solution, √mp − 1 is not an integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore α = �√mp − 1 � + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Then k = 2n − �√mp − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Since 0 ≤ α2 + n − α, m ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Now (α − 1)2 < mp − 1 implies 1 ≤ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Clearly mp ≤ α2 + 1 ≤ (n − 2)2 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore m ≤ (n2 − 4n + 5)/p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' ⇐) Consider an integer m with 1 ≤ m ≤ (n2 − 4n + 5)/p and k = 2n − �√mp − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Since mp − 1 ≤ (n − 2)2, n + 2 ≤ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Clearly n + 2 = k leads us to an integer solution of x2 ≡ −1 (mod p), therefore n + 3 ≤ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Also 1 ≤ m implies k ≤ 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Consider α = �√mp − 1 � + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Then √mp − 1 ≤ α < √mp − 1 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Clearly α ̸= √mp − 1 + 1 (otherwise x2 ≡ −1 (mod p) has an integer solution), then √mp − 1 < α < √mp − 1 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Hence mp − 1 < α2 and (α − 1)2 < mp − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Since α < n − 1, mp ≤ α2 ≤ α2 + n − α < n + α − 2 + mp < mp + p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Since (k − 1)2 = (2n − α)2 = (n − α + m)p + α2 + n − α − mp, rp ((k − 1)2) = α2 + n − α − mp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Finally, from k − n − 2 = n − α − 1 < rp ((k − 1)2) < n + α − 2 = 3n − k − 1, we conclude that k ∈ D[−−).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' □ 16 Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='4 Let y, z the last two elements of C[−−).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' For k ∈ C[−−) − {y, z}, consider m = ⌊(k − 1)2/p⌋ and u0 = u0(k) the first integer less than or equal to n + 2 such that x = u0 satisfies (m + 1) p ≤ (k + x − 1)2 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='14) Then, the function f : C[−−) − {y, z} −→ D[−−) defined by f(k) = kf = 2n + 2 − u0 − k, is well-defined and bijective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' First, we will prove that f is well-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' It is not hard to check that u0 = �� (m + 1)p � +2−k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' The definition of u0 implies that u0, u0+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' satisfy Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='14 but u0 − 1 does not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Hence u0 satisfies 4n + mp ≤ k2 + 2k(u0 − 1) + u2 0 − 2u0 + 3, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='15) k2 + 2k(u0 − 2) + u2 0 − 4u0 + 6 < 4n + mp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='16) If k2 = mp + 3n + 3k − 2 for 2 ≤ k ≤ n + 2 and we define x0 = 2n − k + 1, then x2 0 = (n+ m−k + 2)p + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore p divides (x0 −1)(x0 + 1), however since n ≥ 3 and 2 ≤ k ≤ n + 2, we have that 1 ≤ 2n − k = x0 − 1 < x0 + 1 = 2n + 2 − k ≤ 4n − 2, which is impossible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore k2 ̸= mp + 3n + 3k − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='17) Observe that u0 ≥ 1 as x = 0 does not satisfy Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Also u0 ≤ n+2 as (k + n + 1)2 ≥ (k − 1)2 + (n + 2)2 ≥ mp + p − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' To shorten notation, define \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 mf = n + 2 − k − u0 + m, ∆ = rp ((k − 1)2) , ∆f = rp ((kf − 1)2) , wf = ∆ + k(2u0 − 1) − p + n + u2 0 − 3u0 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' To check that f is well-defined, we need to verify that n + 3 ≤ kf ≤ 2n and kf − n − 2 ≤ ∆f < 3n − kf − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' It is not hard to check that (kf − 1)2 = mf · p + wf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 17 Notice that ∆ = rp ((k − 1)2) = (k − 1)2 − mp ≤ 3n − k − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' From Inequal- ity 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='17, ∆ ≥ 3n − k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore, wf ≥ 3n − k + +k(2u0 − 1) − p + n + u2 0 − 3u0 + 1, = k(2u0 − 2) + u2 0 − 3u0 + 2, ≥ u2 0 − 3u0 + 2 = (u0 − 2)(u0 − 1) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' From Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='16, wf = k2 + 2k(u0 − 2) + u2 0 − 4u0 + 6 − 4n − mp + k + u0 + n − 3, < k + u0 + n − 3 ≤ 4n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' This shows that wf = rp ((kf − 1)2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Since 3n − kf − 1 = n − 3 + u0 + k, wf < 3n − kf − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Since kf − n − 2 = n − u0 − k, Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='15 implies that wf ≥ kf −n−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore kf −n−2 ≤ rp ((kf − 1)2) < 3n−kf −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' By Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='2, x = n−k −1 satisfies Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='14, hence 1 ≤ u0 ≤ n−k −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore n + 3 ≤ kf ≤ 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' This proves that kf ∈ D[−−) and thus f is well defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Consider k0 and k1 such that kf = f(k0) = f(k1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Take u0, u1, m0 and m1 such that m0 = ⌊(k0 − 1)2/p⌋ , m1 = ⌊(k1 − 1)2/p⌋ and u0, u1 are the first integers such that Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='14 holds with k = k0 and k = k1 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Now f(k0) = f(k1) implies that u0 + k0 = u1 + k1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Since mf = n + 2 − k0 − u0 + m0 = n + 2 − k1 − u1 + m1, we conclude m0 = m1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Since wf = (k0+u0−1)2−u0−m0p−p+n+1 = (k1+u1−1)2−u1−m1p−p+n+1, u0 = u1 and consequently k0 = k1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore f is injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Take now kf ∈ D[−−).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Let mf = ⌊(kf − 1)2/p⌋.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Then kf − n − 2 ≤ ∆f < 3n − kf − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Notice that x = 0 satisfies the inequality 0 ≤ (kf + x − 1)2 + 1 − mfp − px.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='18) Let v0 the first integer greater than or equal to 1 such that x = v0 does not satisfy Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Hence v0 = x satisfies the equivalent inequalities (kf + x − 1)2 + 1 − mfp − px < 0, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='19) ∆f + 2kfx + (x − 1)2 − px < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 18 Consider k = 2n + 2 − v0 − kf, m = n − kf + mf and w = ∆f + kf(2v0 − 1) + n + (v2 0 − 3v0 + 1) − v0p + p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Then (k − 1)2 = (n + 1 − kf + mf)p + k2 f + kf(2v0 − 3) + n + 2 + v2 0 − 3v0 − v0p − mp, = (n − kf + mf)p + ∆f + kf(2v0 − 1) + n + (v2 0 − 3v0 + 1) − v0p + p, = mp + w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' By Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='3, there is an integer m, 1 ≤ m ≤ (n2 − 4n + 5)/p such that kf = 2n− �√mp − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Also from the proof of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='3 if α = 2n−kf + 1 then mf = n − α + m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Take x0 = α − 1 = 2n − kf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Notice that x0 ≥ 1 as √mp − 1 ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Substituting x = x0 into (kf + x − 1)2 + 1 − mfp − px gives us (2n − 1)2 + 1 − (n − α + m)p − p(α − 1) = n + 3 − mp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Since m ≥ 1, n+3−mp < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Then x = x0 satisfies Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='19, therefore v0 exists and v0 ≤ 2n−kf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Since x = v0 −1 satisfies Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='18, we have that 0 ≤ ∆f + kf(2v0 − 2) + (v0 − 2)2 + p − v0p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Hence w ≥ kf + n + v0 − 3 = 3n − k − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Since kf ≥ n + 3 and v0 ≥ 1 we conclude w ≥ 0 and 2 ≤ k ≤ n − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Since v0 satisfies Inequality 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='19, w < n − kf − v0 + p = 5n − kf − v0 − 1 = 3n + k − 3 ≤ 4n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Thus 0 ≤ w < p and 3n − k − 1 ≤ w < 3n + k − 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' This implies that w = rp ((k − 1)2) , m = ⌊(k − 1)2/p⌋ and hence k ∈ C[−−).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='2 and the proof of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='2 implies that {y, z} is a subset of {n − 1, n, n + 1, n + 2}, then k ∈ C[−−) − {y, z}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Now we will find u0 = u0(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Since ∆f ≥ kf − n − 2, (k + v0 − 1)2 + 1 = (2n + 1 − kf)2 + 1, = (n − kf + mf + 1)p + ∆f + n − kf + 2, = (m + 1)p + ∆f + n − kf + 2 ≥ (m + 1)p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 19 From ∆f < 3n − kf − 1 = p − n − kf, we obtain (k + v0 − 2)2 + 1 = (2n − kf)2 + 1, = (n − kf + mf + 1)p + ∆f + kf + n − p, = (m + 1)p + ∆f + kf + n − p < (m + 1)p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Therefore u0 = v0 and f(k) = kf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Then f is surjective and hence bijec- tive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' □ Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='5 ��D[−−) �� = ⌊(n2 − 4n + 5)/2⌋ and ��C≥ �� = ��D< ��, ��C[−−) �� = ��D[−−) �� + 2, ��C< �� = ��D≥ �� + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' From Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='1, ��C≥ �� = ��D< ��.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' From Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='4, ��C[−−) �� = ��D[−−) ��+ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Since n + 1 = ��C< �� + ��C[−−) �� + ��C≥ �� and n − 2 = ��D< �� + ��D[−−) �� + ��D≥ �� we have n + 1 = ��C< �� + ��D< �� + ��D[−−) �� + 2 = ��C< �� + n − ��D≥ ��, hence ��C< �� = ��D≥ �� + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' To see that ��D[−−) �� = ⌊(n2 − 4n + 5)/2⌋ it is enough to see that all the k′s in Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='3 given by each m are all different, which is the case as � mp − 1 + 1 < � (m + 1)p − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' □ Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='6 Under the hypothesis of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='4, ���{k ∈ Z | 2 ≤ k ≤ 4n − 1, Γ(k) ≥ p} ��� = 2n − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Let JΓ = {k ∈ Z : 2 ≤ k ≤ 4n − 2, Γ(k) ≥ p}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' By Lemmas 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='10 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='11, JΓ ∩ [2, n + 2] = C[−−) ∪ C≥, JΓ ∩ [n + 3, 2n] = D≥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 20 ��JΓ ∩ [2n + 1, 3n − 2] �� = ���{2n + 1 ≤ k ≤ 3n − 2 | Γ(k) ≥ p} ���, = ���{2n + 1 ≤ p + 2 − k ≤ 3n − 2 | Γ(p + 2 − k) ≥ p} ���, = ���{n + 3 ≤ k ≤ 2n | Γ(p + 2 − k) ≥ p} ��� = ��D[−−) �� + ��D≥ ��.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' ��JΓ ∩ [3n − 1, 4n − 1] �� = ���{3n − 1 ≤ k ≤ 4n − 1 | Γ(k) ≥ p} ���, = ���{3n − 1 ≤ p + 2 − k ≤ 4n − 1 | Γ(p + 2 − k) ≥ p} ���, = ���{2 ≤ k ≤ n + 2 | Γ(p + 2 − k) ≥ p} ��� = ��C≥ ��.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Using these identities and Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='5, we obtain ��JΓ �� = ��C[−−) �� + 2 ��C≥ �� + ��D[−−) �� + 2 ��D≥ ��, = ��C[−−) �� + 2 ��C≥ �� + ��C[−−) �� − 2 + 2 ���C< �� − 1 � , = 2 ���C< �� + ��C[−−) �� + ��C≥ ��� − 4, = 2 · ���Z ∩ [2, n + 2] ��� − 4 = 2n − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' □ The following corollary comes from proof of the previous theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='7 Under the hypotheses of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='4, ��� {k ∈ Z : 2 ≤ k ≤ 2n, Γ(k) ≥ p} ��� = n, ��� {k ∈ Z : 2n + 1 ≤ k ≤ 4n, Γ(k) ≥ p} ��� = n − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 21 5 Sums involving rp � k2 − k + 2 − 3n � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Consider Jn = ��� {k ∈ Z : 2 ≤ k ≤ n + 2, Γ(k) ≥ p} ��� and we call Jn simply the number of jumps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' We will now develop formulas relating the term residues of k2 − k + 2 − 3n modulus p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='1 If n > 3 and p = 4n − 1 is prime then p−1 � k=1 rp � k2 − k + 2 − 3n � = p−1 � k=1 rp � k2� + 3n − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 2n � k=1 rp � k2 − k + 2 − 3n � = 2n � k=1 rp � k2� + n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' n � k=1 rp � k2 − k + 2 − 3n � = n � k=1 rp � k2� + n(n + 1) 2 − p(Jn − 1 − M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Notice that rp (x + y) = � rp (x) + rp (y) if rp (x) + rp (y) < p, rp (x) + rp (y) − p if rp (x) + rp (y) ≥ p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' Recall that we defined k as a jump when Γ(k) = rp ((k − 1)2)+rp (k + 1 − 3n) ≥ p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' By Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content='6,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'} +page_content=' 22 4n−1 � k=2 rp � k2 − k + 2 − 3n � = � k:Γ(k)≥p � rp � (k − 1)2� + rp (k + 1 − 3n) − p � + � k:Γ(k)
3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Charts 2 and 3 contain the sum of the residues rp (k2 − k + 2 − 3n) in the special cases excluded in such theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='3 If n > 3 and p = 4n − 1 is prime then 23 n p−1 � k=0 rp � k2 − k + 2 − 3n � p−1 � k=0 rp � k2� + p 1 5 5 2 21 21 3 55 55 Table 2: Sum of residues rp (k2 − k + 2 − 3n) in special cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' n 2n � k=0 rp � k2 − k + 2 − 3n � 2n � k=0 rp � k2� + 2n + 1 1 5 5 2 14 14 3 32 32 Table 3: Sum of residues rp (k2 − k + 2 − 3n) in special cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' p−1 � k=1 �k2 − k + 2 − 3n p � = p(p − 5) + 6 − n 3 − 1 p p−1 � k=1 rp � k2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' 2n � k=1 �k2 − k + 2 − 3n p � = n(2n − 1)(4n − 7) 3p − 1 p 2n � k=1 rp � k2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' n � k=1 �k2 − k + 2 − 3n p � = (n + 1)(2n2 − 23n + 6) 3p − 1 p n � k=1 rp � k2� + Jn − M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' From x = p � x p � + rp (x) , we obtain that if y = �p−1 k=1 � k2−k+2−3n p � then p−1 � k=1 � k2 − k + 2 − 3n � = py + p−1 � k=1 rp � k2 − k + 2 − 3n � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' From Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='1, (p − 1)p(2p − 1) 6 − (p − 1)p 2 + (p − 1)(2 − 3n) = py + p−1 � k=1 rp � k2� + 3n − 2, then p · p · (p − 5) + 6 − n 3 = py + p−1 � k=1 rp � k2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' 24 The result follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' The proofs of the other two sums are done similarly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' □ The purpose of the following lemma and remark is to find a formula for �n k=0 � k2−k+2−3n p � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='4 Let Qm = 1 + √4mp + 12n − 7 2 as in Notation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Then ⌊Qm⌋ = max{k ∈ N : k2 − k + 2 − 3n ≤ mp}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Clearly ⌊Qm⌋ ≤ Qm < ⌊Qm⌋+1 and since Qm is the non-negative root of x2−x+2−3n = mp, k0 = ⌊Qm⌋ satisfies 0 ≤ k0 ≤ Qm and k2 0 −k0+2−3n ≤ mp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Hence k1 = ⌊Qm⌋ + 1 satisfies 0 ≤ k1 and k2 1 − k1 + 2 − 3n > mp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' If k0 = 0 then k1 = 1 and hence p ≤ mp < 2−3n which is impossible, therefore k0 ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' □ Observation 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='5 By Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='5, there are no integers k, m, n such that ⌊Qm⌋ = Qm, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' k2 − k + 2 − 3n ̸= mp regardless of k, m, n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='6 Let n > 3 and p = 4n − 1 prime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Then n � k=1 �k2 − k + 2 − 3n p � = (M − 1)n − M−1 � m=0 ⌊Qm⌋ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Since n > 3, 1 ≤ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Define, tm = ⌊Qm⌋ and Hm = \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 � 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=', t0 � if m = 0, � tm−1 + 1, tm−1 + 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=', tm � if 1 ≤ m ≤ M − 1, � tM−1 + 1, tM−1 + 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=', n � if m = M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' By Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='4, k = ⌊Qm⌋ satisfies k2 − k + 2 − 3n ≤ mp and from Observation 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='5, k2 −k + 2 −3n < mp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Therefore by Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='4, for k ∈ Hm we have (m − 1)p < k2 − k + 2 − 3n < mp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' For such k necessarily ⌊(k2 − k + 2 − 3n)/p⌋ = m − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' 25 Notice that {H0, H1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=', HM} is a partition of {1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=', n} as QM−1 < n < QM (see Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='5 in [3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Therefore n � k=1 �k2 − k + 2 − 3n p � = M � m=0 n � k=0 k∈Hm �k2 − k + 2 − 3n p � , = M � m=0 (m − 1)|Hm|, = −t0 + 0(t1 − t0) + 1(t2 − t1) + · · · , +(M − 2)(tM−1 − tM−2) + (M − 1)(n − tM−1), = − M−1 � m=0 ⌊Qm⌋ + (M − 1)n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' □ Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='7 If n > 3 and p = 4n − 1 is prime then n � k=0 �k2 p � + n � k=1 �k2 − k + 2 − 3n p � = n(n − 5) 6 + M − 1 2p p−1 � k=1 rp � k2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' From [6] (page 253) we have M � m=1 ⌊Rm⌋ = Mn − n � k=0 �k2 p � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='20) Corollary 2 in [3] states 1 2 p−1 � k=1 rp � k2� = p � M � m=1 ⌊Rm⌋ + M−1 � m=0 ⌊Qm⌋ � − Mp(2n − 1) + p · (n2 + n) 6 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='21) Using Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='6 and Equation 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='20 in Equation 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='21 we obtain 1 2 p−1 � k=1 rp � k2� = p � (2M − 1)n − n � k=1 �k2 p � − n � k=1 �k2 − k + 2 − 3n p �� −Mp(2n − 1) + p · (n2 + n) 6 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' 26 The result now follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' □ Compare Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='7 with Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='2 (case p = 4n + 1) in [4] which can be rewritten as n � k=0 �k2 p � + n � k=1 �k2 + k + 1 − n p � = (n + 3)(n + 2) 6 +M − 1 2p p−1 � k=1 rp � k2� +un.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='8 If n > 3 and p = 4n − 1 is prime then M � m=1 ⌊Rm⌋ − M−1 � m=0 ⌊Qm⌋ = Jn − M − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' From Lemmas 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='10, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='3 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='5 we obtain Jn = |C[−−)| + |C≥| = |D[−−)| + 2 + |C≥|, = M0 + 2 + M0 � m=0 (ℓm − km) , = M + 1 + M0 � m=0 (⌊Rm+1⌋ − ⌊Qm⌋) , = M + 1 + M � m=1 ⌊Rm⌋ − M−1 � m=0 ⌊Qm⌋ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' □ Compare Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='8 with Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='3 (case p = 4n + 1) in [4] M � m=1 ⌊Rm⌋ − M � m=0 ⌊Sm⌋ = jn + 2 − n − un.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' 27 6 Class Number Identities In this section, we establish some identities involving the class number h = h(−p) of the imaginary quadratic field Q(√−p) when p is of the form p = 4n−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' These identities are based on the previous formulas we have developed in previous sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' In [3], we have h = (2M + 1)(2n − 1) − 2 � M � m=1 ⌊Rm⌋ − M−1 � m=0 ⌊Qm⌋ � − n2 + n 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' h = p − 1 2 − 1 p p−1 � k=1 rp � k2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' From Corollaries 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='3, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='7 and �p−1 k=1 rp (k2) = 2 �2n k=1 rp (k2) − 2n we obtain Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='1 p−1 � k=1 �k2 − k + 2 − 3n p � = h + 16n2 − 35n + 15 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' 2n � k=1 �k2 − k + 2 − 3n p � = h 2 + 4n2 − 14n + 9 6 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' n � k=1 �k2 − k + 2 − 3n p � = h 4 + Jn 2 + n2 − 17n − 3 12 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' n � k=1 �k2 − k + 2 − 3n p � = h 2 + M + n2 − 11n + 3 6 − n � k=1 �k2 p � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' n � k=1 �k2 − k + 2 − 3n p � = h 2 + M � m=1 ⌊Rm⌋ + M(1 − n) + n2 − 11n + 3 6 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' From Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='8, we have 28 Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='2 Jn 2 + M(n − 1) = h 4 + M � m=1 ⌊Rm⌋ + n2 − 5n + 9 12 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' −Jn 2 + Mn = h 4 + M−1 � m=0 ⌊Qm⌋ + n2 − 5n − 3 12 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Jn 2 + n−1 � k=1 �k2 p � = h 4 + n2 − 5n + 9 12 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' From Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='1, we conclude Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='3 p−1 � k=1 rp � k2 − k + 2 − 3n � = p · (2n − h) − n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' 2n � k=1 rp � k2 − k + 2 − 3n � = p · (2n − h) + 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' n � k=1 rp � k2 − k + 2 − 3n � = p 4(3n + 2 − 2Jn − h) − (n + 1)(n − 1) 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Finally, combining this last formula with Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='1 we have Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='4 n � k=1 rp � k2� = p 4(2Jn + 2n − 3 − 4M − h) + n(n + 1) 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' The numerical data we have allow us to pose the following Conjecture 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='5 Consider all n such that p = 4n−1 a prime number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Then lim n→∞ Jn n = 3 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' 29 Conjecture 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content='6 Consider all n such that p = 4n−1 a prime number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Then lim n→∞ �M m=1 ⌊Rm⌋ + �M−1 m=0 ⌊Qm⌋ Mp + 2n = 1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Also a good estimate of �M m=1 ⌊Rm⌋ + �M−1 m=0 ⌊Qm⌋ is ⌊(Mp + 2n)/3⌋ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' 30 References [1] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Cohen, A course in computational algebraic number theory, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' 138 of Graduate Text in Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=', Springer-Verlag, New York, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' [2] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Dirichlet, Beweis des satzes, dass jede unbegrenzte arith- metische progression, deren erstes glied und differenz ganze zahlen ohne gemeinschaftlichen factor sind, unendlich viele primzahlen enth¨alt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' ab- handlungen der k¨oniglich preussischen akademie der wissenschaften von, Abhandlungen der K¨oniglich Preussischen Akademie der Wissenschaften von, (1837), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' 45—-81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Garcia, A computable formula for the class number of the imaginary quadratic field Q(√−p), p = 4n − 1, Electronic Research Archive, 29 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' 3853–3865.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' [4] , Sums involving quadratic residues modulus a prime of the form p = 4n + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' [5] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Narkiewicz, Elementary And Analytic Theory Of Algebraic Num- bers, Springer, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' [6] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Zeller, Ueber Summen von gr¨ossten Ganzen bei arithmetische Rei- hen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=', Nachricten von der K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' Gesselschaft der Wissenschaften und der Georg- Augusts Universitat, May 14, 1879.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
+page_content=' 31' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdE1T4oBgHgl3EQfJQP0/content/2301.02951v1.pdf'}
diff --git a/atFJT4oBgHgl3EQf8S2B/content/tmp_files/2301.11683v1.pdf.txt b/atFJT4oBgHgl3EQf8S2B/content/tmp_files/2301.11683v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..f35ddd37d4675b1ba60b06f6f8b00a5dcd26658a
--- /dev/null
+++ b/atFJT4oBgHgl3EQf8S2B/content/tmp_files/2301.11683v1.pdf.txt
@@ -0,0 +1,1373 @@
+Neural Abstractions
+Alessandro Abate∗
+Department of Computer Science
+University of Oxford, UK
+Alec Edwards∗
+Department of Computer Science
+University of Oxford, UK
+Mirco Giacobbe∗
+School of Computer Science
+University of Birmingham, UK
+Abstract
+We present a novel method for the safety verification of nonlinear dynamical models
+that uses neural networks to represent abstractions of their dynamics. Neural net-
+works have extensively been used before as approximators; in this work, we make
+a step further and use them for the first time as abstractions. For a given dynamical
+model, our method synthesises a neural network that overapproximates its dynam-
+ics by ensuring an arbitrarily tight, formally certified bound on the approximation
+error. For this purpose, we employ a counterexample-guided inductive synthesis
+procedure. We show that this produces a neural ODE with non-deterministic distur-
+bances that constitutes a formal abstraction of the concrete model under analysis.
+This guarantees a fundamental property: if the abstract model is safe, i.e., free from
+any initialised trajectory that reaches an undesirable state, then the concrete model
+is also safe. By using neural ODEs with ReLU activation functions as abstractions,
+we cast the safety verification problem for nonlinear dynamical models into that
+of hybrid automata with affine dynamics, which we verify using SpaceEx. We
+demonstrate that our approach performs comparably to the mature tool Flow* on
+existing benchmark nonlinear models. We additionally demonstrate and that it is
+effective on models that do not exhibit local Lipschitz continuity, which are out of
+reach to the existing technologies.
+1
+Introduction
+Dynamical models describe processes that are ubiquitous in science and engineering. They are widely
+used to model the behaviour of cyber-physical system designs, whose correctness is crucial when they
+are deployed in safety-critical domains [10,13,49]. To guarantee that a dynamical model satisfies a
+safety specification, simulations are useful but insufficient because they are inherently non-exhaustive
+and they suffer from numerical errors, which may leave unsafe behaviours unidentified. Formal
+verification of continuous dynamical models tackles the question of determining with formal certainty
+whether every possible behavior of the model satisfies a safety specification [45, 51, 112]. In this
+paper, we present a method to combine machine learning and symbolic reasoning for a sound and
+effective safety verification of nonlinear dynamical models.
+The formal verification problem for continuous-time and hybrid dynamical models is unsolvable in
+general and, even for models with linear dynamics, complete procedures are available under stringent
+conditions [11, 12, 72, 86, 87]. For most practical models that contain nonlinear terms [81, 105],
+∗The authors are listed alphabetically
+36th Conference on Neural Information Processing Systems (NeurIPS 2022).
+arXiv:2301.11683v1 [cs.LO] 27 Jan 2023
+
+methods for formal verification with soundness guarantees involve laborious safety and reachability
+procedures whose efficacy can only be demonstrated in practice. Formal verification of nonlinear
+models require ingenuity, and has involved sophisticated analysis techniques such as mathematical
+relaxations [27,34–36,48,103,104], abstract interpretation [52,53,56,82,96], constraint solving [19,
+39, 85], and discrete abstractions [5, 9, 30, 37]. Notwithstanding recent progress, both scalability
+and expressivity remain open challenges for nonlinear models: the largest model used in the annual
+competition has 7 variables [66]. In addition, existing formal approaches rely on symbolic reasoning
+techniques that explicitly leverage the structure of the dynamics. This results in verification procedures
+that are bespoke to restricted classes of models. For example, it is common for formal verification
+procedures to require the input model to be Lipschitz continuous. Yet, dynamical models with vector
+fields that violate this assumption are abundant in literature, and a wide variety of models of natural
+phenomena are non-Lipschitz, from fluid dynamics to n-body orbits and chaotic systems, as well
+as in engineering, from electrical circuits and hydrological systems [50,55]. Our approach makes
+progress in expressivity, showing that using neural networks as abstractions of dynamical systems
+enables an effective formal verification of nonlinear dynamical models, including models that do not
+exhibit local Lipschitz continuity.
+Abstraction is a standard process in formal verification that aims at translating the model under
+analysis—the concrete model—into a model that is simpler to analyse—the abstract model—such
+that verification results from the abstract model carry over to the concrete model [20, 40, 41]. In
+verification of systems with continuous time and space, an abstraction usually consists of a partitioning
+of the state space of the concrete model into a finite set of regions that define the states of an
+abstract, finite-state machine with a corresponding behaviour. Our method follows an approach that
+constructs abstract, finite-state machines whose states are augmented with continuous linear dynamics
+and non-deterministic drifts. Finite-state machines with continuous, possibly non-deterministic
+dynamics are known as hybrid automata [71], and the process of abstracting dynamical nonlinear
+models into hybrid automata is called hybridisation; this process has been widely applied in formal
+verification [8,15,16,21,46,58,65,73,91,94,99,100,102].
+Hybridising involves partitioning the state space and computing a local overapproximation of the
+concrete model within each region of the partition. Common approaches for hybridisation partition the
+state space by tuning the granularity of rectangular or simplicial meshes, until a desired approximation
+error is attained. This may yield abstract hybrid automata that are too large in the number of discrete
+states to be effectively verified. Notably, modern tools for the verification of hybrid automata are
+designed for models that rarely have over hundred discrete states [7], while arbitrary meshes grow
+exponentially as the granularity increases. Explosion in discrete states has been mitigated using
+deductive approaches that construct an appropriate partitioning from the expressions that define the
+concrete model and, unlike our method, rely on syntactic restrictions [14,26,30,47,70,80,83,84,98].
+We propose an inductive approach to abstraction that combines the tasks of partitioning the state
+space and overapproximating the dynamics into the single task of training a neural network. We
+leverage the approximation capability of neural networks with ReLU activation functions to partition
+the state space into arbitrary polyhedral regions, where each region and local affine approximation
+correspond to a combinatorial configuration of the neurons. We show that this ultimately enables
+verifying nonlinear dynamical models using efficient safety verifiers for hybrid automata with affine
+dynamics (cf. Figure 1).
+Our abstraction procedure synthesises abstract models by alternating a learner, which proposes
+candidate abstractions, and a certifier, which formally assures (or disproves) their validity, in a
+counterexample-guided inductive synthesis (CEGIS) loop [108,109]. First, the learner uses gradient
+descent to train a neural network that approximates the concrete model over a finite set of sample
+observations of its dynamics; then, the certifier uses satisfiability modulo theories (SMT) to check the
+validity of an upper-bound on the approximation error over the entire continuous domain of interest.
+If the latter disproves the bound, then it produces a counterexample which its added to the set of
+samples and the loop is repeated. If it certifies the bound, then the procedure returns a neural network
+approximation and a sound upper-bound on the error. Altogether, neural network and error bound
+define a neural ODE with bounded additive non-determinism that overapproximates the concrete
+model, which we call a neural abstraction.
+We demonstrate the efficacy of our method over multiple dynamical models from a standard bench-
+mark set for the verification of nonlinear systems [66], as well as additional locally non-Lipschitz
+2
+
+1
+0
+1
+1
+0
+1 Concrete nonlinear system
+x
+...
+˙x
+ReLU
+Neural abstraction
+1
+0
+1
+1
+0
+1
+Abstract hybrid automaton
+Flowpipe propagation
+Abstraction
+synthesis
+Model
+translation
+Safety
+verification
+Figure 1: Overview of our workflow on a non-Lipschitz dynamical model (cf. Section 5, NL2). The
+concrete dynamics are abstracted by a neural ODE with ReLU activation functions and a certified
+upper-bound on the approximation error. This characterises a polyhedral partitioning and defines a
+hybrid automaton with affine dynamics and additive non-deterministic drift. Flowpipe propagation is
+finally performed through a region of non-Lipschitz continuity.
+models, and compare our approach with Flow*, the state-of-the-art verification tool for nonlinear
+models [34,35,37]. We instantiate our approach on top of SpaceEx [62], which is a state-of-the-art
+tool specialised to linear hybrid models [59,61,88]. We evaluate both approaches in safety verifi-
+cation using flowpipe propagation, which computes the set of reachable states from a given set of
+initial states up to a given time horizon. Our experiments demonstrate that our approach performs
+comparably with Flow* for Lipschitz continuous model, and succeeds with non-Lipschitz models
+that are out of range for Flow* and violate the working assumptions of many verification tools. These
+outcomes suggest that neural abstractions are a promising technology, also in view of recent results
+on direct methods for the safety verification for neural ODEs [68,69,95].
+We summarise our contributions in the following points:
+• we introduce the novel idea of leveraging neural networks to represent abstractions in formal
+verification, and we instantiate it in safety verification of nonlinear dynamical models;
+• we present a CEGIS procedure for the synthesis of neural ODEs that formally overapproxi-
+mate the dynamics of nonlinear models, which we call neural abstractions;
+• we define a translation from neural abstractions defined using ReLU activation functions to
+hybrid automata with affine dynamics and additive non-determinism;
+• we implement our approach2 and demonstrate its comparable performance w.r.t. the state-of-
+the-art tool Flow* in safety verification of Lipschitz-continuous models, and even superior
+efficacy on models that do not exhibit local Lipschitz continuity.
+We consider there to be no significant negative societal impact of our work.
+2The code is available at https://github.com/aleccedwards/neural-abstractions-nips22.
+3
+
+0.5
+0.0
+-0.5
+0.5
+0.0
+0.52
+Neural Abstractions of Dynamical Models
+We study the formal verification question of whether an n-dimensional, continuous-time, autonomous
+dynamical model with possibly uncertain (bounded) disturbances, considered within a region of
+interest, is safe with respect to a region of bad states when initialised from a region of initial states.
+Definition 1 (Dynamical Model). A dynamical model F defined over a region of interest X ⊆ Rn
+consists of a nonlinear function f : Rn → Rn and a possibly null disturbance radius δ ≥ 0. Its
+dynamics are given by the system of nonlinear ODEs
+˙x = f(x) + d,
+∥d∥ ≤ δ,
+x ∈ X,
+(1)
+where ∥ · ∥ denotes a norm operator (unless explicitly stated, we assume the norm operator to be
+given the same semantics across the paper). A trajectory of F defined over time horizon T > 0 is
+a function ξ : [0, T] → Rn that admits derivative at each point in [0, T] such that, for all t ∈ [0, T],
+it holds true that ξ(t) ∈ X and ˙ξ(t) = f(ξ(t)) + dt for some ∥dt∥ < δ. Notably, symbol d in
+Equation (1) is interpreted as a non-deterministic disturbance that at any time can take any possible
+value within the bound provided by δ.
+Let the sets X0 ⊂ X be a region of initial states and XB ⊂ X be a region of bad states. We say that a
+trajectory ξ defined over time horizon T is initialised if ξ(0) ∈ X0; additionally, we say that it is safe
+if ξ(t) ̸∈ XB for all t ∈ [0, T]; dually, we say that it is unsafe if ξ(t) ∈ XB for some t ∈ [0, T]. The
+safety verification question for consists of determining whether all initialised trajectories are safe. If
+this is the case, then we say that the model is safe with respect to X0 and XB. If there exist at least
+one initialised trajectory that is unsafe, then we say that the model is unsafe.
+We tackle safety verification by abstraction, that is, we construct an abstract dynamical model that
+captures all behaviours of the concrete nonlinear model. This implies that if the abstract model is safe
+then the concrete model is necessarily safe too, and we can thus apply a verification procedure over the
+abstraction to determine whether the concrete model is safe. Notably, the converse may not hold: lack
+of safety of the abstract model does not carry over to the concrete model, because our abstraction is
+an overapproximation. We ultimately obtain a sound (but not complete) safety verification procedure.
+Our approach synthesises an abstract dynamical model defined in terms a feed-forward neural network
+with ReLU activation functions and endowed with a bounded non-deterministic disturbance. This
+can be seen as a neural ODEs [33] augmented with an additive non-deterministic drift that ensures
+the abstract model to overapproximate the concrete model. To the best of our knowledge, this is the
+first work to consider neural ODEs with non-deterministic semantics.
+Our feed-forward neural network consists of an n-dimensional input layer y0, k hidden layers
+y1, . . . , yk with dimensions h1, . . . , hk respectively, and an n-dimensional output layer yk+1. Each
+hidden or output layer with index i are respectively associated matrices of weights Wi ∈ Rhi×hi−1
+and a vectors of biases bi ∈ Rhi. Upon a valuation of the input layer, the value of every subsequent
+hidden layer is given by the following equation:
+yi = ReLU(Wiyi−1 + bi).
+(2)
+Whereas many activation functions exist, we focus our study on ReLU activation functions, applying
+function max{x, 0} to every element x ∈ R of its hi-dimensional argument. Finally, the value of the
+output layer is given by the affine map yk+1 = Wk+1xk + bk+1. Altogether, the network results in a
+function N whose output is N(x) = yk+1 for every given input y0 = x.
+Definition 2 (Neural Abstraction). Let F be a dynamical model given by function f : Rn → Rn and
+disturbance radius δ ≥ 0 and let X ⊆ Rn be a region of interest. A feed-forward neural network
+N : Rn → Rn defines a neural abstraction of F with error bound ϵ > 0 over X, if it holds true that
+∀x ∈ X : ∥f(x) − N(x)∥ ≤ ϵ − δ.
+(3)
+Then, the neural abstraction consists of the dynamical model A defined by N and disturbance ϵ,
+whose dynamics are given by the following neural ODE with bounded additive disturbances:
+˙x = N(x) + d,
+∥d∥ ≤ ϵ,
+x ∈ X.
+(4)
+Theorem 1 (Soundness of Neural Abstractions). If A is a neural abstraction of a dynamical system
+F over a region of interest X ⊆ Rn, then every trajectory of F is also a trajectory of A.
+4
+
+Abstraction
+Synthesis
+Learner
+Certifier
+Counterexample scex
+Candidate N
+Valid neural
+abstraction
+A
+F, X, ϵ
+F, S, ϵ
+Safety
+Verification
+F, X, S, ϵ
+X, X0, XB
+Figure 2: Architecture for the safety verification of nonlinear dynamical models using neural abstrac-
+tions. The inputs to our architecture are a concrete model F and its domain of interest X, a finite set
+of initial datapoints S, a desired approximation error ϵ, and regions of initial X0 and bad states XB.
+Proof of Theorem 1. Let ξ be a trajectory of F and T be the time horizon over which ξ is defined.
+Then, let t ∈ [0, T]. By definition of trajectory we have that (i) ξ(t) ∈ X and there exists dt s.t.
+(ii) ∥dt∥ ≤ δ and (iii) ˙ξ(t) = f(ξ(t))+dt. By (i) and condition (3) we have that ∥f(ξ(t))−N(ξ(t))∥+
+δ ≤ ϵ. Then, by (ii) we have that ∥f(ξ(t)) − N(ξ(t))∥ + ∥dt∥ ≤ ϵ which, by triangle inequality,
+implies that ∥f(ξ(t)) + dt − N(ξ(t))∥ ≤ ϵ. Using (iii), we rewrite it into ∥ ˙ξ(t) − N(ξ(t))∥ ≤ ϵ.
+Finally, we define d′
+t = ˙ξ(t) − N(ξ(t)). As a result, we have that ∥d′
+t∥ ≤ ϵ and ˙ξ(t) = N(ξ(t)) + d′
+t
+which, together with (i), shows that ξ is a trajectory of A.
+Corollary 1. Let X0 ⊂ X be a region of initial states and XB ⊂ X and region of bad states. It holds
+true that if A is safe with respect to X0 and XB then also F is safe with respect to X0 and XB.
+Proof of Corollary 1. By Theorem 1, if there exists an initialised trajectory of F that is unsafe, then
+the same is an initialised trajectory of A that is unsafe. The statement follows by contraposition.
+Remark 1 (Existence of Neural Abstractions). Let F be a dynamical model defined by function
+f and disturbance radius δ ≥ 0, and let X ⊆ Rn be a domain of interest. A neural abstraction
+of F with arbitrary error bound ϵ > 0 over X exists if a neural network that approximates f with
+error bound ϵ − δ (cf. condition (3)) exists over the same domain. In this work, we do not prescribe
+conditions on either width or depth of the network to ensure existence of a neural abstraction. Such
+conditions are given by universal approximation theorems for neural networks with ReLU activation
+functions, which have been developed in seminal work in machine learning [25,42,63,74,90,93].
+Altogether, we define the neural abstraction of a non-linear dynamical system F as a neural ODE with
+an additive disturbance A that approximates the dynamics while also accounting for the approximation
+error. Notably, we place no assumptions on the vector field f. In particular, Theorem 1 does not
+require f to be Lipschitz continuous: the soundness of a neural abstraction relies on condition (3),
+whose certification we offload to an SMT solver (cf. Section 3.2). The resulting neural abstraction is
+to a hybrid automaton with affine dynamics and non-deterministic disturbance (cf. Section 4), which
+does not rely on the Picard-Lindelof theorem to ensure uniqueness or existence of a solutions.
+3
+Formal Synthesis of Neural Abstractions
+Our approach to abstraction synthesis follows two phases—a learning phase and a certification phase—
+that alternate each other in a CEGIS loop [1,3,43,78,101,108,109] (cf. Figure 2, left). Our learning
+phase trains the parameters of a neural network N to approximate the system dynamics over a finite
+set of samples S ⊂ X of the domain of interest. Learning uses gradient descent algorithms, which can
+possibly scale to large amounts of samples. Then, our certification phase either confirms the validity
+of condition (3) or produces a counterexample which we use to sample additional states and repeat the
+loop. Certification is based on SMT solving, which reasons symbolically over the continuous domain
+X and assures soundness. As a consequence, when certification confirms condition (3) formally valid,
+then as per Theorem 1 our neural abstraction A is a sound overapproximation of the concrete model
+F and is thus passed to safety verification (cf. Figure 2, right).
+Neural networks have been used in the past as representations of formal certificates for the correctness
+of systems such as Lyapunov neural networks, neural barrier certificates, neural ranking functions
+5
+
+and supermartingales [1, 2, 4, 31, 32, 44, 67, 89, 97, 111, 117–119]. In the present work, we use
+neural networks for the first time as abstractions, and we instantiate this idea in safety verification
+of nonlinear models. We shall now present the components of our abstraction synthesis procedure:
+learner (cf. Section 3.1) and certifier (cf. Section 3.2).
+3.1
+Learning Phase
+As with many machine learning-based algorithm, learning neural abstractions hinges on the loss
+function used as part of the gradient descent scheme for optimising parameters. The task is that of a
+regression problem, so the choice of loss function to be minimised is simple, namely,
+L =
+�
+s∈S
+∥f(s) − N(s)∥2,
+(5)
+where ∥ · ∥2 represents the 2 − norm of its input, and S ⊂ X is a finite set of data points that are
+sampled from the domain of interest. In other words, the neural abstractions are synthesised using a
+scheme based on gradient descent to find the parameters that minimise the mean square error over S.
+The main inputs to the learning procedure are the vector field f of the concrete dynamical model,
+an initial set of points S sampled uniformly from the domain of interest X. Additional parameters
+include the hyper-parameters for the learning scheme such as the learning rate, and a stopping
+criterion for the learning procedure. For the latter, there are two possible options: a target error which
+all data points must satisfy, or a bound on the value of the loss function.
+If a target error smaller than ϵ − δ is provided, this is when all points in the data set S satisfy the
+specification (3) and certification subsequently check that this generalises over the entire X. If an
+alternative loss-based stopping criterion is provided, then an error bound on the approximation is
+estimated using the maximum approximation error over the data set S for use in certification. This
+estimated bound is conservative, i.e., greater than the maximum, to allow for successful certification
+to be more likely.
+After learning, the network N is translated to symbolic form and passed to the certification block,
+which checks condition (3) as described in Section 3.2. The certifier either determines condition (3)
+valid, and thus the CEGIS loop terminates, or computes a counterexample that falsifies the condition.
+The counterexample is returned to the learning procedure and augmented by sampling for additional
+points nearby in order to maximise the efficiency of learning and the overall synthesis.
+3.2
+Certification Phase
+The purpose of the certification is to check that at no point in the domain of interest X is the maximum
+error greater than the upper bound ϵ − δ, as per the specification in condition (3). Therefore, the
+certifier is provided with the negation of the specification, namely
+∃x: x ∈ X ∧ ∥f(x) − N(x)∥ > ϵ − δ
+�
+��
+�
+φ
+.
+(6)
+The certifier seeks an assignment scex of the variable x such that the quantifier-free formula φ
+is satisfiable, namely that the specified bound is violated. If this search is successful, then the
+network N has not achieved the specified accuracy over X, and is thus not a valid neural abstraction.
+The corresponding assignment scex forms the counterexample that is provided back to the learner
+(the machine learning procedure from Section 3.1). Alternatively, if no assignment is found then
+specification (3) is proven valid; network N and error bound ϵ are then passed to the safety verification
+procedure (cf. Section 4).
+Certification of the accuracy of the neural abstractions is performed by an SMT solver. Several
+options exist for the selection of the SMT solver, with the requirement that the solver should reason
+over quantifier-free nonlinear real arithmetic formulae [57,64]. This is because the vector field f may
+contain nonlinear terms. In our experiments, we employ dReal [64], which supports polynomial and
+non-polynomial terms such as transcendental functions like trigonometric or exponential ones.
+A successful verification process allows for the full abstraction to be constructed using the achieved
+error ϵ and neural network N. CEGIS has been shown to perform well and terminate successfully
+across a wide variety of problems. We demonstrate the robustness of our procedure in Appendix B.
+6
+
+x
+y
+X1
+X2
+X3
+˙x = f1(x)
+x ∈ X1
+˙x = f3(x)
+x ∈ X3
+˙x = f2(x)
+x ∈ X2
+x ∈ X1
+x ∈ X3
+x ∈ X2
+x ∈ X3
+Figure 3: A hybrid automaton corresponding to a state-space partitioning. Each of the three discrete
+modes corresponds to a unique partition Xi and vector field fi(x). Discrete transitions are denoted by
+the edges of the directed graph with a transition between two modes if the corresponding partitions
+Xi and Xj are adjacent and a trajectory from fi ‘crosses’ the corresponding partition.
+4
+Safety Verification of Neural Abstractions
+Neural abstractions are dynamical models expressed in terms of neural ODEs with additive distur-
+bances (cf. Equation 4). Corollary 1 ensures the fact for which concluding that a neural abstraction is
+safe suffices to assert that the concrete dynamical model is also safe. Consequently, once a neural
+ODE is formally proven to be an abstraction for the concrete dynamical model, which is entirely
+delegated to our synthesis procedure (cf. Section 3), our definition of neural abstractions enables any
+procedure for the safety verification of neural ODEs with disturbances to be a valid safety verification
+procedure for the corresponding dynamical model.
+Safety verification approaches for dynamical systems controlled by neural networks solve a similar
+problem [18,54,75,77,106,113,114,116], yet with a subtle difference: neural network controllers take
+control actions at discrete points in time. Instead, neural ODEs characterise dynamics over continuous
+time. Some procedures for the direct verification of neural ODEs have been introduced very recently,
+and this currently an area under active development [68, 69, 95]. Yet, existing approaches do not
+consider the case of a neural ODE with a non-deterministic drift. Therefore, in order to obtain a
+verification procedure for neural abstractions, we build upon the observation that a neural ODEs
+with ReLU activation functions and non-deterministic drift defines a hybrid automaton with affine
+dynamics.
+Hybrid automata (cf. Figure 3) model the interaction between continuous dynamical systems and
+finite-state transition systems [71,115]. A hybrid automaton consists of a finite set of variables and a
+finite graph, whose vertices we call discrete modes and edges we call discrete transitions. Every mode
+is associated with an invariant condition and a flow condition over the variables, which determine the
+continuous dynamics of the systems on the specific mode. Every discrete transition is associated with
+a guard condition, which determines the effect on discrete transitions between modes. While we refer
+the reader to seminal work for a general definition of hybrid automata [71], we present a translation
+from neural abstractions to hybrid automata.
+4.1
+Translation of Neural Abstractions Into Hybrid Automata
+We begin with the observation that each neuron within a given hidden layer of a neural network with
+ReLU activation functions induces a hyperplane in the vector space associated with the previous layer
+This hyperplane results in two half-spaces, one corresponding to the neuron being active and one to it
+being inactive. For the jth neuron in the ith layer, these two halfspaces are respectively the two parts
+of the hyperplane given by
+{yi−1 | Wi,jyi−1 + bi,j = 0},
+(7)
+where Wi,j is the jth row of the weight matrix Wi and bi,j is the jth element of the bias bi (cf.
+Section 2). Therefore, every combinatorial configuration of the neural network defines an intersection
+of halfspaces that defines a polyhedral region in the vector space of the input neurons. Moreover, every
+7
+
+configuration also defines a linear function from input to output neurons. The space of configurations
+thus defines a partitioning of the input space, where each region is associated with an affine function.
+A neural abstraction casts into a hybrid automaton, where every mode is determined by a configuration
+of the hidden neurons and each of these configurations induces a system of affine ODEs (cf. Figure 3).
+Discrete Modes
+We represent a configuration of a neural network as a sequence C = (c1, . . . , ck)
+of Boolean vectors c1 ∈ {0, 1}h1, . . . , ck ∈ {0, 1}hk, where k denotes the number of hidden layers
+and h1, . . . , hk denote the number neurons in each of them (cf. Section 2). Every vector ci represents
+the configuration of the neurons at the ith hidden later, and the jth element of ci represent the
+activation status of the jth neuron at the ith later, which equals to 1 is the neuron is active and 0 if it
+is inactive. Every mode of the hybrid automaton corresponds to exactly one configuration of neurons.
+Invariant Conditions
+We define the invariant of each mode as a restriction of the domain of
+interest to a region XC ⊆ X, which denotes the maximal set of states that enables configuration C.
+To construct XC, we define a higher-dimensional polyhedron on the space of valuation of the neurons
+that enable configuration C, i.e.,
+YC =
+�
+(y0, . . . , yk)
+��� ∧k
+i=1yi = diag(ci)(Wiyi−1 + bi)∧
+diag(2ci − 1)(Wiyi−1 + bi) ≥ 0
+�
+.
+(8)
+Note that diag(v) denotes the square diagonal matrix whose diagonal takes its coefficients from
+vector v; in our case, this results in a square diagonal matrix whose coefficients are either 0 or 1.
+Then, we project YC onto the input neurons y0, denoted YC ↾y0. Since the input neurons y0 are
+equivalent to the state variables of the dynamical model, the invariant condition of mode C results in
+XC = (YC ↾y0) ∩ X.
+(9)
+A projection can be computed using the Fourier-Motzkin algorithm or by projecting the vertices
+of the polyhedron in a double description method. However, even though this is effective in our
+experiments, it has worst-case exponential time complexity. A polynomial time construction can
+be obtained by propagating halfspaces backwards along the network, similarly to methods used in
+abstraction-refinement [29,60]. We outline the alternative construction in Appendix C.1.
+Flow Conditions
+The dynamics of each mode C can be seen itself as a dynamical system with
+bounded disturbance:
+˙x = ACx + bC + d,
+∥d∥ ≤ ϵ,
+x ∈ XC.
+(10)
+The matrix AC ∈ Rn×n and the vector of drifts bC ∈ Rn determine the linear ODE of the mode,
+whereas ϵ > 0 is the error bound derived from the neural abstraction.
+The coefficients of the system are given by the weights and biases of the neural network as follows:
+AC = Wk+1
+�k
+i=1 diag(ci)Wi,
+(11)
+bC = bk+1 + �k
+i=1(Wk+1
+�k
+j=i+1 diag(cj)Wj) diag(ci)bi.
+(12)
+Discrete Transitions and Guard Conditions
+A discrete transition exists between any two given
+modes if the two polyhedra that define their invariant conditions share a facet and the dynamics pass
+through at some point along the facet. This can be checked by considering the sign of the Lie derivative
+between the dynamics and the corresponding facet, that is, the inner product between the dynamics
+and the normal vector to the facet. In practice, we take a faster but more conservative approach by
+considering that a transition exists between two modes when the corresponding polyhedral regions
+share at least a vertex. The guard condition of a discrete transition is simply the invariant of the
+destination mode.
+4.2
+Enumeration of Feasible Modes
+A given configuration C exists in the hybrid automaton if and only if the corresponding set XC, which
+is a convex polyhedron in Rn, is nonempty; this consists of verifying that the linear program (LP)
+constructed from the polyhedron is feasible. Finding all modes of the hybrid automaton therefore
+consists of solving 2H linear programs, where H = h1 + · · · + hk is the total number of hidden
+neurons in the network. However, this exponential scaling with the number of neurons is limiting
+8
+
+in terms of network size. Therefore, we propose an approach that works very well in practice to
+determine all valid neuron configurations.
+The approach relies on the observation that within a bounded polyhedron P, a given neuron has two
+modes (ReLU enabled or disabled) only if the induced hyperplane intersects P. If it does not, only
+one of the two possible half-spaces contributes to any possible active configuration, and the other
+neuron mode can be disregarded. Therefore, this approach involves iterating through each neuron in
+turn and constructing two LPs—one for each halfspace intersected with the domain of interest X. If
+only one LP is valid, we can fix the neuron to this mode, i.e., from this point onward only consider
+the intersection with the halfspace corresponding to the feasible LP, and construct a new polyhedron
+from the intersection of X and the feasible half-space.
+In short, we consider the neurons of the network as a binary tree, with the branches representing
+the enabled and disabled state of this neuron. We perform a depth-first tree search through this
+tree by intersecting with the corresponding half-spaces. Upon reaching an end node, we store this
+configuration (branches taken) and revert back to the most recent unexplored branch and continue.
+We include a more detailed description of this algorithm in Appendix C.2. This approach is inspired
+by that presented in [23], which similarly enumerates through the path of neurons using sets to
+determine the output range of a network.
+5
+Experimental Results
+5.1
+Safety Verification Using Neural Abstractions
+We benchmark the results obtained by the safety verification algorithm proposed in Section 4 against
+Flow* [35] (available under GPL), which is a mature tool for computing reachable regions of
+hybrid automata. It relies on computing flowpipes, i.e., sets of reachable states across time, which
+are propagated from a given set of initial states. The flowpipes are generated from Taylor series
+approximations of the model’s vector field in (1), over subsequent discrete time steps. Crucially,
+the use of a higher-order Taylor series, or of smaller time steps, leads to more precise computation
+of reachable sets. Since Flow*, like SpaceEx (available under GPLv3) is able to calculate over-
+approximations of flowpipes, it is suitable for use in safety verification, and is a state-of-the-art tool
+for verifying safety of nonlinear models.
+Making a fair comparison around metrics for accuracy between Flow* and SpaceEx is challenging,
+as they represent flowpipes differently [22,38]. We ask them to perform safety verification for a given
+pair of initial and bad states, on a collection of different nonlinear models. These models, and their
+parameters, are detailed in Appendix A. As described in Section 2, the task of safety verification
+consists of ensuring that no trajectory starting within the set of initial states enters the set of bad
+states, within a given time horizon.
+Our setup is as follows. Firstly, for a given benchmark model we define a finite time horizon T,
+a region of initial states X0 and a region of bad states XB. Then, we run flowpipe computations
+with Flow* using high-order Taylor models. Similarly we run the procedure described in Section 3,
+and construct a hybrid automaton as described in Section 4 to perform flowpipe computations using
+SpaceEx. We present the results in Table 1. In the table, we show the Taylor model order (TM)
+and time step used within Flow*, as well as the structure of the neural networks used for neural
+abstractions. For example, we denote a network with two hidden layers with h1 neurons in the first
+layer and h2 neurons in the second hidden layer as [h1, h2]. We note that while Flow*, much like
+SpaceEx, can perform flowpipe computation on the constructed hybrid automaton, it is not specialised
+to linear models like SpaceEx is and in practice struggles with the number of modes.
+Notably, Flow* is unable to handle the two models that do not exhibit local Lipschitz continuity. Flow*
+constructs Taylor models that incorporate the derivatives of the dynamics: as expected, unbounded
+derivatives will cause issues for this approach. Meanwhile, Ariadne [24] a is an alternative tool
+for over-approximating flowpipes of nonlinear systems. While Ariadne does not explicitly require
+Lipschitz continuity, it is also unable to perform analysis on tools with nth root terms at zero, due to
+numerical instability. Instead, our abstraction method works directly on the dynamics themselves,
+rather than their derivatives, in order to construct simpler, abstract models that are amenable to be
+verified. By formally quantifying how different an abstract model is through the approximation error,
+we are able to formally perform safety verification on such challenging concrete models.
+9
+
+Table 1: Comparison of safety verification between Flow* and the combination of Neural Abstractions
+plus SpaceEx. Here, T: time horizon, TM: Taylor model order, δ: time-step, t: total computation time
+(better times denoted by bold), W: network neural structure, M: total number of modes in resulting
+hybrid automaton, Blw: blowup in the error before T is reached, and -: no results unobtainable.
+Model
+T
+Flow*
+Neural Abstractions
+TM
+δ
+Safety Ver.
+t
+W
+M
+Safety Ver.
+t
+Jet Engine
+1.5
+10
+0.1
+Yes
+1.3
+[10, 16]
+8
+Yes
+215
+Steam Governor
+2.0
+10
+0.1
+Yes
+62
+[12]
+29
+Yes
+219
+Exponential
+1.0
+30
+0.05
+Blw
+1034
+[14, 14]
+12
+Yes
+308
+Water Tank
+2.0
+-
+-
+No
+-
+[12]
+6
+Yes
+49
+Non-Lipschitz 1
+1.4
+-
+-
+No
+-
+[10]
+12
+Yes
+19
+Non-Lipschitz 2
+1.5
+-
+-
+No
+-
+[12, 10]
+32
+Yes
+59
+Notice that we additionally outperform Flow* on a Lipschitz-continuous model (Exponential in Table
+1), where the composition of functions that make up the model’s dynamics result in high errors in
+Flow* before the flowpipe can be calculated across the given time horizon. We highlight that despite
+relying on affine approximations (i.e., 1st order models), neural abstractions are able to compete with,
+and even outperform, methods that use much higher order functions (10th and 30th in the benchmarks)
+for approximation.
+5.2
+Limitations
+Our approach is limited in terms of scalability, both with regards to the dimension of the models and
+to the size of the utilised neural networks. The causes of this limitation are twofold: firstly we are
+bound by the computational complexity of SMT solving - known to be NP-hard - which can struggle
+with complex formaulae with many variables. The certification step requires the largest amount of
+time (cf. Appendix B), indicating that improvements in the verification of neural networks can lead
+to a large performance increase for our abstractions.
+Secondly, we are limited in terms of the complexity of our abstractions by SpaceEx. While SpaceEx
+is a highly efficient implementation of LGG [88], the presence of a large number of discrete modes
+poses a significant computational challenge. It future work, we hope to investigate the balance
+between abstraction complexity and accuracy. The efficacy of neural abstraction on further tools for
+hybrid automata with affine dynamics also remains to be investigated [6,24,28,107].
+6
+Conclusion
+We have proposed a novel technique that leverages the approximation capabilities of neural networks
+with ReLU activation functions to synthesise formal abstractions of dynamical models. By combining
+machine learning and SMT solving algorthms in a CEGIS loop, our method computes abstract neural
+ODEs with non-determinism that overapproximate the concrete nonlinear models. This guarantees the
+property for which safety of the abstract model carries over to the concrete model. Our method casts
+these neural ODEs into hybrid automata with affine dynamics, which we have verified using SpaceEx.
+We have demonstrated that our method is not only comparable to Flow* in safety verification on
+existing nonlinear benchmarks, but also shows superior effectiveness on models that do not exhibit
+local Lipschitz continuity, which is a hard problem in formal verification. Yet, our experiments are
+limited to low-dimensional models and scalability remains an open challenge. Our approach has
+advanced the state of the art in terms of expressivity, which is the first step toward obtaining a general
+and efficient verifier based on neural abstraction. Obtaining scalability to higher dimensions will
+require a synergy of efficient SMT solvers for neural networks and safety verification of neural ODEs,
+which are both novel and actively researched questions in formal verification [68,69,76,79,92,95,114].
+Acknowledgements
+We thank the anonymous reviewers for their helpful suggestions. Alec was supported by the EPSRC
+Centre for Doctoral Training in Autonomous Intelligent Machines and Systems (EP/S024050/1).
+10
+
+References
+[1] Abate, A., Ahmed, D., Edwards, A., Giacobbe, M., Peruffo, A.: FOSSIL: a software tool for
+the formal synthesis of Lyapunov functions and barrier certificates using neural networks. In:
+HSCC. pp. 24:1–24:11. ACM (2021)
+[2] Abate, A., Ahmed, D., Giacobbe, M., Peruffo, A.: Formal synthesis of Lyapunov neural
+networks. IEEE Control. Syst. Lett. 5(3), 773–778 (2021)
+[3] Abate, A., David, C., Kesseli, P., Kroening, D., Polgreen, E.: Counterexample guided inductive
+synthesis modulo theories. In: CAV (1). Lecture Notes in Computer Science, vol. 10981, pp.
+270–288. Springer (2018)
+[4] Abate, A., Giacobbe, M., Roy, D.: Learning probabilistic termination proofs. In: CAV (2).
+Lecture Notes in Computer Science, vol. 12760, pp. 3–26. Springer (2021)
+[5] Althoff, M.: Reachability analysis of nonlinear systems using conservative polynomialization
+and non-convex sets. In: HSCC. pp. 173–182. ACM (2013)
+[6] Althoff, M.: An introduction to CORA 2015. In: ARCH@CPSWeek. EPiC Series in Comput-
+ing, vol. 34, pp. 120–151. EasyChair (2015)
+[7] Althoff, M., Ábrahám, E., Forets, M., Frehse, G., Freire, D., Schilling, C., Schupp, S.,
+Wetzlinger, M.: ARCH-COMP21 category report: Continuous and hybrid systems with linear
+continuous dynamics. In: ARCH@ADHS. EPiC Series in Computing, vol. 80, pp. 1–31.
+EasyChair (2021)
+[8] Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems with uncertain
+parameters using conservative linearization. In: CDC. pp. 4042–4048. IEEE (2008)
+[9] Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid systems.
+Proceedings of the IEEE 88(7), 971–984 (2000)
+[10] Alur, R.: Principles of cyber-physical systems. MIT press (2015)
+[11] Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P., Nicollin, X., Olivero, A.,
+Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1),
+3–34 (1995)
+[12] Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
+[13] Alur, R., Giacobbe, M., Henzinger, T.A., Larsen, K.G., Mikucionis, M.: Continuous-time
+models for system design and analysis. In: Computing and Software Science, Lecture Notes in
+Computer Science, vol. 10000, pp. 452–477. Springer (2019)
+[14] Asarin, E., Dang, T.: Abstraction by projection and application to multi-affine systems. In:
+HSCC. Lecture Notes in Computer Science, vol. 2993, pp. 32–47. Springer (2004)
+[15] Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using conservative
+approximation. In: HSCC. Lecture Notes in Computer Science, vol. 2623, pp. 20–35. Springer
+(2003)
+[16] Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems.
+Acta Informatica 43(7), 451–476 (2007)
+[17] Aylward, E.M., Parrilo, P.A., Slotine, J.J.E.: Stability and robustness analysis of nonlinear
+systems via contraction metrics and SOS programming. Autom. 44, 2163–2170 (2008)
+[18] Bacci, E., Giacobbe, M., Parker, D.: Verifying reinforcement learning up to infinity. In: IJCAI.
+pp. 2154–2160. ijcai.org (2021)
+[19] Bae, K., Gao, S.: Modular SMT-based analysis of nonlinear hybrid systems. In: FMCAD. pp.
+180–187. IEEE (2017)
+[20] Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
+[21] Bak, S., Bogomolov, S., Henzinger, T.A., Johnson, T.T., Prakash, P.: Scalable static hybridiza-
+tion methods for analysis of nonlinear systems. In: HSCC. pp. 155–164. ACM (2016)
+[22] Bak, S., Bogomolov, S., Johnson, T.T.:
+HYST: a source transformation and transla-
+tion tool for hybrid automaton models. In:
+Girard, A., Sankaranarayanan, S. (eds.)
+Proceedings of the 18th International Conference on Hybrid Systems:
+Computation
+and Control, HSCC’15, Seattle, WA, USA, April 14-16, 2015. pp. 128–133. ACM
+11
+
+(2015). https://doi.org/10.1145/2728606.2728630, https://doi.org/10.1145/2728606.
+2728630
+[23] Bak, S., Tran, H., Hobbs, K., Johnson, T.T.: Improved geometric path enumeration for
+verifying relu neural networks. In: CAV (1). Lecture Notes in Computer Science, vol. 12224,
+pp. 66–96. Springer (2020)
+[24] Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-Vincentelli, A.:
+Ariadne: A framework for reachability analysis of hybrid automata. In: MTNS. pp. 1267–1269
+(2006)
+[25] Barron, A.R.: Approximation and estimation bounds for artificial neural networks. Machine
+Learning 14(1), 115–133 (1994)
+[26] Batt, G., Belta, C., Weiss, R.: Temporal logic analysis of gene networks under parameter
+uncertainty. IEEE Trans. Autom. Control. 53, 215–229 (2008)
+[27] Ben Sassi, M.A., Testylier, R., Dang, T., Girard, A.: Reachability analysis of polynomial
+systems using linear programming relaxations. In: ATVA. Lecture Notes in Computer Science,
+vol. 7561, pp. 137–151. Springer (2012)
+[28] Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: Juliareach: a toolbox for
+set-based reachability. In: HSCC. pp. 39–44. ACM (2019)
+[29] Bogomolov, S., Frehse, G., Giacobbe, M., Henzinger, T.A.: Counterexample-guided refinement
+of template polyhedra. In: TACAS (1). Lecture Notes in Computer Science, vol. 10205, pp.
+589–606 (2017)
+[30] Bogomolov, S., Giacobbe, M., Henzinger, T.A., Kong, H.: Conic abstractions for hybrid
+systems. In: FORMATS. Lecture Notes in Computer Science, vol. 10419, pp. 116–132.
+Springer (2017)
+[31] Chang, Y., Roohi, N., Gao, S.: Neural Lyapunov control. In: NeurIPS. pp. 3240–3249 (2019)
+[32] Chen, S., Fazlyab, M., Morari, M., Pappas, G.J., Preciado, V.M.: Learning Lyapunov functions
+for hybrid systems. In: HSCC. pp. 13:1–13:11. ACM (2021)
+[33] Chen, T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differential equa-
+tions. In: NeurIPS. pp. 6572–6583 (2018)
+[34] Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construction for non-
+linear hybrid systems. In: RTSS. pp. 183–192. IEEE Computer Society (2012)
+[35] Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear hybrid
+systems. In: CAV. Lecture Notes in Computer Science, vol. 8044, pp. 258–263. Springer
+(2013)
+[36] Chen, X., Mover, S., Sankaranarayanan, S.: Compositional relational abstraction for nonlinear
+hybrid systems. ACM Trans. Embed. Comput. Syst. 16(5s), 187:1–187:19 (2017)
+[37] Chen, X., Sankaranarayanan, S.: Decomposed reachability analysis for nonlinear systems. In:
+RTSS. pp. 13–24. IEEE Computer Society (2016)
+[38] Chen, X., Sankaranarayanan, S., Ábrahám, E.: Flow* 1.2: More effective to play with hybrid
+systems. In: ARCH@CPSWeek. EPiC Series in Computing, vol. 34, pp. 152–159. EasyChair
+(2015)
+[39] Cimatti, A., Mover, S., Tonetta, S.: A quantifier-free SMT encoding of non-linear hybrid
+automata. In: FMCAD. pp. 187–195. IEEE (2012)
+[40] Clarke, E.M., Grumberg, O., Kroening, D., Peled, D.A., Veith, H.: Model checking, 2nd
+Edition. MIT Press (2018)
+[41] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
+programs by construction or approximation of fixpoints. In: POPL. pp. 238–252. ACM (1977)
+[42] Cybenko, G.: Approximation by superpositions of a sigmoidal function. Mathematics of
+Control, Signals and Systems 2(4), 303–314 (1989)
+[43] Dai, H., Landry, B., Pavone, M., Tedrake, R.: Counter-example guided synthesis of neural
+network Lyapunov functions for piecewise linear systems. In: CDC. pp. 1274–1281. IEEE
+(2020)
+12
+
+[44] Dai, H., Landry, B., Yang, L., Pavone, M., Tedrake, R.: Lyapunov-stable neural-network
+control. In: Robotics: Science and Systems (2021)
+[45] Dang, T., Frehse, G., Girard, A., Le Guernic, C.: Tools for the analysis of hybrid models. In:
+Communicating Embedded Systems, pp. 227–251. Wiley (2013)
+[46] Dang, T., Maler, O., Testylier, R.: Accurate hybridization of nonlinear systems. In: HSCC. pp.
+11–20. ACM (2010)
+[47] Dang, T., Testylier, R.: Hybridization domain construction using curvature estimation. In:
+HSCC. pp. 123–132. ACM (2011)
+[48] Dang, T., Testylier, R.: Reachability analysis for polynomial dynamical systems using the
+bernstein expansion. Reliab. Comput. 17, 128–152 (2012)
+[49] Derler, P., Lee, E.A., Sangiovanni-Vincentelli, A.L.: Modeling cyber-physical systems. Proc.
+IEEE 100(1), 13–28 (2012)
+[50] Diacu, F.: The solution of then-body problem. The Mathematical Intelligencer 18(3), 66–70
+(Jun 1996). https://doi.org/10.1007/BF03024313
+[51] Doyen, L., Frehse, G., Pappas, G.J., Platzer, A.: Verification of hybrid systems. In: Handbook
+of Model Checking, pp. 1047–1110. Springer (2018)
+[52] Dreossi, T.: Sapo: Reachability computation and parameter synthesis of polynomial dynamical
+systems. In: HSCC. pp. 29–34. ACM (2017)
+[53] Dreossi, T., Dang, T., Piazza, C.: Reachability computation for polynomial dynamical systems.
+Formal Methods Syst. Des. 50(1), 1–38 (2017)
+[54] Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feedback systems
+using regressive polynomial rule inference. In: HSCC. pp. 157–168. ACM (2019)
+[55] Eyink, G.L., Drivas, T.D.: Spontaneous stochasticity and anomalous dissipation for burgers
+equation. Journal of Statistical Physics 158(2), 386–432 (2015)
+[56] Fan, C., Qi, B., Mitra, S., Viswanathan, M., Duggirala, P.S.: Automatic reachability analysis
+for nonlinear hybrid models with C2E2. In: CAV (1). Lecture Notes in Computer Science,
+vol. 9779, pp. 531–538. Springer (2016)
+[57] Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-
+linear arithmetic constraint systems with complex boolean structure. J. Satisf. Boolean Model.
+Comput. 1(3-4), 209–236 (2007)
+[58] Frehse, G.: Phaver: Algorithmic verification of hybrid systems past hytech. In: HSCC. Lecture
+Notes in Computer Science, vol. 3414, pp. 258–273. Springer (2005)
+[59] Frehse, G.: Reachability of hybrid systems in space-time. In: EMSOFT. pp. 41–50. IEEE
+(2015)
+[60] Frehse, G., Giacobbe, M., Henzinger, T.A.: Space-time interpolants. In: CAV (1). Lecture
+Notes in Computer Science, vol. 10981, pp. 468–486. Springer (2018)
+[61] Frehse, G., Kateja, R., Le Guernic, C.: Flowpipe approximation and clustering in space-time.
+In: HSCC. pp. 203–212. ACM (2013)
+[62] Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard,
+A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems. In: CAV. Lecture
+Notes in Computer Science, vol. 6806, pp. 379–395. Springer (2011)
+[63] Funahashi, K.I.: On the approximate realization of continuous mappings by neural networks.
+Neural Networks 2(3), 183–192 (1989)
+[64] Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over the reals.
+In: CADE, Lecture Notes in Computer Science, vol. 7898, pp. 208–214. Springer (2013)
+[65] García Soto, M., Prabhakar, P.: Hybridization for stability verification of nonlinear switched
+systems. In: RTSS. pp. 244–256. IEEE (2020)
+[66] Geretti, L., Sandretto, J.A.D., Althoff, M., Benet, L., Chapoutot, A., Collins, P., Duggirala, P.S.,
+Forets, M., Kim, E., Linares, U., Sanders, D.P., Schilling, C., Wetzlinger, M.: ARCH-COMP21
+category report: Continuous and hybrid systems with nonlinear dynamics. In: ARCH@ADHS.
+EPiC Series in Computing, vol. 80, pp. 32–54. EasyChair (2021)
+13
+
+[67] Giacobbe, M., Kroening, D., Parsert, J.: Neural termination analysis. In: ESEC/SIGSOFT
+FSE. pp. 633–645. ACM (2022)
+[68] Gruenbacher, S., Hasani, R.M., Lechner, M., Cyranka, J., Smolka, S.A., Grosu, R.: On the
+verification of neural ODEs with stochastic guarantees. In: AAAI. pp. 11525–11535. AAAI
+Press (2021)
+[69] Gruenbacher, S., Lechner, M., Hasani, R., Rus, D., Henzinger, T.A., Smolka, S., Grosu, R.:
+Gotube: Scalable stochastic verification of continuous-depth models. In: AAAI (2022)
+[70] Habets, L.C.G.J.M., Kloetzer, M., Belta, C.: Control of rectangular multi-affine hybrid systems.
+In: CDC. pp. 2619–2624. IEEE (2006)
+[71] Henzinger, T.A.: The theory of hybrid automata. In: LICS. pp. 278–292. IEEE Computer
+Society (1996)
+[72] Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata?
+J. Comput. Syst. Sci. 57(1), 94–124 (1998)
+[73] Henzinger, T.A., Wong-Toi, H.: Linear phase-portrait approximations for nonlinear hybrid
+systems. In: Hybrid Systems. Lecture Notes in Computer Science, vol. 1066, pp. 377–388.
+Springer (1995)
+[74] Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal
+approximators. Neural Networks 2(5), 359–366 (1989)
+[75] Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: Reachnn: Reachability analysis of neural-
+network controlled systems. ACM Trans. Embed. Comput. Syst. 18(5s), 106:1–106:22 (2019)
+[76] Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks.
+In: CAV (1). Lecture Notes in Computer Science, vol. 10426, pp. 3–29. Springer (2017)
+[77] Ivanov, R., Carpenter, T.J., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig 2.0: Verification
+of neural network controllers using taylor model preconditioning. In: CAV (1). Lecture Notes
+in Computer Science, vol. 12759, pp. 249–262. Springer (2021)
+[78] Kapinski, J., Deshmukh, J.V., Sankaranarayanan, S., Aréchiga, N.: Simulation-guided Lya-
+punov analysis for hybrid dynamical systems. In: HSCC. pp. 133–142. ACM (2014)
+[79] Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P., Thakoor, S.,
+Wu, H., Zeljic, A., Dill, D.L., Kochenderfer, M.J., Barrett, C.W.: The Marabou framework for
+verification and analysis of deep neural networks. In: CAV (1). Lecture Notes in Computer
+Science, vol. 11561, pp. 443–452. Springer (2019)
+[80] Kekatos, N., Forets, M., Frehse, G.: Constructing verification models of nonlinear simulink
+systems via syntactic hybridization. In: CDC. pp. 1788–1795. IEEE (2017)
+[81] Khalil, H.K.: Nonlinear Systems. Prentice Hall, Upper Saddle River, N.J, 3rd ed edn. (2002)
+[82] Kim, E., Bak, S., Duggirala, P.S.: Automatic dynamic parallelotope bundles for reachability
+analysis of nonlinear systems. In: FORMATS. Lecture Notes in Computer Science, vol. 12860,
+pp. 50–66. Springer (2021)
+[83] Kloetzer, M., Belta, C.: Reachability analysis of multi-affine systems. In: HSCC. Lecture
+Notes in Computer Science, vol. 3927, pp. 348–362. Springer (2006)
+[84] Kong, H., Bartocci, E., Bogomolov, S., Grosu, R., Henzinger, T.A., Jiang, Y., Schilling, C.:
+Discrete abstraction of multiaffine systems. In: HSB. Lecture Notes in Computer Science,
+vol. 9957, pp. 128–144 (2016)
+[85] Kong, S., Gao, S., Chen, W., Clarke, E.M.: dreach: δ-reachability analysis for hybrid systems.
+In: TACAS. Lecture Notes in Computer Science, vol. 9035, pp. 200–205. Springer (2015)
+[86] Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. Math. Control. Signals
+Syst. 13(1), 1–21 (2000)
+[87] Lafferriere, G., Pappas, G.J., Yovine, S.: A new class of decidable hybrid systems. In: HSCC.
+Lecture Notes in Computer Science, vol. 1569, pp. 137–151. Springer (1999)
+[88] Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support functions.
+In: CAV, Lecture Notes in Computer Science, vol. 5643, pp. 540–554. Springer (2009)
+14
+
+[89] Lechner, M., Zikelic, D., Chatterjee, K., Henzinger, T.A.: Stability verification in stochastic
+control systems via neural network supermartingales. In: AAAI. pp. 7326–7336. AAAI Press
+(2022)
+[90] Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S.: Multilayer feedforward networks with
+a nonpolynomial activation function can approximate any function. Neural Networks 6(6),
+861–867 (1993)
+[91] Li, D., Bak, S., Bogomolov, S.: Reachability analysis of nonlinear systems using hybridization
+and dynamics scaling. In: FORMATS. Lecture Notes in Computer Science, vol. 12288, pp.
+265–282. Springer (2020)
+[92] Liu, C., Arnon, T., Lazarus, C., Strong, C.A., Barrett, C.W., Kochenderfer, M.J.: Algorithms
+for verifying deep neural networks. Found. Trends Optim. 4(3-4), 244–404 (2021)
+[93] Lu, Z., Pu, H., Wang, F., Hu, Z., Wang, L.: The expressive power of neural networks: A view
+from the width. In: NIPS. pp. 6231–6239 (2017)
+[94] Majumdar, R., Zamani, M.: Approximately bisimilar symbolic models for digital control
+systems. In: CAV. Lecture Notes in Computer Science, vol. 7358, pp. 362–377. Springer
+(2012)
+[95] Manzanas Lopez, D., Musau, P., Hamilton, N., Johnson, T.T.: Reachability analysis of a
+general class of neural ordinary differential equations. In: FORMATS. Lecture Notes in
+Computer Science, vol. 13465, pp. 258–277. Springer (2022)
+[96] Mover, S., Cimatti, A., Griggio, A., Irfan, A., Tonetta, S.: Implicit semi-algebraic abstraction
+for polynomial dynamical systems. In: CAV (1). Lecture Notes in Computer Science, vol.
+12759, pp. 529–551. Springer (2021)
+[97] Peruffo, A., Ahmed, D., Abate, A.: Automated and formal synthesis of neural barrier certifi-
+cates for dynamical models. In: TACAS (1). Lecture Notes in Computer Science, vol. 12651,
+pp. 370–388. Springer (2021)
+[98] Pola, G., Girard, A., Tabuada, P.: Approximately bisimilar symbolic models for nonlinear
+control systems. Autom. 44(10), 2508–2516 (2008)
+[99] Prabhakar, P., Dullerud, G.E., Viswanathan, M.: Stability preserving simulations and bisimula-
+tions for hybrid systems. IEEE Trans. Autom. Control. 60(12), 3210–3225 (2015)
+[100] Prabhakar, P., García Soto, M.: Abstraction based model-checking of stability of hybrid
+systems. In: CAV. Lecture Notes in Computer Science, vol. 8044, pp. 280–295. Springer
+(2013)
+[101] Ravanbakhsh, H., Sankaranarayanan, S.: Learning control Lyapunov functions from coun-
+terexamples and demonstrations. Auton. Robots 43(2), 275–307 (2019)
+[102] Roohi, N., Prabhakar, P., Viswanathan, M.: Hybridization based CEGAR for hybrid automata
+with affine dynamics. In: TACAS. Lecture Notes in Computer Science, vol. 9636, pp. 752–769.
+Springer (2016)
+[103] Sankaranarayanan, S.: Automatic abstraction of non-linear systems using change of bases
+transformations. In: HSCC. pp. 143–152. ACM (2011)
+[104] Sankaranarayanan, S., Tiwari, A.: Relational abstractions for continuous and hybrid systems.
+In: CAV. Lecture Notes in Computer Science, vol. 6806, pp. 686–702. Springer (2011)
+[105] Sastry, S.: Nonlinear Systems, Interdisciplinary Applied Mathematics, vol. 10. Springer New
+York, New York, NY (1999)
+[106] Schilling, C., Forets, M., Guadalupe, S.: Verification of neural-network control systems by
+integrating taylor models and zonotopes. In: AAAI (2022)
+[107] Schupp, S., Ábrahám, E., Makhlouf, I.B., Kowalewski, S.: Hypro: A C++ library of state set
+representations for hybrid systems reachability analysis. In: NFM. Lecture Notes in Computer
+Science, vol. 10227, pp. 288–294 (2017)
+[108] Solar-Lezama, A.: Program Synthesis by Sketching. Ph.D. thesis, University of California at
+Berkeley, USA (2008)
+[109] Solar-Lezama, A., Tancau, L., Bodík, R., Seshia, S.A., Saraswat, V.A.: Combinatorial sketch-
+ing for finite programs. In: ASPLOS. pp. 404–415. ACM (2006)
+15
+
+[110] Sotomayor, J., Mello, L., Braga, D.: Bifurcation analysis of the watt governor system. Compu-
+tational and Applied Mathematics 26 (Jul 2006)
+[111] Sun, D., Jha, S., Fan, C.: Learning certified control using contraction metric. In: CoRL.
+Proceedings of Machine Learning Research, vol. 155, pp. 1519–1539. PMLR (2020)
+[112] Tabuada, P.: Verification and Control of Hybrid Systems - A Symbolic Approach. Springer
+(2009)
+[113] Tran, H., Cai, F., Manzanas Lopez, D., Musau, P., Johnson, T.T., Koutsoukos, X.D.: Safety
+verification of cyber-physical systems with reinforcement learning control. ACM Trans. Embed.
+Comput. Syst. 18(5s), 105:1–105:22 (2019)
+[114] Tran, H., Yang, X., Manzanas Lopez, D., Musau, P., Nguyen, L.V., Xiang, W., Bak, S., Johnson,
+T.T.: NNV: the neural network verification tool for deep neural networks and learning-enabled
+cyber-physical systems. In: CAV (1). Lecture Notes in Computer Science, vol. 12224, pp.
+3–17. Springer (2020)
+[115] Van Der Schaft, A.J., Schumacher, H.: An introduction to hybrid dynamical systems, vol. 251.
+Springer (2007)
+[116] Xiang, W., Tran, H., Rosenfeld, J.A., Johnson, T.T.: Reachable set estimation and safety
+verification for piecewise linear systems with neural network controllers. In: ACC. pp. 1574–
+1579. IEEE (2018)
+[117] Zhao, H., Zeng, X., Chen, T., Liu, Z.: Synthesizing barrier certificates using neural networks.
+In: HSCC. pp. 25:1–25:11. ACM (2020)
+[118] Zhao, H., Zeng, X., Chen, T., Liu, Z., Woodcock, J.: Learning safe neural network controllers
+with barrier certificates. Formal Aspects Comput. 33(3), 437–455 (2021)
+[119] Zhou, R., Quartz, T., Sterck, H.D., Liu, J.: Neural Lyapunov control of unknown nonlinear
+systems with stability guarantees. In: NeurIPS (2022)
+16
+
+Checklist
+1. For all authors...
+(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
+contributions and scope? [Yes]
+(b) Did you describe the limitations of your work? [Yes] Please see Section 5.2
+(c) Did you discuss any potential negative societal impacts of your work? [Yes] See 1
+(d) Have you read the ethics review guidelines and ensured that your paper conforms to
+them? [Yes]
+2. If you are including theoretical results...
+(a) Did you state the full set of assumptions of all theoretical results? [Yes] See 2
+(b) Did you include complete proofs of all theoretical results? [Yes] See 2
+3. If you ran experiments...
+(a) Did you include the code, data, and instructions needed to reproduce the main experi-
+mental results (either in the supplemental material or as a URL)? [Yes] The code and
+data generation will be part of the supplementary material. Reproducing the results
+will be possible from this but is not the intention of the authors.
+(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
+were chosen)? [Yes] The hyper-parameters for the learning procedure are chosen
+heuristically, but we include the relevant configuration files in the supplementary
+material.
+(c) Did you report error bars (e.g., with respect to the random seed after running experi-
+ments multiple times)? [N/A]
+(d) Did you include the total amount of compute and the type of resources used (e.g., type
+of GPUs, internal cluster, or cloud provider)? [Yes] See Table 1.
+4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
+(a) If your work uses existing assets, did you cite the creators? [Yes] We have cited all
+used tools.
+(b) Did you mention the license of the assets? [Yes] See Section 5
+(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
+The code will be included in the supplementary material.
+(d) Did you discuss whether and how consent was obtained from people whose data you’re
+using/curating? [N/A]
+(e) Did you discuss whether the data you are using/curating contains personally identifiable
+information or offensive content? [N/A]
+5. If you used crowdsourcing or conducted research with human subjects...
+(a) Did you include the full text of instructions given to participants and screenshots, if
+applicable? [N/A]
+(b) Did you describe any potential participant risks, with links to Institutional Review
+Board (IRB) approvals, if applicable? [N/A]
+(c) Did you include the estimated hourly wage paid to participants and the total amount
+spent on participant compensation? [N/A]
+17
+
+A
+Benchmark Nonlinear Dynamical Models
+For each dynamical model, we report the vector field f : Rn → Rn and the spatial domain X
+over which the abstraction is performed and which, unless otherwise stated, is taken to be the
+hyper-rectangle [−1, 1]n.
+Water Tank
+�
+�
+�
+˙x = 1.5 − √x
+X0 = [0, 0.01]
+XB = {x|x ≥ 2}
+(13)
+Jet Engine [17]
+�
+�
+�
+�
+�
+�
+�
+˙x = −y − 1.5x2 − 0.5x3 − 0.1,
+˙y = 3x − y,
+X0 = [0.45, 0.50] × [−0.60, −0.55]
+XB = [0.3, 0.35] × [0.5, 0.6]
+(14)
+Steam Governor [110]
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+˙x = y,
+˙y = z2 sin(x) cos(x) − sin(x) − 3y,
+˙z = −(cos(x) − 1),
+X0 = [0.70, 0.75] × [−0.05, 0.05] × [0.70, 0.75]
+XB = [0.5, 0.6] × [−0.4, −0.3] × [0.7, 0.8]
+(15)
+Exponential
+�
+�
+�
+�
+�
+�
+�
+˙x = − sin(exp(y3 + 1)) − y2
+˙y = −x,
+X0 = [0.45, 0.5] × [0.86, 0.91]
+XB = [0.3, 0.4] × [0.5, 0.6]
+(16)
+Non-Lipschitz Vector Field 1 (NL1)
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+�
+˙x = y
+˙y = √x
+X = [0, 1] × [−1, 1],
+X0 = [0, 0.05] × [0, 0.1]
+XB = [0.35, 0.45] × [0.1, 0.2]
+(17)
+Non-Lipschitz Vector Field 2 (NL2)
+�
+�
+�
+�
+�
+�
+�
+˙x = x2 + y
+˙y =
+3√
+x2 − x,
+X0 = [−0.025, 0.025] × [−0.9, −0.85]
+XB = [−0.05, 0.05] × [−0.8, −0.7]
+(18)
+B
+Additional Experimental Results and Figures
+B.1
+Experimental Comparison Against Affine Simplical Meshes
+In this section, we present some supplementary empirical results on neural abstractions. Firstly, we
+note that hybridisation-based abstraction of nonlinear models have been studied previously, such as
+in [16], which describes a type of hybridisation-based abstractions that is similar to those constructed
+in this work. The approach relies first on partitioning the state space using a simplicial mesh grid, and
+18
+
+Table 2: A comparison between abstractions constructed using an affine simplicial mesh and neural
+abstractions. Here, W represents the neural structure used for neural abstraction, NP : total number of
+partitions, ϵ: the calculated upper bound on the approximation error, ¯
+NP : average (mean) number of
+partitions, ¯ϵ: average (mean) approximation error bound, ϵ+ : the maximum approximation error, ϵ−:
+the minimum approximation error, Success Ratio: the ratio of repeated experiments that terminated
+successfully (i.e., an error of 0.5 was reached within the first timeout of 300s). Note, we only
+include successful experiments when calculating the average, min and max (since no error exists for
+unsuccessful experiments). All reported errors use the 2-norm.
+Benchmark
+Affine Simplicial Mesh
+Neural Abstractions
+Np
+ϵ
+W
+¯
+NP
+¯ϵ
+ϵ+
+ϵ−
+Success Ratio
+Jet Engine
+8
+1.33
+[10]
+9
+0.11
+0.22
+0.040
+1.0
+32
+0.33
+[10, 10]
+27
+0.077
+0.17
+0.040
+1.0
+128
+0.083
+[15, 15]
+61
+0.058
+0.071
+0.053
+1.0
+Steam
+24
+3.58
+[10]
+27
+0.27
+0.37
+0.21
+1.0
+192
+0.89
+[20]
+236
+0.18
+0.27
+0.15
+1.0
+Exponential
+8
+13.7
+[10]
+9
+0.29
+0.40
+0.22
+0.5
+32
+3.44
+[20]
+30
+0.19
+0.22
+0.13
+0.9
+128
+0.86
+[20, 20]
+75
+0.15
+0.22
+0.071
+1.0
+then allowing the dynamics in each mesh to be calculated from an affine interpolation between the
+vertices of the simplex. This affine simplicial mesh (ASM) based approach constructs abstractions
+of the same expressivity as neural abstractions (first order approximations) with partitions defined
+by affine inequalities. An approximation-error bound for ASM can be calculated for systems which
+have bounded second order derivatives using the model dynamics and the size of each simplex (all
+simplices are assumed to be the same size), as described in [16]. In Table 2 we compare between
+abstractions constructed using an affine simplicial mesh and neural abstractions. We run our procedure
+to synthesise certified abstractions using selected network structures and an initial target error of
+0.5. If a successful abstraction is synthesised, we reduce the error by some multiplicative factor and
+repeat. This iterative procedure continues until no success is reached within a time of 300s. We report
+the results from 10 repeated experiments over different initial random seeds for neural abstractions,
+reporting the average (mean), minimum and maximum results obtained. In contrast, we report the
+approximation-error bound for ASM for different numbers of partitions.
+The results reported in Table 2 illustrate that neural abstractions outperform ASM based abstractions
+in terms of error for similar numbers of partitions. Furthermore, neural abstractions generally require
+significantly fewer partitions for significantly lower approximation-error bounds. In practice this
+means neural abstractions will outperform ASM-based abstractions for safety verification both in
+terms of speed and accuracy. We also note the success ratio of our experiments, i.e., the ratio of all
+experiments which achieve an approximation-error bound of 0.5 or less. These results suggest that in
+general or procedure is robust and terminates successfully with high probability for reasonable target
+errors.
+We note that since ASM based abstractions are constructive and are able to deterministically increase
+the number partitions and consequently reduce the error, for very large numbers of partitions they
+would achieve lower errors than neural abstractions. However, in practice these abstractions would
+be too large in complexity to use with SpaceEx for safety verification.
+B.2
+Computation Run-time Profiling
+In Table 3 we show a breakdown of the runtimes of our procedure shown in the main text. In
+particular, we present the total time spent during learning, certification of the abstraction and finally
+in safety verification.
+19
+
+Table 3: Breakdown of the timings shown in Table 1. Shown are the timings in the constituent
+component shown in Figure 2: time spent during learning, time spent during certification of the
+neural abstraction, and time spent during safety verification. Remaining time is spent in overheads,
+such as converting from neural network to hybrid automaton.
+Model
+Learner
+Certifier
+Safety Verification
+Jet Engine
+19
+194
+1.8
+Steam Governor
+42
+177
+0.5
+Exponential
+27
+278
+3.3
+Water-tank
+48
+0.001
+0.05
+Non-Lipschitz 1
+13
+0.50
+5.5
+Non-Lipschitz 2
+31
+15
+5.1
+C
+Improved Translation from Neural Abstractions to Hybrid Automata
+C.1
+Computing Invariant Conditions
+Invariant conditions are computed from the configuration of a neural network denoted as the sequence
+C = (c1, . . . , ck) of Boolean vectors c1 ∈ {0, 1}h1, . . . , ck ∈ {0, 1}hk, where k denotes the number
+of hidden layers and h1, . . . , hk denote the number neurons in each of them (cf. Section 2). Every
+vector ci represents the configuration of the neurons at the ith hidden later, and its jth element ci,j
+represents the activation status of the jth neuron at the ith layer. Every mode of the hybrid automaton
+corresponds to exactly one configuration of neurons. In turn, every configuration of neurons C
+restricts the neural network N into a linear function. More precisely, we inductively define the linear
+restriction at the ith hidden layer as follows:
+N (i)
+C (x) = diag(ci)(WiN (i−1)
+C
+(x) + bi), for i = 1, . . . , k,
+N (0)
+C (x) = x.
+(19)
+We define the invariant of each mode as a restriction of the domain of interest to a region XC ⊆ X,
+which denotes the maximal set of states that enables configuration C. To construct XC, we begin
+with the observation that the activation configuration ci at every ith hidden layer induces a halfspace
+on the vector space of the previous layer of the neural network. Then, the pre-image of this
+halfspace backward along the previous layers of the linear restriction of the network characterises
+a corresponding halfspace on its input neurons. Since the input neurons are equivalent to the state
+variables of the dynamical model, the halfspace induced by layer i projected onto state variables x is
+H(i)
+C = pre-image of {yi−1 | diag(2ci − 1)(Wiyi−1 + bi) ≥ 0}
+�
+��
+�
+halfspace induced by ith layer onto (i − 1)th layer
+under N (i−1)
+C
+(20)
+The pre-image of a set Y under a function g is defined as {x | g(x) ∈ Y} and can be generally
+computed by quantifier elimination or, in the linear case, double description methods. However, these
+methods have worst-case exponential time complexity. To obtain XC efficiently, we can leverage the
+fact that the pre-image of any halfspace {y | cTy ≤ d} under any affine function g(x) = Ax+b equals
+to the set {x | cTy ≤ d ∧ y = Ax + b}, which in turn defines the halfspace {x | cTAx ≤ d − cTb}.
+Therefore, since N (i−1)
+C
+is an affine function, every halfspace can be projected backward through the
+affine functions N (i−1)
+C
+, . . . , N (1)
+C
+using O(k) linear algebra operations. Finally, the entire invariant
+condition for configuration C is defined as the following polyhedron:
+XC = ∩{H(i)
+C | i = 1, . . . , k} ∩ X.
+(21)
+An invariant condition thus results in a polyhedron defined as the intersection of k halfspaces together
+with the constrains that define the domain of interest. Notably, under the definition in this appendix,
+the dynamics of mode C given in Equation 10 correspond to the affine dynamical model
+˙x = N (k+1)
+C
+(x) + d,
+∥d∥ ≤ ϵ,
+x ∈ XC,
+(22)
+whose dynamics are governed by the affine function
+N (k+1)
+C
+(x) = Wk+1N (k)
+C (x) + bk+1.
+(23)
+20
+
+N1
+N2
+X = ∅
+N3
+N3
+End
+End
+End
+X = ∅
+C = (1, 0, 1)
+C = (1, 1, 1)
+C = (1, 0, 0)
+X ← X ∩ h+
+1 ,
+X ̸= ∅
+X ← X ∩ h−
+1
+X ← X ∩ h+
+2 ,
+X ̸= ∅
+X ← X ∩ h+
+3 ,
+X ̸= ∅
+X ← X ∩ h−
+3
+X ← X ∩ h−
+2 ,
+X ̸= ∅
+X ← X ∩ h+
+3
+X ← X ∩ h−
+3
+Figure 4: Example Tree search to determine the active configurations for a neural network consisting
+of a single hidden layer with 3 neurons. Here, h+
+i denotes the positive half-space ({x : wix+bi ≥ 0})
+and h−
+i denotes the negative half-space ({x : wix + bi ≤ 0}) of the ith neuron; wi represents the ith
+row of the weight matrix corresponding to the hidden layer, and bi represents the ith element of the
+bias vector of the hidden layer. Notably, when the set X becomes empty, it is no longer necessary to
+continue along that path. Once we reach the end of the tree, we have an active configuration C, and
+backtrack to the last node that was not fully explored.
+C.2
+Enumerating Feasible Modes
+Determining whether a mode C exists in the hybrid automaton amounts to determining the linear
+program (LP) associated to polyhedron XC is feasible. Finding all modes therefore consists of
+solving 2H linear programs, where H = h1 + · · · + hk is the total number of neurons. This scales
+exponentially in the number of neurons. Here, we elaborate on the tree search algorithm described in
+Section 4.2 using a diagram; the purpose of this algorithm is to efficiently determine all active neuron
+configurations within a bounded domain of interest X.
+We consider an example tree in Figure 4, which depicts an example search for a neural network with
+a single hidden layer consisting of three neurons. The tree illustrates the construction of XC through
+repeated intersections of half-spaces as paths are taken through the tree structure. Nodes represent
+each neuron, labelled Ni, i = 1, 2, 3 and each edge represents one of two possible half-spaces for the
+neuron it leaves from (ReLU enabled, solid line, and disabled, dashed line). This approach allows
+us to prune neurons and overall solve significantly fewer linear programs than simply enumerating
+through all possible configurations.
+21
+
diff --git a/atFJT4oBgHgl3EQf8S2B/content/tmp_files/load_file.txt b/atFJT4oBgHgl3EQf8S2B/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..29e040c73159be8d9c662d25e59f0193a98ea6a5
--- /dev/null
+++ b/atFJT4oBgHgl3EQf8S2B/content/tmp_files/load_file.txt
@@ -0,0 +1,1525 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf,len=1524
+page_content='Neural Abstractions Alessandro Abate∗ Department of Computer Science University of Oxford, UK Alec Edwards∗ Department of Computer Science University of Oxford, UK Mirco Giacobbe∗ School of Computer Science University of Birmingham, UK Abstract We present a novel method for the safety verification of nonlinear dynamical models that uses neural networks to represent abstractions of their dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Neural net- works have extensively been used before as approximators;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' in this work, we make a step further and use them for the first time as abstractions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' For a given dynamical model, our method synthesises a neural network that overapproximates its dynam- ics by ensuring an arbitrarily tight, formally certified bound on the approximation error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' For this purpose, we employ a counterexample-guided inductive synthesis procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We show that this produces a neural ODE with non-deterministic distur- bances that constitutes a formal abstraction of the concrete model under analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' This guarantees a fundamental property: if the abstract model is safe, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', free from any initialised trajectory that reaches an undesirable state, then the concrete model is also safe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' By using neural ODEs with ReLU activation functions as abstractions, we cast the safety verification problem for nonlinear dynamical models into that of hybrid automata with affine dynamics, which we verify using SpaceEx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We demonstrate that our approach performs comparably to the mature tool Flow* on existing benchmark nonlinear models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We additionally demonstrate and that it is effective on models that do not exhibit local Lipschitz continuity, which are out of reach to the existing technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 1 Introduction Dynamical models describe processes that are ubiquitous in science and engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' They are widely used to model the behaviour of cyber-physical system designs, whose correctness is crucial when they are deployed in safety-critical domains [10,13,49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' To guarantee that a dynamical model satisfies a safety specification, simulations are useful but insufficient because they are inherently non-exhaustive and they suffer from numerical errors, which may leave unsafe behaviours unidentified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Formal verification of continuous dynamical models tackles the question of determining with formal certainty whether every possible behavior of the model satisfies a safety specification [45, 51, 112].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In this paper, we present a method to combine machine learning and symbolic reasoning for a sound and effective safety verification of nonlinear dynamical models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The formal verification problem for continuous-time and hybrid dynamical models is unsolvable in general and, even for models with linear dynamics, complete procedures are available under stringent conditions [11, 12, 72, 86, 87].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' For most practical models that contain nonlinear terms [81, 105], ∗The authors are listed alphabetically 36th Conference on Neural Information Processing Systems (NeurIPS 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='11683v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='LO] 27 Jan 2023 methods for formal verification with soundness guarantees involve laborious safety and reachability procedures whose efficacy can only be demonstrated in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Formal verification of nonlinear models require ingenuity, and has involved sophisticated analysis techniques such as mathematical relaxations [27,34–36,48,103,104], abstract interpretation [52,53,56,82,96], constraint solving [19, 39, 85], and discrete abstractions [5, 9, 30, 37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Notwithstanding recent progress, both scalability and expressivity remain open challenges for nonlinear models: the largest model used in the annual competition has 7 variables [66].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In addition, existing formal approaches rely on symbolic reasoning techniques that explicitly leverage the structure of the dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' This results in verification procedures that are bespoke to restricted classes of models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' For example, it is common for formal verification procedures to require the input model to be Lipschitz continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Yet, dynamical models with vector fields that violate this assumption are abundant in literature, and a wide variety of models of natural phenomena are non-Lipschitz, from fluid dynamics to n-body orbits and chaotic systems, as well as in engineering, from electrical circuits and hydrological systems [50,55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Our approach makes progress in expressivity, showing that using neural networks as abstractions of dynamical systems enables an effective formal verification of nonlinear dynamical models, including models that do not exhibit local Lipschitz continuity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Abstraction is a standard process in formal verification that aims at translating the model under analysis—the concrete model—into a model that is simpler to analyse—the abstract model—such that verification results from the abstract model carry over to the concrete model [20, 40, 41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In verification of systems with continuous time and space, an abstraction usually consists of a partitioning of the state space of the concrete model into a finite set of regions that define the states of an abstract, finite-state machine with a corresponding behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Our method follows an approach that constructs abstract, finite-state machines whose states are augmented with continuous linear dynamics and non-deterministic drifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Finite-state machines with continuous, possibly non-deterministic dynamics are known as hybrid automata [71], and the process of abstracting dynamical nonlinear models into hybrid automata is called hybridisation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' this process has been widely applied in formal verification [8,15,16,21,46,58,65,73,91,94,99,100,102].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Hybridising involves partitioning the state space and computing a local overapproximation of the concrete model within each region of the partition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Common approaches for hybridisation partition the state space by tuning the granularity of rectangular or simplicial meshes, until a desired approximation error is attained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' This may yield abstract hybrid automata that are too large in the number of discrete states to be effectively verified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Notably, modern tools for the verification of hybrid automata are designed for models that rarely have over hundred discrete states [7], while arbitrary meshes grow exponentially as the granularity increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Explosion in discrete states has been mitigated using deductive approaches that construct an appropriate partitioning from the expressions that define the concrete model and, unlike our method, rely on syntactic restrictions [14,26,30,47,70,80,83,84,98].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We propose an inductive approach to abstraction that combines the tasks of partitioning the state space and overapproximating the dynamics into the single task of training a neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We leverage the approximation capability of neural networks with ReLU activation functions to partition the state space into arbitrary polyhedral regions, where each region and local affine approximation correspond to a combinatorial configuration of the neurons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We show that this ultimately enables verifying nonlinear dynamical models using efficient safety verifiers for hybrid automata with affine dynamics (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Our abstraction procedure synthesises abstract models by alternating a learner, which proposes candidate abstractions, and a certifier, which formally assures (or disproves) their validity, in a counterexample-guided inductive synthesis (CEGIS) loop [108,109].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' First, the learner uses gradient descent to train a neural network that approximates the concrete model over a finite set of sample observations of its dynamics;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' then, the certifier uses satisfiability modulo theories (SMT) to check the validity of an upper-bound on the approximation error over the entire continuous domain of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' If the latter disproves the bound, then it produces a counterexample which its added to the set of samples and the loop is repeated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' If it certifies the bound, then the procedure returns a neural network approximation and a sound upper-bound on the error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Altogether, neural network and error bound define a neural ODE with bounded additive non-determinism that overapproximates the concrete model, which we call a neural abstraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We demonstrate the efficacy of our method over multiple dynamical models from a standard bench- mark set for the verification of nonlinear systems [66], as well as additional locally non-Lipschitz 2 1 0 1 1 0 1 Concrete nonlinear system x .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ˙x ReLU Neural abstraction 1 0 1 1 0 1 Abstract hybrid automaton Flowpipe propagation Abstraction synthesis Model translation Safety verification Figure 1: Overview of our workflow on a non-Lipschitz dynamical model (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Section 5, NL2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The concrete dynamics are abstracted by a neural ODE with ReLU activation functions and a certified upper-bound on the approximation error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' This characterises a polyhedral partitioning and defines a hybrid automaton with affine dynamics and additive non-deterministic drift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Flowpipe propagation is finally performed through a region of non-Lipschitz continuity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' models, and compare our approach with Flow*, the state-of-the-art verification tool for nonlinear models [34,35,37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We instantiate our approach on top of SpaceEx [62], which is a state-of-the-art tool specialised to linear hybrid models [59,61,88].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We evaluate both approaches in safety verifi- cation using flowpipe propagation, which computes the set of reachable states from a given set of initial states up to a given time horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Our experiments demonstrate that our approach performs comparably with Flow* for Lipschitz continuous model, and succeeds with non-Lipschitz models that are out of range for Flow* and violate the working assumptions of many verification tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' These outcomes suggest that neural abstractions are a promising technology, also in view of recent results on direct methods for the safety verification for neural ODEs [68,69,95].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We summarise our contributions in the following points: we introduce the novel idea of leveraging neural networks to represent abstractions in formal verification, and we instantiate it in safety verification of nonlinear dynamical models;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' we present a CEGIS procedure for the synthesis of neural ODEs that formally overapproxi- mate the dynamics of nonlinear models, which we call neural abstractions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' we define a translation from neural abstractions defined using ReLU activation functions to hybrid automata with affine dynamics and additive non-determinism;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' we implement our approach2 and demonstrate its comparable performance w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' the state-of- the-art tool Flow* in safety verification of Lipschitz-continuous models, and even superior efficacy on models that do not exhibit local Lipschitz continuity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We consider there to be no significant negative societal impact of our work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 2The code is available at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='com/aleccedwards/neural-abstractions-nips22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='52 Neural Abstractions of Dynamical Models We study the formal verification question of whether an n-dimensional, continuous-time, autonomous dynamical model with possibly uncertain (bounded) disturbances, considered within a region of interest, is safe with respect to a region of bad states when initialised from a region of initial states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Definition 1 (Dynamical Model).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' A dynamical model F defined over a region of interest X ⊆ Rn consists of a nonlinear function f : Rn → Rn and a possibly null disturbance radius δ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Its dynamics are given by the system of nonlinear ODEs ˙x = f(x) + d, ∥d∥ ≤ δ, x ∈ X, (1) where ∥ · ∥ denotes a norm operator (unless explicitly stated, we assume the norm operator to be given the same semantics across the paper).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' A trajectory of F defined over time horizon T > 0 is a function ξ : [0, T] → Rn that admits derivative at each point in [0, T] such that, for all t ∈ [0, T], it holds true that ξ(t) ∈ X and ˙ξ(t) = f(ξ(t)) + dt for some ∥dt∥ < δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Notably, symbol d in Equation (1) is interpreted as a non-deterministic disturbance that at any time can take any possible value within the bound provided by δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Let the sets X0 ⊂ X be a region of initial states and XB ⊂ X be a region of bad states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We say that a trajectory ξ defined over time horizon T is initialised if ξ(0) ∈ X0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' additionally, we say that it is safe if ξ(t) ̸∈ XB for all t ∈ [0, T];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' dually, we say that it is unsafe if ξ(t) ∈ XB for some t ∈ [0, T].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The safety verification question for consists of determining whether all initialised trajectories are safe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' If this is the case, then we say that the model is safe with respect to X0 and XB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' If there exist at least one initialised trajectory that is unsafe, then we say that the model is unsafe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We tackle safety verification by abstraction, that is, we construct an abstract dynamical model that captures all behaviours of the concrete nonlinear model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' This implies that if the abstract model is safe then the concrete model is necessarily safe too, and we can thus apply a verification procedure over the abstraction to determine whether the concrete model is safe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Notably, the converse may not hold: lack of safety of the abstract model does not carry over to the concrete model, because our abstraction is an overapproximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We ultimately obtain a sound (but not complete) safety verification procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Our approach synthesises an abstract dynamical model defined in terms a feed-forward neural network with ReLU activation functions and endowed with a bounded non-deterministic disturbance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' This can be seen as a neural ODEs [33] augmented with an additive non-deterministic drift that ensures the abstract model to overapproximate the concrete model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' To the best of our knowledge, this is the first work to consider neural ODEs with non-deterministic semantics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Our feed-forward neural network consists of an n-dimensional input layer y0, k hidden layers y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' , yk with dimensions h1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' , hk respectively, and an n-dimensional output layer yk+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Each hidden or output layer with index i are respectively associated matrices of weights Wi ∈ Rhi×hi−1 and a vectors of biases bi ∈ Rhi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Upon a valuation of the input layer, the value of every subsequent hidden layer is given by the following equation: yi = ReLU(Wiyi−1 + bi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (2) Whereas many activation functions exist, we focus our study on ReLU activation functions, applying function max{x, 0} to every element x ∈ R of its hi-dimensional argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Finally, the value of the output layer is given by the affine map yk+1 = Wk+1xk + bk+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Altogether, the network results in a function N whose output is N(x) = yk+1 for every given input y0 = x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Definition 2 (Neural Abstraction).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Let F be a dynamical model given by function f : Rn → Rn and disturbance radius δ ≥ 0 and let X ⊆ Rn be a region of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' A feed-forward neural network N : Rn → Rn defines a neural abstraction of F with error bound ϵ > 0 over X, if it holds true that ∀x ∈ X : ∥f(x) − N(x)∥ ≤ ϵ − δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (3) Then, the neural abstraction consists of the dynamical model A defined by N and disturbance ϵ, whose dynamics are given by the following neural ODE with bounded additive disturbances: ˙x = N(x) + d, ∥d∥ ≤ ϵ, x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (4) Theorem 1 (Soundness of Neural Abstractions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' If A is a neural abstraction of a dynamical system F over a region of interest X ⊆ Rn, then every trajectory of F is also a trajectory of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 4 Abstraction Synthesis Learner Certifier Counterexample scex Candidate N Valid neural abstraction A F, X, ϵ F, S, ϵ Safety Verification F, X, S, ϵ X, X0, XB Figure 2: Architecture for the safety verification of nonlinear dynamical models using neural abstrac- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The inputs to our architecture are a concrete model F and its domain of interest X, a finite set of initial datapoints S, a desired approximation error ϵ, and regions of initial X0 and bad states XB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Let ξ be a trajectory of F and T be the time horizon over which ξ is defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Then, let t ∈ [0, T].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' By definition of trajectory we have that (i) ξ(t) ∈ X and there exists dt s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (ii) ∥dt∥ ≤ δ and (iii) ˙ξ(t) = f(ξ(t))+dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' By (i) and condition (3) we have that ∥f(ξ(t))−N(ξ(t))∥+ δ ≤ ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Then, by (ii) we have that ∥f(ξ(t)) − N(ξ(t))∥ + ∥dt∥ ≤ ϵ which, by triangle inequality, implies that ∥f(ξ(t)) + dt − N(ξ(t))∥ ≤ ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Using (iii), we rewrite it into ∥ ˙ξ(t) − N(ξ(t))∥ ≤ ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Finally, we define d′ t = ˙ξ(t) − N(ξ(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' As a result, we have that ∥d′ t∥ ≤ ϵ and ˙ξ(t) = N(ξ(t)) + d′ t which, together with (i), shows that ξ is a trajectory of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Let X0 ⊂ X be a region of initial states and XB ⊂ X and region of bad states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' It holds true that if A is safe with respect to X0 and XB then also F is safe with respect to X0 and XB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Proof of Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' By Theorem 1, if there exists an initialised trajectory of F that is unsafe, then the same is an initialised trajectory of A that is unsafe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The statement follows by contraposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Remark 1 (Existence of Neural Abstractions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Let F be a dynamical model defined by function f and disturbance radius δ ≥ 0, and let X ⊆ Rn be a domain of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' A neural abstraction of F with arbitrary error bound ϵ > 0 over X exists if a neural network that approximates f with error bound ϵ − δ (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' condition (3)) exists over the same domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In this work, we do not prescribe conditions on either width or depth of the network to ensure existence of a neural abstraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Such conditions are given by universal approximation theorems for neural networks with ReLU activation functions, which have been developed in seminal work in machine learning [25,42,63,74,90,93].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Altogether, we define the neural abstraction of a non-linear dynamical system F as a neural ODE with an additive disturbance A that approximates the dynamics while also accounting for the approximation error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Notably, we place no assumptions on the vector field f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In particular, Theorem 1 does not require f to be Lipschitz continuous: the soundness of a neural abstraction relies on condition (3), whose certification we offload to an SMT solver (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The resulting neural abstraction is to a hybrid automaton with affine dynamics and non-deterministic disturbance (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Section 4), which does not rely on the Picard-Lindelof theorem to ensure uniqueness or existence of a solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 3 Formal Synthesis of Neural Abstractions Our approach to abstraction synthesis follows two phases—a learning phase and a certification phase— that alternate each other in a CEGIS loop [1,3,43,78,101,108,109] (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Figure 2, left).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Our learning phase trains the parameters of a neural network N to approximate the system dynamics over a finite set of samples S ⊂ X of the domain of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Learning uses gradient descent algorithms, which can possibly scale to large amounts of samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Then, our certification phase either confirms the validity of condition (3) or produces a counterexample which we use to sample additional states and repeat the loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Certification is based on SMT solving, which reasons symbolically over the continuous domain X and assures soundness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' As a consequence, when certification confirms condition (3) formally valid, then as per Theorem 1 our neural abstraction A is a sound overapproximation of the concrete model F and is thus passed to safety verification (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Figure 2, right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Neural networks have been used in the past as representations of formal certificates for the correctness of systems such as Lyapunov neural networks, neural barrier certificates, neural ranking functions 5 and supermartingales [1, 2, 4, 31, 32, 44, 67, 89, 97, 111, 117–119].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In the present work, we use neural networks for the first time as abstractions, and we instantiate this idea in safety verification of nonlinear models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We shall now present the components of our abstraction synthesis procedure: learner (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='1) and certifier (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='1 Learning Phase As with many machine learning-based algorithm, learning neural abstractions hinges on the loss function used as part of the gradient descent scheme for optimising parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The task is that of a regression problem, so the choice of loss function to be minimised is simple, namely, L = � s∈S ∥f(s) − N(s)∥2, (5) where ∥ · ∥2 represents the 2 − norm of its input, and S ⊂ X is a finite set of data points that are sampled from the domain of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In other words, the neural abstractions are synthesised using a scheme based on gradient descent to find the parameters that minimise the mean square error over S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The main inputs to the learning procedure are the vector field f of the concrete dynamical model, an initial set of points S sampled uniformly from the domain of interest X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Additional parameters include the hyper-parameters for the learning scheme such as the learning rate, and a stopping criterion for the learning procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' For the latter, there are two possible options: a target error which all data points must satisfy, or a bound on the value of the loss function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' If a target error smaller than ϵ − δ is provided, this is when all points in the data set S satisfy the specification (3) and certification subsequently check that this generalises over the entire X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' If an alternative loss-based stopping criterion is provided, then an error bound on the approximation is estimated using the maximum approximation error over the data set S for use in certification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' This estimated bound is conservative, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', greater than the maximum, to allow for successful certification to be more likely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' After learning, the network N is translated to symbolic form and passed to the certification block, which checks condition (3) as described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The certifier either determines condition (3) valid, and thus the CEGIS loop terminates, or computes a counterexample that falsifies the condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The counterexample is returned to the learning procedure and augmented by sampling for additional points nearby in order to maximise the efficiency of learning and the overall synthesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='2 Certification Phase The purpose of the certification is to check that at no point in the domain of interest X is the maximum error greater than the upper bound ϵ − δ, as per the specification in condition (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Therefore, the certifier is provided with the negation of the specification, namely ∃x: x ∈ X ∧ ∥f(x) − N(x)∥ > ϵ − δ � �� � φ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (6) The certifier seeks an assignment scex of the variable x such that the quantifier-free formula φ is satisfiable, namely that the specified bound is violated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' If this search is successful, then the network N has not achieved the specified accuracy over X, and is thus not a valid neural abstraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The corresponding assignment scex forms the counterexample that is provided back to the learner (the machine learning procedure from Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Alternatively, if no assignment is found then specification (3) is proven valid;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' network N and error bound ϵ are then passed to the safety verification procedure (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Section 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Certification of the accuracy of the neural abstractions is performed by an SMT solver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Several options exist for the selection of the SMT solver, with the requirement that the solver should reason over quantifier-free nonlinear real arithmetic formulae [57,64].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' This is because the vector field f may contain nonlinear terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In our experiments, we employ dReal [64], which supports polynomial and non-polynomial terms such as transcendental functions like trigonometric or exponential ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' A successful verification process allows for the full abstraction to be constructed using the achieved error ϵ and neural network N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' CEGIS has been shown to perform well and terminate successfully across a wide variety of problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We demonstrate the robustness of our procedure in Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 6 x y X1 X2 X3 ˙x = f1(x) x ∈ X1 ˙x = f3(x) x ∈ X3 ˙x = f2(x) x ∈ X2 x ∈ X1 x ∈ X3 x ∈ X2 x ∈ X3 Figure 3: A hybrid automaton corresponding to a state-space partitioning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Each of the three discrete modes corresponds to a unique partition Xi and vector field fi(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Discrete transitions are denoted by the edges of the directed graph with a transition between two modes if the corresponding partitions Xi and Xj are adjacent and a trajectory from fi ‘crosses’ the corresponding partition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 4 Safety Verification of Neural Abstractions Neural abstractions are dynamical models expressed in terms of neural ODEs with additive distur- bances (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Equation 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Corollary 1 ensures the fact for which concluding that a neural abstraction is safe suffices to assert that the concrete dynamical model is also safe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Consequently, once a neural ODE is formally proven to be an abstraction for the concrete dynamical model, which is entirely delegated to our synthesis procedure (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Section 3), our definition of neural abstractions enables any procedure for the safety verification of neural ODEs with disturbances to be a valid safety verification procedure for the corresponding dynamical model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Safety verification approaches for dynamical systems controlled by neural networks solve a similar problem [18,54,75,77,106,113,114,116], yet with a subtle difference: neural network controllers take control actions at discrete points in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Instead, neural ODEs characterise dynamics over continuous time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Some procedures for the direct verification of neural ODEs have been introduced very recently, and this currently an area under active development [68, 69, 95].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Yet, existing approaches do not consider the case of a neural ODE with a non-deterministic drift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Therefore, in order to obtain a verification procedure for neural abstractions, we build upon the observation that a neural ODEs with ReLU activation functions and non-deterministic drift defines a hybrid automaton with affine dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Hybrid automata (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Figure 3) model the interaction between continuous dynamical systems and finite-state transition systems [71,115].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' A hybrid automaton consists of a finite set of variables and a finite graph, whose vertices we call discrete modes and edges we call discrete transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Every mode is associated with an invariant condition and a flow condition over the variables, which determine the continuous dynamics of the systems on the specific mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Every discrete transition is associated with a guard condition, which determines the effect on discrete transitions between modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' While we refer the reader to seminal work for a general definition of hybrid automata [71], we present a translation from neural abstractions to hybrid automata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='1 Translation of Neural Abstractions Into Hybrid Automata We begin with the observation that each neuron within a given hidden layer of a neural network with ReLU activation functions induces a hyperplane in the vector space associated with the previous layer This hyperplane results in two half-spaces, one corresponding to the neuron being active and one to it being inactive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' For the jth neuron in the ith layer, these two halfspaces are respectively the two parts of the hyperplane given by {yi−1 | Wi,jyi−1 + bi,j = 0}, (7) where Wi,j is the jth row of the weight matrix Wi and bi,j is the jth element of the bias bi (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Section 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Therefore, every combinatorial configuration of the neural network defines an intersection of halfspaces that defines a polyhedral region in the vector space of the input neurons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Moreover, every 7 configuration also defines a linear function from input to output neurons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The space of configurations thus defines a partitioning of the input space, where each region is associated with an affine function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' A neural abstraction casts into a hybrid automaton, where every mode is determined by a configuration of the hidden neurons and each of these configurations induces a system of affine ODEs (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Figure 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Discrete Modes We represent a configuration of a neural network as a sequence C = (c1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' , ck) of Boolean vectors c1 ∈ {0, 1}h1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' , ck ∈ {0, 1}hk, where k denotes the number of hidden layers and h1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' , hk denote the number neurons in each of them (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Section 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Every vector ci represents the configuration of the neurons at the ith hidden later, and the jth element of ci represent the activation status of the jth neuron at the ith later, which equals to 1 is the neuron is active and 0 if it is inactive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Every mode of the hybrid automaton corresponds to exactly one configuration of neurons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Invariant Conditions We define the invariant of each mode as a restriction of the domain of interest to a region XC ⊆ X, which denotes the maximal set of states that enables configuration C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' To construct XC, we define a higher-dimensional polyhedron on the space of valuation of the neurons that enable configuration C, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', YC = � (y0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' , yk) ��� ∧k i=1yi = diag(ci)(Wiyi−1 + bi)∧ diag(2ci − 1)(Wiyi−1 + bi) ≥ 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (8) Note that diag(v) denotes the square diagonal matrix whose diagonal takes its coefficients from vector v;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' in our case, this results in a square diagonal matrix whose coefficients are either 0 or 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Then, we project YC onto the input neurons y0, denoted YC ↾y0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Since the input neurons y0 are equivalent to the state variables of the dynamical model, the invariant condition of mode C results in XC = (YC ↾y0) ∩ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (9) A projection can be computed using the Fourier-Motzkin algorithm or by projecting the vertices of the polyhedron in a double description method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' However, even though this is effective in our experiments, it has worst-case exponential time complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' A polynomial time construction can be obtained by propagating halfspaces backwards along the network, similarly to methods used in abstraction-refinement [29,60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We outline the alternative construction in Appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Flow Conditions The dynamics of each mode C can be seen itself as a dynamical system with bounded disturbance: ˙x = ACx + bC + d, ∥d∥ ≤ ϵ, x ∈ XC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (10) The matrix AC ∈ Rn×n and the vector of drifts bC ∈ Rn determine the linear ODE of the mode, whereas ϵ > 0 is the error bound derived from the neural abstraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The coefficients of the system are given by the weights and biases of the neural network as follows: AC = Wk+1 �k i=1 diag(ci)Wi, (11) bC = bk+1 + �k i=1(Wk+1 �k j=i+1 diag(cj)Wj) diag(ci)bi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (12) Discrete Transitions and Guard Conditions A discrete transition exists between any two given modes if the two polyhedra that define their invariant conditions share a facet and the dynamics pass through at some point along the facet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' This can be checked by considering the sign of the Lie derivative between the dynamics and the corresponding facet, that is, the inner product between the dynamics and the normal vector to the facet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In practice, we take a faster but more conservative approach by considering that a transition exists between two modes when the corresponding polyhedral regions share at least a vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The guard condition of a discrete transition is simply the invariant of the destination mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='2 Enumeration of Feasible Modes A given configuration C exists in the hybrid automaton if and only if the corresponding set XC, which is a convex polyhedron in Rn, is nonempty;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' this consists of verifying that the linear program (LP) constructed from the polyhedron is feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Finding all modes of the hybrid automaton therefore consists of solving 2H linear programs, where H = h1 + · · · + hk is the total number of hidden neurons in the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' However, this exponential scaling with the number of neurons is limiting 8 in terms of network size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Therefore, we propose an approach that works very well in practice to determine all valid neuron configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The approach relies on the observation that within a bounded polyhedron P, a given neuron has two modes (ReLU enabled or disabled) only if the induced hyperplane intersects P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' If it does not, only one of the two possible half-spaces contributes to any possible active configuration, and the other neuron mode can be disregarded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Therefore, this approach involves iterating through each neuron in turn and constructing two LPs—one for each halfspace intersected with the domain of interest X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' If only one LP is valid, we can fix the neuron to this mode, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', from this point onward only consider the intersection with the halfspace corresponding to the feasible LP, and construct a new polyhedron from the intersection of X and the feasible half-space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In short, we consider the neurons of the network as a binary tree, with the branches representing the enabled and disabled state of this neuron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We perform a depth-first tree search through this tree by intersecting with the corresponding half-spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Upon reaching an end node, we store this configuration (branches taken) and revert back to the most recent unexplored branch and continue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We include a more detailed description of this algorithm in Appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' This approach is inspired by that presented in [23], which similarly enumerates through the path of neurons using sets to determine the output range of a network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 5 Experimental Results 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='1 Safety Verification Using Neural Abstractions We benchmark the results obtained by the safety verification algorithm proposed in Section 4 against Flow* [35] (available under GPL), which is a mature tool for computing reachable regions of hybrid automata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' It relies on computing flowpipes, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', sets of reachable states across time, which are propagated from a given set of initial states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The flowpipes are generated from Taylor series approximations of the model’s vector field in (1), over subsequent discrete time steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Crucially, the use of a higher-order Taylor series, or of smaller time steps, leads to more precise computation of reachable sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Since Flow*, like SpaceEx (available under GPLv3) is able to calculate over- approximations of flowpipes, it is suitable for use in safety verification, and is a state-of-the-art tool for verifying safety of nonlinear models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Making a fair comparison around metrics for accuracy between Flow* and SpaceEx is challenging, as they represent flowpipes differently [22,38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We ask them to perform safety verification for a given pair of initial and bad states, on a collection of different nonlinear models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' These models, and their parameters, are detailed in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' As described in Section 2, the task of safety verification consists of ensuring that no trajectory starting within the set of initial states enters the set of bad states, within a given time horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Our setup is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Firstly, for a given benchmark model we define a finite time horizon T, a region of initial states X0 and a region of bad states XB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Then, we run flowpipe computations with Flow* using high-order Taylor models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Similarly we run the procedure described in Section 3, and construct a hybrid automaton as described in Section 4 to perform flowpipe computations using SpaceEx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We present the results in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In the table, we show the Taylor model order (TM) and time step used within Flow*, as well as the structure of the neural networks used for neural abstractions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' For example, we denote a network with two hidden layers with h1 neurons in the first layer and h2 neurons in the second hidden layer as [h1, h2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We note that while Flow*, much like SpaceEx, can perform flowpipe computation on the constructed hybrid automaton, it is not specialised to linear models like SpaceEx is and in practice struggles with the number of modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Notably, Flow* is unable to handle the two models that do not exhibit local Lipschitz continuity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Flow* constructs Taylor models that incorporate the derivatives of the dynamics: as expected, unbounded derivatives will cause issues for this approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Meanwhile, Ariadne [24] a is an alternative tool for over-approximating flowpipes of nonlinear systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' While Ariadne does not explicitly require Lipschitz continuity, it is also unable to perform analysis on tools with nth root terms at zero, due to numerical instability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Instead, our abstraction method works directly on the dynamics themselves, rather than their derivatives, in order to construct simpler, abstract models that are amenable to be verified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' By formally quantifying how different an abstract model is through the approximation error, we are able to formally perform safety verification on such challenging concrete models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 9 Table 1: Comparison of safety verification between Flow* and the combination of Neural Abstractions plus SpaceEx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Here, T: time horizon, TM: Taylor model order, δ: time-step, t: total computation time (better times denoted by bold), W: network neural structure, M: total number of modes in resulting hybrid automaton, Blw: blowup in the error before T is reached, and -: no results unobtainable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Model T Flow* Neural Abstractions TM δ Safety Ver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' t W M Safety Ver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' t Jet Engine 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='5 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='1 Yes 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='3 [10, 16] 8 Yes 215 Steam Governor 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='0 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='1 Yes 62 [12] 29 Yes 219 Exponential 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='0 30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='05 Blw 1034 [14, 14] 12 Yes 308 Water Tank 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='0 No [12] 6 Yes 49 Non-Lipschitz 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='4 No [10] 12 Yes 19 Non-Lipschitz 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='5 No [12, 10] 32 Yes 59 Notice that we additionally outperform Flow* on a Lipschitz-continuous model (Exponential in Table 1), where the composition of functions that make up the model’s dynamics result in high errors in Flow* before the flowpipe can be calculated across the given time horizon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We highlight that despite relying on affine approximations (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', 1st order models), neural abstractions are able to compete with, and even outperform, methods that use much higher order functions (10th and 30th in the benchmarks) for approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='2 Limitations Our approach is limited in terms of scalability, both with regards to the dimension of the models and to the size of the utilised neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The causes of this limitation are twofold: firstly we are bound by the computational complexity of SMT solving - known to be NP-hard - which can struggle with complex formaulae with many variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The certification step requires the largest amount of time (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Appendix B), indicating that improvements in the verification of neural networks can lead to a large performance increase for our abstractions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Secondly, we are limited in terms of the complexity of our abstractions by SpaceEx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' While SpaceEx is a highly efficient implementation of LGG [88], the presence of a large number of discrete modes poses a significant computational challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' It future work, we hope to investigate the balance between abstraction complexity and accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The efficacy of neural abstraction on further tools for hybrid automata with affine dynamics also remains to be investigated [6,24,28,107].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 6 Conclusion We have proposed a novel technique that leverages the approximation capabilities of neural networks with ReLU activation functions to synthesise formal abstractions of dynamical models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' By combining machine learning and SMT solving algorthms in a CEGIS loop, our method computes abstract neural ODEs with non-determinism that overapproximate the concrete nonlinear models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' This guarantees the property for which safety of the abstract model carries over to the concrete model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Our method casts these neural ODEs into hybrid automata with affine dynamics, which we have verified using SpaceEx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We have demonstrated that our method is not only comparable to Flow* in safety verification on existing nonlinear benchmarks, but also shows superior effectiveness on models that do not exhibit local Lipschitz continuity, which is a hard problem in formal verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Yet, our experiments are limited to low-dimensional models and scalability remains an open challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Our approach has advanced the state of the art in terms of expressivity, which is the first step toward obtaining a general and efficient verifier based on neural abstraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Obtaining scalability to higher dimensions will require a synergy of efficient SMT solvers for neural networks and safety verification of neural ODEs, which are both novel and actively researched questions in formal verification [68,69,76,79,92,95,114].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Acknowledgements We thank the anonymous reviewers for their helpful suggestions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Alec was supported by the EPSRC Centre for Doctoral Training in Autonomous Intelligent Machines and Systems (EP/S024050/1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 10 References [1] Abate, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Ahmed, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Edwards, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Giacobbe, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Peruffo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': FOSSIL: a software tool for the formal synthesis of Lyapunov functions and barrier certificates using neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: HSCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 24:1–24:11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ACM (2021) [2] Abate, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Ahmed, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Giacobbe, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Peruffo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Formal synthesis of Lyapunov neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' IEEE Control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 5(3), 773–778 (2021) [3] Abate, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', David, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Kesseli, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Kroening, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Polgreen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Counterexample guided inductive synthesis modulo theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CAV (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 10981, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 270–288.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2018) [4] Abate, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Giacobbe, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Roy, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Learning probabilistic termination proofs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CAV (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 12760, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 3–26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2021) [5] Althoff, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Reachability analysis of nonlinear systems using conservative polynomialization and non-convex sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: HSCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 173–182.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ACM (2013) [6] Althoff, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': An introduction to CORA 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: ARCH@CPSWeek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' EPiC Series in Comput- ing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 34, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 120–151.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' EasyChair (2015) [7] Althoff, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Ábrahám, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Forets, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Frehse, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Freire, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Schilling, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Schupp, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Wetzlinger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': ARCH-COMP21 category report: Continuous and hybrid systems with linear continuous dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: ARCH@ADHS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' EPiC Series in Computing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 80, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 1–31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' EasyChair (2021) [8] Althoff, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Stursberg, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Buss, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CDC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 4042–4048.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' IEEE (2008) [9] Alur, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Henzinger, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Lafferriere, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Pappas, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Discrete abstractions of hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Proceedings of the IEEE 88(7), 971–984 (2000) [10] Alur, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Principles of cyber-physical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' MIT press (2015) [11] Alur, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Courcoubetis, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Halbwachs, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Henzinger, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Ho, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Nicollin, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Olivero, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Sifakis, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Yovine, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': The algorithmic analysis of hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 138(1), 3–34 (1995) [12] Alur, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Dill, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : A theory of timed automata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 126(2), 183–235 (1994) [13] Alur, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Giacobbe, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Henzinger, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Larsen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Mikucionis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Continuous-time models for system design and analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: Computing and Software Science, Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 10000, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 452–477.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2019) [14] Asarin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Dang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Abstraction by projection and application to multi-affine systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: HSCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 2993, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 32–47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2004) [15] Asarin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Dang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Girard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Reachability analysis of nonlinear systems using conservative approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: HSCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 2623, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 20–35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2003) [16] Asarin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Dang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Girard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Hybridization methods for the analysis of nonlinear systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Acta Informatica 43(7), 451–476 (2007) [17] Aylward, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Parrilo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Slotine, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : Stability and robustness analysis of nonlinear systems via contraction metrics and SOS programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Autom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 44, 2163–2170 (2008) [18] Bacci, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Giacobbe, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Parker, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Verifying reinforcement learning up to infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: IJCAI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 2154–2160.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ijcai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='org (2021) [19] Bae, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Gao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Modular SMT-based analysis of nonlinear hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: FMCAD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 180–187.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' IEEE (2017) [20] Baier, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Katoen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Principles of model checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' MIT Press (2008) [21] Bak, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Bogomolov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Henzinger, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Johnson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Prakash, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Scalable static hybridiza- tion methods for analysis of nonlinear systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: HSCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 155–164.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ACM (2016) [22] Bak, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Bogomolov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Johnson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : HYST: a source transformation and transla- tion tool for hybrid automaton models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: Girard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Sankaranarayanan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=') Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, HSCC’15, Seattle, WA, USA, April 14-16, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 128–133.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ACM 11 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='1145/2728606.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='2728630, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='1145/2728606.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 2728630 [23] Bak, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Tran, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Hobbs, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Johnson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : Improved geometric path enumeration for verifying relu neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CAV (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 12224, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 66–96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2020) [24] Balluchi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Casagrande, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Collins, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Ferrari, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Villa, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Sangiovanni-Vincentelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Ariadne: A framework for reachability analysis of hybrid automata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: MTNS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 1267–1269 (2006) [25] Barron, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : Approximation and estimation bounds for artificial neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Machine Learning 14(1), 115–133 (1994) [26] Batt, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Belta, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Weiss, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Temporal logic analysis of gene networks under parameter uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Autom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 53, 215–229 (2008) [27] Ben Sassi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Testylier, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Dang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Girard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Reachability analysis of polynomial systems using linear programming relaxations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: ATVA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 7561, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 137–151.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2012) [28] Bogomolov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Forets, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Frehse, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Potomkin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Schilling, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Juliareach: a toolbox for set-based reachability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: HSCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 39–44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ACM (2019) [29] Bogomolov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Frehse, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Giacobbe, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Henzinger, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : Counterexample-guided refinement of template polyhedra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: TACAS (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 10205, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 589–606 (2017) [30] Bogomolov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Giacobbe, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Henzinger, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Kong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Conic abstractions for hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: FORMATS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 10419, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 116–132.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2017) [31] Chang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Roohi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Gao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Neural Lyapunov control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: NeurIPS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 3240–3249 (2019) [32] Chen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Fazlyab, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Morari, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Pappas, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Preciado, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : Learning Lyapunov functions for hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: HSCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 13:1–13:11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ACM (2021) [33] Chen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Rubanova, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Bettencourt, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Duvenaud, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Neural ordinary differential equa- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: NeurIPS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 6572–6583 (2018) [34] Chen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Ábrahám, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Sankaranarayanan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Taylor model flowpipe construction for non- linear hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: RTSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 183–192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' IEEE Computer Society (2012) [35] Chen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Ábrahám, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Sankaranarayanan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Flow*: An analyzer for non-linear hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CAV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 8044, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 258–263.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2013) [36] Chen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Mover, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Sankaranarayanan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Compositional relational abstraction for nonlinear hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Embed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 16(5s), 187:1–187:19 (2017) [37] Chen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Sankaranarayanan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Decomposed reachability analysis for nonlinear systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: RTSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 13–24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' IEEE Computer Society (2016) [38] Chen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Sankaranarayanan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Ábrahám, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Flow* 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='2: More effective to play with hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: ARCH@CPSWeek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' EPiC Series in Computing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 34, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 152–159.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' EasyChair (2015) [39] Cimatti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Mover, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Tonetta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': A quantifier-free SMT encoding of non-linear hybrid automata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: FMCAD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 187–195.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' IEEE (2012) [40] Clarke, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Grumberg, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Kroening, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Peled, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Veith, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Model checking, 2nd Edition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' MIT Press (2018) [41] Cousot, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Cousot, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: POPL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 238–252.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ACM (1977) [42] Cybenko, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Approximation by superpositions of a sigmoidal function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Mathematics of Control, Signals and Systems 2(4), 303–314 (1989) [43] Dai, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Landry, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Pavone, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Tedrake, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Counter-example guided synthesis of neural network Lyapunov functions for piecewise linear systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CDC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 1274–1281.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' IEEE (2020) 12 [44] Dai, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Landry, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Yang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Pavone, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Tedrake, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Lyapunov-stable neural-network control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: Robotics: Science and Systems (2021) [45] Dang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Frehse, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Girard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Le Guernic, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Tools for the analysis of hybrid models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: Communicating Embedded Systems, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 227–251.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Wiley (2013) [46] Dang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Maler, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Testylier, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Accurate hybridization of nonlinear systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: HSCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 11–20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ACM (2010) [47] Dang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Testylier, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Hybridization domain construction using curvature estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: HSCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 123–132.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ACM (2011) [48] Dang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Testylier, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Reachability analysis for polynomial dynamical systems using the bernstein expansion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Reliab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 17, 128–152 (2012) [49] Derler, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Lee, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Sangiovanni-Vincentelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : Modeling cyber-physical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' IEEE 100(1), 13–28 (2012) [50] Diacu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': The solution of then-body problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The Mathematical Intelligencer 18(3), 66–70 (Jun 1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='1007/BF03024313 [51] Doyen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Frehse, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Pappas, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Platzer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Verification of hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: Handbook of Model Checking, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 1047–1110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2018) [52] Dreossi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: HSCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 29–34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ACM (2017) [53] Dreossi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Dang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Piazza, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Reachability computation for polynomial dynamical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Formal Methods Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Des.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 50(1), 1–38 (2017) [54] Dutta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Chen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Sankaranarayanan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Reachability analysis for neural feedback systems using regressive polynomial rule inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: HSCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 157–168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ACM (2019) [55] Eyink, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Drivas, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : Spontaneous stochasticity and anomalous dissipation for burgers equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Journal of Statistical Physics 158(2), 386–432 (2015) [56] Fan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Qi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Mitra, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Viswanathan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Duggirala, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : Automatic reachability analysis for nonlinear hybrid models with C2E2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CAV (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 9779, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 531–538.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2016) [57] Fränzle, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Herde, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Teige, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Ratschan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Schubert, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Efficient solving of large non- linear arithmetic constraint systems with complex boolean structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Satisf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Boolean Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 1(3-4), 209–236 (2007) [58] Frehse, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Phaver: Algorithmic verification of hybrid systems past hytech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: HSCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 3414, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 258–273.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2005) [59] Frehse, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Reachability of hybrid systems in space-time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: EMSOFT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 41–50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' IEEE (2015) [60] Frehse, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Giacobbe, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Henzinger, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : Space-time interpolants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CAV (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 10981, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 468–486.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2018) [61] Frehse, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Kateja, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Le Guernic, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Flowpipe approximation and clustering in space-time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: HSCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 203–212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ACM (2013) [62] Frehse, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Le Guernic, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Donzé, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Cotton, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Ray, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Lebeltel, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Ripado, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Girard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Dang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Maler, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': SpaceEx: scalable verification of hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CAV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 6806, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 379–395.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2011) [63] Funahashi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : On the approximate realization of continuous mappings by neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Neural Networks 2(3), 183–192 (1989) [64] Gao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Kong, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Clarke, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': dReal: an SMT solver for nonlinear theories over the reals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CADE, Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 7898, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 208–214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2013) [65] García Soto, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Prabhakar, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Hybridization for stability verification of nonlinear switched systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: RTSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 244–256.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' IEEE (2020) [66] Geretti, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Sandretto, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Althoff, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Benet, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Chapoutot, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Collins, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Duggirala, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Forets, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Kim, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Linares, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Sanders, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Schilling, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Wetzlinger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': ARCH-COMP21 category report: Continuous and hybrid systems with nonlinear dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: ARCH@ADHS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' EPiC Series in Computing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 80, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 32–54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' EasyChair (2021) 13 [67] Giacobbe, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Kroening, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Parsert, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Neural termination analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: ESEC/SIGSOFT FSE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 633–645.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ACM (2022) [68] Gruenbacher, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Hasani, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Lechner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Cyranka, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Smolka, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Grosu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': On the verification of neural ODEs with stochastic guarantees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: AAAI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 11525–11535.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' AAAI Press (2021) [69] Gruenbacher, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Lechner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Hasani, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Rus, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Henzinger, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Smolka, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Grosu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Gotube: Scalable stochastic verification of continuous-depth models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: AAAI (2022) [70] Habets, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Kloetzer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Belta, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Control of rectangular multi-affine hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CDC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 2619–2624.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' IEEE (2006) [71] Henzinger, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : The theory of hybrid automata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: LICS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 278–292.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' IEEE Computer Society (1996) [72] Henzinger, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Kopke, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Puri, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Varaiya, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': What’s decidable about hybrid automata?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 57(1), 94–124 (1998) [73] Henzinger, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Wong-Toi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Linear phase-portrait approximations for nonlinear hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: Hybrid Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 1066, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 377–388.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (1995) [74] Hornik, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Stinchcombe, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', White, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Multilayer feedforward networks are universal approximators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Neural Networks 2(5), 359–366 (1989) [75] Huang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Fan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Li, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Chen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Zhu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Reachnn: Reachability analysis of neural- network controlled systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Embed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 18(5s), 106:1–106:22 (2019) [76] Huang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Kwiatkowska, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Wu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Safety verification of deep neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CAV (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 10426, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 3–29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2017) [77] Ivanov, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Carpenter, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Weimer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Alur, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Pappas, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Lee, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Verisig 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='0: Verification of neural network controllers using taylor model preconditioning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CAV (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 12759, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 249–262.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2021) [78] Kapinski, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Deshmukh, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Sankaranarayanan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Aréchiga, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Simulation-guided Lya- punov analysis for hybrid dynamical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: HSCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 133–142.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ACM (2014) [79] Katz, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Huang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Ibeling, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Julian, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Lazarus, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Lim, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Shah, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Thakoor, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Wu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Zeljic, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Dill, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Kochenderfer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Barrett, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : The Marabou framework for verification and analysis of deep neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CAV (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 11561, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 443–452.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2019) [80] Kekatos, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Forets, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Frehse, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Constructing verification models of nonlinear simulink systems via syntactic hybridization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CDC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 1788–1795.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' IEEE (2017) [81] Khalil, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : Nonlinear Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Prentice Hall, Upper Saddle River, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='J, 3rd ed edn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (2002) [82] Kim, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Bak, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Duggirala, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : Automatic dynamic parallelotope bundles for reachability analysis of nonlinear systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: FORMATS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 12860, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 50–66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2021) [83] Kloetzer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Belta, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Reachability analysis of multi-affine systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: HSCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 3927, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 348–362.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2006) [84] Kong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Bartocci, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Bogomolov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Grosu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Henzinger, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Jiang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Schilling, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Discrete abstraction of multiaffine systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: HSB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 9957, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 128–144 (2016) [85] Kong, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Gao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Chen, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Clarke, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': dreach: δ-reachability analysis for hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: TACAS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 9035, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 200–205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2015) [86] Lafferriere, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Pappas, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Sastry, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': O-minimal hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Signals Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 13(1), 1–21 (2000) [87] Lafferriere, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Pappas, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Yovine, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': A new class of decidable hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: HSCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 1569, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 137–151.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (1999) [88] Le Guernic, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Girard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Reachability analysis of hybrid systems using support functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CAV, Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 5643, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 540–554.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2009) 14 [89] Lechner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Zikelic, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Chatterjee, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Henzinger, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : Stability verification in stochastic control systems via neural network supermartingales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: AAAI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 7326–7336.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' AAAI Press (2022) [90] Leshno, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Lin, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Pinkus, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Schocken, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Multilayer feedforward networks with a nonpolynomial activation function can approximate any function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Neural Networks 6(6), 861–867 (1993) [91] Li, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Bak, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Bogomolov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Reachability analysis of nonlinear systems using hybridization and dynamics scaling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: FORMATS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 12288, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 265–282.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2020) [92] Liu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Arnon, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Lazarus, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Strong, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Barrett, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Kochenderfer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Algorithms for verifying deep neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Trends Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 4(3-4), 244–404 (2021) [93] Lu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Pu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Wang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Hu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': The expressive power of neural networks: A view from the width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: NIPS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 6231–6239 (2017) [94] Majumdar, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Zamani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Approximately bisimilar symbolic models for digital control systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CAV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 7358, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 362–377.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2012) [95] Manzanas Lopez, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Musau, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Hamilton, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Johnson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : Reachability analysis of a general class of neural ordinary differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: FORMATS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 13465, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 258–277.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2022) [96] Mover, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Cimatti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Griggio, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Irfan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Tonetta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Implicit semi-algebraic abstraction for polynomial dynamical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CAV (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 12759, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 529–551.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2021) [97] Peruffo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Ahmed, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Abate, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Automated and formal synthesis of neural barrier certifi- cates for dynamical models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: TACAS (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 12651, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 370–388.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2021) [98] Pola, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Girard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Tabuada, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Approximately bisimilar symbolic models for nonlinear control systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Autom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 44(10), 2508–2516 (2008) [99] Prabhakar, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Dullerud, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Viswanathan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Stability preserving simulations and bisimula- tions for hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Autom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 60(12), 3210–3225 (2015) [100] Prabhakar, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', García Soto, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Abstraction based model-checking of stability of hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CAV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 8044, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 280–295.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2013) [101] Ravanbakhsh, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Sankaranarayanan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Learning control Lyapunov functions from coun- terexamples and demonstrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Auton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Robots 43(2), 275–307 (2019) [102] Roohi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Prabhakar, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Viswanathan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Hybridization based CEGAR for hybrid automata with affine dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: TACAS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 9636, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 752–769.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2016) [103] Sankaranarayanan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Automatic abstraction of non-linear systems using change of bases transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: HSCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 143–152.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ACM (2011) [104] Sankaranarayanan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Tiwari, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Relational abstractions for continuous and hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CAV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 6806, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 686–702.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2011) [105] Sastry, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Nonlinear Systems, Interdisciplinary Applied Mathematics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer New York, New York, NY (1999) [106] Schilling, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Forets, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Guadalupe, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Verification of neural-network control systems by integrating taylor models and zonotopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: AAAI (2022) [107] Schupp, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Ábrahám, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Makhlouf, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Kowalewski, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Hypro: A C++ library of state set representations for hybrid systems reachability analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: NFM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 10227, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 288–294 (2017) [108] Solar-Lezama, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Program Synthesis by Sketching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' thesis, University of California at Berkeley, USA (2008) [109] Solar-Lezama, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Tancau, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Bodík, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Seshia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Saraswat, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : Combinatorial sketch- ing for finite programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: ASPLOS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 404–415.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ACM (2006) 15 [110] Sotomayor, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Mello, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Braga, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Bifurcation analysis of the watt governor system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Compu- tational and Applied Mathematics 26 (Jul 2006) [111] Sun, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Jha, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Fan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Learning certified control using contraction metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CoRL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Proceedings of Machine Learning Research, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 155, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 1519–1539.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' PMLR (2020) [112] Tabuada, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Verification and Control of Hybrid Systems - A Symbolic Approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2009) [113] Tran, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Cai, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Manzanas Lopez, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Musau, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Johnson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Koutsoukos, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : Safety verification of cyber-physical systems with reinforcement learning control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Embed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 18(5s), 105:1–105:22 (2019) [114] Tran, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Yang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Manzanas Lopez, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Musau, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Nguyen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Xiang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Bak, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Johnson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : NNV: the neural network verification tool for deep neural networks and learning-enabled cyber-physical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: CAV (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Lecture Notes in Computer Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 12224, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 3–17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2020) [115] Van Der Schaft, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Schumacher, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': An introduction to hybrid dynamical systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 251.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Springer (2007) [116] Xiang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Tran, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Rosenfeld, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Johnson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' : Reachable set estimation and safety verification for piecewise linear systems with neural network controllers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: ACC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 1574– 1579.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' IEEE (2018) [117] Zhao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Zeng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Chen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Liu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Synthesizing barrier certificates using neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: HSCC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 25:1–25:11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' ACM (2020) [118] Zhao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Zeng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Chen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Liu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Woodcock, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Learning safe neural network controllers with barrier certificates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Formal Aspects Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 33(3), 437–455 (2021) [119] Zhou, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Quartz, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Sterck, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', Liu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=': Neural Lyapunov control of unknown nonlinear systems with stability guarantees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In: NeurIPS (2022) 16 Checklist 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' For all authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' [Yes] (b) Did you describe the limitations of your work?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' [Yes] Please see Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='2 (c) Did you discuss any potential negative societal impacts of your work?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' [Yes] See 1 (d) Have you read the ethics review guidelines and ensured that your paper conforms to them?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' [Yes] 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' If you are including theoretical results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (a) Did you state the full set of assumptions of all theoretical results?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' [Yes] See 2 (b) Did you include complete proofs of all theoretical results?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' [Yes] See 2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' If you ran experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (a) Did you include the code, data, and instructions needed to reproduce the main experi- mental results (either in the supplemental material or as a URL)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' [Yes] The code and data generation will be part of the supplementary material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Reproducing the results will be possible from this but is not the intention of the authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (b) Did you specify all the training details (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', data splits, hyperparameters, how they were chosen)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' [Yes] The hyper-parameters for the learning procedure are chosen heuristically, but we include the relevant configuration files in the supplementary material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (c) Did you report error bars (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', with respect to the random seed after running experi- ments multiple times)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' [N/A] (d) Did you include the total amount of compute and the type of resources used (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', type of GPUs, internal cluster, or cloud provider)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' [Yes] See Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' If you are using existing assets (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', code, data, models) or curating/releasing new assets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (a) If your work uses existing assets, did you cite the creators?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' [Yes] We have cited all used tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (b) Did you mention the license of the assets?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' [Yes] See Section 5 (c) Did you include any new assets either in the supplemental material or as a URL?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' [Yes] The code will be included in the supplementary material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (d) Did you discuss whether and how consent was obtained from people whose data you’re using/curating?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' [N/A] (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' [N/A] 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' If you used crowdsourcing or conducted research with human subjects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (a) Did you include the full text of instructions given to participants and screenshots, if applicable?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' [N/A] (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' [N/A] (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' [N/A] 17 A Benchmark Nonlinear Dynamical Models For each dynamical model, we report the vector field f : Rn → Rn and the spatial domain X over which the abstraction is performed and which, unless otherwise stated, is taken to be the hyper-rectangle [−1, 1]n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Water Tank � � � ˙x = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='5 − √x X0 = [0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='01] XB = {x|x ≥ 2} (13) Jet Engine [17] � � � � � � � ˙x = −y − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='5x2 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='5x3 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='1, ˙y = 3x − y, X0 = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='45, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='50] × [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='60, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='55] XB = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='35] × [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='5, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='6] (14) Steam Governor [110] � � � � � � � � � � � � � ˙x = y, ˙y = z2 sin(x) cos(x) − sin(x) − 3y, ˙z = −(cos(x) − 1), X0 = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='70, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='75] × [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='05, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='05] × [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='70, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='75] XB = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='5, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='6] × [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='4, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='3] × [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='7, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='8] (15) Exponential � � � � � � � ˙x = − sin(exp(y3 + 1)) − y2 ˙y = −x, X0 = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='45, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='5] × [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='86, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='91] XB = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='4] × [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='5, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='6] (16) Non-Lipschitz Vector Field 1 (NL1) � � � � � � � � � � � � � ˙x = y ˙y = √x X = [0, 1] × [−1, 1], X0 = [0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='05] × [0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='1] XB = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='35, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='45] × [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='2] (17) Non-Lipschitz Vector Field 2 (NL2) � � � � � � � ˙x = x2 + y ˙y = 3√ x2 − x, X0 = [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='025, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='025] × [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='9, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='85] XB = [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='05, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='05] × [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='8, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='7] (18) B Additional Experimental Results and Figures B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='1 Experimental Comparison Against Affine Simplical Meshes In this section, we present some supplementary empirical results on neural abstractions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Firstly, we note that hybridisation-based abstraction of nonlinear models have been studied previously, such as in [16], which describes a type of hybridisation-based abstractions that is similar to those constructed in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The approach relies first on partitioning the state space using a simplicial mesh grid, and 18 Table 2: A comparison between abstractions constructed using an affine simplicial mesh and neural abstractions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Here, W represents the neural structure used for neural abstraction, NP : total number of partitions, ϵ: the calculated upper bound on the approximation error, ¯ NP : average (mean) number of partitions, ¯ϵ: average (mean) approximation error bound, ϵ+ : the maximum approximation error, ϵ−: the minimum approximation error, Success Ratio: the ratio of repeated experiments that terminated successfully (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', an error of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='5 was reached within the first timeout of 300s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Note, we only include successful experiments when calculating the average, min and max (since no error exists for unsuccessful experiments).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' All reported errors use the 2-norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Benchmark Affine Simplicial Mesh Neural Abstractions Np ϵ W ¯ NP ¯ϵ ϵ+ ϵ− Success Ratio Jet Engine 8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='33 [10] 9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='040 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='0 32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='33 [10, 10] 27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='077 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='040 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='0 128 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='083 [15, 15] 61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='058 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='071 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='053 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='0 Steam 24 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='58 [10] 27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='37 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='21 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='0 192 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='89 [20] 236 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='15 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='0 Exponential 8 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='7 [10] 9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='5 32 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='44 [20] 30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='9 128 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='86 [20, 20] 75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='071 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='0 then allowing the dynamics in each mesh to be calculated from an affine interpolation between the vertices of the simplex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' This affine simplicial mesh (ASM) based approach constructs abstractions of the same expressivity as neural abstractions (first order approximations) with partitions defined by affine inequalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' An approximation-error bound for ASM can be calculated for systems which have bounded second order derivatives using the model dynamics and the size of each simplex (all simplices are assumed to be the same size), as described in [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In Table 2 we compare between abstractions constructed using an affine simplicial mesh and neural abstractions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We run our procedure to synthesise certified abstractions using selected network structures and an initial target error of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' If a successful abstraction is synthesised, we reduce the error by some multiplicative factor and repeat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' This iterative procedure continues until no success is reached within a time of 300s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We report the results from 10 repeated experiments over different initial random seeds for neural abstractions, reporting the average (mean), minimum and maximum results obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In contrast, we report the approximation-error bound for ASM for different numbers of partitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The results reported in Table 2 illustrate that neural abstractions outperform ASM based abstractions in terms of error for similar numbers of partitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Furthermore, neural abstractions generally require significantly fewer partitions for significantly lower approximation-error bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In practice this means neural abstractions will outperform ASM-based abstractions for safety verification both in terms of speed and accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We also note the success ratio of our experiments, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=', the ratio of all experiments which achieve an approximation-error bound of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='5 or less.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' These results suggest that in general or procedure is robust and terminates successfully with high probability for reasonable target errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We note that since ASM based abstractions are constructive and are able to deterministically increase the number partitions and consequently reduce the error, for very large numbers of partitions they would achieve lower errors than neural abstractions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' However, in practice these abstractions would be too large in complexity to use with SpaceEx for safety verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='2 Computation Run-time Profiling In Table 3 we show a breakdown of the runtimes of our procedure shown in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In particular, we present the total time spent during learning, certification of the abstraction and finally in safety verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 19 Table 3: Breakdown of the timings shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Shown are the timings in the constituent component shown in Figure 2: time spent during learning, time spent during certification of the neural abstraction, and time spent during safety verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Remaining time is spent in overheads, such as converting from neural network to hybrid automaton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Model Learner Certifier Safety Verification Jet Engine 19 194 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='8 Steam Governor 42 177 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='5 Exponential 27 278 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='3 Water-tank 48 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='05 Non-Lipschitz 1 13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='50 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='5 Non-Lipschitz 2 31 15 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='1 C Improved Translation from Neural Abstractions to Hybrid Automata C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='1 Computing Invariant Conditions Invariant conditions are computed from the configuration of a neural network denoted as the sequence C = (c1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' , ck) of Boolean vectors c1 ∈ {0, 1}h1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' , ck ∈ {0, 1}hk, where k denotes the number of hidden layers and h1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' , hk denote the number neurons in each of them (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Section 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Every vector ci represents the configuration of the neurons at the ith hidden later, and its jth element ci,j represents the activation status of the jth neuron at the ith layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Every mode of the hybrid automaton corresponds to exactly one configuration of neurons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' In turn, every configuration of neurons C restricts the neural network N into a linear function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' More precisely, we inductively define the linear restriction at the ith hidden layer as follows: N (i) C (x) = diag(ci)(WiN (i−1) C (x) + bi), for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' , k, N (0) C (x) = x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (19) We define the invariant of each mode as a restriction of the domain of interest to a region XC ⊆ X, which denotes the maximal set of states that enables configuration C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' To construct XC, we begin with the observation that the activation configuration ci at every ith hidden layer induces a halfspace on the vector space of the previous layer of the neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Then, the pre-image of this halfspace backward along the previous layers of the linear restriction of the network characterises a corresponding halfspace on its input neurons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Since the input neurons are equivalent to the state variables of the dynamical model, the halfspace induced by layer i projected onto state variables x is H(i) C = pre-image of {yi−1 | diag(2ci − 1)(Wiyi−1 + bi) ≥ 0} � �� � halfspace induced by ith layer onto (i − 1)th layer under N (i−1) C (20) The pre-image of a set Y under a function g is defined as {x | g(x) ∈ Y} and can be generally computed by quantifier elimination or, in the linear case, double description methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' However, these methods have worst-case exponential time complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' To obtain XC efficiently, we can leverage the fact that the pre-image of any halfspace {y | cTy ≤ d} under any affine function g(x) = Ax+b equals to the set {x | cTy ≤ d ∧ y = Ax + b}, which in turn defines the halfspace {x | cTAx ≤ d − cTb}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Therefore, since N (i−1) C is an affine function, every halfspace can be projected backward through the affine functions N (i−1) C , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' , N (1) C using O(k) linear algebra operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Finally, the entire invariant condition for configuration C is defined as the following polyhedron: XC = ∩{H(i) C | i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' , k} ∩ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (21) An invariant condition thus results in a polyhedron defined as the intersection of k halfspaces together with the constrains that define the domain of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Notably, under the definition in this appendix, the dynamics of mode C given in Equation 10 correspond to the affine dynamical model ˙x = N (k+1) C (x) + d, ∥d∥ ≤ ϵ, x ∈ XC, (22) whose dynamics are governed by the affine function N (k+1) C (x) = Wk+1N (k) C (x) + bk+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' (23) 20 N1 N2 X = ∅ N3 N3 End End End X = ∅ C = (1, 0, 1) C = (1, 1, 1) C = (1, 0, 0) X ← X ∩ h+ 1 , X ̸= ∅ X ← X ∩ h− 1 X ← X ∩ h+ 2 , X ̸= ∅ X ← X ∩ h+ 3 , X ̸= ∅ X ← X ∩ h− 3 X ← X ∩ h− 2 , X ̸= ∅ X ← X ∩ h+ 3 X ← X ∩ h− 3 Figure 4: Example Tree search to determine the active configurations for a neural network consisting of a single hidden layer with 3 neurons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Here, h+ i denotes the positive half-space ({x : wix+bi ≥ 0}) and h− i denotes the negative half-space ({x : wix + bi ≤ 0}) of the ith neuron;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' wi represents the ith row of the weight matrix corresponding to the hidden layer, and bi represents the ith element of the bias vector of the hidden layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Notably, when the set X becomes empty, it is no longer necessary to continue along that path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Once we reach the end of the tree, we have an active configuration C, and backtrack to the last node that was not fully explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='2 Enumerating Feasible Modes Determining whether a mode C exists in the hybrid automaton amounts to determining the linear program (LP) associated to polyhedron XC is feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Finding all modes therefore consists of solving 2H linear programs, where H = h1 + · · · + hk is the total number of neurons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' This scales exponentially in the number of neurons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Here, we elaborate on the tree search algorithm described in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content='2 using a diagram;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' the purpose of this algorithm is to efficiently determine all active neuron configurations within a bounded domain of interest X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' We consider an example tree in Figure 4, which depicts an example search for a neural network with a single hidden layer consisting of three neurons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' The tree illustrates the construction of XC through repeated intersections of half-spaces as paths are taken through the tree structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' Nodes represent each neuron, labelled Ni, i = 1, 2, 3 and each edge represents one of two possible half-spaces for the neuron it leaves from (ReLU enabled, solid line, and disabled, dashed line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' This approach allows us to prune neurons and overall solve significantly fewer linear programs than simply enumerating through all possible configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
+page_content=' 21' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/atFJT4oBgHgl3EQf8S2B/content/2301.11683v1.pdf'}
diff --git a/bdE3T4oBgHgl3EQfdgpw/content/tmp_files/2301.04535v1.pdf.txt b/bdE3T4oBgHgl3EQfdgpw/content/tmp_files/2301.04535v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..786ef82729ea1a162a88e6cc7ca3a0b1845fa1e2
--- /dev/null
+++ b/bdE3T4oBgHgl3EQfdgpw/content/tmp_files/2301.04535v1.pdf.txt
@@ -0,0 +1,1297 @@
+1
+Few-shot Learning for Cross-Target Stance
+Detection by Aggregating Multimodal Embeddings
+Parisa Jamadi Khiabani, Arkaitz Zubiaga
+Queen Mary University of London, UK
+{p.jamadikhiabani,a.zubiaga}@qmul.ac.uk
+Abstract—Despite the increasing popularity of the stance detec-
+tion task, existing approaches are predominantly limited to using
+the textual content of social media posts for the classification,
+overlooking the social nature of the task. The stance detection
+task becomes particularly challenging in cross-target classifi-
+cation scenarios, where even in few-shot training settings the
+model needs to predict the stance towards new targets for which
+the model has only seen few relevant samples during training.
+To address the cross-target stance detection in social media by
+leveraging the social nature of the task, we introduce CT-TN,
+a novel model that aggregates multimodal embeddings derived
+from both textual and network features of the data. We conduct
+experiments in a few-shot cross-target scenario on six different
+combinations of source-destination target pairs. By comparing
+CT-TN with state-of-the-art cross-target stance detection models,
+we demonstrate the effectiveness of our model by achieving
+average performance improvements ranging from 11% to 21%
+across different baseline models. Experiments with different
+numbers of shots show that CT-TN can outperform other models
+after seeing 300 instances of the destination target. Further,
+ablation experiments demonstrate the positive contribution of
+each of the components of CT-TN towards the final performance.
+We further analyse the network interactions between social media
+users, which reveal the potential of using social features for cross-
+target stance detection.
+Index Terms—stance detection, social media, multimodal, clas-
+sification.
+I. INTRODUCTION
+I
+N the information-driven world we now inhabit, a large
+amount of opinion texts can be found on the Web. The
+presence of this content is ever growing as social networking
+platforms become increasingly popular, which according to
+recent statistics are used by around 65% of American adults
+[1], attracting a great deal of public attention [2]. However,
+given the volume of content posted daily, monitoring the
+opinions expressed in social media platforms remains a time-
+consuming task which is not manageable without the support
+of automated means [3]. Hence, there is a need to develop
+novel methods for automated classification and processing of
+these texts to determine the stance expressed in texts with the
+aim of mining public opinion.
+Stance classification is concerned with identifying a per-
+son’s or a post’s standpoint towards a target [4], which is
+generally classified as one of in favor of (supporting) or against
+(opposing) the target in question [5], [6], [7], [4], [8]. Stance
+classification from social media data is however a challenging
+task [9], [10], given the diverse and informal nature of social
+media data. Despite recent progress in stance classification,
+there is still substantial room for improvement, particularly
+when it comes to enabling generalisability of classifiers to
+deal with new targets [11]. This is the case in cross-target
+stance classification; where a classifier has seen training data
+associated with particular targets but needs to predict the
+stance towards new targets, of which the model has seen
+no or few instances. An ability to deal with new targets is
+however important, given the evolving nature of the targets
+intended for the analysis. For example, an interest for mining
+stances towards US President Donald Trump can eventually
+shift towards Joe Biden as the new president takes office.
+Previous research in cross-target stance classification has
+introduced approaches that leverage the textual content of
+posts, generally by using transfer learning strategies [12], [10].
+Previous research has however been limited to the sole use of
+the textual content of posts to determine the stance, hence
+overlooking the potential of other features inherent to social
+media. Following the intuition of the theory of homophily,
+which suggests that like-minded users will tend to follow
+each other and like each other’s posts, we therefore propose
+further digging into network features for cross-target stance
+detection. Our objective here is both to demonstrate that
+network information can be uniquely valuable to enhance the
+cross-target stance detection task as well as to propose a novel
+methodology that effectively does so. We propose a novel
+method, CT-TN, which encapsulates text and network features
+through a proposed architecture that aggregates both feature
+types for improved stance classification. Our aim here, in line
+with much of the previous work, is to use a small number
+of instances from the destination target in the training phase
+through few-shot learning.
+To the best of our knowledge, CT-TN is the first multimodal
+architecture for cross-target stance classification which com-
+bines text and network features. By experimenting on six dif-
+ferent combinations of source and destination targets in a few-
+shot cross-target stance detection scenario, we demonstrate the
+effectiveness of CT-TN to consistently outperform two state-
+of-the-art cross-target stance detection models as well as a
+state-of-the-art pre-trained language model, RoBERTa.
+Contributions. Through our study, we make the following
+key contributions:
+• We propose CT-TN (Cross-Target Text-Net) model, a
+model that encapsulates multimodal embeddings by inte-
+grating state-of-the-art text and graph embedding strate-
+gies for the cross-target stance classification task.
+arXiv:2301.04535v1 [cs.CL] 11 Jan 2023
+
+2
+• We investigate the effectiveness of CT-TN in the few-shot
+cross-target stance detection task by using the P-Stance
+dataset, one of the largest stance datasets which enables
+experimenting with combinations of six different source
+and destination target pairs.
+• We perform ablation experiments to investigate the im-
+pact of the different components that form CT-TN, as-
+sessing whether and the extent to which each of them is
+contributing positively to improved performance of the
+model.
+• In addition to our initial experiments with 400 shots
+from the destination target used for training, we further
+investigate scenarios where fewer shots are available,
+investigating its impact on the CT-TN model, and as-
+sessing how many shots the model needs to perform
+competitively.
+We find that our model can consistently outperform state-
+of-the-art text-based cross-target stance detection models such
+as TGA-Net and CrossNet. Ablation experiments with CT-
+TN alternatives demonstrates the contribution of its different
+components. While we demonstrate the effectiveness of CT-
+TN, we also observe that it becomes less effective when we
+dramatically reduce the number of shots used during training,
+suggesting that the contribution of carefully integrated network
+features becomes useful after 300+ shots, but is less reliable
+when fewer shots (100 or 200) are available.
+Paper structure. The remainder of this paper is organised
+as follows: Section II discusses work related to ours looking
+at the challenges of cross-target stance detection as well as
+the use of multimodal embeddings for stance detection. We
+introduce our proposed method CT-TN in Section III, followed
+by the experiment settings which we describe in Section IV.
+We present our experiments results in Section V as well as we
+further discuss and delve into them in Section VI. We conclude
+the paper in Section VII.
+II. RELATED WORK
+We discuss related work in two main directions: research
+on cross-target stance detection and the use of multimodal
+embeddings in stance detection.
+A. Cross-target Stance Detection
+Despite a substantial body of research in stance detection
+in recent years [13], [5], [14], the more challenging task
+of cross-target stance detection has received less attention.
+One of the first approaches to cross-target stance detection
+is Bicond [15], which combined multiple layers of LSTM
+models in different settings encoding the texts from left to
+right and from right to left. [16] developed CrossNet, which
+added an Aspect Attention Layer to the Bicond model, which
+enabled discovering domain-specific aspects for cross-target
+stance inference, utilising self-attention to signal the core
+parts of a stance-bearing sentence. Their model consists of
+four main layers: Embedding Layer, Context Encoding Layer,
+Aspect Attention Layer, and Prediction Layer. Their model
+showed to outperform the Bicond model.
+A different type of approach focused on transferable topic
+modelling. This is the case of the VTN model [12]. This model
+uses shared latent topics between two targets as transferable
+knowledge in order to achieve model adaptation. The latent
+topics are determined by using Neural variational inference
+[17]. Another model by [10], called SEKT, proposed to
+leverage external knowledge to perform stance detection across
+targets. Still limited to processing textual content, they pro-
+posed to generate a semantic-emotion heterogeneous graph
+(SE-graph) which is fed to a GCN and a BiLSTM for the
+classification.
+One of the best-known models among those presented
+recently is Topic-Grouped Attention (TGA), introduced by
+[18], and is one of our key baseline models. The model
+consists of four main phases: (i) Contextual Conditional
+Encoding, i.e. using contextual emebddings like BERT to
+embed a document and topic together, (ii) Generalized Topic
+Representations (GTR), i.e. using Ward hierarchical clustering,
+(iii) Topic-Grouped Attention, i.e. using learned scaled dot-
+product attention (compute similarity scores), and (iv) Label
+Prediction, i.e. feed-forward neural network to compute the
+output probabilities. This model proved competitive in com-
+parison with a range of other baseline models, showing greater
+generalisability across different targets than other models.
+However, existing approaches are limited to processing
+the textual part of the posts only for the cross-target stance
+detection. Here, we further design this research by proposing
+the first model that leverages network features in addition to
+text, through our proposed model CT-TN. To the best of our
+knowledge, this is the first study that takes advantage of using
+network/social information along with text into the cross-
+target stance detection task. In our experiments, in addition
+to CT-TN, we also experiment with TGA-Net and CrossNet
+as competitive baseline models.
+B. Multimodal Embeddings and Stance Detection
+Text and Graph Embeddings. There has been a substantial
+body of research in recent years in developing embedding
+approaches that deal with either texts or graphs separately.
+When
+it
+comes
+to
+text-based
+embeddings,
+non-
+contextualised
+representations
+such
+as
+Word2vec
+[19]
+and GloVe [20] were soon followed by more sophisticated,
+contextualised
+representations
+such
+as
+ELMo
+[21]
+and
+OpenAI’s GPT [22]. The latter use unidirectional language
+models in order to learn general language representations,
+restricting the efficiency of the pre-trained models.
+Recently, researchers spend more time on applying transfer
+learning by fine-tuning large pre-trained language models for
+downstream NLP/NLU tasks, including a small number of
+examples which achieves distinguish performance improve-
+ment regarding these tasks. Despite the fact that pre-trained
+language models are used for this approach, they suffer from a
+main limitation which is needing huge corpora for pre-training
+plus the high computational cost of days needed for training
+[9].
+Transformer models [23], including the likes of BERT [24]
+have more recently become the state-of-the-art models for text
+
+3
+representation in text classification. Models under this category
+include BERT, RoBERTa [25], XLM [26] and XLM-R [27]. In
+our work, we make use of the RoBERTa model as a component
+of CT-TN, as well as a baseline model when used on its own.
+When it comes to graph embeddings, different approaches
+have been proposed which operate at the node, sub-graph or
+different levels of granularity. These types of model include
+DeepWalk [28], a method based on random walks. A more
+popular method for generating embeddings from graphs is
+Node2Vec [29], which consists of a flexible biased random
+walk procedure to explore networks, being one of the first
+Deep Learning attempts to learn from graph data. There are
+similarities between Deepwalk [28] and Node2Vec [29] in that
+they both maximise the probability of node co-occurrences in
+sampled random-walks approaches across the graph. However
+there is a difference based on how the random walks are
+sampled. The former uses unbiased random walks, whereas
+the latter biases the random walks using two random walk
+hyperparameters return parameter (p) and in-out parameter
+(q). The p parameter controls the likelihood of immediately
+revisiting a vertex; and the q parameter q is responsible to
+controlling the likelihood that the walk revisits a vertex’s one-
+hop neighbourhood. Deepwalk can in fact be viewed as a
+special case of node2vec where p=q=1.
+In our work, we use PecanPy [30] as the component to
+implement graph embeddings, which is an optimised imple-
+mentation of Node2Vec that makes it more efficient thanks
+to its paralellisation. We use PecanPy to extract embeddings
+from three different types of network information: followers,
+friends and likes.
+Multimodal Embeddings in Stance Detection. Combining
+textual embeddings with graph embeddings has been studied in
+previous research, however barely in the context of stance de-
+tection. This is the case of [31], who proposed an approach to
+enrich a BERT transformer by incorporating knowledge graph
+embeddings trained from Wikidata. Through experiments on a
+book classification task, they showed that their method could
+outperform other text-only baseline methods.
+Despite the inherently social nature of the stance detection
+task, the vast majority of the research has been limited to
+textual features and embeddings. The main exception to this
+is the work by [5], who demonstrated that social signals could
+also be helpful to predict the stance expressed by a user,
+suggesting that it could even be possible to predict the stance
+of a user who has not posted anything, solely based on their
+network. This work is however limited to in-target stance
+detection.
+To the best of our knowledge, no work has studied the
+multimodal aggregation of textual and graph embeddings for
+cross-target stance detection. Through the introduction of CT-
+TN, we aim to propose the first approach that effectively
+achieves this in the cross-target stance detection task.
+III. METHODOLOGY
+A. Problem Formulation
+We formulate the stance detection task as that in which
+each of the posts in a collection P = {p1, p2, ..., pn} has to
+be classified into one of the stances S = {favor, against},
+where each post pi expresses a stance towards a target t. We
+have a dataset where each post expresses a stance towards one
+of the targets in a collection T = {t1, t2, ..., tm}. The cross-
+target stance detection task consists in predicting the stance
+expressed in posts referring to target ti, where the training data
+is composed of posts referring to other targets excluding ti,
+hence requiring a transfer of knowledge from a set of targets to
+another. In the few-shot cross-target stance detection scenario,
+however, we experiment with a small number of instances
+referring to ti incorporated into the training data, to relax this
+cross-target scenario. In our particular case, we experiment
+with 400 instances (i.e. 400 shots) pertaining to ti incorporated
+into the training data in the few-shot scenario; in subsequent
+experiments, we test with smaller numbers of instances in the
+few-shot scenario, namely 100, 200 and 300.
+B. Proposed Method: CT-TN
+The CT-TN architecture consists of three main types of
+components: (i) text-based embedding generation and classifi-
+cation, (ii) three instances of network encoding components for
+graph-based embedding generation and classification, which
+are used for feeding followers, friends and likes, and (iii)
+output aggregation. The first two types of components are
+executed in parallel to produce isolated stance predictions,
+after which the final component aggregates the predictions for
+final output. Figure 1 demonstrates general architecture of our
+proposed model. In what follows we describe the specifics of
+these three components.
+Fig. 1. Architecture of the proposed model, CT-TN.
+Component #1: Text-based classification: Contextual
+Conditional Encoding. This component takes in the textual
+content of the input posts using bidirectional conditional en-
+coding (conditioning the document representation on the topic)
+layer followed by a feed-forward neural network. Previous
+works have shown the advantage of utilising contextual em-
+beddings [24]. We embed the user generated text through the
+RoBERTa language model [25] to embed a document and topic
+jointly (768 dimension vector). RoBERTa can take as input
+either one or two sentences, and uses the special token [SEP]
+
+Majority Voting
+Predicted Labels (FAVOR/AGAINST)
+Cassification
+Cassification
+Cassification
+Cassification
+Layer
+Layer
+Layer
+Layer
+FollowerGraph
+Like Graph
+Friend Graph
+TextEmbedding
+Embedding
+Embedding
+Embedding
+Follower
+Like
+Friend
+Tweet4
+to separate them. In order to input both the textual content
+and target information associated with the post, we feed the
+following to the model: “[CLS] + target + [SEP] + context”.
+This component produces an output with its own prediction for
+the stance of a particular post, as either supporting or opposing.
+Component #2: Graph-based classification: Network
+Encoding. The CT-TN model uses three different instances of
+the network encoding model for graph-based classification, for
+representing three types of inputs: followers, friends and likes.
+To generate embeddings using the Node2Vec architecture [29],
+we use the PecanPy implementation [30] which optimises its
+performance. The node embeddings calculated using PecanPy
+(128 dimension vector) can be used as feature vectors in
+a downstream task such as node classification. In our case,
+user IDs are considered as graph nodes and the relation-
+ships between users (friends/followers/likes) are provided as
+graph edges. Each of the three components implemented here
+through network encodings produce their own predictions on
+a particular post (supporting or opposing).
+Component #3: Output aggregation. The final component
+takes as input the predictions made by all the above compo-
+nents, i.e. the text-based and three network-based components.
+To aggregate the predictions of all these four components,
+the “output aggregation” component implements a voting
+ensemble (or a “majority voting“ strategy) which combines
+the different predictions, ultimately choose the class with a
+larger number of votes.
+C. Model Hyperparameters
+We use the RoBERTa base model (roberta-base-cased) as
+our pre-trained language model, due to its improved perfor-
+mance over similar transformer models such as BERT [32].
+It consists of 12 transformer layers, each of which adopts a
+hidden state size of 768 and 12 attention headers. Training for
+RoBERTa text embedding is performed with batch size b =
+128, dropout probability d = 0.2, learning rate= 3e-5 (AdamW
+optimiser) and 40 training epochs. While we trained graph
+embedding models as follow: batch size b = 128, dropout
+probability d = 0.2, learning rate= 1e-2 (SGD optimiser) and
+100 training epochs. For model training, we use multi-class
+cross-entropy loss.
+While previous research has addressed the stance detection
+task in both 3-class [33], [34] and 2-class [35], [36] settings,
+our focus here is on the latter, while the extension of our
+proposed model to 3-class is beyond the scope of this paper.
+IV. EXPERIMENTS
+Next, we provide the details of the dataset we use in
+our research, as well as the baseline methods we compare
+our method against, followed by experiment settings and
+evaluation metrics used in our work.
+A. Dataset
+We chose to use the P-Stance dataset [11], given that it
+is an order of magnitude larger than other publicly available
+datasets and because it provides more than one target, as
+required for our research in cross-target stance detection. The
+P-Stance dataset is originally composed of tweets pertaining
+to three different political figures as targets: “Donald Trump,”
+“Joe Biden,” and “Bernie Sanders.” A sample of the P-Stance
+dataset is provided as Table I.
+The original P-Stance dataset, as published by the authors,
+only contains the tweet texts associated with their stance
+labels. This original dataset lacked the network information
+that we needed. Upon request, the authors kindly shared 9,307
+tweet IDs, which we use to reconstruct and expand the dataset.
+This includes retrieving full tweet metadata, from which we
+can extract the user IDs, which would then allow us to retrieve
+the user network.
+Given the focus of our research in 2-class classification
+(i.e. favor or against), we retrieve metadata for the tweets
+associated with these categories. This led to 4,212 tweets with
+available metadata. The resulting dataset has a distribution
+of labels as shown in Table II, and a distribution in the
+number of tweets per target as shown in Figure 2. While the
+number of tweets across targets is very similar, we observe
+some differences in the number of favor and against tweets,
+with Donald Trump having the largest ratio of against tweets,
+and Bernie Sanders having the largest ratio of favor tweets.
+For these available tweets, we further complement the data
+retrieval as described below.
+Fig. 2. Distribution of targets in the P-Stance dataset.
+Having the collection of tweet IDs, tweet metadata and
+user IDs, we proceeded with the retrieval of additional data
+including networks of the users (followers and friends) and
+likes (tweets they liked from other users). We detail each of
+these additional data collection steps next:
+• Retrieval of followers: Followers include the set of users
+who follow a particular user. For the user IDs in the
+dataset, we retrieve the complete list of followers for each
+user. This leads to a list of user IDs followed by each user,
+which allows us to build a network of followers.
+• Retrieval of friends: Friends constitute the set of users
+followed by a user. Similar to the list of followers, this
+provides a list of user IDs per user, with which we can
+build a network.
+• Retrieval of likes: For each user, we retrieve the tweets
+they liked from others. Given that we are interested
+in building networks of users, we obtain the user IDs
+pertaining to the tweets liked by the users. This again
+allows us to build a network, very similar to the friend /
+
+1600
+1400
+1200
+1000
+count
+800
+600
+400
+200
+0
+DonaldTrump
+JoeBiden
+BernieSanders
+Target5
+TABLE I
+A SAMPLE OF THE P-STANCE DATASET.
+Tweet
+Target
+Stance
+How Joe Biden would make community college free and fix student loans via
+@politico
+Joe Biden
+FAVOR
+Glad our GREAT President called out the so called whistleblower. If there is a Senate
+trail, they may call the whistleblower to testify. BTW Trump is not impeached until
+crazy Nancy send the articles over to the Senate. Trump will not be convicted. Vote
+Trump 2020
+Donald Trump
+FAVOR
+#Bernie Sanders says he’s ’one of the poorer members of the #UnitedStatesSenate’
+#BetOil is A Multimillionaire,#Warren has A 5 Million dollar Home,#Hillary HAS
+several Mansions plus A Super Millionaire! Whats Your Point?
+Bernie Sanders
+AGAINST
+TABLE II
+THE STATISTICS OF THE RESULTING DATASET.
+Target
+Favor
+Against
+Avg. length
+Donald Trump
+519
+947
+34.7
+Joe Biden
+702
+716
+33.7
+Bernie Sanders
+776
+553
+31.5
+follower networks above, in this case based on the user
+IDs whose tweets have been liked by each user.
+Hence, for each user, we have four features: (i) the textual
+content of their tweet, (ii) the network of followers, (iii) the
+network of friends, and (iv) the network of likes. Each of these
+is associated with a favor or against label, which we aim to
+predict.
+After aggregating all these four features, we end up with
+a dataset of 4,144 tweets (posted by 3,871 distinct users) for
+which we have all features available.
+B. Baseline Methods
+We evaluate and compare our model with several strong
+baselines, including two of the main state-of-the-art cross-
+target stance detection models as well as the widely-used
+Transformer model RoBERTa:
+• CrossNet [16]: This model is a variant of BiCond, which
+leverages a self-attention layer to capture important words
+in the input text.
+• TGA-NET [18]: A new model has been proposed for
+(few-shot) cross-target stance detection that implicitly
+captures relationships between topics using generalized
+topic representations.
+• RoBERTa [25]: The method fine-tunes a pre-trained
+BERT model to perform cross-target detection. Specif-
+ically, we convert the given context and target to “[CLS]
++ target + [SEP] + context” structure for source and target
+domain, respectively.
+Note that all of the above baselines make use of the textual
+content of the posts, as opposed to our proposed CT-TN also
+incorporating network information.
+C. Experiment Settings
+Experiments for the proposed few-shot cross-target ap-
+proach are conducted in 100-shot, 200-shot, 300-shot, and 400-
+shot settings (e.g. injecting N samples of destination target
+into (source-target based) train data and then predicting the
+stance on the test data consist of only destination target) with
+5 different random seeds: 24, 524, 1024, 1524, and 2024. Then
+we average the 5 seeds’ results per shot.
+D. Evaluation Metrics
+In line with previous research in stance detection [15], [16],
+[18], we also adopt the macro-averaged F1 score (MacFavg)
+as the main metric to evaluate the performance in our ex-
+periments. In our case with binary classification involving
+the support and oppose classes, the resulting metric is the
+arithmetic mean of the F1 scores for each class, as follows:
+MacFavg = F1support + F1oppose
+2
+(1)
+where each of F1support and F1oppose is defined as follows:
+F1c = 2 ∗ precisionc ∗ recallc
+precisionc + recallc
+(2)
+V. RESULTS
+We next present results of our proposed CT-TN model.
+We first discuss results of the model compared to a set
+of competitive baselines. We then delve into the results by
+analysing the performance of ablated versions of the model,
+and by looking at the impact of the number of shots used for
+training.
+A. CT-TN vs Baselines
+Table III shows the results of CT-TN for the six com-
+binations of source-destination targets under consideration,
+compared with the baseline models RoBERTa, CrossNet and
+TGA-Net. In addition to the results for each of the target pairs,
+we also show the average performance of each model across
+all pairs.
+We observe that CT-TN consistently outperforms both cross-
+target stance detection models, CrossNet and TGA-Net, when
+we look at each target pair independently as well as at
+
+6
+TABLE III
+MACRO-AVERAGED F1 SCORES FOR CT-TN VS BASELINE MODELS.
+Source
+Trump
+Sanders
+Sanders
+Biden
+Trump
+Biden
+Average
+Test
+Sanders
+Trump
+Biden
+Sanders
+Biden
+Trump
+RoBERTa
+0.53
+0.59
+0.78
+0.66
+0.77
+0.62
+0.66
+CrossNet
+0.46
+0.51
+0.69
+0.58
+0.6
+0.54
+0.56
+TGA-Net
+0.57
+0.6
+0.69
+0.6
+0.69
+0.59
+0.62
+CT-TN
+0.72
+0.8
+0.78
+0.73
+0.77
+0.82
+0.77
+TABLE IV
+MACRO-AVERAGED F1 SCORES FOR THE FAVOR AND AGAINST CLASSES WITH CT-TN VS BASELINE MODELS.
+Source
+Trump
+Sanders
+Sanders
+Biden
+Trump
+Biden
+Average
+Test
+Sanders
+Trump
+Biden
+Sanders
+Biden
+Trump
+‘Favor’ class
+RoBERTa
+0.64
+0.5
+0.78
+0.72
+0.72
+0.47
+0.64
+CrossNet
+0.4
+0.47
+0.68
+0.54
+0.6
+0.49
+0.53
+TGA-Net
+0.55
+0.56
+0.7
+0.67
+0.65
+0.47
+0.6
+CT-TN
+0.69
+0.78
+0.79
+0.74
+0.75
+0.78
+0.76
+‘Against’ class
+RoBERTa
+0.44
+0.68
+0.77
+0.59
+0.8
+0.75
+0.67
+CrossNet
+0.5
+0.55
+0.7
+0.61
+0.63
+0.6
+0.6
+TGA-Net
+0.59
+0.61
+0.65
+0.54
+0.73
+0.7
+0.64
+CT-TN
+0.76
+0.81
+0.76
+0.75
+0.8
+0.84
+0.79
+the overall average absolute improvements of 0.21 and 0.15,
+respectively.
+CT-TN also performs remarkably better for than RoBERTa
+for a number of target pairs, not least Trump-Sanders, Sanders-
+Trump and Biden-Trump, with absolute improvements of
+19%, 21% and 20% respectively. This improvement is more
+modest for Biden-Sanders (7%), with similar performances
+for the Sanders-Biden and Trump-Biden (0%) target-pairs. On
+average, CT-TN still outperforms RoBERTa by 0.11, showing
+that it is more consistent across targets and overall more
+reliable. We believe that the strongest improvements of CT-TN
+with respect to the baselines come particularly for targets with
+significantly different ideology (i.e. those combining Trump
+and Sanders, and Trump and Biden); this suggests that for
+more distant targets, textual models may be more limited in
+capturing these substantial linguistic differences, whereas a
+network-based model generalises better in these situations.
+We next delve into the performance scores of the models
+broken down by category: favor and against. Table IV shows
+the results for the favor and against categories. We see that the
+improvement of the CT-TN model with respect to the baselines
+is consistent across both classes, hence showing that CT-TN
+provides a positive boost that impacts both classes positively.
+The extent of the improvement across classes is also consistent
+with the overall results shown above, as we see that the set of
+target pairs where CT-TN achieves the highest improvement
+matches those with the highest improvement in the overall
+results, i.e. Trump-Sanders, Sanders-Trump and Biden-Trump.
+Overall, CT-TN achieves improvements of 12% in both the
+favor and against class over the second best model, RoBERTa.
+B. Ablated versions of CT-TN
+To evaluate the effectiveness of each of the text and network
+components of CT-TN, we perform a set of ablation of
+experiments with different sets of these components removed.
+Table V shows the performance scores of the full CT-TN
+model compared with ablated versions of the model.
+We can see that the full CT-TN model achieves top perfor-
+mance in five of the six source-destination target pairs, with the
+exception of the Sanders-Trump pair where the use of likes
+only outperforms the full model. For the rest of the target
+pairs, the full CT-TN either outperforms all ablated models or
+achieves the same performance as one of the ablated models.
+Interestingly, however, even if some of the ablated models
+perform at the same level as the full model on some occasions,
+there is no consistency on the best ablated model across target
+pairs. Given the uncertainty on the selection of the best ablated
+model in each case, it is more reliable to use the full CT-
+TN model instead, which is more consistent across all target
+pairs. Indeed, this consistency is also demonstrated in the
+highest average performance across targets, with an average
+0.77 overall. Among the ablated models, those using the
+likes feature show competitive performance, with the model
+using only likes and the model combining likes, friends and
+followers both achieving second-best performance with an
+average of 0.76. This in turn suggests that, among the network
+features, the likes are the most useful ones.
+C. Reducing the number of shots
+Experiments so far have relied on the use of 400 shots
+associated with the destination target, showing competitive
+
+7
+TABLE V
+MACRO-AVERAGED F1 ON FULL CT-TN VS ABLATED VERSIONS OF CT-TN.
+LI: LIKE, FR: FRIENDS, FL: FOLLOWERS, RB: ROBERTA.
+Source
+Trump
+Sanders
+Sanders
+Biden
+Trump
+Biden
+Average
+Test
+Sanders
+Trump
+Biden
+Sanders
+Biden
+Trump
+Li
+Fr
+Fl
+Rb
+x
+0.64
+0.5
+0.78
+0.72
+0.72
+0.47
+0.64
+x
+0.71
+0.83
+0.74
+0.73
+0.74
+0.82
+0.76
+x
+0.7
+0.79
+0.75
+0.71
+0.75
+0.81
+0.75
+x
+0.69
+0.8
+0.74
+0.7
+0.74
+0.8
+0.75
+x
+x
+0.63
+0.79
+0.77
+0.7
+0.76
+0.74
+0.73
+x
+x
+0.63
+0.71
+0.76
+0.69
+0.77
+0.73
+0.72
+x
+x
+0.63
+0.73
+0.78
+0.69
+0.76
+0.71
+0.72
+x
+x
+x
+0.71
+0.81
+0.75
+0.72
+0.75
+0.82
+0.76
+x
+x
+x
+x
+0.72
+0.8
+0.78
+0.73
+0.77
+0.82
+0.77
+TABLE VI
+MACRO-AVERAGED F1 SCORES ON MODELS USING DIFFERENT NUMBERS OF TRAINING SHOTS (100-400) FROM THE DESTINATION TARGET.
+Trump → Sanders
+Sanders → Trump
+#100
+#200
+#300
+#400
+#100
+#200
+#300
+#400
+RoBERTa
+0.24
+0.28
+0.49
+0.53
+0.31
+0.35
+0.54
+0.59
+CrossNet
+0.41
+0.46
+0.48
+0.46
+0.49
+0.45
+0.5
+0.51
+TGA-Net
+0.4
+0.47
+0.55
+0.57
+0.43
+0.48
+0.58
+0.6
+CT-TN
+0.44
+0.4
+0.68
+0.72
+0.3
+0.33
+0.78
+0.8
+Sanders → Biden
+Biden → Sanders
+#100
+#200
+#300
+#400
+#100
+#200
+#300
+#400
+RoBERTa
+0.76
+0.77
+0.76
+0.78
+0.5
+0.47
+0.58
+0.66
+CrossNet
+0.62
+0.61
+0.68
+0.69
+0.57
+0.56
+0.58
+0.58
+TGA-Net
+0.61
+0.65
+0.69
+0.69
+0.57
+0.56
+0.59
+0.6
+CT-TN
+0.59
+0.73
+0.77
+0.78
+0.38
+0.41
+0.73
+0.73
+Trump → Biden
+Biden → Trump
+#100
+#200
+#300
+#400
+#100
+#200
+#300
+#400
+RoBERTa
+0.75
+0.76
+0.78
+0.77
+0.5
+0.5
+0.61
+0.62
+CrossNet
+0.6
+0.58
+0.62
+0.6
+0.52
+0.56
+0.57
+0.54
+TGA-Net
+0.67
+0.68
+0.69
+0.69
+0.49
+0.5
+0.56
+0.59
+CT-TN
+0.74
+0.76
+0.77
+0.77
+0.38
+0.43
+0.8
+0.82
+performance. We are further interested in investigating how
+CT-TN performs with fewer shots, as well as to assess the
+number of shots the model needs to outperforms other baseline
+models.
+Table VI shows the results for varying numbers of shots,
+ranging from 100 to 400. These results show a clear trend
+where the CT-TN model becomes remarkably effective with
+300 shots used for training, after which it starts to outperform
+baseline models, generally by a margin. Conversely, results
+also show that using 200 or fewer shots is insufficient for CT-
+TN, where baseline models CrossNet and TGA-Net can per-
+form better. Hence, CT-TN becomes especially reliable as the
+number of shots increases; however, performance scores are
+substantially lower for all models when the number of shots is
+200 or fewer, hence suggesting that it is worth labelling some
+more instances up to 300 to achieve a substantial performance
+gain.
+Figure 3 shows the performance of the full CT-TN model,
+ablated models as well as baseline models with different
+numbers of shots used for training. In addition to the re-
+sults presented in Table VI, this figure enables additional
+visual comparison by also incorporating ablated models. These
+results reaffirm our previous observations, showing that it
+is especially after 300 shots that CT-TN and its ablated
+models become effective. All CT-TN based models achieve a
+remarkable gain of performance from 200 to 300 shots, which
+becomes less pronounced when shots are increased from 300
+to 400.
+VI. DISCUSSION
+Through our experiments, CT-TN has proven to be a
+very competitive model achieving state-of-the-art performance
+when it is given a moderate number of training data associated
+with the destination target. In our case, we have seen that the
+
+8
+TABLE VII
+SAMPLES WITH CORRECT PREDICTION ONLY BY CC-TN, WHERE BASELINE MODELS MISPREDICTED. EXAMPLES EXTRACTED FROM EXPERIMENTS FOR
+THE BIDEN-TRUMP TARGET PAIR.
+Tweet
+Real label
+CC-TN
+RoBERTa
+CrossNet
+TGA-NET
+Guess we will have to wait forever!! Were working with
+heartless #CLOWNS her!! #TRUMP #Trump
+FAVOR
+FAVOR
+AGAINST
+AGAINST
+AGAINST
+What was Nancy Pelosi doing when realDonaldTrump
+was putting the #Coronavirus task force together? Hand-
+ing out impeachment pens. Voting #Trump and red down
+the entire ticket!
+FAVOR
+FAVOR
+AGAINST
+AGAINST
+AGAINST
+People talk about the #GOP being the party of Lincoln
+and Reagan, well add realDonaldTrump to it because he
+is a game changing #POTUS with policy like this!
+FAVOR
+FAVOR
+AGAINST
+AGAINST
+AGAINST
+Fig. 3. The overall performance of 11 few-shot cross-target tasks.
+model can outperform all other baselines with 300 instances
+pertaining to the destination target. We are however interested
+in further delving into the performance of CT-TN, which we
+do next by looking at some of its correct predictions as well as
+further investigating the structure of the network data it uses.
+To better understand the benefits of CT-TN, we delve into
+some of the examples where CT-TN made a correct prediction
+and the baseline models made a wrong prediction. We show
+some of these CT-TN’s correct predictions in Table VII. We
+observe that these are indeed difficult to predict solely from
+text for an automated model, not least because there are no
+explicitly positive keywords, often requiring more complex
+understanding of the text which is not trivial. In situations
+like these, information derived from the network through CT-
+TN can be particularly valuable to correct these otherwise
+challenging predictions.
+Looking at the network data, Figure 4 shows a visualisation
+of the aggregate of follower, friend and like connections of
+supporters of each of the political candidates in the dataset, i.e.
+Bernie Sanders (blue), Joe Biden (green) and Donald Trump
+(red). Interestingly, we can observe three clear clusters of
+supporters of each candidate, with strong connections within
+Fig. 4.
+Network visualisation of followers, friends and likes for users
+expressing supporting stance towards Bernie Sanders (purple), Joe Biden
+(green) and Donald Trump (red).
+clusters and fewer connections across clusters. Further, we can
+also observe that clusters associated with the two candidates
+of the Democrats, namely Joe Biden and Bernie Sanders, are
+closer and more strongly connected to each other than any of
+them is with Republican candidate Donald Trump’s cluster.
+Through our experiments with CT-TN, we demonstrate that,
+while network information alone would not suffice to achieve
+top performance on stance detection, it is a valuable feature
+when used in combination with text, indeed outperforming any
+ablated models that solely use text or network data.
+VII. CONCLUSION
+To tackle the challenging task cross-target stance detection
+from social media posts, we have introduced a novel model,
+CT-TN, which aggregates multimodal text and network em-
+beddings into a model. With a set of experiments across six
+
+Comparison of few-shot performance (F1-macro
+on P-stance dataset
+0.8
+RoBERTa
+0.75
+Like
+0.7
+Friend
+Follower
+0.65
+Like+RoBERTa
+0.6
+Friend+RoBERTa
+0.55
+Follower+RoBERTa
+Like+Friend+Follower
+0.5
+AII (CT-TN)
+0.45
+CrossNet
+0.4
+.TGA-Net
+100
+200
+300
+400BernieSanders
+JoeBiden
+DonaldTrump9
+different source-destination target pairs, we demonstrate the
+overall effectiveness of CT-TN, outperforming state-of-the-art
+models such as CrossNet and TGA-Net. While all models
+struggle with small numbers of shots used for training, CT-
+TN achieves a noticeable performance gain after 300 shots
+associated with the destination target are incorporated into the
+training data. In addition to showing the effectiveness of the
+novel CT-TN model, we also demonstrate the importance of
+considering network features for cross-target stance detection,
+among which the ‘likes’ feature leads to highest performance
+gains.
+Our work in turn opens a set of avenues for future re-
+search. While we demonstrate that we can achieve competitive
+performance with 300+ shots, future work could look into
+further improving models that perform competitively when
+fewer shots available, which is particularly important where
+there are limited resources for labelling new data. Our research
+demonstrates the effectiveness of CT-TN for 2-class stance
+detection, while future research could further look into ex-
+tending it to 3-class stance detection. While datasets enabling
+cross-target stance detection are very limited to date, not least
+datasets for which network data can be gathered, we hope
+to see more suitable datasets in the future, which would also
+enable further experiments using a bigger set of target pairs.
+ACKNOWLEDGMENTS
+Parisa Jamadi Khiabani is funded by the Islamic Devel-
+opment Bank (IsDB). We thank the authors of the P-stance
+dataset for kindly providing us with the tweet IDs which
+enables us to complement the dataset.
+REFERENCES
+[1] A. Perrin, “Social media usage,” Pew research center, vol. 125, pp. 52–
+68, 2015.
+[2] L. Tian, X. Zhang, Y. Wang, and H. Liu, “Early detection of rumours
+on twitter via stance transfer learning,” in European Conference on
+Information Retrieval.
+Springer, 2020, pp. 575–588.
+[3] B. Liu, “Sentiment analysis and opinion mining,” Synthesis lectures on
+human language technologies, vol. 5, no. 1, pp. 1–167, 2012.
+[4] D. Biber and E. Finegan, “Adverbial stance types in english,” Discourse
+processes, vol. 11, no. 1, pp. 1–34, 1988.
+[5] A. AlDayel and W. Magdy, “Stance detection on social media: State
+of the art and trends,” Information Processing & Management, vol. 58,
+no. 4, p. 102597, 2021.
+[6] P. Jamadi Khiabani, M. E. Basiri, and H. Rastegari, “An improved
+evidence-based aggregation method for sentiment analysis,” Journal of
+Information Science, vol. 46, no. 3, pp. 340–360, 2020.
+[7] B. Liu et al., “Sentiment analysis and subjectivity.” Handbook of natural
+language processing, vol. 2, no. 2010, pp. 627–666, 2010.
+[8] S. Mohammad, S. Kiritchenko, P. Sobhani, X. Zhu, and C. Cherry,
+“Semeval-2016 task 6: Detecting stance in tweets,” in Proceedings of the
+10th international workshop on semantic evaluation (SemEval-2016),
+2016, pp. 31–41.
+[9] W. Antoun, F. Baly, and H. Hajj, “Arabert: Transformer-based model
+for arabic language understanding,” arXiv preprint arXiv:2003.00104,
+2020.
+[10] B. Zhang, M. Yang, X. Li, Y. Ye, X. Xu, and K. Dai, “Enhancing cross-
+target stance detection with transferable semantic-emotion knowledge,”
+in Proceedings of the 58th Annual Meeting of the Association for
+Computational Linguistics, 2020, pp. 3188–3197.
+[11] Y. Li, T. Sosea, A. Sawant, A. J. Nair, D. Inkpen, and C. Caragea,
+“P-stance: A large dataset for stance detection in political domain,” in
+Findings of the Association for Computational Linguistics: ACL-IJCNLP
+2021, 2021, pp. 2355–2365.
+[12] P. Wei and W. Mao, “Modeling transferable topics for cross-target
+stance detection,” in Proceedings of the 42nd International ACM SIGIR
+Conference on Research and Development in Information Retrieval,
+2019, pp. 1173–1176.
+[13] D. K¨uc¸¨uk and F. Can, “Stance detection: A survey,” ACM Computing
+Surveys (CSUR), vol. 53, no. 1, pp. 1–37, 2020.
+[14] R. Cao, X. Luo, Y. Xi, and Y. Qiao, “Stance detection for online public
+opinion awareness: An overview,” International Journal of Intelligent
+Systems, 2022.
+[15] I. Augenstein, T. Rockt¨aschel, A. Vlachos, and K. Bontcheva, “Stance
+detection with bidirectional conditional encoding,” arXiv preprint
+arXiv:1606.05464, 2016.
+[16] C. Xu, C. Paris, S. Nepal, and R. Sparks, “Cross-target stance classifi-
+cation with self-attention networks,” in Proceedings of the 56th Annual
+Meeting of the Association for Computational Linguistics (Volume 2:
+Short Papers), 2018, pp. 778–783.
+[17] Y. Miao, L. Yu, and P. Blunsom, “Neural variational inference for text
+processing,” in International conference on machine learning.
+PMLR,
+2016, pp. 1727–1736.
+[18] E. Allaway and K. Mckeown, “Zero-shot stance detection: A dataset
+and model using generalized topic representations,” in Proceedings of the
+2020 Conference on Empirical Methods in Natural Language Processing
+(EMNLP), 2020, pp. 8913–8931.
+[19] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
+word representations in vector space,” arXiv preprint arXiv:1301.3781,
+2013.
+[20] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
+for word representation,” in Proceedings of the 2014 conference on
+empirical methods in natural language processing (EMNLP), 2014, pp.
+1532–1543.
+[21] E. Peters Matthew, N. Mark, I. Mohit, G. Matt, C. Christopher, and
+L. Kenton, “Deep contextualized word representations.(2018),” 1802.
+[22] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving
+language understanding by generative pre-training,” 2018.
+[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
+Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
+neural information processing systems, vol. 30, 2017.
+[24] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
+of deep bidirectional transformers for language understanding,” arXiv
+preprint arXiv:1810.04805, 2018.
+[25] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
+L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
+pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.
+[26] G. Lample and A. Conneau, “Cross-lingual language model pretraining,”
+arXiv preprint arXiv:1901.07291, 2019.
+[27] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek,
+F. Guzm´an, E. Grave, M. Ott, L. Zettlemoyer, and V. Stoyanov, “Unsu-
+pervised cross-lingual representation learning at scale,” arXiv preprint
+arXiv:1911.02116, 2019.
+[28] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
+of social representations,” in Proceedings of the 20th ACM SIGKDD
+international conference on Knowledge discovery and data mining,
+2014, pp. 701–710.
+[29] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
+networks,” in Proceedings of the 22nd ACM SIGKDD international
+conference on Knowledge discovery and data mining, 2016, pp. 855–
+864.
+[30] R. Liu and A. Krishnan, “Pecanpy: a fast, efficient and parallelized
+python implementation of node2vec,” Bioinformatics, vol. 37, no. 19,
+pp. 3377–3379, 2021.
+[31] M. Ostendorff, P. Bourgonje, M. Berger, J. Moreno-Schneider, G. Rehm,
+and B. Gipp, “Enriching bert with knowledge graph embeddings for
+document classification,” arXiv preprint arXiv:1909.08402, 2019.
+[32] A. F. Adoma, N.-M. Henry, and W. Chen, “Comparative analyses of
+bert, roberta, distilbert, and xlnet for text-based emotion recognition,” in
+2020 17th International Computer Conference on Wavelet Active Media
+Technology and Information Processing (ICCWAMTIP).
+IEEE, 2020,
+pp. 117–121.
+[33] R. Xu, Y. Zhou, D. Wu, L. Gui, J. Du, and Y. Xue, “Overview of
+nlpcc shared task 4: Stance detection in chinese microblogs,” in Natural
+language understanding and intelligent applications.
+Springer, 2016,
+pp. 907–916.
+[34] S. Mohammad, S. Kiritchenko, P. Sobhani, X. Zhu, and C. Cherry,
+“A dataset for detecting stance in tweets,” in Proceedings of the
+Tenth International Conference on Language Resources and Evaluation
+(LREC’16), 2016, pp. 3945–3952.
+
+10
+[35] A. Murakami and R. Raymond, “Support or oppose? classifying posi-
+tions in online debates from reply activities and opinion expressions,”
+in Coling 2010: Posters, 2010, pp. 869–875.
+[36] R. Abbott, B. Ecker, P. Anand, and M. Walker, “Internet argument corpus
+2.0: An sql schema for dialogic social media and the corpora to go with
+it,” in Proceedings of the Tenth International Conference on Language
+Resources and Evaluation (LREC’16), 2016, pp. 4445–4452.
+
diff --git a/bdE3T4oBgHgl3EQfdgpw/content/tmp_files/load_file.txt b/bdE3T4oBgHgl3EQfdgpw/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..40b962795ceb7e829b3aaa4f80834243e11be1ff
--- /dev/null
+++ b/bdE3T4oBgHgl3EQfdgpw/content/tmp_files/load_file.txt
@@ -0,0 +1,800 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf,len=799
+page_content='1 Few-shot Learning for Cross-Target Stance Detection by Aggregating Multimodal Embeddings Parisa Jamadi Khiabani, Arkaitz Zubiaga Queen Mary University of London, UK {p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='jamadikhiabani,a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='zubiaga}@qmul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='uk Abstract—Despite the increasing popularity of the stance detec- tion task, existing approaches are predominantly limited to using the textual content of social media posts for the classification, overlooking the social nature of the task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' The stance detection task becomes particularly challenging in cross-target classifi- cation scenarios, where even in few-shot training settings the model needs to predict the stance towards new targets for which the model has only seen few relevant samples during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' To address the cross-target stance detection in social media by leveraging the social nature of the task, we introduce CT-TN, a novel model that aggregates multimodal embeddings derived from both textual and network features of the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We conduct experiments in a few-shot cross-target scenario on six different combinations of source-destination target pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' By comparing CT-TN with state-of-the-art cross-target stance detection models, we demonstrate the effectiveness of our model by achieving average performance improvements ranging from 11% to 21% across different baseline models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Experiments with different numbers of shots show that CT-TN can outperform other models after seeing 300 instances of the destination target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Further, ablation experiments demonstrate the positive contribution of each of the components of CT-TN towards the final performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We further analyse the network interactions between social media users, which reveal the potential of using social features for cross- target stance detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Index Terms—stance detection, social media, multimodal, clas- sification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' INTRODUCTION I N the information-driven world we now inhabit, a large amount of opinion texts can be found on the Web.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' The presence of this content is ever growing as social networking platforms become increasingly popular, which according to recent statistics are used by around 65% of American adults [1], attracting a great deal of public attention [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' However, given the volume of content posted daily, monitoring the opinions expressed in social media platforms remains a time- consuming task which is not manageable without the support of automated means [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Hence, there is a need to develop novel methods for automated classification and processing of these texts to determine the stance expressed in texts with the aim of mining public opinion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Stance classification is concerned with identifying a per- son’s or a post’s standpoint towards a target [4], which is generally classified as one of in favor of (supporting) or against (opposing) the target in question [5], [6], [7], [4], [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Stance classification from social media data is however a challenging task [9], [10], given the diverse and informal nature of social media data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Despite recent progress in stance classification, there is still substantial room for improvement, particularly when it comes to enabling generalisability of classifiers to deal with new targets [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' This is the case in cross-target stance classification;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' where a classifier has seen training data associated with particular targets but needs to predict the stance towards new targets, of which the model has seen no or few instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' An ability to deal with new targets is however important, given the evolving nature of the targets intended for the analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' For example, an interest for mining stances towards US President Donald Trump can eventually shift towards Joe Biden as the new president takes office.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Previous research in cross-target stance classification has introduced approaches that leverage the textual content of posts, generally by using transfer learning strategies [12], [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Previous research has however been limited to the sole use of the textual content of posts to determine the stance, hence overlooking the potential of other features inherent to social media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Following the intuition of the theory of homophily, which suggests that like-minded users will tend to follow each other and like each other’s posts, we therefore propose further digging into network features for cross-target stance detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Our objective here is both to demonstrate that network information can be uniquely valuable to enhance the cross-target stance detection task as well as to propose a novel methodology that effectively does so.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We propose a novel method, CT-TN, which encapsulates text and network features through a proposed architecture that aggregates both feature types for improved stance classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Our aim here, in line with much of the previous work, is to use a small number of instances from the destination target in the training phase through few-shot learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' To the best of our knowledge, CT-TN is the first multimodal architecture for cross-target stance classification which com- bines text and network features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' By experimenting on six dif- ferent combinations of source and destination targets in a few- shot cross-target stance detection scenario, we demonstrate the effectiveness of CT-TN to consistently outperform two state- of-the-art cross-target stance detection models as well as a state-of-the-art pre-trained language model, RoBERTa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Through our study, we make the following key contributions: We propose CT-TN (Cross-Target Text-Net) model, a model that encapsulates multimodal embeddings by inte- grating state-of-the-art text and graph embedding strate- gies for the cross-target stance classification task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='04535v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='CL] 11 Jan 2023 2 We investigate the effectiveness of CT-TN in the few-shot cross-target stance detection task by using the P-Stance dataset, one of the largest stance datasets which enables experimenting with combinations of six different source and destination target pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We perform ablation experiments to investigate the im- pact of the different components that form CT-TN, as- sessing whether and the extent to which each of them is contributing positively to improved performance of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' In addition to our initial experiments with 400 shots from the destination target used for training, we further investigate scenarios where fewer shots are available, investigating its impact on the CT-TN model, and as- sessing how many shots the model needs to perform competitively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We find that our model can consistently outperform state- of-the-art text-based cross-target stance detection models such as TGA-Net and CrossNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Ablation experiments with CT- TN alternatives demonstrates the contribution of its different components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' While we demonstrate the effectiveness of CT- TN, we also observe that it becomes less effective when we dramatically reduce the number of shots used during training, suggesting that the contribution of carefully integrated network features becomes useful after 300+ shots, but is less reliable when fewer shots (100 or 200) are available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Paper structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' The remainder of this paper is organised as follows: Section II discusses work related to ours looking at the challenges of cross-target stance detection as well as the use of multimodal embeddings for stance detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We introduce our proposed method CT-TN in Section III, followed by the experiment settings which we describe in Section IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We present our experiments results in Section V as well as we further discuss and delve into them in Section VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We conclude the paper in Section VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' RELATED WORK We discuss related work in two main directions: research on cross-target stance detection and the use of multimodal embeddings in stance detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Cross-target Stance Detection Despite a substantial body of research in stance detection in recent years [13], [5], [14], the more challenging task of cross-target stance detection has received less attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' One of the first approaches to cross-target stance detection is Bicond [15], which combined multiple layers of LSTM models in different settings encoding the texts from left to right and from right to left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [16] developed CrossNet, which added an Aspect Attention Layer to the Bicond model, which enabled discovering domain-specific aspects for cross-target stance inference, utilising self-attention to signal the core parts of a stance-bearing sentence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Their model consists of four main layers: Embedding Layer, Context Encoding Layer, Aspect Attention Layer, and Prediction Layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Their model showed to outperform the Bicond model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' A different type of approach focused on transferable topic modelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' This is the case of the VTN model [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' This model uses shared latent topics between two targets as transferable knowledge in order to achieve model adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' The latent topics are determined by using Neural variational inference [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Another model by [10], called SEKT, proposed to leverage external knowledge to perform stance detection across targets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Still limited to processing textual content, they pro- posed to generate a semantic-emotion heterogeneous graph (SE-graph) which is fed to a GCN and a BiLSTM for the classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' One of the best-known models among those presented recently is Topic-Grouped Attention (TGA), introduced by [18], and is one of our key baseline models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' The model consists of four main phases: (i) Contextual Conditional Encoding, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' using contextual emebddings like BERT to embed a document and topic together, (ii) Generalized Topic Representations (GTR), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' using Ward hierarchical clustering, (iii) Topic-Grouped Attention, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' using learned scaled dot- product attention (compute similarity scores), and (iv) Label Prediction, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' feed-forward neural network to compute the output probabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' This model proved competitive in com- parison with a range of other baseline models, showing greater generalisability across different targets than other models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' However, existing approaches are limited to processing the textual part of the posts only for the cross-target stance detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Here, we further design this research by proposing the first model that leverages network features in addition to text, through our proposed model CT-TN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' To the best of our knowledge, this is the first study that takes advantage of using network/social information along with text into the cross- target stance detection task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' In our experiments, in addition to CT-TN, we also experiment with TGA-Net and CrossNet as competitive baseline models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Multimodal Embeddings and Stance Detection Text and Graph Embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' There has been a substantial body of research in recent years in developing embedding approaches that deal with either texts or graphs separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' When it comes to text-based embeddings, non- contextualised representations such as Word2vec [19] and GloVe [20] were soon followed by more sophisticated, contextualised representations such as ELMo [21] and OpenAI’s GPT [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' The latter use unidirectional language models in order to learn general language representations, restricting the efficiency of the pre-trained models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Recently, researchers spend more time on applying transfer learning by fine-tuning large pre-trained language models for downstream NLP/NLU tasks, including a small number of examples which achieves distinguish performance improve- ment regarding these tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Despite the fact that pre-trained language models are used for this approach, they suffer from a main limitation which is needing huge corpora for pre-training plus the high computational cost of days needed for training [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Transformer models [23], including the likes of BERT [24] have more recently become the state-of-the-art models for text 3 representation in text classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Models under this category include BERT, RoBERTa [25], XLM [26] and XLM-R [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' In our work, we make use of the RoBERTa model as a component of CT-TN, as well as a baseline model when used on its own.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' When it comes to graph embeddings, different approaches have been proposed which operate at the node, sub-graph or different levels of granularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' These types of model include DeepWalk [28], a method based on random walks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' A more popular method for generating embeddings from graphs is Node2Vec [29], which consists of a flexible biased random walk procedure to explore networks, being one of the first Deep Learning attempts to learn from graph data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' There are similarities between Deepwalk [28] and Node2Vec [29] in that they both maximise the probability of node co-occurrences in sampled random-walks approaches across the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' However there is a difference based on how the random walks are sampled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' The former uses unbiased random walks, whereas the latter biases the random walks using two random walk hyperparameters return parameter (p) and in-out parameter (q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' The p parameter controls the likelihood of immediately revisiting a vertex;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' and the q parameter q is responsible to controlling the likelihood that the walk revisits a vertex’s one- hop neighbourhood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Deepwalk can in fact be viewed as a special case of node2vec where p=q=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' In our work, we use PecanPy [30] as the component to implement graph embeddings, which is an optimised imple- mentation of Node2Vec that makes it more efficient thanks to its paralellisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We use PecanPy to extract embeddings from three different types of network information: followers, friends and likes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Multimodal Embeddings in Stance Detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Combining textual embeddings with graph embeddings has been studied in previous research, however barely in the context of stance de- tection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' This is the case of [31], who proposed an approach to enrich a BERT transformer by incorporating knowledge graph embeddings trained from Wikidata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Through experiments on a book classification task, they showed that their method could outperform other text-only baseline methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Despite the inherently social nature of the stance detection task, the vast majority of the research has been limited to textual features and embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' The main exception to this is the work by [5], who demonstrated that social signals could also be helpful to predict the stance expressed by a user, suggesting that it could even be possible to predict the stance of a user who has not posted anything, solely based on their network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' This work is however limited to in-target stance detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' To the best of our knowledge, no work has studied the multimodal aggregation of textual and graph embeddings for cross-target stance detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Through the introduction of CT- TN, we aim to propose the first approach that effectively achieves this in the cross-target stance detection task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' METHODOLOGY A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Problem Formulation We formulate the stance detection task as that in which each of the posts in a collection P = {p1, p2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=', pn} has to be classified into one of the stances S = {favor, against}, where each post pi expresses a stance towards a target t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We have a dataset where each post expresses a stance towards one of the targets in a collection T = {t1, t2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=', tm}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' The cross- target stance detection task consists in predicting the stance expressed in posts referring to target ti, where the training data is composed of posts referring to other targets excluding ti, hence requiring a transfer of knowledge from a set of targets to another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' In the few-shot cross-target stance detection scenario, however, we experiment with a small number of instances referring to ti incorporated into the training data, to relax this cross-target scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' In our particular case, we experiment with 400 instances (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 400 shots) pertaining to ti incorporated into the training data in the few-shot scenario;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' in subsequent experiments, we test with smaller numbers of instances in the few-shot scenario, namely 100, 200 and 300.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Proposed Method: CT-TN The CT-TN architecture consists of three main types of components: (i) text-based embedding generation and classifi- cation, (ii) three instances of network encoding components for graph-based embedding generation and classification, which are used for feeding followers, friends and likes, and (iii) output aggregation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' The first two types of components are executed in parallel to produce isolated stance predictions, after which the final component aggregates the predictions for final output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Figure 1 demonstrates general architecture of our proposed model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' In what follows we describe the specifics of these three components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Architecture of the proposed model, CT-TN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Component #1: Text-based classification: Contextual Conditional Encoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' This component takes in the textual content of the input posts using bidirectional conditional en- coding (conditioning the document representation on the topic) layer followed by a feed-forward neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Previous works have shown the advantage of utilising contextual em- beddings [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We embed the user generated text through the RoBERTa language model [25] to embed a document and topic jointly (768 dimension vector).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' RoBERTa can take as input either one or two sentences, and uses the special token [SEP] Majority Voting Predicted Labels (FAVOR/AGAINST) Cassification Cassification Cassification Cassification Layer Layer Layer Layer FollowerGraph Like Graph Friend Graph TextEmbedding Embedding Embedding Embedding Follower Like Friend Tweet4 to separate them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' In order to input both the textual content and target information associated with the post, we feed the following to the model: “[CLS] + target + [SEP] + context”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' This component produces an output with its own prediction for the stance of a particular post, as either supporting or opposing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Component #2: Graph-based classification: Network Encoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' The CT-TN model uses three different instances of the network encoding model for graph-based classification, for representing three types of inputs: followers, friends and likes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' To generate embeddings using the Node2Vec architecture [29], we use the PecanPy implementation [30] which optimises its performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' The node embeddings calculated using PecanPy (128 dimension vector) can be used as feature vectors in a downstream task such as node classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' In our case, user IDs are considered as graph nodes and the relation- ships between users (friends/followers/likes) are provided as graph edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Each of the three components implemented here through network encodings produce their own predictions on a particular post (supporting or opposing).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Component #3: Output aggregation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' The final component takes as input the predictions made by all the above compo- nents, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' the text-based and three network-based components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' To aggregate the predictions of all these four components, the “output aggregation” component implements a voting ensemble (or a “majority voting“ strategy) which combines the different predictions, ultimately choose the class with a larger number of votes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Model Hyperparameters We use the RoBERTa base model (roberta-base-cased) as our pre-trained language model, due to its improved perfor- mance over similar transformer models such as BERT [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' It consists of 12 transformer layers, each of which adopts a hidden state size of 768 and 12 attention headers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Training for RoBERTa text embedding is performed with batch size b = 128, dropout probability d = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='2, learning rate= 3e-5 (AdamW optimiser) and 40 training epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' While we trained graph embedding models as follow: batch size b = 128, dropout probability d = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='2, learning rate= 1e-2 (SGD optimiser) and 100 training epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' For model training, we use multi-class cross-entropy loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' While previous research has addressed the stance detection task in both 3-class [33], [34] and 2-class [35], [36] settings, our focus here is on the latter, while the extension of our proposed model to 3-class is beyond the scope of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' EXPERIMENTS Next, we provide the details of the dataset we use in our research, as well as the baseline methods we compare our method against, followed by experiment settings and evaluation metrics used in our work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Dataset We chose to use the P-Stance dataset [11], given that it is an order of magnitude larger than other publicly available datasets and because it provides more than one target, as required for our research in cross-target stance detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' The P-Stance dataset is originally composed of tweets pertaining to three different political figures as targets: “Donald Trump,” “Joe Biden,” and “Bernie Sanders.” A sample of the P-Stance dataset is provided as Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' The original P-Stance dataset, as published by the authors, only contains the tweet texts associated with their stance labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' This original dataset lacked the network information that we needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Upon request, the authors kindly shared 9,307 tweet IDs, which we use to reconstruct and expand the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' This includes retrieving full tweet metadata, from which we can extract the user IDs, which would then allow us to retrieve the user network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Given the focus of our research in 2-class classification (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' favor or against), we retrieve metadata for the tweets associated with these categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' This led to 4,212 tweets with available metadata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' The resulting dataset has a distribution of labels as shown in Table II, and a distribution in the number of tweets per target as shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' While the number of tweets across targets is very similar, we observe some differences in the number of favor and against tweets, with Donald Trump having the largest ratio of against tweets, and Bernie Sanders having the largest ratio of favor tweets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' For these available tweets, we further complement the data retrieval as described below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Distribution of targets in the P-Stance dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Having the collection of tweet IDs, tweet metadata and user IDs, we proceeded with the retrieval of additional data including networks of the users (followers and friends) and likes (tweets they liked from other users).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We detail each of these additional data collection steps next: Retrieval of followers: Followers include the set of users who follow a particular user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' For the user IDs in the dataset, we retrieve the complete list of followers for each user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' This leads to a list of user IDs followed by each user, which allows us to build a network of followers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Retrieval of friends: Friends constitute the set of users followed by a user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Similar to the list of followers, this provides a list of user IDs per user, with which we can build a network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Retrieval of likes: For each user, we retrieve the tweets they liked from others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Given that we are interested in building networks of users, we obtain the user IDs pertaining to the tweets liked by the users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' This again allows us to build a network, very similar to the friend / 1600 1400 1200 1000 count 800 600 400 200 0 DonaldTrump JoeBiden BernieSanders Target5 TABLE I A SAMPLE OF THE P-STANCE DATASET.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Tweet Target Stance How Joe Biden would make community college free and fix student loans via @politico Joe Biden FAVOR Glad our GREAT President called out the so called whistleblower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' If there is a Senate trail, they may call the whistleblower to testify.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' BTW Trump is not impeached until crazy Nancy send the articles over to the Senate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Trump will not be convicted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Vote Trump 2020 Donald Trump FAVOR #Bernie Sanders says he’s ’one of the poorer members of the #UnitedStatesSenate’ #BetOil is A Multimillionaire,#Warren has A 5 Million dollar Home,#Hillary HAS several Mansions plus A Super Millionaire!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Whats Your Point?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Bernie Sanders AGAINST TABLE II THE STATISTICS OF THE RESULTING DATASET.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Target Favor Against Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' length Donald Trump 519 947 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='7 Joe Biden 702 716 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='7 Bernie Sanders 776 553 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='5 follower networks above, in this case based on the user IDs whose tweets have been liked by each user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Hence, for each user, we have four features: (i) the textual content of their tweet, (ii) the network of followers, (iii) the network of friends, and (iv) the network of likes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Each of these is associated with a favor or against label, which we aim to predict.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' After aggregating all these four features, we end up with a dataset of 4,144 tweets (posted by 3,871 distinct users) for which we have all features available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Baseline Methods We evaluate and compare our model with several strong baselines, including two of the main state-of-the-art cross- target stance detection models as well as the widely-used Transformer model RoBERTa: CrossNet [16]: This model is a variant of BiCond, which leverages a self-attention layer to capture important words in the input text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' TGA-NET [18]: A new model has been proposed for (few-shot) cross-target stance detection that implicitly captures relationships between topics using generalized topic representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' RoBERTa [25]: The method fine-tunes a pre-trained BERT model to perform cross-target detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Specif- ically, we convert the given context and target to “[CLS] + target + [SEP] + context” structure for source and target domain, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Note that all of the above baselines make use of the textual content of the posts, as opposed to our proposed CT-TN also incorporating network information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Experiment Settings Experiments for the proposed few-shot cross-target ap- proach are conducted in 100-shot, 200-shot, 300-shot, and 400- shot settings (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' injecting N samples of destination target into (source-target based) train data and then predicting the stance on the test data consist of only destination target) with 5 different random seeds: 24, 524, 1024, 1524, and 2024.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Then we average the 5 seeds’ results per shot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Evaluation Metrics In line with previous research in stance detection [15], [16], [18], we also adopt the macro-averaged F1 score (MacFavg) as the main metric to evaluate the performance in our ex- periments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' In our case with binary classification involving the support and oppose classes, the resulting metric is the arithmetic mean of the F1 scores for each class, as follows: MacFavg = F1support + F1oppose 2 (1) where each of F1support and F1oppose is defined as follows: F1c = 2 ∗ precisionc ∗ recallc precisionc + recallc (2) V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' RESULTS We next present results of our proposed CT-TN model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We first discuss results of the model compared to a set of competitive baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We then delve into the results by analysing the performance of ablated versions of the model, and by looking at the impact of the number of shots used for training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' CT-TN vs Baselines Table III shows the results of CT-TN for the six com- binations of source-destination targets under consideration, compared with the baseline models RoBERTa, CrossNet and TGA-Net.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' In addition to the results for each of the target pairs, we also show the average performance of each model across all pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We observe that CT-TN consistently outperforms both cross- target stance detection models, CrossNet and TGA-Net, when we look at each target pair independently as well as at 6 TABLE III MACRO-AVERAGED F1 SCORES FOR CT-TN VS BASELINE MODELS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Source Trump Sanders Sanders Biden Trump Biden Average Test Sanders Trump Biden Sanders Biden Trump RoBERTa 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='53 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='59 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='66 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='62 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='66 CrossNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='51 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='58 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='54 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='56 TGA-Net 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='57 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='59 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='62 CT-TN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='77 TABLE IV MACRO-AVERAGED F1 SCORES FOR THE FAVOR AND AGAINST CLASSES WITH CT-TN VS BASELINE MODELS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Source Trump Sanders Sanders Biden Trump Biden Average Test Sanders Trump Biden Sanders Biden Trump ‘Favor’ class RoBERTa 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='64 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='47 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='64 CrossNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='47 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='68 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='54 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='49 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='53 TGA-Net 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='56 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='67 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='47 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='6 CT-TN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='79 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='76 ‘Against’ class RoBERTa 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='68 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='59 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='67 CrossNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='63 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='6 TGA-Net 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='59 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='54 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='64 CT-TN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='84 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='79 the overall average absolute improvements of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='21 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='15, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' CT-TN also performs remarkably better for than RoBERTa for a number of target pairs, not least Trump-Sanders, Sanders- Trump and Biden-Trump, with absolute improvements of 19%, 21% and 20% respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' This improvement is more modest for Biden-Sanders (7%), with similar performances for the Sanders-Biden and Trump-Biden (0%) target-pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' On average, CT-TN still outperforms RoBERTa by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='11, showing that it is more consistent across targets and overall more reliable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We believe that the strongest improvements of CT-TN with respect to the baselines come particularly for targets with significantly different ideology (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' those combining Trump and Sanders, and Trump and Biden);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' this suggests that for more distant targets, textual models may be more limited in capturing these substantial linguistic differences, whereas a network-based model generalises better in these situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We next delve into the performance scores of the models broken down by category: favor and against.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Table IV shows the results for the favor and against categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We see that the improvement of the CT-TN model with respect to the baselines is consistent across both classes, hence showing that CT-TN provides a positive boost that impacts both classes positively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' The extent of the improvement across classes is also consistent with the overall results shown above, as we see that the set of target pairs where CT-TN achieves the highest improvement matches those with the highest improvement in the overall results, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Trump-Sanders, Sanders-Trump and Biden-Trump.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Overall, CT-TN achieves improvements of 12% in both the favor and against class over the second best model, RoBERTa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Ablated versions of CT-TN To evaluate the effectiveness of each of the text and network components of CT-TN, we perform a set of ablation of experiments with different sets of these components removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Table V shows the performance scores of the full CT-TN model compared with ablated versions of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We can see that the full CT-TN model achieves top perfor- mance in five of the six source-destination target pairs, with the exception of the Sanders-Trump pair where the use of likes only outperforms the full model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' For the rest of the target pairs, the full CT-TN either outperforms all ablated models or achieves the same performance as one of the ablated models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Interestingly, however, even if some of the ablated models perform at the same level as the full model on some occasions, there is no consistency on the best ablated model across target pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Given the uncertainty on the selection of the best ablated model in each case, it is more reliable to use the full CT- TN model instead, which is more consistent across all target pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Indeed, this consistency is also demonstrated in the highest average performance across targets, with an average 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='77 overall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Among the ablated models, those using the likes feature show competitive performance, with the model using only likes and the model combining likes, friends and followers both achieving second-best performance with an average of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' This in turn suggests that, among the network features, the likes are the most useful ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Reducing the number of shots Experiments so far have relied on the use of 400 shots associated with the destination target, showing competitive 7 TABLE V MACRO-AVERAGED F1 ON FULL CT-TN VS ABLATED VERSIONS OF CT-TN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' LI: LIKE, FR: FRIENDS, FL: FOLLOWERS, RB: ROBERTA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Source Trump Sanders Sanders Biden Trump Biden Average Test Sanders Trump Biden Sanders Biden Trump Li Fr Fl Rb x 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='64 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='47 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='64 x 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='71 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='83 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='76 x 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='79 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='71 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='75 x 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='75 x x 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='63 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='79 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='73 x x 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='63 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='71 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='72 x x 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='63 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='71 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='72 x x x 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='71 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='76 x x x x 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='77 TABLE VI MACRO-AVERAGED F1 SCORES ON MODELS USING DIFFERENT NUMBERS OF TRAINING SHOTS (100-400) FROM THE DESTINATION TARGET.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Trump → Sanders Sanders → Trump #100 #200 #300 #400 #100 #200 #300 #400 RoBERTa 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='49 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='53 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='31 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='54 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='59 CrossNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='41 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='48 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='49 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='51 TGA-Net 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='47 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='57 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='43 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='48 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='58 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='6 CT-TN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='68 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='33 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='8 Sanders → Biden Biden → Sanders #100 #200 #300 #400 #100 #200 #300 #400 RoBERTa 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='47 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='58 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='66 CrossNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='62 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='68 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='57 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='56 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='58 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='58 TGA-Net 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='57 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='56 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='59 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='6 CT-TN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='59 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='38 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='41 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='73 Trump → Biden Biden → Trump #100 #200 #300 #400 #100 #200 #300 #400 RoBERTa 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='62 CrossNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='58 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='62 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='52 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='56 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='57 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='54 TGA-Net 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='67 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='68 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='49 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='56 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='59 CT-TN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='38 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='43 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='82 performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We are further interested in investigating how CT-TN performs with fewer shots, as well as to assess the number of shots the model needs to outperforms other baseline models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Table VI shows the results for varying numbers of shots, ranging from 100 to 400.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' These results show a clear trend where the CT-TN model becomes remarkably effective with 300 shots used for training, after which it starts to outperform baseline models, generally by a margin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Conversely, results also show that using 200 or fewer shots is insufficient for CT- TN, where baseline models CrossNet and TGA-Net can per- form better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Hence, CT-TN becomes especially reliable as the number of shots increases;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' however, performance scores are substantially lower for all models when the number of shots is 200 or fewer, hence suggesting that it is worth labelling some more instances up to 300 to achieve a substantial performance gain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Figure 3 shows the performance of the full CT-TN model, ablated models as well as baseline models with different numbers of shots used for training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' In addition to the re- sults presented in Table VI, this figure enables additional visual comparison by also incorporating ablated models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' These results reaffirm our previous observations, showing that it is especially after 300 shots that CT-TN and its ablated models become effective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' All CT-TN based models achieve a remarkable gain of performance from 200 to 300 shots, which becomes less pronounced when shots are increased from 300 to 400.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' DISCUSSION Through our experiments, CT-TN has proven to be a very competitive model achieving state-of-the-art performance when it is given a moderate number of training data associated with the destination target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' In our case, we have seen that the 8 TABLE VII SAMPLES WITH CORRECT PREDICTION ONLY BY CC-TN, WHERE BASELINE MODELS MISPREDICTED.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' EXAMPLES EXTRACTED FROM EXPERIMENTS FOR THE BIDEN-TRUMP TARGET PAIR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Tweet Real label CC-TN RoBERTa CrossNet TGA-NET Guess we will have to wait forever!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Were working with heartless #CLOWNS her!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' #TRUMP #Trump FAVOR FAVOR AGAINST AGAINST AGAINST What was Nancy Pelosi doing when realDonaldTrump was putting the #Coronavirus task force together?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Hand- ing out impeachment pens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Voting #Trump and red down the entire ticket!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' FAVOR FAVOR AGAINST AGAINST AGAINST People talk about the #GOP being the party of Lincoln and Reagan, well add realDonaldTrump to it because he is a game changing #POTUS with policy like this!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' FAVOR FAVOR AGAINST AGAINST AGAINST Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' The overall performance of 11 few-shot cross-target tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' model can outperform all other baselines with 300 instances pertaining to the destination target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We are however interested in further delving into the performance of CT-TN, which we do next by looking at some of its correct predictions as well as further investigating the structure of the network data it uses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' To better understand the benefits of CT-TN, we delve into some of the examples where CT-TN made a correct prediction and the baseline models made a wrong prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We show some of these CT-TN’s correct predictions in Table VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We observe that these are indeed difficult to predict solely from text for an automated model, not least because there are no explicitly positive keywords, often requiring more complex understanding of the text which is not trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' In situations like these, information derived from the network through CT- TN can be particularly valuable to correct these otherwise challenging predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Looking at the network data, Figure 4 shows a visualisation of the aggregate of follower, friend and like connections of supporters of each of the political candidates in the dataset, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Bernie Sanders (blue), Joe Biden (green) and Donald Trump (red).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Interestingly, we can observe three clear clusters of supporters of each candidate, with strong connections within Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Network visualisation of followers, friends and likes for users expressing supporting stance towards Bernie Sanders (purple), Joe Biden (green) and Donald Trump (red).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' clusters and fewer connections across clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Further, we can also observe that clusters associated with the two candidates of the Democrats, namely Joe Biden and Bernie Sanders, are closer and more strongly connected to each other than any of them is with Republican candidate Donald Trump’s cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Through our experiments with CT-TN, we demonstrate that, while network information alone would not suffice to achieve top performance on stance detection, it is a valuable feature when used in combination with text, indeed outperforming any ablated models that solely use text or network data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' CONCLUSION To tackle the challenging task cross-target stance detection from social media posts, we have introduced a novel model, CT-TN, which aggregates multimodal text and network em- beddings into a model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' With a set of experiments across six Comparison of few-shot performance (F1-macro on P-stance dataset 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='8 RoBERTa 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='75 Like 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='7 Friend Follower 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='65 Like+RoBERTa 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='6 Friend+RoBERTa 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='55 Follower+RoBERTa Like+Friend+Follower 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='5 AII (CT-TN) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='45 CrossNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='TGA-Net 100 200 300 400BernieSanders JoeBiden DonaldTrump9 different source-destination target pairs, we demonstrate the overall effectiveness of CT-TN, outperforming state-of-the-art models such as CrossNet and TGA-Net.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' While all models struggle with small numbers of shots used for training, CT- TN achieves a noticeable performance gain after 300 shots associated with the destination target are incorporated into the training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' In addition to showing the effectiveness of the novel CT-TN model, we also demonstrate the importance of considering network features for cross-target stance detection, among which the ‘likes’ feature leads to highest performance gains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Our work in turn opens a set of avenues for future re- search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' While we demonstrate that we can achieve competitive performance with 300+ shots, future work could look into further improving models that perform competitively when fewer shots available, which is particularly important where there are limited resources for labelling new data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Our research demonstrates the effectiveness of CT-TN for 2-class stance detection, while future research could further look into ex- tending it to 3-class stance detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' While datasets enabling cross-target stance detection are very limited to date, not least datasets for which network data can be gathered, we hope to see more suitable datasets in the future, which would also enable further experiments using a bigger set of target pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' ACKNOWLEDGMENTS Parisa Jamadi Khiabani is funded by the Islamic Devel- opment Bank (IsDB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' We thank the authors of the P-stance dataset for kindly providing us with the tweet IDs which enables us to complement the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' REFERENCES [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Perrin, “Social media usage,” Pew research center, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 125, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 52– 68, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [2] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Tian, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Wang, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Liu, “Early detection of rumours on twitter via stance transfer learning,” in European Conference on Information Retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Springer, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 575–588.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [3] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Liu, “Sentiment analysis and opinion mining,” Synthesis lectures on human language technologies, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 5, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 1–167, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [4] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Biber and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Finegan, “Adverbial stance types in english,” Discourse processes, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 11, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 1–34, 1988.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' AlDayel and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Magdy, “Stance detection on social media: State of the art and trends,” Information Processing & Management, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 58, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 4, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 102597, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [6] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Jamadi Khiabani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Basiri, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Rastegari, “An improved evidence-based aggregation method for sentiment analysis,” Journal of Information Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 46, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 340–360, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [7] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=', “Sentiment analysis and subjectivity.” Handbook of natural language processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 2, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 2010, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 627–666, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [8] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Mohammad, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Kiritchenko, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Sobhani, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Zhu, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Cherry, “Semeval-2016 task 6: Detecting stance in tweets,” in Proceedings of the 10th international workshop on semantic evaluation (SemEval-2016), 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 31–41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [9] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Antoun, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Baly, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Hajj, “Arabert: Transformer-based model for arabic language understanding,” arXiv preprint arXiv:2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='00104, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [10] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Zhang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Yang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Ye, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Xu, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Dai, “Enhancing cross- target stance detection with transferable semantic-emotion knowledge,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 3188–3197.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [11] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Li, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Sosea, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Sawant, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Nair, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Inkpen, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Caragea, “P-stance: A large dataset for stance detection in political domain,” in Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 2355–2365.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [12] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Wei and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Mao, “Modeling transferable topics for cross-target stance detection,” in Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 1173–1176.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [13] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' K¨uc¸¨uk and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Can, “Stance detection: A survey,” ACM Computing Surveys (CSUR), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 53, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 1–37, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [14] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Cao, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Luo, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Xi, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Qiao, “Stance detection for online public opinion awareness: An overview,” International Journal of Intelligent Systems, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [15] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Augenstein, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Rockt¨aschel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Vlachos, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Bontcheva, “Stance detection with bidirectional conditional encoding,” arXiv preprint arXiv:1606.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='05464, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [16] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Xu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Paris, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Nepal, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Sparks, “Cross-target stance classifi- cation with self-attention networks,” in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 778–783.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [17] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Miao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Yu, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Blunsom, “Neural variational inference for text processing,” in International conference on machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' PMLR, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 1727–1736.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [18] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Allaway and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Mckeown, “Zero-shot stance detection: A dataset and model using generalized topic representations,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 8913–8931.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [19] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Mikolov, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Chen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Corrado, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Dean, “Efficient estimation of word representations in vector space,” arXiv preprint arXiv:1301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='3781, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [20] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Pennington, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Socher, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Manning, “Glove: Global vectors for word representation,” in Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 1532–1543.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [21] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Peters Matthew, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Mark, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Mohit, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Matt, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Christopher, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Kenton, “Deep contextualized word representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' (2018),” 1802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [22] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Radford, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Narasimhan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Salimans, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Sutskever et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=', “Improving language understanding by generative pre-training,” 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [23] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Vaswani, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Shazeer, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Parmar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Uszkoreit, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Jones, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Gomez, Ł.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Kaiser, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 30, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [24] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Devlin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Chang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Lee, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='04805, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [25] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Liu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Ott, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Goyal, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Du, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Joshi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Chen, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Levy, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Lewis, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Zettlemoyer, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Stoyanov, “Roberta: A robustly optimized bert pretraining approach,” arXiv preprint arXiv:1907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='11692, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [26] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Lample and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Conneau, “Cross-lingual language model pretraining,” arXiv preprint arXiv:1901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='07291, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [27] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Conneau, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Khandelwal, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Goyal, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Chaudhary, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Wenzek, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Guzm´an, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Grave, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Ott, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Zettlemoyer, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Stoyanov, “Unsu- pervised cross-lingual representation learning at scale,” arXiv preprint arXiv:1911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='02116, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [28] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Perozzi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Al-Rfou, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Skiena, “Deepwalk: Online learning of social representations,” in Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 701–710.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [29] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Grover and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Leskovec, “node2vec: Scalable feature learning for networks,” in Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 855– 864.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [30] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Liu and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Krishnan, “Pecanpy: a fast, efficient and parallelized python implementation of node2vec,” Bioinformatics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 37, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 19, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 3377–3379, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [31] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Ostendorff, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Bourgonje, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Berger, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Moreno-Schneider, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Rehm, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Gipp, “Enriching bert with knowledge graph embeddings for document classification,” arXiv preprint arXiv:1909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='08402, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [32] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Adoma, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Henry, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Chen, “Comparative analyses of bert, roberta, distilbert, and xlnet for text-based emotion recognition,” in 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' IEEE, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 117–121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [33] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Xu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Zhou, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Wu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Gui, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Du, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Xue, “Overview of nlpcc shared task 4: Stance detection in chinese microblogs,” in Natural language understanding and intelligent applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Springer, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 907–916.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [34] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Mohammad, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Kiritchenko, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Sobhani, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Zhu, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Cherry, “A dataset for detecting stance in tweets,” in Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 3945–3952.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 10 [35] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Murakami and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Raymond, “Support or oppose?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' classifying posi- tions in online debates from reply activities and opinion expressions,” in Coling 2010: Posters, 2010, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 869–875.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' [36] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Abbott, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Ecker, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Anand, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' Walker, “Internet argument corpus 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content='0: An sql schema for dialogic social media and the corpora to go with it,” in Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
+page_content=' 4445–4452.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/bdE3T4oBgHgl3EQfdgpw/content/2301.04535v1.pdf'}
diff --git a/ctE2T4oBgHgl3EQfagfL/content/tmp_files/2301.03876v1.pdf.txt b/ctE2T4oBgHgl3EQfagfL/content/tmp_files/2301.03876v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..a6551958f307470850cc4a4fd32809dd44cee15a
--- /dev/null
+++ b/ctE2T4oBgHgl3EQfagfL/content/tmp_files/2301.03876v1.pdf.txt
@@ -0,0 +1,685 @@
+Depolarization Induced III-V Triatomic Layers with Tristable
+Polarization States
+Changming Ke,1, 2 Yihao Hu,1, 2 and Shi Liu1, 2, ∗
+1Key Laboratory for Quantum Materials of Zhejiang Province,
+Department of Physics, School of Science,
+Westlake University, Hangzhou, Zhejiang 310030, China
+2Institute of Natural Sciences, Westlake Institute for Advanced Study,
+Hangzhou, Zhejiang 310024, China
+Abstract
+The integration of ferroelectrics that exhibit high dielectric, piezoelectric, and thermal suscepti-
+bilities with the mainstream semiconductor industry will enable novel device types for widespread
+applications, and yet there are few silicon-compatible ferroelectrics suitable for device downscal-
+ing. We demonstrate with first-principles calculations that the enhanced depolarization field at
+the nanoscale can be utilized to soften unswitchable wurtzite III-V semiconductors, resulting in
+ultrathin two-dimensional (2D) sheets possessing reversible polarization states. A 2D sheet of AlSb
+consisting of three atomic planes is identified to host both ferroelectricity and antiferroelectricity,
+and the tristate switching is accompanied by a metal-semiconductor transition. The thermody-
+namics stability and potential synthesizability of the triatomic layer are corroborated with phonon
+spectrum calculations, ab initio molecular dynamics, and variable-composition evolutionary struc-
+ture search. We propose a 2D AlSb-based homojunction field effect transistor that supports three
+distinct and nonvolatile resistance states. This new class of III-V semiconductor-derived 2D ma-
+terials with dual ferroelectricity and antiferroelectricity opens up the possibility for nonvolatile
+multibit-based integrated nanoelectronics.
+∗ liushi@westlake.edu.cn
+1
+arXiv:2301.03876v1 [cond-mat.mtrl-sci] 10 Jan 2023
+
+Ferroelectricity, as an extensively studied dipolar ordering state of insulators, is charac-
+terized by electrically switchable polarization. The strong coupling between polarization,
+strain, and electronic degrees of freedom of ferroelectrics have made them critical compo-
+nents in numerous devices such as sensors, actuators, and nonvolatile memories [1, 2]. The
+continuing demand for miniaturized electronics has imposed stringent requirements on fer-
+roelectrics. In particular, to incorporate ferroelectric functionalities into integrated circuits
+via the current semiconductor manufacturing process, materials with nanoscale switchable
+dipoles and silicon compatibility are essential [3].
+Two-dimensional (2D) ferroelectrics with long-range dipolar ordering in atom-thick crys-
+talline layers are promising materials for ferroelectric-based nanoelectronics because of their
+various merits such as the uniform atomic thickness for high-density integration and the
+easy preparation of high-quality interface in van der Waals heterostructures [4]. However,
+similar to perovskite ferroelectrics, most 2D ferroelectrics also suffer from the depolariza-
+tion effect such that they often have the polarization developed in-plane [5, 6], a feature
+that is inconvenient for lateral downscaling. Atomically thin monolayers with out-of-plane
+polarization (POP) remains rare, and few notable examples confirmed experimentally are
+CuInP2S6 [7], α-In2Se3 [8–13], MoTe2 [14], and WTe2 [15]. Additionally, it remains unclear
+how to integrate these 2D ferroelectrics with the mainstream semiconductor technology.
+A strategy to obtain new ferroelectrics suitable for integrated systems is to “soften”
+silicon-compatible piezoelectrics to make them switchable by applying appropriate “stres-
+sors” [16]. For example, by substituting Sc into a well-known nitride piezoelectric, AlN,
+Fichtner et al. realized a giant switchable polarization (80–110 µC/cm2) in Al1−xScxN [17].
+More recently, starting with another widely used piezoelectric, ZnO, Ferri et al. synthesized
+thin films of Zn1−xMgxO and reported even larger switchable polarization of > 100 µC/cm2
+and coercive fields below 3 MV/cm at room temperatures [16]. In both cases, the essence is
+to destabilize an unswitchble piezoelectric by applying a chemical stressor.
+We propose to “physically soften” silicon-compatible piezoelectrics represented by III-V
+wurtzite piezoelectrics via dimension reduction. Products based on III-V semiconductors
+have been widely employed in mobile devices, wireless networks, satellite communications,
+and optoelectronics [18–20]. For example, the 4th-generation (4G) wireless networks depend
+on thin-film bulk acoustic resonators consisting of piezoelectric wurtzite AlN. At present,
+the industry of III-V semiconductor manufacturing is well established. Several approaches
+2
+
+such as direct growth of III-V on Si, III-V on lattice engineered substrate, and III-V on
+Ge-Si template have been developed to integrate III-V compounds with the cutting-edge
+modern complementary metal oxide semiconductor (CMOS) technology [21, 22]. There-
+fore, III-V semiconductor-based 2D ferroelectrics, if available, will reduce the barrier of
+integrating ferroelectric functionalities with silicon-based technology and lower the cost of
+commercialization.
+The physical stressor we employ is the enhanced depolarization field at the nanosale. The
+depolarization field (Ed) arising from the incomplete screening of surface polarization bound
+charges scales inversely with the film thickness (Ed ∝ Ps/d with Ps the remnant polarization
+and d the film thickness) [23]. In thin films of conventional perovskite ferroelectrics such
+as PbTiO3, the intrinsic double-well energy landscape of a ferroelectric will eventually be
+flattened out by the pronounced depolarization field in thin films below a critical thickness,
+leading to a nonpolar paraelectric ground state (Fig. 1a top panel). In contrast, some piezo-
+electrics such as wurtzite AlN are unswitchable in bulk because the barrier (∆U) separating
+two polar states is prohibitively large such that the switching field exceeds the dielectric
+breakdown limit. Utilizing the increased depolarization energy (fd) with reduced dimension
+(fd ∝ P 2
+s /d) to compensate ∆U, we suggest it is feasible to soften piezoelectrics to 2D ferro-
+electrics with switchable POP. Another competing phase that could emerge in thin films is
+an antipolar phase with neighboring antiparallel dipoles that has zero depolarization energy.
+It is expected that the neighboring dipoles in bulk wurtzite piezoelectrics strongly favor the
+parallel alignment with a coupling strength characterized by J; forming an antipolar phase
+thus comes with an energy cost, fc ∝ zJ, with z the coordination number of a local dipole.
+Heuristically, the competition between ∆U, fd, and fc determines the ground state (polar,
+antipolar, or paraelectric) in free-standing thin films. Moreover, a triple potential well may
+emerge by engineering the relative magnitudes of competing energy terms (Fig. 1a bottom
+panel).
+We explore our design principle with first-principles density functional theory (DFT) cal-
+culations, focusing on ultrathin 2D sheets of wurtzite III-V compounds (III=Al, Ga, In;
+V=N, P, As). We discover a nonpolar diatomic layer (2L) and a triatomic layer (3L) with
+spontaneous local inversion symmetry breaking. Specifically for 3L sheets, it can adopt a
+high-energy polar state with POP and a low-energy antipolar state with neighboring an-
+tiparallel dipoles.
+Interestingly, the polar and antipolar states in 3L AlSb are both dy-
+3
+
+namically stable, as confirmed by phonon spectrum calculations and ab initio molecular
+dynamics (AIMD), and these two states are comparable in energy, making 3L AlSb an un-
+usual tristable system that supports both ferroelectricity and antiferroelectricity. Moreover,
+the electronic degree of freedom is directly coupled to the polar ordering in 3L AlSb, and
+the tristate switching is accompanied with a metal-semiconductor transition. We propose
+a 2D homojunction field effect transistor (FET) consisting of 2L and 3L AlSb. The carrier
+type and density in the semiconducting channel of 2L AlSb can be effectively regulated by
+the polarization state of 3L AlSb, leading to three distinct and nonvolatile resistance states.
+The deterministic ferroelectric domain engineering at the nanoscale could be used to pattern
+the 2L-3L homojunction as high-density periodic arrays of p-n junctions and p-i-n junctions.
+The proposed 2D sheets of III-V compounds supporting tristable polarization states offer
+promise for experimental investigation and for the development and design of nonvolatile
+multistate functional applications such as high-density memory and synaptic electronics.
+DFT calculations are performed using Vienna ab initio Simulation Package (VASP) [24,
+25].
+The interaction between the core ion and electrons is described by the projector
+augmented wave (PAW) method [26]. The PBEsol functional is chosen as the exchange-
+correlation functional [27]. The vacuum layer along the c axis is thicker than 15 ˚A in the
+slab model, and the dipole correction is employed to remove the spurious interaction between
+different periodic images. We use an energy cutoff of 700 eV, a 8×8×1 Monkhorst–Pack
+k-point mesh, and an energy convergence threshold of 10−8 eV for electronic self-consistent
+calculations. The convergence criterion for an optimized structure is 10−7 eV in energy. The
+structural stability at finite temperatures is studied by NV T AIMD simulations using the Γ-
+point sampling with the temperature controlled using the Nos´e-Hoover thermostat [28, 29].
+The phonon spectrum is computed using the frozen phonon approach as implemented in
+Phonopy [30] in conjunction with VASP.
+The 2D sheet is constructed by cutting the bulk along the c plane, and the thickness of
+the film is defined as the number (nL) of atomic planes (Fig. 1b). In the case of monolayers
+(nL=1), we find that all nitrides favor the planar structure [31] whereas monolayers of
+other III-V compounds are buckled honeycomb structures characterized by the presence of
+POP and small values of ∆U (< 0.2 eV, Fig. 1c). We note that III–V buckled honeycomb
+monolayers have been studied previously with DFT [32–34], though the 2D ferroelectricity
+was not appreciated. The formation energy per formula unit (f.u.) of an isolated 2D sheet
+4
+
+with respect to the bulk counterpart is defined as Ef
+vac = E2D/nL − E3D/N3D, where E2D
+is the energy of the 2D sheet consisting of nL atomic planes and E3D is the energy of a
+cell in bulk containing N3D atomic planes. Though several III-V monolayers are potential
+2D ferroelectrics featuring small switching barriers, their formation energies are rather large
+(> 0.8 eV/f.u., Fig. 1d), hinting at the difficulty of synthesis in experiments.
+When the thickness increases to nL=2, for III-V compounds (III=Al, Ga, In, V=P, As,
+Sb), the initial wurtzite-like configuration is no longer stable, and the optimized diatomic
+layer denoted as 2L acquires the inversion symmetry thus being nonpolar (Fig. 1b). Further
+increasing the thickness to nL=3 surprisingly revives POP. The triatomic layer labeled as
+3L has a buckled central layer that breaks the out-of-plane inversion symmetry (Fig. 1b).
+Structurally, both 2L and 3L have group-V anions being the outermost surface layers. We
+note that 3L sheets have much lower formation energies than monolayers albeit with higher
+∆U (Fig. 1c-d).
+This seems to suggest III-V compounds in the 3L form are easier to
+synthesize but remain unswitchable.
+Following the design principle, we investigate possible competing antipolar phases in 3L
+sheets.
+We identify an antipolar phase that has the energy consistently lower than the
+polar phase (Fig. 1e and Fig. S1 in Supporting Information). Based on Shirane’s energetic
+criterion on antiferroelectricity, an antiferroelectric is an antipolar crystal with free energy
+comparable to that of the reference polar crystal that has aligned sublattice local dipoles [35].
+Therefore, we suggest 3L sheets of AlSb and GaSb likely host antiferroelectricity as their
+polar and antipolar phases are close in energy. In below, we demonstrate that 3L AlSb is
+an unusual tristable system that supports both ferroelectricity and antiferroelectricity.
+Figure 2a presents the phonon spectra of 3L AlSb in polar and antipolar phase, respec-
+tively. Since the phonon spectra have no imaginary vibrational frequencies over the whole
+Brillouin zone, polar and nonpolar phases are dynamically stable and each locates at a lo-
+cal minimum of the potential energy surface. We perform AIMD simulations at elevated
+temperatures to check the structural stability against larger atomic distortions due to ther-
+mal fluctuations. The evolution of the total energy at 600 K during AIMD simulations
+is shown for both phases in Fig. 2b, revealing no sign of structural destruction or recon-
+struction. This serves as a strong evidence to corroborate the room-temperature stability
+of 3L AlSb. A defining feature of (anti)ferroelectricity is the polarization reversibility. As
+depicted in Fig. 2c, the barrier separating the polar and antipolar phase obtained with the
+5
+
+nudged elastic band (NEB) method is 0.1 eV that is lower than the barrier in conventional
+perovskite ferroelectrics such as PbTiO3 (0.17 eV) [36], indicating a switchable polarization
+by an external electric field. Therefore, 3L AlSb is a rare 2D material characterized by
+tristable and electrically switchable polarization states and thus hosts both ferroelectricity
+and antiferroelectricity.
+In addition, we perform a structural search using the variable-composition evolutionary
+algorithm as implemented in USPEX [37–39] with a 6-atom slab model confined within 9 ˚A.
+Figure. 2d compiles the DFT formation enthalpies of all identified 2D crystals for Al1−xSbx.
+We find that ferroelectric 3L AlSb has a convex hall distance of zero, further supporting its
+thermodynamic stability and synthesizability.
+The emergence of POP in ferroelectric 3L AlSb can be understood by determining the
+electric free energy (F) of wurtzite AlSb under an open-circuit boundary condition (OCBC)
+that has D = 0 where D is the electric displacement. For an intermediate configuration λ
+obtained by linear interpolating the ground-state polar configuration (λ = 1) and the high-
+symmetry nonpolar configuration (λ = 0, space group P63/mmc), the free energy F(λ)
+under D = 0 can be estimated as [40, 41]
+F(λ) = U(λ) + Ω(λ) 1 + 1
+2χ∞(λ)
+ϵ0[1 + χ∞(λ)]2P 2(λ)
+(1)
+where U(λ), P(λ), χ∞(λ), and Ω(λ) are the DFT total (internal) energy per unit cell, electric
+polarization, high-frequency dielectric permittivity along the polar direction, and the unit
+cell volume of AlSb at configuration λ, respectively, and ϵ0 is the vacuum permittivity. The
+internal energy U(λ) becomes the electric free energy under short-circuit boundary condition
+(SCBC, E = 0) and the second term is the depolarization energy fd associated with the
+depolarization field under OCBC. All quantities required to evaluate F(λ) are bulk values
+easily accessible via conventional DFT calculations. This analytical formation of F(λ) has
+been used to understand the origin of hyperferroelectricity [40] in thin films under OCBC.
+As shown in Fig. 3a, the potential well of U(λ) is rather deep under SCBC. After intro-
+ducing the depolarization effect under OCBC, the well becomes shallower and the ground
+state remains polar as F(λ) reaches the minimum at λ =0.7. It is noted that Eq. 1 does not
+consider the impact of surface reconstruction or the change in χ∞(λ) with reduced dimen-
+sion. Nevertheless, the simple analytical model of Eq. 1 predicts that AlSb has a low-energy
+polar state under OCBC, resembling a hyperferroelectric [42]. We also plot the DFT energy
+6
+
+profile for the ferroelectric-antiferroelectric transition in 3L AlSb in Fig. 3a. By compar-
+ing the analytical and DFT results, we suggest the surface reconstruction of 3L AlSb that
+has group-V anions becoming the outmost surface layers strongly stabilize the polar phase
+(λ = 1.1), while the emergence of a low-energy antiferroelectric phase (not captured by the
+analytical model) is critical for the polarization switchability.
+We now consider the electronic properties of 2L and 3L AlSb. Semilocal density func-
+tionals such as PBE often underestimate the band gap due to the remnant self-interaction
+error. To obtain accurate electronic structures of 3L AlSb, we employ a newly developed
+pseudohybrid Hubbard density functional, extend Agapito–Cuetarolo–Buongiorno Nardelli
+(eACBN0) [43–45]. The eACBN0 function is a DFT+U+V method with self-consistently
+computed Hubbard U (V ) parameters that account for the onsite (intersite) Coulomb inter-
+actions, thus capable of capturing the local variations of Coulomb screening. Particularly for
+low-dimensional materials, eACBN0 yields better descriptions of the electronic structures
+than hybrid density functionals such as HSE06 [46] that assumes fixed dielectric screen-
+ing [44, 47]. Figure 3b-c presents the eACBN0 band structures for 3L AlSb in ferroelectric
+and antiferroelectric phases (see the comparison of eACBN0 and HSE06 band structures
+in Supporting Information). We find that the ferroelectric phase is a semimetal while the
+antiferroelectric phase is a semiconductor with a band gap of 0.7 eV. The semimetal nature
+of the ferroelectric phase is due to the built-in depolarization field that induces a band bend-
+ing [48, 49] such that the valence band maximum (VBM) and the conduction band minimum
+(CBM) are dominated by the states of P − and P + surfaces, respectively (Fig. 3b). Moreover,
+we compute the field-induced forces (Fig. 3b inset) and find that nearly all atoms are affected
+by an applied field. This indciates the (semi)metallic ferroelectric 3AlSb remains electrically
+switchable, similar to 2D metallic WTe2 [15]. In contrast, the antiferroelectric phase has null
+depolarization field and the band gap is mostly determined by the hybridization of Al-3p
+and Sb-5p states. The strong coupling between the polarization state and the band gap
+in 3L AlSb enables intrinsically voltage-switchable metal-semiconductor transition [50], a
+useful feature to realize on-off states for device applications.
+The ferroelectric field effect transistor (FeFET) comprising a semiconductor as the chan-
+nel material and a ferroelectric as the gate insulator is an attractive architecture to realize
+low-power, high-speed, and high-density nonvolatile memory. Our DFT calculations show
+that 2L AlSb is a nonpolar semiconductor with a band gap of 0.5 eV. Taking advantage
+7
+
+of the semiconducting property of 2L AlSb and the tristable polarization states affored by
+3L AlSb, we propose a 2D homojunction FET using 3L AlSb as the gate insulator and 2L
+AlSb as the channel material (Fig. 4a). The design based on a homojunction could simply
+the fabrication process and improve the device performance over the heterojucntion-based
+device by reducing interfacial defects.
+We compute the eACBN0 band structures of a 2L-3L homojunction with 3L AlSb adopt-
+ing different polarization states. The contributions from states of 2L AlSb are highlighted in
+the band structures to reveal the electrical properties of the channel. As shown in Fig. 4d-f,
+the conductivity of 2L AlSb is readily regulated by the polarization state of 3L AlSb. Specif-
+ically, when the 3L AlSb adopts the antiferroelectric state, the channel consisting of 2L AlSb
+is a semicondcutor with a band gap of ≈0.6 eV (Fig. 4d). When the polarization of 3L AlSb
+is switched toward 2L AlSb, the band structure of the homojunction reveals a n-type doped
+2L AlSb (Fig. 4e). This can be understood from the band diagram (right before the charge
+transfer) illustrated in Fig. 4b. Because the VBM of 3L AlSb is higher in energy than the
+CBM of 2L AlSb, high-energy electrons in 3L AlSb naturally relax to the conduction bands
+of 2L AlSb, effectively n-type doping the channel. Finally, in the case where 3L AlSb has the
+polarization pointing away from 2L AlSb, the channel becomes hole doped as the electrons
+in 2L AlSb relax to the CBM of 3L AlSb that is lower in energy (Fig. 4c). Therefore, the
+tristable polarization states of 3L AlSb create three resistance states of the channel, suitable
+for nonvolatile multistate functional applications.
+In addition, the nanoscale deterministic ferroelectric domain engineering can be employed
+to configure the 2L-3L homojunction into high-density p-n junction arrays as well as p-i-
+n junction arrays where the tristable polarization states of 3L AlSb control the carrier
+type and density in 2L AlSb, as shown in Fig. 4g. The voltage-configurable multidomain
+pattern offers a platform to design energy-efficient, high-density synaptic electronics and
+neuromorphic systems.
+In summary, we propose a strategy to obtain switchable 2D polar materials with promis-
+ing compatibility with the main stream semiconductor industry. The depolarization field
+that is often considered detrimental to ferroelectric properties is used as a physical stressor to
+convert unswitchable bulk III-V semiconductors to 2D materials with reversible polarization.
+The delicate competition between the local polarization energy, the global depolarization en-
+ergy, and the neighboring dipolar coupling in 2D gives rise to a thickness-sensitive phase
+8
+
+competition. The triatomic layer of AlSb is demonstrated to exhibit tristable polarization
+states thus hosting both ferroelectricity and antiferroelectricity. We have explored the func-
+tionalities of AlSb-based 2D homojunctions consisting of diatomic and triatomic layers and
+predicted the emergence of three distinct and nonvolatile resistance states characterized by
+different carrier type and density. The readily regulable doping by the tristable polarization
+states potentially enables facile fabrications of high-density periodic p-n and p-i-n junctions
+at the nanoscale for nanoelectric and optoelectronic devices.
+ACKNOWLEDGMENTS
+C.K., S.L. acknowledge the supports from Westlake Education Foundation. The compu-
+tational resource is provided by Westlake HPC Center.
+9
+
+[1] J. F. Scott, Applications of modern ferroelectrics, Science 315, 954 (2007).
+[2] L. W. Martin and A. M. Rappe, Thin-film ferroelectric materials and their applications, Nat.
+Rev. Mater. 2, 16087 (2016).
+[3] T. Mikolajick, S. Slesazeck, H. Mulaosmanovic, M. H. Park, S. Fichtner, P. D. Lomenzo,
+M. Hoffmann, and U. Schroeder, Next generation ferroelectric materials for semiconductor
+process integration and their applications, J. Appl. Phys. 129, 100901 (2021).
+[4] M. Wu and P. Jena, The rise of two-dimensional van der waals ferroelectrics, WIREs Comput.
+Mol. Sci. 8, e1365 (2018).
+[5] Z. Guan, H. Hu, X. Shen, P. Xiang, N. Zhong, J. Chu, and C. Duan, Recent progress in
+two-dimensional ferroelectric materials, Adv. Electron. Mater. 6, 1900818 (2019).
+[6] M. Kruse, U. Petralanda, M. N. Gjerding, K. W. Jacobsen, K. S. Thygesen, and T. Olsen, Two-
+dimensional ferroelectrics from high throughput computational screening, arXiv , 2102.11508
+(2022).
+[7] F. Liu, L. You, K. L. Seyler, X. Li, P. Yu, J. Lin, X. Wang, J. Zhou, H. Wang, H. He, S. T.
+Pantelides, W. Zhou, P. Sharma, X. Xu, P. M. Ajayan, J. Wang, and Z. Liu, Room-temperature
+ferroelectricity in CuInP2S6 ultrathin flakes, Nat. Commun. 7, 12357 (2016).
+[8] W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang, and W. Zhu, Prediction of
+intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der waals materials,
+Nat. Commun. 8, 14956 (2017).
+[9] Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C.
+Downer, H. Peng, and K. Lai, Out-of-plane piezoelectricity and ferroelectricity in layered
+α-In2Se3 nanoflakes, Nano Lett. 17, 5508 (2017).
+[10] C. Cui, W.-J. Hu, X. Yan, C. Addiego, W. Gao, Y. Wang, Z. Wang, L. Li, Y. Cheng, P. Li,
+X. Zhang, H. N. Alshareef, T. Wu, W. Zhu, X. Pan, and L.-J. Li, Intercorrelated in-plane and
+out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3, Nano
+Lett. 18, 1253 (2018).
+[11] J. Xiao, H. Zhu, Y. Wang, W. Feng, Y. Hu, A. Dasgupta, Y. Han, Y. Wang, D. A. Muller,
+L. W. Martin, P. Hu, and X. Zhang, Intrinsic two-dimensional ferroelectricity with dipole
+locking, Phys. Rev. Lett. 120, 227601 (2018).
+10
+
+[12] S. M. Poh, S. J. R. Tan, H. Wang, P. Song, I. H. Abidi, X. Zhao, J. Dan, J. Chen, Z. Luo,
+S. J. Pennycook, A. H. C. Neto, and K. P. Loh, Molecular-beam epitaxy of two-dimensional
+In2Se3 and its giant electroresistance switching in ferroresistive memory junction, Nano Lett.
+18, 6340 (2018).
+[13] S. Wan, Y. Li, W. Li, X. Mao, W. Zhu, and H. Zeng, Room-temperature ferroelectricity and
+a switchable diode effect in two-dimensional α-In2Se3 thin layers, Nanoscale 10, 14885 (2018).
+[14] S. Yuan, X. Luo, H. L. Chan, C. Xiao, Y. Dai, M. Xie, and J. Hao, Room-temperature
+ferroelectricity in MoTe2 down to the atomic monolayer limit, Nat. Commun. 10, 1775 (2019).
+[15] Z. Fei, W. Zhao, T. A. Palomaki, B. Sun, M. K. Miller, Z. Zhao, J. Yan, X. Xu, and D. H.
+Cobden, Ferroelectric switching of a two-dimensional metal, Nature 560, 336 (2018).
+[16] K. Ferri, S. Bachu, W. Zhu, M. Imperatore, J. Hayden, N. Alem, N. Giebink, S. Trolier-
+McKinstry, and J.-P. Maria, Ferroelectrics everywhere: Ferroelectricity in magnesium substi-
+tuted zinc oxide thin films, J. Appl. Phys. 130, 044101 (2021).
+[17] S. Fichtner, N. Wolff, F. Lofink, L. Kienle, and B. Wagner, AlScN: A III-V semiconductor
+based ferroelectric, J. Appl. Phys. 125, 114103 (2019).
+[18] J. Jeong, S. K. Kim, J. Kim, D.-M. Geum, D. Kim, E. Jo, H. Jeong, J. Park, J.-H. Jang,
+S. Choi, I. Kwon, and S. Kim, Heterogeneous and monolithic 3d integration of III–V-based
+radio frequency devices on Si CMOS circuits, ACS Nano 16, 9031 (2022).
+[19] S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds,
+I. Ross, P. M. Smowton, and H. Liu, Electrically pumped continuous-wave III–V quantum dot
+lasers on silicon, Nat. Photonics 10, 307 (2016).
+[20] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, Band parameters for III–V compound
+semiconductors and their alloys, J. Appl. Phys. 89, 5815 (2001).
+[21] W. Yang, Y. Li, F. Meng, H. Yu, M. Wang, P. Wang, G. Luo, X. Zhou, and J. Pan, III–V
+compound materials and lasers on silicon, J. Semicond. 40, 101305 (2019).
+[22] III-V
+on
+Silicon,
+https://www.iqep.com/innovation/new-technology-platforms/
+iii-v-on-silicon/, (accessed on 2023–12).
+[23] J. Junquera and P. Ghosez, Critical thickness for ferroelectricity in perovskite ultrathin films,
+Nature 422, 506 (2003).
+[24] G. Kresse and F. J, Efficient iterative schemes for ab initio total-energy calculations using a
+plane-wave basis set, Phys. Rev. B 54, 11169 (1996).
+11
+
+[25] G. Kresse and F. J, Efficiency of ab-initio total energy calculations for metals and semicon-
+ductors using a plane-wave basis set, Comput. Mater. Sci. 6, 15 (1996).
+[26] P. E. Blochl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994).
+[27] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin,
+X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and
+surfaces, Phys. Rev. Lett. 100, 136406 (2008).
+[28] S. Nos´e, A unified formulation of the constant temperature molecular dynamics methods, J.
+Chem. Phys. 81, 511 (1984).
+[29] W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31,
+1695 (1985).
+[30] A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater.
+108, 1 (2015).
+[31] D. Wu, M. G. Lagally, and F. Liu, Stabilizing graphitic thin films of wurtzite materials by
+epitaxial strain, Phys. Rev. Lett. 107, 236101 (2011).
+[32] H. S¸ahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, and S. Ciraci,
+Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-
+principles calculations, Phys. Rev. B 80, 155453 (2009).
+[33] H. L. Zhuang, A. K. Singh, and R. G. Hennig, Computational discovery of single-layer III-V
+materials, Phys. Rev. B 87, 165415 (2013).
+[34] R. Gao and Y. Gao, Piezoelectricity in two-dimensional group III-V buckled honeycomb mono-
+layers, Phys. Status Solidi RRL 11, 1600412 (2017).
+[35] G. Shirane, Ferroelectricity and antiferroelectricity in ceramic PbZrO3 containing Ba or Sr,
+Phys. Rev. 86, 219 (1952).
+[36] J. Huang, Y. Hu, and S. Liu, Origin of ferroelectricity in magnesium-doped zinc oxide, Phys.
+Rev. B 106, 144106 (2022).
+[37] A. R. Oganov and C. W. Glass, Crystal structure prediction using ab initio evolutionary
+techniques: Principles and applications, J. Chem. Phys. 124, 244704 (2006).
+[38] A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu, New developments in evolutionary
+structure prediction algorithm USPEX, Comput. Phys. Commun. 184, 1172 (2013).
+[39] A. R. Oganov, A. O. Lyakhov, and M. Valle, How evolutionary crystal structure prediction
+works—and why, Acc. Chem. Res. 44, 227 (2011).
+12
+
+[40] R. Adhikari and H. Fu, Hyperferroelectricity in zno: Evidence from analytic formulation and
+numerical calculations, Phys. Rev. B 99, 104101 (2019).
+[41] S. Qiu, L. Ma, S. Liu, and H. Fu, Possible existence of tristable polarization states in linbo3
+under an open-circuit boundary condition, Phys. Rev. B 104, 064112 (2021).
+[42] K. F. Garrity, K. M. Rabe, and D. Vanderbilt, Hyperferroelectrics: Proper ferroelectrics with
+persistent polarization, Phys. Rev. Lett. 112, 127601 (2014).
+[43] L. A. Agapito, A. Ferretti, A. Calzolari, S. Curtarolo, and M. B. Nardelli, Effective and
+accurate representation of extended Bloch states on finite Hilbert spaces, Phys. Rev. B 88,
+165127 (2013).
+[44] S.-H. Lee and Y.-W. Son, First-principles approach with a pseudohybrid density functional
+for extended Hubbard interactions, Phys. Rev. Research 2, 043410 (2020).
+[45] N. Tancogne-Dejean and A. Rubio, Parameter-free hybridlike functional based on an extended
+Hubbard model: DFT+U+V , Phys. Rev. B 102, 155117 (2020).
+[46] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, Influence of the exchange
+screening parameter on the performance of screened hybrid functionals, J. Chem. Phys. 125,
+224106 (2006).
+[47] J. Huang, S.-H. Lee, Y.-W. Son, A. Supka, and S. Liu, First-principles study of two-
+dimensional ferroelectrics using self-consistent hubbard parameters, Phys. Rev. B 102, 165157
+(2020).
+[48] C. Ke, J. Huang, and S. Liu, Two-dimensional ferroelectric metal for electrocatalysis, Mater.
+Horiz. 8, 3387 (2021).
+[49] J. Huang, X. Duan, S. Jeon, Y. Kim, J. Zhou, J. Li, and S. Liu, On-demand quantum spin
+hall insulators controlled by two-dimensional ferroelectricity, Mater. Horiz. 9, 1440 (2022).
+[50] X. Duan, J. Huang, B. Xu, and S. Liu, A two-dimensional multiferroic metal with voltage-
+tunable magnetization and metallicity, Mater. Horiz 8, 2316 (2021).
+13
+
+FIG. 1. (a) Utilizing the depolarization energy (fd) to soften unswitchable piezoelectrics with large
+barrier ∆U separating two polar states. The delicate balance between ∆U, fd, and the energy cost
+(fc) to form antiparallel neighboring dipoles may lead to a triple well in thin films. (b) Construction
+of ultrathin 2D sheets by cutting wurtzite III-V piezoelectrics along the c plane. The thickness of
+the sheet is defined as the number (nL) of atomic planes. The right panel shows the optimized
+structures of monolayer (1L), diatomic layer (2L), and triatomic layer (3L). (c) Energy barrier
+(∆U) in bulk and 1L and 3L sheets. (d) Formation energy (Ef
+vac) of 1L, 2L, and 3L sheets. (e)
+Energy of antipolar (EAP) and polar (EP) phases in 3L sheets relative to the paraelectric (EPE)
+phase.
+14
+
+C
+a
+1L
+△U (Ferroelectrics)
+△U+fa
+0.8
+Energy
+GaSb
+AlSb
+2L
+InSb
+0.6
+AlAs
+GaAs
+e
+0.4
+InAs
+GaP
+U (Pizoelectrics)
+AIP
+0.2
+Inp
+Energy
+0.0
+10n
+ Bulk
+anion
+Bulk
+n. = 1
+Unswitchable
+Polarization
+d
+e
+n =3
+1.6
+Polar
+0.0
+u
+f
+(Cn
+1.2
+(eV/
+-0.4
+(eV/
+InP
+EpE
+0.8
+InAs
+GaAs GaSb
+GaP
+InSb
+Antipolar
+-0.8
+0.4
+E
+AlIAs AISb
+AIP
+-1.2
+Polar
+Antipolar
+0.0
+nL =2
+AlP AlAs AlSb GaP GaAs GaSb
+InP
+InAsFIG. 2. (a) Phonon dispersion relationships of 3L AlSb in the polar phase (left) and antipolar
+phase (right). (b) AIMD simulations. The top pannel shows the energy evolution as a function of
+time at 600 K. The bottom pannel shows the distribution of out-of-plane local displacements (∆z)
+of Al atoms in the central layer. (c) Minimum energy path obtained with NEB connecting the
+polar and antipolar phases. (d) Convex hull of AlxSb1−x from variable-composition evolutionary
+structure search.
+15
+
+C
+a
+Polar
+Antipolar
+400
+300
+0.1
+(cm
+一
+200
+200
+100
+-0.1
+100
+d
+0.
+b
+M
+K
+K
+0.5
+2
+9
+10
+4
+Enthalpy of formation (eVlatom)
+Time (ps)
+Polar
+-103
+0.4
+Antipolar
+104
+0.3
+-108
+0.1
+20%
+Percentage
+15%
+Percentage.
+16%
+0.0
+12%
+%0
+V
+8%
+-0.1
+Antipolar
+Polar
+5%
+4%
+P2/c
+Pmmm
+-0.2
+Cm (FE phase)
+P1
+.
+%0
+L
+-1.5
+-1.0
+-0.5
+0.5
+1.5
+-1.0
+-0.5
+0.5
+0.0
+1.0
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+△z (A)
+△z (A)
+Composition: Al/(Al+Sb)FIG. 3. (a) Electric free energy F(λ) of AlSb under SCBC (E = 0) and OCBC (D = 0). The DFT
+minimum energy pathway (blue line) connecting the ferroelectric (FE) and antiferroelectric (AFE)
+phases in 3L AlSb is plotted for comparison. Electronic band structures of (b) ferroelectric and
+(c) antiferroelectric 3L AlSb computed with eACBN0. The ferroelectric phase is a semimetal and
+the projected band structure has atomic orbital contributions from P − and P + surfaces colored
+in blue and red, respectively. The inset in (b) shows the atomic forces induced by an electric field
+applied against POP, showing that nearly all atoms are affected by the applied field despite that
+the ferroelectric phase is a semimetal.
+16
+
+a
+OCBC, D=0
+0
+入= 0.7
+F(2) (eV)
+DFT
+Ferroelectric
+Antiferroelectric
+SCBC.E=0
+?
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+1.2
+b
+入
+2
+1
+(eV)
+FE
+0
+E
+-1
+-2
+M
+K
+M
+C
+Z
+1
+(eV)
+AFE
+0
+E
+-1
+-2
+M
+K
+MFIG. 4. (a) Sechmatic of a 2D homojunction field effect transistor consisting of semiconducting
+2L AlSb and tristable 3L AlSb. (b) Band bending diagrams of 2L-3L homojunction. The depo-
+larization field Ed in ferroelectric 3L AlSb creates a potential step ∆Φ across the sheet. When
+POP points toward 2L AlSb, the high-energy electrons transfer from 3L to 2L, making 2L n-type
+doped. The polarization reversal will lead to a p-type doped 2L AlSb. Projected electronic band
+structures and density of states of 2L-3L homojunction with 3L adopting (d) antiferroelectric, (e)
+upward polarization, and (f) downward polarization, showing atomic orbital contributions from 2L
+AlSb. (g) Schematic of voltage-configurable multidomain-determined high-density p-n and p-i-n
+junction arrays.
+17
+
+e
+d
+Source
+Drain
+ev
+2L
+3L
+-2
+e
+Gate
+b
+Pop
+PoP
+n-type
+c
+ev
+E
+Vacuum
+AΦ
+AΦ
+-2
+M
+M
+Level
+f
+p-type
+doped
+e
+VBM
+1
+CBM
+e
+n-type
+h+
+e
+p-type
+(eV)
+doped
+0
+E
+-1
+g
+Writing
+p-n
+31
+个个
+h+
+e
+h+
+e
+p-i-n
\ No newline at end of file
diff --git a/ctE2T4oBgHgl3EQfagfL/content/tmp_files/load_file.txt b/ctE2T4oBgHgl3EQfagfL/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..c3bc1b6dc1a1ca6f4aecb562715f4bc8dab89b4b
--- /dev/null
+++ b/ctE2T4oBgHgl3EQfagfL/content/tmp_files/load_file.txt
@@ -0,0 +1,775 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf,len=774
+page_content='Depolarization Induced III-V Triatomic Layers with Tristable Polarization States Changming Ke,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 2 Yihao Hu,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 2 and Shi Liu1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' ∗ 1Key Laboratory for Quantum Materials of Zhejiang Province,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' School of Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Westlake University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Hangzhou,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhejiang 310030,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' China 2Institute of Natural Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Westlake Institute for Advanced Study,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Hangzhou,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhejiang 310024,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' China Abstract The integration of ferroelectrics that exhibit high dielectric,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' piezoelectric,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' and thermal suscepti- bilities with the mainstream semiconductor industry will enable novel device types for widespread applications,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' and yet there are few silicon-compatible ferroelectrics suitable for device downscal- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' We demonstrate with first-principles calculations that the enhanced depolarization field at the nanoscale can be utilized to soften unswitchable wurtzite III-V semiconductors, resulting in ultrathin two-dimensional (2D) sheets possessing reversible polarization states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' A 2D sheet of AlSb consisting of three atomic planes is identified to host both ferroelectricity and antiferroelectricity, and the tristate switching is accompanied by a metal-semiconductor transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The thermody- namics stability and potential synthesizability of the triatomic layer are corroborated with phonon spectrum calculations, ab initio molecular dynamics, and variable-composition evolutionary struc- ture search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' We propose a 2D AlSb-based homojunction field effect transistor that supports three distinct and nonvolatile resistance states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' This new class of III-V semiconductor-derived 2D ma- terials with dual ferroelectricity and antiferroelectricity opens up the possibility for nonvolatile multibit-based integrated nanoelectronics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' ∗ liushi@westlake.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='cn 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='03876v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='mtrl-sci] 10 Jan 2023 Ferroelectricity, as an extensively studied dipolar ordering state of insulators, is charac- terized by electrically switchable polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The strong coupling between polarization, strain, and electronic degrees of freedom of ferroelectrics have made them critical compo- nents in numerous devices such as sensors, actuators, and nonvolatile memories [1, 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The continuing demand for miniaturized electronics has imposed stringent requirements on fer- roelectrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' In particular, to incorporate ferroelectric functionalities into integrated circuits via the current semiconductor manufacturing process, materials with nanoscale switchable dipoles and silicon compatibility are essential [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Two-dimensional (2D) ferroelectrics with long-range dipolar ordering in atom-thick crys- talline layers are promising materials for ferroelectric-based nanoelectronics because of their various merits such as the uniform atomic thickness for high-density integration and the easy preparation of high-quality interface in van der Waals heterostructures [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' However, similar to perovskite ferroelectrics, most 2D ferroelectrics also suffer from the depolariza- tion effect such that they often have the polarization developed in-plane [5, 6], a feature that is inconvenient for lateral downscaling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Atomically thin monolayers with out-of-plane polarization (POP) remains rare, and few notable examples confirmed experimentally are CuInP2S6 [7], α-In2Se3 [8–13], MoTe2 [14], and WTe2 [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Additionally, it remains unclear how to integrate these 2D ferroelectrics with the mainstream semiconductor technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' A strategy to obtain new ferroelectrics suitable for integrated systems is to “soften” silicon-compatible piezoelectrics to make them switchable by applying appropriate “stres- sors” [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' For example, by substituting Sc into a well-known nitride piezoelectric, AlN, Fichtner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' realized a giant switchable polarization (80–110 µC/cm2) in Al1−xScxN [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' More recently, starting with another widely used piezoelectric, ZnO, Ferri et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' synthesized thin films of Zn1−xMgxO and reported even larger switchable polarization of > 100 µC/cm2 and coercive fields below 3 MV/cm at room temperatures [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' In both cases, the essence is to destabilize an unswitchble piezoelectric by applying a chemical stressor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' We propose to “physically soften” silicon-compatible piezoelectrics represented by III-V wurtzite piezoelectrics via dimension reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Products based on III-V semiconductors have been widely employed in mobile devices, wireless networks, satellite communications, and optoelectronics [18–20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' For example, the 4th-generation (4G) wireless networks depend on thin-film bulk acoustic resonators consisting of piezoelectric wurtzite AlN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' At present, the industry of III-V semiconductor manufacturing is well established.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Several approaches 2 such as direct growth of III-V on Si, III-V on lattice engineered substrate, and III-V on Ge-Si template have been developed to integrate III-V compounds with the cutting-edge modern complementary metal oxide semiconductor (CMOS) technology [21, 22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' There- fore, III-V semiconductor-based 2D ferroelectrics, if available, will reduce the barrier of integrating ferroelectric functionalities with silicon-based technology and lower the cost of commercialization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The physical stressor we employ is the enhanced depolarization field at the nanosale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The depolarization field (Ed) arising from the incomplete screening of surface polarization bound charges scales inversely with the film thickness (Ed ∝ Ps/d with Ps the remnant polarization and d the film thickness) [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' In thin films of conventional perovskite ferroelectrics such as PbTiO3, the intrinsic double-well energy landscape of a ferroelectric will eventually be flattened out by the pronounced depolarization field in thin films below a critical thickness, leading to a nonpolar paraelectric ground state (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 1a top panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' In contrast, some piezo- electrics such as wurtzite AlN are unswitchable in bulk because the barrier (∆U) separating two polar states is prohibitively large such that the switching field exceeds the dielectric breakdown limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Utilizing the increased depolarization energy (fd) with reduced dimension (fd ∝ P 2 s /d) to compensate ∆U, we suggest it is feasible to soften piezoelectrics to 2D ferro- electrics with switchable POP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Another competing phase that could emerge in thin films is an antipolar phase with neighboring antiparallel dipoles that has zero depolarization energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' It is expected that the neighboring dipoles in bulk wurtzite piezoelectrics strongly favor the parallel alignment with a coupling strength characterized by J;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' forming an antipolar phase thus comes with an energy cost, fc ∝ zJ, with z the coordination number of a local dipole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Heuristically, the competition between ∆U, fd, and fc determines the ground state (polar, antipolar, or paraelectric) in free-standing thin films.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Moreover, a triple potential well may emerge by engineering the relative magnitudes of competing energy terms (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 1a bottom panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' We explore our design principle with first-principles density functional theory (DFT) cal- culations, focusing on ultrathin 2D sheets of wurtzite III-V compounds (III=Al, Ga, In;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' V=N, P, As).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' We discover a nonpolar diatomic layer (2L) and a triatomic layer (3L) with spontaneous local inversion symmetry breaking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Specifically for 3L sheets, it can adopt a high-energy polar state with POP and a low-energy antipolar state with neighboring an- tiparallel dipoles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Interestingly, the polar and antipolar states in 3L AlSb are both dy- 3 namically stable, as confirmed by phonon spectrum calculations and ab initio molecular dynamics (AIMD), and these two states are comparable in energy, making 3L AlSb an un- usual tristable system that supports both ferroelectricity and antiferroelectricity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Moreover, the electronic degree of freedom is directly coupled to the polar ordering in 3L AlSb, and the tristate switching is accompanied with a metal-semiconductor transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' We propose a 2D homojunction field effect transistor (FET) consisting of 2L and 3L AlSb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The carrier type and density in the semiconducting channel of 2L AlSb can be effectively regulated by the polarization state of 3L AlSb, leading to three distinct and nonvolatile resistance states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The deterministic ferroelectric domain engineering at the nanoscale could be used to pattern the 2L-3L homojunction as high-density periodic arrays of p-n junctions and p-i-n junctions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The proposed 2D sheets of III-V compounds supporting tristable polarization states offer promise for experimental investigation and for the development and design of nonvolatile multistate functional applications such as high-density memory and synaptic electronics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' DFT calculations are performed using Vienna ab initio Simulation Package (VASP) [24, 25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The interaction between the core ion and electrons is described by the projector augmented wave (PAW) method [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The PBEsol functional is chosen as the exchange- correlation functional [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The vacuum layer along the c axis is thicker than 15 ˚A in the slab model, and the dipole correction is employed to remove the spurious interaction between different periodic images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' We use an energy cutoff of 700 eV, a 8×8×1 Monkhorst–Pack k-point mesh, and an energy convergence threshold of 10−8 eV for electronic self-consistent calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The convergence criterion for an optimized structure is 10−7 eV in energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The structural stability at finite temperatures is studied by NV T AIMD simulations using the Γ- point sampling with the temperature controlled using the Nos´e-Hoover thermostat [28, 29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The phonon spectrum is computed using the frozen phonon approach as implemented in Phonopy [30] in conjunction with VASP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The 2D sheet is constructed by cutting the bulk along the c plane, and the thickness of the film is defined as the number (nL) of atomic planes (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 1b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' In the case of monolayers (nL=1), we find that all nitrides favor the planar structure [31] whereas monolayers of other III-V compounds are buckled honeycomb structures characterized by the presence of POP and small values of ∆U (< 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='2 eV, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 1c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' We note that III–V buckled honeycomb monolayers have been studied previously with DFT [32–34], though the 2D ferroelectricity was not appreciated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The formation energy per formula unit (f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=') of an isolated 2D sheet 4 with respect to the bulk counterpart is defined as Ef vac = E2D/nL − E3D/N3D, where E2D is the energy of the 2D sheet consisting of nL atomic planes and E3D is the energy of a cell in bulk containing N3D atomic planes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Though several III-V monolayers are potential 2D ferroelectrics featuring small switching barriers, their formation energies are rather large (> 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='8 eV/f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=', Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 1d), hinting at the difficulty of synthesis in experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' When the thickness increases to nL=2, for III-V compounds (III=Al, Ga, In, V=P, As, Sb), the initial wurtzite-like configuration is no longer stable, and the optimized diatomic layer denoted as 2L acquires the inversion symmetry thus being nonpolar (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 1b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Further increasing the thickness to nL=3 surprisingly revives POP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The triatomic layer labeled as 3L has a buckled central layer that breaks the out-of-plane inversion symmetry (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 1b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Structurally, both 2L and 3L have group-V anions being the outermost surface layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' We note that 3L sheets have much lower formation energies than monolayers albeit with higher ∆U (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 1c-d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' This seems to suggest III-V compounds in the 3L form are easier to synthesize but remain unswitchable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Following the design principle, we investigate possible competing antipolar phases in 3L sheets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' We identify an antipolar phase that has the energy consistently lower than the polar phase (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 1e and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' S1 in Supporting Information).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Based on Shirane’s energetic criterion on antiferroelectricity, an antiferroelectric is an antipolar crystal with free energy comparable to that of the reference polar crystal that has aligned sublattice local dipoles [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Therefore, we suggest 3L sheets of AlSb and GaSb likely host antiferroelectricity as their polar and antipolar phases are close in energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' In below, we demonstrate that 3L AlSb is an unusual tristable system that supports both ferroelectricity and antiferroelectricity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Figure 2a presents the phonon spectra of 3L AlSb in polar and antipolar phase, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Since the phonon spectra have no imaginary vibrational frequencies over the whole Brillouin zone, polar and nonpolar phases are dynamically stable and each locates at a lo- cal minimum of the potential energy surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' We perform AIMD simulations at elevated temperatures to check the structural stability against larger atomic distortions due to ther- mal fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The evolution of the total energy at 600 K during AIMD simulations is shown for both phases in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 2b, revealing no sign of structural destruction or recon- struction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' This serves as a strong evidence to corroborate the room-temperature stability of 3L AlSb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' A defining feature of (anti)ferroelectricity is the polarization reversibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' As depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 2c, the barrier separating the polar and antipolar phase obtained with the 5 nudged elastic band (NEB) method is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='1 eV that is lower than the barrier in conventional perovskite ferroelectrics such as PbTiO3 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='17 eV) [36], indicating a switchable polarization by an external electric field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Therefore, 3L AlSb is a rare 2D material characterized by tristable and electrically switchable polarization states and thus hosts both ferroelectricity and antiferroelectricity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' In addition, we perform a structural search using the variable-composition evolutionary algorithm as implemented in USPEX [37–39] with a 6-atom slab model confined within 9 ˚A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 2d compiles the DFT formation enthalpies of all identified 2D crystals for Al1−xSbx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' We find that ferroelectric 3L AlSb has a convex hall distance of zero, further supporting its thermodynamic stability and synthesizability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The emergence of POP in ferroelectric 3L AlSb can be understood by determining the electric free energy (F) of wurtzite AlSb under an open-circuit boundary condition (OCBC) that has D = 0 where D is the electric displacement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' For an intermediate configuration λ obtained by linear interpolating the ground-state polar configuration (λ = 1) and the high- symmetry nonpolar configuration (λ = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' space group P63/mmc),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' the free energy F(λ) under D = 0 can be estimated as [40,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 41] F(λ) = U(λ) + Ω(λ) 1 + 1 2χ∞(λ) ϵ0[1 + χ∞(λ)]2P 2(λ) (1) where U(λ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' P(λ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' χ∞(λ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' and Ω(λ) are the DFT total (internal) energy per unit cell,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' electric polarization,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' high-frequency dielectric permittivity along the polar direction,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' and the unit cell volume of AlSb at configuration λ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' respectively,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' and ϵ0 is the vacuum permittivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The internal energy U(λ) becomes the electric free energy under short-circuit boundary condition (SCBC, E = 0) and the second term is the depolarization energy fd associated with the depolarization field under OCBC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' All quantities required to evaluate F(λ) are bulk values easily accessible via conventional DFT calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' This analytical formation of F(λ) has been used to understand the origin of hyperferroelectricity [40] in thin films under OCBC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 3a, the potential well of U(λ) is rather deep under SCBC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' After intro- ducing the depolarization effect under OCBC, the well becomes shallower and the ground state remains polar as F(λ) reaches the minimum at λ =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' It is noted that Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 1 does not consider the impact of surface reconstruction or the change in χ∞(λ) with reduced dimen- sion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Nevertheless, the simple analytical model of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 1 predicts that AlSb has a low-energy polar state under OCBC, resembling a hyperferroelectric [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' We also plot the DFT energy 6 profile for the ferroelectric-antiferroelectric transition in 3L AlSb in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 3a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' By compar- ing the analytical and DFT results, we suggest the surface reconstruction of 3L AlSb that has group-V anions becoming the outmost surface layers strongly stabilize the polar phase (λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='1), while the emergence of a low-energy antiferroelectric phase (not captured by the analytical model) is critical for the polarization switchability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' We now consider the electronic properties of 2L and 3L AlSb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Semilocal density func- tionals such as PBE often underestimate the band gap due to the remnant self-interaction error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' To obtain accurate electronic structures of 3L AlSb, we employ a newly developed pseudohybrid Hubbard density functional, extend Agapito–Cuetarolo–Buongiorno Nardelli (eACBN0) [43–45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The eACBN0 function is a DFT+U+V method with self-consistently computed Hubbard U (V ) parameters that account for the onsite (intersite) Coulomb inter- actions, thus capable of capturing the local variations of Coulomb screening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Particularly for low-dimensional materials, eACBN0 yields better descriptions of the electronic structures than hybrid density functionals such as HSE06 [46] that assumes fixed dielectric screen- ing [44, 47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Figure 3b-c presents the eACBN0 band structures for 3L AlSb in ferroelectric and antiferroelectric phases (see the comparison of eACBN0 and HSE06 band structures in Supporting Information).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' We find that the ferroelectric phase is a semimetal while the antiferroelectric phase is a semiconductor with a band gap of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='7 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The semimetal nature of the ferroelectric phase is due to the built-in depolarization field that induces a band bend- ing [48, 49] such that the valence band maximum (VBM) and the conduction band minimum (CBM) are dominated by the states of P − and P + surfaces, respectively (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 3b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Moreover, we compute the field-induced forces (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 3b inset) and find that nearly all atoms are affected by an applied field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' This indciates the (semi)metallic ferroelectric 3AlSb remains electrically switchable, similar to 2D metallic WTe2 [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' In contrast, the antiferroelectric phase has null depolarization field and the band gap is mostly determined by the hybridization of Al-3p and Sb-5p states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The strong coupling between the polarization state and the band gap in 3L AlSb enables intrinsically voltage-switchable metal-semiconductor transition [50], a useful feature to realize on-off states for device applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The ferroelectric field effect transistor (FeFET) comprising a semiconductor as the chan- nel material and a ferroelectric as the gate insulator is an attractive architecture to realize low-power, high-speed, and high-density nonvolatile memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Our DFT calculations show that 2L AlSb is a nonpolar semiconductor with a band gap of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='5 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Taking advantage 7 of the semiconducting property of 2L AlSb and the tristable polarization states affored by 3L AlSb, we propose a 2D homojunction FET using 3L AlSb as the gate insulator and 2L AlSb as the channel material (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 4a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The design based on a homojunction could simply the fabrication process and improve the device performance over the heterojucntion-based device by reducing interfacial defects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' We compute the eACBN0 band structures of a 2L-3L homojunction with 3L AlSb adopt- ing different polarization states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The contributions from states of 2L AlSb are highlighted in the band structures to reveal the electrical properties of the channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 4d-f, the conductivity of 2L AlSb is readily regulated by the polarization state of 3L AlSb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Specif- ically, when the 3L AlSb adopts the antiferroelectric state, the channel consisting of 2L AlSb is a semicondcutor with a band gap of ≈0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='6 eV (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 4d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' When the polarization of 3L AlSb is switched toward 2L AlSb, the band structure of the homojunction reveals a n-type doped 2L AlSb (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 4e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' This can be understood from the band diagram (right before the charge transfer) illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 4b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Because the VBM of 3L AlSb is higher in energy than the CBM of 2L AlSb, high-energy electrons in 3L AlSb naturally relax to the conduction bands of 2L AlSb, effectively n-type doping the channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Finally, in the case where 3L AlSb has the polarization pointing away from 2L AlSb, the channel becomes hole doped as the electrons in 2L AlSb relax to the CBM of 3L AlSb that is lower in energy (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 4c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Therefore, the tristable polarization states of 3L AlSb create three resistance states of the channel, suitable for nonvolatile multistate functional applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' In addition, the nanoscale deterministic ferroelectric domain engineering can be employed to configure the 2L-3L homojunction into high-density p-n junction arrays as well as p-i- n junction arrays where the tristable polarization states of 3L AlSb control the carrier type and density in 2L AlSb, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 4g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The voltage-configurable multidomain pattern offers a platform to design energy-efficient, high-density synaptic electronics and neuromorphic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' In summary, we propose a strategy to obtain switchable 2D polar materials with promis- ing compatibility with the main stream semiconductor industry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The depolarization field that is often considered detrimental to ferroelectric properties is used as a physical stressor to convert unswitchable bulk III-V semiconductors to 2D materials with reversible polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The delicate competition between the local polarization energy, the global depolarization en- ergy, and the neighboring dipolar coupling in 2D gives rise to a thickness-sensitive phase 8 competition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The triatomic layer of AlSb is demonstrated to exhibit tristable polarization states thus hosting both ferroelectricity and antiferroelectricity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' We have explored the func- tionalities of AlSb-based 2D homojunctions consisting of diatomic and triatomic layers and predicted the emergence of three distinct and nonvolatile resistance states characterized by different carrier type and density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The readily regulable doping by the tristable polarization states potentially enables facile fabrications of high-density periodic p-n and p-i-n junctions at the nanoscale for nanoelectric and optoelectronic devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' ACKNOWLEDGMENTS C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=', S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' acknowledge the supports from Westlake Education Foundation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The compu- tational resource is provided by Westlake HPC Center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 9 [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Scott, Applications of modern ferroelectrics, Science 315, 954 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [2] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Martin and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Rappe, Thin-film ferroelectric materials and their applications, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 2, 16087 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [3] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Mikolajick, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Slesazeck, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Mulaosmanovic, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Park, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Fichtner, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Lomenzo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Hoffmann, and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Schroeder, Next generation ferroelectric materials for semiconductor process integration and their applications, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 129, 100901 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Wu and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Jena, The rise of two-dimensional van der waals ferroelectrics, WIREs Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 8, e1365 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [5] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Guan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Hu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Shen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Xiang, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhong, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Chu, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Duan, Recent progress in two-dimensional ferroelectric materials, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 6, 1900818 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Kruse, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Petralanda, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Gjerding, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Jacobsen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Thygesen, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Olsen, Two- dimensional ferroelectrics from high throughput computational screening, arXiv , 2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='11508 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [7] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Liu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' You, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Seyler, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Li, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Yu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Lin, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhou, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' He, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Pantelides, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhou, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Sharma, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Xu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Ajayan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Wang, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Liu, Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 7, 12357 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [8] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Ding, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Gao, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Xiao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Gu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhang, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhu, Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der waals materials, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 8, 14956 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [9] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhou, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Wu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Cho, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' He, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Yang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Herrera, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Chu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Han, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Downer, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Peng, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Lai, Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes, Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 17, 5508 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [10] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Cui, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Hu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Yan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Addiego, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Gao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Cheng, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Alshareef, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Wu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Pan, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Li, Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3, Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 18, 1253 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Xiao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Feng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Hu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Dasgupta, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Han, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Wang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Muller, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Martin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Hu, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhang, Intrinsic two-dimensional ferroelectricity with dipole locking, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 120, 227601 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 10 [12] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Poh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Tan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Wang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Song, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Abidi, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Dan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Luo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Pennycook, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Neto, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Loh, Molecular-beam epitaxy of two-dimensional In2Se3 and its giant electroresistance switching in ferroresistive memory junction, Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 18, 6340 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Wan, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Li, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Mao, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhu, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zeng, Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers, Nanoscale 10, 14885 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [14] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Yuan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Luo, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Chan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Xiao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Dai, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Xie, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Hao, Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 10, 1775 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [15] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Fei, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhao, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Palomaki, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Sun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Miller, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Yan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Xu, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Cobden, Ferroelectric switching of a two-dimensional metal, Nature 560, 336 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [16] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Ferri, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Bachu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Imperatore, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Hayden, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Alem, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Giebink, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Trolier- McKinstry, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Maria, Ferroelectrics everywhere: Ferroelectricity in magnesium substi- tuted zinc oxide thin films, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 130, 044101 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [17] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Fichtner, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Wolff, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Lofink, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Kienle, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Wagner, AlScN: A III-V semiconductor based ferroelectric, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 125, 114103 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [18] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Jeong, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Kim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Kim, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Geum, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Kim, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Jo, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Jeong, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Park, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Jang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Choi, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Kwon, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Kim, Heterogeneous and monolithic 3d integration of III–V-based radio frequency devices on Si CMOS circuits, ACS Nano 16, 9031 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [19] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Chen, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Wu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Jiang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Tang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Shutts, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Elliott, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Sobiesierski, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Seeds, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Ross, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Smowton, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Liu, Electrically pumped continuous-wave III–V quantum dot lasers on silicon, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Photonics 10, 307 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [20] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Vurgaftman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Meyer, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 89, 5815 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [21] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Li, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Meng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Yu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Wang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Wang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Luo, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhou, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Pan, III–V compound materials and lasers on silicon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Semicond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 40, 101305 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [22] III-V on Silicon, https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='iqep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='com/innovation/new-technology-platforms/ iii-v-on-silicon/, (accessed on 2023–12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [23] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Junquera and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Ghosez, Critical thickness for ferroelectricity in perovskite ultrathin films, Nature 422, 506 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [24] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Kresse and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' J, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' B 54, 11169 (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 11 [25] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Kresse and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' J, Efficiency of ab-initio total energy calculations for metals and semicon- ductors using a plane-wave basis set, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 6, 15 (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [26] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Blochl, Projector augmented-wave method, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' B 50, 17953 (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [27] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Perdew, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Ruzsinszky, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Csonka, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Vydrov, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Scuseria, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Constantin, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhou, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 100, 136406 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [28] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Nos´e, A unified formulation of the constant temperature molecular dynamics methods, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 81, 511 (1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [29] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' A 31, 1695 (1985).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [30] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Togo and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Tanaka, First principles phonon calculations in materials science, Scr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 108, 1 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [31] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Wu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Lagally, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Liu, Stabilizing graphitic thin films of wurtzite materials by epitaxial strain, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 107, 236101 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [32] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' S¸ahin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Cahangirov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Topsakal, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Bekaroglu, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Akturk, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Senger, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Ciraci, Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First- principles calculations, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' B 80, 155453 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [33] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhuang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Singh, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Hennig, Computational discovery of single-layer III-V materials, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' B 87, 165415 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [34] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Gao and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Gao, Piezoelectricity in two-dimensional group III-V buckled honeycomb mono- layers, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Status Solidi RRL 11, 1600412 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [35] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Shirane, Ferroelectricity and antiferroelectricity in ceramic PbZrO3 containing Ba or Sr, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 86, 219 (1952).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [36] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Huang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Hu, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Liu, Origin of ferroelectricity in magnesium-doped zinc oxide, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' B 106, 144106 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [37] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Oganov and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Glass, Crystal structure prediction using ab initio evolutionary techniques: Principles and applications, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 124, 244704 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [38] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Lyakhov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Oganov, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Stokes, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhu, New developments in evolutionary structure prediction algorithm USPEX, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 184, 1172 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [39] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Oganov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Lyakhov, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Valle, How evolutionary crystal structure prediction works—and why, Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 44, 227 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 12 [40] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Adhikari and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Fu, Hyperferroelectricity in zno: Evidence from analytic formulation and numerical calculations, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' B 99, 104101 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [41] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Qiu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Ma, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Liu, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Fu, Possible existence of tristable polarization states in linbo3 under an open-circuit boundary condition, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' B 104, 064112 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [42] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Garrity, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Rabe, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Vanderbilt, Hyperferroelectrics: Proper ferroelectrics with persistent polarization, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 112, 127601 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [43] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Agapito, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Ferretti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Calzolari, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Curtarolo, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Nardelli, Effective and accurate representation of extended Bloch states on finite Hilbert spaces, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' B 88, 165127 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [44] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Lee and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Son, First-principles approach with a pseudohybrid density functional for extended Hubbard interactions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Research 2, 043410 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [45] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Tancogne-Dejean and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Rubio, Parameter-free hybridlike functional based on an extended Hubbard model: DFT+U+V , Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' B 102, 155117 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [46] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Krukau, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Vydrov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Izmaylov, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 125, 224106 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [47] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Huang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Lee, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Son, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Supka, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Liu, First-principles study of two- dimensional ferroelectrics using self-consistent hubbard parameters, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' B 102, 165157 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [48] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Ke, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Huang, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Liu, Two-dimensional ferroelectric metal for electrocatalysis, Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Horiz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 8, 3387 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [49] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Huang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Duan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Jeon, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Kim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Zhou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Li, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Liu, On-demand quantum spin hall insulators controlled by two-dimensional ferroelectricity, Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Horiz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 9, 1440 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' [50] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Duan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Huang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Xu, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Liu, A two-dimensional multiferroic metal with voltage- tunable magnetization and metallicity, Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Horiz 8, 2316 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 13 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' (a) Utilizing the depolarization energy (fd) to soften unswitchable piezoelectrics with large barrier ∆U separating two polar states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The delicate balance between ∆U, fd, and the energy cost (fc) to form antiparallel neighboring dipoles may lead to a triple well in thin films.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' (b) Construction of ultrathin 2D sheets by cutting wurtzite III-V piezoelectrics along the c plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The thickness of the sheet is defined as the number (nL) of atomic planes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The right panel shows the optimized structures of monolayer (1L), diatomic layer (2L), and triatomic layer (3L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' (c) Energy barrier (∆U) in bulk and 1L and 3L sheets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' (d) Formation energy (Ef vac) of 1L, 2L, and 3L sheets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' (e) Energy of antipolar (EAP) and polar (EP) phases in 3L sheets relative to the paraelectric (EPE) phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 14 C a 1L △U (Ferroelectrics) △U+fa 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='8 Energy GaSb AlSb 2L InSb 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='6 AlAs GaAs e 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='4 InAs GaP U (Pizoelectrics) AIP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='2 Inp Energy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='0 10n Bulk anion Bulk n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' = 1 Unswitchable Polarization d e n =3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='6 Polar 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='0 u f (Cn 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='2 (eV/ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='4 (eV/ InP EpE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='8 InAs GaAs GaSb GaP InSb Antipolar 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='4 E AlIAs AISb AIP 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='2 Polar Antipolar 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='0 nL =2 AlP AlAs AlSb GaP GaAs GaSb InP InAsFIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' (a) Phonon dispersion relationships of 3L AlSb in the polar phase (left) and antipolar phase (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' (b) AIMD simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The top pannel shows the energy evolution as a function of time at 600 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The bottom pannel shows the distribution of out-of-plane local displacements (∆z) of Al atoms in the central layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' (c) Minimum energy path obtained with NEB connecting the polar and antipolar phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' (d) Convex hull of AlxSb1−x from variable-composition evolutionary structure search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 15 C a Polar Antipolar 400 300 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='1 (cm 一 200 200 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='1 100 d 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' b M K K 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='5 2 9 10 4 Enthalpy of formation (eVlatom) Time (ps) Polar 103 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='4 Antipolar 104 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='3 108 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='1 20% Percentage 15% Percentage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 16% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='0 12% %0 V 8% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='1 Antipolar Polar 5% 4% P2/c Pmmm 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='2 Cm (FE phase) P1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' %0 L 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='0 △z (A) △z (A) Composition: Al/(Al+Sb)FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' (a) Electric free energy F(λ) of AlSb under SCBC (E = 0) and OCBC (D = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The DFT minimum energy pathway (blue line) connecting the ferroelectric (FE) and antiferroelectric (AFE) phases in 3L AlSb is plotted for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Electronic band structures of (b) ferroelectric and (c) antiferroelectric 3L AlSb computed with eACBN0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The ferroelectric phase is a semimetal and the projected band structure has atomic orbital contributions from P − and P + surfaces colored in blue and red, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The inset in (b) shows the atomic forces induced by an electric field applied against POP, showing that nearly all atoms are affected by the applied field despite that the ferroelectric phase is a semimetal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 16 a OCBC, D=0 0 入= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='7 F(2) (eV) DFT Ferroelectric Antiferroelectric SCBC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='E=0 ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content='2 b 入 2 1 (eV) FE 0 E 1 2 M K M C Z 1 (eV) AFE 0 E 1 2 M K MFIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' (a) Sechmatic of a 2D homojunction field effect transistor consisting of semiconducting 2L AlSb and tristable 3L AlSb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' (b) Band bending diagrams of 2L-3L homojunction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The depo- larization field Ed in ferroelectric 3L AlSb creates a potential step ∆Φ across the sheet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' When POP points toward 2L AlSb, the high-energy electrons transfer from 3L to 2L, making 2L n-type doped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' The polarization reversal will lead to a p-type doped 2L AlSb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' Projected electronic band structures and density of states of 2L-3L homojunction with 3L adopting (d) antiferroelectric, (e) upward polarization, and (f) downward polarization, showing atomic orbital contributions from 2L AlSb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' (g) Schematic of voltage-configurable multidomain-determined high-density p-n and p-i-n junction arrays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
+page_content=' 17 e d Source Drain ev 2L 3L 2 e Gate b Pop PoP n-type c ev E Vacuum AΦ AΦ 2 M M Level f p-type doped e VBM 1 CBM e n-type h+ e p-type (eV) doped 0 E 1 g Writing p-n 31 个个 h+ e h+ e p-i-n' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ctE2T4oBgHgl3EQfagfL/content/2301.03876v1.pdf'}
diff --git a/fNE3T4oBgHgl3EQfHglt/content/tmp_files/2301.04324v1.pdf.txt b/fNE3T4oBgHgl3EQfHglt/content/tmp_files/2301.04324v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..c6292a9dab1daf083af61d9ee5f280e1742eb773
--- /dev/null
+++ b/fNE3T4oBgHgl3EQfHglt/content/tmp_files/2301.04324v1.pdf.txt
@@ -0,0 +1,1372 @@
+MNRAS 000, 1–11 (2015)
+Preprint 12 January 2023
+Compiled using MNRAS LATEX style file v3.0
+Investigating the impact of reactions of C and CH with molecular
+hydrogen on a glycine gas-grain network
+Johannes Heyl,1★ Thanja Lamberts,2,3 Serena Viti3,1 and Jonathan Holdship3,1
+1Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT, London, UK
+2Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
+3Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
+Accepted XXX. Received YYY; in original form ZZZ
+ABSTRACT
+The impact of including the reactions of C and CH with molecular hydrogen in a gas-grain network is assessed via a sensitivity
+analysis. To this end, we vary 3 parameters, namely, the efficiency for the reaction C+H2 −−−→ CH2, and the cosmic ray ionisation
+rate, with the third parameter being the final density of the collapsing dark cloud. A grid of 12 models is run to investigate
+the effect of all parameters on the final molecular abundances of the chemical network. We find that including reactions with
+molecular hydrogen alters the hydrogen economy of the network; since some species are hydrogenated by molecular hydrogen,
+atomic hydrogen is freed up. The abundances of simple molecules produced from hydrogenation, such as CH4, CH3OH and
+NH3, increase, and at the same time, more complex species such as glycine and its precursors see a significant decrease in their
+final abundances. We find that the precursors of glycine are being preferentially hydrogenated, and therefore glycine itself is
+produced less efficiently.
+Key words: astrochemistry – ISM: abundances – ISM: molecules
+1 INTRODUCTION
+Interstellar dust plays a significant role in the rich chemistry that
+takes place in the interstellar medium. It is widely believed that
+complex-organic molecules (COMs) form on interstellar dust (Herbst
+& van Dishoeck 2009; Caselli & Ceccarelli 2012) since for certain
+molecules, grain-surface reactions are more efficient than gas-phase
+reactions. This is particularly important in cold astronomical envi-
+ronments where some gas-phase reactions may be highly inefficient,
+because a "third body" is needed to take up the excess heat of an
+exothermic reaction. Dust grains thus act as an energy sink allowing
+the chemistry to thrive and this can lead to the formation of more
+complex organic molecules.
+Both experimental work and modelling has shown that one such
+molecules, namely the amino acid glycine can be formed through
+energetic processing of the ices during the warm-up phase of star
+formation (Bernstein et al. 2002; Woon 2002; Lee et al. 2009; Bossa
+et al. 2009; Ciesla & Sandford 2012; Garrod 2013; Sato et al. 2018),
+although there is evidence to suggest that glycine would undergo
+destruction under increased irradiation (Pernet et al. 2013; Maté
+et al. 2015). In addition, in a joint experimental and modeling effort,
+Ioppolo et al. (2021) suggested that non-energetic mechanisms such
+as atom-addition reactions might be a promising route for glycine
+formation.
+A new grain-surface reaction, inserting C atoms in H2 to form
+CH2 via C + H2 −−−→ CH2, was recently proposed to be barrierless
+by Simončič et al. (2020), based on earlier lab work by Krasnokutski
+★ E-mail: johannes.heyl.19@ucl.ac.uk
+et al. (2016). They included this reaction in their network and found a
+far more rapid conversion of C to CH4. Subsequently, Lamberts et al.
+(2022) performed a combined experimental and computational work
+to investigate the importance of reactions with molecular hydrogen
+for the formation of methane. It was found that while the former
+reaction might not be fully barrierless, and the barrier likely depends
+on the binding site, the reaction CH + H2 −−−→ CH3 does in fact pro-
+ceed without a barrier. The reason these ‘dihydrogenation’ reactions
+might be of interest is that they make H2 more chemically active, the
+importance of which was recognized already by Hasegawa & Herbst
+(1993) and by Meisner et al. (2017) in the context of water formation.
+Typically, H2 has one of the lowest binding energies of grain-surface
+species, lower than even atomic H (Al-Halabi & van Dishoeck 2007;
+Wakelam et al. 2017; Molpeceres & Kästner 2020), which allows
+the molecule to diffuse readily on the surface. Moreover, the molec-
+ular hydrogen abundance in molecular clouds and pre-stellar cores
+is much higher than that of atomic hydrogen (van Dishoeck & Black
+1988; Goldsmith & Li 2005).
+By including these reactions in chemical models, one might first of
+all expect changes in the CH4 abundance, but it is equally interesting
+to consider the effect on downstream species such as complex organic
+molecules, whose typical abundances are far lower. Their sensitiv-
+ity to new reactions should be considered, as their more abundant
+precursors might see changes in their abundances.
+In this work, we look to build on the work by Simončič et al.
+(2020) and Lamberts et al. (2022) to investigate the impact of the
+dihydrogenation reactions of C and CH on our gas-grain chemical
+network. In particular, we are interested in observing the effect these
+reactions have on the production of glycine and its precursors. Our
+© 2015 The Authors
+arXiv:2301.04324v1 [astro-ph.GA] 11 Jan 2023
+
+2
+J.Heyl et al.
+glycine network is based on the kinetic Monte Carlo network used
+in Ioppolo et al. (2021), using in part updated rate constants from
+recent literature, as indicated in Table 2.
+We start by describing the astrochemical model, our choice of
+parameters and how we evaluate the network sensitivity in Section 2.
+We then discuss the results as well as the astrochemical implications
+in Section 3 and summarize our conclusions in 4.
+2 METHODOLOGY
+2.1 The Astrochemical Model
+In this work, the gas-grain chemical code UCLCHEM was used
+(Holdship et al. 2017)1. UCLCHEM makes use of a rate equation
+approach to modelling the gas and grain-surface and bulk abun-
+dances. The gas-phase reaction network is taken from the UMIST
+database (McElroy et al. 2013). The grain-surface network used was
+the default one as available on GitHub.
+Various reaction mechanisms are implemented in UCLCHEM.
+The grain-surface reaction mechanisms that exist in UCLCHEM
+include the Eley-Rideal mechanism as well as the Langmuir-
+Hinshelwood diffusion mechanism, which were implemented in Qué-
+nard et al. (2018), as was the competition formula from Chang et al.
+(2007) and Garrod & Pauly (2011). The binding energies that are
+used to calculate the diffusion reaction rate are taken from Wake-
+lam et al. (2017). We also included an updated version of the glycine
+grain-surface network from Ioppolo et al. (2021), also including both
+the reactions C + H2 −−−→ CH2 and CH + H2 −−−→ CH3 as sum-
+marized in Table 2. Note that the reaction OH + H2 −−−→ H2O + H
+had been already included, based on previous work by, e.g., Meisner
+et al. (2017). The code also includes thermal and non-thermal des-
+orption, such as due to H2 formation, cosmic ray ionisation as well
+as UV-induced desorption. Note that the astrochemical model used
+in Ioppolo et al. (2021) makes use of the non-diffusive grain-surface
+chemistry that is described in Garrod & Pauly (2011) and Jin & Gar-
+rod (2020). This is not used in UCLCHEM. The implications of this
+will be discussed later in this work.
+UCLCHEM is used to model two distinct phases of the star forma-
+tion process. Phase 1 is the free-fall collapse phase of a dark cloud
+for a default value of 5 million years, whereas Phase 2 models the
+warm-up phase immediately following Phase 1, with the initial den-
+sity of Phase 2 equal to the final density of Phase 1. Phase 2 runs for
+1 million years. Further details of the code can be found in Holdship
+et al. (2017).
+2.2 Parameter Selection
+To assess the importance of the two proposed reactions to the net-
+work under various interstellar conditions, three parameters were
+varied, as listed in Table 2. The standard cosmic ray ionisation rate in
+UCLCHEM is 𝜁 = 1.3×10−17 s−1. This is in line with typical values
+that are of the order 10−17 s−1 in diffuse ISM conditions (O’Donnell
+& Watson 1974; Black et al. 1978; Hartquist et al. 1978; Indriolo &
+McCall 2013). However, there exist observations of higher cosmic
+ray ionisation rates (Indriolo et al. 2007; Indriolo & McCall 2012),
+which is why we also include analysis of a region with cosmic ray
+ionisation rate of 10𝜁. Cosmic ray ionisation is typically expected
+to break larger molecules into smaller radicals. We did not consider
+1 https://uclchem.github.io/
+lower values of the cosmic ray ionisation rate, as these are typi-
+cally not observed. The cosmic ray dependency on column density
+in O’Donoghue et al. (2022) covered a range of values that were,
+however, already covered by the factor of 10 we consider here. While
+they found differences for lower densities during the collapse phase,
+these were ironed out once the collapse reached larger final densities,
+which is why here we do not include this dependency on column
+density.
+Three different astronomical regions were modelled:
+(i) a dark cloud with a final density of 105 cm−3
+(ii) a low-mass protostar with a final density of 106 cm−3
+(iii) a high-mass protostar, with a final density of 107 cm−3
+The heating profiles during Phase 2 for the last two cases are based
+on Viti et al. (2004) and differ for each astronomical object. The dark
+cloud simulation was only run for Phase 1, but was allowed to run
+for a further million years to allow the chemistry to settle.
+Another parameter that was varied was the efficiency, 𝛼, of the
+extent to which the reaction C + H2 −−−→ CH2 is barrierless. While
+Simončič et al. (2020) considered the reaction to be fully barrierless,
+Lamberts et al. (2022) found that the reaction barrier likely depends
+on the binding site. As such, our grid of models considers efficiencies
+for the reaction of 0 (the reaction is not included), 0.05 (5% of binding
+sites lead to a barrierless reaction and 95% of the binding sites have
+an infinitely high barrier) and 1 (the reaction is fully barrierless).
+What this means practically is that the reaction rate is multiplied by
+the efficiency. The reaction CH + H2 −−−→ CH3 was included as only
+being barrierless, based on Lamberts et al. (2022).
+2.3 Evaluating the network sensitivity
+We quantify the effect of the new reactions on the model by con-
+sidering the change in abundances of the species that are the most
+affected when taking the ratio of the abundances of the modified
+and original models. The modified model is the chemical network
+which has 𝛼 = 1, whereas the original model was taken to be the
+network which had neither of the dihydrogenation reactions. These
+two scenarios were taken to be the extremes of the parameter range
+in terms of including these reactions. The ratio is most sensitive
+to strong deviations in the molecular abundances as a result of the
+dihydrogenation reactions.
+This ratio is defined for each species 𝑖 as:
+𝛿𝑖(𝑡) =
+𝑥𝑀
+𝑖 (𝑡)
+𝑥𝑂
+𝑖 (𝑡)
+,
+(1)
+where 𝑥𝑀
+𝑖 (𝑡) is the abundance of species 𝑖 in the modified model at
+time 𝑡 and 𝑥𝑂
+𝑖 (𝑡) is the abundance of the same species in the original
+model at time 𝑡.
+We only considered species which had a value above a “threshold
+of detectability". This was to ensure that we did not look at species
+whose original and changed abundances were below what can be ob-
+served from an astronomical point-of-view. For grain-surface species
+this threshold was set to 10−8 with respect to hydrogen whereas for
+gas-phase species this threshold equalled 10−12 with respect to hy-
+drogen. We took 10−8 as a lower-limit threshold for grain-surface
+species, as this was the order of magnitude of the lowest reported
+abundances in Boogert et al. (2015). Similarly, the gas-phase thresh-
+old was taken based on the abundances of COMs typically observed
+in the gas-phase, such as in Jiménez-Serra et al. (2016, 2021).
+MNRAS 000, 1–11 (2015)
+
+Impact of C and CH reacting with H2
+3
+Reaction No.
+Reaction
+Reference
+1
+CO + OH −−−→ HOCO
+Arasa et al. (2013)
+2
+HOCO + H −−−→ H2 + CO2
+Goumans et al. (2008)
+3
+HOCO + H −−−→ HCOOH
+Goumans et al. (2008); Ioppolo et al. (2011)
+4
+CH4 + OH −−−→ CH3 + H2O
+Lamberts et al. (2017)
+5
+NH2 + CH3 −−−→ NH2CH3
+Ioppolo et al. (2021)
+6
+NH3 + CH −−−→ NH2CH2
+Balucani et al. (2009)
+7
+NH2CH2 + H −−−→ NH2CH3
+Ioppolo et al. (2021)
+8
+NH2CH3 + H −−−→ NH2CH2 + H2
+Oba et al. (2014)
+9
+NH2CH3 + OH −−−→ NH2CH2 + H2O
+Ioppolo et al. (2021)
+10
+NH2CH2 + HOCO −−−→ NH2CH2COOH
+Woon (2002)
+11
+H2 + OH −−−→ H2O + H
+Meisner et al. (2017)
+12
+O2 + H −−−→ HO2
+Lamberts et al. (2013)
+13
+HO2 + H −−−→ OH + OH
+Lamberts et al. (2013)
+14
+HO2 + H −−−→ H2 + O2
+Lamberts et al. (2013)
+15
+HO2 + H −−−→ H2O + O
+Lamberts et al. (2013)
+16
+OH + OH −−−→ H2O2
+Lamberts et al. (2013)
+17
+OH + OH −−−→ H2O + O
+Lamberts et al. (2013)
+18
+H2O2 + H −−−→ H2O + OH
+Lamberts & Kästner (2017)
+19
+N + O −−−→ NO
+Ioppolo et al. (2021)
+20
+NO + H −−−→ HNO
+Fedoseev et al. (2012)
+21
+HNO + H −−−→ H2NO
+Fedoseev et al. (2012)
+22
+HNO + H −−−→ NO + H2
+Fedoseev et al. (2012)
+23
+HNO + O −−−→ NO + OH
+Ioppolo et al. (2021)
+24
+HN + O −−−→ HNO
+Ioppolo et al. (2021)
+25
+N + NH −−−→ N2
+Ioppolo et al. (2021)
+26
+NH + NH −−−→ N2 + H2
+Ioppolo et al. (2021)
+27
+C + O −−−→ CO
+Ioppolo et al. (2021)
+28
+CH3 + OH −−−→ CH3OH
+Qasim et al. (2018)
+29
+C + H2 −−−→ CH2
+Simončič et al. (2020); Lamberts et al. (2022)
+30
+CH + H2 −−−→ CH3
+Lamberts et al. (2022)
+Table 1. Table of the reactions added to the standard UCLCHEM network.
+Parameter
+Values
+Comment
+Final Density of Phase 1 and Initial Density of Phase 2
+105 cm−3, 106 cm−3, 107 cm−3
+Final density of Phase 1 same as initial density of Phase 2
+Efficiency for barrierless C + H2 −−−→ CH2
+0, 0.05, 1
+Efficiency of 0 is equivalent to reaction being excluded.
+Cosmic Ray Ionisation Rate
+𝜁 , 10𝜁
+𝜁 is the standard cosmic ray ionisation rate of 1.3 × 10−17 s−1
+Table 2. The parameters that were varied in this work to assess the effect of the two reactions.
+MNRAS 000, 1–11 (2015)
+
+4
+J.Heyl et al.
+We can also define a quantity that tracks the absolute change in
+the abundance of species:
+Δ𝑖(𝑡) = 𝑥𝑀
+𝑖 (𝑡) − 𝑥𝑂
+𝑖 (𝑡) = 𝑥𝑂
+𝑖 (𝑡)[𝛿𝑖(𝑡) − 1],
+(2)
+This value indicates how species with relatively large abundances,
+such as elemental species or their hydrogenation products, are re-
+distributed.
+3 RESULTS AND ASTROCHEMICAL IMPLICATIONS
+We find that even though the amounts by which various species are
+affected differs for each stage of star formation, the general trends are
+broadly similar. As such, we group our analysis per phase. Tables 3
+and 4 summarise the changes in terms of 𝛿. The effect of the enhanced
+cosmic ray ionisation rate is discussed in Section 3.1.3.
+Our results differ from Ioppolo et al. (2021) in that, while glycine
+does form on the grains, it does not do so in Phase 1, as UCLCHEM
+does not utilise non-diffusive grain-surface mechanisms. Instead,
+glycine forms on the grains as the temperature increases in Phase 2.
+3.1 Impact of the Parameters
+In this sub-section we consider the role that the physical and chemical
+parameters play. Tables 3 and 4 show the changes in abundance
+when we compare the original network without the dihydrogenation
+reactions with the 𝛼 = 1 case. Figures 1 and 2 show the time series
+of the abundances for glycine and its precursors.
+3.1.1 Final Density
+The final density of the collapsing cloud had a minor effect on the
+final abundances of the species in Phase 1. For all three astronomical
+objects modelled in Phase 1, we observe a significant decrease of
+grain-surface CH and C when the reactions are included and see
+an enhancement of grain-surface CH2, CH3 and CH4. However,
+the values of 𝛿 as well as their original abundances seem to be
+independent of the density, suggesting a saturation effect.
+In Phase 2, we observe that the final density of the collapsing
+cloud does affect the extent to which the added reactions influence
+the final abundances. We notice that several hydrogenation-based
+species have greater abundances at lower densities, including species
+such as HOCO, H2O2, CH3CCH and H2CO.
+3.1.2 Efficiency
+For more abundant species, such as H2O and CH3OH, we find that
+the results obtained from using a branching fraction of 0.05 for the
+barrierless dihydrogenation of C are essentially the same as using a
+efficiency of 1 (the reaction is fully barrierless).
+We do find that the efficiency parameter plays a role in the final
+abundances of glycine and its precursors during the warm-up phase
+of low and high-mass stars. This can be seen in Figures 1 and 2.
+For Phase 1, the species are not detectable except for the original
+configuration. However, we still observe that for the other three con-
+figurations an increasing value of 𝛼 corresponds to an increased level
+of depletion. In Phase 2, the configurations are all detectable and this
+same hierarchy remains in the gas-phase.
+3.1.3 Cosmic Ray Ionisation Rate
+The degree of cosmic ray ionisation is found to play an important role
+in enhancing or counteracting the role of the dihydrogenation reac-
+tions. The cosmic ray destruction routes we include in our standard
+network are from Garrod et al. (2008). These consist of hydrogen
+abstraction reactions and reactions that produce radical-radical pairs
+of products. An enhanced cosmic ray ionisation rate leads to the
+destruction of many of hydrogenated species, such as CH4, NH3,
+H2O and CH3OH, as well as their precursors. This leads to further
+hydrogen reservoirs being released and radicals being formed which
+can go on to form glycine and its precursors. Because no cosmic
+ray destruction mechanisms for these complex, larger, species are
+included, we find that these are more abundantly produced.
+This is important to consider in the context of glycine. In Figures
+1 and 2, we plot the time dependence of the abundance of glycine
+precursors for eight different parameter sets, including the enhanced
+cosmic ray ionisation rate. In Phase 1, we find that on the grains, the
+enhanced cosmic ray ionisation rate depletes the species. In Phase 2,
+the effect varies by configuration and species. The original config-
+uration consistently leads to a decrease of all plotted species in the
+presence of enhanced cosmic ray ionisation. The 𝛼 = 0 configuration
+is depleted for the methylamine radical and glycine, but enhanced for
+methylamine. The 𝛼 = 0.05 and 𝛼 = 1 configurations are depleted for
+methylamine and glycine, but enhanced for the methylamine radical.
+3.2 General Implications
+As can be seen in Tables 3 and 4, the inclusion of reactions with
+molecular hydrogen affects the hydrogen economy of the reaction
+network. Previously, the reaction network had a significant amount
+of H2 being adsorbed or produced on the surface with no chemical de-
+struction mechanisms. The H2 molecules are a previously untapped
+hydrogen reservoir that is now being utilised (Hasegawa & Herbst
+1993). Because one H2 frees up two H atoms on the surface, other
+atomic hydrogenation reactions can take place more easily. There-
+fore, we observe the increase in the abundances of species in Phases
+1 and 2 that are the products of hydrogenation. While for many of
+the more common species, the relative increase, i.e., 𝛿 is small, the
+abundance increases in absolute terms. There are large relative and
+absolute changes in the network of less abundant species, such as
+NH2CH2, NH2CH3 and NH2CH2COOH and there are fairly large
+absolute changes in the network of highly abundant species, such as
+C and its hydrogenation products.
+We can also comment on the carbon budget. The previously defined
+Δ parameter allows us to consider how carbon is redistributed as a
+result of the new reactions being included. For instance, for the dark
+cloud during Phase 1, the total Δ for the main carbon-based grain-
+surface species that increase
+Δtotal(#CH2 + #CH3 + #CH4 + #H2CS + #CH3OH) = 2.9 × 10−6 .
+is nearly equal to that of the total decrease Δ of main grain-surface
+species:
+Δtotal(#C + #CH + #NCH4 + #NH2CH3 = 2.5 × 10−6 .
+From this we can see that the dihydrogenation reactions redis-
+tribute the carbon between the aforementioned species. The re-
+maining carbon is redistributed to other species in the network in
+smaller amounts. We also observe that besides the methyl radi-
+cal, also species that contain the CH3 group, such as CH3OH and
+CH3CN see increases in their abundances, via the reactions CH3 +
+OH −−−→ CH3OH and CH3 + CN −−−→ CH3CN.
+MNRAS 000, 1–11 (2015)
+
+Impact of C and CH reacting with H2
+5
+Dark Cloud
+Low-Mass Star
+High-Mass Star
+Species
+𝛿
+Original Abundances
+Species
+𝛿
+Original Abundances
+Species
+𝛿
+Original Abundances
+#CH2
+2.8
+4.1 ×10−7
+#CH2
+2.8
+4.1 ×10−7
+#CH2
+2.8
+4.1 ×10−7
+#CH3
+2.3
+2.6 ×10−7
+#CH3
+2.3
+2.6×10−7
+#CH3
+2.3
+2.6 ×10−7
+#CH4
+1.3
+4.0 ×10−6
+#CH4
+1.3
+3.8 ×10−6
+#CH4
+1.3
+3.8 ×10−6
+#NH3
+1.1
+3.8 ×10−6
+#NH3
+1.1
+3.7 ×10−6
+#NH3
+1.1
+3.7 ×10−6
+#H2CS
+1.1
+2.4 ×10−8
+#H2CS
+1.1
+2.4 ×10−8
+#H2CS
+1.1
+2.4 ×10−8
+#CH3OH
+1.04
+1.5 ×10−5
+#CH3OH
+1.04
+1.3 ×10−5
+#CH3OH
+1.04
+1.3 ×10−5
+#HNC
+1.03
+2.3 ×10−8
+#HNC
+1.04
+2.3 ×10−8
+#HNC
+1.04
+2.3 ×10−8
+#H2SiO
+1.03
+3.3 ×10−7
+#H2SiO
+1.03
+1.1 ×10−8
+#H2SiO
+1.03
+3.4 ×10−7
+#HCN
+1.02
+1.7 ×10−7
+#HO2
+1.03
+2.3 ×10−7
+#HO2
+1.03
+2.3 ×10−7
+#O2
+1.02
+1.8 ×10−6
+NO
+1.03
+1.0 ×10−10
+#HCN
+1.02
+1.6 ×10−7
+#CH
+1.1 ×10−15
+7.2 ×10−7
+#CH
+2.0 ×10−15
+7.2 ×10−7
+#CH
+2.1 ×10−15
+7.2 ×10−7
+#C
+2.4 ×10−13
+1.4 ×10−6
+#C
+2.5 ×10−13
+1.4 ×10−6
+#C
+2.5 ×10−13
+1.4 ×10−6
+#NCH4
+3.7 ×10−13
+1.5 ×10−7
+#NCH4
+3.4 ×10−13
+1.5 ×10−7
+#NCH4
+3.4 ×10−13
+1.5 ×10−7
+#NH2CH3
+8.0 ×10−13
+1.9 ×10−7
+#NH2CH3
+8.3 ×10−13
+2.0 ×10−7
+#NH2CH3
+8.3 ×10−13
+2.0 ×10−7
+NH2CH3
+1.5 ×10−12
+8.7 ×10−10
+#Si
+0.98
+5.6 ×10−8
+#Si
+0.98
+5.6 ×10−8
+CH
+0.96
+9.3 ×10−10
+#SiH
+0.99
+2.5 ×10−8
+#SiH
+0.99
+2.5 ×10−8
+CH3
+0.98
+1.5 ×10−9
+#SiH2
+0.99
+1.3 ×10−8
+#SiH2
+0.99
+1.3 ×10−8
+#Si
+0.98
+5.7 ×10−8
+#O
+0.99
+7.8 ×10−5
+#SI
+0.99
+6.7 ×10−5
+#SiH
+0.99
+2.6 ×10−8
+#H3CO
+0.99
+1.7 ×10−6
+#H3CO
+0.99
+1.7 ×10−6
+#SiH2
+0.99
+1.4 ×10−8
+#HNO
+0.99
+1.2 ×10−5
+#HNO
+0.99
+1.2 ×10−5
+Table 3. Summary of the species that experienced the greatest increases (top section) and decreases (bottom section) for each of the three astronomical objects
+in Phase 1. Species with a "#" are grain-surface species. All other species are gas-phase.
+Low-Mass Star
+High-Mass Star
+Species
+𝛿
+Original Abundances
+Species
+𝛿
+Original Abundances
+HOCO
+3.7
+9.3 ×10−10
+HOCO
+2.1
+4.3 ×10−8
+H2O2
+2.6
+4.3 ×10−9
+CH3OH
+2.0
+1.8 ×10−9
+CH3CHO
+2.2
+1.0×10−7
+CH3CHO
+2.0
+1.5 ×10−7
+CH3OH
+2.1
+3.7 ×10−9
+C2H4
+2.0
+2.5 ×10−9
+CH3CN
+1.7
+1.0 ×10−9
+CH2CO
+1.9
+1.8 ×10−10
+C4H
+1.6
+3.2 ×10−10
+H2CO
+1.7
+9.3 ×10−9
+C3H2
+1.5
+5.6 ×10−9
+CH3
+1.7
+1.1×10−10
+CH3CCH
+1.5
+2.4×10−8
+NH3
+1.6
+1.3 ×10−8
+NH3
+1.5
+2.7 ×10−7
+CH3CN
+1.5
+7.1 ×10−10
+NH2CHO
+1.4
+2.7 ×10−7
+C2H2
+1.5
+1.1 ×10−8
+NCH4
+3.8 ×10−5
+9.2 ×10−7
+NCH4
+4.7 ×10−5
+8.3 × 10−7
+NH2CH3
+2.4 ×10−3
+1.6 ×10−7
+NH2CH3
+2.5 ×10−3
+1.7 ×10−7
+NH2CH2COOH
+6.0 ×10−2
+6.3 ×10−9
+NH2CH2COOH
+6.3 ×10−3
+7.2 ×10−8
+H2S
+0.88
+2.0 ×10−9
+NO
+0.82
+4.0 ×10−6
+SO2
+0.92
+4.4 ×10−8
+NCCN
+0.96
+3.9 × 10−7
+MG+
+0.93
+8.0 ×10−8
+O2
+0.96
+7.1 ×10−6
+O
+0.95
+1.3 × 10−5
+HCOO
+0.96
+1.9 × 10−10
+CH2OH
+0.95
+6.4 ×10−8
+C2N
+0.97
+3.5 ×10−8
+O2
+0.96
+4.2 ×10−5
+O
+0.97
+3.6 × 10−8
+SO
+0.97
+1.9 ×10−6
+CO2
+0.97
+7.6 × 10−6
+Table 4. Summary of the species that experienced the greatest increases (top section) and decreases (bottom section) for each of the three astronomical objects
+in Phase 2. All species listed are gas-phase.
+In a similar fashion, nitrogen is redistributed throughout the net-
+work. The grain-surface ammonia abundance increases by 10%,
+i.e., 3.8×10−7. The decrease in #NCH4 and #NH2CH3 accounts
+for 3.4×10−7 or ∼ 90%.
+3.3 Implications for Simple Grain-Surface Species
+In the light of the recent ice observations with the James Webb
+Space Telescope, both published (Yang et al. 2022) and upcoming
+(McClure et al. 2017), it is important to consider the effect on the
+main ice constituents. Figure 3 shows the time-evolution of the abun-
+dances of grain-surface H2O, CO, CO2, CH3OH, H2CO, NH3 and
+MNRAS 000, 1–11 (2015)
+
+6
+J.Heyl et al.
+CH4 in Phase 1 of a dark cloud. These are species that have been se-
+curely or likely identified in the ices (Boogert et al. 2015). The shaded
+areas in the plots indicate the 68% confidence interval for the mea-
+sured abundances, taken from Boogert et al. (2015). In Boogert et al.
+(2015), the abundances were given in terms of the median value as
+well as the upper and lower quartiles. It was assumed that the spread
+in the measurements was Gaussian, which meant that the interquar-
+tile range represented 1.36𝜎. This spread in measurements is due to
+both observational error and source-to-source variation. We observe
+that we recover the measured abundances for most of the species
+within the uncertainty, with the exception of grain-surface CO2. The
+inclusion of the dihydrogenation reactions does not change how well
+the models agree with the abundance measurements, however, for
+all hydrogenation products we observe that the inclusion of reac-
+tions with molecular hydrogen increases their abundance, as a result
+of the additional atomic hydrogen on the surface. In short, despite
+uncertainties surrounding activation energies, networks and binding
+energies, we are able to recover observational abundances reasonably
+well when we include the reactions with molecular hydrogen and this
+gives us confidence that the predictions we make for glycine and its
+precursors are accurate.
+3.4 Implications for Glycine and its Precursors
+In Tables 3 and 4, we observe that the abundances of glycine and
+its precursors decreases if molecular hydrogen is part of the reaction
+network. We can also explain why the abundance of precursors of
+glycine, gas and grain NH2CH3 and NH2CH2 decrease. The former
+is formed through the reaction NH2 + CH3, but since more atomic
+H is present on the grains, both radical species are preferentially
+hydrogenated. The inclusion of H2 as a reacting species, not just in
+the context of the two reactions we consider in this work, introduces
+greater competition for radicals that are needed for the formation of
+complex organic molecules. This results in the lower abundances of
+NH2CH3 and NH2CH2.
+We can also use this to justify the impact of the efficiency. Figures
+1 and 2 plot the time series for the various efficiencies as well as
+with enhanced cosmic ray ionisation in Phase 1 and 2, respectively.
+We previously remarked that the original configuration produced the
+most of glycine and its precursors. For the other configurations, the
+greater the value of 𝛼, the greater the depletion of these species. This
+makes sense when one considers that an increasing value of 𝛼 results
+in more H2 being consumed and therefore more atomic H becoming
+available to hydrogenate precursors.
+We now look to compare our results with observations. We do
+this separately for glycine and its precursors. We also discuss the
+implications of not using non-diffusive grain-surface mechanisms in
+our code, such as the ones discussed in Garrod & Pauly (2011) and
+Jin & Garrod (2020).
+3.4.1 Methylamine and the methylamine radical
+Methylamine (NH2CH3) and the methylamine radical (NH2CH2)
+are important precursors of glycine. The hydrogen abstraction of
+methylamine to form the methylamine radical is crucial, as there is
+growing evidence to suggest that the reaction NH2CH2 + HOCO
+–> NH2CH2COOH is a feasible glycine formation route (Ramesh
+& Yuan-Pern 2022). Confirmed detections of methylamine in high-
+mass star forming regions are summarised in Table 5. We observe
+improved level of agreement between our model outputs and obser-
+vations when the reactions are included with 𝛼 = 1. We observed
+significant enhancement when the cosmic ray ionisation rate was
+increased. This suggests that if dihydrogen is chemically active on
+the grains, one would need to consider regions of high cosmic ray
+ionisation rate to detect these precursors of glycine, as these reactions
+reduce the abundance of methylamine. In the case of the Bøgelund
+et al. (2019) observation, we have confidence in the value of our
+ratio, as the chemical network for methanol is well-established.
+However, the entirety of the above discussion regarding the agree-
+ment of our results with observations is incomplete without dis-
+cussing the effect of the nondiffusive reaction mechanisms being
+absent in our modelling. These mechanisms are of particular use
+when considering reactions between reactants which are likely to re-
+act very slowly via the Langmuir-Hinshelwood diffusion mechanism,
+such as the reaction between CO and OH to form CO2. Methylamine
+and the methylamine radical are formed via reactions 6 and 7, which
+involve species with high binding energies, thereby making their for-
+mation at 10K inefficient via diffusion. As a result, the fact that we do
+not include the non-diffusive mechanisms means that methylamine
+and its radical are under-produced.
+3.4.2 Glycine
+While there may be no confirmed detection for glycine in the liter-
+ature, various estimates exist. In Gibb et al. (2004), an upper limit
+of 0.3% with respect to water was determined, whereas in Jiménez-
+Serra et al. (2014), this was estimated to be around 0.1%. In this
+work, we find that when the dihydrogenation reactions are not in-
+cluded this value is 0.07% and when we include both reactions then
+it is 2×10−4%. We should note that in the absence of experimentally-
+motivated gas-phase glycine destruction reactions the values derived
+in this work are only upper limits, if one neglects non-diffusive mech-
+anisms. In the previous sub-section, we discussed that methylamine
+and its radical are underproduced. This will result in glycine being
+underproduced as well, not just due to the underproduction of its
+precursors, but also because reaction 10 is less efficient if assumed
+to be diffusion-only.
+4 CONCLUSION
+In this work, we considered the effect of including the reactions of
+H2 with C and CH in our grain-surface network. We ran a grid of
+12 models that vary the final density of the collapsing cloud, the
+efficiency for the ‘barrier’ of C + H2 −−−→ CH2 as well as the cosmic
+ray ionisation rate.
+Making molecular hydrogen chemically active unlocks a previ-
+ously untapped reservoir of hydrogen, and therefore freeing up the
+use of atomic hydrogen for hydrogenation reactions. A particularly
+interesting consequence of this is that making H2 more chemically
+active decreased the abundances of glycine and its precursors. This
+may aid in explaining why methylamine, the methylamine radical as
+well as glycine have remained undetected so far.
+We note that we do not have a comprehensive gas-phase network
+for glycine and its precursors. That is likely to be a limitation. While
+it is still likely that glycine and its precursors form on the grains
+and then evaporate into the gas-phase, it is possible that there would
+be gas-phase destruction routes as well. Additionally, cosmic-ray
+ionisation destruction routes on the grains and in the gas-phase are
+likely also needed, as these typically break large molecules down
+into smaller radicals which are then recycled for further gas-phase
+reactions. As such, the abundances we obtain for glycine and its
+precursors are likely to only be upper limits.
+MNRAS 000, 1–11 (2015)
+
+Impact of C and CH reacting with H2
+7
+0
+1
+2
+3
+4
+5
+6
+Time (Years)
+1e6
+10
+28
+10
+25
+10
+22
+10
+19
+10
+16
+10
+13
+10
+10
+10
+7
+Abundance
+#NCH4
+0
+1
+2
+3
+4
+5
+6
+Time (Years)
+1e6
+10
+29
+10
+26
+10
+23
+10
+20
+10
+17
+10
+14
+10
+11
+10
+8
+Abundance
+NCH4
+0
+1
+2
+3
+4
+5
+6
+Time (Years)
+1e6
+10
+28
+10
+25
+10
+22
+10
+19
+10
+16
+10
+13
+10
+10
+10
+7
+Abundance
+#NH2CH3
+0
+1
+2
+3
+4
+5
+6
+Time (Years)
+1e6
+10
+29
+10
+26
+10
+23
+10
+20
+10
+17
+10
+14
+10
+11
+10
+8
+Abundance
+NH2CH3
+Original
+= 0
+= 0.05
+= 1
+Original + CR
+= 0 + CR
+= 0.05 + CR
+= 1 + CR
+Figure 1. Time series of the abundances of grain-surface and gas-phase NH2CH2 and NH2CH3 in Phase 1 of a dark cloud. Furthermore, we observe that the
+inclusion of the dihydrogenation reactions, regardless of efficiency 𝛼 severely depletes the abundances of the glycine precursors in both phases relative to the
+original model which did not include either of the dihydrogenation reactions. Also plotted are the limits of detectability we have used for gas and grain-surface
+species. We do not plot glycine, as it is not formed at all in Phase 1. We observe that only the original model is capable of producing ’detectable’ levels of
+methylamine and the methylamine radical. For the other configurations, an increase in 𝛼 results in increased depletion of the species relative to the original
+model. We also observe that enhanced cosmic ray ionisation depletes the abundances on the grains but not in the gas.
+MNRAS 000, 1–11 (2015)
+
+8
+J.Heyl et al.
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+Time (Years)
+1e6
+10
+11
+10
+10
+10
+9
+10
+8
+10
+7
+10
+6
+Abundance
+NCH4
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+Time (Years)
+1e6
+10
+10
+10
+9
+10
+8
+10
+7
+10
+6
+Abundance
+NH2CH3
+0.0
+0.2
+0.4
+0.6
+0.8
+1.0
+Time (Years)
+1e6
+10
+10
+10
+9
+10
+8
+10
+7
+10
+6
+Abundance
+NH2CH2COOH
+Original
+= 0
+= 0.05
+= 1
+Original + CR
+= 0 + CR
+= 0.05 + CR
+= 1 + CR
+Figure 2. Time series of the abundances of gas-phase NH2CH2, NH2CH3 and NH2CH2COOH in Phase 2 of a high-mass star. We observe that glycine is
+produced in the warm-up phase. The enhanced cosmic ray ionisation rate is found to significantly deplete all three species in the gas-phase for the original model.
+For NH2CH2 and NH2CH3, when 𝛼 = 0, 𝛼 = 0.05 or 𝛼 = 1, the enhanced cosmic ray ionisation rate results in an increase of their abundances. For glycine,
+the enhanced cosmic ray ionisation rate seems to decrease its gas-phase abundance.
+MNRAS 000, 1–11 (2015)
+
+Impact of C and CH reacting with H2
+9
+4.0
+4.2
+4.4
+4.6
+4.8
+5.0
+5.2
+Time (Years)
+1e6
+10
+8
+10
+6
+10
+4
+Abundance
+#H2O
+4.0
+4.2
+4.4
+4.6
+4.8
+5.0
+5.2
+Time (Years)
+1e6
+10
+8
+10
+6
+10
+4
+Abundance
+#CO
+Original
+= 0
+= 0.05
+= 1
+Original + CR
+= 0 + CR
+= 0.05 + CR
+= 1 + CR
+4.0
+4.2
+4.4
+4.6
+4.8
+5.0
+5.2
+Time (Years)
+1e6
+10
+8
+10
+6
+10
+4
+Abundance
+#CO2
+4.0
+4.2
+4.4
+4.6
+4.8
+5.0
+5.2
+Time (Years)
+1e6
+10
+8
+10
+6
+10
+4
+Abundance
+#CH3OH
+4.0
+4.2
+4.4
+4.6
+4.8
+5.0
+5.2
+Time (Years)
+1e6
+10
+8
+10
+6
+10
+4
+Abundance
+#H2CO
+4.0
+4.2
+4.4
+4.6
+4.8
+5.0
+5.2
+Time (Years)
+1e6
+10
+8
+10
+6
+10
+4
+Abundance
+#NH3
+4.0
+4.2
+4.4
+4.6
+4.8
+5.0
+5.2
+Time (Years)
+1e6
+10
+8
+10
+6
+10
+4
+Abundance
+#CH4
+4.0
+4.2
+4.4
+4.6
+4.8
+5.0
+5.2
+Time (Years)
+1e6
+10
+8
+10
+6
+10
+4
+Abundance
+#H2S
+Figure 3. Time series of the abundances of grain-surface H2O, CO, CO2, CH3OH, H2CO, NH3, CH4 and H2S in Phase 1 of a dark cloud. We include the
+species that have securely identified or likely identified. The abundances were adapted from Boogert et al. (2015). The shaded areas include the 1𝜎 region of
+abundances. In the case of H2CO, no uncertainty was provided in the original source, so there is no shaded area. Grain-surface H2S only has an upper limit on
+its abundance. For both normal and enhanced cosmic ray ionisation rates, the time-series differ very little, which is why it is difficult to distinguish them visually.
+MNRAS 000, 1–11 (2015)
+
+10
+J.Heyl et al.
+Reference Molecule
+Reference
+Abundance Measurements (Relative to Reference Molecule)
+Original Model Ratio
+New Model Ratio
+CH3OH
+Bøgelund et al. (2019)
+8 × 10−3 − 0.1
+37
+0.02
+H2
+Ohishi et al. (2019)
+1.5 ± 1.1 × 10−8
+3.5 × 10−7
+3.9 × 10−10
+Table 5. Table of methylamine abundance measurements relative to reference molecules for high-mass stars. Also included are the corresponding ratios obtained
+in this work for high-mass stars with the standard cosmic ray ionisation rate.
+An additional limitation is the absence of the non-diffusive reaction
+mechanisms discussed in Garrod & Pauly (2011) and Jin & Garrod
+(2020). The consequence is that glycine and its precursors do not
+form efficiently on the grains at 10 K, which is different to what was
+found in Ioppolo et al. (2021). As such, they are under-produced in
+our models, whereas diffusion-efficient reactions overproduce certain
+species. However, without implementing this formalism in the code,
+it is difficult to assess the relative impacts of these mechanisms on
+the final abundances.
+ACKNOWLEDGEMENTS
+We thank the anonymous referee for their constructive comments that
+improved the quality of the manuscript. J. Heyl is funded by an STFC
+studentship in Data-Intensive Science (grant number ST/P006736/1).
+T. Lamberts is grateful for support from NWO via a VENI fellow-
+ship (722.017.008). This work was also supported by European Re-
+search Council (ERC) Advanced Grant MOPPEX 833460. S. Viti
+acknowledges support from the European Union’s Horizon 2020
+research and innovation programme under the Marie Skłodowska-
+Curie grant agreement No 811312 for the project “Astro-Chemical
+Origins” (ACO).
+DATA AVAILABILITY
+The data underlying this article are available in the article and in its
+online supplementary material.
+REFERENCES
+Al-Halabi A., van Dishoeck E. F., 2007, MNRAS, 382, 1648
+Arasa C., van Hemert M. C., van Dishoeck E. F., Kroes G. J., 2013, The
+Journal of Physical Chemistry A, 117, 7064
+Balucani N., Bergeat A., Cartechini L., Volpi G. G., Casavecchia P., Skouteris
+D., Rosi M., 2009, The Journal of Physical Chemistry A, 113, 11138
+Bernstein M. P., Dworkin J. P., Sandford S. A., Cooper G. W., Allamandola
+L. J., 2002, Nature, 416, 401
+Black J. H., Hartquist T. W., Dalgarno A., 1978, ApJ, 224, 448
+Bøgelund E. G., McGuire B. A., Hogerheijde M. R., van Dishoeck E. F.,
+Ligterink N. F. W., 2019, A&A, 624, A82
+Boogert A. A., Gerakines P. A., Whittet D. C., 2015, Annual Review of
+Astronomy and Astrophysics, 53, 541
+Bossa J. B., Duvernay F., Theulé P., Borget F., D’Hendecourt L., Chiavassa
+T., 2009, A&A, 506, 601
+Caselli P., Ceccarelli C., 2012, A&ARv, 20, 56
+Chang Q., Cuppen H. M., Herbst E., 2007, A&A, 469, 973
+Ciesla F. J., Sandford S. A., 2012, Science, 336, 452
+Fedoseev G., Ioppolo S., Lamberts T., Zhen J. F., Cuppen H. M., Linnartz H.,
+2012, J. Chem. Phys., 137, 054714
+Garrod R. T., 2013, ApJ, 765, 60
+Garrod R. T., Pauly T., 2011, ApJ, 735, 15
+Garrod R. T., Widicus Weaver S. L., Herbst E., 2008, ApJ, 682, 283
+Gibb E. L., Whittet D. C. B., Boogert A. C. A., Tielens A. G. G. M., 2004,
+ApJS, 151, 35
+Goldsmith P. F., Li D., 2005, ApJ, 622, 938
+Goumans T. P. M., Uppal M. A., Brown W. A., 2008, MNRAS, 384, 1158
+Hartquist T. W., Doyle H. T., Dalgarno A., 1978, A&A, 68, 65
+Hasegawa T. I., Herbst E., 1993, MNRAS, 261, 83
+Herbst E., van Dishoeck E. F., 2009, Annual Review of Astronomy and
+Astrophysics, 47, 427
+Holdship J., Viti S., Jiménez-Serra I., Makrymallis A., Priestley F., 2017, AJ,
+154, 38
+Indriolo N., McCall B. J., 2012, The Astrophysical Journal, 745, 91
+Indriolo N., McCall B. J., 2013, Chemical Society Reviews, 42, 7763
+Indriolo N., Geballe T. R., Oka T., McCall B. J., 2007, The Astrophysical
+Journal, 671, 1736
+Ioppolo S., Cuppen H. M., van Dishoeck E. F., Linnartz H., 2011, MNRAS,
+410, 1089
+Ioppolo S., et al., 2021, Nature Astronomy, 5, 197
+Jiménez-Serra I., testi L., Caselli P., Viti S., 2014, ApJ, 787, L33
+Jiménez-Serra I., et al., 2016, ApJ, 830, L6
+Jiménez-Serra I., Vasyunin A. I., Spezzano S., Caselli P., Cosentino G., Viti
+S., 2021, ApJ, 917, 44
+Jin M., Garrod R. T., 2020, ApJS, 249, 26
+Krasnokutski S. A., Kuhn M., Renzler M., Jäger C., Henning T., Scheier P.,
+2016, ApJ, 818, L31
+Lamberts T., Kästner J., 2017, The Astrophysical Journal, 846, 43
+Lamberts T., Cuppen H. M., Ioppolo S., Linnartz H., 2013, Phys. Chem.
+Chem. Phys., 15, 8287
+Lamberts T., Fedoseev G., Kästner J., Ioppolo S., Linnartz H., 2017, A&A,
+599, A132
+Lamberts T., Fedoseev G., van Hemert M. C., Qasim D., Chuang K.-J., Santos
+J. C., Linnartz H., 2022, ApJ, 928, 48
+Lee C.-W., Kim J.-K., Moon E.-S., Minh Y. C., Kang H., 2009, The Astro-
+physical Journal, 697, 428
+Maté B., Tanarro I., Escribano R., Moreno M. A., Herrero V. J., 2015, ApJ,
+806, 151
+McClure M., et al., 2017, IceAge: Chemical Evolution of Ices during Star
+Formation, JWST Proposal ID 1309. Cycle 0 Early Release Science
+McElroy D., Walsh C., Markwick A. J., Cordiner M. A., Smith K., Millar
+T. J., 2013, A&A, 550, A36
+Meisner J., Lamberts T., Kästner J., 2017, ACS Earth and Space Chemistry,
+1, 399
+Molpeceres G., Kästner J., 2020, Phys. Chem. Chem. Phys., 22, 7552
+O’Donnell E. J., Watson W. D., 1974, ApJ, 191, 89
+O’Donoghue R., Viti S., Padovani M., James T., 2022, ApJ, 934, 63
+Oba Y., Chigai T., Osamura Y., Watanabe N., Kouchi A., 2014, Meteoritics
+& Planetary Science, 49, 117
+Ohishi M., Suzuki T., Hirota T., Saito M., Kaifu N., 2019, PASJ, 71, 86
+Pernet A., Pilmé J., Pauzat F., Ellinger Y., Sirotti F., Silly M., Parent P., Laffon
+C., 2013, A&A, 552, A100
+Qasim D., Chuang K. J., Fedoseev G., Ioppolo S., Boogert A. C. A., Linnartz
+H., 2018, A&A, 612, A83
+Quénard D., Jiménez-Serra I., Viti S., Holdship J., Coutens A., 2018, MN-
+RAS, 474, 2796
+Ramesh J. P., Yuan-Pern L., 2022, Communications chemistry, 5, 1
+Sato A., et al., 2018, Molecular Astrophysics, 10, 11
+Simončič M., Semenov D., Krasnokutski S., Henning T., Jäger C., 2020,
+A&A, 637, A72
+MNRAS 000, 1–11 (2015)
+
+Impact of C and CH reacting with H2
+11
+Viti S., Collings M. P., Dever J. W., McCoustra M. R. S., Williams D. A.,
+2004, MNRAS, 354, 1141
+Wakelam V., Loison J. C., Mereau R., Ruaud M., 2017, Molecular Astro-
+physics, 6, 22
+Woon D. E., 2002, ApJ, 571, L177
+Yang Y.-L., et al., 2022, arXiv e-prints, p. arXiv:2208.10673
+van Dishoeck E. F., Black J. H., 1988, ApJ, 334, 771
+This paper has been typeset from a TEX/LATEX file prepared by the author.
+MNRAS 000, 1–11 (2015)
+
diff --git a/fNE3T4oBgHgl3EQfHglt/content/tmp_files/load_file.txt b/fNE3T4oBgHgl3EQfHglt/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..5fc7a66a7ccd9357eb846631e6fa1cc57b59e62a
--- /dev/null
+++ b/fNE3T4oBgHgl3EQfHglt/content/tmp_files/load_file.txt
@@ -0,0 +1,1109 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf,len=1108
+page_content='MNRAS 000, 1–11 (2015) Preprint 12 January 2023 Compiled using MNRAS LATEX style file v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 Investigating the impact of reactions of C and CH with molecular hydrogen on a glycine gas-grain network Johannes Heyl,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1★ Thanja Lamberts,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 Serena Viti3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 and Jonathan Holdship3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 1Department of Physics and Astronomy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' University College London,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Gower Street,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' WC1E 6BT,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' London,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' UK 2Leiden Institute of Chemistry,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Gorlaeus Laboratories,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Leiden University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' PO Box 9502,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 2300 RA Leiden,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The Netherlands 3Leiden Observatory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Leiden University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' PO Box 9513,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 2300 RA Leiden,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The Netherlands Accepted XXX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Received YYY;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' in original form ZZZ ABSTRACT The impact of including the reactions of C and CH with molecular hydrogen in a gas-grain network is assessed via a sensitivity analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' To this end, we vary 3 parameters, namely, the efficiency for the reaction C+H2 −−−→ CH2, and the cosmic ray ionisation rate, with the third parameter being the final density of the collapsing dark cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' A grid of 12 models is run to investigate the effect of all parameters on the final molecular abundances of the chemical network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We find that including reactions with molecular hydrogen alters the hydrogen economy of the network;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' since some species are hydrogenated by molecular hydrogen, atomic hydrogen is freed up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The abundances of simple molecules produced from hydrogenation, such as CH4, CH3OH and NH3, increase, and at the same time, more complex species such as glycine and its precursors see a significant decrease in their final abundances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We find that the precursors of glycine are being preferentially hydrogenated, and therefore glycine itself is produced less efficiently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Key words: astrochemistry – ISM: abundances – ISM: molecules 1 INTRODUCTION Interstellar dust plays a significant role in the rich chemistry that takes place in the interstellar medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' It is widely believed that complex-organic molecules (COMs) form on interstellar dust (Herbst & van Dishoeck 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Caselli & Ceccarelli 2012) since for certain molecules, grain-surface reactions are more efficient than gas-phase reactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' This is particularly important in cold astronomical envi- ronments where some gas-phase reactions may be highly inefficient, because a "third body" is needed to take up the excess heat of an exothermic reaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Dust grains thus act as an energy sink allowing the chemistry to thrive and this can lead to the formation of more complex organic molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Both experimental work and modelling has shown that one such molecules, namely the amino acid glycine can be formed through energetic processing of the ices during the warm-up phase of star formation (Bernstein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 2002;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Woon 2002;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Bossa et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Ciesla & Sandford 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Garrod 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Sato et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 2018), although there is evidence to suggest that glycine would undergo destruction under increased irradiation (Pernet et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Maté et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' In addition, in a joint experimental and modeling effort, Ioppolo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2021) suggested that non-energetic mechanisms such as atom-addition reactions might be a promising route for glycine formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' A new grain-surface reaction, inserting C atoms in H2 to form CH2 via C + H2 −−−→ CH2, was recently proposed to be barrierless by Simončič et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2020), based on earlier lab work by Krasnokutski ★ E-mail: johannes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='heyl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='19@ucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='uk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' They included this reaction in their network and found a far more rapid conversion of C to CH4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Subsequently, Lamberts et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2022) performed a combined experimental and computational work to investigate the importance of reactions with molecular hydrogen for the formation of methane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' It was found that while the former reaction might not be fully barrierless, and the barrier likely depends on the binding site, the reaction CH + H2 −−−→ CH3 does in fact pro- ceed without a barrier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The reason these ‘dihydrogenation’ reactions might be of interest is that they make H2 more chemically active, the importance of which was recognized already by Hasegawa & Herbst (1993) and by Meisner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2017) in the context of water formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Typically, H2 has one of the lowest binding energies of grain-surface species, lower than even atomic H (Al-Halabi & van Dishoeck 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Wakelam et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Molpeceres & Kästner 2020), which allows the molecule to diffuse readily on the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Moreover, the molec- ular hydrogen abundance in molecular clouds and pre-stellar cores is much higher than that of atomic hydrogen (van Dishoeck & Black 1988;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Goldsmith & Li 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' By including these reactions in chemical models, one might first of all expect changes in the CH4 abundance, but it is equally interesting to consider the effect on downstream species such as complex organic molecules, whose typical abundances are far lower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Their sensitiv- ity to new reactions should be considered, as their more abundant precursors might see changes in their abundances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' In this work, we look to build on the work by Simončič et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2020) and Lamberts et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2022) to investigate the impact of the dihydrogenation reactions of C and CH on our gas-grain chemical network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' In particular, we are interested in observing the effect these reactions have on the production of glycine and its precursors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Our © 2015 The Authors arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='04324v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='GA] 11 Jan 2023 2 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='Heyl et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' glycine network is based on the kinetic Monte Carlo network used in Ioppolo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2021), using in part updated rate constants from recent literature, as indicated in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We start by describing the astrochemical model, our choice of parameters and how we evaluate the network sensitivity in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We then discuss the results as well as the astrochemical implications in Section 3 and summarize our conclusions in 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 2 METHODOLOGY 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 The Astrochemical Model In this work, the gas-grain chemical code UCLCHEM was used (Holdship et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 2017)1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' UCLCHEM makes use of a rate equation approach to modelling the gas and grain-surface and bulk abun- dances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The gas-phase reaction network is taken from the UMIST database (McElroy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The grain-surface network used was the default one as available on GitHub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Various reaction mechanisms are implemented in UCLCHEM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The grain-surface reaction mechanisms that exist in UCLCHEM include the Eley-Rideal mechanism as well as the Langmuir- Hinshelwood diffusion mechanism, which were implemented in Qué- nard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2018), as was the competition formula from Chang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2007) and Garrod & Pauly (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The binding energies that are used to calculate the diffusion reaction rate are taken from Wake- lam et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We also included an updated version of the glycine grain-surface network from Ioppolo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2021), also including both the reactions C + H2 −−−→ CH2 and CH + H2 −−−→ CH3 as sum- marized in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Note that the reaction OH + H2 −−−→ H2O + H had been already included, based on previous work by, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Meisner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The code also includes thermal and non-thermal des- orption, such as due to H2 formation, cosmic ray ionisation as well as UV-induced desorption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Note that the astrochemical model used in Ioppolo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2021) makes use of the non-diffusive grain-surface chemistry that is described in Garrod & Pauly (2011) and Jin & Gar- rod (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' This is not used in UCLCHEM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The implications of this will be discussed later in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' UCLCHEM is used to model two distinct phases of the star forma- tion process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Phase 1 is the free-fall collapse phase of a dark cloud for a default value of 5 million years, whereas Phase 2 models the warm-up phase immediately following Phase 1, with the initial den- sity of Phase 2 equal to the final density of Phase 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Phase 2 runs for 1 million years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Further details of the code can be found in Holdship et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 Parameter Selection To assess the importance of the two proposed reactions to the net- work under various interstellar conditions, three parameters were varied, as listed in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The standard cosmic ray ionisation rate in UCLCHEM is 𝜁 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3×10−17 s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' This is in line with typical values that are of the order 10−17 s−1 in diffuse ISM conditions (O’Donnell & Watson 1974;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Black et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 1978;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Hartquist et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 1978;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Indriolo & McCall 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' However, there exist observations of higher cosmic ray ionisation rates (Indriolo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Indriolo & McCall 2012), which is why we also include analysis of a region with cosmic ray ionisation rate of 10𝜁.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Cosmic ray ionisation is typically expected to break larger molecules into smaller radicals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We did not consider 1 https://uclchem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='io/ lower values of the cosmic ray ionisation rate, as these are typi- cally not observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The cosmic ray dependency on column density in O’Donoghue et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2022) covered a range of values that were, however, already covered by the factor of 10 we consider here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' While they found differences for lower densities during the collapse phase, these were ironed out once the collapse reached larger final densities, which is why here we do not include this dependency on column density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Three different astronomical regions were modelled: (i) a dark cloud with a final density of 105 cm−3 (ii) a low-mass protostar with a final density of 106 cm−3 (iii) a high-mass protostar, with a final density of 107 cm−3 The heating profiles during Phase 2 for the last two cases are based on Viti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2004) and differ for each astronomical object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The dark cloud simulation was only run for Phase 1, but was allowed to run for a further million years to allow the chemistry to settle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Another parameter that was varied was the efficiency, 𝛼, of the extent to which the reaction C + H2 −−−→ CH2 is barrierless.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' While Simončič et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2020) considered the reaction to be fully barrierless, Lamberts et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2022) found that the reaction barrier likely depends on the binding site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' As such, our grid of models considers efficiencies for the reaction of 0 (the reaction is not included), 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='05 (5% of binding sites lead to a barrierless reaction and 95% of the binding sites have an infinitely high barrier) and 1 (the reaction is fully barrierless).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' What this means practically is that the reaction rate is multiplied by the efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The reaction CH + H2 −−−→ CH3 was included as only being barrierless, based on Lamberts et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 Evaluating the network sensitivity We quantify the effect of the new reactions on the model by con- sidering the change in abundances of the species that are the most affected when taking the ratio of the abundances of the modified and original models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The modified model is the chemical network which has 𝛼 = 1, whereas the original model was taken to be the network which had neither of the dihydrogenation reactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' These two scenarios were taken to be the extremes of the parameter range in terms of including these reactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The ratio is most sensitive to strong deviations in the molecular abundances as a result of the dihydrogenation reactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' This ratio is defined for each species 𝑖 as: 𝛿𝑖(𝑡) = 𝑥𝑀 𝑖 (𝑡) 𝑥𝑂 𝑖 (𝑡) , (1) where 𝑥𝑀 𝑖 (𝑡) is the abundance of species 𝑖 in the modified model at time 𝑡 and 𝑥𝑂 𝑖 (𝑡) is the abundance of the same species in the original model at time 𝑡.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We only considered species which had a value above a “threshold of detectability".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' This was to ensure that we did not look at species whose original and changed abundances were below what can be ob- served from an astronomical point-of-view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' For grain-surface species this threshold was set to 10−8 with respect to hydrogen whereas for gas-phase species this threshold equalled 10−12 with respect to hy- drogen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We took 10−8 as a lower-limit threshold for grain-surface species, as this was the order of magnitude of the lowest reported abundances in Boogert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Similarly, the gas-phase thresh- old was taken based on the abundances of COMs typically observed in the gas-phase, such as in Jiménez-Serra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2016, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' MNRAS 000, 1–11 (2015) Impact of C and CH reacting with H2 3 Reaction No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Reaction Reference 1 CO + OH −−−→ HOCO Arasa et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2013) 2 HOCO + H −−−→ H2 + CO2 Goumans et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2008) 3 HOCO + H −−−→ HCOOH Goumans et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2008);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Ioppolo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2011) 4 CH4 + OH −−−→ CH3 + H2O Lamberts et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2017) 5 NH2 + CH3 −−−→ NH2CH3 Ioppolo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2021) 6 NH3 + CH −−−→ NH2CH2 Balucani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2009) 7 NH2CH2 + H −−−→ NH2CH3 Ioppolo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2021) 8 NH2CH3 + H −−−→ NH2CH2 + H2 Oba et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2014) 9 NH2CH3 + OH −−−→ NH2CH2 + H2O Ioppolo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2021) 10 NH2CH2 + HOCO −−−→ NH2CH2COOH Woon (2002) 11 H2 + OH −−−→ H2O + H Meisner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2017) 12 O2 + H −−−→ HO2 Lamberts et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2013) 13 HO2 + H −−−→ OH + OH Lamberts et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2013) 14 HO2 + H −−−→ H2 + O2 Lamberts et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2013) 15 HO2 + H −−−→ H2O + O Lamberts et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2013) 16 OH + OH −−−→ H2O2 Lamberts et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2013) 17 OH + OH −−−→ H2O + O Lamberts et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2013) 18 H2O2 + H −−−→ H2O + OH Lamberts & Kästner (2017) 19 N + O −−−→ NO Ioppolo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2021) 20 NO + H −−−→ HNO Fedoseev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2012) 21 HNO + H −−−→ H2NO Fedoseev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2012) 22 HNO + H −−−→ NO + H2 Fedoseev et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2012) 23 HNO + O −−−→ NO + OH Ioppolo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2021) 24 HN + O −−−→ HNO Ioppolo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2021) 25 N + NH −−−→ N2 Ioppolo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2021) 26 NH + NH −−−→ N2 + H2 Ioppolo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2021) 27 C + O −−−→ CO Ioppolo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2021) 28 CH3 + OH −−−→ CH3OH Qasim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2018) 29 C + H2 −−−→ CH2 Simončič et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2020);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Lamberts et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2022) 30 CH + H2 −−−→ CH3 Lamberts et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2022) Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Table of the reactions added to the standard UCLCHEM network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Parameter Values Comment Final Density of Phase 1 and Initial Density of Phase 2 105 cm−3, 106 cm−3, 107 cm−3 Final density of Phase 1 same as initial density of Phase 2 Efficiency for barrierless C + H2 −−−→ CH2 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='05, 1 Efficiency of 0 is equivalent to reaction being excluded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Cosmic Ray Ionisation Rate 𝜁 , 10𝜁 𝜁 is the standard cosmic ray ionisation rate of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 × 10−17 s−1 Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The parameters that were varied in this work to assess the effect of the two reactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' MNRAS 000, 1–11 (2015) 4 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='Heyl et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We can also define a quantity that tracks the absolute change in the abundance of species: Δ𝑖(𝑡) = 𝑥𝑀 𝑖 (𝑡) − 𝑥𝑂 𝑖 (𝑡) = 𝑥𝑂 𝑖 (𝑡)[𝛿𝑖(𝑡) − 1], (2) This value indicates how species with relatively large abundances, such as elemental species or their hydrogenation products, are re- distributed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 3 RESULTS AND ASTROCHEMICAL IMPLICATIONS We find that even though the amounts by which various species are affected differs for each stage of star formation, the general trends are broadly similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' As such, we group our analysis per phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Tables 3 and 4 summarise the changes in terms of 𝛿.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The effect of the enhanced cosmic ray ionisation rate is discussed in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Our results differ from Ioppolo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2021) in that, while glycine does form on the grains, it does not do so in Phase 1, as UCLCHEM does not utilise non-diffusive grain-surface mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Instead, glycine forms on the grains as the temperature increases in Phase 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 Impact of the Parameters In this sub-section we consider the role that the physical and chemical parameters play.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Tables 3 and 4 show the changes in abundance when we compare the original network without the dihydrogenation reactions with the 𝛼 = 1 case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Figures 1 and 2 show the time series of the abundances for glycine and its precursors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 Final Density The final density of the collapsing cloud had a minor effect on the final abundances of the species in Phase 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' For all three astronomical objects modelled in Phase 1, we observe a significant decrease of grain-surface CH and C when the reactions are included and see an enhancement of grain-surface CH2, CH3 and CH4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' However, the values of 𝛿 as well as their original abundances seem to be independent of the density, suggesting a saturation effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' In Phase 2, we observe that the final density of the collapsing cloud does affect the extent to which the added reactions influence the final abundances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We notice that several hydrogenation-based species have greater abundances at lower densities, including species such as HOCO, H2O2, CH3CCH and H2CO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 Efficiency For more abundant species, such as H2O and CH3OH, we find that the results obtained from using a branching fraction of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='05 for the barrierless dihydrogenation of C are essentially the same as using a efficiency of 1 (the reaction is fully barrierless).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We do find that the efficiency parameter plays a role in the final abundances of glycine and its precursors during the warm-up phase of low and high-mass stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' This can be seen in Figures 1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' For Phase 1, the species are not detectable except for the original configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' However, we still observe that for the other three con- figurations an increasing value of 𝛼 corresponds to an increased level of depletion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' In Phase 2, the configurations are all detectable and this same hierarchy remains in the gas-phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 Cosmic Ray Ionisation Rate The degree of cosmic ray ionisation is found to play an important role in enhancing or counteracting the role of the dihydrogenation reac- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The cosmic ray destruction routes we include in our standard network are from Garrod et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' These consist of hydrogen abstraction reactions and reactions that produce radical-radical pairs of products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' An enhanced cosmic ray ionisation rate leads to the destruction of many of hydrogenated species, such as CH4, NH3, H2O and CH3OH, as well as their precursors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' This leads to further hydrogen reservoirs being released and radicals being formed which can go on to form glycine and its precursors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Because no cosmic ray destruction mechanisms for these complex, larger, species are included, we find that these are more abundantly produced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' This is important to consider in the context of glycine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' In Figures 1 and 2, we plot the time dependence of the abundance of glycine precursors for eight different parameter sets, including the enhanced cosmic ray ionisation rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' In Phase 1, we find that on the grains, the enhanced cosmic ray ionisation rate depletes the species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' In Phase 2, the effect varies by configuration and species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The original config- uration consistently leads to a decrease of all plotted species in the presence of enhanced cosmic ray ionisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The 𝛼 = 0 configuration is depleted for the methylamine radical and glycine, but enhanced for methylamine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The 𝛼 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='05 and 𝛼 = 1 configurations are depleted for methylamine and glycine, but enhanced for the methylamine radical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 General Implications As can be seen in Tables 3 and 4, the inclusion of reactions with molecular hydrogen affects the hydrogen economy of the reaction network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Previously, the reaction network had a significant amount of H2 being adsorbed or produced on the surface with no chemical de- struction mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The H2 molecules are a previously untapped hydrogen reservoir that is now being utilised (Hasegawa & Herbst 1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Because one H2 frees up two H atoms on the surface, other atomic hydrogenation reactions can take place more easily.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' There- fore, we observe the increase in the abundances of species in Phases 1 and 2 that are the products of hydrogenation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' While for many of the more common species, the relative increase, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 𝛿 is small, the abundance increases in absolute terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' There are large relative and absolute changes in the network of less abundant species, such as NH2CH2, NH2CH3 and NH2CH2COOH and there are fairly large absolute changes in the network of highly abundant species, such as C and its hydrogenation products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We can also comment on the carbon budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The previously defined Δ parameter allows us to consider how carbon is redistributed as a result of the new reactions being included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' For instance, for the dark cloud during Phase 1, the total Δ for the main carbon-based grain- surface species that increase Δtotal(#CH2 + #CH3 + #CH4 + #H2CS + #CH3OH) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='9 × 10−6 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' is nearly equal to that of the total decrease Δ of main grain-surface species: Δtotal(#C + #CH + #NCH4 + #NH2CH3 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 × 10−6 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' From this we can see that the dihydrogenation reactions redis- tribute the carbon between the aforementioned species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The re- maining carbon is redistributed to other species in the network in smaller amounts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We also observe that besides the methyl radi- cal, also species that contain the CH3 group, such as CH3OH and CH3CN see increases in their abundances, via the reactions CH3 + OH −−−→ CH3OH and CH3 + CN −−−→ CH3CN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' MNRAS 000, 1–11 (2015) Impact of C and CH reacting with H2 5 Dark Cloud Low-Mass Star High-Mass Star Species 𝛿 Original Abundances Species 𝛿 Original Abundances Species 𝛿 Original Abundances #CH2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 ×10−7 #CH2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 ×10−7 #CH2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 ×10−7 #CH3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 ×10−7 #CH3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6×10−7 #CH3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 ×10−7 #CH4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 ×10−6 #CH4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 ×10−6 #CH4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 ×10−6 #NH3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 ×10−6 #NH3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='7 ×10−6 #NH3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='7 ×10−6 #H2CS 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 ×10−8 #H2CS 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 ×10−8 #H2CS 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 ×10−8 #CH3OH 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='04 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 ×10−5 #CH3OH 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='04 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ×10−5 #CH3OH 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='04 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ×10−5 #HNC 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='03 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ×10−8 #HNC 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='04 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ×10−8 #HNC 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='04 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ×10−8 #H2SiO 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='03 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ×10−7 #H2SiO 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='03 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 ×10−8 #H2SiO 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='03 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 ×10−7 #HCN 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='7 ×10−7 #HO2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='03 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ×10−7 #HO2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='03 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ×10−7 #O2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 ×10−6 NO 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='03 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 ×10−10 #HCN 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 ×10−7 #CH 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 ×10−15 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 ×10−7 #CH 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 ×10−15 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 ×10−7 #CH 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 ×10−15 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 ×10−7 #C 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 ×10−13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 ×10−6 #C 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 ×10−13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 ×10−6 #C 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 ×10−13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 ×10−6 #NCH4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='7 ×10−13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 ×10−7 #NCH4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 ×10−13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 ×10−7 #NCH4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 ×10−13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 ×10−7 #NH2CH3 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 ×10−13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='9 ×10−7 #NH2CH3 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ×10−13 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 ×10−7 #NH2CH3 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ×10−13 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 ×10−7 NH2CH3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 ×10−12 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='7 ×10−10 #Si 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='98 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 ×10−8 #Si 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='98 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 ×10−8 CH 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='96 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ×10−10 #SiH 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='99 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 ×10−8 #SiH 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='99 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 ×10−8 CH3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='98 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 ×10−9 #SiH2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='99 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ×10−8 #SiH2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='99 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ×10−8 #Si 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='98 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='7 ×10−8 #O 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='99 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 ×10−5 #SI 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='99 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='7 ×10−5 #SiH 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='99 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 ×10−8 #H3CO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='99 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='7 ×10−6 #H3CO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='99 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='7 ×10−6 #SiH2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='99 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 ×10−8 #HNO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='99 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 ×10−5 #HNO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='99 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 ×10−5 Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Summary of the species that experienced the greatest increases (top section) and decreases (bottom section) for each of the three astronomical objects in Phase 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Species with a "#" are grain-surface species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' All other species are gas-phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Low-Mass Star High-Mass Star Species 𝛿 Original Abundances Species 𝛿 Original Abundances HOCO 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='7 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ×10−10 HOCO 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ×10−8 H2O2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ×10−9 CH3OH 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 ×10−9 CH3CHO 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0×10−7 CH3CHO 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 ×10−7 CH3OH 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='7 ×10−9 C2H4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 ×10−9 CH3CN 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 ×10−9 CH2CO 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 ×10−10 C4H 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 ×10−10 H2CO 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='7 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ×10−9 C3H2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 ×10−9 CH3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1×10−10 CH3CCH 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4×10−8 NH3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ×10−8 NH3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='7 ×10−7 CH3CN 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 ×10−10 NH2CHO 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='7 ×10−7 C2H2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 ×10−8 NCH4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 ×10−5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 ×10−7 NCH4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='7 ×10−5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 × 10−7 NH2CH3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 ×10−3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 ×10−7 NH2CH3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 ×10−3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='7 ×10−7 NH2CH2COOH 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 ×10−2 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ×10−9 NH2CH2COOH 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ×10−3 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 ×10−8 H2S 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='88 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 ×10−9 NO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='82 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 ×10−6 SO2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='92 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 ×10−8 NCCN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='96 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='9 × 10−7 MG+ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='93 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 ×10−8 O2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='96 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 ×10−6 O 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 × 10−5 HCOO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='96 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='9 × 10−10 CH2OH 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='95 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 ×10−8 C2N 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='97 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 ×10−8 O2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='96 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 ×10−5 O 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='97 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 × 10−8 SO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='97 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='9 ×10−6 CO2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='97 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 × 10−6 Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Summary of the species that experienced the greatest increases (top section) and decreases (bottom section) for each of the three astronomical objects in Phase 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' All species listed are gas-phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' In a similar fashion, nitrogen is redistributed throughout the net- work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The grain-surface ammonia abundance increases by 10%, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8×10−7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The decrease in #NCH4 and #NH2CH3 accounts for 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4×10−7 or ∼ 90%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 Implications for Simple Grain-Surface Species In the light of the recent ice observations with the James Webb Space Telescope, both published (Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 2022) and upcoming (McClure et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 2017), it is important to consider the effect on the main ice constituents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Figure 3 shows the time-evolution of the abun- dances of grain-surface H2O, CO, CO2, CH3OH, H2CO, NH3 and MNRAS 000, 1–11 (2015) 6 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='Heyl et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' CH4 in Phase 1 of a dark cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' These are species that have been se- curely or likely identified in the ices (Boogert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The shaded areas in the plots indicate the 68% confidence interval for the mea- sured abundances, taken from Boogert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' In Boogert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2015), the abundances were given in terms of the median value as well as the upper and lower quartiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' It was assumed that the spread in the measurements was Gaussian, which meant that the interquar- tile range represented 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='36𝜎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' This spread in measurements is due to both observational error and source-to-source variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We observe that we recover the measured abundances for most of the species within the uncertainty, with the exception of grain-surface CO2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The inclusion of the dihydrogenation reactions does not change how well the models agree with the abundance measurements, however, for all hydrogenation products we observe that the inclusion of reac- tions with molecular hydrogen increases their abundance, as a result of the additional atomic hydrogen on the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' In short, despite uncertainties surrounding activation energies, networks and binding energies, we are able to recover observational abundances reasonably well when we include the reactions with molecular hydrogen and this gives us confidence that the predictions we make for glycine and its precursors are accurate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 Implications for Glycine and its Precursors In Tables 3 and 4, we observe that the abundances of glycine and its precursors decreases if molecular hydrogen is part of the reaction network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We can also explain why the abundance of precursors of glycine, gas and grain NH2CH3 and NH2CH2 decrease.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The former is formed through the reaction NH2 + CH3, but since more atomic H is present on the grains, both radical species are preferentially hydrogenated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The inclusion of H2 as a reacting species, not just in the context of the two reactions we consider in this work, introduces greater competition for radicals that are needed for the formation of complex organic molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' This results in the lower abundances of NH2CH3 and NH2CH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We can also use this to justify the impact of the efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Figures 1 and 2 plot the time series for the various efficiencies as well as with enhanced cosmic ray ionisation in Phase 1 and 2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We previously remarked that the original configuration produced the most of glycine and its precursors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' For the other configurations, the greater the value of 𝛼, the greater the depletion of these species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' This makes sense when one considers that an increasing value of 𝛼 results in more H2 being consumed and therefore more atomic H becoming available to hydrogenate precursors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We now look to compare our results with observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We do this separately for glycine and its precursors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We also discuss the implications of not using non-diffusive grain-surface mechanisms in our code, such as the ones discussed in Garrod & Pauly (2011) and Jin & Garrod (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 Methylamine and the methylamine radical Methylamine (NH2CH3) and the methylamine radical (NH2CH2) are important precursors of glycine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The hydrogen abstraction of methylamine to form the methylamine radical is crucial, as there is growing evidence to suggest that the reaction NH2CH2 + HOCO –> NH2CH2COOH is a feasible glycine formation route (Ramesh & Yuan-Pern 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Confirmed detections of methylamine in high- mass star forming regions are summarised in Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We observe improved level of agreement between our model outputs and obser- vations when the reactions are included with 𝛼 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We observed significant enhancement when the cosmic ray ionisation rate was increased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' This suggests that if dihydrogen is chemically active on the grains, one would need to consider regions of high cosmic ray ionisation rate to detect these precursors of glycine, as these reactions reduce the abundance of methylamine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' In the case of the Bøgelund et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2019) observation, we have confidence in the value of our ratio, as the chemical network for methanol is well-established.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' However, the entirety of the above discussion regarding the agree- ment of our results with observations is incomplete without dis- cussing the effect of the nondiffusive reaction mechanisms being absent in our modelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' These mechanisms are of particular use when considering reactions between reactants which are likely to re- act very slowly via the Langmuir-Hinshelwood diffusion mechanism, such as the reaction between CO and OH to form CO2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Methylamine and the methylamine radical are formed via reactions 6 and 7, which involve species with high binding energies, thereby making their for- mation at 10K inefficient via diffusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' As a result, the fact that we do not include the non-diffusive mechanisms means that methylamine and its radical are under-produced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 Glycine While there may be no confirmed detection for glycine in the liter- ature, various estimates exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' In Gibb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2004), an upper limit of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3% with respect to water was determined, whereas in Jiménez- Serra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2014), this was estimated to be around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' In this work, we find that when the dihydrogenation reactions are not in- cluded this value is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='07% and when we include both reactions then it is 2×10−4%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We should note that in the absence of experimentally- motivated gas-phase glycine destruction reactions the values derived in this work are only upper limits, if one neglects non-diffusive mech- anisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' In the previous sub-section, we discussed that methylamine and its radical are underproduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' This will result in glycine being underproduced as well, not just due to the underproduction of its precursors, but also because reaction 10 is less efficient if assumed to be diffusion-only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 4 CONCLUSION In this work, we considered the effect of including the reactions of H2 with C and CH in our grain-surface network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We ran a grid of 12 models that vary the final density of the collapsing cloud, the efficiency for the ‘barrier’ of C + H2 −−−→ CH2 as well as the cosmic ray ionisation rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Making molecular hydrogen chemically active unlocks a previ- ously untapped reservoir of hydrogen, and therefore freeing up the use of atomic hydrogen for hydrogenation reactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' A particularly interesting consequence of this is that making H2 more chemically active decreased the abundances of glycine and its precursors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' This may aid in explaining why methylamine, the methylamine radical as well as glycine have remained undetected so far.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We note that we do not have a comprehensive gas-phase network for glycine and its precursors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' That is likely to be a limitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' While it is still likely that glycine and its precursors form on the grains and then evaporate into the gas-phase, it is possible that there would be gas-phase destruction routes as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Additionally, cosmic-ray ionisation destruction routes on the grains and in the gas-phase are likely also needed, as these typically break large molecules down into smaller radicals which are then recycled for further gas-phase reactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' As such, the abundances we obtain for glycine and its precursors are likely to only be upper limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' MNRAS 000,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 1–11 (2015) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='Impact of C and CH reacting with H2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='Time (Years) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1e6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='Abundance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='#NCH4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='Time (Years) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1e6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='Abundance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='NCH4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='Time (Years) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1e6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='Abundance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='#NH2CH3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='Time (Years) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1e6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='Abundance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='NH2CH3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='Original ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='= 0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='05 = 1 Original + CR = 0 + CR = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='05 + CR = 1 + CR Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Time series of the abundances of grain-surface and gas-phase NH2CH2 and NH2CH3 in Phase 1 of a dark cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Furthermore, we observe that the inclusion of the dihydrogenation reactions, regardless of efficiency 𝛼 severely depletes the abundances of the glycine precursors in both phases relative to the original model which did not include either of the dihydrogenation reactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Also plotted are the limits of detectability we have used for gas and grain-surface species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We do not plot glycine, as it is not formed at all in Phase 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We observe that only the original model is capable of producing ’detectable’ levels of methylamine and the methylamine radical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' For the other configurations, an increase in 𝛼 results in increased depletion of the species relative to the original model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We also observe that enhanced cosmic ray ionisation depletes the abundances on the grains but not in the gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' MNRAS 000, 1–11 (2015) 8 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='Heyl et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 Time (Years) 1e6 10 11 10 10 10 9 10 8 10 7 10 6 Abundance NCH4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 Time (Years) 1e6 10 10 10 9 10 8 10 7 10 6 Abundance NH2CH3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 Time (Years) 1e6 10 10 10 9 10 8 10 7 10 6 Abundance NH2CH2COOH Original = 0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='05 = 1 Original + CR = 0 + CR = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='05 + CR = 1 + CR Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Time series of the abundances of gas-phase NH2CH2, NH2CH3 and NH2CH2COOH in Phase 2 of a high-mass star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We observe that glycine is produced in the warm-up phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The enhanced cosmic ray ionisation rate is found to significantly deplete all three species in the gas-phase for the original model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' For NH2CH2 and NH2CH3, when 𝛼 = 0, 𝛼 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='05 or 𝛼 = 1, the enhanced cosmic ray ionisation rate results in an increase of their abundances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' For glycine, the enhanced cosmic ray ionisation rate seems to decrease its gas-phase abundance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' MNRAS 000, 1–11 (2015) Impact of C and CH reacting with H2 9 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 Time (Years) 1e6 10 8 10 6 10 4 Abundance #H2O 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 Time (Years) 1e6 10 8 10 6 10 4 Abundance #CO Original = 0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='05 = 1 Original + CR = 0 + CR = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='05 + CR = 1 + CR 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 Time (Years) 1e6 10 8 10 6 10 4 Abundance #CO2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 Time (Years) 1e6 10 8 10 6 10 4 Abundance #CH3OH 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 Time (Years) 1e6 10 8 10 6 10 4 Abundance #H2CO 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 Time (Years) 1e6 10 8 10 6 10 4 Abundance #NH3 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 Time (Years) 1e6 10 8 10 6 10 4 Abundance #CH4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='2 Time (Years) 1e6 10 8 10 6 10 4 Abundance #H2S Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Time series of the abundances of grain-surface H2O, CO, CO2, CH3OH, H2CO, NH3, CH4 and H2S in Phase 1 of a dark cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' We include the species that have securely identified or likely identified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The abundances were adapted from Boogert et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The shaded areas include the 1𝜎 region of abundances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' In the case of H2CO, no uncertainty was provided in the original source, so there is no shaded area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Grain-surface H2S only has an upper limit on its abundance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' For both normal and enhanced cosmic ray ionisation rates, the time-series differ very little, which is why it is difficult to distinguish them visually.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' MNRAS 000, 1–11 (2015) 10 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='Heyl et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Reference Molecule Reference Abundance Measurements (Relative to Reference Molecule) Original Model Ratio New Model Ratio CH3OH Bøgelund et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2019) 8 × 10−3 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 37 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='02 H2 Ohishi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2019) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='1 × 10−8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='5 × 10−7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='9 × 10−10 Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Table of methylamine abundance measurements relative to reference molecules for high-mass stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Also included are the corresponding ratios obtained in this work for high-mass stars with the standard cosmic ray ionisation rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' An additional limitation is the absence of the non-diffusive reaction mechanisms discussed in Garrod & Pauly (2011) and Jin & Garrod (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' The consequence is that glycine and its precursors do not form efficiently on the grains at 10 K, which is different to what was found in Ioppolo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' As such, they are under-produced in our models, whereas diffusion-efficient reactions overproduce certain species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' However, without implementing this formalism in the code, it is difficult to assess the relative impacts of these mechanisms on the final abundances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' ACKNOWLEDGEMENTS We thank the anonymous referee for their constructive comments that improved the quality of the manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Heyl is funded by an STFC studentship in Data-Intensive Science (grant number ST/P006736/1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Lamberts is grateful for support from NWO via a VENI fellow- ship (722.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' This work was also supported by European Re- search Council (ERC) Advanced Grant MOPPEX 833460.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Viti acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska- Curie grant agreement No 811312 for the project “Astro-Chemical Origins” (ACO).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' DATA AVAILABILITY The data underlying this article are available in the article and in its online supplementary material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' REFERENCES Al-Halabi A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', van Dishoeck E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2007, MNRAS, 382, 1648 Arasa C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', van Hemert M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', van Dishoeck E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Kroes G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2013, The Journal of Physical Chemistry A, 117, 7064 Balucani N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Bergeat A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Cartechini L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Volpi G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Casavecchia P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Skouteris D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Rosi M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2009, The Journal of Physical Chemistry A, 113, 11138 Bernstein M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Dworkin J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Sandford S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Cooper G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Allamandola L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2002, Nature, 416, 401 Black J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Hartquist T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Dalgarno A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 1978, ApJ, 224, 448 Bøgelund E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', McGuire B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Hogerheijde M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', van Dishoeck E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Ligterink N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2019, A&A, 624, A82 Boogert A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Gerakines P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Whittet D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2015, Annual Review of Astronomy and Astrophysics, 53, 541 Bossa J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Duvernay F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Theulé P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Borget F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', D’Hendecourt L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Chiavassa T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2009, A&A, 506, 601 Caselli P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Ceccarelli C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2012, A&ARv, 20, 56 Chang Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Cuppen H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Herbst E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2007, A&A, 469, 973 Ciesla F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Sandford S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2012, Science, 336, 452 Fedoseev G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Ioppolo S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Lamberts T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Zhen J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Cuppen H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Linnartz H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2012, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 137, 054714 Garrod R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2013, ApJ, 765, 60 Garrod R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Pauly T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2011, ApJ, 735, 15 Garrod R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Widicus Weaver S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Herbst E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2008, ApJ, 682, 283 Gibb E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Whittet D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Boogert A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Tielens A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2004, ApJS, 151, 35 Goldsmith P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Li D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2005, ApJ, 622, 938 Goumans T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Uppal M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Brown W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2008, MNRAS, 384, 1158 Hartquist T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Doyle H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Dalgarno A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 1978, A&A, 68, 65 Hasegawa T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Herbst E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 1993, MNRAS, 261, 83 Herbst E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', van Dishoeck E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2009, Annual Review of Astronomy and Astrophysics, 47, 427 Holdship J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Viti S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Jiménez-Serra I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Makrymallis A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Priestley F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2017, AJ, 154, 38 Indriolo N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', McCall B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2012, The Astrophysical Journal, 745, 91 Indriolo N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', McCall B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2013, Chemical Society Reviews, 42, 7763 Indriolo N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Geballe T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Oka T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', McCall B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2007, The Astrophysical Journal, 671, 1736 Ioppolo S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Cuppen H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', van Dishoeck E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Linnartz H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2011, MNRAS, 410, 1089 Ioppolo S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2021, Nature Astronomy, 5, 197 Jiménez-Serra I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', testi L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Caselli P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Viti S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2014, ApJ, 787, L33 Jiménez-Serra I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2016, ApJ, 830, L6 Jiménez-Serra I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Vasyunin A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Spezzano S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Caselli P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Cosentino G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Viti S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2021, ApJ, 917, 44 Jin M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Garrod R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2020, ApJS, 249, 26 Krasnokutski S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Kuhn M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Renzler M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Jäger C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Henning T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Scheier P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2016, ApJ, 818, L31 Lamberts T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Kästner J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2017, The Astrophysical Journal, 846, 43 Lamberts T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Cuppen H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Ioppolo S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Linnartz H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2013, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 15, 8287 Lamberts T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Fedoseev G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Kästner J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Ioppolo S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Linnartz H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2017, A&A, 599, A132 Lamberts T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Fedoseev G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', van Hemert M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Qasim D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Chuang K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Santos J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Linnartz H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2022, ApJ, 928, 48 Lee C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Kim J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Moon E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Minh Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Kang H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2009, The Astro- physical Journal, 697, 428 Maté B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Tanarro I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Escribano R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Moreno M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Herrero V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2015, ApJ, 806, 151 McClure M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2017, IceAge: Chemical Evolution of Ices during Star Formation, JWST Proposal ID 1309.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Cycle 0 Early Release Science McElroy D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Walsh C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Markwick A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Cordiner M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Smith K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Millar T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2013, A&A, 550, A36 Meisner J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Lamberts T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Kästner J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2017, ACS Earth and Space Chemistry, 1, 399 Molpeceres G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Kästner J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2020, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 22, 7552 O’Donnell E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Watson W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 1974, ApJ, 191, 89 O’Donoghue R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Viti S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Padovani M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', James T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2022, ApJ, 934, 63 Oba Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Chigai T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Osamura Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Watanabe N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Kouchi A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2014, Meteoritics & Planetary Science, 49, 117 Ohishi M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Suzuki T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Hirota T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Saito M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Kaifu N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2019, PASJ, 71, 86 Pernet A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Pilmé J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Pauzat F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Ellinger Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Sirotti F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Silly M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Parent P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Laffon C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2013, A&A, 552, A100 Qasim D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Chuang K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Fedoseev G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Ioppolo S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Boogert A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Linnartz H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2018, A&A, 612, A83 Quénard D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Jiménez-Serra I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Viti S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Holdship J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Coutens A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2018, MN- RAS, 474, 2796 Ramesh J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Yuan-Pern L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2022, Communications chemistry, 5, 1 Sato A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2018, Molecular Astrophysics, 10, 11 Simončič M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Semenov D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Krasnokutski S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Henning T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Jäger C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2020, A&A, 637, A72 MNRAS 000, 1–11 (2015) Impact of C and CH reacting with H2 11 Viti S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Collings M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Dever J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', McCoustra M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Williams D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2004, MNRAS, 354, 1141 Wakelam V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Loison J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Mereau R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Ruaud M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2017, Molecular Astro- physics, 6, 22 Woon D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2002, ApJ, 571, L177 Yang Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 2022, arXiv e-prints, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content='10673 van Dishoeck E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', Black J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=', 1988, ApJ, 334, 771 This paper has been typeset from a TEX/LATEX file prepared by the author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
+page_content=' MNRAS 000, 1–11 (2015)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/fNE3T4oBgHgl3EQfHglt/content/2301.04324v1.pdf'}
diff --git a/gdE1T4oBgHgl3EQffAR-/content/tmp_files/2301.03213v1.pdf.txt b/gdE1T4oBgHgl3EQffAR-/content/tmp_files/2301.03213v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..84280681dd36344c5664704aefdb34840d9e4f4f
--- /dev/null
+++ b/gdE1T4oBgHgl3EQffAR-/content/tmp_files/2301.03213v1.pdf.txt
@@ -0,0 +1,1578 @@
+EgoTracks: A Long-term Egocentric Visual Object Tracking Dataset
+Hao Tang
+Kevin Liang
+Kristen Grauman
+Matt Feiszli
+Weiyao Wang
+Meta Platforms Inc.
+haotang, kevinjliang, grauman, mdf, weiyaowang@meta.com
+Figure 1. A sample video from the proposed EgoTracks dataset, with yellow segments of the clip marking when the object (blowtorch)
+is visible. Note the frequent disappearances and reappearances of the object over an 8 minute video, with lengthy absences, necessitating
+re-detection to track accurately without false positives. The egocentric nature of the video includes the camera-wearer interacting with the
+object (Occurrence 2), resulting in significant hand occlusions and dramatic changes in pose.
+Abstract
+Visual object tracking is a key component to many ego-
+centric vision problems.
+However, the full spectrum of
+challenges of egocentric tracking faced by an embodied AI
+is underrepresented in many existing datasets; these tend
+to focus on relatively short, third-person videos. Egocen-
+tric video has several distinguishing characteristics from
+those commonly found in past datasets: frequent large cam-
+era motions and hand interactions with objects commonly
+lead to occlusions or objects exiting the frame, and ob-
+ject appearance can change rapidly due to widely differ-
+ent points of view, scale, or object states. Embodied track-
+ing is also naturally long-term, and being able to consis-
+tently (re-)associate objects to their appearances and dis-
+appearances over as long as a lifetime is critical.
+Pre-
+vious datasets under-emphasize this re-detection problem,
+and their “framed” nature has led to adoption of various
+spatiotemporal priors that we find do not necessarily gen-
+eralize to egocentric video. We thus introduce EgoTracks, a
+new dataset for long-term egocentric visual object track-
+ing.
+Sourced from the Ego4D dataset, this new dataset
+presents a significant challenge to recent state-of-the-art
+single-object tracking models, which we find score poorly
+on traditional tracking metrics for our new dataset, com-
+pared to popular benchmarks. We further show improve-
+ments that can be made to a STARK tracker to significantly
+increase its performance on egocentric data, resulting in
+a baseline model we call EgoSTARK. We publicly release
+our annotations and benchmark, hoping our dataset leads
+to further advancements in tracking.
+1. Introduction
+First-person or “egocentric” computer vision aims to
+capture the real-world perceptual problems faced by an em-
+arXiv:2301.03213v1 [cs.CV] 9 Jan 2023
+
+Occurrence 2
+Occurrence 17
+Negative Framesbodied AI; it has drawn strong recent interest as an under-
+served but highly relevant domain of vision, with important
+applications ranging from robotics [15, 57] to augmented
+and mixed reality [2,23,59]. Visual object tracking (VOT),
+long a fundamental problem in vision, is a core component
+to many egocentric tasks, including tracking the progress
+of an action or activity, (re-)association of objects in one’s
+surroundings, and predicting future states of the environ-
+ment. Yet, while the VOT field has made many significant
+advancements over the past decade, tracking in egocentric
+video remains underexplored. This lack of attention is in
+large part due to the absence of a large-scale egocentric
+tracking dataset for training and evaluation. While the com-
+munity has proposed a number of popular tracking datasets
+in recent years, including OTB [69], TrackingNet [51], Got-
+10k [26], and LaSOT [16], we find that the strong perfor-
+mance that state-of-the-art trackers achieve on these bench-
+marks does not translate well to egocentric video, thus es-
+tablishing a strong need for such a tracking dataset.
+We attribute this performance gap to the many unique
+aspects of egocentric views compared to the more tradi-
+tional third-person views of previous datasets. In contrast
+to intentionally “framed” video, egocentric videos are of-
+ten uncurated, meaning they tend to capture many attention
+shifts between activities, objects, or locations. Due to the
+first-person perspective, large head motions from the cam-
+era wearer often result in objects repeatedly leaving and re-
+entering the field of view; similarly, hand manipulations of
+objects [58] leads to frequent occlusions, rapid variations in
+scale and pose, and potential changes in state or appearance.
+Furthermore, egocentric video tends to be long (sometimes
+representing the entire life of an agent or individual), mean-
+ing the volume of the aforementioned occlusions and trans-
+formations scales similarly. These characteristics all make
+tracking objects in egocentric views dramatically more dif-
+ficult than scenarios commonly considered in prior datasets,
+and their absence represents an evaluation blindspot.
+The aforementioned head motions, locomotion, hand oc-
+clusions, and temporal length lead to several challenges.
+First, frequent object disappearances and reappearances
+causes the problem of re-detection within egocentric track-
+ing to become especially critical.
+Many previous track-
+ing datasets primarily focus on short-term tracking in third-
+person videos, providing limited ability to evaluate many of
+the challenges of long-term egocentric tracking due to low
+quantity and length of target object disappearances. As a
+result, competent re-detection is not required for strong per-
+formance, leading many recent short-term trackers to ne-
+glect it, instead predicting a bounding box for every frame,
+which may lead to rampant false positives or tracking the
+wrong object.
+Additionally, the characteristics of short-
+term third-person video have also induced designs relying
+on gradual changes in motion and appearance. As we later
+Table 1. Statistics of long-term object tracking datasets. An
+occurrence is defined as a contiguous set of frames where the ob-
+ject is visible, before disappearing. The presented EgoTracks has
+the highest number of tracks and target disappearances and reap-
+pearances, making it the largest dataset for training and evaluating
+long-term trackers. We summarize the training and validation data
+from each dataset here, as we do not have the ground truth for the
+other datasets’ hold-out test sets.
+OxUvA [62]
+LaSOT [16]
+VOT-LT [32]
+Ours
+# tracks
+200
+1400
+50
+17598
+# occurrences / track
+1.5
+4.5
+10.5
+17.7
+Seconds / occurrence
+37.8
+21.52
+8
+5.2
+Seconds btw. occurrences
+3.5
+0.8
+9.3
+16.1
+show (Section 5.2), many of the motion, context, and scale
+priors made by previous short-term tracking algorithms fail
+to transfer to egocentric video. Thus, a large-scale long-
+term tracking dataset is needed to train and understand the
+long-term tracking capability of modern trackers.
+To address this gap, we present EgoTracks: a large-
+scale long-term egocentric visual object tracking dataset for
+training and evaluating long-term trackers. Seeking a real-
+istic challenge, we source videos from Ego4D [23], a large-
+scale dataset consisting of unscripted, in-the-wild egocen-
+tric videos of daily-life activities. The result is a large-scale
+dataset to evaluate the tracking and re-detection ability of
+SOT models, with more than 20,000 tracks from around
+6000 6-minute videos. This constitutes the first large-scale
+dataset for visual object tracking in egocentric videos in di-
+verse settings, providing a new, significant challenge com-
+pared with previous datasets.
+We perform a thorough analysis of our new dataset,
+demonstrating its difficulty and the need for further research
+to develop trackers capable of handling long-term egocen-
+tric vision. These experiments reveal valuable insights to-
+wards promising future directions in egocentric tracking
+and re-detection. Leveraging these intuitions, we propose
+multiple simple yet effective changes, such as adjustment of
+spatiotemporal priors, egocentric data finetuning and com-
+bining multiple templates. We study these proposed strate-
+gies on the the state-of-the-art STARK tracker [71] and
+train a strong tracker dedicated towards long-term egocen-
+tric tracking, EgoSTARK. We hope EgoSTARK can serve
+as a strong baseline and facilitate future research.
+To summarize, we make the following contributions:
+1. We present EgoTracks, the first large-scale long-term
+object tracking dataset with diverse egocentric scenar-
+ios. We analyze its uniqueness in terms of evaluating
+the re-detection performance of trackers.
+2. We conduct comprehensive experiments to understand
+the performance of many state-of-the-art trackers on
+the EgoTracks validation set and observe that due to
+the biases and evaluation blindspots of existing third-
+person datasets, they tend to struggle.
+
+Figure 2. EgoTracks is a large-scale egocentric dataset of diverse scenarios (left) and objects (right).
+3. We propose a combo of several training and inference-
+time improvements to the STARK tracker [71] to adapt
+it to long-form egocentric video.
+We call this re-
+fined model Ego-STARK, which achieves significant
+improvements (15% tracking F-score) on EgoTracks.
+2. Related work
+2.1. Visual Object Tracking Datasets
+Visual object tracking studies the problem of joint
+spatial-temporal localization of objects in videos.
+There
+are two main categories: multiple object tracking (MOT)
+and single object tracking (SOT). In MOT, a model is pro-
+vided a video and a predefined taxonomy, and the model
+is required to simultaneously detect, recognize and track
+multiple objects. For example, MOT [49] tracks human,
+KITTI [20, 45] tracks pedestrians and cars, and TAO [12]
+tracks a large taxonomy of 833 categories. Different from
+MOT, SOT tracks a single object via a provided initial tem-
+plate of the object, and no detection or recognition is in-
+volved. Thus, SOT is often taxonomy-free and operates on
+generic objects. The community has constructed multiple
+popular benchmarks to study this important problem, in-
+cluding OTB [69], UAV [50], NfS [30], TC-128 [40], NUS-
+PRO [35], GOT-10k [26], VOT [32], and TrackingNet [51].
+These SOT datasets mainly consist of short videos (e.g. a
+few seconds). Recently, there have been increasing interests
+in long-term tracking. Different from the above datasets,
+tracking objects in longer videos (several minutes or more)
+poses unique challenges, as the object may involve more
+significant transforms, displacements, disappearances, and
+reappearances. On top of localizing the object when it is
+visible, the model needs to know not predict a box when the
+object is absent, and then re-localize the same object when
+it reappears. OxUvA [62] is one of the first to benchmark
+longer videos (average 2 minutes), with 366 evaluation-
+only videos.
+LaSOT [16] scales this philosophy with a
+benchmark of 1400 videos of more frequent object reap-
+pearances. Concurrently, VOT-LT [31] is specifically de-
+signed to benchmark videos with frequent object disappear-
+ances and reappearances in 50 purposefully selected videos.
+Our EgoTracks focuses on long-term SOT and presents
+multiple critical and unique attributes:
+1) significantly
+larger scale, with 17k videos of an average 6 minutes (Ta-
+ble 1); 2) more frequent disappearances & reappearances
+(avg. 17.7 times) happening in natural, unscripted, real-
+world scenarios; 3) data sourced from egocentric videos
+shot in-the-wild, involving unique challenging situations,
+such as large camera motions, diverse perspective changes,
+hand-object interactions, and frequent occlusions.
+2.2. Single Object Tracking Methodologies
+Many modern approaches use convolutional neural net-
+works (CNNs), either with a Siamese network architec-
+ture [36, 37, 65], or a correlation-filter based architec-
+ture [3,4,7,10,48]. With the Transformer’s recent successes
+in computer vision tasks like classification [14] and detec-
+tion [5], a line of works leveraging the Transformer archi-
+tecture [63] to perform tracking have also emerged. For ex-
+ample, inspired by Transformers, TransT [6] uses attention-
+based feature fusion to combine features of the object tem-
+plate and search image. More recently, several works uti-
+lize Transformers as direct predictors to achieve a new state
+of the art, such as STARK [71], ToMP [47] and SBT [70].
+These models tokenize frame features from a ResNet [25]
+encoder, and use a Transformer to predict the bounding box
+and object presence score with the feature tokens. These
+methods are often developed on short-term SOT datasets
+and assume that the target object stays in the field of view
+with minimum occlusions. On the other hand, long-term
+trackers [8,27,64] are designed to cope with the problem of
+re-detecting objects in their reappearances. Intended to be
+aware of potential object disappearances, these approaches
+search the whole image for its reappearance.
+2.3. Tracking in Egocentric Videos
+Multiple egocentric video datasets have been introduced
+in the past decades [9, 18, 23, 33, 53, 60]. They offer a host
+of interesting challenges, many of which require associating
+objects across frames: activity recognition [21, 29, 38, 68,
+73], anticipation [17, 19, 22], video summarization [13, 33,
+34, 44], human-object interaction [11, 42], episodic mem-
+
+Doing yardwork/shoveling snow
+Indoor Navigation
+On a screen
+Playing board games
+Talking to Colleaguescycling/jogging
+Baseball
+Farmer
+Working in outdoor store
+Playing with pets
+Watching tv
+nGardening
+Listening to music
+Bike
+Working at desk
+Walking onstreet
+011
+Working in milktea shop
+Eating
+Playwith cellphone
+biology experiments
+Readingbooks
+Kupune
+Going to the park
+Talking with family member
+Practicing a musical
+instrument
+Waikingthedog/pet
+carr
+mechanicCarpenter
+mechani
+Daily
+Camp setup/pack-up/chores
+Crafting/knitting/sewing/drawing/painting
+Scooter mechanic
+Commuting,
+road
+tri
+Grocery
+shopping
+Going to the gy
+ndoors
+Making
+Potting plantsMaking coffee
+Clothes
+other
+shopping
+Fixing something in the home
+Taiking onthe phone
+Talkingwithfriends/
+housematbag
+lawn.mower
+televlslon
+ball
+paper
+Naterfanbotte
+wi cockbasket
+book
+phone
+.measuring tape
+chopping=boar
+scIssors
+rille
+-towel
+knife
+ricecooker
+cup
+tissue
+flower pot
+mobile-phone
+pot
+ trolley
+spanner
+coolbox..helmet
+throw pillow
+blende
+lam
+contalnel
+electric jug
+slippers
+trash-bin
+dust pan
+kett.
+WOO
+sandals
+plieri
+he
+dustbin
+olasticcontainer
+'dustpan
+ottl
+mouse
+brush
+weighing--scal
+es
+o
+Jug
+pen
+pillow
+astic
+ wallet
+laundry basket
+soap bottle.
+tray
+1anp shac
+paint can
+crowal
+carton
+spade."
+'sprayei
+hoe
+nsinsun
+remote
+shoes
+guitar
+Scar
+coffee.maker
+inergloves
+T
+paper bag
+belt
+polythenelbag
+tape_measure
+oaperitowe
+hand drill
+sprav-bottle
+-plier
+Aammera
+impact wrencl
+oucketchair
+shopping list
+paint bucket
+Ca
+Icon'trole
+flask
+cooking pan-
+shopping.basket
+...sack
+Crewidriver
+kitchen=towel
+flower-vase.
+lidTable 2. Comparison with other object tracking datasets.
+Dataset
+# Classes
+(Eval/Train)
+# Videos
+(Eval/Train)
+Average
+Length (s)
+Tracks per
+Video
+Annotation
+FPS
+Annotation
+Type
+Egocentric
+ImageNet-Vid [56]
+30
+1314/4000
+10.6
+2.4
+∼25
+mask
+No
+YTVIS [72]
+40
+645/2238
+4.6
+1.7
+5
+mask
+No
+DAVIS17 [54]
+-
+30/60/30/30
+3
+3
+24
+mask
+No
+GOT-10k [26]
+84/480
+360/9335
+12.2
+1
+10
+bbox
+No
+OxUvA [62]
+22/0
+366/0
+141.2
+1.1
+1
+bbox
+No
+LaSOT [16]
+70/70
+280/1120
+82.1
+1
+∼25
+bbox
+No
+TrackingNet [51]
+27/27
+511/30132
+14.7
+1
+∼28
+bbox
+No
+TAO [12]
+785/316
+2407/500
+36.8
+5.9
+1
+mask
+No
+UVO [67]
+-
+750/250
+10
+14
+30
+mask
+No
+EPIC-KITCHENS
+VISOR
+[11]
+242/182
+115/43
+12*
+-
+0.9**
+mask
+Yes
+EgoTracks (Ours)
+-
+1.1k/1.2k/3.6k
+367.9
+3.8
+5
+bbox
+Yes
+*: Original video is 720s. **: An alternative dense set of annotations automatically generated by interpolation is also available.
+ory [23], visual query [23], and camera-wearer pose infer-
+ence [28].
+To tackle these challenges, tracking is lever-
+aged in many methodologies [11, 23, 34, 42, 43], yet few
+works have been dedicated to this fundamental problem on
+its own. EgoTracks provides a unique testbed for devel-
+oping tracking methods dedicated to egocentric videos; our
+EgoSTARK also serves as a potential plug-and-play module
+to solve other tasks where object association is desired.
+In egocentric video understanding, two recent works are
+closely related: Ego4D [23] and EPIC-KITCHENS VI-
+SOR [11]. The seminal Ego4D contains the largest col-
+lection of egocentric videos in-the-wild; EgoTracks is an-
+notated on a subset of Ego4D. In addition, Ego4D proposes
+many novel tasks, such as Episodic Memory, where tracking
+is identified as a core component. VISOR was introduced
+concurrently this year, annotating short-term (12 sec on av-
+erage) videos from on EPIC-KITCHENS [9] with instance
+segmentation masks. We believe EgoTracks offers multiple
+unique values complementary to EPIC-VISOR: long-term
+tracking (6 min vs. 12 sec), significantly larger-scale (6.9k
+video clips vs. 158) and more diversified video sources (80+
+scenes vs. kitchen-only) (see Fig. 2).
+3. The EgoTracks Dataset
+We present EgoTracks: a large-scale long-term egocen-
+tric single object tracking dataset, consisting of a total of
+22.42k tracks from 5.9k videos. We follow the same data
+split as the Ego4D Visual Queries (VQ) 2D benchmark:
+3.6k/1.2k/1.1k for train/val/test (Tables 1 and 2).
+3.1. Ego4D Visual Queries (VQ) Benchmark
+Ego4D [23] is a massive-scale egocentric video dataset,
+consisting of 3670 hours of video and hundreds of scenar-
+ios, capturing first-person views of daily-life activities in
+an unscripted, in-the-wild format. The dataset is accom-
+panied by several benchmark tasks, such as episodic mem-
+ory, hands and objects, social interaction, and forecasting.
+The most relevant task in this benchmark suite to long-term
+tracking is episodic memory’s 2D VQ task: Given an ego-
+centric video and a static image of an object (a visual crop),
+the goal is to localize when and where the object was last
+seen in the video. More specifically, the output is a series of
+2D bounding boxes in consecutive frames. We observe that
+this task is very related to long-term tracking, as the task of
+finding an object in a video with a visual template is identi-
+cal to the re-detection problem in the long-term tracking lit-
+erature. Moreover, Ego4D’s proposed baseline for this task
+primarily relies on tracking methods: Siam-RCNN [64] and
+KYS [4] for global and local tracking, respectively.
+Shortcomings. While highly related, the VQ dataset is not
+however immediately suitable for use in long-term tracking.
+In particular, the VQ annotation guidelines were roughly
+the following: 1) identify three different objects that appear
+multiple times in the video; 2) annotate a template for each
+object to serve as the query, which should contain the entire
+object without any motion blur; 3) annotate an occurrence
+of the object that is temporally distant from the template.
+Notably, these instructions do not ask for exhaustive anno-
+tations over time and are thus quite sparse, limiting their
+applicability to tracking. On the other hand, the selection
+criteria do result in a strong set of candidate objects to track,
+which we leverage to build EgoTracks.
+3.2. Annotating VQ for Long-Term Tracking
+We thus start with the visual crop and response track
+from the VQ annotations, asking annotators to first identify
+the object represented by the visual crop, response track,
+and object name. Starting from the beginning of the video,
+we instruct the annotators to draw a bounding box around
+the object each time it appears. Because annotators must go
+through each video in its entirety, which contain on average
+roughly 1800 frames at 5 frames per second (FPS), this an-
+notation task can be labor-intensive, taking roughly 1 to 2
+
+Table 3. Attributes of the track in validation set.
+Total number
+Percentage
+All Tracks
+4459
+100%
+is active
+1014
+22.74%
+is transformed
+241
+5.40%
+is recognizable
+4450
+99.79%
+hours per track to label. An important aspect of this annota-
+tion is its exhaustiveness: the entire video is densely anno-
+tated for the target object, and any frame without a bounding
+box is considered as a negative. Being able to reject nega-
+tives examples is an important component to re-detection
+in real-world settings, as false positives can impact certain
+applications as much as false negatives.
+Quality Assurance. All tracks are quality checked by ex-
+pert annotators after their initial annotations. To measure
+the annotation quality, we employ multi-review on a sub-
+set of the validation set. Three independent reviewers are
+asked to annotate the same video.
+Upon inspection, we
+find the overlaps between these independent annotations are
+high (> 0.88 IoU). Further, since EgoTracks has a focus on
+re-detection, we check the temporal overlap of object pres-
+ence and find it to be very consistent across annotators. In
+total, the entire annotation effort represented roughly 86k
+worker-hours of effort.
+3.3. Validation Tracklet Attributes
+In addition to the bounding box annotations, we also la-
+bel certain relevant attributes to allow for deeper analysis of
+tracker performance for the val set. We annotate the follow-
+ing three attributes per occurrence in the validation set (see
+Figure 3 for examples and Table 3 for statistics):
+• is active: Ego4D is a dataset capturing a multitude
+of daily activities performed by the camera wearer.
+Naturally, this means the camera wearer often inter-
+acts with relevant objects with their hands. Objects in
+the state of being handled pose a challenge for track-
+ing algorithms due to frequent occlusions by hands and
+rapid changes in pose.
+• is transformed: Certain objects in Ego4D un-
+dergo transformations, such as deformation and state
+change. Such instances require being able to quickly
+adapt to the tracked object having a new appearance.
+• is recognizable: Due to occlusions, motion blur,
+scale, or other conditions, some objects in long-form,
+in-the-wild videos like those in Ego4D can be ex-
+tremely difficult to recognize without additional con-
+text. We thus annotate if the object is recognizable
+solely based on its appearance, without using addi-
+tional context information (e.g. other frames).
+is_transformed
+is_active
+not is_recognizable
+Figure 3. EgoTracks examples of tracklet attributes. Left: A
+micropipette on a bench (top) versus actively used (bottom). Mid-
+dle: A paint can (top) is opened (bottom). Right: A hard to recog-
+nize blowtorch (bottom) due to distance and motion blur; annota-
+tors must rely on context from other frames to identify the object.
+4. Analysis of state-of-the-art SOT trackers
+We compare the performance of several off-the-shelf
+tracking models on EgoTracks’s validation set. Identifying
+STARK [71] as the one with the best performance, we con-
+duct further ablation studies under different settings using
+STARK to further understand its behavior.
+4.1. Evaluation protocols and metrics
+Evaluation Protocols.
+We introduce several evaluation
+protocols for EgoTracks, consisting of different combina-
+tions of the initial template, evaluated frames, and the tem-
+poral direction in which the tracker is run. For the initial
+template, we consider two choices:
+• Visual Crop Template (VCT): The visual crop im-
+ages were specifically chosen to be high-quality views
+of the target and served as our annotators’ references
+for identifying the object throughout the videos. Thus,
+they make ideal candidates for initializing a tracker.
+• Occurrence First Frame Template (OFFT): The
+tracker is initialized with the first frame of each occur-
+rence (see −→
+OO below). While this may result in a lower
+quality view of the object, temporal proximity to sub-
+sequent frames means it may be closer in appearance.
+Note that we exclude the template frame from the calcu-
+lation of any evaluation metrics. We also consider several
+choices for the evaluated frames and temporal direction:
+• Video Start Forward (−→
+VS): The tracker is evaluated
+on every frame of the video in causal order, starting
+from the first frame. This represents a tracker’s ability
+to follow an object through a long video.
+• Visual Crop Forward/Backward (←→
+VC): The tracker
+is run on the video twice, once starting at the visual
+
+micropipettemicropipetteblowtorchblowtorch
+OGUUHKS
+paint-
+ca.Deint canFigure 4. Evaluation protocols visualization.
+Table 4. EgoTracks performance of various trackers.
+Method
+AO
+F-score
+Precision
+Recall
+KYS [4]
+16.09
+13.09
+12.50
+13.74
+DiMP [3]
+16.45
+11.84
+10.31
+13.91
+GlobalTrack [27]
+23.63
+20.40
+31.28
+15.14
+LTMU [8]
+29.33
+27.46
+37.28
+21.74
+ToMP [47]
+30.93
+20.95
+19.63
+22.46
+STARK [71] - Res50
+35.99
+30.48
+34.70
+27.17
+STARK [71] - Res101
+35.03
+30.18
+35.30
+26.35
+Tracking by Detection
+Mask R-CNN [24]+Oracle
+60.00
+-
+-
+-
+GGN [66]+Oracle
+75.92
+-
+-
+-
+GGN+InstEmb
+15.19
+9.92
+11.75
+8.58
+crop frame and running forward and time, and a sec-
+ond time running backwards. This represents an alter-
+native way of covering every frame in the video, but
+with closer visual similarity between VCT initializa-
+tion and the first frames encountered by the tracker.
+• Occurrences Only Forward (−−→
+OO): The tracker is
+only evaluated on the object occurrences, when the ob-
+ject is visible. This simplifies the tracking task and al-
+lows us to dis-entangle the challenge of re-detection
+from that of simply tracking in an egocentric clip.
+We specify protocols by concatenating the appropriate de-
+scriptors. We primarily consider VCT-−→
+VS, VCT-←→
+VC, VCT-
+−−→
+OO, and OFFT-−−→
+OO (Fig. 4) in our experiments.
+Metrics. We adopt common metrics in object tracking. The
+most important ones are tracking F-score, precision, and
+recall [46]; details on these metrics can be found in [46].
+Trackers are ranked mainly by the F-score. We addition-
+ally consider average overlap (AO), success, precision, and
+normalized precision as short-term tracking metrics [61].
+4.2. Comparison of SOT trackers
+We compare the performance of several CNN-based
+tracking algorithms on EgoTracks with the VCT-−→
+VS eval-
+uation protocol. Given the large number of existing track-
+ing algorithms, we do not aim to be exhaustive but select
+high-performing examples representative of different track-
+Figure 5. Qualitative results of different trackers.
+ing principles, which we briefly describe here. KYS [4] and
+DiMP [3] are two typical short-term tracking algorithms
+that maintain an online target representation. ToMP [47]
+and STARK [71] are two examples of the SOTA short-
+term trackers based on Transformers. GlobalTrack [27] is
+a global tracker that searches the entire search image for
+re-detection. LTMU [8] is a high performance long-term
+tracker that combines a global tracker (GlobalTrack) with
+a local tracker (DiMP). The performance of these trackers
+on EgoTracks are summarized in Table 4. Note, AO in this
+table is equivalent to the recall at the probability threshold
+of 0. Qualitative results are shown in Figure 5.
+We highlight several observations. First, the object pres-
+ence scores from most short-term trackers are not very use-
+ful, as can be seen from the low precision of KYS (12.5),
+DiMP (13.91), and ToMP (22.46), while long-term track-
+ers like GlobalTrack and DiMP LTMU achieve higher pre-
+cisions at 31.28 and 37.28. This is expected as long-term
+trackers are designed to place more emphasis on high re-
+detection accuracy, though there clearly is still room for im-
+provement. STARK achieves the second highest precision
+at 34.70, which is an exception as it has a second train-
+ing stage to teach the model to classify whether the ob-
+ject is present. Second, more recent works such as ToMP
+and STARK achieve better F-score than previous short-term
+trackers. This could be partially due to advances in training
+strategies, more data, and Transformer-based architectures.
+We also include results using the principle of Tracking
+by Detection [1, 52]: a detector proposes 100 bounding
+boxes, and we select the best using cosine similarity of box
+features. We observe that an open-world detector GGN [66]
+trained on COCO [41] generalize reasonably well with or-
+acle matching, achieving 75.92 AO. However, the associa-
+tion problem is very challenging, bringing down the AO to
+15.19. Implementation details are in the supplementary.
+
+Template
+VCT-VS
+Visual Crop
+Evaluation Direction
+VCT-VC
+VCT-00
+OFFT-00
+Occurrence
+First Frame
+00empate
+emplateTable 5. Comparing tracker initializations. The upper table com-
+pares trackers initialized from the first frame in each occurrence
+and tracking only that single occurrence (no re-detection or per-
+fect re-detection). The lower table compares STARK whole-video
+performance, starting from video start frame vs. visual crop frame.
+Method
+AO
+Success
+Pre
+Prenorm
+KYS [4]
+33.92
+34.87
+31.22
+34.87
+DiMP [3]
+34.80
+35.70
+32.13
+38.98
+ToMP [47]
+45.17
+45.93
+41.74
+47.88
+STARK [71]
+50.01
+50.64
+45.76
+51.91
+Method
+AO
+F-score
+Precision
+Recall
+STARK - VCT-−→
+VS
+35.99
+30.48
+34.70
+27.17
+STARK - VCT-←→
+VC
+40.01
+34.02
+38.31
+30.60
+4.3. Alternative evaluation protocols
+We perform additional evaluations according to alterna-
+tive evaluation protocols, to gain further insight to tracker
+performance. To decouple the re-detection problem from
+the other egocentric aspects of EgoTracks, we run experi-
+ments with the OFFT-−−→
+OO protocol, which ignores the neg-
+ative frames of the video and thus obviates the need for re-
+detection, with results in Table 5. Perhaps unsurprisingly,
+all trackers do significantly better in this setting, though
+there remains much room for improvement, emphasizing
+the challenging nature of EgoTracks. We also run exper-
+iments with STARK in the VCT-←→
+VC setting (Table 5), in
+which case the initial template is temporally adjacent to the
+first tracked frames. Here we see a 3-4% improvement to
+AO, F-score, precision, and recall compared to the VCT-
+−→
+VS protocol, illustrating that trackers like STARK are de-
+signed to expect gradual transitions in appearance. Both
+these experiments illustrate that the re-detection problem is
+a significant challenge for tracking and the need for better
+long-term benchmarks requiring more re-detection.
+4.4. Effect of attributes on tracking performance
+We use the validation set tracklet attribute annotations
+described in Section 3.3 to further understand performance
+on our evaluation set. For each attribute, we split the track-
+lets into two groups, corresponding to the attribute being
+true and false. We then use a standard STARK tracker [71]
+and report AO for each group of tracklets using the OFFT-
+−−→
+OO evaluation protocol in Table 6. As might be expected,
+we find that when objects are being actively used by the user
+or in the midst of a transformation, AO tends to be lower,
+by roughly 6%, likely due to occlusions or changes in ap-
+pearance. Additionally, STARK tends to have a harder time
+when the object is hard to recognize in the image, whether
+due to occlusions, blur, scale, or other conditions.
+Table 6. OFFT-−→
+OO AO of standard STARK model [71] for each
+attribute, averaged across tracklets.
+Attribute
+True
+False
+is active
+49.65
+55.73
+is transformed
+49.19
+55.31
+is recognizable
+55.52
+46.65
+Table 7. Training and test-time hyperparameters comparison.
+Method
+AO
+F-score
+Precision
+Recall
+Data
+STARK
+35.99
+30.48
+34.70
+27.17
+STARK - ft on VQ
+38.94
+33.53
+39.13
+29.33
+STARK - ft on EgoTracks
+44.25
+38.20
+42.06
+34.99
+Augmentation
+STARK - ft on VQ
+38.94
+33.53
+39.13
+29.33
+STARK - ft + multiscale
+48.44
+41.92
+42.65
+41.30
+Search window
+search size = 320
+35.99
+30.48
+34.70
+27.17
+search size = 480
+48.21
+39.69
+43.95
+36.19
+search size = 640
+52.09
+42.39
+46.23
+39.15
+search size = 800
+54.08
+43.74
+47.60
+40.45
+5. Ego-STARK
+Despite not being specifically designed for long-term
+tracking, Section 4 suggests STARK [71] to be the most
+competitive tracker on EgoTracks. We thus leverage this
+tracker for additional analysis, suggesting several improve-
+ments to boost performance on EgoTracks.
+5.1. Dataset Finetuning
+We first demonstrate how STARK trained on third-
+person videos significantly benefits from finetuning on ego-
+centric data.
+We experiment with two versions of Ego-
+Tracks: the Ego4D VQ response track dataset (i.e. short-
+term subset of EgoTracks) and the full EgoTracks training
+set, which contains more point-of-view and scale variations,
+as well as hard negatives. As shown in Table 7, finetun-
+ing on the VQ response track subset improves the F-score
+from 30.48% to 33.53%. Using the full EgoTracks annota-
+tion further improves the F-score by 4.67% to 38.2%. This
+demonstrates that: 1) finetuning with egocentric data closes
+certain domain gaps; 2) training on full EgoTracks provides
+additional gains, showing the value of our training set.
+5.2. Adjusting Spatiotemporal Priors
+Modern trackers often embrace spatiotemporal priors on
+object motion, appearance and surroundings, which helped
+them on past datasets. However, some of these design deci-
+sions translate poorly to long-term egocentric videos.
+Search window size. An example is the local search as-
+sumption. Many trackers assume the tracked object appears
+within a certain range of its previous location. Thus, for ef-
+ficiency, these methods often search within a local window
+of the next frame. This is reasonable in high FPS, smooth
+videos with relatively small motion, commonly in previous
+short-term tracking datasets, but in egocentric videos, the
+object’s pixel coordinates can change rapidly with frequent
+large head motions, and re-detection becomes a key prob-
+
+Table 8. STARK with different context ratios. Row in bold is the
+default STARK setting. CR: context ratio, SRR: search region
+ratio, SIS: search image size (in image resolution).
+Method
+AO
+F-score
+Precision
+Recall
+Setting
+CR
+SRR
+SIS
+Same SIS
+1x
+2.5x
+320
+28.22
+26.81
+28.68
+25.16
+2x
+5x
+320
+38.94
+33.53
+39.13
+29.33
+3x
+7.5x
+320
+44.70
+36.03
+40.28
+32.59
+4x
+10x
+320
+43.19
+34.32
+37.98
+31.31
+Same SRR
+1x
+5x
+640
+41.50
+31.09
+30.31
+31.91
+3x
+5x
+208
+39.87
+35.36
+41.54
+30.79
+Same CR
+2x
+7.5x
+480
+48.21
+39.69
+43.95
+36.19
+2x
+10x
+640
+52.09
+42.39
+46.23
+39.15
+2x
+12.5x
+800
+54.08
+43.74
+47.60
+40.45
+lem. Therefore, we experiment with expanded search re-
+gions beyond what are common in past methods. As we
+expand the search size from 320 up to 800, we see dramatic
+improvements in AO, F-score, Precision, and Recall (Ta-
+ble 7), as STARK is able to correctly locate objects that
+were previously outside of its search window due to the
+rapid movement of egocentric video.
+Multiscale augmentations. The characteristics of egocen-
+tric video also affect common SOT assumptions of object
+scale. Many trackers are trained with the assumption that
+an object’s scale is consistent with the template image and
+between adjacent frames. However, large egocentric cam-
+era motions, locomotion, and hand interactions with ob-
+jects (e.g. bringing an object to one’s face, as in eating)
+can translate to objects rapidly undergoing large changes
+in scale. We thus propose adding scale augmentations dur-
+ing training, randomly resizing the search image by a factor
+of s ∈ [0.5, 1.5]. While simple, we find this dramatically
+improves performance on EgoTracks, improving STARK’s
+AO by nearly 10% and F-score by more than 8% (Table 7).
+Context ratio. Past SOT works have found that includ-
+ing some of the background can be helpful when extracting
+features from the template image, with 2 times the size of
+object being common practice. We experiment with differ-
+ent context ratios to see if this rule of thumb transfers to
+egocentric videos. Because of the local window assump-
+tion, the sizes of the template image and search image are
+related:
+Search Image Size(SIS)
+Search Region Ratio(SRR) =
+Template Image Size
+Context Ratio(CR)
+=
+Object Scale. The template image size is set to a fixed size
+128 × 128. When changing the context ratio, we carefully
+control the other parameters for a fair comparison. The re-
+sults are shown in Table 8. Among all three parameters -
+CR, SRR, and SIS, the search region size (determined by
+SRR and SIS) has the highest impact on the F-score. This
+is expected because there are frequent re-detections, which
+require the tracker to search in a larger area for the object,
+rather than just within the commonly used local window.
+Varying the CR has mixed results so we adhere to the com-
+mon practice of using a CR of 2. The best result is achieved
+when using SRR 12.5, which covers most of the image and
+Table 9. STARK with different numbers of templates.
+Method
+AO
+F-score
+Precision
+Recall
+STARK - 1 template
+32.97
+25.42
+25.80
+25.04
+STARK - 3 templates
+34.76
+26.84
+28.84
+25.57
+STARK - 5 templates
+35.47
+28.03
+29.82
+26.45
+STARK - 7 templates
+34.81
+27.83
+30.77
+25.40
+STARK - 9 templates
+33.92
+26.89
+30.36
+24.12
+achieves a F-score of 43.74%.
+5.3. Multiple templates
+Transformer-based architectures can encode arbitrary
+length inputs, making it straightforward to consume fea-
+tures from an arbitrary number of templates.
+The origi-
+nal STARK design encodes two templates: the initialization
+and a single dynamically updated template. A natural exten-
+sion is to include more templates of the target, which may
+expose the transformer to different views of the object (par-
+ticularly relevent in egocentric video), though low-quality
+views may compromise performance [39].
+What’s the right trade-off? We experiment with differ-
+ent numbers of templates for a basic STARK model. Moti-
+vated by potential applications where a user can take a short
+video of an object from different angles [55], we extend the
+single visual crop to a visual clip of templates by incorpo-
+rating additional frames from the same occurrence where
+the visual crop appears as the template. We adopt a simple
+template sampling method: uniformly sampling 3, 5, 7, or
+9 templates from the visual crop’s occurrence. Uniformly
+sampling the videos temporally can be a simple yet effec-
+tive heuristic to gather diverse views from an occurrence.
+We summarize the results in Table 9. While we observe im-
+provements across all metrics using up to 5 templates, per-
+formance declines with more. We hypothesize that increas-
+ing the number of templates does increase the knowledge
+available to STARK for tracking, but after a certain point
+it may dilute the information in the templates and make it
+difficult for the transformer to synthesize. This highlights
+the importance of template selection and multi-view fusion
+mechanisms, which inspires promising directions.
+6. Conclusion
+We present EgoTracks, the first large-scale dataset
+for long-term egocentric visual object tracking in diverse
+scenes. We conduct extensive experiments to understand
+the performance of state-of-the-art trackers on this new
+dataset, and find that they struggle considerably, possibly
+in part due to overfitting to some of the simpler character-
+istics of existing benchmarks. We thus propose several im-
+provements to the STARK [71] tracker, leading to a strong
+baseline that we call Ego-STARK, leading to vast improve-
+ments in performance on egocentric data. Lastly, we plan
+to organize a public benchmark challenge using a held-out
+
+test set with a test server as a testbed for new tracking al-
+gorithms. By publicly releasing this dataset and organizing
+the challenge, we hope to encourage advancements in the
+field of long-term tracking and draw more attention to the
+challenges of long-term and egocentric videos for this field.
+References
+[1] S. Avidan. Ensemble tracking. In 2005 IEEE Computer Soci-
+ety Conference on Computer Vision and Pattern Recognition
+(CVPR’05), volume 2, pages 494–501 vol. 2, 2005. 6
+[2] Ronald T Azuma. A survey of augmented reality. Presence:
+teleoperators & virtual environments, 6(4):355–385, 1997. 2
+[3] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu
+Timofte. Learning discriminative model prediction for track-
+ing. In Proceedings of the IEEE/CVF international confer-
+ence on computer vision, pages 6182–6191, 2019. 3, 6, 7
+[4] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu
+Timofte. Know your surroundings: Exploiting scene infor-
+mation for object tracking. In European Conference on Com-
+puter Vision, pages 205–221. Springer, 2020. 3, 4, 6, 7
+[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
+Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
+end object detection with transformers. In European confer-
+ence on computer vision, pages 213–229. Springer, 2020. 3
+[6] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang,
+and Huchuan Lu. Transformer tracking. In Proceedings of
+the IEEE/CVF Conference on Computer Vision and Pattern
+Recognition, pages 8126–8135, 2021. 3
+[7] Seokeon Choi, Junhyun Lee, Yunsung Lee, and Alexander
+Hauptmann. Robust long-term object tracking via improved
+discriminative model prediction. In European Conference on
+Computer Vision, pages 602–617. Springer, 2020. 3
+[8] Kenan Dai, Yunhua Zhang, Dong Wang, Jianhua Li,
+Huchuan Lu, and Xiaoyun Yang. High-performance long-
+term tracking with meta-updater.
+In Proceedings of the
+IEEE/CVF Conference on Computer Vision and Pattern
+Recognition, pages 6298–6307, 2020. 3, 6
+[9] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
+Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Da-
+vide Moltisanti, Jonathan Munro, Toby Perrett, Will Price,
+and Michael Wray.
+Scaling egocentric vision: The epic-
+kitchens dataset. In European Conference on Computer Vi-
+sion (ECCV), 2018. 3, 4
+[10] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and
+Michael Felsberg. Atom: Accurate tracking by overlap max-
+imization.
+In Proceedings of the IEEE/CVF Conference
+on Computer Vision and Pattern Recognition, pages 4660–
+4669, 2019. 3
+[11] Ahmad Darkhalil, Dandan Shan, Bin Zhu, Jian Ma, Amlan
+Kar, Richard Ely Locke Higgins, Sanja Fidler, David Fouhey,
+and Dima Damen. Epic-kitchens visor benchmark: Video
+segmentations and object relations. In Thirty-sixth Confer-
+ence on Neural Information Processing Systems Datasets
+and Benchmarks Track, 2022. 3, 4
+[12] Achal Dave, Tarasha Khurana, Pavel Tokmakov, Cordelia
+Schmid, and Deva Ramanan. Tao: A large-scale benchmark
+for tracking any object. In European conference on computer
+vision, pages 436–454. Springer, 2020. 3, 4
+[13] Ana Garcia del Molino, Cheston Tan, Joo-Hwee Lim, and
+Ah-Hwee Tan. Summarization of egocentric videos: A com-
+prehensive survey. IEEE Transactions on Human-Machine
+Systems, 47(1):65–76, 2017. 3
+[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
+Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
+Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
+vain Gelly, et al. An image is worth 16x16 words: Trans-
+formers for image recognition at scale.
+arXiv preprint
+arXiv:2010.11929, 2020. 3
+[15] Jiafei Duan, Samson Yu, Hui Li Tan, Hongyuan Zhu, and
+Cheston Tan. A survey of embodied ai: From simulators to
+research tasks. IEEE Transactions on Emerging Topics in
+Computational Intelligence, 2022. 2
+[16] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia
+Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling.
+Lasot: A high-quality benchmark for large-scale single ob-
+ject tracking. In Proceedings of the IEEE/CVF conference on
+computer vision and pattern recognition, pages 5374–5383,
+2019. 2, 3, 4
+[17] Yazan Abu Farha, Alexander Richard, and Juergen Gall.
+When will you do what? - anticipating temporal occurrences
+of activities. 2018 IEEE/CVF Conference on Computer Vi-
+sion and Pattern Recognition, pages 5343–5352, 2018. 3
+[18] Alircza Fathi, Jessica K. Hodgins, and James M. Rehg. So-
+cial interactions: A first-person perspective. In 2012 IEEE
+Conference on Computer Vision and Pattern Recognition,
+pages 1226–1233, 2012. 3
+[19] Antonino Furnari and Giovanni Farinella. Rolling-unrolling
+lstms for action anticipation from first-person video. IEEE
+Transactions on Pattern Analysis and Machine Intelligence,
+PP:1–1, 05 2020. 3
+[20] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
+ready for autonomous driving? the kitti vision benchmark
+suite. In Conference on Computer Vision and Pattern Recog-
+nition (CVPR), 2012. 3
+[21] Deepti Ghadiyaram, Matt Feiszli, Du Tran, Xueting Yan,
+Heng Wang, and Dhruv Kumar Mahajan.
+Large-scale
+weakly-supervised pre-training for video action recognition.
+2019 IEEE/CVF Conference on Computer Vision and Pat-
+tern Recognition (CVPR), pages 12038–12047, 2019. 3
+[22] R. Girdhar and K. Grauman.
+Anticipative video trans-
+former.
+In 2021 IEEE/CVF International Conference on
+Computer Vision (ICCV), pages 13485–13495, Los Alami-
+tos, CA, USA, oct 2021. IEEE Computer Society. 3
+[23] Kristen
+Grauman,
+Andrew
+Westbury,
+Eugene
+Byrne,
+Zachary Chavis, Antonino Furnari, Rohit Girdhar, Jackson
+Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d:
+Around the world in 3,000 hours of egocentric video. In Pro-
+ceedings of the IEEE/CVF Conference on Computer Vision
+and Pattern Recognition, pages 18995–19012, 2022. 2, 3, 4
+[24] Kaiming He, Georgia Gkioxari, Piotr Doll´ar, and Ross Gir-
+shick.
+Mask R-CNN.
+In Proceedings of the IEEE inter-
+national conference on computer vision, pages 2961–2969,
+2017. 6
+
+[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
+Deep residual learning for image recognition. In Proceed-
+ings of the IEEE conference on computer vision and pattern
+recognition, pages 770–778, 2016. 3
+[26] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A
+large high-diversity benchmark for generic object tracking
+in the wild. IEEE Transactions on Pattern Analysis and Ma-
+chine Intelligence, 43(5):1562–1577, 2019. 2, 3, 4
+[27] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Globaltrack:
+A simple and strong baseline for long-term tracking. In Pro-
+ceedings of the AAAI Conference on Artificial Intelligence,
+volume 34, pages 11037–11044, 2020. 3, 6
+[28] Hao Jiang and Kristen Grauman.
+Seeing invisible poses:
+Estimating 3d body pose from egocentric video.
+In 2017
+IEEE Conference on Computer Vision and Pattern Recogni-
+tion (CVPR), pages 3501–3509, 2017. 4
+[29] Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, and
+Dima Damen. Epic-fusion: Audio-visual temporal binding
+for egocentric action recognition.
+In IEEE/CVF Interna-
+tional Conference on Computer Vision (ICCV), 2019. 3
+[30] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva
+Ramanan, and Simon Lucey. Need for speed: A benchmark
+for higher frame rate object tracking. In Proceedings of the
+IEEE International Conference on Computer Vision, pages
+1125–1134, 2017. 3
+[31] Matej Kristan, Aleˇs Leonardis, Jiˇr´ı Matas, Michael Fels-
+berg, Roman Pflugfelder, Luka ˇCehovin Zajc, Tom´aˇs Voj´ır,
+Goutam Bhat, Alan Lukeˇziˇc, Abdelrahman Eldesokey, Gus-
+tavo Fern´andez, et al.
+The sixth visual object tracking
+vot2018 challenge results. In Laura Leal-Taix´e and Stefan
+Roth, editors, Computer Vision – ECCV 2018 Workshops,
+pages 3–53, Cham, 2019. Springer International Publishing.
+3
+[32] Matej Kristan, Jiri Matas, Aleˇs Leonardis, Tomas Vojir, Ro-
+man Pflugfelder, Gustavo Fernandez, Georg Nebehay, Fatih
+Porikli, and Luka ˇCehovin. A novel performance evaluation
+methodology for single-target trackers. IEEE Transactions
+on Pattern Analysis and Machine Intelligence, 38(11):2137–
+2155, Nov 2016. 2, 3
+[33] Yong Jae Lee, Joydeep Ghosh, and Kristen Grauman. Dis-
+covering important people and objects for egocentric video
+summarization. In 2012 IEEE Conference on Computer Vi-
+sion and Pattern Recognition, pages 1346–1353, 2012. 3
+[34] Yong Jae Lee and Kristen Grauman. Predicting important
+objects for egocentric video summarization. Int. J. Comput.
+Vision, 114(1):38–55, aug 2015. 3, 4
+[35] Annan Li, Min Lin, Yi Wu, Ming-Hsuan Yang, and
+Shuicheng Yan. Nus-pro: A new visual tracking challenge.
+IEEE transactions on pattern analysis and machine intelli-
+gence, 38(2):335–349, 2015. 3
+[36] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing,
+and Junjie Yan.
+Siamrpn++:
+Evolution of siamese vi-
+sual tracking with very deep networks. In Proceedings of
+the IEEE/CVF Conference on Computer Vision and Pattern
+Recognition, pages 4282–4291, 2019. 3
+[37] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.
+High performance visual tracking with siamese region pro-
+posal network. In Proceedings of the IEEE conference on
+computer vision and pattern recognition, pages 8971–8980,
+2018. 3
+[38] Yanghao Li, Tushar Nagarajan, Bo Xiong, and Kristen Grau-
+man.
+Ego-exo: Transferring visual representations from
+third-person to first-person videos. In CVPR, 2021. 3
+[39] Kevin J Liang, Samrudhdhi B Rangrej, Vladan Petrovic, and
+Tal Hassner. Few-shot learning with noisy labels. In Pro-
+ceedings of the IEEE/CVF Conference on Computer Vision
+and Pattern Recognition, pages 9089–9098, 2022. 8
+[40] Pengpeng Liang, Erik Blasch, and Haibin Ling. Encoding
+color information for visual tracking: Algorithms and bench-
+mark. IEEE transactions on image processing, 24(12):5630–
+5644, 2015. 3
+[41] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
+Pietro Perona, Deva Ramanan, Piotr Doll´ar, and C Lawrence
+Zitnick. Microsoft coco: Common objects in context. In
+European conference on computer vision, pages 740–755.
+Springer, 2014. 6
+[42] Miao Liu, Siyu Tang, Yin Li, and James M. Rehg. Forecast-
+ing human object interaction: Joint prediction of motor atten-
+tion and egocentric activity. ArXiv, abs/1911.10967, 2019. 3,
+4
+[43] Cewu Lu, Renjie Liao, and Jiaya Jia. Personal object dis-
+covery in first-person videos. IEEE Transactions on Image
+Processing, 24(12):5789–5799, 2015. 4
+[44] Zheng Lu and Kristen Grauman. Story-driven summariza-
+tion for egocentric video. In 2013 IEEE Conference on Com-
+puter Vision and Pattern Recognition, pages 2714–2721,
+2013. 3
+[45] Jonathon Luiten, Aljosa Osep, Patrick Dendorfer, Philip
+Torr, Andreas Geiger, Laura Leal-Taixe, and Bastian Leibe.
+Hota:
+A higher order metric for evaluating multi-object
+tracking. International Journal of Computer Vision (IJCV),
+2020. 3
+[46] Alan Lukeˇziˇc, Luka ˇCehovin Zajc, Tom´aˇs Voj´ıˇr, Jiˇr´ı Matas,
+and Matej Kristan.
+Now you see me:
+evaluating per-
+formance in long-term visual tracking.
+arXiv preprint
+arXiv:1804.07056, 2018. 6
+[47] Christoph Mayer, Martin Danelljan, Goutam Bhat, Matthieu
+Paul, Danda Pani Paudel, Fisher Yu, and Luc Van Gool.
+Transforming model prediction for tracking. In Proceedings
+of the IEEE/CVF Conference on Computer Vision and Pat-
+tern Recognition, pages 8731–8740, 2022. 3, 6, 7
+[48] Christoph Mayer, Martin Danelljan, Danda Pani Paudel, and
+Luc Van Gool. Learning target candidate association to keep
+track of what not to track. In Proceedings of the IEEE/CVF
+International Conference on Computer Vision, pages 13444–
+13454, 2021. 3
+[49] Anton Milan, Laura Leal-Taix´e, Ian Reid, Stefan Roth, and
+Konrad Schindler.
+Mot16: A benchmark for multi-object
+tracking. arXiv preprint arXiv:1603.00831, 2016. 3
+[50] Matthias Mueller, Neil Smith, and Bernard Ghanem.
+A
+benchmark and simulator for uav tracking. In European con-
+ference on computer vision, pages 445–461. Springer, 2016.
+3
+[51] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Al-
+subaihi, and Bernard Ghanem. Trackingnet: A large-scale
+
+dataset and benchmark for object tracking in the wild. In
+Proceedings of the European conference on computer vision
+(ECCV), pages 300–317, 2018. 2, 3, 4
+[52] Kenji Okuma, Ali Taleghani, De Freitas, J.J. Little, and
+David Lowe. A boosted particle filter: Multitarget detection
+and tracking. volume 3021, 05 2004. 6
+[53] Hamed Pirsiavash and Deva Ramanan. Detecting activities
+of daily living in first-person camera views. 2012 IEEE Con-
+ference on Computer Vision and Pattern Recognition, pages
+2847–2854, 2012. 3
+[54] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
+bel´aez, Alexander Sorkine-Hornung, and Luc Van Gool.
+The 2017 davis challenge on video object segmentation.
+arXiv:1704.00675, 2017. 4
+[55] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler,
+Luca Sbordone, Patrick Labatut, and David Novotn´y. Com-
+mon objects in 3d: Large-scale learning and evaluation of
+real-life 3d category reconstruction.
+2021 IEEE/CVF In-
+ternational Conference on Computer Vision (ICCV), pages
+10881–10891, 2021. 8
+[56] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
+jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
+Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
+Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
+lenge.
+International Journal of Computer Vision (IJCV),
+115(3):211–252, 2015. 4
+[57] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
+Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
+Liu, Vladlen Koltun, Jitendra Malik, et al.
+Habitat: A
+platform for embodied ai research. In Proceedings of the
+IEEE/CVF International Conference on Computer Vision,
+pages 9339–9347, 2019. 2
+[58] Dandan Shan, Jiaqi Geng, Michelle Shu, and David F
+Fouhey.
+Understanding human hands in contact at inter-
+net scale. In Proceedings of the IEEE/CVF conference on
+computer vision and pattern recognition, pages 9869–9878,
+2020. 2
+[59] Maximilian Speicher, Brian D Hall, and Michael Nebeling.
+What is mixed reality?
+In Proceedings of the 2019 CHI
+conference on human factors in computing systems, pages
+1–15, 2019. 2
+[60] Yu-Chuan Su and Kristen Grauman. Detecting engagement
+in egocentric video. In Bastian Leibe, Jiri Matas, Nicu Sebe,
+and Max Welling, editors, Computer Vision – ECCV 2016,
+pages 454–471, Cham, 2016. Springer International Publish-
+ing. 3
+[61] Ran Tao, Efstratios Gavves, and Arnold WM Smeulders.
+Tracking for half an hour. arXiv preprint arXiv:1711.10217,
+2017. 6
+[62] Jack Valmadre, Luca Bertinetto, Joao F Henriques, Ran Tao,
+Andrea Vedaldi, Arnold WM Smeulders, Philip HS Torr, and
+Efstratios Gavves. Long-term tracking in the wild: A bench-
+mark. In Proceedings of the European conference on com-
+puter vision (ECCV), pages 670–685, 2018. 2, 3, 4
+[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
+reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
+Polosukhin. Attention is all you need. Advances in neural
+information processing systems, 30, 2017. 3
+[64] Paul Voigtlaender, Jonathon Luiten, Philip HS Torr, and Bas-
+tian Leibe. Siam r-cnn: Visual tracking by re-detection. In
+Proceedings of the IEEE/CVF conference on computer vi-
+sion and pattern recognition, pages 6578–6588, 2020. 3, 4
+[65] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and
+Philip HS Torr. Fast online object tracking and segmentation:
+A unifying approach. In Proceedings of the IEEE/CVF con-
+ference on Computer Vision and Pattern Recognition, pages
+1328–1338, 2019. 3
+[66] Weiyao Wang, Matt Feiszli, Heng Wang, Jitendra Malik, and
+Du Tran.
+Open-world instance segmentation: Exploiting
+pseudo ground truth from learned pairwise affinity. In Pro-
+ceedings of the IEEE/CVF Conference on Computer Vision
+and Pattern Recognition, pages 4422–4432, 2022. 6
+[67] Weiyao Wang, Matt Feiszli, Heng Wang, and Du Tran.
+Unidentified video objects: A benchmark for dense, open-
+world segmentation. In Proceedings of the IEEE/CVF In-
+ternational Conference on Computer Vision, pages 10776–
+10785, 2021. 4
+[68] Weiyao Wang, Du Tran, and Matt Feiszli.
+What makes
+training multi-modal classification networks hard?
+2020
+IEEE/CVF Conference on Computer Vision and Pattern
+Recognition (CVPR), pages 12692–12702, 2020. 3
+[69] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object
+tracking: A benchmark. In Proceedings of the IEEE con-
+ference on computer vision and pattern recognition, pages
+2411–2418, 2013. 2, 3
+[70] Fei Xie, Chunyu Wang, Guangting Wang, Yue Cao, Wankou
+Yang, and Wenjun Zeng. Correlation-aware deep tracking.
+In Proceedings of the IEEE/CVF Conference on Computer
+Vision and Pattern Recognition, pages 8751–8760, 2022. 3
+[71] Bin Yan, Houwen Peng, Jianlong Fu, Dong Wang, and
+Huchuan Lu. Learning spatio-temporal transformer for vi-
+sual tracking. In Proceedings of the IEEE/CVF International
+Conference on Computer Vision, pages 10448–10457, 2021.
+2, 3, 5, 6, 7, 8
+[72] Linjie Yang, Yuchen Fan, and Ning Xu. Video instance seg-
+mentation. In Proceedings of the IEEE/CVF International
+Conference on Computer Vision, pages 5188–5197, 2019. 4
+[73] Yipin Zhou and Tamara L. Berg. Temporal perception and
+prediction in ego-centric video. In 2015 IEEE International
+Conference on Computer Vision (ICCV), pages 4498–4506,
+2015. 3
+
diff --git a/gdE1T4oBgHgl3EQffAR-/content/tmp_files/load_file.txt b/gdE1T4oBgHgl3EQffAR-/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..cca4f602abc4e036c4fabd5546fac99fc6d41ead
--- /dev/null
+++ b/gdE1T4oBgHgl3EQffAR-/content/tmp_files/load_file.txt
@@ -0,0 +1,848 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf,len=847
+page_content='EgoTracks: A Long-term Egocentric Visual Object Tracking Dataset Hao Tang Kevin Liang Kristen Grauman Matt Feiszli Weiyao Wang Meta Platforms Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' haotang, kevinjliang, grauman, mdf, weiyaowang@meta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='com Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' A sample video from the proposed EgoTracks dataset, with yellow segments of the clip marking when the object (blowtorch) is visible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Note the frequent disappearances and reappearances of the object over an 8 minute video, with lengthy absences, necessitating re-detection to track accurately without false positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' The egocentric nature of the video includes the camera-wearer interacting with the object (Occurrence 2), resulting in significant hand occlusions and dramatic changes in pose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Abstract Visual object tracking is a key component to many ego- centric vision problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' However, the full spectrum of challenges of egocentric tracking faced by an embodied AI is underrepresented in many existing datasets;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' these tend to focus on relatively short, third-person videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Egocen- tric video has several distinguishing characteristics from those commonly found in past datasets: frequent large cam- era motions and hand interactions with objects commonly lead to occlusions or objects exiting the frame, and ob- ject appearance can change rapidly due to widely differ- ent points of view, scale, or object states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Embodied track- ing is also naturally long-term, and being able to consis- tently (re-)associate objects to their appearances and dis- appearances over as long as a lifetime is critical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Pre- vious datasets under-emphasize this re-detection problem, and their “framed” nature has led to adoption of various spatiotemporal priors that we find do not necessarily gen- eralize to egocentric video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We thus introduce EgoTracks, a new dataset for long-term egocentric visual object track- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Sourced from the Ego4D dataset, this new dataset presents a significant challenge to recent state-of-the-art single-object tracking models, which we find score poorly on traditional tracking metrics for our new dataset, com- pared to popular benchmarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We further show improve- ments that can be made to a STARK tracker to significantly increase its performance on egocentric data, resulting in a baseline model we call EgoSTARK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We publicly release our annotations and benchmark, hoping our dataset leads to further advancements in tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Introduction First-person or “egocentric” computer vision aims to capture the real-world perceptual problems faced by an em- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='03213v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='CV] 9 Jan 2023 Occurrence 2 Occurrence 17 Negative Framesbodied AI;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' it has drawn strong recent interest as an under- served but highly relevant domain of vision, with important applications ranging from robotics [15, 57] to augmented and mixed reality [2,23,59].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Visual object tracking (VOT), long a fundamental problem in vision, is a core component to many egocentric tasks, including tracking the progress of an action or activity, (re-)association of objects in one’s surroundings, and predicting future states of the environ- ment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Yet, while the VOT field has made many significant advancements over the past decade, tracking in egocentric video remains underexplored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' This lack of attention is in large part due to the absence of a large-scale egocentric tracking dataset for training and evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' While the com- munity has proposed a number of popular tracking datasets in recent years, including OTB [69], TrackingNet [51], Got- 10k [26], and LaSOT [16], we find that the strong perfor- mance that state-of-the-art trackers achieve on these bench- marks does not translate well to egocentric video, thus es- tablishing a strong need for such a tracking dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We attribute this performance gap to the many unique aspects of egocentric views compared to the more tradi- tional third-person views of previous datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In contrast to intentionally “framed” video, egocentric videos are of- ten uncurated, meaning they tend to capture many attention shifts between activities, objects, or locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Due to the first-person perspective, large head motions from the cam- era wearer often result in objects repeatedly leaving and re- entering the field of view;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' similarly, hand manipulations of objects [58] leads to frequent occlusions, rapid variations in scale and pose, and potential changes in state or appearance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Furthermore, egocentric video tends to be long (sometimes representing the entire life of an agent or individual), mean- ing the volume of the aforementioned occlusions and trans- formations scales similarly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' These characteristics all make tracking objects in egocentric views dramatically more dif- ficult than scenarios commonly considered in prior datasets, and their absence represents an evaluation blindspot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' The aforementioned head motions, locomotion, hand oc- clusions, and temporal length lead to several challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' First, frequent object disappearances and reappearances causes the problem of re-detection within egocentric track- ing to become especially critical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Many previous track- ing datasets primarily focus on short-term tracking in third- person videos, providing limited ability to evaluate many of the challenges of long-term egocentric tracking due to low quantity and length of target object disappearances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' As a result, competent re-detection is not required for strong per- formance, leading many recent short-term trackers to ne- glect it, instead predicting a bounding box for every frame, which may lead to rampant false positives or tracking the wrong object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Additionally, the characteristics of short- term third-person video have also induced designs relying on gradual changes in motion and appearance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' As we later Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Statistics of long-term object tracking datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' An occurrence is defined as a contiguous set of frames where the ob- ject is visible, before disappearing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' The presented EgoTracks has the highest number of tracks and target disappearances and reap- pearances, making it the largest dataset for training and evaluating long-term trackers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We summarize the training and validation data from each dataset here, as we do not have the ground truth for the other datasets’ hold-out test sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' OxUvA [62] LaSOT [16] VOT-LT [32] Ours # tracks 200 1400 50 17598 # occurrences / track 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='5 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='7 Seconds / occurrence 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='8 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='52 8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='2 Seconds btw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' occurrences 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='8 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='3 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='1 show (Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='2), many of the motion, context, and scale priors made by previous short-term tracking algorithms fail to transfer to egocentric video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Thus, a large-scale long- term tracking dataset is needed to train and understand the long-term tracking capability of modern trackers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' To address this gap, we present EgoTracks: a large- scale long-term egocentric visual object tracking dataset for training and evaluating long-term trackers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Seeking a real- istic challenge, we source videos from Ego4D [23], a large- scale dataset consisting of unscripted, in-the-wild egocen- tric videos of daily-life activities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' The result is a large-scale dataset to evaluate the tracking and re-detection ability of SOT models, with more than 20,000 tracks from around 6000 6-minute videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' This constitutes the first large-scale dataset for visual object tracking in egocentric videos in di- verse settings, providing a new, significant challenge com- pared with previous datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We perform a thorough analysis of our new dataset, demonstrating its difficulty and the need for further research to develop trackers capable of handling long-term egocen- tric vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' These experiments reveal valuable insights to- wards promising future directions in egocentric tracking and re-detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Leveraging these intuitions, we propose multiple simple yet effective changes, such as adjustment of spatiotemporal priors, egocentric data finetuning and com- bining multiple templates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We study these proposed strate- gies on the the state-of-the-art STARK tracker [71] and train a strong tracker dedicated towards long-term egocen- tric tracking, EgoSTARK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We hope EgoSTARK can serve as a strong baseline and facilitate future research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' To summarize, we make the following contributions: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We present EgoTracks, the first large-scale long-term object tracking dataset with diverse egocentric scenar- ios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We analyze its uniqueness in terms of evaluating the re-detection performance of trackers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We conduct comprehensive experiments to understand the performance of many state-of-the-art trackers on the EgoTracks validation set and observe that due to the biases and evaluation blindspots of existing third- person datasets, they tend to struggle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' EgoTracks is a large-scale egocentric dataset of diverse scenarios (left) and objects (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We propose a combo of several training and inference- time improvements to the STARK tracker [71] to adapt it to long-form egocentric video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We call this re- fined model Ego-STARK, which achieves significant improvements (15% tracking F-score) on EgoTracks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Related work 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Visual Object Tracking Datasets Visual object tracking studies the problem of joint spatial-temporal localization of objects in videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' There are two main categories: multiple object tracking (MOT) and single object tracking (SOT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In MOT, a model is pro- vided a video and a predefined taxonomy, and the model is required to simultaneously detect, recognize and track multiple objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' For example, MOT [49] tracks human, KITTI [20, 45] tracks pedestrians and cars, and TAO [12] tracks a large taxonomy of 833 categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Different from MOT, SOT tracks a single object via a provided initial tem- plate of the object, and no detection or recognition is in- volved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Thus, SOT is often taxonomy-free and operates on generic objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' The community has constructed multiple popular benchmarks to study this important problem, in- cluding OTB [69], UAV [50], NfS [30], TC-128 [40], NUS- PRO [35], GOT-10k [26], VOT [32], and TrackingNet [51].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' These SOT datasets mainly consist of short videos (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' a few seconds).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Recently, there have been increasing interests in long-term tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Different from the above datasets, tracking objects in longer videos (several minutes or more) poses unique challenges, as the object may involve more significant transforms, displacements, disappearances, and reappearances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' On top of localizing the object when it is visible, the model needs to know not predict a box when the object is absent, and then re-localize the same object when it reappears.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' OxUvA [62] is one of the first to benchmark longer videos (average 2 minutes), with 366 evaluation- only videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' LaSOT [16] scales this philosophy with a benchmark of 1400 videos of more frequent object reap- pearances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Concurrently, VOT-LT [31] is specifically de- signed to benchmark videos with frequent object disappear- ances and reappearances in 50 purposefully selected videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Our EgoTracks focuses on long-term SOT and presents multiple critical and unique attributes: 1) significantly larger scale, with 17k videos of an average 6 minutes (Ta- ble 1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2) more frequent disappearances & reappearances (avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='7 times) happening in natural, unscripted, real- world scenarios;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3) data sourced from egocentric videos shot in-the-wild, involving unique challenging situations, such as large camera motions, diverse perspective changes, hand-object interactions, and frequent occlusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Single Object Tracking Methodologies Many modern approaches use convolutional neural net- works (CNNs), either with a Siamese network architec- ture [36, 37, 65], or a correlation-filter based architec- ture [3,4,7,10,48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' With the Transformer’s recent successes in computer vision tasks like classification [14] and detec- tion [5], a line of works leveraging the Transformer archi- tecture [63] to perform tracking have also emerged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' For ex- ample, inspired by Transformers, TransT [6] uses attention- based feature fusion to combine features of the object tem- plate and search image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' More recently, several works uti- lize Transformers as direct predictors to achieve a new state of the art, such as STARK [71], ToMP [47] and SBT [70].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' These models tokenize frame features from a ResNet [25] encoder, and use a Transformer to predict the bounding box and object presence score with the feature tokens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' These methods are often developed on short-term SOT datasets and assume that the target object stays in the field of view with minimum occlusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' On the other hand, long-term trackers [8,27,64] are designed to cope with the problem of re-detecting objects in their reappearances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Intended to be aware of potential object disappearances, these approaches search the whole image for its reappearance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Tracking in Egocentric Videos Multiple egocentric video datasets have been introduced in the past decades [9, 18, 23, 33, 53, 60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' They offer a host of interesting challenges,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' many of which require associating objects across frames: activity recognition [21,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 29,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 38,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 68,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 73],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' anticipation [17,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 19,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 22],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' video summarization [13,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 33,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 34,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 44],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' human-object interaction [11,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 42],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' episodic mem- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Doing yardwork/shoveling snow ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Indoor Navigation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='On a screen ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Playing board games ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Talking to Colleaguescycling/jogging ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Baseball ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Farmer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Working in outdoor store ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Playing with pets ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Watching tv ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='nGardening ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Listening to music ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Bike ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Working at desk ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Walking onstreet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='011 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Working in milktea shop ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Eating ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Playwith cellphone ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='biology experiments ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Readingbooks ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Kupune ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Going to the park ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Talking with family member ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Practicing a musical ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='instrument ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Waikingthedog/pet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='carr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='mechanicCarpenter ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='mechani ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Daily ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Camp setup/pack-up/chores ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Crafting/knitting/sewing/drawing/painting ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Scooter mechanic ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Commuting,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' road tri Grocery shopping Going to the gy ndoors Making Potting plantsMaking coffee Clothes other shopping Fixing something in the home Taiking onthe phone Talkingwithfriends/ housematbag lawn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='mower televlslon ball paper Naterfanbotte wi cockbasket book phone .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='measuring tape chopping=boar scIssors rille towel knife ricecooker cup tissue flower pot mobile-phone pot trolley spanner coolbox.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='.helmet throw pillow blende lam contalnel electric jug slippers trash-bin dust pan kett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=" WOO sandals plieri he dustbin olasticcontainer 'dustpan ottl mouse brush weighing--scal es o Jug pen pillow astic wallet laundry basket soap bottle." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' tray 1anp shac paint can crowal carton spade.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='" \'sprayei hoe nsinsun remote shoes guitar Scar coffee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content="maker inergloves T paper bag belt polythenelbag tape_measure oaperitowe hand drill sprav-bottle plier Aammera impact wrencl oucketchair shopping list paint bucket Ca Icon'trole flask cooking pan- shopping." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='basket .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='sack Crewidriver kitchen=towel flower-vase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' lidTable 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Comparison with other object tracking datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Dataset # Classes (Eval/Train) # Videos (Eval/Train) Average Length (s) Tracks per Video Annotation FPS Annotation Type Egocentric ImageNet-Vid [56] 30 1314/4000 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='4 ∼25 mask No YTVIS [72] 40 645/2238 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='7 5 mask No DAVIS17 [54] 30/60/30/30 3 3 24 mask No GOT-10k [26] 84/480 360/9335 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='2 1 10 bbox No OxUvA [62] 22/0 366/0 141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='1 1 bbox No LaSOT [16] 70/70 280/1120 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='1 1 ∼25 bbox No TrackingNet [51] 27/27 511/30132 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='7 1 ∼28 bbox No TAO [12] 785/316 2407/500 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='9 1 mask No UVO [67] 750/250 10 14 30 mask No EPIC-KITCHENS VISOR [11] 242/182 115/43 12* 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='9** mask Yes EgoTracks (Ours) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='1k/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='2k/3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='6k 367.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='9 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='8 5 bbox Yes : Original video is 720s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' **: An alternative dense set of annotations automatically generated by interpolation is also available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' ory [23], visual query [23], and camera-wearer pose infer- ence [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' To tackle these challenges, tracking is lever- aged in many methodologies [11, 23, 34, 42, 43], yet few works have been dedicated to this fundamental problem on its own.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' EgoTracks provides a unique testbed for devel- oping tracking methods dedicated to egocentric videos;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' our EgoSTARK also serves as a potential plug-and-play module to solve other tasks where object association is desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In egocentric video understanding, two recent works are closely related: Ego4D [23] and EPIC-KITCHENS VI- SOR [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' The seminal Ego4D contains the largest col- lection of egocentric videos in-the-wild;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' EgoTracks is an- notated on a subset of Ego4D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In addition, Ego4D proposes many novel tasks, such as Episodic Memory, where tracking is identified as a core component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' VISOR was introduced concurrently this year, annotating short-term (12 sec on av- erage) videos from on EPIC-KITCHENS [9] with instance segmentation masks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We believe EgoTracks offers multiple unique values complementary to EPIC-VISOR: long-term tracking (6 min vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 12 sec), significantly larger-scale (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='9k video clips vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 158) and more diversified video sources (80+ scenes vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' kitchen-only) (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' The EgoTracks Dataset We present EgoTracks: a large-scale long-term egocen- tric single object tracking dataset, consisting of a total of 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='42k tracks from 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='9k videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We follow the same data split as the Ego4D Visual Queries (VQ) 2D benchmark: 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='6k/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='2k/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='1k for train/val/test (Tables 1 and 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Ego4D Visual Queries (VQ) Benchmark Ego4D [23] is a massive-scale egocentric video dataset, consisting of 3670 hours of video and hundreds of scenar- ios, capturing first-person views of daily-life activities in an unscripted, in-the-wild format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' The dataset is accom- panied by several benchmark tasks, such as episodic mem- ory, hands and objects, social interaction, and forecasting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' The most relevant task in this benchmark suite to long-term tracking is episodic memory’s 2D VQ task: Given an ego- centric video and a static image of an object (a visual crop), the goal is to localize when and where the object was last seen in the video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' More specifically, the output is a series of 2D bounding boxes in consecutive frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We observe that this task is very related to long-term tracking, as the task of finding an object in a video with a visual template is identi- cal to the re-detection problem in the long-term tracking lit- erature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Moreover, Ego4D’s proposed baseline for this task primarily relies on tracking methods: Siam-RCNN [64] and KYS [4] for global and local tracking, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Shortcomings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' While highly related, the VQ dataset is not however immediately suitable for use in long-term tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In particular, the VQ annotation guidelines were roughly the following: 1) identify three different objects that appear multiple times in the video;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2) annotate a template for each object to serve as the query, which should contain the entire object without any motion blur;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3) annotate an occurrence of the object that is temporally distant from the template.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Notably, these instructions do not ask for exhaustive anno- tations over time and are thus quite sparse, limiting their applicability to tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' On the other hand, the selection criteria do result in a strong set of candidate objects to track, which we leverage to build EgoTracks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Annotating VQ for Long-Term Tracking We thus start with the visual crop and response track from the VQ annotations, asking annotators to first identify the object represented by the visual crop, response track, and object name.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Starting from the beginning of the video, we instruct the annotators to draw a bounding box around the object each time it appears.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Because annotators must go through each video in its entirety, which contain on average roughly 1800 frames at 5 frames per second (FPS), this an- notation task can be labor-intensive, taking roughly 1 to 2 Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Attributes of the track in validation set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Total number Percentage All Tracks 4459 100% is active 1014 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='74% is transformed 241 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='40% is recognizable 4450 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='79% hours per track to label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' An important aspect of this annota- tion is its exhaustiveness: the entire video is densely anno- tated for the target object, and any frame without a bounding box is considered as a negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Being able to reject nega- tives examples is an important component to re-detection in real-world settings, as false positives can impact certain applications as much as false negatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Quality Assurance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' All tracks are quality checked by ex- pert annotators after their initial annotations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' To measure the annotation quality, we employ multi-review on a sub- set of the validation set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Three independent reviewers are asked to annotate the same video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Upon inspection, we find the overlaps between these independent annotations are high (> 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='88 IoU).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Further, since EgoTracks has a focus on re-detection, we check the temporal overlap of object pres- ence and find it to be very consistent across annotators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In total, the entire annotation effort represented roughly 86k worker-hours of effort.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Validation Tracklet Attributes In addition to the bounding box annotations, we also la- bel certain relevant attributes to allow for deeper analysis of tracker performance for the val set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We annotate the follow- ing three attributes per occurrence in the validation set (see Figure 3 for examples and Table 3 for statistics): is active: Ego4D is a dataset capturing a multitude of daily activities performed by the camera wearer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Naturally, this means the camera wearer often inter- acts with relevant objects with their hands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Objects in the state of being handled pose a challenge for track- ing algorithms due to frequent occlusions by hands and rapid changes in pose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' is transformed: Certain objects in Ego4D un- dergo transformations, such as deformation and state change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Such instances require being able to quickly adapt to the tracked object having a new appearance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' is recognizable: Due to occlusions, motion blur, scale, or other conditions, some objects in long-form, in-the-wild videos like those in Ego4D can be ex- tremely difficult to recognize without additional con- text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We thus annotate if the object is recognizable solely based on its appearance, without using addi- tional context information (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' other frames).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' is_transformed is_active not is_recognizable Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' EgoTracks examples of tracklet attributes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Left: A micropipette on a bench (top) versus actively used (bottom).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Mid- dle: A paint can (top) is opened (bottom).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Right: A hard to recog- nize blowtorch (bottom) due to distance and motion blur;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' annota- tors must rely on context from other frames to identify the object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Analysis of state-of-the-art SOT trackers We compare the performance of several off-the-shelf tracking models on EgoTracks’s validation set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Identifying STARK [71] as the one with the best performance, we con- duct further ablation studies under different settings using STARK to further understand its behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Evaluation protocols and metrics Evaluation Protocols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We introduce several evaluation protocols for EgoTracks, consisting of different combina- tions of the initial template, evaluated frames, and the tem- poral direction in which the tracker is run.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' For the initial template, we consider two choices: Visual Crop Template (VCT): The visual crop im- ages were specifically chosen to be high-quality views of the target and served as our annotators’ references for identifying the object throughout the videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Thus, they make ideal candidates for initializing a tracker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Occurrence First Frame Template (OFFT): The tracker is initialized with the first frame of each occur- rence (see −→ OO below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' While this may result in a lower quality view of the object, temporal proximity to sub- sequent frames means it may be closer in appearance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Note that we exclude the template frame from the calcu- lation of any evaluation metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We also consider several choices for the evaluated frames and temporal direction: Video Start Forward (−→ VS): The tracker is evaluated on every frame of the video in causal order, starting from the first frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' This represents a tracker’s ability to follow an object through a long video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Visual Crop Forward/Backward (←→ VC): The tracker is run on the video twice, once starting at the visual micropipettemicropipetteblowtorchblowtorch OGUUHKS paint- ca.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='Deint canFigure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Evaluation protocols visualization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' EgoTracks performance of various trackers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Method AO F-score Precision Recall KYS [4] 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='09 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='09 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='50 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='74 DiMP [3] 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='45 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='84 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='31 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='91 GlobalTrack [27] 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='63 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='40 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='28 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='14 LTMU [8] 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='33 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='46 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='28 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='74 ToMP [47] 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='93 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='95 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='63 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='46 STARK [71] - Res50 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='99 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='48 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='70 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='17 STARK [71] - Res101 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='03 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='18 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='30 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='35 Tracking by Detection Mask R-CNN [24]+Oracle 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='00 GGN [66]+Oracle 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='92 GGN+InstEmb 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='19 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='92 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='75 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='58 crop frame and running forward and time, and a sec- ond time running backwards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' This represents an alter- native way of covering every frame in the video, but with closer visual similarity between VCT initializa- tion and the first frames encountered by the tracker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Occurrences Only Forward (−−→ OO): The tracker is only evaluated on the object occurrences, when the ob- ject is visible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' This simplifies the tracking task and al- lows us to dis-entangle the challenge of re-detection from that of simply tracking in an egocentric clip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We specify protocols by concatenating the appropriate de- scriptors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We primarily consider VCT-−→ VS, VCT-←→ VC, VCT- −−→ OO, and OFFT-−−→ OO (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 4) in our experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We adopt common metrics in object tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' The most important ones are tracking F-score, precision, and recall [46];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' details on these metrics can be found in [46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Trackers are ranked mainly by the F-score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We addition- ally consider average overlap (AO), success, precision, and normalized precision as short-term tracking metrics [61].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Comparison of SOT trackers We compare the performance of several CNN-based tracking algorithms on EgoTracks with the VCT-−→ VS eval- uation protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Given the large number of existing track- ing algorithms, we do not aim to be exhaustive but select high-performing examples representative of different track- Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Qualitative results of different trackers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' ing principles, which we briefly describe here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' KYS [4] and DiMP [3] are two typical short-term tracking algorithms that maintain an online target representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' ToMP [47] and STARK [71] are two examples of the SOTA short- term trackers based on Transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' GlobalTrack [27] is a global tracker that searches the entire search image for re-detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' LTMU [8] is a high performance long-term tracker that combines a global tracker (GlobalTrack) with a local tracker (DiMP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' The performance of these trackers on EgoTracks are summarized in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Note, AO in this table is equivalent to the recall at the probability threshold of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Qualitative results are shown in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We highlight several observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' First, the object pres- ence scores from most short-term trackers are not very use- ful, as can be seen from the low precision of KYS (12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='5), DiMP (13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='91), and ToMP (22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='46), while long-term track- ers like GlobalTrack and DiMP LTMU achieve higher pre- cisions at 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='28 and 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' This is expected as long-term trackers are designed to place more emphasis on high re- detection accuracy, though there clearly is still room for im- provement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' STARK achieves the second highest precision at 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='70, which is an exception as it has a second train- ing stage to teach the model to classify whether the ob- ject is present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Second, more recent works such as ToMP and STARK achieve better F-score than previous short-term trackers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' This could be partially due to advances in training strategies, more data, and Transformer-based architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We also include results using the principle of Tracking by Detection [1, 52]: a detector proposes 100 bounding boxes, and we select the best using cosine similarity of box features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We observe that an open-world detector GGN [66] trained on COCO [41] generalize reasonably well with or- acle matching, achieving 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='92 AO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' However, the associa- tion problem is very challenging, bringing down the AO to 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Implementation details are in the supplementary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Template VCT-VS Visual Crop Evaluation Direction VCT-VC VCT-00 OFFT-00 Occurrence First Frame 00empate emplateTable 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Comparing tracker initializations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' The upper table com- pares trackers initialized from the first frame in each occurrence and tracking only that single occurrence (no re-detection or per- fect re-detection).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' The lower table compares STARK whole-video performance, starting from video start frame vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' visual crop frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Method AO Success Pre Prenorm KYS [4] 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='92 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='87 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='22 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='87 DiMP [3] 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='80 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='70 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='13 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='98 ToMP [47] 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='17 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='93 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='74 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='88 STARK [71] 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='01 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='64 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='76 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='91 Method AO F-score Precision Recall STARK - VCT-−→ VS 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='99 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='48 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='70 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='17 STARK - VCT-←→ VC 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='01 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='02 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='31 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='60 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Alternative evaluation protocols We perform additional evaluations according to alterna- tive evaluation protocols, to gain further insight to tracker performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' To decouple the re-detection problem from the other egocentric aspects of EgoTracks, we run experi- ments with the OFFT-−−→ OO protocol, which ignores the neg- ative frames of the video and thus obviates the need for re- detection, with results in Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Perhaps unsurprisingly, all trackers do significantly better in this setting, though there remains much room for improvement, emphasizing the challenging nature of EgoTracks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We also run exper- iments with STARK in the VCT-←→ VC setting (Table 5), in which case the initial template is temporally adjacent to the first tracked frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Here we see a 3-4% improvement to AO, F-score, precision, and recall compared to the VCT- −→ VS protocol, illustrating that trackers like STARK are de- signed to expect gradual transitions in appearance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Both these experiments illustrate that the re-detection problem is a significant challenge for tracking and the need for better long-term benchmarks requiring more re-detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Effect of attributes on tracking performance We use the validation set tracklet attribute annotations described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='3 to further understand performance on our evaluation set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' For each attribute, we split the track- lets into two groups, corresponding to the attribute being true and false.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We then use a standard STARK tracker [71] and report AO for each group of tracklets using the OFFT- −−→ OO evaluation protocol in Table 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' As might be expected, we find that when objects are being actively used by the user or in the midst of a transformation, AO tends to be lower, by roughly 6%, likely due to occlusions or changes in ap- pearance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Additionally, STARK tends to have a harder time when the object is hard to recognize in the image, whether due to occlusions, blur, scale, or other conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Table 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' OFFT-−→ OO AO of standard STARK model [71] for each attribute, averaged across tracklets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Attribute True False is active 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='65 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='73 is transformed 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='19 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='31 is recognizable 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='52 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='65 Table 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Training and test-time hyperparameters comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Method AO F-score Precision Recall Data STARK 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='99 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='48 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='70 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='17 STARK - ft on VQ 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='94 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='53 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='13 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='33 STARK - ft on EgoTracks 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='25 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='20 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='06 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='99 Augmentation STARK - ft on VQ 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='94 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='53 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='13 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='33 STARK - ft + multiscale 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='44 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='92 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='65 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='30 Search window search size = 320 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='99 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='48 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='70 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='17 search size = 480 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='21 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='69 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='95 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='19 search size = 640 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='09 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='39 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='23 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='15 search size = 800 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='08 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='74 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='60 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='45 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Ego-STARK Despite not being specifically designed for long-term tracking, Section 4 suggests STARK [71] to be the most competitive tracker on EgoTracks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We thus leverage this tracker for additional analysis, suggesting several improve- ments to boost performance on EgoTracks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Dataset Finetuning We first demonstrate how STARK trained on third- person videos significantly benefits from finetuning on ego- centric data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We experiment with two versions of Ego- Tracks: the Ego4D VQ response track dataset (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' short- term subset of EgoTracks) and the full EgoTracks training set, which contains more point-of-view and scale variations, as well as hard negatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' As shown in Table 7, finetun- ing on the VQ response track subset improves the F-score from 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='48% to 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='53%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Using the full EgoTracks annota- tion further improves the F-score by 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='67% to 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='2%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' This demonstrates that: 1) finetuning with egocentric data closes certain domain gaps;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2) training on full EgoTracks provides additional gains, showing the value of our training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Adjusting Spatiotemporal Priors Modern trackers often embrace spatiotemporal priors on object motion, appearance and surroundings, which helped them on past datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' However, some of these design deci- sions translate poorly to long-term egocentric videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Search window size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' An example is the local search as- sumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Many trackers assume the tracked object appears within a certain range of its previous location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Thus, for ef- ficiency, these methods often search within a local window of the next frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' This is reasonable in high FPS, smooth videos with relatively small motion, commonly in previous short-term tracking datasets, but in egocentric videos, the object’s pixel coordinates can change rapidly with frequent large head motions, and re-detection becomes a key prob- Table 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' STARK with different context ratios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Row in bold is the default STARK setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' CR: context ratio, SRR: search region ratio, SIS: search image size (in image resolution).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Method AO F-score Precision Recall Setting CR SRR SIS Same SIS 1x 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='5x 320 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='22 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='81 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='68 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='16 2x 5x 320 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='94 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='53 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='13 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='33 3x 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='5x 320 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='70 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='03 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='28 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='59 4x 10x 320 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='19 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='32 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='98 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='31 Same SRR 1x 5x 640 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='50 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='09 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='31 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='91 3x 5x 208 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='87 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='36 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='54 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='79 Same CR 2x 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='5x 480 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='21 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='69 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='95 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='19 2x 10x 640 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='09 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='39 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='23 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='15 2x 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='5x 800 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='08 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='74 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='60 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='45 lem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Therefore, we experiment with expanded search re- gions beyond what are common in past methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' As we expand the search size from 320 up to 800, we see dramatic improvements in AO, F-score, Precision, and Recall (Ta- ble 7), as STARK is able to correctly locate objects that were previously outside of its search window due to the rapid movement of egocentric video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Multiscale augmentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' The characteristics of egocen- tric video also affect common SOT assumptions of object scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Many trackers are trained with the assumption that an object’s scale is consistent with the template image and between adjacent frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' However, large egocentric cam- era motions, locomotion, and hand interactions with ob- jects (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' bringing an object to one’s face, as in eating) can translate to objects rapidly undergoing large changes in scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We thus propose adding scale augmentations dur- ing training, randomly resizing the search image by a factor of s ∈ [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='5, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' While simple, we find this dramatically improves performance on EgoTracks, improving STARK’s AO by nearly 10% and F-score by more than 8% (Table 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Context ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Past SOT works have found that includ- ing some of the background can be helpful when extracting features from the template image, with 2 times the size of object being common practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We experiment with differ- ent context ratios to see if this rule of thumb transfers to egocentric videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Because of the local window assump- tion, the sizes of the template image and search image are related: Search Image Size(SIS) Search Region Ratio(SRR) = Template Image Size Context Ratio(CR) = Object Scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' The template image size is set to a fixed size 128 × 128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' When changing the context ratio, we carefully control the other parameters for a fair comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' The re- sults are shown in Table 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Among all three parameters - CR, SRR, and SIS, the search region size (determined by SRR and SIS) has the highest impact on the F-score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' This is expected because there are frequent re-detections, which require the tracker to search in a larger area for the object, rather than just within the commonly used local window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Varying the CR has mixed results so we adhere to the com- mon practice of using a CR of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' The best result is achieved when using SRR 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='5, which covers most of the image and Table 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' STARK with different numbers of templates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Method AO F-score Precision Recall STARK - 1 template 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='97 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='42 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='80 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='04 STARK - 3 templates 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='76 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='84 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='84 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='57 STARK - 5 templates 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='47 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='03 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='82 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='45 STARK - 7 templates 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='81 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='83 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='77 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='40 STARK - 9 templates 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='92 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='89 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='36 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='12 achieves a F-score of 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='74%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Multiple templates Transformer-based architectures can encode arbitrary length inputs, making it straightforward to consume fea- tures from an arbitrary number of templates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' The origi- nal STARK design encodes two templates: the initialization and a single dynamically updated template.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' A natural exten- sion is to include more templates of the target, which may expose the transformer to different views of the object (par- ticularly relevent in egocentric video), though low-quality views may compromise performance [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' What’s the right trade-off?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We experiment with differ- ent numbers of templates for a basic STARK model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Moti- vated by potential applications where a user can take a short video of an object from different angles [55], we extend the single visual crop to a visual clip of templates by incorpo- rating additional frames from the same occurrence where the visual crop appears as the template.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We adopt a simple template sampling method: uniformly sampling 3, 5, 7, or 9 templates from the visual crop’s occurrence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Uniformly sampling the videos temporally can be a simple yet effec- tive heuristic to gather diverse views from an occurrence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We summarize the results in Table 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' While we observe im- provements across all metrics using up to 5 templates, per- formance declines with more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We hypothesize that increas- ing the number of templates does increase the knowledge available to STARK for tracking, but after a certain point it may dilute the information in the templates and make it difficult for the transformer to synthesize.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' This highlights the importance of template selection and multi-view fusion mechanisms, which inspires promising directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Conclusion We present EgoTracks, the first large-scale dataset for long-term egocentric visual object tracking in diverse scenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We conduct extensive experiments to understand the performance of state-of-the-art trackers on this new dataset, and find that they struggle considerably, possibly in part due to overfitting to some of the simpler character- istics of existing benchmarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' We thus propose several im- provements to the STARK [71] tracker, leading to a strong baseline that we call Ego-STARK, leading to vast improve- ments in performance on egocentric data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Lastly, we plan to organize a public benchmark challenge using a held-out test set with a test server as a testbed for new tracking al- gorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' By publicly releasing this dataset and organizing the challenge, we hope to encourage advancements in the field of long-term tracking and draw more attention to the challenges of long-term and egocentric videos for this field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' References [1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Avidan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Ensemble tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In 2005 IEEE Computer Soci- ety Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 2, pages 494–501 vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 6 [2] Ronald T Azuma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' A survey of augmented reality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Presence: teleoperators & virtual environments, 6(4):355–385, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2 [3] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Learning discriminative model prediction for track- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF international confer- ence on computer vision, pages 6182–6191, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3, 6, 7 [4] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Know your surroundings: Exploiting scene infor- mation for object tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In European Conference on Com- puter Vision, pages 205–221.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Springer, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3, 4, 6, 7 [5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' End-to- end object detection with transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In European confer- ence on computer vision, pages 213–229.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Springer, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [6] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang, and Huchuan Lu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Transformer tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8126–8135, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [7] Seokeon Choi, Junhyun Lee, Yunsung Lee, and Alexander Hauptmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Robust long-term object tracking via improved discriminative model prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In European Conference on Computer Vision, pages 602–617.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Springer, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [8] Kenan Dai, Yunhua Zhang, Dong Wang, Jianhua Li, Huchuan Lu, and Xiaoyun Yang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' High-performance long- term tracking with meta-updater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6298–6307, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3, 6 [9] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Da- vide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and Michael Wray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Scaling egocentric vision: The epic- kitchens dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In European Conference on Computer Vi- sion (ECCV), 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3, 4 [10] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Atom: Accurate tracking by overlap max- imization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4660– 4669, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [11] Ahmad Darkhalil, Dandan Shan, Bin Zhu, Jian Ma, Amlan Kar, Richard Ely Locke Higgins, Sanja Fidler, David Fouhey, and Dima Damen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Epic-kitchens visor benchmark: Video segmentations and object relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Thirty-sixth Confer- ence on Neural Information Processing Systems Datasets and Benchmarks Track, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3, 4 [12] Achal Dave, Tarasha Khurana, Pavel Tokmakov, Cordelia Schmid, and Deva Ramanan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Tao: A large-scale benchmark for tracking any object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In European conference on computer vision, pages 436–454.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Springer, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3, 4 [13] Ana Garcia del Molino, Cheston Tan, Joo-Hwee Lim, and Ah-Hwee Tan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Summarization of egocentric videos: A com- prehensive survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' IEEE Transactions on Human-Machine Systems, 47(1):65–76, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl- vain Gelly, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' An image is worth 16x16 words: Trans- formers for image recognition at scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' arXiv preprint arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='11929, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [15] Jiafei Duan, Samson Yu, Hui Li Tan, Hongyuan Zhu, and Cheston Tan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' A survey of embodied ai: From simulators to research tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' IEEE Transactions on Emerging Topics in Computational Intelligence, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2 [16] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Lasot: A high-quality benchmark for large-scale single ob- ject tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 5374–5383, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2, 3, 4 [17] Yazan Abu Farha, Alexander Richard, and Juergen Gall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' When will you do what?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' - anticipating temporal occurrences of activities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2018 IEEE/CVF Conference on Computer Vi- sion and Pattern Recognition, pages 5343–5352, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [18] Alircza Fathi, Jessica K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Hodgins, and James M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Rehg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' So- cial interactions: A first-person perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 1226–1233, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [19] Antonino Furnari and Giovanni Farinella.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Rolling-unrolling lstms for action anticipation from first-person video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' IEEE Transactions on Pattern Analysis and Machine Intelligence, PP:1–1, 05 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [20] Andreas Geiger, Philip Lenz, and Raquel Urtasun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Are we ready for autonomous driving?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' the kitti vision benchmark suite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Conference on Computer Vision and Pattern Recog- nition (CVPR), 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [21] Deepti Ghadiyaram, Matt Feiszli, Du Tran, Xueting Yan, Heng Wang, and Dhruv Kumar Mahajan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Large-scale weakly-supervised pre-training for video action recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2019 IEEE/CVF Conference on Computer Vision and Pat- tern Recognition (CVPR), pages 12038–12047, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [22] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Girdhar and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Grauman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Anticipative video trans- former.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pages 13485–13495, Los Alami- tos, CA, USA, oct 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' IEEE Computer Society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [23] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Ego4d: Around the world in 3,000 hours of egocentric video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Pro- ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18995–19012, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2, 3, 4 [24] Kaiming He, Georgia Gkioxari, Piotr Doll´ar, and Ross Gir- shick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Mask R-CNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the IEEE inter- national conference on computer vision, pages 2961–2969, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 6 [25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Deep residual learning for image recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceed- ings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [26] Lianghua Huang, Xin Zhao, and Kaiqi Huang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Got-10k: A large high-diversity benchmark for generic object tracking in the wild.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 43(5):1562–1577, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2, 3, 4 [27] Lianghua Huang, Xin Zhao, and Kaiqi Huang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Globaltrack: A simple and strong baseline for long-term tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Pro- ceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 11037–11044, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3, 6 [28] Hao Jiang and Kristen Grauman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Seeing invisible poses: Estimating 3d body pose from egocentric video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In 2017 IEEE Conference on Computer Vision and Pattern Recogni- tion (CVPR), pages 3501–3509, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 4 [29] Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, and Dima Damen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Epic-fusion: Audio-visual temporal binding for egocentric action recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In IEEE/CVF Interna- tional Conference on Computer Vision (ICCV), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [30] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva Ramanan, and Simon Lucey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Need for speed: A benchmark for higher frame rate object tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the IEEE International Conference on Computer Vision, pages 1125–1134, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [31] Matej Kristan, Aleˇs Leonardis, Jiˇr´ı Matas, Michael Fels- berg, Roman Pflugfelder, Luka ˇCehovin Zajc, Tom´aˇs Voj´ır, Goutam Bhat, Alan Lukeˇziˇc, Abdelrahman Eldesokey, Gus- tavo Fern´andez, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' The sixth visual object tracking vot2018 challenge results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Laura Leal-Taix´e and Stefan Roth, editors, Computer Vision – ECCV 2018 Workshops, pages 3–53, Cham, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Springer International Publishing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [32] Matej Kristan, Jiri Matas, Aleˇs Leonardis, Tomas Vojir, Ro- man Pflugfelder, Gustavo Fernandez, Georg Nebehay, Fatih Porikli, and Luka ˇCehovin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' A novel performance evaluation methodology for single-target trackers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(11):2137– 2155, Nov 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2, 3 [33] Yong Jae Lee, Joydeep Ghosh, and Kristen Grauman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Dis- covering important people and objects for egocentric video summarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In 2012 IEEE Conference on Computer Vi- sion and Pattern Recognition, pages 1346–1353, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [34] Yong Jae Lee and Kristen Grauman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Predicting important objects for egocentric video summarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Vision, 114(1):38–55, aug 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3, 4 [35] Annan Li, Min Lin, Yi Wu, Ming-Hsuan Yang, and Shuicheng Yan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Nus-pro: A new visual tracking challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' IEEE transactions on pattern analysis and machine intelli- gence, 38(2):335–349, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [36] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing, and Junjie Yan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Siamrpn++: Evolution of siamese vi- sual tracking with very deep networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4282–4291, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [37] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' High performance visual tracking with siamese region pro- posal network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 8971–8980, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [38] Yanghao Li, Tushar Nagarajan, Bo Xiong, and Kristen Grau- man.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Ego-exo: Transferring visual representations from third-person to first-person videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In CVPR, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [39] Kevin J Liang, Samrudhdhi B Rangrej, Vladan Petrovic, and Tal Hassner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Few-shot learning with noisy labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Pro- ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9089–9098, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 8 [40] Pengpeng Liang, Erik Blasch, and Haibin Ling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Encoding color information for visual tracking: Algorithms and bench- mark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' IEEE transactions on image processing, 24(12):5630– 5644, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [41] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Doll´ar, and C Lawrence Zitnick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Microsoft coco: Common objects in context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In European conference on computer vision, pages 740–755.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Springer, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 6 [42] Miao Liu, Siyu Tang, Yin Li, and James M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Rehg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Forecast- ing human object interaction: Joint prediction of motor atten- tion and egocentric activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' ArXiv, abs/1911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='10967, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3, 4 [43] Cewu Lu, Renjie Liao, and Jiaya Jia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Personal object dis- covery in first-person videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' IEEE Transactions on Image Processing, 24(12):5789–5799, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 4 [44] Zheng Lu and Kristen Grauman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Story-driven summariza- tion for egocentric video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In 2013 IEEE Conference on Com- puter Vision and Pattern Recognition, pages 2714–2721, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [45] Jonathon Luiten, Aljosa Osep, Patrick Dendorfer, Philip Torr, Andreas Geiger, Laura Leal-Taixe, and Bastian Leibe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Hota: A higher order metric for evaluating multi-object tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' International Journal of Computer Vision (IJCV), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [46] Alan Lukeˇziˇc, Luka ˇCehovin Zajc, Tom´aˇs Voj´ıˇr, Jiˇr´ı Matas, and Matej Kristan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Now you see me: evaluating per- formance in long-term visual tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' arXiv preprint arXiv:1804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='07056, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 6 [47] Christoph Mayer, Martin Danelljan, Goutam Bhat, Matthieu Paul, Danda Pani Paudel, Fisher Yu, and Luc Van Gool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Transforming model prediction for tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat- tern Recognition, pages 8731–8740, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3, 6, 7 [48] Christoph Mayer, Martin Danelljan, Danda Pani Paudel, and Luc Van Gool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Learning target candidate association to keep track of what not to track.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 13444– 13454, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [49] Anton Milan, Laura Leal-Taix´e, Ian Reid, Stefan Roth, and Konrad Schindler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Mot16: A benchmark for multi-object tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' arXiv preprint arXiv:1603.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='00831, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [50] Matthias Mueller, Neil Smith, and Bernard Ghanem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' A benchmark and simulator for uav tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In European con- ference on computer vision, pages 445–461.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Springer, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [51] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Al- subaihi, and Bernard Ghanem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Trackingnet: A large-scale dataset and benchmark for object tracking in the wild.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the European conference on computer vision (ECCV), pages 300–317, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2, 3, 4 [52] Kenji Okuma, Ali Taleghani, De Freitas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Little, and David Lowe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' A boosted particle filter: Multitarget detection and tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' volume 3021, 05 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 6 [53] Hamed Pirsiavash and Deva Ramanan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Detecting activities of daily living in first-person camera views.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2012 IEEE Con- ference on Computer Vision and Pattern Recognition, pages 2847–2854, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [54] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar- bel´aez, Alexander Sorkine-Hornung, and Luc Van Gool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' The 2017 davis challenge on video object segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' arXiv:1704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='00675, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 4 [55] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick Labatut, and David Novotn´y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Com- mon objects in 3d: Large-scale learning and evaluation of real-life 3d category reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2021 IEEE/CVF In- ternational Conference on Computer Vision (ICCV), pages 10881–10891, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 8 [56] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San- jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Berg, and Li Fei-Fei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' ImageNet Large Scale Visual Recognition Chal- lenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 4 [57] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Habitat: A platform for embodied ai research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 9339–9347, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2 [58] Dandan Shan, Jiaqi Geng, Michelle Shu, and David F Fouhey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Understanding human hands in contact at inter- net scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 9869–9878, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2 [59] Maximilian Speicher, Brian D Hall, and Michael Nebeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' What is mixed reality?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the 2019 CHI conference on human factors in computing systems, pages 1–15, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2 [60] Yu-Chuan Su and Kristen Grauman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Detecting engagement in egocentric video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision – ECCV 2016, pages 454–471, Cham, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Springer International Publish- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [61] Ran Tao, Efstratios Gavves, and Arnold WM Smeulders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Tracking for half an hour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' arXiv preprint arXiv:1711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content='10217, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 6 [62] Jack Valmadre, Luca Bertinetto, Joao F Henriques, Ran Tao, Andrea Vedaldi, Arnold WM Smeulders, Philip HS Torr, and Efstratios Gavves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Long-term tracking in the wild: A bench- mark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the European conference on com- puter vision (ECCV), pages 670–685, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2, 3, 4 [63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko- reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Attention is all you need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Advances in neural information processing systems, 30, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [64] Paul Voigtlaender, Jonathon Luiten, Philip HS Torr, and Bas- tian Leibe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Siam r-cnn: Visual tracking by re-detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF conference on computer vi- sion and pattern recognition, pages 6578–6588, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3, 4 [65] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and Philip HS Torr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Fast online object tracking and segmentation: A unifying approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF con- ference on Computer Vision and Pattern Recognition, pages 1328–1338, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [66] Weiyao Wang, Matt Feiszli, Heng Wang, Jitendra Malik, and Du Tran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Open-world instance segmentation: Exploiting pseudo ground truth from learned pairwise affinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Pro- ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4422–4432, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 6 [67] Weiyao Wang, Matt Feiszli, Heng Wang, and Du Tran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Unidentified video objects: A benchmark for dense, open- world segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF In- ternational Conference on Computer Vision, pages 10776– 10785, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 4 [68] Weiyao Wang, Du Tran, and Matt Feiszli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' What makes training multi-modal classification networks hard?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 12692–12702, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [69] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Online object tracking: A benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the IEEE con- ference on computer vision and pattern recognition, pages 2411–2418, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2, 3 [70] Fei Xie, Chunyu Wang, Guangting Wang, Yue Cao, Wankou Yang, and Wenjun Zeng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Correlation-aware deep tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8751–8760, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3 [71] Bin Yan, Houwen Peng, Jianlong Fu, Dong Wang, and Huchuan Lu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Learning spatio-temporal transformer for vi- sual tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 10448–10457, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 2, 3, 5, 6, 7, 8 [72] Linjie Yang, Yuchen Fan, and Ning Xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Video instance seg- mentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 5188–5197, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 4 [73] Yipin Zhou and Tamara L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Berg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' Temporal perception and prediction in ego-centric video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' In 2015 IEEE International Conference on Computer Vision (ICCV), pages 4498–4506, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
+page_content=' 3' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gdE1T4oBgHgl3EQffAR-/content/2301.03213v1.pdf'}
diff --git a/gtE5T4oBgHgl3EQfhw_s/content/tmp_files/2301.05644v1.pdf.txt b/gtE5T4oBgHgl3EQfhw_s/content/tmp_files/2301.05644v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..c957b8333706689e12ff4a4891c8bbbd23f80615
--- /dev/null
+++ b/gtE5T4oBgHgl3EQfhw_s/content/tmp_files/2301.05644v1.pdf.txt
@@ -0,0 +1,1121 @@
+1
+
+Excitation-Dependent High-Lying Excitonic Exchange via Interlayer Energy
+Transfer from Lower-to-Higher Bandgap 2D Material
+Arka Karmakar1*, Tomasz Kazimierczuk1, Igor Antoniazzi1, Mateusz Raczyński1, Takashi
+Taniguchi2, Kenji Watanabe3, Adam Babiński1, Abdullah Al-Mahboob4⸸, Maciej R. Molas1#
+1 Division of Solid State Physics, Institute of Experimental Physics, Faculty of Physics, University of
+Warsaw, Pasteura 5, 02-093 Warsaw, Poland
+2 International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1
+Namiki, Tsukuba, Ibaraki 305-0044, Japan
+3 Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba,
+Ibaraki 305-0044, Japan
+4 Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
+* arka.karmakar@fuw.edu.pl; ⸸ aalmahboo@bnl.gov; # maciej.molas@fuw.edu.pl
+Keywords: 2D material, MoS2, WSe2, heterostructure, excitons, energy transfer, band-nesting
+
+High light absorption (~15%) and strong photoluminescence (PL) emission in monolayer (1L) transition-
+metal dichalcogenide (TMD) makes it an ideal candidate for optoelectronic applications. Competing
+interlayer charge (CT) and energy transfer (ET) processes control the photocarrier relaxation pathways in
+TMD heterostructures (HSs). In TMDs, long-distance ET can survive up to several tens of nm, unlike the
+CT process. Our experiment shows that an efficient ET occurs from the 1L WSe2 to 1L MoS2 with ~9 nm
+interlayer hBN, due to the resonant overlapping of the high-lying excitonic states between the two TMDs,
+resulting in enhanced HS MoS2 PL emission. This type of ET from the lower-to-higher optical bandgap
+material has never been observed. With increasing temperature, the ET process becomes weaker due to the
+
+2
+
+increased electron-phonon scattering, destroying the enhanced MoS2 emission. Our work provides a new
+insight into the long-distance ET process and its effect on the photocarrier relaxation pathways.
+Introduction:
+Group-VI semiconducting transition metal dichalcogenides (TMDs) are formed by stacking of strongly
+bonded two-dimensional (2D) X-M-X layers (M = transition metals such as Mo, W etc. and X = chalcogens
+such as S, Se, and Te etc.), which are separated by the weakly bond interlayer van der Waals forces1. The
+first mechanical exfoliation of the monolayer (1L) molybdenum disulfide (MoS2) film from the bulk crystal
+in 2010 led us to observe a strong photoluminescence (PL) emission2,3 due to the indirect-to-direct bandgap
+transition from the bulk-to-1L regime4,5. Since then, researchers have been exploring the exciting excitonic
+properties6–11 in these 1L TMD materials. Strong light-matter interactions and high light absorption of up
+to ~15% in the solar spectrum12 helped researchers to realize the future prospects of 1L TMD-based
+optoelectronic device applications13. Heterostructures (HSs) made by the vertical stacking of different
+layered materials have shown positive promise for future ultrathin14–16 and flexible17 optoelectronic device
+applications. Recent advances in direct and patterned growth of 2D HSs18,19 to obtain a clean large-area
+interface have also pushed the effort to make commercially available TMD-based device applications.
+However, one of the major challenges in commercializing the promised optoelectronic device applications
+is the lack of comprehensive understanding in the competing interlayer processes and their role in the
+photocarrier recombination mechanism.
+The interlayer charge (CT) and energy transfers (ET) are the two main carrier relaxation pathways in the
+semiconductor HSs. Interlayer CT occurs due to the energy band offset in the HS20 and the 'traditional' ET
+process happens when nonradiative energy from the excited donor material gets transferred to the acceptor
+material via dipole-dipole interactions accompanied by a fluorescence emission from the acceptor
+material21,22. ET is observed as a reduction of the donor fluorescence intensity and carrier lifetime followed
+by an enhancement of the acceptor fluorescence intensity22. The interlayer CT can be stopped by placing a
+thin layer of dielectric material in between the two semiconductors. Britnell et al.23 showed that only four
+
+3
+
+atomic-layer thick hexagonal boron nitride (hBN) is sufficient as a dielectric medium to block the electron
+tunneling between the two graphene layers. Unlike the CT process, in TMD HSs the long-distance interlayer
+ET process can survive up to several tens of nm24,25. Thus, developing a comprehensive understanding of
+the long-distance interlayer ET process is absolute necessity to create practical device applications.
+In this work, we study the result of the excitation energy matching with the 1L tungsten diselenide (WSe2)
+high-lying excitonic levels and its effect on the interlayer ET process to alter the photocarrier relaxation
+pathways in 1L MoS2 with a ~9 nm thick hBN interlayer. Both these TMD materials have overlapping
+higher energy B and C (MoS2)/D (WSe2) absorption features26,27. We show that resonant excitations at the
+WSe2 B and D absorption regions results in MoS2 PL enhancement in the HS area. We report that this PL
+enhancement is due to the interlayer ET process from the WSe2-to-MoS2 layer. This type of long-range ET
+process from the lower-to-higher optical bandgap material was never observed before, since ET typically
+happens from the higher-to-lower bandgap materials28–36. In this work, we employ multiple optical
+spectroscopic techniques at cryogenic temperature (8 K); such as µ-PL, µ-photoluminescence excitation
+(PLE) and differential reflectance contrast (RC), complemented by the density functional theory (DFT)
+calculation of spin-resolved band structures to study the ET process. Our work reveals a unique interlayer
+ET process in the TMD HSs. This will significantly contribute to creating a comprehensive understanding
+of the long-range interlayer ET process and its role to influence the photocarrier radiative recombination
+processes in these semiconducting HSs.
+Results and discussion:
+Figure 1a shows the optical micrograph of the fabricated MoS2-hBN-WSe2 HS (see methods for the
+fabrication details). The inset of Figure 1a shows the schematic illustration of the side view of the sample.
+We introduce ~9 nm thick interlayer hBN (see Supplementary Figure S1) to eliminate any effect related to
+the interlayer CT in our system23. The optical absorption of the TMD materials reflects their single-electron
+energy band structure. The low temperature RC spectra (see methods for the details) measured at 8 K show
+strong overlaps between the B peaks of both materials and the WSe2 D peak with the MoS2 C peak (shaded
+
+4
+
+areas in Figure 1b), which agrees well with the previously published reports26,27. In the later sections, we
+discuss how these strong overlaps help us to observe the reported ET from the lower-to-higher bandgap
+(WSe2-to-MoS2) material. HS spectrum (Figure 1b) shows similar RC resonance positions as compared to
+the individual 1Ls, indicating no major strain-induced effect37 in the HS area. A and B excitonic peaks
+occur due to the excitonic transitions at the K+/K- valley in the k-space2,3 and higher energy excitonic
+transitions, such as C and D, are the results of the 'band nesting'38,39 in the Brillouin zone. 'Band-nested'
+regions occur due to the identical dispersion in valence (VB) and conduction band (CB) over a region in
+the Brillouin zone. For 1L MoS2, both the VB maximum and the CB minimum are located at the K+/K-
+point in the Brillouin zone. In the case of WSe2, while the VB maximum is located at the K+/K- point, the
+CB minimum is situated at the Λ point2,40. The 'band-nesting' region happens in between the Γ and Λ
+point38,39. Figure 1c shows the DFT calculated electronic band structures (see Supplementary Information
+for the details) along the Γ-K+ direction in the Brillouin zone. For both the band structures, we match the
+optical bandgaps with the corresponding PL energies. All types of optical transitions are shown with
+different colors of arrow (Figure 1c). PLE maps (see methods for the experimental details) taken at 8 K
+show the emission landscapes of the three individual areas (Figures 1d-1f). After saturating the WSe2
+emission in the HS to visualize the MoS2 emission, we observe the significantly enhanced MoS2 PL
+emission in the HS area as compared to the 1L region (Figures 2a-2b). The horizontal cuts at the excitation
+energies of 2.85 eV and 2.12 eV (black dotted lines in Figures 2a-2b) reveal that the MoS2 PL emission in
+the HS is enhanced by a factor of ~1.9 and ~1.7, respectively as compared to the 1L area (Figures 2c-2d).
+The PL enhancement factor is defined here as the ratio of PL intensity in the HS area to the 1L area under
+the same excitation (and accumulation) conditions. Similarly, PLE (vertical cut along the 1.92 eV emission
+energy in Figures 2a-2b) shows an overall increase of the HS MoS2 PL emission throughout the entire
+excitation range as compared to the 1L MoS2 region (Figure 2e). We conclude that the MoS2 PL
+enhancement in the HS area is a result of an interlayer ET process from the WSe2 layer. It is important to
+mention that the total optical absorption in the HS area did not change much as compared to the each 1L
+areas (Figure 1b). However, the enhancement in the HS PLE (Figure 2e) suggests that the internal PL
+
+5
+
+efficiency of the HS system was increased due to the ET process. We rule out the possibility of the observed
+PL enhancement in the MoS2 emission due to the interference of the backscattering light, because the entire
+measured MoS2 area (including the HS) is placed onto the same hBN thickness (inset of Figure 1a). 1L
+WSe2 (thickness <1 nm) in the HS area cannot modulate the interference pattern considering the ~9 nm
+interlayer and thick substrate hBNs. We also rule out the possible contribution of ET from the hBN defect
+states41 in the HS MoS2 PL enhancement process, as the ET from same hBN thickness cannot result in more
+HS PL emission as compared to the 1L MoS2 region.
+Strong overlaps between the higher energy absorptions in both the investigated materials (Figure 1b) help
+us to study the effect of the interlayer ET process under those 'resonant' excitation conditions. PL intensity
+map taken at 8 K under the excitation of 2.12 eV (B resonances overlap region) shows an overall enhanced
+MoS2 emission in the HS area (Figure 3a). Similarly, an excitation at 2.85 eV energy (WSe2 D and MoS2
+C peaks overlap region) shows an increased MoS2 PL emission throughout the HS area (Figure 3b). Thus,
+proving that at both the excitation energies an efficient ET happened from the WSe2-to-MoS2 layer as
+discussed in the later section. The PL intensity maps (Figures 3a-3b) also show that the observed
+enhancement of the MoS2 PL emission in the HS area is not a localized phenomenon. We note that although
+there is some non-uniformity in the HS PL intensity due to the typical inhomogeneous nature of the
+exfoliated samples, but the HS PL emission is always higher than the 1L MoS2 area.
+In order to study the effect of increasing temperature in our experiments, we performed PLE maps at 25 K,
+100 K, and 200 K (Figure 4 and Figure S2). At 25 K, MoS2 emissions in the HS area under both the
+excitation energies at ~2.83 eV and 2.2 eV show a similar enhancement factor of ~1.6 (Figure S3). These
+values are a slight reduction from the 8 K data. The PLE also shows a similar overall enhancement in the
+MoS2 HS emission at 25 K (Figure 4c). Upon further increasing the temperature at 100 K and 200 K, we
+observe a complete vanishing of the MoS2 PL enhancement in the HS (Figures 4d-4f). A slight quenching
+of the HS MoS2 PLE at 100 K (Figure 4f) could be due to the traditional type-II HS ET28 from the higher-
+to-lower bandgap material (MoS2-to-WSe2).
+
+6
+
+For MoS2 and WSe2, the schematics of the A and B transitions based on the VB and CB splitting are shown
+in Figure 5a. In these TMD monolayers, VB (VB1 and VB2) and CB (CB1 and CB2) spin splitting occurs
+due to the spin-orbit coupling and lack of inversion symmetry10,42, allowing possible absorptions based on
+the optical selection rule43,44. In these TMDs, PL emission, which comes from the direct radiative
+recombination at the optical bandgap, strongly depends on the spin-state of CB (CB1 or CB2) electron and
+VB (VB1 or VB2) hole at the K+/K- point. Based on the allowed electron recombination from the CB1 or
+CB2 to the hole situated at the top of VB (VB2), the materials are divided into two categories; 'bright' or
+'dark'10, respectively. The calculated momentum-space energy landscape for the allowed optical transitions
+from VB2-to-CB1 and VB1-to-CB2 in the MoS2 layer shows a smaller separation of ~150 meV at the K+/K-
+point due to the spin splitting (Figures 5b-5c, Figure S4a), which matches well with the previous results45,46.
+WSe2 shows a comparatively larger separation of ~500 meV at the K+/K- point47,48 for the VB2-to-CB2 and
+VB1-to-CB1 transitions (Figures 5d-5e, Figure S4b).
+Optical excitation at the 'band-nested' region (MoS2 C and WSe2 D peak), excites electrons in the valley in
+between the Γ-Λ point in MoS2 CB and around the Λ valley in WSe2 CB. These excited photocarriers
+(electron and hole) instantly relax to their immediate band extreme points; Λ valley for electron and Γ hill
+for hole26. These carriers then further transfer to the band extrema via the extremely fast (<500 fs)
+intravalley scattering (kiv)49–51. In our HS, to describe the PL intensity map under the 2.12 eV excitation
+(Figure 3a), the only possible mechanism is shown as a schematic illustration in Figure 5f. Upon excitation
+with the 2.12 eV photons, photoexcited carries are generated at the WSe2 B excitonic level. Due to the
+resonant overlap with the MoS2 B level (Figure 1b), WSe2 B excitonic energy immediately transfer to the
+MoS2 B and A band, resulting in more carriers in the MoS2 layer. The extra carriers at the MoS2 B level
+transfer to the subsequent band extremum via intervalley transition (kv), followed by a radiative
+recombination (kr) process to the ground state (GS). Thus, we obtain an enhanced MoS2 PL emissions in
+the HS area with an excitation of 2.12 eV (Figure 3a). However, at an excitation energy of 2.85 eV (MoS2
+C and WSe2 D peak overlap region, Figure 1b), two possible ET channels can play a crucial role. First, ET
+
+7
+
+from the WSe2 D level can directly generate more carriers at the MoS2 C level due to the resonant
+overlapping. These extra carriers radiatively recombine at the band extremum via intravalley transition (kiv),
+and giving rise to more MoS2 PL emissions in the HS area, as shown in the schematic of Figure 5g (grey
+colored ET process). Another possibility is that upon excitation with the 2.85 eV photon carriers generated
+at the WSe2 D level scatter to the WSe2 B level via the intravalley transition (kiv) and then transfer to the
+MoS2 B and A level via ET process giving rise to the MoS2 PL emission similar as the 2.12 eV excitation
+process (black colored ET process in Figure 5g). Interestingly, an excitation at the WSe2 C absorption peak
+(2.56 eV) does not result in any MoS2 PL emission (Figure S5), indicating that interlayer coupling between
+the suitable levels was not possible at this excitation due to the immediate photoexcited carrier transfer to
+the WSe2 A level. Hence, no enhancement in the MoS2 HS PL emission due to the ET process is also
+apparent.
+Our model to describe the enhanced MoS2 PL emission from the HS area also supports the temperature-
+dependent data. Photocarriers go through a series of phonon scattering before relaxing to the ground state.
+At low temperature, electron-phonon scattering dominates52. With the increasing temperature, other types
+of scattering processes such as anharmonic phonon–phonon scattering and phonon structure scattering53
+start to dominate. Thus, with the increasing temperature, the intravalley transition becomes weaker due to
+the multiple-phonon scattering and eventually a minor fraction of the photocarriers generated at the 'band-
+nested' region can be transferred to the K+/K- point for radiative recombination. Furthermore, the thermal
+activation should make the 'hot' carrier transfer to the band extremum extremely faster (<100 fs)54,
+preventing the coupling between the materials' corresponding energy levels. These eventually result in a
+complete disappearance of the MoS2 PL enhancement in the HS area at higher temperatures (100 K and
+200 K).
+Considering the temperature-dependent data we can conclude that at higher excitation energy (~2.85 eV)
+ET process via WSe2 B to MoS2 B and A level dominates (black colored ET process in Figure 5h) in our
+experiment. Otherwise, with increasing the temperature we should observe an enhanced MoS2 HS PL
+
+8
+
+emission. At cryogenic temperature, the fast intravalley scattering (kiv) in TMDs occur at ~100-500 fs
+timescale49–51,54. Whereas, intervalley transitions (kv) occur at a longer timescale of a few ps range55,56. Our
+study suggests that the reported ET happened at a faster timescale than the intervalley transition and slower
+than the intravalley transition. Otherwise, the ET from the lower optical bandgap WSe2 cannot excite more
+carriers in the higher bandgap MoS2, resulting in an enhanced HS MoS2 PL emission. Finding the 'true' ET
+timescale in our experiment will require an ultrafast study, which is beyond the scope of this work. It is also
+important to mention that with the increasing temperature the effect of band renormalization in the ET
+process to alter the radiative recombination pathway of the photocarriers cannot be ignored. A thorough
+investigation of the band renormalization effect in the ET process is required in the future work.
+In conclusion, our study shows that strong light matter interaction in the 1L MoS2 and WSe2 'band-nested'
+region allows us to observe an unusual ET process from the lower-to-higher bandgap (WSe2-to-MoS2)
+material. All the previous reports28–36 showed that ET always occurs from the higher-to-lower bandgap (all
+types of) low-dimensional materials (such as quantum dots, nanotubes, TMDs, perovskites, etc.)
+irrespective of the type of band alignment. This is in a stark contrast to the observed ET process in our
+work. The excitation-dependent PL intensity maps prove that the reported HS MoS2 PL enhancement is not
+a localized phenomenon due to the materials local property change, the entire HS area shows this enhanced
+PL emission. Finally, the temperature-dependent study proves that with the increasing temperature due to
+the growing electron-phonon scattering, the carriers transfer to the band extremum become faster,
+preventing ET from the WSe2 (smaller gap) to the MoS2 (larger gap) layer. Our findings provide a unique
+insight into the interlayer ET process in these layered materials and will help to build a comprehensive
+understanding about the competing interlayer processes for developing future TMD-based optoelectronic
+device applications.
+Methods:
+HS fabrication
+
+9
+
+Bottom hBN layer was directly cleaved on the SiO2/Si substrate. MoS2-hBN-WSe2 layers were exfoliated
+onto the Gel-Pak (PDMS) films and were stacked layer-by-layer (in reverse order) onto each other using a
+home-built semiautomatic transfer stage. MoS2, WSe2 and hBN bulk crystals for exfoliation were obtained
+from the Graphene Supermarket, HQ Graphene and National Institute for Materials Science, respectively.
+Characterization
+We used Bruker Dimension Icon with NanoScope 6 controller in 'ScanAsyst' (peak force tapping) mode to
+obtain high resolution AFM image.
+The differential RC measurements were performed using a super-continuum light source (without a
+monochromator) focused by a Nikon L Plan 100x (N.A. 0.7) objective and directed into a spectrometer.
+Sample was loaded in a cryostat and cooled with continuous flow of liquid helium (LHe). The differential
+reflectance is defined by (Rs-Rsub)/(Rs+Rsub), where Rs is the reflected light intensity from the TMD sample
+areas and Rsub from the hBN/Si substrate.
+We performed the µ-PL/PLE experiments by using a super-continuum light source coupled with a
+monochromator as an excitation source. The incident light was focused using a Mitutoyo M Plan 50x (N.A.
+0.75) objective. The excitation power was constant throughout the measurements and the average power
+on the sample was kept ~50 µW (spot diameter ~1 µm) to avoid any high power induced nonlinear effects
+from the sample. For PLE experiment sample was loaded in a LHe cryostat to reach the minimum
+temperature of ~5 K during the experiments.
+Data availability:
+All the data necessary to conclude the results are presented in the manuscript and supplementary
+information.
+Acknowledgements:
+
+10
+
+The work has been supported by the National Science Centre, Poland (grant no. 2017/27/B/ST3/00205 and
+2018/31/B/ST3/02111). K.W. and T.T. acknowledge support from the JSPS KAKENHI (Grant Numbers
+19H05790, 20H00354 and 21H05233). Authors acknowledge the help received from the research staffs at
+the Center of New Technologies (CeNT) in University of Warsaw.
+Author contributions:
+A.K. and A.A.M. conceived the project. A.K., A.A.M. and M.R.M. designed the experiments. A.K. did the
+sample fabrication. T.K., A.K., I.A., M.R. and M.R.M. performed the experiments. A.K. and A.A.M.
+analyzed the data. A.A.M. performed the theoretical calculations. A.K., A.A.M., M.R.M. and A.B.
+interpreted the results. T.T. and K.W. provided the bulk hBN for exfoliation. A.K. wrote the manuscript
+with feedback taken from all the coauthors.
+Competing interests:
+Authors declare no competing financial interests.
+References:
+1. Mattheiss, L. F. Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. Phys. Rev. B
+8, 3719–3740 (1973).
+2. Splendiani, A. et al. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 10, 1271–1275
+(2010).
+3. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically Thin MoS2: A New Direct-Gap
+Semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
+4. Jin, W. et al. Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS2
+Using Angle-Resolved Photoemission Spectroscopy. Phys. Rev. Lett. 111, 106801 (2013).
+5. Yeh, P. C. et al. Layer-dependent electronic structure of an atomically heavy two-dimensional
+dichalcogenide. Phys. Rev. B 91, 041407 (2015).
+
+11
+
+6. Xiao, D., Liu, G. B., Feng, W., Xu, X. & Yao, W. Coupled Spin and Valley Physics in Monolayers of
+MoS2 and Other Group-VI Dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).
+7. Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nature Materials 12, 207–211 (2013).
+8. Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor.
+Nature Communications 4, 1474 (2013).
+9. Mouri, S., Miyauchi, Y. & Matsuda, K. Tunable Photoluminescence of Monolayer MoS2 via Chemical
+Doping. Nano Lett. 13, 5944–5948 (2013).
+10. Koperski, M. et al. Optical properties of atomically thin transition metal dichalcogenides: observations
+and puzzles. Nanophotonics 6, 1289–1308 (2017).
+11. Man, M. K. L. et al. Experimental measurement of the intrinsic excitonic wave function. Science
+Advances 7, eabg0192.
+12. Wurstbauer, U., Miller, B., Parzinger, E. & Holleitner, A. W. Light–matter interaction in transition
+metal dichalcogenides and their heterostructures. Journal of Physics D: Applied Physics 50, 173001
+(2017).
+13. Eda, G. & Maier, S. A. Two-Dimensional Crystals: Managing Light for Optoelectronics. ACS Nano 7,
+5660–5665 (2013).
+14. Britnell, L. et al. Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films.
+Science 340, 1311–1314 (2013).
+15. Huo, N. et al. Novel Optical and Electrical Transport Properties in Atomically Thin WSe2/MoS2 p–n
+Heterostructures. Advanced Electronic Materials 1, 1400066 (2015).
+16. Huo, N. et al. Novel and Enhanced Optoelectronic Performances of Multilayer MoS2–WS2
+Heterostructure Transistors. Advanced Functional Materials 24, 7025–7031 (2014).
+17. Gao, L. Flexible Device Applications of 2D Semiconductors. Small 13, 1603994 (2017).
+18. Liang, J. et al. Controlled Growth of Two-Dimensional Heterostructures: In-Plane Epitaxy or Vertical
+Stack. Acc. Mater. Res. 3, 999–1010 (2022).
+
+12
+
+19. Lu, F., Karmakar, A., Shahi, S. & Einarsson, E. Selective and confined growth of transition metal
+dichalcogenides on transferred graphene. RSC Adv. 7, 37310–37314 (2017).
+20. Bradac, C., Xu, Z. Q. & Aharonovich, I. Quantum Energy and Charge Transfer at Two-Dimensional
+Interfaces. Nano Lett. 21, 1193–1204 (2021).
+21. Förster, T. Energy migration and fluorescence. Journal of Biomedical Optics 17, 011002 (2012).
+22. Lakowicz, J. R. Energy Transfer. in Principles of Fluorescence Spectroscopy 443–475 (Springer US,
+2006). doi:10.1007/978-0-387-46312-4_13.
+23. Britnell, L. et al. Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers. Nano Lett.
+12, 1707–1710 (2012).
+24. Federspiel, F. et al. Distance Dependence of the Energy Transfer Rate from a Single Semiconductor
+Nanostructure to Graphene. Nano Lett. 15, 1252–1258 (2015).
+25. Karmakar, A. et al. Dominating Interlayer Resonant Energy Transfer in Type-II 2D Heterostructure.
+ACS Nano 16, 3861–3869 (2022).
+26. Kozawa, D. et al. Photocarrier relaxation pathway in two-dimensional semiconducting transition metal
+dichalcogenides. Nature Communications 5, 4543 (2014).
+27. Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal
+dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014).
+28. Kozawa, D. et al. Evidence for Fast Interlayer Energy Transfer in MoSe2/WS2 Heterostructures. Nano
+Lett. 16, 4087–4093 (2016).
+29. Zhang, Q., Linardy, E., Wang, X. & Eda, G. Excitonic Energy Transfer in Heterostructures of Quasi-
+2D Perovskite and Monolayer WS2. ACS Nano 14, 11482–11489 (2020).
+30. Shafran, E., Mangum, B. D. & Gerton, J. M. Energy Transfer from an Individual Quantum Dot to a
+Carbon Nanotube. Nano Lett. 10, 4049–4054 (2010).
+31. Froehlicher, G., Lorchat, E. & Berciaud, S. Charge Versus Energy Transfer in Atomically Thin
+Graphene-Transition Metal Dichalcogenide van der Waals Heterostructures. Phys. Rev. X 8, 011007
+(2018).
+
+13
+
+32. Taghipour, N. et al. Near-Unity Efficiency Energy Transfer from Colloidal Semiconductor Quantum
+Wells of CdSe/CdS Nanoplatelets to a Monolayer of MoS2. ACS Nano 12, 8547–8554 (2018).
+33. Chen, Z., Berciaud, S., Nuckolls, C., Heinz, T. F. & Brus, L. E. Energy Transfer from Individual
+Semiconductor Nanocrystals to Graphene. ACS Nano 4, 2964–2968 (2010).
+34. Tanoh, A. O. A. et al. Directed Energy Transfer from Monolayer WS2 to Near-Infrared Emitting PbS–
+CdS Quantum Dots. ACS Nano 14, 15374–15384 (2020).
+35. Brenneis, A. et al. Ultrafast electronic readout of diamond nitrogen–vacancy centres coupled to
+graphene. Nature Nanotechnology 10, 135–139 (2015).
+36. Cano, D. et al. Fast electrical modulation of strong near-field interactions between erbium emitters and
+graphene. Nature Communications 11, 4094 (2020).
+37. Mennel, L. et al. Band Nesting in Two-Dimensional Crystals: An Exceptionally Sensitive Probe of
+Strain. Nano Lett. 20, 4242–4248 (2020).
+38. Carvalho, A., Ribeiro, R. M. & Castro Neto, A. H. Band nesting and the optical response of two-
+dimensional semiconducting transition metal dichalcogenides. Phys. Rev. B 88, 115205 (2013).
+39. Liu, H. & Lu, J. Exciton dynamics in tungsten dichalcogenide monolayers. Phys. Chem. Chem. Phys.
+19, 17877–17882 (2017).
+40. Jiang, H. Electronic Band Structures of Molybdenum and Tungsten Dichalcogenides by the GW
+Approach. J. Phys. Chem. C 116, 7664–7671 (2012).
+41. Li, C. et al. Resonant energy transfer between hexagonal boron nitride quantum emitters and atomically
+layered transition metal dichalcogenides. 2D Materials 7, 045015 (2020).
+42. Kośmider, K., González, J. W. & Fernández-Rossier, J. Large spin splitting in the conduction band of
+transition metal dichalcogenide monolayers. Phys. Rev. B 88, 245436 (2013).
+43. Molas, M. R. et al. Probing and Manipulating Valley Coherence of Dark Excitons in Monolayer WSe2.
+Phys. Rev. Lett. 123, 096803 (2019).
+44. Robert, C. et al. Measurement of the spin-forbidden dark excitons in MoS2 and MoSe2 monolayers.
+Nature Communications 11, 4037 (2020).
+
+14
+
+45. Eginligil, M. et al. Dichroic spin–valley photocurrent in monolayer molybdenum disulphide. Nature
+Communications 6, 7636 (2015).
+46. Kadantsev, E. S. & Hawrylak, P. Electronic structure of a single MoS2 monolayer. Solid State
+Communications 152, 909–913 (2012).
+47. Zhang, Y. et al. Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin
+Films. Nano Lett. 16, 2485–2491 (2016).
+48. Madéo, J. et al. Directly visualizing the momentum-forbidden dark excitons and their dynamics in
+atomically thin semiconductors. Science 370, 1199–1204 (2020).
+49. Liu, F., Li, Q. & Zhu, X. Y. Direct determination of momentum-resolved electron transfer in the
+photoexcited van der Waals heterobilayer WS2/MoS2. Phys. Rev. B 101, 201405 (2020).
+50. Shi, H. et al. Exciton Dynamics in Suspended Monolayer and Few-Layer MoS2 2D Crystals. ACS
+Nano 7, 1072–1080 (2013).
+51. Sim, S. et al. Exciton dynamics in atomically thin MoS2: Interexcitonic interaction and broadening
+kinetics. Phys. Rev. B 88, 075434 (2013).
+52. Liao, B. et al. Significant Reduction of Lattice Thermal Conductivity by the Electron-Phonon
+Interaction in Silicon with High Carrier Concentrations: A First-Principles Study. Phys. Rev. Lett. 114,
+115901 (2015).
+53. He, G. C., Shi, L. N., Hua, Y. L. & Zhu, X. L. The phonon scattering mechanism and its effect on the
+temperature dependent thermal and thermoelectric properties of a silver nanowire. Phys. Chem. Chem.
+Phys. 24, 3059–3065 (2022).
+54. Selig, M. et al. Excitonic linewidth and coherence lifetime in monolayer transition metal
+dichalcogenides. Nature Communications 7, 13279 (2016).
+55. Song, Y. & Dery, H. Transport Theory of Monolayer Transition-Metal Dichalcogenides through
+Symmetry. Phys. Rev. Lett. 111, 026601 (2013).
+56. Glazov, M. M. et al. Exciton fine structure and spin decoherence in monolayers of transition metal
+dichalcogenides. Phys. Rev. B 89, 201302 (2014).
+
+15
+
+
+
+Figure 1: Optical characterization of the MoS2-hBN-WSe2 heterostructure (HS). (a) Optical micrograph
+of the HS. Inset is the schematic illustration of the sample cross-section. (b) Differential reflectance contrast
+(RC) spectra from the three areas on the sample taken at 8 K. Shaded areas indicate the higher energy
+excitonic resonances between MoS2 and WSe2. HS shows the characteristics lower energy absorptions from
+both the WSe2 (AW) and MoS2 (AM) layer. (c) Single particle band structure of MoS2 and WSe2 along the Γ-
+K direction indicating the different optical transitions. Optical bandgaps were matched with the PL
+energies. (d)-(f) Photoluminescence excitation (PLE) maps of the three areas taken at 8 K showing the
+change of emission intensity as a function of excitation energy.
+
+
+(a)
+8 K, WSe2
+52
+3.0
+HS
+MoS,
+Intensity (a.u.) × 102
+39
+2.8
+2.6
+MoS2
+26
+wu
+Interlayer
+WSe2
+hBN
+hBN
+2.4
+9
+13
+hBN
+SiO2/Si
+10 μm
+2.2
+0
+1.6
+1.7
+1.8
+1.9
+2.0
+(b)
+0.3
+A↓
+EmissionEnergy(eV)
+0
+D
+B
+8 K, MoS2
+-0.3
+15
+3.0
+-0.6
+WSe2
+8 K
+Intensity (a.u.) × 102
+12
+2.8
+0.3
+A
+9
+0
+C
+2.6
+B
+6
+-0.3
+2.4
+-0.6
+3
+MoS2
+2.2
+0.3
+1.6
+1.7
+1.8
+1.9
+2.0
+0
+Emission Energy (eV)
+-0.3
+(f)
+8 K, HS
+-0.6
+(eV)
+120
+HS
+3.01.0
+2.0
+2.0
+3.0
+Excitation Energy
+Intensity (a.u.) × 10
+90
+2.8
+Energy (eV)
+(c)
+2.6
+60
+K
+K
+2.4
+30
+K
+C
+B
+D
+B
+2.2
+K+
+K
+0
+1.6
+1.7
+1.8
+1.9
+2.0
+V
+K『
+V
+K
+Emission Energy (eV)
+MoS2
+WSe216
+
+
+
+Figure 2: MoS2 PLE intensity comparison between the HS and monolayer area. (a)-(b) PLE maps of the
+HS and MoS2 area with the same intensity range taken at 8 K. WSe2 emission intensity in the HS map is
+kept saturated to visualize the MoS2 emission. (c)-(d) (MoS2 in) HS and MoS2 PL emission intensities at
+2.85 eV and 2.12 eV excitation energies, respectively (along the horizontal dotted lines in Figures 2(a)-
+(b)). Under both the excited energies, MoS2 emissions in the HS are significantly enhanced as compared to
+the 1L area. (e) Comparison of HS and MoS2 excitation profile at 1.92 eV emission energy (along the
+vertical solid lines in Figures 2(a)-(b)). Overall MoS2 shows enhanced PLE intensity in the HS area.
+
+
+
+
+
+
+
+
+(a)
+(q)
+8 K, HS
+8 K, MoS2
+Excitation Energy (eV)
+15
+Excitation Energy (eV)
+15
+3.0
+3.0
+Intensity (a.u.) × 102
+12
+Intensity (a.u.) × 102
+12
+2.8
+2.8
+9
+9
+2.6
+2.6
+6
+9
+2.4
+2.4
+3
+3
+2.2
+2.2
+0
+1.6
+1.7
+1.8
+1.9
+2.0
+1.6
+1.7
+1.8
+1.9
+2.0
+Emission Energy (eV)
+Emission Energy (eV)
+(c)
+(d)
+(e)
+Excitation at 2.85 eV
+Excitation at 2.12 eV
+Emission at 1.92 eV
+Intensity (a.u.) × 102
+Intensity (a.u.) × 102
+Intensity (a.u.) x 102
+15
+8
+15
+S
+HS
+.. MoS2
+MoS2
+6
+MoS2
+10
+10
+4
+5
+5
+2
+0
+0
+0
+1.6
+1.7
+1.8
+1.9
+2.0
+1.6
+1.7
+1.8
+1.9
+2.0
+2.2 2.4 2.6 2.8 3.0
+Emission Energy (eV)
+Emission Energy (eV)
+Excitation Energy (eV)17
+
+
+Figure 3: MoS2 PL intensity maps at WSe2 B and D resonant excitations. (a)-(b) MoS2 photoluminescence
+(PL) intensity maps at 8 K under 2.12 eV and 2.85 eV excitation energy, respectively. MoS2 emission in the
+HS area shows an overall increased PL emission. The scale bars represent 5 µm length.
+
+
+
+
+
+
+
+
+
+
+
+
+
+(a)
+(b)
+8 K, MoS2
+8 K, MoS2
+180
+180
+Intensity (a.u.)
+Intensity (a.u.)
+135
+120
+90
+HS
+60
+45
+5 μm
+Exc. 2.12 eV
+Exc. 2.85 eV
+0
+018
+
+
+Figure 4: MoS2 PLE intensity comparison with increasing temperature. (a)-(b) HS and MoS2 PLE maps
+at 25 K. (c) HS and MoS2 PLE comparison along the vertical lines in (a)-(b). HS shows a slightly reduced
+MoS2 PLE enhancement as compared to the 8 K map. (d)-(e) HS and MoS2 PLE maps taken at 100 K. (f)
+Similar HS and MoS2 PLE comparison at 100 K. MoS2 in the HS area does not show any intensity
+enhancement at 100 K as compared to the 1L area. In all the HS maps, WSe2 emission intensities are kept
+saturated to visualize the MoS2 emission.
+
+
+
+
+
+
+
+
+
+
+
+
+
+(a)
+(b)
+(c)
+HS Emission at 1.89 eV
+25 K, HS
+25 K, MoS2
+140
+ (eV)
+MoS, Emission at 1.89 eV
+140
+3.0
+3.0
+(n'e)
+120
+Energy
+25 K
+Intensity (a.u.)
+105
+2.8
+2.8
+Intensity (a.u.)
+105
+90
+Intensity
+2.6
+70
+2.6
+70
+60
+Excitation
+2.4
+2.4
+30
+35
+35
+2.2
+2.2
+0
+1.61.71.81.92.0
+1.61.71.81.92.0
+2.2 2.4 2.6 2.8 3.0
+Emission Energy (eV)
+EmissionEnergy (eV)
+Excitation Energy (eV)
+(d)
+(e)
+(f)
+HS Emission at 1.88 eV
+100 K, MoS2
+100 K, HS
+(eV)
+60
+60
+MoS, Emission at 1.88 ev
+3.0
+3.0
+(a.u.)
+60
+Excitation Energy
+100 K
+Intensity (a.u.)
+45
+2.8
+Intensity (a.u.)
+45
+Intensity
+40
+30
+30
+20
+2.4
+15
+15
+2
+2
+PL
+0
+1.61.71.81.9 2.0
+1.61.71.81.92.0
+2.2 2.4 2.6 2.8 3.0
+Emission Energy (eV)
+Emission Energy (eV)
+ExcitationEnergv(eV19
+
+
+Figure 5: Calculated spin-resolved energy landscape of MoS2 and WSe2. (a) Schematic illustration of the
+valence (VB) and conduction band (CB) splitting at the K valley in MoS2 and WSe2, respectively. (b)-(c)
+Calculated MoS2 optical transitions along the K--Γ-K+ direction from VB2 to CB1 and VB1 to CB2 (as
+shown in (a)), respectively. (d)-(e) Similar calculated WSe2 momentum-space energy landscape along the
+K--Γ-K+ direction from VB2 to CB2 and VB1 to CB1 (as shown in (a)), respectively. (f)-(g) Schematic
+illustration of the photocarrier relaxation pathways from the higher energy levels to the ground state (GS)
+in MoS2 due to the energy transfer (ET) from WSe2 after resonant excitation at (WSe2) B and D excitonic
+level, respectively. Different types of transition are shown in the MoS2 layer; such as intravalley scattering
+(kiv), intervalley transition (kv), and radiative recombination (kr).
+
+
+
+
+
+
+
+
+
+
+
+
+(a)
+MoS2
+WSe2
+CB2
+CB2
+(f)
+CB1
+CB1
+DCB
+BTT
+A
+B
+VB2
+A
+VB2
+ET
+A
+Ex.
+VB1
+VB1
+E
+K
+K
+GS
+GS
+(b)
+(c)
+MoS2: CB1-VB2
+MoS2: CB2-VB1
+MoS2
+WSe2
+3.4
+3.4
+3.1
+3.1
+2.8
+2.8
+(g)
+2.5
+2.5
+C
+DCB
+K
+K+
+2.2
+K
+K+
+2.2
+ET
+Vkiv
+1.9
+1.9
+B
+(d)
+A
+WSe2: CB2-VB2
+WSe2: CB1-VB1
+ET
+E
+A
+3.7
+3.7
+WM
+(eV)
+3.3
+3.3
+GS
+GS
+2.9
+2.9
+MoS2
+WSe2
+2.5
+2.5
+K-
+K+
+2.1
+K
+K+
+2.1
+1.7
+1.720
+
+SUPPORTING INFORMATION
+Excitation-Dependent High-Lying Excitonic Exchange via Interlayer Energy
+Transfer from Lower-to-Higher Bandgap 2D Material
+Arka Karmakar1*, Tomasz Kazimierczuk1, Igor Antoniazzi1, Mateusz Raczyński1, Takashi
+Taniguchi2, Kenji Watanabe3, Adam Babiński1, Abdullah Al-Mahboob4⸸, Maciej R. Molas1#
+1 Division of Solid State Physics, Institute of Experimental Physics, Faculty of Physics, University of
+Warsaw, Pasteura 5, 02-093 Warsaw, Poland
+2 International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1
+Namiki, Tsukuba, Ibaraki 305-0044, Japan
+3 Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba,
+Ibaraki 305-0044, Japan
+4 Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
+* arka.karmakar@fuw.edu.pl
+⸸ aalmahboo@bnl.gov
+# maciej.molas@fuw.edu.pl
+
+
+
+
+
+
+
+
+21
+
+Details of the theoretical calculations:
+We computed the ground state band structure of 1Ls MoS2 and WSe2 employing the density functional
+theory (DFT) calculations using the Materials Studio CASTEP (CAmbridge Serial Total Energy Package)
+version 2021 HF1, ab initio Total Energy Program (first principles methods using CASTEP)1. Prior to the
+band structure calculation, we performed the geometry optimization (GO) for the bulk crystal structure
+using DFT-D (GGA + dispersion correction) method ˗ Perdew-Bruke-Ernzerhof (PBE) GGA functional2
+along with the dispersion correction (van der Waals correction accounted employing the dispersion
+correction for DFT) by Tkatchenko-Scheffler (TS) method3, which was performed using the DFT Semi-
+Empirical Dispersion Interaction Correction (DFT-SEDC) module4. We obtained the electron relativistic
+correction using the DSPP (DFT-Semicore Pseudopotential)5. During the GO of the bulk structure,
+symmetry constrained was imposed considering the International Table #194 (hexagonal, symmetry group
+P63/MMC, crystal class 6/m m m) for the bulk MoS2 and WSe2. Following the bulk geometry optimization,
+crystal was cleaved parallel to the layer (c* terminated) and then a vacuum slab > 20 Å was added along
+the c* to make the 1L TMD structures. Final GO for the atomic arrangement within the 1L and the in-plane
+lattice parameters were further optimized constraining the 2D lattice symmetry employing the identical
+GGA functional and dispersion correction as above but also including the spin-orbit coupling in the total
+energy calculations. In order to include the spin-orbit coupling, norm-conserving potentials in CASTEP
+were generated using the kinetic energy optimization scheme developed by Lin et al.6. The spin orbit
+coupling was included using the j-dependent pseudopotentials developed for CASTEP based on the work
+by ref.7. Following the final step of GO, band structure calculation was performed considering the ultra-
+fine k-spacing (k-spacing in single point energy calculation corresponding to 50x50x1 supercell or better
+and spectral k-spacing of 0.0005Å-1).
+After computation of the electronic band structure in CASTEP, scissors have applied to the band structure
+plot to match with the bandgap obtained from the PL spectroscopy measurements.
+
+
+22
+
+References:
+1. Clark, S. J. et al. First principles methods using CASTEP. Zeitschrift für Kristallographie -
+Crystalline Materials 220, 567–570 (2005).
+2. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys.
+Rev. Lett. 77, 3865–3868 (1996).
+3. Tkatchenko, A. & Scheffler, M. Accurate Molecular Van Der Waals Interactions from Ground-State
+Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 102, 073005 (2009).
+4. McNellis, E. R., Meyer, J. & Reuter, K. Azobenzene at coinage metal surfaces: Role of dispersive
+van der Waals interactions. Phys. Rev. B 80, 205414 (2009).
+5. Delley, B. Hardness conserving semilocal pseudopotentials. Phys. Rev. B 66, 155125 (2002).
+6. Lin, J. S., Qteish, A., Payne, M. C. & Heine, V. Optimized and transferable nonlocal separable ab
+initio pseudopotentials. Phys. Rev. B 47, 4174–4180 (1993).
+7. Corso, A. D. & Conte, A. M. Spin-orbit coupling with ultrasoft pseudopotentials: Application to Au
+and Pt. Phys. Rev. B 71, 115106 (2005).
+
+
+
+
+23
+
+
+
+
+Figure S1: (a) Optical micrograph of the HS. Black line indicates the line region of the AFM image. (b)
+AFM height profile of the interlayer hBN shows the thickness of ~9 nm.
+
+
+
+
+
+
+Figure S2: (a)-(b) PLE maps of the HS and MoS2 at 200 K, respectively. MoS2 PL emission does not
+increase in the HS area. WSe2 emission in the HS data is saturated to visualize the MoS2 emission. Both the
+plots have the same intensity range.
+
+
+
+
+(a)
+(b)
+Height Profile (nm)
+12
+HS
+MoS
+9
+1LWSe2
+6
+3
+Interlayer
+0
+hBN
+0
+2
+3
+4
+5
+6
+7
+Distance (um)(a)
+(b)
+200 K, HS
+200 K, MoS2
+40
+40
+Energy (eV)
+3.0
+3.0
+30
+30
+2.8
+Intensity (a.u.)
+2.8
+Intensity (a.u.)
+2.6
+20
+2.6
+20
+Excitation
+2.4
+2.4
+10
+10
+2.2
+2.2
+0
+1.6
+1.7
+1.8
+1.9
+2.0
+1.6
+1.7
+1.8
+1.9
+2.0
+Emission Energy (eV)
+Emission Energy (eV)24
+
+
+Figure S3: (a) Top and bottom panel shows PL emission of the MoS2 in the HS area under excitation at
+2.83 eV and 2.2 eV, respectively. (b) PL emission profile from the 1L MoS2 area under same excitation
+conditions. MoS2 PL emission in the HS area shows similar enhancement factor of ~ 1.6 at both excitation
+energies.
+
+
+
+
+
+Figure S4: Calculated spin-resolved momentum-space optical absorption energy landscape of 1L (a) MoS2
+and (b) WSe2 along the Γ-K direction in the Brillouin zone.
+
+
+
+(a)
+(q)
+25 K, HS
+25 K, MoS2
+Exc. 2.83 eV
+Exc. 2.83 eV
+120
+120
+80
+80.
+ensity (a.u.)
+(a.u.)
+40
+40
+ensity
+0
+0
+V120
+Inte
+120
+80
+80
+40
+40
+0
+0
+1.6
+1.7
+1.8
+1.9
+2.0
+1.6
+1.7
+1.8
+1.9
+2.0
+Emission Energy (eV)
+Emission Energy (eV)(a)
+(b)
+MoS,: CB1-VB2
+WSe2: CB2-VB2
+: MoS2: CB2-VB1
+WSe2: CB1-VB1
+3.6
+3.3
+(eV)
+3.2
+3.0
+2.8
+2.7
+2.4
+2.4
+CB
+CB
+2.1
+2.0
+E
+E
+1.8
+1.6
+K
+K25
+
+
+
+
+Figure S5: PL Intensity maps at the resonant WSe2 C excitation (~ 2.56 eV). (a) MoS2 does not show any
+PL emission at this excitation energy. Only system noise was detected in this condition. (b) WSe2 PL
+emission map does not show any intensity variation in the HS area as compared to the 1L region. Scale
+bars represent 5 µm length.
+
+
+
+(a)
+(b)
+36
+240
+MoS2
+WSe2
+26
+180
+Intensity (a.u.)
+Intensity (a.u.)
+16
+120
+6
+60
+8 K
+-4
+8 K
+Exc. 2.56 eV
+Exc. 2.56 eV
+-14
+0
\ No newline at end of file
diff --git a/gtE5T4oBgHgl3EQfhw_s/content/tmp_files/load_file.txt b/gtE5T4oBgHgl3EQfhw_s/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..6ab54b7aecd64f46cb79d5de7c51efc3cfd98732
--- /dev/null
+++ b/gtE5T4oBgHgl3EQfhw_s/content/tmp_files/load_file.txt
@@ -0,0 +1,1055 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf,len=1054
+page_content='1 Excitation-Dependent High-Lying Excitonic Exchange via Interlayer Energy Transfer from Lower-to-Higher Bandgap 2D Material Arka Karmakar1*, Tomasz Kazimierczuk1, Igor Antoniazzi1, Mateusz Raczyński1, Takashi Taniguchi2, Kenji Watanabe3, Adam Babiński1, Abdullah Al-Mahboob4⸸, Maciej R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Molas1# 1 Division of Solid State Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Institute of Experimental Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Faculty of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' University of Warsaw,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Pasteura 5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 02-093 Warsaw,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Poland 2 International Center for Materials Nanoarchitectonics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' National Institute for Materials Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 1-1 Namiki,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Tsukuba,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Ibaraki 305-0044,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Japan 3 Research Center for Functional Materials,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' National Institute for Materials Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 1-1 Namiki,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Tsukuba,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Ibaraki 305-0044,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Japan 4 Center for Functional Nanomaterials,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Brookhaven National Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Upton,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' NY 11973,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' USA * arka.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='karmakar@fuw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='pl;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' ⸸ aalmahboo@bnl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='gov;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' # maciej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='molas@fuw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='pl Keywords: 2D material, MoS2, WSe2, heterostructure, excitons, energy transfer, band-nesting High light absorption (~15%) and strong photoluminescence (PL) emission in monolayer (1L) transition- metal dichalcogenide (TMD) makes it an ideal candidate for optoelectronic applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Competing interlayer charge (CT) and energy transfer (ET) processes control the photocarrier relaxation pathways in TMD heterostructures (HSs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' In TMDs, long-distance ET can survive up to several tens of nm, unlike the CT process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Our experiment shows that an efficient ET occurs from the 1L WSe2 to 1L MoS2 with ~9 nm interlayer hBN, due to the resonant overlapping of the high-lying excitonic states between the two TMDs, resulting in enhanced HS MoS2 PL emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' This type of ET from the lower-to-higher optical bandgap material has never been observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' With increasing temperature, the ET process becomes weaker due to the 2 increased electron-phonon scattering, destroying the enhanced MoS2 emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Our work provides a new insight into the long-distance ET process and its effect on the photocarrier relaxation pathways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Introduction: Group-VI semiconducting transition metal dichalcogenides (TMDs) are formed by stacking of strongly bonded two-dimensional (2D) X-M-X layers (M = transition metals such as Mo, W etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' and X = chalcogens such as S, Se, and Te etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' ), which are separated by the weakly bond interlayer van der Waals forces1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' The first mechanical exfoliation of the monolayer (1L) molybdenum disulfide (MoS2) film from the bulk crystal in 2010 led us to observe a strong photoluminescence (PL) emission2,3 due to the indirect-to-direct bandgap transition from the bulk-to-1L regime4,5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Since then, researchers have been exploring the exciting excitonic properties6–11 in these 1L TMD materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Strong light-matter interactions and high light absorption of up to ~15% in the solar spectrum12 helped researchers to realize the future prospects of 1L TMD-based optoelectronic device applications13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Heterostructures (HSs) made by the vertical stacking of different layered materials have shown positive promise for future ultrathin14–16 and flexible17 optoelectronic device applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Recent advances in direct and patterned growth of 2D HSs18,19 to obtain a clean large-area interface have also pushed the effort to make commercially available TMD-based device applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' However, one of the major challenges in commercializing the promised optoelectronic device applications is the lack of comprehensive understanding in the competing interlayer processes and their role in the photocarrier recombination mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' The interlayer charge (CT) and energy transfers (ET) are the two main carrier relaxation pathways in the semiconductor HSs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=" Interlayer CT occurs due to the energy band offset in the HS20 and the 'traditional' ET process happens when nonradiative energy from the excited donor material gets transferred to the acceptor material via dipole-dipole interactions accompanied by a fluorescence emission from the acceptor material21,22." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' ET is observed as a reduction of the donor fluorescence intensity and carrier lifetime followed by an enhancement of the acceptor fluorescence intensity22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' The interlayer CT can be stopped by placing a thin layer of dielectric material in between the two semiconductors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Britnell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='23 showed that only four 3 atomic-layer thick hexagonal boron nitride (hBN) is sufficient as a dielectric medium to block the electron tunneling between the two graphene layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Unlike the CT process, in TMD HSs the long-distance interlayer ET process can survive up to several tens of nm24,25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Thus, developing a comprehensive understanding of the long-distance interlayer ET process is absolute necessity to create practical device applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' In this work, we study the result of the excitation energy matching with the 1L tungsten diselenide (WSe2) high-lying excitonic levels and its effect on the interlayer ET process to alter the photocarrier relaxation pathways in 1L MoS2 with a ~9 nm thick hBN interlayer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Both these TMD materials have overlapping higher energy B and C (MoS2)/D (WSe2) absorption features26,27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' We show that resonant excitations at the WSe2 B and D absorption regions results in MoS2 PL enhancement in the HS area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' We report that this PL enhancement is due to the interlayer ET process from the WSe2-to-MoS2 layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' This type of long-range ET process from the lower-to-higher optical bandgap material was never observed before, since ET typically happens from the higher-to-lower bandgap materials28–36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' In this work, we employ multiple optical spectroscopic techniques at cryogenic temperature (8 K);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' such as µ-PL, µ-photoluminescence excitation (PLE) and differential reflectance contrast (RC), complemented by the density functional theory (DFT) calculation of spin-resolved band structures to study the ET process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Our work reveals a unique interlayer ET process in the TMD HSs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' This will significantly contribute to creating a comprehensive understanding of the long-range interlayer ET process and its role to influence the photocarrier radiative recombination processes in these semiconducting HSs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Results and discussion: Figure 1a shows the optical micrograph of the fabricated MoS2-hBN-WSe2 HS (see methods for the fabrication details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' The inset of Figure 1a shows the schematic illustration of the side view of the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' We introduce ~9 nm thick interlayer hBN (see Supplementary Figure S1) to eliminate any effect related to the interlayer CT in our system23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' The optical absorption of the TMD materials reflects their single-electron energy band structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' The low temperature RC spectra (see methods for the details) measured at 8 K show strong overlaps between the B peaks of both materials and the WSe2 D peak with the MoS2 C peak (shaded 4 areas in Figure 1b), which agrees well with the previously published reports26,27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' In the later sections, we discuss how these strong overlaps help us to observe the reported ET from the lower-to-higher bandgap (WSe2-to-MoS2) material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' HS spectrum (Figure 1b) shows similar RC resonance positions as compared to the individual 1Ls, indicating no major strain-induced effect37 in the HS area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=" A and B excitonic peaks occur due to the excitonic transitions at the K+/K- valley in the k-space2,3 and higher energy excitonic transitions, such as C and D, are the results of the 'band nesting'38,39 in the Brillouin zone." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=" 'Band-nested' regions occur due to the identical dispersion in valence (VB) and conduction band (CB) over a region in the Brillouin zone." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' For 1L MoS2, both the VB maximum and the CB minimum are located at the K+/K- point in the Brillouin zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' In the case of WSe2, while the VB maximum is located at the K+/K- point, the CB minimum is situated at the Λ point2,40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=" The 'band-nesting' region happens in between the Γ and Λ point38,39." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Figure 1c shows the DFT calculated electronic band structures (see Supplementary Information for the details) along the Γ-K+ direction in the Brillouin zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' For both the band structures, we match the optical bandgaps with the corresponding PL energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' All types of optical transitions are shown with different colors of arrow (Figure 1c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' PLE maps (see methods for the experimental details) taken at 8 K show the emission landscapes of the three individual areas (Figures 1d-1f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' After saturating the WSe2 emission in the HS to visualize the MoS2 emission, we observe the significantly enhanced MoS2 PL emission in the HS area as compared to the 1L region (Figures 2a-2b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' The horizontal cuts at the excitation energies of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='85 eV and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='12 eV (black dotted lines in Figures 2a-2b) reveal that the MoS2 PL emission in the HS is enhanced by a factor of ~1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='9 and ~1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='7, respectively as compared to the 1L area (Figures 2c-2d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' The PL enhancement factor is defined here as the ratio of PL intensity in the HS area to the 1L area under the same excitation (and accumulation) conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Similarly, PLE (vertical cut along the 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='92 eV emission energy in Figures 2a-2b) shows an overall increase of the HS MoS2 PL emission throughout the entire excitation range as compared to the 1L MoS2 region (Figure 2e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' We conclude that the MoS2 PL enhancement in the HS area is a result of an interlayer ET process from the WSe2 layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' It is important to mention that the total optical absorption in the HS area did not change much as compared to the each 1L areas (Figure 1b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' However, the enhancement in the HS PLE (Figure 2e) suggests that the internal PL 5 efficiency of the HS system was increased due to the ET process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' We rule out the possibility of the observed PL enhancement in the MoS2 emission due to the interference of the backscattering light, because the entire measured MoS2 area (including the HS) is placed onto the same hBN thickness (inset of Figure 1a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 1L WSe2 (thickness <1 nm) in the HS area cannot modulate the interference pattern considering the ~9 nm interlayer and thick substrate hBNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' We also rule out the possible contribution of ET from the hBN defect states41 in the HS MoS2 PL enhancement process, as the ET from same hBN thickness cannot result in more HS PL emission as compared to the 1L MoS2 region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=" Strong overlaps between the higher energy absorptions in both the investigated materials (Figure 1b) help us to study the effect of the interlayer ET process under those 'resonant' excitation conditions." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' PL intensity map taken at 8 K under the excitation of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='12 eV (B resonances overlap region) shows an overall enhanced MoS2 emission in the HS area (Figure 3a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Similarly, an excitation at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='85 eV energy (WSe2 D and MoS2 C peaks overlap region) shows an increased MoS2 PL emission throughout the HS area (Figure 3b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Thus, proving that at both the excitation energies an efficient ET happened from the WSe2-to-MoS2 layer as discussed in the later section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' The PL intensity maps (Figures 3a-3b) also show that the observed enhancement of the MoS2 PL emission in the HS area is not a localized phenomenon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' We note that although there is some non-uniformity in the HS PL intensity due to the typical inhomogeneous nature of the exfoliated samples, but the HS PL emission is always higher than the 1L MoS2 area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' In order to study the effect of increasing temperature in our experiments, we performed PLE maps at 25 K, 100 K, and 200 K (Figure 4 and Figure S2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' At 25 K, MoS2 emissions in the HS area under both the excitation energies at ~2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='83 eV and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='2 eV show a similar enhancement factor of ~1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 (Figure S3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' These values are a slight reduction from the 8 K data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' The PLE also shows a similar overall enhancement in the MoS2 HS emission at 25 K (Figure 4c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Upon further increasing the temperature at 100 K and 200 K, we observe a complete vanishing of the MoS2 PL enhancement in the HS (Figures 4d-4f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' A slight quenching of the HS MoS2 PLE at 100 K (Figure 4f) could be due to the traditional type-II HS ET28 from the higher- to-lower bandgap material (MoS2-to-WSe2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 6 For MoS2 and WSe2, the schematics of the A and B transitions based on the VB and CB splitting are shown in Figure 5a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' In these TMD monolayers, VB (VB1 and VB2) and CB (CB1 and CB2) spin splitting occurs due to the spin-orbit coupling and lack of inversion symmetry10,42, allowing possible absorptions based on the optical selection rule43,44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' In these TMDs, PL emission, which comes from the direct radiative recombination at the optical bandgap, strongly depends on the spin-state of CB (CB1 or CB2) electron and VB (VB1 or VB2) hole at the K+/K- point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Based on the allowed electron recombination from the CB1 or CB2 to the hole situated at the top of VB (VB2), the materials are divided into two categories;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=" 'bright' or 'dark'10, respectively." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' The calculated momentum-space energy landscape for the allowed optical transitions from VB2-to-CB1 and VB1-to-CB2 in the MoS2 layer shows a smaller separation of ~150 meV at the K+/K- point due to the spin splitting (Figures 5b-5c, Figure S4a), which matches well with the previous results45,46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' WSe2 shows a comparatively larger separation of ~500 meV at the K+/K- point47,48 for the VB2-to-CB2 and VB1-to-CB1 transitions (Figures 5d-5e, Figure S4b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=" Optical excitation at the 'band-nested' region (MoS2 C and WSe2 D peak), excites electrons in the valley in between the Γ-Λ point in MoS2 CB and around the Λ valley in WSe2 CB." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' These excited photocarriers (electron and hole) instantly relax to their immediate band extreme points;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Λ valley for electron and Γ hill for hole26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' These carriers then further transfer to the band extrema via the extremely fast (<500 fs) intravalley scattering (kiv)49–51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' In our HS, to describe the PL intensity map under the 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='12 eV excitation (Figure 3a), the only possible mechanism is shown as a schematic illustration in Figure 5f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Upon excitation with the 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='12 eV photons, photoexcited carries are generated at the WSe2 B excitonic level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Due to the resonant overlap with the MoS2 B level (Figure 1b), WSe2 B excitonic energy immediately transfer to the MoS2 B and A band, resulting in more carriers in the MoS2 layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' The extra carriers at the MoS2 B level transfer to the subsequent band extremum via intervalley transition (kv), followed by a radiative recombination (kr) process to the ground state (GS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Thus, we obtain an enhanced MoS2 PL emissions in the HS area with an excitation of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='12 eV (Figure 3a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' However, at an excitation energy of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='85 eV (MoS2 C and WSe2 D peak overlap region, Figure 1b), two possible ET channels can play a crucial role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' First, ET 7 from the WSe2 D level can directly generate more carriers at the MoS2 C level due to the resonant overlapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' These extra carriers radiatively recombine at the band extremum via intravalley transition (kiv), and giving rise to more MoS2 PL emissions in the HS area, as shown in the schematic of Figure 5g (grey colored ET process).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Another possibility is that upon excitation with the 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='85 eV photon carriers generated at the WSe2 D level scatter to the WSe2 B level via the intravalley transition (kiv) and then transfer to the MoS2 B and A level via ET process giving rise to the MoS2 PL emission similar as the 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='12 eV excitation process (black colored ET process in Figure 5g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Interestingly, an excitation at the WSe2 C absorption peak (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='56 eV) does not result in any MoS2 PL emission (Figure S5), indicating that interlayer coupling between the suitable levels was not possible at this excitation due to the immediate photoexcited carrier transfer to the WSe2 A level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Hence, no enhancement in the MoS2 HS PL emission due to the ET process is also apparent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Our model to describe the enhanced MoS2 PL emission from the HS area also supports the temperature- dependent data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Photocarriers go through a series of phonon scattering before relaxing to the ground state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' At low temperature, electron-phonon scattering dominates52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' With the increasing temperature, other types of scattering processes such as anharmonic phonon–phonon scattering and phonon structure scattering53 start to dominate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=" Thus, with the increasing temperature, the intravalley transition becomes weaker due to the multiple-phonon scattering and eventually a minor fraction of the photocarriers generated at the 'band- nested' region can be transferred to the K+/K- point for radiative recombination." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=" Furthermore, the thermal activation should make the 'hot' carrier transfer to the band extremum extremely faster (<100 fs)54, preventing the coupling between the materials' corresponding energy levels." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' These eventually result in a complete disappearance of the MoS2 PL enhancement in the HS area at higher temperatures (100 K and 200 K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Considering the temperature-dependent data we can conclude that at higher excitation energy (~2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='85 eV) ET process via WSe2 B to MoS2 B and A level dominates (black colored ET process in Figure 5h) in our experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Otherwise, with increasing the temperature we should observe an enhanced MoS2 HS PL 8 emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' At cryogenic temperature, the fast intravalley scattering (kiv) in TMDs occur at ~100-500 fs timescale49–51,54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Whereas, intervalley transitions (kv) occur at a longer timescale of a few ps range55,56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Our study suggests that the reported ET happened at a faster timescale than the intervalley transition and slower than the intravalley transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Otherwise, the ET from the lower optical bandgap WSe2 cannot excite more carriers in the higher bandgap MoS2, resulting in an enhanced HS MoS2 PL emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=" Finding the 'true' ET timescale in our experiment will require an ultrafast study, which is beyond the scope of this work." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' It is also important to mention that with the increasing temperature the effect of band renormalization in the ET process to alter the radiative recombination pathway of the photocarriers cannot be ignored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' A thorough investigation of the band renormalization effect in the ET process is required in the future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=" In conclusion, our study shows that strong light matter interaction in the 1L MoS2 and WSe2 'band-nested' region allows us to observe an unusual ET process from the lower-to-higher bandgap (WSe2-to-MoS2) material." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' All the previous reports28–36 showed that ET always occurs from the higher-to-lower bandgap (all types of) low-dimensional materials (such as quantum dots, nanotubes, TMDs, perovskites, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') irrespective of the type of band alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' This is in a stark contrast to the observed ET process in our work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' The excitation-dependent PL intensity maps prove that the reported HS MoS2 PL enhancement is not a localized phenomenon due to the materials local property change, the entire HS area shows this enhanced PL emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Finally, the temperature-dependent study proves that with the increasing temperature due to the growing electron-phonon scattering, the carriers transfer to the band extremum become faster, preventing ET from the WSe2 (smaller gap) to the MoS2 (larger gap) layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Our findings provide a unique insight into the interlayer ET process in these layered materials and will help to build a comprehensive understanding about the competing interlayer processes for developing future TMD-based optoelectronic device applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Methods: HS fabrication 9 Bottom hBN layer was directly cleaved on the SiO2/Si substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' MoS2-hBN-WSe2 layers were exfoliated onto the Gel-Pak (PDMS) films and were stacked layer-by-layer (in reverse order) onto each other using a home-built semiautomatic transfer stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' MoS2, WSe2 and hBN bulk crystals for exfoliation were obtained from the Graphene Supermarket, HQ Graphene and National Institute for Materials Science, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=" Characterization We used Bruker Dimension Icon with NanoScope 6 controller in 'ScanAsyst' (peak force tapping) mode to obtain high resolution AFM image." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' The differential RC measurements were performed using a super-continuum light source (without a monochromator) focused by a Nikon L Plan 100x (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='7) objective and directed into a spectrometer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Sample was loaded in a cryostat and cooled with continuous flow of liquid helium (LHe).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' The differential reflectance is defined by (Rs-Rsub)/(Rs+Rsub), where Rs is the reflected light intensity from the TMD sample areas and Rsub from the hBN/Si substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' We performed the µ-PL/PLE experiments by using a super-continuum light source coupled with a monochromator as an excitation source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' The incident light was focused using a Mitutoyo M Plan 50x (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='75) objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' The excitation power was constant throughout the measurements and the average power on the sample was kept ~50 µW (spot diameter ~1 µm) to avoid any high power induced nonlinear effects from the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' For PLE experiment sample was loaded in a LHe cryostat to reach the minimum temperature of ~5 K during the experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Data availability: All the data necessary to conclude the results are presented in the manuscript and supplementary information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Acknowledgements: 10 The work has been supported by the National Science Centre, Poland (grant no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 2017/27/B/ST3/00205 and 2018/31/B/ST3/02111).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' acknowledge support from the JSPS KAKENHI (Grant Numbers 19H05790, 20H00354 and 21H05233).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Authors acknowledge the help received from the research staffs at the Center of New Technologies (CeNT) in University of Warsaw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Author contributions: A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' conceived the project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' designed the experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' did the sample fabrication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' performed the experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' analyzed the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' performed the theoretical calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' interpreted the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' provided the bulk hBN for exfoliation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' wrote the manuscript with feedback taken from all the coauthors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Competing interests: Authors declare no competing financial interests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' References: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Mattheiss, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Band Structures of Transition-Metal-Dichalcogenide Layer Compounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' B 8, 3719–3740 (1973).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Splendiani, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Emerging Photoluminescence in Monolayer MoS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 10, 1271–1275 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Mak, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Lee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Hone, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Shan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Heinz, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Atomically Thin MoS2: A New Direct-Gap Semiconductor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 105, 136805 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Jin, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS2 Using Angle-Resolved Photoemission Spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 111, 106801 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Yeh, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Layer-dependent electronic structure of an atomically heavy two-dimensional dichalcogenide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' B 91, 041407 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 11 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Xiao, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Liu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Feng, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Xu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Yao, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 108, 196802 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Mak, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Tightly bound trions in monolayer MoS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Nature Materials 12, 207–211 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Ross, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Electrical control of neutral and charged excitons in a monolayer semiconductor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Nature Communications 4, 1474 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Mouri, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Miyauchi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Matsuda, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 13, 5944–5948 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Koperski, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Optical properties of atomically thin transition metal dichalcogenides: observations and puzzles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Nanophotonics 6, 1289–1308 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Man, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Experimental measurement of the intrinsic excitonic wave function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Science Advances 7, eabg0192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Wurstbauer, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Miller, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Parzinger, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Holleitner, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Light–matter interaction in transition metal dichalcogenides and their heterostructures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Journal of Physics D: Applied Physics 50, 173001 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Eda, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Maier, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Two-Dimensional Crystals: Managing Light for Optoelectronics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' ACS Nano 7, 5660–5665 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Britnell, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Science 340, 1311–1314 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Huo, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Novel Optical and Electrical Transport Properties in Atomically Thin WSe2/MoS2 p–n Heterostructures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Advanced Electronic Materials 1, 1400066 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Huo, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Novel and Enhanced Optoelectronic Performances of Multilayer MoS2–WS2 Heterostructure Transistors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Advanced Functional Materials 24, 7025–7031 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Gao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Flexible Device Applications of 2D Semiconductors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Small 13, 1603994 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Liang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Controlled Growth of Two-Dimensional Heterostructures: In-Plane Epitaxy or Vertical Stack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 3, 999–1010 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 12 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Lu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Karmakar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Shahi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Einarsson, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Selective and confined growth of transition metal dichalcogenides on transferred graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' RSC Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 7, 37310–37314 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Bradac, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Xu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Aharonovich, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Quantum Energy and Charge Transfer at Two-Dimensional Interfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 21, 1193–1204 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Förster, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Energy migration and fluorescence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Journal of Biomedical Optics 17, 011002 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Lakowicz, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Energy Transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' in Principles of Fluorescence Spectroscopy 443–475 (Springer US, 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='1007/978-0-387-46312-4_13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Britnell, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 12, 1707–1710 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Federspiel, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Distance Dependence of the Energy Transfer Rate from a Single Semiconductor Nanostructure to Graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 15, 1252–1258 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Karmakar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Dominating Interlayer Resonant Energy Transfer in Type-II 2D Heterostructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' ACS Nano 16, 3861–3869 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Kozawa, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Nature Communications 5, 4543 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' B 90, 205422 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Kozawa, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Evidence for Fast Interlayer Energy Transfer in MoSe2/WS2 Heterostructures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 16, 4087–4093 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Zhang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Linardy, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Eda, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Excitonic Energy Transfer in Heterostructures of Quasi- 2D Perovskite and Monolayer WS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' ACS Nano 14, 11482–11489 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Shafran, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Mangum, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Gerton, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Energy Transfer from an Individual Quantum Dot to a Carbon Nanotube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 10, 4049–4054 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Froehlicher, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Lorchat, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Berciaud, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Charge Versus Energy Transfer in Atomically Thin Graphene-Transition Metal Dichalcogenide van der Waals Heterostructures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' X 8, 011007 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 13 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Taghipour, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Near-Unity Efficiency Energy Transfer from Colloidal Semiconductor Quantum Wells of CdSe/CdS Nanoplatelets to a Monolayer of MoS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' ACS Nano 12, 8547–8554 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Berciaud, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Nuckolls, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Heinz, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Brus, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Energy Transfer from Individual Semiconductor Nanocrystals to Graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' ACS Nano 4, 2964–2968 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Tanoh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Directed Energy Transfer from Monolayer WS2 to Near-Infrared Emitting PbS– CdS Quantum Dots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' ACS Nano 14, 15374–15384 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Brenneis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Ultrafast electronic readout of diamond nitrogen–vacancy centres coupled to graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Nature Nanotechnology 10, 135–139 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Cano, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Fast electrical modulation of strong near-field interactions between erbium emitters and graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Nature Communications 11, 4094 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Mennel, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Band Nesting in Two-Dimensional Crystals: An Exceptionally Sensitive Probe of Strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 20, 4242–4248 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Carvalho, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Ribeiro, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Castro Neto, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Band nesting and the optical response of two- dimensional semiconducting transition metal dichalcogenides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' B 88, 115205 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Liu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Lu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Exciton dynamics in tungsten dichalcogenide monolayers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 19, 17877–17882 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Jiang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Electronic Band Structures of Molybdenum and Tungsten Dichalcogenides by the GW Approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' C 116, 7664–7671 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Resonant energy transfer between hexagonal boron nitride quantum emitters and atomically layered transition metal dichalcogenides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 2D Materials 7, 045015 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Kośmider, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', González, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Fernández-Rossier, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Large spin splitting in the conduction band of transition metal dichalcogenide monolayers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' B 88, 245436 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Molas, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Probing and Manipulating Valley Coherence of Dark Excitons in Monolayer WSe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 123, 096803 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Robert, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Measurement of the spin-forbidden dark excitons in MoS2 and MoSe2 monolayers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Nature Communications 11, 4037 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 14 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Eginligil, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Dichroic spin–valley photocurrent in monolayer molybdenum disulphide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Nature Communications 6, 7636 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Kadantsev, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Hawrylak, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Electronic structure of a single MoS2 monolayer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Solid State Communications 152, 909–913 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin Films.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 16, 2485–2491 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Madéo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Science 370, 1199–1204 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Liu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Li, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Zhu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Direct determination of momentum-resolved electron transfer in the photoexcited van der Waals heterobilayer WS2/MoS2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' B 101, 201405 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Shi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Exciton Dynamics in Suspended Monolayer and Few-Layer MoS2 2D Crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' ACS Nano 7, 1072–1080 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Sim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Exciton dynamics in atomically thin MoS2: Interexcitonic interaction and broadening kinetics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' B 88, 075434 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Liao, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Significant Reduction of Lattice Thermal Conductivity by the Electron-Phonon Interaction in Silicon with High Carrier Concentrations: A First-Principles Study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 114, 115901 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' He, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Shi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Hua, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Zhu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' The phonon scattering mechanism and its effect on the temperature dependent thermal and thermoelectric properties of a silver nanowire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 24, 3059–3065 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Selig, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Nature Communications 7, 13279 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Song, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Dery, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Transport Theory of Monolayer Transition-Metal Dichalcogenides through Symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 111, 026601 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Glazov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' B 89, 201302 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 15 Figure 1: Optical characterization of the MoS2-hBN-WSe2 heterostructure (HS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (a) Optical micrograph of the HS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Inset is the schematic illustration of the sample cross-section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (b) Differential reflectance contrast (RC) spectra from the three areas on the sample taken at 8 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Shaded areas indicate the higher energy excitonic resonances between MoS2 and WSe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' HS shows the characteristics lower energy absorptions from both the WSe2 (AW) and MoS2 (AM) layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (c) Single particle band structure of MoS2 and WSe2 along the Γ- K direction indicating the different optical transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Optical bandgaps were matched with the PL energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (d)-(f) Photoluminescence excitation (PLE) maps of the three areas taken at 8 K showing the change of emission intensity as a function of excitation energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (a) 8 K, WSe2 52 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 HS MoS, Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') × 102 39 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 MoS2 26 wu Interlayer WSe2 hBN hBN 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='4 9 13 hBN SiO2/Si 10 μm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='2 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 (b) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='3 A↓ EmissionEnergy(eV) 0 D B 8 K, MoS2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='3 15 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 WSe2 8 K Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') × 102 12 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='3 A 9 0 C 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 B 6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 3 MoS2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 0 Emission Energy (eV) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='3 (f) 8 K, HS 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 (eV) 120 HS 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 Excitation Energy Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') × 10 90 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 Energy (eV) (c) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 60 K K 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='4 30 K C B D B 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='2 K+ K 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 V K『 V K Emission Energy (eV) MoS2 WSe216 Figure 2: MoS2 PLE intensity comparison between the HS and monolayer area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (a)-(b) PLE maps of the HS and MoS2 area with the same intensity range taken at 8 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' WSe2 emission intensity in the HS map is kept saturated to visualize the MoS2 emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (c)-(d) (MoS2 in) HS and MoS2 PL emission intensities at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='85 eV and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='12 eV excitation energies, respectively (along the horizontal dotted lines in Figures 2(a)- (b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Under both the excited energies, MoS2 emissions in the HS are significantly enhanced as compared to the 1L area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (e) Comparison of HS and MoS2 excitation profile at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='92 eV emission energy (along the vertical solid lines in Figures 2(a)-(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Overall MoS2 shows enhanced PLE intensity in the HS area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (a) (q) 8 K, HS 8 K, MoS2 Excitation Energy (eV) 15 Excitation Energy (eV) 15 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') × 102 12 Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') × 102 12 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 9 9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 6 9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='4 3 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='2 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 Emission Energy (eV) Emission Energy (eV) (c) (d) (e) Excitation at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='85 eV Excitation at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='12 eV Emission at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='92 eV Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') × 102 Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') × 102 Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') x 102 15 8 15 S HS .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='. MoS2 MoS2 6 MoS2 10 10 4 5 5 2 0 0 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 Emission Energy (eV) Emission Energy (eV) Excitation Energy (eV)17 Figure 3: MoS2 PL intensity maps at WSe2 B and D resonant excitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (a)-(b) MoS2 photoluminescence (PL) intensity maps at 8 K under 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='12 eV and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='85 eV excitation energy, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' MoS2 emission in the HS area shows an overall increased PL emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' The scale bars represent 5 µm length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (a) (b) 8 K, MoS2 8 K, MoS2 180 180 Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') 135 120 90 HS 60 45 5 μm Exc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='12 eV Exc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='85 eV 0 018 Figure 4: MoS2 PLE intensity comparison with increasing temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (a)-(b) HS and MoS2 PLE maps at 25 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (c) HS and MoS2 PLE comparison along the vertical lines in (a)-(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' HS shows a slightly reduced MoS2 PLE enhancement as compared to the 8 K map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (d)-(e) HS and MoS2 PLE maps taken at 100 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (f) Similar HS and MoS2 PLE comparison at 100 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' MoS2 in the HS area does not show any intensity enhancement at 100 K as compared to the 1L area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' In all the HS maps, WSe2 emission intensities are kept saturated to visualize the MoS2 emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (a) (b) (c) HS Emission at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='89 eV 25 K, HS 25 K, MoS2 140 (eV) MoS, Emission at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='89 eV 140 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content="0 (n'e) 120 Energy 25 K Intensity (a." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') 105 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') 105 90 Intensity 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 70 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 70 60 Excitation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='4 30 35 35 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='2 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 Emission Energy (eV) EmissionEnergy (eV) Excitation Energy (eV) (d) (e) (f) HS Emission at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='88 eV 100 K, MoS2 100 K, HS (eV) 60 60 MoS, Emission at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='88 ev 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') 60 Excitation Energy 100 K Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') 45 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') 45 Intensity 40 30 30 20 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='4 15 15 2 2 PL 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 Emission Energy (eV) Emission Energy (eV) ExcitationEnergv(eV19 Figure 5: Calculated spin-resolved energy landscape of MoS2 and WSe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (a) Schematic illustration of the valence (VB) and conduction band (CB) splitting at the K valley in MoS2 and WSe2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (b)-(c) Calculated MoS2 optical transitions along the K--Γ-K+ direction from VB2 to CB1 and VB1 to CB2 (as shown in (a)), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (d)-(e) Similar calculated WSe2 momentum-space energy landscape along the K--Γ-K+ direction from VB2 to CB2 and VB1 to CB1 (as shown in (a)), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (f)-(g) Schematic illustration of the photocarrier relaxation pathways from the higher energy levels to the ground state (GS) in MoS2 due to the energy transfer (ET) from WSe2 after resonant excitation at (WSe2) B and D excitonic level, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Different types of transition are shown in the MoS2 layer;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' such as intravalley scattering (kiv), intervalley transition (kv), and radiative recombination (kr).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (a) MoS2 WSe2 CB2 CB2 (f) CB1 CB1 DCB BTT A B VB2 A VB2 ET A Ex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' VB1 VB1 E K K GS GS (b) (c) MoS2: CB1 VB2 MoS2: CB2 VB1 MoS2 WSe2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 (g) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='5 C DCB K K+ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='2 K K+ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='2 ET Vkiv 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='9 B (d) A WSe2: CB2 VB2 WSe2: CB1 VB1 ET E A 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='7 WM (eV) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='3 GS GS 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='9 MoS2 WSe2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='5 K K+ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='1 K K+ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='720 SUPPORTING INFORMATION Excitation-Dependent High-Lying Excitonic Exchange via Interlayer Energy Transfer from Lower-to-Higher Bandgap 2D Material Arka Karmakar1*, Tomasz Kazimierczuk1, Igor Antoniazzi1, Mateusz Raczyński1, Takashi Taniguchi2, Kenji Watanabe3, Adam Babiński1, Abdullah Al-Mahboob4⸸, Maciej R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Molas1# 1 Division of Solid State Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Institute of Experimental Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Faculty of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' University of Warsaw,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Pasteura 5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 02-093 Warsaw,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Poland 2 International Center for Materials Nanoarchitectonics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' National Institute for Materials Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 1-1 Namiki,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Tsukuba,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Ibaraki 305-0044,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Japan 3 Research Center for Functional Materials,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' National Institute for Materials Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 1-1 Namiki,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Tsukuba,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Ibaraki 305-0044,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Japan 4 Center for Functional Nanomaterials,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Brookhaven National Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Upton,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' NY 11973,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' USA * arka.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='karmakar@fuw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='pl ⸸ aalmahboo@bnl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='gov # maciej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='molas@fuw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='pl 21 Details of the theoretical calculations: We computed the ground state band structure of 1Ls MoS2 and WSe2 employing the density functional theory (DFT) calculations using the Materials Studio CASTEP (CAmbridge Serial Total Energy Package) version 2021 HF1, ab initio Total Energy Program (first principles methods using CASTEP)1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Prior to the band structure calculation, we performed the geometry optimization (GO) for the bulk crystal structure using DFT-D (GGA + dispersion correction) method ˗ Perdew-Bruke-Ernzerhof (PBE) GGA functional2 along with the dispersion correction (van der Waals correction accounted employing the dispersion correction for DFT) by Tkatchenko-Scheffler (TS) method3, which was performed using the DFT Semi- Empirical Dispersion Interaction Correction (DFT-SEDC) module4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' We obtained the electron relativistic correction using the DSPP (DFT-Semicore Pseudopotential)5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' During the GO of the bulk structure, symmetry constrained was imposed considering the International Table #194 (hexagonal, symmetry group P63/MMC, crystal class 6/m m m) for the bulk MoS2 and WSe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Following the bulk geometry optimization, crystal was cleaved parallel to the layer (c* terminated) and then a vacuum slab > 20 Å was added along the c* to make the 1L TMD structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Final GO for the atomic arrangement within the 1L and the in-plane lattice parameters were further optimized constraining the 2D lattice symmetry employing the identical GGA functional and dispersion correction as above but also including the spin-orbit coupling in the total energy calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' In order to include the spin-orbit coupling, norm-conserving potentials in CASTEP were generated using the kinetic energy optimization scheme developed by Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' The spin orbit coupling was included using the j-dependent pseudopotentials developed for CASTEP based on the work by ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Following the final step of GO, band structure calculation was performed considering the ultra- fine k-spacing (k-spacing in single point energy calculation corresponding to 50x50x1 supercell or better and spectral k-spacing of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0005Å-1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' After computation of the electronic band structure in CASTEP, scissors have applied to the band structure plot to match with the bandgap obtained from the PL spectroscopy measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 22 References: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Clark, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' First principles methods using CASTEP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Zeitschrift für Kristallographie - Crystalline Materials 220, 567–570 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Perdew, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Burke, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Ernzerhof, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Generalized Gradient Approximation Made Simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 77, 3865–3868 (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Tkatchenko, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Scheffler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 102, 073005 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' McNellis, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Meyer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Reuter, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Azobenzene at coinage metal surfaces: Role of dispersive van der Waals interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' B 80, 205414 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Delley, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Hardness conserving semilocal pseudopotentials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' B 66, 155125 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Lin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Qteish, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=', Payne, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Heine, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Optimized and transferable nonlocal separable ab initio pseudopotentials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' B 47, 4174–4180 (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Corso, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' & Conte, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Spin-orbit coupling with ultrasoft pseudopotentials: Application to Au and Pt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' B 71, 115106 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 23 Figure S1: (a) Optical micrograph of the HS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Black line indicates the line region of the AFM image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (b) AFM height profile of the interlayer hBN shows the thickness of ~9 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Figure S2: (a)-(b) PLE maps of the HS and MoS2 at 200 K, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' MoS2 PL emission does not increase in the HS area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' WSe2 emission in the HS data is saturated to visualize the MoS2 emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Both the plots have the same intensity range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (a) (b) Height Profile (nm) 12 HS MoS 9 1LWSe2 6 3 Interlayer 0 hBN 0 2 3 4 5 6 7 Distance (um)(a) (b) 200 K, HS 200 K, MoS2 40 40 Energy (eV) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 30 30 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 20 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 20 Excitation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='4 10 10 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='2 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 Emission Energy (eV) Emission Energy (eV)24 Figure S3: (a) Top and bottom panel shows PL emission of the MoS2 in the HS area under excitation at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='83 eV and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='2 eV, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (b) PL emission profile from the 1L MoS2 area under same excitation conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' MoS2 PL emission in the HS area shows similar enhancement factor of ~ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 at both excitation energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Figure S4: Calculated spin-resolved momentum-space optical absorption energy landscape of 1L (a) MoS2 and (b) WSe2 along the Γ-K direction in the Brillouin zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (a) (q) 25 K, HS 25 K, MoS2 Exc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='83 eV Exc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='83 eV 120 120 80 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' ensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') 40 40 ensity 0 0 V120 Inte 120 80 80 40 40 0 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 Emission Energy (eV) Emission Energy (eV)(a) (b) MoS,: CB1 VB2 WSe2: CB2 VB2 : MoS2: CB2 VB1 WSe2: CB1 VB1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='3 (eV) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='4 CB CB 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='0 E E 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='6 K K25 Figure S5: PL Intensity maps at the resonant WSe2 C excitation (~ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='56 eV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (a) MoS2 does not show any PL emission at this excitation energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Only system noise was detected in this condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (b) WSe2 PL emission map does not show any intensity variation in the HS area as compared to the 1L region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' Scale bars represent 5 µm length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' (a) (b) 36 240 MoS2 WSe2 26 180 Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') Intensity (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=') 16 120 6 60 8 K 4 8 K Exc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='56 eV Exc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
+page_content='56 eV 14 0' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/gtE5T4oBgHgl3EQfhw_s/content/2301.05644v1.pdf'}
diff --git a/hNE_T4oBgHgl3EQf3Rzj/content/tmp_files/2301.08346v1.pdf.txt b/hNE_T4oBgHgl3EQf3Rzj/content/tmp_files/2301.08346v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..1d32c9ae52725a10b889bdc869d4f015287984c0
--- /dev/null
+++ b/hNE_T4oBgHgl3EQf3Rzj/content/tmp_files/2301.08346v1.pdf.txt
@@ -0,0 +1,1669 @@
+arXiv:2301.08346v1 [math-ph] 19 Jan 2023
+A critical survey of twisted spectral triples
+beyond the Standard Model
+Manuele Filaci
+University of Cracovia, Institute fo Physics, Jagiellonian University
+prof. Stanis�lawa �Lojasiewicza 11, 30-348 Krakow, Poland
+E-mail: manuele.filaci@uj.edu.pl
+Pierre Martinetti
+Universit`a di Genova (dpto di matematica) & INFN,
+via Dodecaneso, 16146 Genova, Italia
+E-mail: martinetti@dima.unige.it
+Abstract.
+We review the applications of twisted spectral triples to the Standard
+Model. The initial motivation was to generate a scalar field, required to stabilise the
+electroweak vacuum and fit the Higgs mass, while respecting the first-order condition.
+Ultimately, it turns out that the truest interest of the twist lies in a new – and
+unexpected – field of 1-forms, which is related to the transition from Euclidean to
+Lorentzian signature.
+1. Introduction
+From the pioneering work of [35] till the full formalism of Connes [16], noncommutative
+geometry provides a unified description of the Lagrangian of the Standard Model of
+fundamental interactions (electromagnetism, weak and strong interactions) [21][9][8];
+minimally coupled to the Einstein-Hilbert action of General Relativity [18]; including
+right handed neutrinos [12]; where the Higgs boson comes out naturally on the same
+footing as the other bosons, i.e. as the local expression of a connection 1-form.
+The approach works very well on Riemannian manifolds. The generalisation to
+pseudo-Riemannian geometry, in particular Lorentzian manifolds, is far from obvious
+(there are various attempts in this direction, see for instance [1][2][38][53][3] and reference
+within).
+In addition, noncommutative geometry offers possibilities to go beyond the
+Standard Model, by modifying the rules of the game in various ways: one may enlarge
+the space of fermions [51, 52], or get rid of the first-order condition (defined below)
+[14, 13], modify the real structure (also defined below) [7, 6], switch to non-associative
+geometry [4, 5], use some structure of Clifford bundle in order to modify some of the
+mathematical requirements defining a noncommutative geometry [26].
+For a recent
+review of “beyond Standard Model” propositions in the framework of noncommutative
+geometry, see [15].
+Here we focus on another class of variations around Connes’ initial model, obtained
+by twisting the noncommutative geometry by an algebra automorphism [32][34][47].
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+2
+All the possibilities above but the first are minimal extensions of the Stan-
+dard Model, in that they yield an extra scalar field σ – suggested by particle physi-
+cists to stabilize the electroweak vacuum – but do not touch the fermionic content. The
+novelty of the twist is to generate another additional piece: a new field of 1-forms, which
+suprisingly turns out to be related to the transition from Euclidean to Lorentzian sig-
+nature [30]. In particular, in the example of electrodynamics, this field identifies with
+the (dual) of the 4-momentum vector in Lorentzian signature, even though one started
+with a Riemannian manifold [47].
+All this is explained as follows. In the next section we begin by some recalling on
+the spectral description of the Standard Model [12]. We stress the process of fluctuation
+of the metric, which is the way to generate bosonic fields in noncommutative geometry
+by turning the constant parameters of the model into fields.
+In section 3 we describe the model of grand algebra developed in [32], which aimed
+at generating the extra scalar field σ, while respecting the first-order condition. The idea
+is to start with an algebra bigger than the one of the Standard Model, in order to have
+more “space” to generate bosonic fields by fluctuations of the metric. This model does
+indeed generate the expected field σ, by letting the Majorana mass of the neutrinos
+fluctuate. Even though the first-order condition associated with this Majorana mass
+is preserved, the problem moves to the free Dirac operator: not only does the latter
+break the first-order condition, but its commutator with the algebra is unbounded, in
+contradiction with the very definition of spectral triple. This kind of problem is typically
+solved by twisting the spectral triple in the sense of Connes and Moscovici [24].
+A
+twisting of the grand algebra down to the Standard Model has been worked out in [34],
+but we show in §3.3 that this does not define stricto-sensu a twisted spectral triple, for
+only the part of the algebra relevant for the extra scalar field has been twisted.
+Applying the twist to the whole algebra suggests a general procedure to twist any
+graded spectral triple, as recalled in section 4.
+It consists in doubling the algebra
+one is beginning with, rather than finding it from the reduction of a bigger algebra.
+Such a “twisting up” procedure has been studied in a couple of papers [41][42]. There
+is some freedom in the construction, especially in the choice of the twisting operator
+whose eigenspaces determine the representation of the doubled algebra. By choosing
+the grading as the twisting operator, one automatically satisfies the twisted first-order
+condition. However, when applied to the spectral triple of the Standard Model, this
+twist-by-grading does not generate any extra scalar field.
+Some preliminary results,
+mentioned in §4.3, indicate that this is a general feature of the twisting-up procedure:
+the twisted first-order condition and the extra scalar field are mutually exclusive. Hence
+the necessity to adapt to the twisted case the fluctuations without first-order condition
+introduced in [14]. This has been done in [49] and is summarised in §4.3.
+Section 5 deals with what might be the truest interest of the twist, namely
+the unexpected field of 1-forms arising from the twisted fluctuation. In the example
+of electrodynamics [47],[54], this field identifies with the dual of the 4-momentum in
+Lorentzian signature, even though one started with a Riemannian spectral triple.
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+3
+2. The spectral description of the Standard Model
+We begin with the definition of spectral triple, which is the central tool in Connes’
+noncommutative geometry, emphasising how the bosonic fields – including the Higgs
+field – are obtained as connection 1-forms, through the process of fluctuation of the
+metric. We then summarise the spectral description of the Standard Model.
+2.1. Spectral triple
+A spectral triple [16] consists of an algebra A acting on a Hilbert space H together with a
+selfadjoint operator D with compact resolvent, whose commutator [D, a] is bounded for
+any a ∈ A. It is graded if it comes with a selfadjoint operator Γ on H which squares
+to the identity operator I, anticommutes with D and commutes with the algebra. A
+spectral triple is real [17] if in addition there is an antilinear operator J on H satisfying
+J2 = ǫI,
+JD = ǫ′DJ,
+JΓ = ǫ′′ΓJ
+(1)
+where ǫ, ǫ′, ǫ′′ = ±1 define the KO-dimension k ∈ [0, 7]. This real structure implements
+a map a → a◦ := Ja∗J−1 from A to the opposite algebra A◦. This yields a right action
+of A on H, ψa := a◦ψ, which is asked to commute with the left action
+[a, Jb∗J−1] = 0
+∀a ∈ A
+(order zero condition).
+(2)
+There is also a first-order condition [18],
+[[D, a], Jb∗J−1] = 0
+∀a, b ∈ A
+(3)
+which is there to guarantee that the operator D be a first-order differential operator.
+All these properties are satisfied by the triple
+(C∞(M), L2(M, S), /∂)
+(4)
+where C∞(M) is the (commutative) algebra of smooth functions on a closed Riemannian
+manifold M of dimension m, acting by multiplication on the Hilbert space L2(M, S) of
+square-integrable spinors on M, and
+/∂ = −i
+m
+�
+µ=1
+γµ(∂µ + ωµ),
+with
+γµγν + γνγµ = 2gµνI
+(5)
+is the Dirac operator (ωµ is the spin connection, γµ the Dirac matrices and gµν the
+Riemannian metric on M, all given in local coordinates). For m even, this spectral
+triple has grading the product of the Dirac matrices (in dimension 4, the matrix γ5) and
+real structure J the charge conjugation operator. Adding other conditions [20] (which
+are satisfied by the triple (4)), one gets Connes’ reconstruction theorem, that extends
+Gelfand duality (between compact topological spaces and C∗-commutative algebras)
+beyond topology.
+Namely, given any real spectral triple (A, H, D) satisfying these
+conditions, with A commutative, then there exists a closed Riemannian manifold M
+such that A ≃ C∞(M).
+A noncommutative geometry is then defined as a spectral triple (A, H, D) where
+A is non (necessarily) commutative. This gives access to new geometrical objects, that
+can be intended as “spaces” whose algebra of functions A is not commutative.
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+4
+2.2. Connection
+Take a gauge theory with gauge group G. From a mathematical point of view, the
+fermionic fields form sections of a G-bundle E over the spacetime M, while the bosonic
+fields are described as connections on E.
+In noncommutative geometry the spacetime M is substituted by a spectral triple
+(A, H, D), where A plays the role of “algebra of functions” on the noncommutative
+space.
+To understand what plays the role of a gauge bundle, recall that the set of
+sections of any bundle on a manifold M forms a finite projective C∞(M)-module.
+Conversely, by Serre-Swan theorem, any such module actually is the module of sections
+of a bundle on M. That is why, in noncommutative geometry, the role of gauge bundles
+is played by finite projective A-modules E.
+Connections on these modules are, by definition, objects associated with a
+derivation.
+Recall that a derivation δ on an algebra A is a map from A to some
+A-bimodule Ω satisfying the Leibniz rule
+δ(ab) = aδ(b) + δ(a)b
+∀a, b ∈ A.
+(6)
+A connection on a (right) A-module E associated with δ is a map from E to E ⊗A Ω
+such that the following Leibniz rule holds,
+∇(ηa) = ∇(η)a + η ⊗ δ(a)
+∀η ∈ E, a ∈ A,
+(7)
+where
+Ω =
+��
+i
+aiδ(bi), ai, bi ∈ A
+�
+(8)
+is the A-bimodule generated by the derivation δ, while ∇(η)a is a shorthand notation
+for η(0)a ⊗ η(1), using Sweedler notations ∇η = η(0) ⊗ η(1) with η(0) ∈ E and η(1) ∈ Ω.
+Example: The exterior derivative d is a derivation on the algebra C∞(M). It generates
+the C∞(M)-bimodule of section s of the cotangent bundle,
+Ω1(M) :=
+��
+i
+fidgi with fi, gi ∈ C∞(M)
+�
+.
+(9)
+A connection on the tangent bundle TM associated with d is a map
+∇ : Γ∞(TM) → Γ∞(TM) ⊗ Ω1(M),
+(10)
+∂ν
+�→ Γρ
+µν∂ρ ⊗ dxµ,
+(11)
+where Γ∞(TM) denotes the set of smooth sections of TM. One retrieves the usual
+notion of connection, as a map from Γ∞(TM) × Γ∞(TM) to Γ∞(TM) as
+∇ : (∂η, ∂ν) �→ ∇η∂ν := Γρ
+µν∂ρ ⊗C∞(M) ⟨dxµ, ∂η⟩ ≃ ⟨dxµ, ∂η⟩Γρ
+µν∂ρ = Γρ
+ην∂ρ,
+where ⟨. , .⟩ is the C∞(M)-valued dual product between the cotangent and the tangent
+bundles and the last equation is the isomorphism between E ⊗C∞(M) C∞(M) and E.
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+5
+2.3. Fluctuation of the metric
+To understand when two algebras are “similar”, a relevant notion is Morita equivalence.
+This is more flexible than isomorphism of algebras for, roughly speaking, two algebras
+A and B are Morita equivalent if they have the same representation theory. Technically,
+it means that there exists an Hermitian finite projective A-module E such that B is
+isomorphic to the algebra EndA(E) of A-linear, adjointable, endormorphisms of E (for
+details see e.g. [50] or [40]).
+The idea of fluctuation of the metric comes from the following question: how does
+one export a real spectral triple (A, H, D) to a Morita equivalent algebra B ? We recall
+the construction of [18], whose details may be found in [23] and even more details in [42].
+Assume E = ER is a right A-module. The algebra B acts on HR := ER ⊗A H as
+b(η ⊗ ψ) = bη ⊗ ψ
+∀b ∈ B, η ∈ ER, ψ ∈ H.
+(12)
+However, the “natural” action of D on HR,
+DR(η ⊗ ψ) := η ⊗ Dψ,
+(13)
+is not compatible with the tensor product, for
+DR(ηa ⊗ ψ) − DR(η ⊗ aψ) = −η ⊗ [D, a]ψ
+(14)
+has no reason to vanish. This is cured by equipping ER with a connection ∇ with value
+in the A-bimodule of generalised 1-forms
+Ω1
+D(A) :=
+��
+i
+ai[D, bi], ai, bi ∈ A
+�
+(15)
+generated by the derivation δ(.) = [D, .]. Indeed, the following operator,
+DR(η ⊗ ψ) := η ⊗ Dψ + (∇η)ψ
+(16)
+is well defined on HR, and selfadjoint as soon as ∇ is an hermitian connection. Moreover
+one checks that the commutator [DR, b] is bounded for any b ∈ B, so that (B, HR, DR)
+is a spectral triple.
+In particular, if one considers self-Morita equivalence, that is
+B = ER = A, then the operator (16) with ∇ hermitian reads
+DR = D + AR
+(17)
+with AR = A∗
+R ∈ Ω1
+D(A) a selfadjoint generalised 1-form.
+A similar construction holds if one implements Morita equivalence with a left
+module EL. Then HL = H ⊗A EL is a Hilbert space and the operator
+DL(ψ ⊗ η) := Dψ ⊗ η + (∇◦η)ψ
+(18)
+with ∇◦ a connection with value in the bimodule
+Ω1
+D(A◦) =
+��
+i
+a◦
+i [D, b◦
+i ],
+a◦
+i , b◦
+i ∈ A◦
+�
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+6
+is well defined on HL. For ∇◦ hermitian, one obtains a spectral triple (B, HL, DL). For
+self-Morita equivalence, one gets
+DL = D + A◦ = D + ǫ′J AL J−1
+(19)
+with A◦ ∈ Ω1
+D(A◦) and AL ∈ Ω1
+D(A).
+To take into account the real structure, one combines the two constructions, using
+an A-bimodule E to implement Morita equivalence. For self-Morita equivalence, one
+then obtains the operator D′ = D + AR + ǫ′J ALJ−1 acting on H.
+Requiring this
+operator to be selfadjoint and J to be a real structure amounts to the existence of a
+generalised selfadjoint 1-form A ∈ Ω1
+D(A) such that
+D′ = DA := D + A + ǫ′J AJ−1.
+(20)
+Then (A, H, DA) is a real spectral triple. The operator DA is called a covariant
+Dirac operator, and the substitution of D with a DA is a fluctuation of the metric.
+The name is motivated by the existing relation between the Dirac operator and the
+metric. This relation is obvious on a spin manifold, from the very definition of the Dirac
+matrices ( γνγν+γνγµ = 2gµν), and it still makes sense for an arbitrary noncommutative
+geometry, via the definition of the spectral distance [22]. On a manifold, this distance
+gives back the geodesic distance associated with the Riemannian structure of M, while
+on an arbitrary spectral triple it may be seen as a generalisation of the Wasserstein
+distance of order 1 in the theory of optimal transport (cf [28, 46] and references therein).
+By exporting a noncommutative geometry to a Morita equivalent algebra, one passes
+from D to the covariant operator DA and modifies accordingly the spectral distance.
+In particular, for the Standard Model, such a fluctuation provides a purely metric
+interpretation to the Higgs field (which is one of the components of the generalised
+1-form A, see below) [18, 48]. The metric interpretation of the other components of A
+has been worked out in [48, 44], in relation with the Carnot-Carath´eodory distance in
+sub-Riemannian geometry.
+2.4. Gauge transformation
+A gauge transformation is a change of connection on the Morita-equivalence bimodule E.
+In case of self-Morita equivalence, it is implemented by the conjugate action on H of
+the group U(A) of unitaries element of A (i.e. u ∈ A such that u∗u = uu∗ = I):
+Ad(u) : ψ → uψu∗ = u(u∗)◦ψ = uJuJ−1ψ
+∀ψ ∈ H.
+(21)
+This action maps the covariant Dirac operator DA to
+Ad(u) DA Ad(u)−1
+(22)
+and one checks that this operator coincides with the operator DAu, defined as in (20)
+with
+Au := u[D, u∗] + uAu∗.
+(23)
+This is the formula of transformation of the gauge potential in noncommutative
+geometry, which generalises the usual one of gauge theories.
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+7
+2.5. Standard Model
+The spectral triple of the Standard Model [12] is the product
+A = C∞(M) ⊗ AF,
+H = L2(M, S) ⊗ HF,
+D = /∂ ⊗ I96 + γ5 ⊗ DF
+(24)
+of the spectral triple (4) of a 4-dimensional Riemannian closed spin manifold M with a
+finite dimensional spectral triple
+AF = C ⊕ H ⊕ M3(C),
+HF = C96,
+DF =
+�
+D0
+048
+048
+D†
+0
+�
+�
+��
+�
+DY
++
+�
+048
+DR
+D†
+R
+048
+�
+�
+��
+�
+DM
+(25)
+where H is the algebra of quaternions and M3(C) the algebra of complex 3×3 matrices.
+The dimension of HF is the number of fermions in the Standard Model (including
+right-handed neutrinos). Its entries are labelled by a multi-index C I α n where
+• C = 0, 1 labels particles (C = 0) or anti-particles (C = 1);
+• I = 0, i with i = 1, 2, 3 is the lepto-colour index: it takes value I = 0 for a lepton
+and I = 1, 2, 3 for a quark with its three possible colours;
+• α = ˙1, ˙2, 1, 2 is the flavour index (with dot indicating the chirality):
+˙1 = νR, ˙2 = eR, 1 = νL, 2 = eL for leptons (I = 0),
+(26)
+˙1 = uR, ˙2 = dR, 1 = qL, 2 = dL for quarks (I = i);
+(27)
+• n = 1, 2, 3 is the generation index.
+The details of the representation of AF is in [12]. The important point for our
+matter is that the quaternions act only on the particle subspace of HF (C = 0), trivially
+on the lepto-colour index I, and through their fundamental representation on the last
+two flavour indices α; whereas M3(C) acts only on antiparticle subspace of HF (C = 1),
+trivially on the flavour index α and through their fundamental representation on the
+lepto-colour index i. The algebra C acts both on particles together with the quaternions
+(but on the first two flavour indices), and on antiparticles together with M3(C) (on
+I = 0).
+The grading of the finite dimensional spectral triple is the 96 × 96 matrix ΓF with
+entries +1 on left particles/right antiparticles, −1 on right particles/left antiparticles.
+The real structure is the matrix JF that exchanges particles with antiparticles. The
+spectral triple (24) is real, with grading Γ = γ5 ⊗ ΓF and real structure J = J ⊗ JF.
+In the particles/antiparticles indices,
+the Dirac operator DF
+of the finite
+dimensional spectral triple is the sum of a block diagonal matrix DY which contains
+the Yukawa couplings of the fermions, the Cabibbo-Kobayashi-Maskawa mixing matrix
+for the quarks and the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix for the left-
+handed neutrinos, and a block off-diagonal matrix DM which contains the Majorana
+masses kn
+R, n = 1, 2, 3 of the right-handed neutrinos and the corresponding mixing
+matrix (notations are those of [36], they differ from the ones of [32] and [34]).
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+8
+The generalised 1-forms (15) for a product of spectral triples (24) decompose as [25]
+A = γ5 ⊗ H − i
+�
+µ
+γµ ⊗ Aµ
+(28)
+where H is a scalar field on M with values in AF, while Aµ is a 1-form field on M with
+values in the Lie algebra of the group U(AF) of unitary elements of AF (differently said:
+a connection 1-form on a U(AF)-bundle on TM). In particular, for the spectral triple
+of the Standard Model, one has
+U(AF) = U(C ⊕ H ⊕ M3(C)) ≃ U(1) × SU(2) × U(3),
+(29)
+which is reduced to the gauge group U(1) × SU(2) × SU(3) of the Standard Model by
+imposing a unimodularity condition (which also guarantees that the model is anomaly
+free, see e.g [12, §2.5]).
+The action of this group on H is a matrix whose components are the hypercharges
+of the fermions of the Standard Model [12, Prop. 2.16]. This allows to identify the basis
+elements of HF with the 96 fermions of the Standard Model, and the corresponding
+elements in H with the fermionic fields. Moreover, the action of A+JAJ−1 corresponds
+to the bosonic hypercharges, and allows to identify the components of Aµ with the
+bosonic fields of the Standard Model [12, Prop. 3.9]. One also checks that (23) yields
+the expected gauge transformation.
+The interpetation of the scalar field H follows from the computation of the spectral
+action [8, 9], namely the asymptotic expansion Λ → ∞ of Tr f( D2
+A
+Λ2 ) where f is
+a smooth approximation of the characteristic function of the interval [0, 1].
+One
+obtains the bosonic Lagrangian of the Standard Model coupled with Einstein-Hilbert
+action in Euclidean signature, where H is the Higgs field. The coupling constants of
+the electroweak and strong interactions satisfy the relation expected in grand unified
+theories, and are related to the value at 0 of the function f.
+The spectral action provides some relations between the parameters of the Standard
+Model at a putative unification scale. The physical predictions are obtained by running
+down the parameters of the theory under the renormalisation group equation, taking
+these relations as initial conditions.
+Assuming there is no new physics between the
+unification scale and the electroweak scale, one finds a value for the Higgs mass around
+170 GeV, in disagrement with the measured value 125, 1 GeV.
+However, for a Higgs boson with mass mH ≤ 130 Gev, the quartic coupling λ of
+the Higgs field becomes negative at high energy, meaning the electroweak vacuum is
+meta-stable rather than stable [29]. This instability can be cured by a new scalar field
+σ which couples to the Higgs field. In the spectral description of the Standard Model,
+such a field is obtained by turning into a field the neutrino Majorana mass kR which
+appears in the off-diagonal part DR of the finite dimensional Dirac operator DF:
+kR → kRσ,
+Furthermore, by altering the running of the parameters under the equations of the
+group of renormalization, this extra scalar field makes the computation of the mass of
+the Higgs boson compatible with its experimental value [11].
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+9
+3. Grand algebra beyond the Standard Model
+The point in the above is to justify the turning of the constant kR into a field kRσ. This
+cannot be obtained by fluctuation of the metric, for one checks that
+[γ5 ⊗ DM, a] = 0
+∀a, b ∈ A = C∞(M) ⊗ AF.
+(30)
+In other terms, the constant kR is transparent under fluctuation. The solution proposed
+in [14] is to remove the first-order condition. This gives more flexibility, and permits
+to obtain the extra scalar field as a fluctuation without the first-order condition. The
+latter is retrieved dynamically, by minimising the spectral action [13]. In this way the
+field σ is the “Higgs” boson associated with the breaking of the first-order condition.
+3.1. Grand algebra
+At the same time, an alternative process was described in [32] where one mixes the
+internal degrees of freedom per generation of the finite dimensional Hilbert space HF,
+that is HF ≃ C32, with the 4 spinorial degrees of freedom of L2(M, S). This provides
+exactly the 4 × 32 = 128 degrees of freedom required to represent the “second next
+algebra” in the classification of finite dimensional spectral triples made in [19, 10].
+In this classification, the smallest algebra – H⊕M2(C) – is too small to accomodate
+the Standard Model; the second smallest one – ASM = M2(H)⊕M4(C) – reduces to the
+left-right algebra ALR = HL ⊕ HR ⊕ M4(C) by imposing the grading condition, which
+breaks to the algebra AF of the Standard Model by the first-order condition. The next
+one is M3(H)⊕M6(C) and has not found any physical interpretation so far. Then comes
+the grand algebra [32]
+AG = M4(H) ⊕ M8(C).
+(31)
+It is too big to be represented on the Hilbert space HF in a way compatible with the
+axioms of noncommutative geometry: the latter require a space of dimension d = 2(2a)2,
+where a is the dimension of the quaternionic matrix algebra. For ASM one has a = 2,
+which corresponds to d = 2(2 · 2)2 = 32, that is the dimension of HF. For the grand
+algebra AG, a = 4 and one needs a space four times bigger.
+This bigger space is obtained by allowing C∞(M) to act independently on the left
+and right components of spinors. This permits to represent on L2(M, S) ⊗ HF the
+algebra C∞(M) ⊗ AG – viewed as functions on M with value in AG – in such a way
+that for any a ∈ C∞(M) ⊗ AG and x ∈ M, then a(x) ∈ AG acts on HF in agreement
+with the classification of [10].
+Within the tensorial notation of §2.5, the components M4(H) and M8(C) of the
+grand algebra are 2 × 2 matrices Q, M with entries in M2(H) and M4(C) that act on
+HF as ASM. The difference with the spectral triple of the Standard Model is that, once
+tensorised by C∞(M), the 2×2 matrices Q, M have a non-trivial action on the spinorial
+degrees of freedom of L2(M, S). We denote the latter by two indices: s = l, r for the
+left/right components of spinors; ˙s = ˙0, ˙1 for the particle/antiparticle subspaces.
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+10
+In [32] one makes C∞(M) ⊗ M4(H) ∋ Q, resp. C∞(M) ⊗ M8(C) ∋ M, act non
+trivially on the ˙s, resp s, index. Omitting all the indices on which the action is trivial,
+Q =
+�
+Q
+˙0β
+˙0α
+Q
+˙1β
+˙0α
+Q
+˙0β
+˙1α
+Q
+˙1β
+˙1α
+�
+˙s˙t
+,
+M =
+�
+MrJ
+rI
+MlJ
+rI
+MrJ
+lI
+MlJ
+lI
+�
+st
+,
+(32)
+where β, J, t and ˙t are summation indices within the same range as α, I, s, t (the
+indices after the closing parenthesis are those labelling the matrix entries).
+Since γ5 acts non trivially on the spinorial chiral index, the grading condition
+forces M to be diagonal in the st indices: MlJ
+rI = MlJ
+lr = 0. Since ΓF is non trivial
+only in the flavour index α, in which the remaining entries MlJ
+lI , MrJ
+rI ∈ M4(C) act
+trivially, the grading does not induce any further breaking in the complex sector. On
+the contrary, since γ5 is trivial in the ˙s index but quaternions act non trivially on the
+α index, the grading forces Q to be diagonal in the flavour index, with components
+QL
+˙t
+˙s, QR
+˙t
+˙s ∈ C∞(M) ⊗ M2(H) acting on the left/right subspaces of the internal Hilbert
+space HF. In other terms, the grading condition breaks the grand algebra in
+A′
+G = (M2(H)L ⊕ M2(H)R) ⊕ (M4(C)l ⊕ M4(C)r) .
+(33)
+To guarantee the first-order condition for the Majorana component γ5⊗DR of the Dirac
+operator, a solution is to further break A′
+G to
+A′′
+G = (HL ⊕ H′
+L ⊕ CR ⊕ C′
+R) ⊕ (Cl ⊕ M3(C)l ⊕ Cr ⊕ M3(C)r)
+(34)
+with CR = Cr = Cl. In the first term, the unprimed algebras act on the particle subspace
+˙s = ˙0, while the primed ones act on the antiparticle subspace ˙s = ˙1. A fluctuation of
+the metric of γ5 ⊗ DR then yields an extra scalar field σ, which lives in the difference
+between CR and C′
+R, and fixes the Higgs mass as expected [33]. In this grand algebra
+model, the fermionic content is not altered, since the total Hilbert space H is untouched.
+One also checks the order zero condition.
+The first-order condition for the free part /∂ ⊗ I of the Dirac operator forces the
+components acting on the chiral spinorial index to be equal, as well as those acting on the
+particle/antiparticle index, meaning H′
+L = HL, C′
+R = CR and M3(C)l = M3(C)r. Thus
+A′′
+G reduces to HL⊕CR⊕M3(C), namely the algebra of the Standard Model. The field σ
+thus appears as the Higgs field related to the breaking of the first-order condition by /∂⊗I,
+whereas in [14] it is related with the first-order condition for γ5 ⊗ DR. By enlarging the
+algebra, one has moved the symmetry breaking from the internal space to the manifold.
+However, the price to pay for a non trivial action on spinors is the unboundedness of
+the commutator of /∂ ⊗I with the grand algebra: for a = f ⊗m ∈ C∞(M)⊗AG one has
+[/∂ ⊗ I, a] = [/∂, f] ⊗ m = −i[γµ∂µ, f] ⊗ m − i[γµωµ, f] ⊗ m.
+(35)
+The second term is always bounded. By the Leibniz rule, the first one is
+−i[γµ, f]∂µ − iγµ(∂µf),
+(36)
+which is bounded iff the component ∂µ vanishes. Since the only matrix that commutes
+with all the Dirac matrices is the identity matrix, the commutator (35) is bounded if
+and only if f acts on L2(M, S) as a multiple of the identity matrix, that is on the same
+way on the left and right components of spinors.
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+11
+3.2. Twisted spectral triples
+Mixing the spinorial and internal degrees of freedom of the Hilbert space H - in order
+to represent an algebra bigger than the one of the Standard Model - turns out to be
+incompatible with the very definition of spectral triple. As explained at the end of the
+preceding section, this does not depend on the details of the representation: as soon as
+the grand algebra acts non trivially on spinors, then the commutator with the free part
+of the Dirac operator is unbounded [45], no matter if the representation is (32) or not.
+The unboundedness of the commutator is the kind of problems adressed by Connes
+and Moscovici when they define twisted spectral triples in [24]. Their motivation had
+little to do with physics, but were purely mathematical (building spectral triples with
+type III algebras). Given a triple (A, H, D), instead of asking the commutators [D, a]
+to be bounded, one asks the boundedness of the twisted commutators
+[D, a]ρ := Da − ρ(a)D
+(37)
+for some fixed automorphism ρ ∈ Aut(A).
+The whole process of fluctuation of the metric has been adapted to the twisted case
+in [41, 42]. One obtains the covariant Dirac operator
+DAρ := D + Aρ + J Aρ J−1
+(38)
+where Aρ is an element of the set of twisted 1-forms
+Ω1
+D(A, ρ) :=
+��
+i
+ai[D, Jb∗
+i J−1]ρ◦, ai, bi ∈ A
+�
+(39)
+with ρ◦ := ρ(a∗)◦ is the automorphism of the opposite algebra A◦ induced by ρ. There
+is also twisted version of the first-order condition [34, 41]
+[[D, a]ρ, Jb∗J−1]ρ◦ = 0
+∀a, b ∈ A.
+(40)
+A gauge transformation is implemented by the twisted action of the operator Adu (22),
+ρ(Adu) DAρ Adu−1,
+(41)
+with ρ(Adu) := ρ(u)Jρ(u)J−1 . Such a transformation maps DAρ to DAuρ where
+Au
+ρ = ρ(u)[D, u∗]ρ + ρ(u)Aρu∗.
+(42)
+This is the twisted version of the gauge transformation (23).
+3.3. Twisting the grand algebra
+To resolve the unboundedness of the commutator arising in the grand algebra model,
+the idea is to find an automorphism of C∞(M) ⊗ AG such that the twisted commutator
+(37) of any element (Q, M) ∈ C∞(M) ⊗ AG with /∂ ⊗ I be bounded. This must be
+true in particular for (Q, 0) and (0, M).
+Repeating the computation (35) (36), and
+taking into account only the spinorial indices s, ˙s (since /∂ ⊗ I acts as the identity on all
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+12
+the other indices, the corresponding sector of the algebra must be invariant under the
+automorphism, for Ia − ρ(a)I = 0 iff a = ρ(a)), one finds that ρ should be such that
+γµQ − ρ(Q)γµ = 0 and γµM − ρ(M)γµ = 0
+∀µ = 1, ..., dim M
+(43)
+for any Q ∈ M4(H) ⊗ C∞(M) and M ∈ M8(C) ⊗ C∞(M). By easy computation, using
+the explicit form of the γ matrices in the chiral basis,
+γµ =
+�
+02
+σµ
+¯σµ
+02
+�
+st
+σµ =
+�
+I, σi�
+, ¯σµ =
+�
+I, iσi�
+,
+(44)
+where σi are the Pauli matrices, one checks that any two 4 × 4 complex matrices A, B
+such that Aγµ = γµB for any µ are necessarily of the form
+A =
+�
+λI2
+02
+02
+λ′I2
+�
+B =
+�
+λ′I2
+02
+02
+λI2
+�
+for some λ, λ′ ∈ C.
+(45)
+Thus (43) implies that both M and Q must be trivial in the ˙s index, diagonal in the
+chiral index s, with ρ the autormorphism that exchanges the left and right components.
+Therefore the representation (32) of the grand algebra is not suitable to build a twisted
+spectral triple.
+In order to find a good representation, remember that the field σ has its origin
+in the two copies CR, C′
+R of C in A′′
+G (34), which come from the non-trivial action of
+C∞(M) ⊗ M4(H) on the ˙s index. Since the latter is no longer allowed, it seems natural
+to make C∞(M) ⊗ M4(H) act non trivially on the chiral index s. On the contrary,
+the complex sector plays no obvious role in the generation of the field σ, so one lets
+C∞(M) ⊗ M8(C) act trivially on both the s, ˙s indices. On the other indices, the action
+of M4(H), M8(C) is as in the Standard Model. The grading condition now breaks M4(H)
+to Hl
+L ⊕ Hr
+L ⊕ Hl
+R ⊕ Hr
+R but leaves M8(C) untouched. Reducing the latter “by hand” to
+M4(C), one gets the algebra [34]
+B′ = Hl
+L ⊕ Hr
+L ⊕ Hl
+R ⊕ Hr
+R ⊕ M4(C).
+(46)
+Let ρ be the automorphism of C∞(M) ⊗ B′ that flips the chiral spinorial degrees of
+freedom,
+ρ(ql
+L, qr
+L, ql
+R, qr
+R, m) := (qr
+L, ql
+L, qr
+R, ql
+R, m)
+(47)
+where each of the q is a quaternionic function with value in its respective copy of H and
+m ∈ C∞(M) ⊗ M4(C). Then
+(C∞(M) ⊗ B′, L2(M, S) ⊗ C32, /∂ ⊗ I)
+(48)
+is a twisted spectral triple which satisfies the first-order condition [34, Prop. 3.4].
+Regarding the Majorana Dirac operator, let us consider the subalgebra of B′
+˜B = Hl
+L ⊕ Hr
+L ⊕ Cl
+R ⊕ Cr
+R ⊕ (C ⊕ M3(C)).
+(49)
+Given two of its elements (ql
+L, qr
+L, cl
+R, cr
+R, c, m), (rl
+L, rr
+L, dl
+R, dr
+R, d, n) with c, d, cl
+R, cr
+R, dl
+R, dr
+R
+complex functions, ql
+L, qr
+L, rl
+L, rr
+L quaternionic functions and m, n functions with values
+in M3(C), denoting π′ the representation of B′ in the spectral triple (48), one finds that
+[γ5 ⊗ DR, π′(ql
+L, qr
+L, cl
+R, cr
+R, c, m)]ρ, π′(rl
+L, rr
+L, dl
+R, dr
+R, d, n)]ρ
+(50)
+vanishes as soon as c = cl
+R and d = dl
+R (or c = cr
+R and d = dr
+R).
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+13
+In [34], this was improperly interpreted as a breaking of B′ to
+B = Hl
+L ⊕ Hr
+L ⊕ Cl
+R ⊕ Cr
+R ⊕ M3(C).
+(51)
+acting as ˜B with C = Cl
+R, namely the representation π of B is
+π(ql
+L, qr
+L, cl
+R, cr
+R, m) := π′(ql
+L, qr
+L, cl
+R, cr
+R, cl
+R, m).
+(52)
+But ρ exchanges the left/right components in the quaternionic sector only, so that
+π′(ρ(ql
+L, qr
+L, cl
+R, cr
+R, cl
+R, m)) = π′(qr
+L, ql
+L, cr
+R, cl
+R, cl
+R, m)
+(53)
+is not the representation (52) of any element in C∞(M) ⊗ B (the latter requires the
+identification of the first and third complex functions, whereas in (53) the second and
+third are identified), unless cr
+R = cl
+R. This means that the breaking from B′ to B is not
+compatible with the twist unless C = Cl
+R identifies with Cr
+R. In that case, B′ actually
+breaks to Hl
+L ⊕ Hr
+L ⊕ C ⊕ M3(C). This algebra contains only one copy of C and so does
+not generate the field σ by twisted fluctuation of γ5 ⊗ DR.
+In other terms, the model developed in [34] does not allow to generate the extra
+scalar field while preserving the first-order condition (even in a twisted form), as opposed
+to what was claimed. The error is due to not noticing that the reduction from ˜B to
+B, imposed by the twisted first-order condition of the Majorana Dirac operator, is not
+invariant under the twist. So it does not make sense to try to build a spectral triple
+with C∞(M) ⊗ B.
+Nevertheless all the expressions computed in [34] of the form
+Tπ′(a) − π′(ρ(a))T
+(54)
+for T = /∂ ⊗ I or γ5 ⊗ DR are algebraically correct. The point is that they are twisted
+commutators (37) for a in C∞(M) ⊗ ˜B, but not for a in C∞(M) ⊗ B. Indeed, although
+(53) does define a representation of C∞(M) ⊗ B,
+ˆπ(ql
+L, qr
+L, cl
+R, cr
+R, m) := π′(qr
+L, ql
+L, cr
+R, cl
+R, cl
+R, m),
+(55)
+there is no automorphism η of C∞(M) ⊗ B such that ˆπ would equal π ◦ η. What the
+results of [34] show is that starting with the twisted spectral triple
+(C∞(M) ⊗ ˜B, L2(M, S) ⊗ HF, /∂ ⊗ I + γ5 ⊗ DF),
+(56)
+whose Majorana part violates the twisted first-order condition, then a twisted fluctuation
+of the Dirac operator by the subalgebra C∞(M) ⊗ B yields the field σ. Minimising the
+spectral action (suitably generalised to the twisted case) breaks the algebra to the one
+of the Standard Model, which satisfies the first-order condition.
+As noticed at the end of [41], an alternative way to interprete (54) for a in
+C∞(M) ⊗ B is to view it as a twisted commutator for the represented algebra. Namely
+defining the inner automorphism αU(B) := UBU∗ of B(H) ⊃ B that exchanges the
+l, r components in the particle sector C = 0 of HF (it is implemented by the unitary
+U = γ0 ⊗ P + I ⊗ (I − P) with P the projection on the particle subspace of HF), then
+(54) reads as
+Tπ(a) − αU(π(a))T
+for
+a ∈ C∞(M) ⊗ B.
+(57)
+It is not yet clear whether this observation is of interest.
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+14
+3.4. Twisting down
+In the light of the preceding section, the conclusion of [34] should be corrected: twisted
+spectral triples do resolve the unboundedness of the commutator arising in the grand
+algebra model, but the extra scalar field breaks the first-order condition, even in its
+twisted form. The latter is retrieved dynamically by minimising the spectral action.
+Therefore, twisting the grand algebra down to the Standard Model produces results
+similar to the ones of [14]. This raises questions on the interest of the twist. As explained
+in section 5, there is an added value in twists, even if not the one expected! But before
+coming to that, let us try to generalize the twisting of the grand algebra to arbitrary
+spectral triples.
+4. Minimal twist
+4.1. Twisting up
+The algebra B is not invariant under the twisting automorphism ρ because the grand
+algebra has been only partially twisted: only the quaternionic sector acts non-trivially
+on the chiral index s. If one also makes the complex sector non trivial on the chiral
+index, then the grading condition breaks the grand algebra to
+�
+Hl
+L ⊕ Hr
+L ⊕ Hl
+R ⊕ Hr
+R
+�
+⊕
+�
+Ml
+4(C) ⊕ Mr
+4(C)
+�
+,
+(58)
+which is invariant under ρ. This is twice the left-right algebra ALR of §3.1, which is
+broken to the algebra ASM of the Standard Model by the first-order condition of γ5⊗DF.
+This suggests another approach to twisting the Standard Model while preserving
+the first-order condition. Rather than twisting down a bigger algebra to ASM, one may
+double ASM to
+ASM ⊗ C2 ≃ ASM ⊕ ASM,
+(59)
+then make each copy of ASM act independently on the left/right components of spinors,
+and finally twist the commutator to avoid unboundedness problems.
+This is a “twisting up” procedure, in which the idea is to use the flexibility
+introduced by twisted spectral triples to enlarge the algebra – hopefully preserving the
+grading and the first-order conditions – rather than using these conditions to constrain a
+bigger algebra. The rule of the game is to leave the Hilbert space and the Dirac operator
+untouched, in order not to alter the fermionic content of the model. As a side remark,
+there exist some models in noncommutative geometry that introduce new fermions, as
+mentioned in the introduction, but since there is no phenomenological indications of
+new fermions so far, we limit ourselves to models that preserve the fermionic sector.
+Given a spectral triple (A, H, D), the idea is thus to build a twisted spectral triple
+(A′, H, D), ρ with the same Hilbert space and Dirac operator, in such a way that the
+initial triple is retrieved as a “non-twisted” limit of the twisted one. This led in [41] to
+define the minimal twist of a spectral triple (A, H, D) by a unital algebra B as a twisted
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+15
+spectral triple (A ⊗ B, H, D), ρ such that the representation of A ⊗ IB coincides with
+the initial representation of A.
+One may think of other ways to implement the idea of “non-twisted limit”, for
+instance by simply asking that A′ contains A as a subalgebra invariant under the twist.
+More elaborate procedure for untwisting a twisted spectral triple have been proposed,
+for instance in [39, 7].
+An advantage of minimal twists is to allow to play with the Standard Model,
+remaining close to it.
+For almost commutative geometries – i.e.
+the product of a
+manifold by a finite dimensional spectral triple as in (24) – then the only possible
+minimal twist by a finite dimensional algebra is with B = Cl ⊗ C2, with ρ the flip
+automorphism of C2 and l ∈ N a measure of the non irreducibility of the representation
+of AF on HF [41, Prop. 4.4].
+4.2. Twist by grading
+The twisting up procedure is easily applicable to any graded spectral triple (A, H, D).
+Indeed, by definition, the grading Γ commutes with the representation of A, so the
+latter actually is the direct sum of two independent – commuting – representations of
+A on the eigenspaces H+, H− of Γ,
+π+(a) = 1
+2 (I + Γ) a,
+π−(a) = 1
+2 (I − Γ) a.
+(60)
+In other words, decomposing H as the sum of the two eigenspaces of Γ, the representation
+of A is block diagonal. Thus there is enough space on H to represent A ⊗ C2 as
+π((a, a′)) = π+(a) + π−(a′)
+∀(a, a′) ∈ A ⊗ C2.
+(61)
+Let
+ρ((a, a′)) = (a′, a)
+∀(a, a′) ∈ A ⊗ C2
+(62)
+denote the flip automorphism. Then the triple
+(A ⊗ C2, H, D), ρ
+(63)
+with representation (61) is a graded twisted spectral triple [41, Prop. 3.8]. In addition,
+if the initial triple is real with real structure J, then the latter is also a real structure
+for the twisted spectral triple (61). In particular the twisted first-order condition is
+automatically satisfied.
+This twist by grading procedure associates a twisted partner to any graded spectral
+triple, preserving a first-order condition. This seems the ideal way to twist the Standard
+Model. Unfortunately, this does not generate the extra scalar field. Indeed, one has that
+ΓF anticommutes independently with DY and DM (see e.g. [32, §4.1] for the computation
+in tensorial notations) so in particular γ5 ⊗ DM anticommutes with Γ = γ5 ⊗ ΓF. This
+means that
+(γ5 ⊗ DM)π+(a) = π−(a)(γ5 ⊗ DM) + 1
+2(I − Γ)[γ5 ⊗ DM, a],
+(64)
+(γ5 ⊗ DM)π−(a) = π+(a)(γ5 ⊗ DM) + 1
+2(I + Γ)[γ5 ⊗ DM, a].
+(65)
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+16
+So
+[γ5 ⊗ DM, π((a, a′))]ρ = (γ5 ⊗ DM)(π+(a) + π−(a′)) − (π+(a′) + π−(a))(γ5 ⊗ DM),
+= [γ5 ⊗ DM, a] + [γ5 ⊗ DM, a′].
+(66)
+The right hand side is zero since γ5 ⊗ DM commutes with the representation of A.
+Therefore γ5 ⊗ DM twist-commutes with the representation of A ⊗ C2. Hence the twist
+by grading does not modify the situation: γ5 ⊗ DM is transparent under under twisted
+fluctuations, just like it was under usual fluctuations.
+4.3. Twisted fluctuation without the first-order condition
+The twist by grading is not the only possibility for twisting up the Standard Model. As
+explained in [41, below Prop.3.8], in order to minimally twist a spectral triple (A, H, D)
+by C2, one may repeat the construction of the precedent section using, instead of the
+grading Γ, any operator ˜Γ that
+• squares to I and commutes with A: this condition is sufficient to guarantee that
+π+, π− in (60) are two representations of A commuting with each other, and it
+becomes necessary as soon as A is unital;
+• is selfadjoint: this is to guarantee that π+ and π− are involutive representations;
+• has both eigenvalues +1, −1 of non-zero multiplicity, so that neither π+ nor π− is
+zero.
+But there is no need for ˜Γ to anticommute with the Dirac operator. This means that ˜Γ
+is not necessarily a grading for the spectral triple.
+A classification of all such twisting operators ˜Γ for almost commutative geometries
+is on its way [37]. The anticommutation with the Dirac operator seems to be required
+to have the twisted first-order condition. This would imply that the extra scalar field
+and the twisted first-order condition be mutually exclusive.
+Therefore it becomes relevant to extend to the twisted case the results of [14]
+regarding inner fluctuations without the first-order condition. This has been done in
+[49], where it was shown that the removal of the twisted first-order condition yields a
+second order term in the twisted fluctuation (38), which is a straightforward adaptation
+of the term worked out in the non-twisted case.
+Following this path, a minimal twist of the Standard Model has been worked out
+in great details in [36], that does not preserve the twisted first-order condition and
+generates the extra scalar field. The gauge part of this model is similar to the Standard
+Model’s, and the Higgs sector is made of two Higgs doublets which are expected to
+combine in a single doublet in the action.
+There is the extra scalar field with two
+components σl, σr acting independently on the chiral components of spinors, and finally,
+there is also an unexpected new field of 1-forms Xµ, whose interpretation is discussed
+in the next section.
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+17
+5. Twist and change of signature
+At this point of our journey through twisted spectral triples, one seems to be back to
+the starting point: twisted spectral triples solve the unboundeness of the commutator of
+the grand algebra with /∂ ⊗ I, but they do not permit to generate the extra scalar field,
+unless one violates the twisted first-order condition. What is then their added value?
+The interest of the twist is not so much in the generation of the extra scalar field
+than in the new field of 1-form Xµ mentioned above. This field was already observed in
+[34], and its appearance actually does not depend on the details of the model [45]: it
+is intrinsic to minimal twists of almost commutative geometries. Even in the simplest
+case of a minimally twisted four dimensional manifold (without any product by a finite
+dimensional structure), a twisted fluctuation of the Dirac operator /∂ yields a field of
+1-forms, in contrast with the non twisted case where /∂ does not fluctuate.
+The physical sense of this fluctuation remained obscure, until it was confronted with
+an observation made in [30]: a twist induces on the Hilbert space a new inner product
+with Lorentzian signature. Furthermore, this product permits to define a twisted version
+of the fermionic action. In some example detailed below, in this action formula the field
+Xµ identifies with the (dual of) the 4-momentum in Lorentzian signature [47].
+5.1. Twisted inner product
+A gauge transformation (22), DA → Ad(u) DA Ad(u)−1, preserves the selfadjointness
+of the covariant Dirac operator DA, for Ad(u)−1 = Ju∗J−1u∗ = Ad(u)∗. A twisted
+gauge transformation (41)
+DAρ → ρ(Ad(u)) DAρ Ad(u)−1
+(67)
+does not. Is there some selfadjointness which is preserved by (67)?
+There is a natural inner product associated with a twisted spectral triple, as soon
+as the twisting autormorphism ρ extends to an inner automorphism of B(H):
+ρ(O) = ROR†
+∀O ∈ B(H)
+(68)
+for some unitary operator R on H. Namely, the ρ-inner product [30]
+⟨Ψ, Φ⟩ρ := ⟨Ψ, RΦ⟩.
+(69)
+Since ⟨Ψ, OΦ⟩ρ = ⟨ρ(O)†Ψ, Φ⟩ρ, the adjoint of O with respect to this new product is
+O+ := ρ(O)†.
+(70)
+If the unitary R commutes or anticommutes with the real structure, then ρ(Ad(u))
+as defined before (42) coincides with RAd(u)R∗ (making the notation ρ(Ad(u))
+unambiguous). In addition,
+�
+Ad(u)−1�+ =
+�
+RJu∗J−1u∗R∗�† = RuJuJ−1R∗ = ρ(Ad(u)).
+(71)
+Therefore a twisted gauge transformation (67) preserves the selfadjointness with respect
+to the ρ-inner product.
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+18
+Example: The minimal twist of a Riemannian spin manifold M of even dimension
+2m is
+A = C∞(M) ⊗ C2,
+H = L2(M, S),
+D = /∂;
+ρ
+(72)
+with twisting automorphism the flip ρ(f, g) = (g, f) for f, g in C∞(M).
+The
+representation is
+π(f, g) =
+�
+f I2m−1
+0
+0
+gI2m−1
+�
+∀(f, g) ∈ A.
+(73)
+The flip ρ extends to the inner automorphism of B(H) that exchanges the element on
+the diagonal and on the off-diagonal, implemented for instance by R = γ0 the first Dirac
+matrix. Then the ρ-product (69)
+⟨Ψ, Φ⟩ρ =
+�
+M
+Ψ†γ0Φ d4x
+(74)
+coincides pointwise with the Krein product for the space of spinors on a Lorentzian
+manifold (only pointwise, for the manifold on which one integrates is still Riemannian).
+This example points towards a link between twists and a kind of transition from
+Euclidean to Lorentzian signatures: by fluctuating a twisted Riemannian manifold, one
+ends up preserving a Lorentzian product! However, the twist is not an implementation
+of Wick rotation in noncommutative geometry (for this, see [27]): a twisted fluctuation
+(67) does not turn the operator DAρ, selfadjoint for the initial (Euclidean) inner product,
+into an operator DAuρ selfadjoint for the Lorentzian product.‡ A better understanding of
+the link between twist and Lorentzian signature follows from the study of the fermionic
+action.
+5.2. Fermionic action
+Given a real spectral triple (A, H, D), the fermionic action for the covariant operator
+DA is [12]
+Sf(DA) = ADA(˜ξ, ˜ξ)
+(75)
+with ˜ξ the Grassman variables associated to ξ ∈ H+ = {ξ ∈ H, Γξ = ξ} and
+ADA(ξ, ξ′) = ⟨Jξ, DAξ′⟩
+(76)
+the antisymmetric bilinear form defined by DA and the real structure J. The latter
+is needed to make the form antisymmetric (hence applicable on Grassman variables).
+One restricts to the eigenspace H+ of the grading because of the fermion doubling [43].
+This also makes sense physically, for H+ is the subspace of H generated by the elements
+ψ ⊗ Ψ with a well defined chirality (that is ψ ∈ L2(M, S) and Ψ ∈ HF are eigenvectors
+of γ5, ΓF with the same eigenvalue).
+‡ If one were starting with an operator selfadjoint for the twisted product, much in the vein of [53],
+then this selfadjointness would be preserved by twisted fluctuation.
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+19
+For a twisted spectral triple (A, H, D), ρ as in §5.1, the fermionic action is [30]
+Sf(DAρ) = TDAρ(˜ξ, ˜ξ)
+(77)
+for ξ ∈ Hr := {ξ ∈ H, Rξ = ξ}, ˜. the Grassmann variables and
+TDAρ(ξ, ξ′) := ⟨Jξ, RDAρξ′⟩.
+One inserts the matrix R in the bilinear form in order to make the action (77) invariant
+under a twisted gauge transformation (41) (the same is true in case there is no first-
+order condition [49]).
+The restriction to Hr guarantees that the bilinear form be
+antisymmetric.
+5.3. Twisted fluctuation as Lorentzian 4-momentum
+We begin with the minimal twist (72) of a 4-dimensional manifold. The +1 eigenspace
+of R = γ0 is spanned by Dirac spinors of the form ξ =
+�
+ζ
+ζ
+�
+with ζ a Weyl spinor. A
+selfadjoint twisted fluctuation (38) sends /∂ to the covariant operator
+/∂Aρ = /∂ − i Xµγµ,
+(78)
+parametrised by the 1-form field
+Xµ = fµγ5
+with
+fµ ∈ C∞(M, R).
+(79)
+The twisted fermionic action is [47, Prop. 3.5]
+Sf(/∂Aρ) = 2
+�
+M
+dµ ¯˜ζ
+†σ2 (if0 −
+3
+�
+j=1
+σj∂j) ˜ζ.
+(80)
+The integrand reminds of the Weyl Lagrangian – which lives in Lorentzian signature
+iψ†
+l ˜σµ
+M ∂µψl
+where
+˜σµ
+M := {I2, −σj} ,
+(81)
+except that the ∂0 derivative is missing. It can be restored assuming that ζ is a plane
+wave function of energy f0 (in unit ℏ = 1) with spatial part ζ(x), that is
+ζ(x0, x) = eif0x0ζ(x).
+(82)
+Then the integrand reads (modulo an irrelevant factor 2) as ¯˜ζ
+†
+σ2 ˜σµ
+M∂µ ˜ζ. However, this
+cannot be identified with the Weyl Lagrangian (81) because of the extra σ2 matrix which
+forbids the simultaneous identification of ˜ζ with ψl and ¯˜ζ
+†
+σ2 with iψ†
+l . In other terms,
+there are not enough degrees of freedom to identify the fermionic action of a twisted
+manifold with the Weyl Lagrangian.
+This can be cured by doubling the manifold. Namely one considers the product
+(C∞(M) ⊗ C2, L2(M, S) ⊗ C2, /∂ ⊗ I2).
+(83)
+of M by a finite dimensional spectral triple (C2, C2, 0). Its minimal twist is
+A =
+�
+C∞(M) ⊗ C2�
+⊗ C2,
+H = L2(M, S) ⊗ C2,
+D = /∂ ⊗ I2
+(84)
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+20
+with representation
+π(a, a′) =
+
+
+
+
+
+fI2
+0
+0
+0
+0
+f ′I2
+0
+0
+0
+0
+g′I2
+0
+0
+0
+0
+gI2
+
+
+
+
+
+a = (f, g), a′ = (f ′, g′) ∈ A
+(85)
+and twist ρ(a, a′) = (a′, a). The latter is implemented by the unitary R = γ0 ⊗I2, whose
++1 eigenspace Hr is now spanned by {ξ ⊗ e, φ ⊗ ¯e} where {e, ¯e} is a basis of C2 and
+ξ =
+�
+ζ
+ζ
+�
+,
+φ =
+�
+ϕ
+ϕ
+�
+(86)
+are Dirac spinors with ζ and ϕ Weyl spinors. A selfadjoint twisted fluctuation of D,
+DAρ = D − iXµγµ ⊗ I2 + gµγµ ⊗ ΓF
+(87)
+with ΓF the grading of the finite dimensional spectral triple [47, Prop.
+4.3], is
+parametrised by the same field Xµ as before and a second 1-form field
+gµI4
+with
+gµ ∈ C∞(M).
+(88)
+For a vanishing gµ, the fermionic action is the integral of [47, Prop. 4.4]
+L := 4¯˜ϕ†σ2
+�
+if0 − �3
+j=1 σj∂j
+�
+˜ζ.
+(89)
+One retrieves the Weyl Lagrangian (81) by identifying the physical Weyl spinors as
+ψl := ˜ζ and ψ†
+l := −i¯˜ϕ†σ2, then assuming ψl be of the form (82), that is ∂0ψl = if0ψl.
+Thus the fermionic action for a twisted doubled Riemannian manifold describes a plane
+wave solution of Weyl equation, in Lorentzian signature, whose 0th component of the
+4-momentum is p0 = −f0. The result also holds for the right-handed Weyl equation
+(see [47, Prop. 4.5]).
+A similar analysis holds for the spectral triple of electrodynamics proposed in [54].
+Its minimal twist is
+AED =
+�
+C∞(M) ⊗ C2�
+⊗ C2, H = L2(M, S) ⊗ C4,
+D = /∂ ⊗ I4 + γ5 ⊗ DF
+where the internal Dirac operator and the representation are
+DF =
+
+
+
+
+
+0
+d
+0
+0
+¯d
+0
+0
+0
+0
+0
+0
+¯d
+0
+0
+d
+0
+
+
+
+
+ , π(a, a′) =
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+fI2
+0
+0
+0
+0
+0
+0
+0
+0
+f ′I2
+0
+0
+0
+0
+0
+0
+0
+0
+f ′I2
+0
+0
+0
+0
+0
+0
+0
+0
+fI2
+0
+0
+0
+0
+0
+0
+0
+0
+g′I2
+0
+0
+0
+0
+0
+0
+0
+0
+gI2
+0
+0
+0
+0
+0
+0
+0
+0
+gI2
+0
+0
+0
+0
+0
+0
+0
+0
+g′I2
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+21
+with d ∈ C, a = (f, g), a′ = (f ′, g′) in C∞(M) ⊗ C2. The twist ρ(a, a′) = (a′, a) extends
+to an inner automorphism of B(H) generated by the unitary γ0 ⊗ I4. Its +1-eigenspace
+is generated by
+ξ1 ⊗ el,
+ξ2 ⊗ er,
+φ1 ⊗ el,
+φ2 ⊗ er,
+(90)
+where ξk, φk (k = 1, 2) are Dirac spinors of the form (86) while {el, er, el, er} is an
+orthonormal basis of C4.
+A selfadjoint twisted fluctuation of D is parametrized by the same two 1-form fields
+as before [47, Prop. 5.3]
+DAρ = D − iXµγµ ⊗ I′ + gµγµ ⊗ I′′
+(91)
+where I′ = diag(1, −1, 1, −1), I′′ = diag(1, 1, −1, −1) (the part γ5 ⊗ DF is transparent
+under twisted fluctuation: there is no Higgs field in classical electrodynamics!). Under
+a gauge transformation (41), one has that fµ is invariant while gµ trasforms as the U(1)
+gauge potential of electrodynamics.
+The spectral action is the integral of [47, Prop. 5.12]
+Lf
+ρ = ¯˜ϕ†
+1σ2
+�
+if0 −
+�
+j
+σjDj
+�
+˜ζ1−¯˜ϕ†
+2σ2
+�
+if0 +
+�
+j
+σjDj
+�
+˜ζ2+
+�
+¯d¯˜ϕ†
+1σ2¯ζ2 + d¯˜ϕ†
+2σ2¯ζ1
+�
+(92)
+where Dµ = ∂µ − igµ is the covariant derivative associated to the electromagnetic 4-
+potential. Defining the physical spinors as
+ψ =
+�
+ψl
+ψr
+�
+:=
+� ˜ζ1
+˜ζ2
+�
+,
+ψ† =
+�
+ψ†
+l , ψ†
+r
+�
+:=
+�
+−i¯˜ϕ†
+1σ2, i¯˜ϕ†
+2σ2
+�
+(93)
+then assuming that ∂0ψ = if0ψ and imposing d = −im with m > 0 to be purely
+imaginary, the Lagrangian (92) reads
+LM = iψ†
+l
+�
+D0 −
+�
+j
+σjDj
+�
+ψl+iψ†
+r
+�
+D0 +
+�
+j
+σjDj
+�
+ψr−m
+�
+ψ†
+l ψr + ψ†
+rψl
+�
+.(94)
+This is the Dirac Lagrangian in Minkowski spacetime, for a mass m, in the temporal
+gauge (that is D0 = ∂0). Hence the fermionic action for the minimal twist of the spectral
+triple of electrodynamics describes a plane wave solution of the Dirac equation in Lorentz
+signature, with 0th component of the 4-momentum p0 = −f0.
+By implementing the action of boosts on L2(M, S) ⊗C2, one is able to identify the
+other components of the fluctuation fµ with the other components of the 4-momentum.
+However this is obtained at the level of the equation of motion, not for the Lagrangian
+density (see [47, §6.1]).
+6. Conclusion and outlook
+The idea of using twisted spectral triples in high-energy physics was born with the hope
+of generating the extra scalar field needed to stabilise the electroweak vacuum (and to fit
+the Higgs mass), respecting the axioms of noncommutative geometry. More specifically
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+22
+it was thought that the first-order condition could be twisted, rather than abandoned.
+We have shown in this note that this is not possible. This moves the interest of the
+twist towards what seemed at first sight a side effect, namely the non-zero twisted
+fluctuation of the free Dirac operator /∂. It yields a new field of 1-forms, whose physical
+meaning becomes clear by computing the fermionic action. For the minimal twist of a
+doubled manifold, and the minimal twist of the spectral triple of electrodynamics, this
+fields identifies with (the dual of) the 4-momentum in Lorentzian signature. Preliminary
+computations indicate that a similar result also holds for the twist of the Standar Model
+presented in [36].
+It remains to be understood why one ends up in the temporal gauge.
+And
+more importantly, does the identification between twisted fluctuation of /∂ and the 4-
+momentum still makes sense for the bosonic part of the action, given by the spectral
+action? Not to mention that the definition of the latter in a twisted context has not
+been estabilised yet [31].
+Acknowledgments
+The first author is supported by the POLONEZ BIS program cofunded by a Marie Curie
+action. This work is part of the second author’s activity in the mathematical physics
+group of INDAM.
+Bibliography
+[1] J. W. Barrett. A Lorentzian version of the non-commutative geometry of the standard model of
+particle physics. J. Math. Phys., 48:012303, 2007.
+[2] F. Besnard and C. Brouder. Noncommutative geometry, the Lorentzian Standard Model and its
+B-L extension. Phys. Rev. D, 103:035003, 2021.
+[3] A. Bochniak and A. Sitarz. Finite pseudo-riemannian spectral triples and the standard model.
+Phys. Rev. D, 97:115029, 2018.
+[4] L. Boyle and S. Farnsworth.
+Noncommutative geometry, non-associative geometry and the
+standard model of particle physics. New J. Phys., 16(123027), 2014.
+[5] L. Boyle and S. Farnsworth. The standard model, the Pati-Salam model, and Jordan geometry.
+New J. Phys., 22(arXiv: 1910.11888):073023, 2020.
+[6] T. Brzezinski, N. Ciccoli, L. Dabrowski, and A. Sitarz.
+Twisted reality condition for Dirac
+operators. Math. Phys. Anal. Geo., 19(3:16), 2016.
+[7] T. Brzezinski, L. Dabrowski, and A. Sitarz.
+On twisted reality conditions.
+Lett. Math. Phys.,
+109(3):643–659, 04 2019.
+[8] A. H. Chamseddine and A. Connes. The spectral action principle. Commun. Math. Phys., 186:737–
+750, 1996.
+[9] A. H. Chamseddine and A. Connes.
+Universal formula for noncommutative geometry actions:
+unification of gravity and the standard model. Phys.Rev.Lett., 77:486804871, 1996.
+[10] A. H. Chamseddine and A. Connes. Why the standard model ? J. Geom. Phys, 58:38–47, 2008.
+[11] A. H. Chamseddine and A. Connes. Resilience of the spectral standard model. JHEP, 09:104,
+2012.
+[12] A. H. Chamseddine, A. Connes, and M. Marcolli. Gravity and the standard model with neutrino
+mixing. Adv. Theor. Math. Phys., 11:991–1089, 2007.
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+23
+[13] A. H. Chamseddine, A. Connes, and W. van Suijlekom.
+Beyond the spectral standard model:
+emergence of Pati-Salam unification. JHEP, 11:132, 2013.
+[14] A. H. Chamseddine, A. Connes, and W. van Suijlekom.
+Inner fluctuations in noncommutative
+geometry without first order condition. J. Geom. Phy., 73:222–234, 2013.
+[15] A. H. Chamseddine and W. D. van Suijlekom. A survey of spectral models of gravity coupled to
+matter. In: Chamseddine A., Consani C., Higson N., Khalkhali M., Moscovici H., Yu G. (eds)
+Advances in Noncommutative Geometry. Springer, pages 1–51, 2019.
+[16] A. Connes. Noncommutative Geometry. Academic Press, 1994.
+[17] A. Connes. Noncommutative geometry and reality. J. Math. Phys., 36:6194–6231, 1995.
+[18] A. Connes.
+Gravity coupled with matter and the foundations of noncommutative geometry.
+Commun. Math. Phys., 182:155–176, 1996.
+[19] A. Connes.
+Noncommutative geometry and the standard model with neutrino mixing.
+JHEP,
+081, 2006.
+[20] A. Connes. On the spectral characterization of manifolds. J. Noncom. Geom., 7(1):1–82, 2013.
+[21] A. Connes and J. Lott. Particle models and noncommutative geometry. Nuclear Phys. B Proc.
+Suppl., 18B:29–47, 1990.
+[22] A. Connes and J. Lott.
+The metric aspect of noncommutative geometry.
+Nato ASI series B
+Physics, 295:53–93, 1992.
+[23] A. Connes and M. Marcolli. Noncommutative geometry, quantum fields and motives. AMS, 2008.
+[24] A. Connes and H. Moscovici. Type III and spectral triples. Traces in number theory, geometry
+and quantum fields, Aspects Math. Friedt. Vieweg, Wiesbaden, E38:57–71, 2008.
+[25] D. T. D. Kastler. Quantum forms of tensor products. Commun. Math. Phys., 155:135–142, 1993.
+[26] L. Dabrowski, F. D’Andrea, and A. Sitarz.
+The standard model in noncommutative geometry:
+fundamental fermions as internal forms. Lett. Math. Phys., 108:1323–1340, 03 2018.
+[27] F. D’Andrea, M. A. Kurkov, and F. Lizzi. Wick rotation and fermion doubling in noncommutative
+geometry. Phys. Rev. D, 94(2):025030, 2016.
+[28] F. D’Andrea and P. Martinetti.
+A view on optimal transport from noncommutative geometry.
+SIGMA, 6(057):24 pages, 2010.
+[29] G. Degrassi, S. D. Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, and A. Strumia.
+Higgs mass and vacuum stability in the standard model at nnlo. JHEP, 08:098, 2012.
+[30] A. Devastato, S. Farnsworth, F. Lizzi, and P. Martinetti. Lorentz signature and twisted spectral
+triples. JHEP, 03(089), 2018.
+[31] A. Devastato, M. Filaci, P. Martinetti, and D. Singh. Actions for twisted spectral triple and the
+transition from the Euclidean to the Lorentzian.
+Int. J. Geom. Meth. Mod. Phys., 17(Supp.
+1):2030001 (10 pages), 2020.
+[32] A. Devastato, F. Lizzi, and P. Martinetti. Grand Symmetry, Spectral Action and the Higgs mass.
+JHEP, 01:042, 2014.
+[33] A. Devastato, F. Lizzi, and P. Martinetti. Higgs mass in noncommutative geometry. Fortschritte
+der Physik, 62(9-10):863–868, 2014.
+[34] A. Devastato and P. Martinetti. Twisted spectral triple for the standard model and spontaneous
+breaking of the grand symmetry. Math. Phys. Anal. Geo., 20(2):43, 2017.
+[35] M. Dubois-Violette, J. Madore, and R. Kerner. Classical bosons in a noncommutative geometry.
+Class. Quantum Grav., 6:1709, 1989.
+[36] M. Filaci and P. Martinetti. Minimal twist for the Standard Model in noncommutative geometry
+: the field content. Phys. Rev. D, 104:025011, 2021.
+[37] M. Filaci and P. Martinetti. Minimal twist of almost commutative geometries. in preparation.
+[38] N. Franco and M. Eckstein. An algebraic formulation of causality for noncommutative geometry.
+Class. Quantum Grav., 30:135007, 2013.
+[39] M. Goffeng, B. Mesland, and A. Rennie. Untwisting twisted spectral triples. International Journal
+of Mathematics, 30(14), 03 2019.
+
+A critical survey of twisted spectral triples
+beyond the Standard Model
+24
+[40] G. Landi.
+An introduction to noncommutative spaces and their geometry.
+Lecture Notes in
+Physics m51, 1997.
+[41] G. Landi and P. Martinetti. On twisting real spectral triples by algebra automorphisms. Lett.
+Math. Phys., 106:1499–1530, 2016.
+[42] G. Landi and P. Martinetti. Gauge transformations for twisted spectral triples. Lett. Math. Phys.,
+108:2589–2626, 2018.
+[43] F. Lizzi, G. Mangano, G. Miele, and G. Sparano. Fermion Hilbert space and fermion doubling in
+the noncommutative geometry approach to gauge theories. Phys. Rev. D, 55:6357, 1997.
+[44] P. Martinetti. Spectral distance on the circle. J. Func. Anal., 255(1575-1612), 2008.
+[45] P. Martinetti.
+Twisted spectral geometry for the standard model.
+J. Phys.:
+Conf. Ser.,
+626:012044, 2015.
+[46] P. Martinetti.
+From Monge to Higgs: a survey of distance computation in noncommutative
+geometry. Contemporary Mathematics, 676:1–46, 2016.
+[47] P. Martinetti and D. Singh. Lorentzian fermionic action by twisting euclidean spectral triples. J.
+Noncomm. Geo., 16(2):513–559, 2022.
+[48] P.
+Martinetti
+and
+R.
+Wulkenhaar.
+Discrete
+Kaluza-Klein
+from
+scalar
+fluctuations
+in
+noncommutative geometry. J. Math. Phys., 43(1):182–204, 2002.
+[49] P. Martinetti and J. Zanchettin. Twisted spectral triples without the first order condition. arXiv
+2103.15643, 2021.
+[50] M. A. Rieffel.
+Morita equivalence for operator algebras, volume 38 of Proc. Symp. Pure Math.,
+pages 285–298. AMS, 1982.
+[51] C. A. Stephan. New scalar fields in noncommutative geometry. Phys. Rev. D, 79:065013, 2009.
+[52] C. A. Stephan. Quantum Mathematical Physics, chapter Noncommutative Geometry in the LHC-
+Era. Birkhauser, 05 2013.
+[53] K. van den Dungen. Krein spectral triples and the fermionic action. Math. Phys. Anal. Geo., 19,
+2016.
+[54] K. van den Dungen and W. D. van Suijlekom. Electrodynamics from noncommutative geometry.
+J. Noncommut. Geom., 7:433–456, 2013.
+
diff --git a/hNE_T4oBgHgl3EQf3Rzj/content/tmp_files/load_file.txt b/hNE_T4oBgHgl3EQf3Rzj/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..959c0babaa630e7cde333efa660879687229c646
--- /dev/null
+++ b/hNE_T4oBgHgl3EQf3Rzj/content/tmp_files/load_file.txt
@@ -0,0 +1,895 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf,len=894
+page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='08346v1 [math-ph] 19 Jan 2023 A critical survey of twisted spectral triples beyond the Standard Model Manuele Filaci University of Cracovia, Institute fo Physics, Jagiellonian University prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Stanis�lawa �Lojasiewicza 11, 30-348 Krakow, Poland E-mail: manuele.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='filaci@uj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='pl Pierre Martinetti Universit`a di Genova (dpto di matematica) & INFN, via Dodecaneso, 16146 Genova, Italia E-mail: martinetti@dima.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='unige.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='it Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' We review the applications of twisted spectral triples to the Standard Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The initial motivation was to generate a scalar field, required to stabilise the electroweak vacuum and fit the Higgs mass, while respecting the first-order condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Ultimately, it turns out that the truest interest of the twist lies in a new – and unexpected – field of 1-forms, which is related to the transition from Euclidean to Lorentzian signature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Introduction From the pioneering work of [35] till the full formalism of Connes [16], noncommutative geometry provides a unified description of the Lagrangian of the Standard Model of fundamental interactions (electromagnetism, weak and strong interactions) [21][9][8];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' minimally coupled to the Einstein-Hilbert action of General Relativity [18];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' including right handed neutrinos [12];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' where the Higgs boson comes out naturally on the same footing as the other bosons, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' as the local expression of a connection 1-form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The approach works very well on Riemannian manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The generalisation to pseudo-Riemannian geometry, in particular Lorentzian manifolds, is far from obvious (there are various attempts in this direction, see for instance [1][2][38][53][3] and reference within).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In addition, noncommutative geometry offers possibilities to go beyond the Standard Model, by modifying the rules of the game in various ways: one may enlarge the space of fermions [51, 52], or get rid of the first-order condition (defined below) [14, 13], modify the real structure (also defined below) [7, 6], switch to non-associative geometry [4, 5], use some structure of Clifford bundle in order to modify some of the mathematical requirements defining a noncommutative geometry [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' For a recent review of “beyond Standard Model” propositions in the framework of noncommutative geometry, see [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Here we focus on another class of variations around Connes’ initial model, obtained by twisting the noncommutative geometry by an algebra automorphism [32][34][47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A critical survey of twisted spectral triples beyond the Standard Model 2 All the possibilities above but the first are minimal extensions of the Stan- dard Model, in that they yield an extra scalar field σ – suggested by particle physi- cists to stabilize the electroweak vacuum – but do not touch the fermionic content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The novelty of the twist is to generate another additional piece: a new field of 1-forms, which suprisingly turns out to be related to the transition from Euclidean to Lorentzian sig- nature [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In particular, in the example of electrodynamics, this field identifies with the (dual) of the 4-momentum vector in Lorentzian signature, even though one started with a Riemannian manifold [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' All this is explained as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In the next section we begin by some recalling on the spectral description of the Standard Model [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' We stress the process of fluctuation of the metric, which is the way to generate bosonic fields in noncommutative geometry by turning the constant parameters of the model into fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In section 3 we describe the model of grand algebra developed in [32], which aimed at generating the extra scalar field σ, while respecting the first-order condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The idea is to start with an algebra bigger than the one of the Standard Model, in order to have more “space” to generate bosonic fields by fluctuations of the metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This model does indeed generate the expected field σ, by letting the Majorana mass of the neutrinos fluctuate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Even though the first-order condition associated with this Majorana mass is preserved, the problem moves to the free Dirac operator: not only does the latter break the first-order condition, but its commutator with the algebra is unbounded, in contradiction with the very definition of spectral triple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This kind of problem is typically solved by twisting the spectral triple in the sense of Connes and Moscovici [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A twisting of the grand algebra down to the Standard Model has been worked out in [34], but we show in §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='3 that this does not define stricto-sensu a twisted spectral triple, for only the part of the algebra relevant for the extra scalar field has been twisted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Applying the twist to the whole algebra suggests a general procedure to twist any graded spectral triple, as recalled in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' It consists in doubling the algebra one is beginning with, rather than finding it from the reduction of a bigger algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Such a “twisting up” procedure has been studied in a couple of papers [41][42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' There is some freedom in the construction, especially in the choice of the twisting operator whose eigenspaces determine the representation of the doubled algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' By choosing the grading as the twisting operator, one automatically satisfies the twisted first-order condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' However, when applied to the spectral triple of the Standard Model, this twist-by-grading does not generate any extra scalar field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Some preliminary results, mentioned in §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='3, indicate that this is a general feature of the twisting-up procedure: the twisted first-order condition and the extra scalar field are mutually exclusive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Hence the necessity to adapt to the twisted case the fluctuations without first-order condition introduced in [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This has been done in [49] and is summarised in §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Section 5 deals with what might be the truest interest of the twist, namely the unexpected field of 1-forms arising from the twisted fluctuation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In the example of electrodynamics [47],[54], this field identifies with the dual of the 4-momentum in Lorentzian signature, even though one started with a Riemannian spectral triple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A critical survey of twisted spectral triples beyond the Standard Model 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The spectral description of the Standard Model We begin with the definition of spectral triple, which is the central tool in Connes’ noncommutative geometry, emphasising how the bosonic fields – including the Higgs field – are obtained as connection 1-forms, through the process of fluctuation of the metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' We then summarise the spectral description of the Standard Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Spectral triple A spectral triple [16] consists of an algebra A acting on a Hilbert space H together with a selfadjoint operator D with compact resolvent, whose commutator [D, a] is bounded for any a ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' It is graded if it comes with a selfadjoint operator Γ on H which squares to the identity operator I, anticommutes with D and commutes with the algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A spectral triple is real [17] if in addition there is an antilinear operator J on H satisfying J2 = ǫI, JD = ǫ′DJ, JΓ = ǫ′′ΓJ (1) where ǫ, ǫ′, ǫ′′ = ±1 define the KO-dimension k ∈ [0, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This real structure implements a map a → a◦ := Ja∗J−1 from A to the opposite algebra A◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This yields a right action of A on H, ψa := a◦ψ, which is asked to commute with the left action [a, Jb∗J−1] = 0 ∀a ∈ A (order zero condition).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (2) There is also a first-order condition [18], [[D, a], Jb∗J−1] = 0 ∀a, b ∈ A (3) which is there to guarantee that the operator D be a first-order differential operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' All these properties are satisfied by the triple (C∞(M), L2(M, S), /∂) (4) where C∞(M) is the (commutative) algebra of smooth functions on a closed Riemannian manifold M of dimension m, acting by multiplication on the Hilbert space L2(M, S) of square-integrable spinors on M, and /∂ = −i m � µ=1 γµ(∂µ + ωµ), with γµγν + γνγµ = 2gµνI (5) is the Dirac operator (ωµ is the spin connection, γµ the Dirac matrices and gµν the Riemannian metric on M, all given in local coordinates).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' For m even, this spectral triple has grading the product of the Dirac matrices (in dimension 4, the matrix γ5) and real structure J the charge conjugation operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Adding other conditions [20] (which are satisfied by the triple (4)), one gets Connes’ reconstruction theorem, that extends Gelfand duality (between compact topological spaces and C∗-commutative algebras) beyond topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Namely, given any real spectral triple (A, H, D) satisfying these conditions, with A commutative, then there exists a closed Riemannian manifold M such that A ≃ C∞(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A noncommutative geometry is then defined as a spectral triple (A, H, D) where A is non (necessarily) commutative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This gives access to new geometrical objects, that can be intended as “spaces” whose algebra of functions A is not commutative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A critical survey of twisted spectral triples beyond the Standard Model 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Connection Take a gauge theory with gauge group G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' From a mathematical point of view, the fermionic fields form sections of a G-bundle E over the spacetime M, while the bosonic fields are described as connections on E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In noncommutative geometry the spacetime M is substituted by a spectral triple (A, H, D), where A plays the role of “algebra of functions” on the noncommutative space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' To understand what plays the role of a gauge bundle, recall that the set of sections of any bundle on a manifold M forms a finite projective C∞(M)-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Conversely, by Serre-Swan theorem, any such module actually is the module of sections of a bundle on M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' That is why, in noncommutative geometry, the role of gauge bundles is played by finite projective A-modules E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Connections on these modules are, by definition, objects associated with a derivation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Recall that a derivation δ on an algebra A is a map from A to some A-bimodule Ω satisfying the Leibniz rule δ(ab) = aδ(b) + δ(a)b ∀a, b ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (6) A connection on a (right) A-module E associated with δ is a map from E to E ⊗A Ω such that the following Leibniz rule holds, ∇(ηa) = ∇(η)a + η ⊗ δ(a) ∀η ∈ E, a ∈ A, (7) where Ω = �� i aiδ(bi), ai, bi ∈ A � (8) is the A-bimodule generated by the derivation δ, while ∇(η)a is a shorthand notation for η(0)a ⊗ η(1), using Sweedler notations ∇η = η(0) ⊗ η(1) with η(0) ∈ E and η(1) ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Example: The exterior derivative d is a derivation on the algebra C∞(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' It generates the C∞(M)-bimodule of section s of the cotangent bundle, Ω1(M) := �� i fidgi with fi, gi ∈ C∞(M) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (9) A connection on the tangent bundle TM associated with d is a map ∇ : Γ∞(TM) → Γ∞(TM) ⊗ Ω1(M), (10) ∂ν �→ Γρ µν∂ρ ⊗ dxµ, (11) where Γ∞(TM) denotes the set of smooth sections of TM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' One retrieves the usual notion of connection, as a map from Γ∞(TM) × Γ∞(TM) to Γ∞(TM) as ∇ : (∂η, ∂ν) �→ ∇η∂ν := Γρ µν∂ρ ⊗C∞(M) ⟨dxµ, ∂η⟩ ≃ ⟨dxµ, ∂η⟩Γρ µν∂ρ = Γρ ην∂ρ, where ⟨.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='⟩ is the C∞(M)-valued dual product between the cotangent and the tangent bundles and the last equation is the isomorphism between E ⊗C∞(M) C∞(M) and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A critical survey of twisted spectral triples beyond the Standard Model 5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Fluctuation of the metric To understand when two algebras are “similar”, a relevant notion is Morita equivalence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This is more flexible than isomorphism of algebras for, roughly speaking, two algebras A and B are Morita equivalent if they have the same representation theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Technically, it means that there exists an Hermitian finite projective A-module E such that B is isomorphic to the algebra EndA(E) of A-linear, adjointable, endormorphisms of E (for details see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [50] or [40]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The idea of fluctuation of the metric comes from the following question: how does one export a real spectral triple (A, H, D) to a Morita equivalent algebra B ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' We recall the construction of [18], whose details may be found in [23] and even more details in [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Assume E = ER is a right A-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The algebra B acts on HR := ER ⊗A H as b(η ⊗ ψ) = bη ⊗ ψ ∀b ∈ B, η ∈ ER, ψ ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (12) However, the “natural” action of D on HR, DR(η ⊗ ψ) := η ⊗ Dψ, (13) is not compatible with the tensor product, for DR(ηa ⊗ ψ) − DR(η ⊗ aψ) = −η ⊗ [D, a]ψ (14) has no reason to vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This is cured by equipping ER with a connection ∇ with value in the A-bimodule of generalised 1-forms Ω1 D(A) := �� i ai[D, bi], ai, bi ∈ A � (15) generated by the derivation δ(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=') = [D, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Indeed, the following operator, DR(η ⊗ ψ) := η ⊗ Dψ + (∇η)ψ (16) is well defined on HR, and selfadjoint as soon as ∇ is an hermitian connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Moreover one checks that the commutator [DR, b] is bounded for any b ∈ B, so that (B, HR, DR) is a spectral triple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In particular, if one considers self-Morita equivalence, that is B = ER = A, then the operator (16) with ∇ hermitian reads DR = D + AR (17) with AR = A∗ R ∈ Ω1 D(A) a selfadjoint generalised 1-form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A similar construction holds if one implements Morita equivalence with a left module EL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Then HL = H ⊗A EL is a Hilbert space and the operator DL(ψ ⊗ η) := Dψ ⊗ η + (∇◦η)ψ (18) with ∇◦ a connection with value in the bimodule Ω1 D(A◦) = �� i a◦ i [D, b◦ i ], a◦ i , b◦ i ∈ A◦ � A critical survey of twisted spectral triples beyond the Standard Model 6 is well defined on HL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' For ∇◦ hermitian, one obtains a spectral triple (B, HL, DL).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' For self-Morita equivalence, one gets DL = D + A◦ = D + ǫ′J AL J−1 (19) with A◦ ∈ Ω1 D(A◦) and AL ∈ Ω1 D(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' To take into account the real structure, one combines the two constructions, using an A-bimodule E to implement Morita equivalence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' For self-Morita equivalence, one then obtains the operator D′ = D + AR + ǫ′J ALJ−1 acting on H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Requiring this operator to be selfadjoint and J to be a real structure amounts to the existence of a generalised selfadjoint 1-form A ∈ Ω1 D(A) such that D′ = DA := D + A + ǫ′J AJ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (20) Then (A, H, DA) is a real spectral triple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The operator DA is called a covariant Dirac operator, and the substitution of D with a DA is a fluctuation of the metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The name is motivated by the existing relation between the Dirac operator and the metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This relation is obvious on a spin manifold, from the very definition of the Dirac matrices ( γνγν+γνγµ = 2gµν), and it still makes sense for an arbitrary noncommutative geometry, via the definition of the spectral distance [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' On a manifold, this distance gives back the geodesic distance associated with the Riemannian structure of M, while on an arbitrary spectral triple it may be seen as a generalisation of the Wasserstein distance of order 1 in the theory of optimal transport (cf [28, 46] and references therein).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' By exporting a noncommutative geometry to a Morita equivalent algebra, one passes from D to the covariant operator DA and modifies accordingly the spectral distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In particular, for the Standard Model, such a fluctuation provides a purely metric interpretation to the Higgs field (which is one of the components of the generalised 1-form A, see below) [18, 48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The metric interpretation of the other components of A has been worked out in [48, 44], in relation with the Carnot-Carath´eodory distance in sub-Riemannian geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Gauge transformation A gauge transformation is a change of connection on the Morita-equivalence bimodule E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In case of self-Morita equivalence, it is implemented by the conjugate action on H of the group U(A) of unitaries element of A (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' u ∈ A such that u∗u = uu∗ = I): Ad(u) : ψ → uψu∗ = u(u∗)◦ψ = uJuJ−1ψ ∀ψ ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (21) This action maps the covariant Dirac operator DA to Ad(u) DA Ad(u)−1 (22) and one checks that this operator coincides with the operator DAu, defined as in (20) with Au := u[D, u∗] + uAu∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (23) This is the formula of transformation of the gauge potential in noncommutative geometry, which generalises the usual one of gauge theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A critical survey of twisted spectral triples beyond the Standard Model 7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Standard Model The spectral triple of the Standard Model [12] is the product A = C∞(M) ⊗ AF, H = L2(M, S) ⊗ HF, D = /∂ ⊗ I96 + γ5 ⊗ DF (24) of the spectral triple (4) of a 4-dimensional Riemannian closed spin manifold M with a finite dimensional spectral triple AF = C ⊕ H ⊕ M3(C), HF = C96, DF = � D0 048 048 D† 0 � � �� � DY + � 048 DR D† R 048 � � �� � DM (25) where H is the algebra of quaternions and M3(C) the algebra of complex 3×3 matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The dimension of HF is the number of fermions in the Standard Model (including right-handed neutrinos).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Its entries are labelled by a multi-index C I α n where C = 0, 1 labels particles (C = 0) or anti-particles (C = 1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' I = 0, i with i = 1, 2, 3 is the lepto-colour index: it takes value I = 0 for a lepton and I = 1, 2, 3 for a quark with its three possible colours;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' α = ˙1, ˙2, 1, 2 is the flavour index (with dot indicating the chirality): ˙1 = νR, ˙2 = eR, 1 = νL, 2 = eL for leptons (I = 0), (26) ˙1 = uR, ˙2 = dR, 1 = qL, 2 = dL for quarks (I = i);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (27) n = 1, 2, 3 is the generation index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The details of the representation of AF is in [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The important point for our matter is that the quaternions act only on the particle subspace of HF (C = 0), trivially on the lepto-colour index I, and through their fundamental representation on the last two flavour indices α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' whereas M3(C) acts only on antiparticle subspace of HF (C = 1), trivially on the flavour index α and through their fundamental representation on the lepto-colour index i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The algebra C acts both on particles together with the quaternions (but on the first two flavour indices), and on antiparticles together with M3(C) (on I = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The grading of the finite dimensional spectral triple is the 96 × 96 matrix ΓF with entries +1 on left particles/right antiparticles, −1 on right particles/left antiparticles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The real structure is the matrix JF that exchanges particles with antiparticles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The spectral triple (24) is real, with grading Γ = γ5 ⊗ ΓF and real structure J = J ⊗ JF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In the particles/antiparticles indices,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' the Dirac operator DF of the finite dimensional spectral triple is the sum of a block diagonal matrix DY which contains the Yukawa couplings of the fermions,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' the Cabibbo-Kobayashi-Maskawa mixing matrix for the quarks and the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix for the left- handed neutrinos,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' and a block off-diagonal matrix DM which contains the Majorana masses kn R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' n = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 3 of the right-handed neutrinos and the corresponding mixing matrix (notations are those of [36],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' they differ from the ones of [32] and [34]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A critical survey of twisted spectral triples beyond the Standard Model 8 The generalised 1-forms (15) for a product of spectral triples (24) decompose as [25] A = γ5 ⊗ H − i � µ γµ ⊗ Aµ (28) where H is a scalar field on M with values in AF, while Aµ is a 1-form field on M with values in the Lie algebra of the group U(AF) of unitary elements of AF (differently said: a connection 1-form on a U(AF)-bundle on TM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In particular, for the spectral triple of the Standard Model, one has U(AF) = U(C ⊕ H ⊕ M3(C)) ≃ U(1) × SU(2) × U(3), (29) which is reduced to the gauge group U(1) × SU(2) × SU(3) of the Standard Model by imposing a unimodularity condition (which also guarantees that the model is anomaly free, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='g [12, §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='5]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The action of this group on H is a matrix whose components are the hypercharges of the fermions of the Standard Model [12, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This allows to identify the basis elements of HF with the 96 fermions of the Standard Model, and the corresponding elements in H with the fermionic fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Moreover, the action of A+JAJ−1 corresponds to the bosonic hypercharges, and allows to identify the components of Aµ with the bosonic fields of the Standard Model [12, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' One also checks that (23) yields the expected gauge transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The interpetation of the scalar field H follows from the computation of the spectral action [8, 9], namely the asymptotic expansion Λ → ∞ of Tr f( D2 A Λ2 ) where f is a smooth approximation of the characteristic function of the interval [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' One obtains the bosonic Lagrangian of the Standard Model coupled with Einstein-Hilbert action in Euclidean signature, where H is the Higgs field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The coupling constants of the electroweak and strong interactions satisfy the relation expected in grand unified theories, and are related to the value at 0 of the function f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The spectral action provides some relations between the parameters of the Standard Model at a putative unification scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The physical predictions are obtained by running down the parameters of the theory under the renormalisation group equation, taking these relations as initial conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Assuming there is no new physics between the unification scale and the electroweak scale, one finds a value for the Higgs mass around 170 GeV, in disagrement with the measured value 125, 1 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' However, for a Higgs boson with mass mH ≤ 130 Gev, the quartic coupling λ of the Higgs field becomes negative at high energy, meaning the electroweak vacuum is meta-stable rather than stable [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This instability can be cured by a new scalar field σ which couples to the Higgs field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In the spectral description of the Standard Model, such a field is obtained by turning into a field the neutrino Majorana mass kR which appears in the off-diagonal part DR of the finite dimensional Dirac operator DF: kR → kRσ, Furthermore, by altering the running of the parameters under the equations of the group of renormalization, this extra scalar field makes the computation of the mass of the Higgs boson compatible with its experimental value [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A critical survey of twisted spectral triples beyond the Standard Model 9 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Grand algebra beyond the Standard Model The point in the above is to justify the turning of the constant kR into a field kRσ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This cannot be obtained by fluctuation of the metric, for one checks that [γ5 ⊗ DM, a] = 0 ∀a, b ∈ A = C∞(M) ⊗ AF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (30) In other terms, the constant kR is transparent under fluctuation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The solution proposed in [14] is to remove the first-order condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This gives more flexibility, and permits to obtain the extra scalar field as a fluctuation without the first-order condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The latter is retrieved dynamically, by minimising the spectral action [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In this way the field σ is the “Higgs” boson associated with the breaking of the first-order condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Grand algebra At the same time, an alternative process was described in [32] where one mixes the internal degrees of freedom per generation of the finite dimensional Hilbert space HF, that is HF ≃ C32, with the 4 spinorial degrees of freedom of L2(M, S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This provides exactly the 4 × 32 = 128 degrees of freedom required to represent the “second next algebra” in the classification of finite dimensional spectral triples made in [19, 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In this classification, the smallest algebra – H⊕M2(C) – is too small to accomodate the Standard Model;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' the second smallest one – ASM = M2(H)⊕M4(C) – reduces to the left-right algebra ALR = HL ⊕ HR ⊕ M4(C) by imposing the grading condition, which breaks to the algebra AF of the Standard Model by the first-order condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The next one is M3(H)⊕M6(C) and has not found any physical interpretation so far.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Then comes the grand algebra [32] AG = M4(H) ⊕ M8(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (31) It is too big to be represented on the Hilbert space HF in a way compatible with the axioms of noncommutative geometry: the latter require a space of dimension d = 2(2a)2, where a is the dimension of the quaternionic matrix algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' For ASM one has a = 2, which corresponds to d = 2(2 · 2)2 = 32, that is the dimension of HF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' For the grand algebra AG, a = 4 and one needs a space four times bigger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This bigger space is obtained by allowing C∞(M) to act independently on the left and right components of spinors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This permits to represent on L2(M, S) ⊗ HF the algebra C∞(M) ⊗ AG – viewed as functions on M with value in AG – in such a way that for any a ∈ C∞(M) ⊗ AG and x ∈ M, then a(x) ∈ AG acts on HF in agreement with the classification of [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Within the tensorial notation of §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='5, the components M4(H) and M8(C) of the grand algebra are 2 × 2 matrices Q, M with entries in M2(H) and M4(C) that act on HF as ASM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The difference with the spectral triple of the Standard Model is that, once tensorised by C∞(M), the 2×2 matrices Q, M have a non-trivial action on the spinorial degrees of freedom of L2(M, S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' We denote the latter by two indices: s = l, r for the left/right components of spinors;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' ˙s = ˙0, ˙1 for the particle/antiparticle subspaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A critical survey of twisted spectral triples beyond the Standard Model 10 In [32] one makes C∞(M) ⊗ M4(H) ∋ Q, resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' C∞(M) ⊗ M8(C) ∋ M, act non trivially on the ˙s, resp s, index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Omitting all the indices on which the action is trivial, Q = � Q ˙0β ˙0α Q ˙1β ˙0α Q ˙0β ˙1α Q ˙1β ˙1α � ˙s˙t , M = � MrJ rI MlJ rI MrJ lI MlJ lI � st , (32) where β, J, t and ˙t are summation indices within the same range as α, I, s, t (the indices after the closing parenthesis are those labelling the matrix entries).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Since γ5 acts non trivially on the spinorial chiral index, the grading condition forces M to be diagonal in the st indices: MlJ rI = MlJ lr = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Since ΓF is non trivial only in the flavour index α, in which the remaining entries MlJ lI , MrJ rI ∈ M4(C) act trivially, the grading does not induce any further breaking in the complex sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' On the contrary, since γ5 is trivial in the ˙s index but quaternions act non trivially on the α index, the grading forces Q to be diagonal in the flavour index, with components QL ˙t ˙s, QR ˙t ˙s ∈ C∞(M) ⊗ M2(H) acting on the left/right subspaces of the internal Hilbert space HF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In other terms, the grading condition breaks the grand algebra in A′ G = (M2(H)L ⊕ M2(H)R) ⊕ (M4(C)l ⊕ M4(C)r) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (33) To guarantee the first-order condition for the Majorana component γ5⊗DR of the Dirac operator, a solution is to further break A′ G to A′′ G = (HL ⊕ H′ L ⊕ CR ⊕ C′ R) ⊕ (Cl ⊕ M3(C)l ⊕ Cr ⊕ M3(C)r) (34) with CR = Cr = Cl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In the first term, the unprimed algebras act on the particle subspace ˙s = ˙0, while the primed ones act on the antiparticle subspace ˙s = ˙1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A fluctuation of the metric of γ5 ⊗ DR then yields an extra scalar field σ, which lives in the difference between CR and C′ R, and fixes the Higgs mass as expected [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In this grand algebra model, the fermionic content is not altered, since the total Hilbert space H is untouched.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' One also checks the order zero condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The first-order condition for the free part /∂ ⊗ I of the Dirac operator forces the components acting on the chiral spinorial index to be equal, as well as those acting on the particle/antiparticle index, meaning H′ L = HL, C′ R = CR and M3(C)l = M3(C)r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Thus A′′ G reduces to HL⊕CR⊕M3(C), namely the algebra of the Standard Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The field σ thus appears as the Higgs field related to the breaking of the first-order condition by /∂⊗I, whereas in [14] it is related with the first-order condition for γ5 ⊗ DR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' By enlarging the algebra, one has moved the symmetry breaking from the internal space to the manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' However, the price to pay for a non trivial action on spinors is the unboundedness of the commutator of /∂ ⊗I with the grand algebra: for a = f ⊗m ∈ C∞(M)⊗AG one has [/∂ ⊗ I, a] = [/∂, f] ⊗ m = −i[γµ∂µ, f] ⊗ m − i[γµωµ, f] ⊗ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (35) The second term is always bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' By the Leibniz rule, the first one is −i[γµ, f]∂µ − iγµ(∂µf), (36) which is bounded iff the component ∂µ vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Since the only matrix that commutes with all the Dirac matrices is the identity matrix, the commutator (35) is bounded if and only if f acts on L2(M, S) as a multiple of the identity matrix, that is on the same way on the left and right components of spinors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A critical survey of twisted spectral triples beyond the Standard Model 11 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Twisted spectral triples Mixing the spinorial and internal degrees of freedom of the Hilbert space H - in order to represent an algebra bigger than the one of the Standard Model - turns out to be incompatible with the very definition of spectral triple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' As explained at the end of the preceding section, this does not depend on the details of the representation: as soon as the grand algebra acts non trivially on spinors, then the commutator with the free part of the Dirac operator is unbounded [45], no matter if the representation is (32) or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The unboundedness of the commutator is the kind of problems adressed by Connes and Moscovici when they define twisted spectral triples in [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Their motivation had little to do with physics, but were purely mathematical (building spectral triples with type III algebras).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Given a triple (A, H, D), instead of asking the commutators [D, a] to be bounded, one asks the boundedness of the twisted commutators [D, a]ρ := Da − ρ(a)D (37) for some fixed automorphism ρ ∈ Aut(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The whole process of fluctuation of the metric has been adapted to the twisted case in [41, 42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' One obtains the covariant Dirac operator DAρ := D + Aρ + J Aρ J−1 (38) where Aρ is an element of the set of twisted 1-forms Ω1 D(A, ρ) := �� i ai[D, Jb∗ i J−1]ρ◦, ai, bi ∈ A � (39) with ρ◦ := ρ(a∗)◦ is the automorphism of the opposite algebra A◦ induced by ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' There is also twisted version of the first-order condition [34, 41] [[D, a]ρ, Jb∗J−1]ρ◦ = 0 ∀a, b ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (40) A gauge transformation is implemented by the twisted action of the operator Adu (22), ρ(Adu) DAρ Adu−1, (41) with ρ(Adu) := ρ(u)Jρ(u)J−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Such a transformation maps DAρ to DAuρ where Au ρ = ρ(u)[D, u∗]ρ + ρ(u)Aρu∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (42) This is the twisted version of the gauge transformation (23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Twisting the grand algebra To resolve the unboundedness of the commutator arising in the grand algebra model, the idea is to find an automorphism of C∞(M) ⊗ AG such that the twisted commutator (37) of any element (Q, M) ∈ C∞(M) ⊗ AG with /∂ ⊗ I be bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This must be true in particular for (Q, 0) and (0, M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Repeating the computation (35) (36), and taking into account only the spinorial indices s, ˙s (since /∂ ⊗ I acts as the identity on all A critical survey of twisted spectral triples beyond the Standard Model 12 the other indices, the corresponding sector of the algebra must be invariant under the automorphism, for Ia − ρ(a)I = 0 iff a = ρ(a)), one finds that ρ should be such that γµQ − ρ(Q)γµ = 0 and γµM − ρ(M)γµ = 0 ∀µ = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', dim M (43) for any Q ∈ M4(H) ⊗ C∞(M) and M ∈ M8(C) ⊗ C∞(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' By easy computation, using the explicit form of the γ matrices in the chiral basis, γµ = � 02 σµ ¯σµ 02 � st σµ = � I, σi� , ¯σµ = � I, iσi� , (44) where σi are the Pauli matrices, one checks that any two 4 × 4 complex matrices A, B such that Aγµ = γµB for any µ are necessarily of the form A = � λI2 02 02 λ′I2 � B = � λ′I2 02 02 λI2 � for some λ, λ′ ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (45) Thus (43) implies that both M and Q must be trivial in the ˙s index, diagonal in the chiral index s, with ρ the autormorphism that exchanges the left and right components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Therefore the representation (32) of the grand algebra is not suitable to build a twisted spectral triple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In order to find a good representation, remember that the field σ has its origin in the two copies CR, C′ R of C in A′′ G (34), which come from the non-trivial action of C∞(M) ⊗ M4(H) on the ˙s index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Since the latter is no longer allowed, it seems natural to make C∞(M) ⊗ M4(H) act non trivially on the chiral index s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' On the contrary, the complex sector plays no obvious role in the generation of the field σ, so one lets C∞(M) ⊗ M8(C) act trivially on both the s, ˙s indices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' On the other indices, the action of M4(H), M8(C) is as in the Standard Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The grading condition now breaks M4(H) to Hl L ⊕ Hr L ⊕ Hl R ⊕ Hr R but leaves M8(C) untouched.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Reducing the latter “by hand” to M4(C), one gets the algebra [34] B′ = Hl L ⊕ Hr L ⊕ Hl R ⊕ Hr R ⊕ M4(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (46) Let ρ be the automorphism of C∞(M) ⊗ B′ that flips the chiral spinorial degrees of freedom, ρ(ql L, qr L, ql R, qr R, m) := (qr L, ql L, qr R, ql R, m) (47) where each of the q is a quaternionic function with value in its respective copy of H and m ∈ C∞(M) ⊗ M4(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Then (C∞(M) ⊗ B′, L2(M, S) ⊗ C32, /∂ ⊗ I) (48) is a twisted spectral triple which satisfies the first-order condition [34, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Regarding the Majorana Dirac operator, let us consider the subalgebra of B′ ˜B = Hl L ⊕ Hr L ⊕ Cl R ⊕ Cr R ⊕ (C ⊕ M3(C)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (49) Given two of its elements (ql L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' qr L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' cl R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' cr R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' c,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' m),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (rl L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' rr L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' dl R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' dr R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' n) with c,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' cl R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' cr R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' dl R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' dr R complex functions,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' ql L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' qr L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' rl L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' rr L quaternionic functions and m,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' n functions with values in M3(C),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' denoting π′ the representation of B′ in the spectral triple (48),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' one finds that [γ5 ⊗ DR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' π′(ql L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' qr L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' cl R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' cr R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' c,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' m)]ρ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' π′(rl L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' rr L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' dl R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' dr R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' n)]ρ (50) vanishes as soon as c = cl R and d = dl R (or c = cr R and d = dr R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A critical survey of twisted spectral triples beyond the Standard Model 13 In [34], this was improperly interpreted as a breaking of B′ to B = Hl L ⊕ Hr L ⊕ Cl R ⊕ Cr R ⊕ M3(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (51) acting as ˜B with C = Cl R, namely the representation π of B is π(ql L, qr L, cl R, cr R, m) := π′(ql L, qr L, cl R, cr R, cl R, m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (52) But ρ exchanges the left/right components in the quaternionic sector only, so that π′(ρ(ql L, qr L, cl R, cr R, cl R, m)) = π′(qr L, ql L, cr R, cl R, cl R, m) (53) is not the representation (52) of any element in C∞(M) ⊗ B (the latter requires the identification of the first and third complex functions, whereas in (53) the second and third are identified), unless cr R = cl R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This means that the breaking from B′ to B is not compatible with the twist unless C = Cl R identifies with Cr R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In that case, B′ actually breaks to Hl L ⊕ Hr L ⊕ C ⊕ M3(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This algebra contains only one copy of C and so does not generate the field σ by twisted fluctuation of γ5 ⊗ DR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In other terms, the model developed in [34] does not allow to generate the extra scalar field while preserving the first-order condition (even in a twisted form), as opposed to what was claimed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The error is due to not noticing that the reduction from ˜B to B, imposed by the twisted first-order condition of the Majorana Dirac operator, is not invariant under the twist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' So it does not make sense to try to build a spectral triple with C∞(M) ⊗ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Nevertheless all the expressions computed in [34] of the form Tπ′(a) − π′(ρ(a))T (54) for T = /∂ ⊗ I or γ5 ⊗ DR are algebraically correct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The point is that they are twisted commutators (37) for a in C∞(M) ⊗ ˜B, but not for a in C∞(M) ⊗ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Indeed, although (53) does define a representation of C∞(M) ⊗ B, ˆπ(ql L, qr L, cl R, cr R, m) := π′(qr L, ql L, cr R, cl R, cl R, m), (55) there is no automorphism η of C∞(M) ⊗ B such that ˆπ would equal π ◦ η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' What the results of [34] show is that starting with the twisted spectral triple (C∞(M) ⊗ ˜B, L2(M, S) ⊗ HF, /∂ ⊗ I + γ5 ⊗ DF), (56) whose Majorana part violates the twisted first-order condition, then a twisted fluctuation of the Dirac operator by the subalgebra C∞(M) ⊗ B yields the field σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Minimising the spectral action (suitably generalised to the twisted case) breaks the algebra to the one of the Standard Model, which satisfies the first-order condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' As noticed at the end of [41], an alternative way to interprete (54) for a in C∞(M) ⊗ B is to view it as a twisted commutator for the represented algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Namely defining the inner automorphism αU(B) := UBU∗ of B(H) ⊃ B that exchanges the l, r components in the particle sector C = 0 of HF (it is implemented by the unitary U = γ0 ⊗ P + I ⊗ (I − P) with P the projection on the particle subspace of HF), then (54) reads as Tπ(a) − αU(π(a))T for a ∈ C∞(M) ⊗ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (57) It is not yet clear whether this observation is of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A critical survey of twisted spectral triples beyond the Standard Model 14 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Twisting down In the light of the preceding section, the conclusion of [34] should be corrected: twisted spectral triples do resolve the unboundedness of the commutator arising in the grand algebra model, but the extra scalar field breaks the first-order condition, even in its twisted form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The latter is retrieved dynamically by minimising the spectral action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Therefore, twisting the grand algebra down to the Standard Model produces results similar to the ones of [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This raises questions on the interest of the twist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' As explained in section 5, there is an added value in twists, even if not the one expected!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' But before coming to that, let us try to generalize the twisting of the grand algebra to arbitrary spectral triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Minimal twist 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Twisting up The algebra B is not invariant under the twisting automorphism ρ because the grand algebra has been only partially twisted: only the quaternionic sector acts non-trivially on the chiral index s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' If one also makes the complex sector non trivial on the chiral index, then the grading condition breaks the grand algebra to � Hl L ⊕ Hr L ⊕ Hl R ⊕ Hr R � ⊕ � Ml 4(C) ⊕ Mr 4(C) � , (58) which is invariant under ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This is twice the left-right algebra ALR of §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='1, which is broken to the algebra ASM of the Standard Model by the first-order condition of γ5⊗DF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This suggests another approach to twisting the Standard Model while preserving the first-order condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Rather than twisting down a bigger algebra to ASM, one may double ASM to ASM ⊗ C2 ≃ ASM ⊕ ASM, (59) then make each copy of ASM act independently on the left/right components of spinors, and finally twist the commutator to avoid unboundedness problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This is a “twisting up” procedure, in which the idea is to use the flexibility introduced by twisted spectral triples to enlarge the algebra – hopefully preserving the grading and the first-order conditions – rather than using these conditions to constrain a bigger algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The rule of the game is to leave the Hilbert space and the Dirac operator untouched, in order not to alter the fermionic content of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' As a side remark, there exist some models in noncommutative geometry that introduce new fermions, as mentioned in the introduction, but since there is no phenomenological indications of new fermions so far, we limit ourselves to models that preserve the fermionic sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Given a spectral triple (A, H, D), the idea is thus to build a twisted spectral triple (A′, H, D), ρ with the same Hilbert space and Dirac operator, in such a way that the initial triple is retrieved as a “non-twisted” limit of the twisted one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This led in [41] to define the minimal twist of a spectral triple (A, H, D) by a unital algebra B as a twisted A critical survey of twisted spectral triples beyond the Standard Model 15 spectral triple (A ⊗ B, H, D), ρ such that the representation of A ⊗ IB coincides with the initial representation of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' One may think of other ways to implement the idea of “non-twisted limit”, for instance by simply asking that A′ contains A as a subalgebra invariant under the twist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' More elaborate procedure for untwisting a twisted spectral triple have been proposed, for instance in [39, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' An advantage of minimal twists is to allow to play with the Standard Model, remaining close to it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' For almost commutative geometries – i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' the product of a manifold by a finite dimensional spectral triple as in (24) – then the only possible minimal twist by a finite dimensional algebra is with B = Cl ⊗ C2, with ρ the flip automorphism of C2 and l ∈ N a measure of the non irreducibility of the representation of AF on HF [41, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Twist by grading The twisting up procedure is easily applicable to any graded spectral triple (A, H, D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Indeed, by definition, the grading Γ commutes with the representation of A, so the latter actually is the direct sum of two independent – commuting – representations of A on the eigenspaces H+, H− of Γ, π+(a) = 1 2 (I + Γ) a, π−(a) = 1 2 (I − Γ) a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (60) In other words, decomposing H as the sum of the two eigenspaces of Γ, the representation of A is block diagonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Thus there is enough space on H to represent A ⊗ C2 as π((a, a′)) = π+(a) + π−(a′) ∀(a, a′) ∈ A ⊗ C2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (61) Let ρ((a, a′)) = (a′, a) ∀(a, a′) ∈ A ⊗ C2 (62) denote the flip automorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Then the triple (A ⊗ C2, H, D), ρ (63) with representation (61) is a graded twisted spectral triple [41, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In addition, if the initial triple is real with real structure J, then the latter is also a real structure for the twisted spectral triple (61).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In particular the twisted first-order condition is automatically satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This twist by grading procedure associates a twisted partner to any graded spectral triple, preserving a first-order condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This seems the ideal way to twist the Standard Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Unfortunately, this does not generate the extra scalar field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Indeed, one has that ΓF anticommutes independently with DY and DM (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [32, §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='1] for the computation in tensorial notations) so in particular γ5 ⊗ DM anticommutes with Γ = γ5 ⊗ ΓF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This means that (γ5 ⊗ DM)π+(a) = π−(a)(γ5 ⊗ DM) + 1 2(I − Γ)[γ5 ⊗ DM, a], (64) (γ5 ⊗ DM)π−(a) = π+(a)(γ5 ⊗ DM) + 1 2(I + Γ)[γ5 ⊗ DM, a].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (65) A critical survey of twisted spectral triples beyond the Standard Model 16 So [γ5 ⊗ DM, π((a, a′))]ρ = (γ5 ⊗ DM)(π+(a) + π−(a′)) − (π+(a′) + π−(a))(γ5 ⊗ DM), = [γ5 ⊗ DM, a] + [γ5 ⊗ DM, a′].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (66) The right hand side is zero since γ5 ⊗ DM commutes with the representation of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Therefore γ5 ⊗ DM twist-commutes with the representation of A ⊗ C2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Hence the twist by grading does not modify the situation: γ5 ⊗ DM is transparent under under twisted fluctuations, just like it was under usual fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Twisted fluctuation without the first-order condition The twist by grading is not the only possibility for twisting up the Standard Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' As explained in [41, below Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='8], in order to minimally twist a spectral triple (A, H, D) by C2, one may repeat the construction of the precedent section using, instead of the grading Γ, any operator ˜Γ that squares to I and commutes with A: this condition is sufficient to guarantee that π+, π− in (60) are two representations of A commuting with each other, and it becomes necessary as soon as A is unital;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' is selfadjoint: this is to guarantee that π+ and π− are involutive representations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' has both eigenvalues +1, −1 of non-zero multiplicity, so that neither π+ nor π− is zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' But there is no need for ˜Γ to anticommute with the Dirac operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This means that ˜Γ is not necessarily a grading for the spectral triple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A classification of all such twisting operators ˜Γ for almost commutative geometries is on its way [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The anticommutation with the Dirac operator seems to be required to have the twisted first-order condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This would imply that the extra scalar field and the twisted first-order condition be mutually exclusive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Therefore it becomes relevant to extend to the twisted case the results of [14] regarding inner fluctuations without the first-order condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This has been done in [49], where it was shown that the removal of the twisted first-order condition yields a second order term in the twisted fluctuation (38), which is a straightforward adaptation of the term worked out in the non-twisted case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Following this path, a minimal twist of the Standard Model has been worked out in great details in [36], that does not preserve the twisted first-order condition and generates the extra scalar field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The gauge part of this model is similar to the Standard Model’s, and the Higgs sector is made of two Higgs doublets which are expected to combine in a single doublet in the action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' There is the extra scalar field with two components σl, σr acting independently on the chiral components of spinors, and finally, there is also an unexpected new field of 1-forms Xµ, whose interpretation is discussed in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A critical survey of twisted spectral triples beyond the Standard Model 17 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Twist and change of signature At this point of our journey through twisted spectral triples, one seems to be back to the starting point: twisted spectral triples solve the unboundeness of the commutator of the grand algebra with /∂ ⊗ I, but they do not permit to generate the extra scalar field, unless one violates the twisted first-order condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' What is then their added value?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The interest of the twist is not so much in the generation of the extra scalar field than in the new field of 1-form Xµ mentioned above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This field was already observed in [34], and its appearance actually does not depend on the details of the model [45]: it is intrinsic to minimal twists of almost commutative geometries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Even in the simplest case of a minimally twisted four dimensional manifold (without any product by a finite dimensional structure), a twisted fluctuation of the Dirac operator /∂ yields a field of 1-forms, in contrast with the non twisted case where /∂ does not fluctuate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The physical sense of this fluctuation remained obscure, until it was confronted with an observation made in [30]: a twist induces on the Hilbert space a new inner product with Lorentzian signature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Furthermore, this product permits to define a twisted version of the fermionic action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In some example detailed below, in this action formula the field Xµ identifies with the (dual of) the 4-momentum in Lorentzian signature [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Twisted inner product A gauge transformation (22), DA → Ad(u) DA Ad(u)−1, preserves the selfadjointness of the covariant Dirac operator DA, for Ad(u)−1 = Ju∗J−1u∗ = Ad(u)∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A twisted gauge transformation (41) DAρ → ρ(Ad(u)) DAρ Ad(u)−1 (67) does not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Is there some selfadjointness which is preserved by (67)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' There is a natural inner product associated with a twisted spectral triple, as soon as the twisting autormorphism ρ extends to an inner automorphism of B(H): ρ(O) = ROR† ∀O ∈ B(H) (68) for some unitary operator R on H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Namely, the ρ-inner product [30] ⟨Ψ, Φ⟩ρ := ⟨Ψ, RΦ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (69) Since ⟨Ψ, OΦ⟩ρ = ⟨ρ(O)†Ψ, Φ⟩ρ, the adjoint of O with respect to this new product is O+ := ρ(O)†.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (70) If the unitary R commutes or anticommutes with the real structure, then ρ(Ad(u)) as defined before (42) coincides with RAd(u)R∗ (making the notation ρ(Ad(u)) unambiguous).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In addition, � Ad(u)−1�+ = � RJu∗J−1u∗R∗�† = RuJuJ−1R∗ = ρ(Ad(u)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (71) Therefore a twisted gauge transformation (67) preserves the selfadjointness with respect to the ρ-inner product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A critical survey of twisted spectral triples beyond the Standard Model 18 Example: The minimal twist of a Riemannian spin manifold M of even dimension 2m is A = C∞(M) ⊗ C2, H = L2(M, S), D = /∂;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' ρ (72) with twisting automorphism the flip ρ(f, g) = (g, f) for f, g in C∞(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The representation is π(f, g) = � f I2m−1 0 0 gI2m−1 � ∀(f, g) ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (73) The flip ρ extends to the inner automorphism of B(H) that exchanges the element on the diagonal and on the off-diagonal, implemented for instance by R = γ0 the first Dirac matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Then the ρ-product (69) ⟨Ψ, Φ⟩ρ = � M Ψ†γ0Φ d4x (74) coincides pointwise with the Krein product for the space of spinors on a Lorentzian manifold (only pointwise, for the manifold on which one integrates is still Riemannian).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This example points towards a link between twists and a kind of transition from Euclidean to Lorentzian signatures: by fluctuating a twisted Riemannian manifold, one ends up preserving a Lorentzian product!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' However, the twist is not an implementation of Wick rotation in noncommutative geometry (for this, see [27]): a twisted fluctuation (67) does not turn the operator DAρ, selfadjoint for the initial (Euclidean) inner product, into an operator DAuρ selfadjoint for the Lorentzian product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='‡ A better understanding of the link between twist and Lorentzian signature follows from the study of the fermionic action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Fermionic action Given a real spectral triple (A, H, D), the fermionic action for the covariant operator DA is [12] Sf(DA) = ADA(˜ξ, ˜ξ) (75) with ˜ξ the Grassman variables associated to ξ ∈ H+ = {ξ ∈ H, Γξ = ξ} and ADA(ξ, ξ′) = ⟨Jξ, DAξ′⟩ (76) the antisymmetric bilinear form defined by DA and the real structure J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The latter is needed to make the form antisymmetric (hence applicable on Grassman variables).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' One restricts to the eigenspace H+ of the grading because of the fermion doubling [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This also makes sense physically, for H+ is the subspace of H generated by the elements ψ ⊗ Ψ with a well defined chirality (that is ψ ∈ L2(M, S) and Ψ ∈ HF are eigenvectors of γ5, ΓF with the same eigenvalue).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' ‡ If one were starting with an operator selfadjoint for the twisted product, much in the vein of [53], then this selfadjointness would be preserved by twisted fluctuation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A critical survey of twisted spectral triples beyond the Standard Model 19 For a twisted spectral triple (A, H, D), ρ as in §5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='1, the fermionic action is [30] Sf(DAρ) = TDAρ(˜ξ, ˜ξ) (77) for ξ ∈ Hr := {ξ ∈ H, Rξ = ξ}, ˜.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' the Grassmann variables and TDAρ(ξ, ξ′) := ⟨Jξ, RDAρξ′⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' One inserts the matrix R in the bilinear form in order to make the action (77) invariant under a twisted gauge transformation (41) (the same is true in case there is no first- order condition [49]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The restriction to Hr guarantees that the bilinear form be antisymmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Twisted fluctuation as Lorentzian 4-momentum We begin with the minimal twist (72) of a 4-dimensional manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The +1 eigenspace of R = γ0 is spanned by Dirac spinors of the form ξ = � ζ ζ � with ζ a Weyl spinor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A selfadjoint twisted fluctuation (38) sends /∂ to the covariant operator /∂Aρ = /∂ − i Xµγµ, (78) parametrised by the 1-form field Xµ = fµγ5 with fµ ∈ C∞(M, R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (79) The twisted fermionic action is [47, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='5] Sf(/∂Aρ) = 2 � M dµ ¯˜ζ †σ2 (if0 − 3 � j=1 σj∂j) ˜ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (80) The integrand reminds of the Weyl Lagrangian – which lives in Lorentzian signature iψ† l ˜σµ M ∂µψl where ˜σµ M := {I2, −σj} , (81) except that the ∂0 derivative is missing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' It can be restored assuming that ζ is a plane wave function of energy f0 (in unit ℏ = 1) with spatial part ζ(x), that is ζ(x0, x) = eif0x0ζ(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (82) Then the integrand reads (modulo an irrelevant factor 2) as ¯˜ζ † σ2 ˜σµ M∂µ ˜ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' However, this cannot be identified with the Weyl Lagrangian (81) because of the extra σ2 matrix which forbids the simultaneous identification of ˜ζ with ψl and ¯˜ζ † σ2 with iψ† l .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In other terms, there are not enough degrees of freedom to identify the fermionic action of a twisted manifold with the Weyl Lagrangian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This can be cured by doubling the manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Namely one considers the product (C∞(M) ⊗ C2, L2(M, S) ⊗ C2, /∂ ⊗ I2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (83) of M by a finite dimensional spectral triple (C2, C2, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Its minimal twist is A = � C∞(M) ⊗ C2� ⊗ C2, H = L2(M, S) ⊗ C2, D = /∂ ⊗ I2 (84) A critical survey of twisted spectral triples beyond the Standard Model 20 with representation π(a, a′) = \uf8eb \uf8ec \uf8ec \uf8ec \uf8ed fI2 0 0 0 0 f ′I2 0 0 0 0 g′I2 0 0 0 0 gI2 \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f8 a = (f, g), a′ = (f ′, g′) ∈ A (85) and twist ρ(a, a′) = (a′, a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The latter is implemented by the unitary R = γ0 ⊗I2, whose +1 eigenspace Hr is now spanned by {ξ ⊗ e, φ ⊗ ¯e} where {e, ¯e} is a basis of C2 and ξ = � ζ ζ � , φ = � ϕ ϕ � (86) are Dirac spinors with ζ and ϕ Weyl spinors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A selfadjoint twisted fluctuation of D, DAρ = D − iXµγµ ⊗ I2 + gµγµ ⊗ ΓF (87) with ΓF the grading of the finite dimensional spectral triple [47, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='3], is parametrised by the same field Xµ as before and a second 1-form field gµI4 with gµ ∈ C∞(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (88) For a vanishing gµ, the fermionic action is the integral of [47, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='4] L := 4¯˜ϕ†σ2 � if0 − �3 j=1 σj∂j � ˜ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (89) One retrieves the Weyl Lagrangian (81) by identifying the physical Weyl spinors as ψl := ˜ζ and ψ† l := −i¯˜ϕ†σ2, then assuming ψl be of the form (82), that is ∂0ψl = if0ψl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Thus the fermionic action for a twisted doubled Riemannian manifold describes a plane wave solution of Weyl equation, in Lorentzian signature, whose 0th component of the 4-momentum is p0 = −f0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The result also holds for the right-handed Weyl equation (see [47, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='5]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A similar analysis holds for the spectral triple of electrodynamics proposed in [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Its minimal twist is AED = � C∞(M) ⊗ C2� ⊗ C2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' H = L2(M,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' S) ⊗ C4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' D = /∂ ⊗ I4 + γ5 ⊗ DF where the internal Dirac operator and the representation are DF = \uf8eb \uf8ec \uf8ec \uf8ec \uf8ed 0 d 0 0 ¯d 0 0 0 0 0 0 ¯d 0 0 d 0 \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f8 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' π(a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' a′) = \uf8eb \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ec \uf8ed fI2 0 0 0 0 0 0 0 0 f ′I2 0 0 0 0 0 0 0 0 f ′I2 0 0 0 0 0 0 0 0 fI2 0 0 0 0 0 0 0 0 g′I2 0 0 0 0 0 0 0 0 gI2 0 0 0 0 0 0 0 0 gI2 0 0 0 0 0 0 0 0 g′I2 \uf8f6 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f7 \uf8f8 A critical survey of twisted spectral triples beyond the Standard Model 21 with d ∈ C,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' a = (f,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' g),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' a′ = (f ′,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' g′) in C∞(M) ⊗ C2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The twist ρ(a, a′) = (a′, a) extends to an inner automorphism of B(H) generated by the unitary γ0 ⊗ I4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Its +1-eigenspace is generated by ξ1 ⊗ el, ξ2 ⊗ er, φ1 ⊗ el, φ2 ⊗ er, (90) where ξk, φk (k = 1, 2) are Dirac spinors of the form (86) while {el, er, el, er} is an orthonormal basis of C4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A selfadjoint twisted fluctuation of D is parametrized by the same two 1-form fields as before [47, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='3] DAρ = D − iXµγµ ⊗ I′ + gµγµ ⊗ I′′ (91) where I′ = diag(1, −1, 1, −1), I′′ = diag(1, 1, −1, −1) (the part γ5 ⊗ DF is transparent under twisted fluctuation: there is no Higgs field in classical electrodynamics!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Under a gauge transformation (41), one has that fµ is invariant while gµ trasforms as the U(1) gauge potential of electrodynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The spectral action is the integral of [47, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='12] Lf ρ = ¯˜ϕ† 1σ2 � if0 − � j σjDj � ˜ζ1−¯˜ϕ† 2σ2 � if0 + � j σjDj � ˜ζ2+ � ¯d¯˜ϕ† 1σ2¯ζ2 + d¯˜ϕ† 2σ2¯ζ1 � (92) where Dµ = ∂µ − igµ is the covariant derivative associated to the electromagnetic 4- potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Defining the physical spinors as ψ = � ψl ψr � := � ˜ζ1 ˜ζ2 � , ψ† = � ψ† l , ψ† r � := � −i¯˜ϕ† 1σ2, i¯˜ϕ† 2σ2 � (93) then assuming that ∂0ψ = if0ψ and imposing d = −im with m > 0 to be purely imaginary, the Lagrangian (92) reads LM = iψ† l � D0 − � j σjDj � ψl+iψ† r � D0 + � j σjDj � ψr−m � ψ† l ψr + ψ† rψl � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (94) This is the Dirac Lagrangian in Minkowski spacetime, for a mass m, in the temporal gauge (that is D0 = ∂0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Hence the fermionic action for the minimal twist of the spectral triple of electrodynamics describes a plane wave solution of the Dirac equation in Lorentz signature, with 0th component of the 4-momentum p0 = −f0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' By implementing the action of boosts on L2(M, S) ⊗C2, one is able to identify the other components of the fluctuation fµ with the other components of the 4-momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' However this is obtained at the level of the equation of motion, not for the Lagrangian density (see [47, §6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Conclusion and outlook The idea of using twisted spectral triples in high-energy physics was born with the hope of generating the extra scalar field needed to stabilise the electroweak vacuum (and to fit the Higgs mass), respecting the axioms of noncommutative geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' More specifically A critical survey of twisted spectral triples beyond the Standard Model 22 it was thought that the first-order condition could be twisted, rather than abandoned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' We have shown in this note that this is not possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This moves the interest of the twist towards what seemed at first sight a side effect, namely the non-zero twisted fluctuation of the free Dirac operator /∂.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' It yields a new field of 1-forms, whose physical meaning becomes clear by computing the fermionic action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' For the minimal twist of a doubled manifold, and the minimal twist of the spectral triple of electrodynamics, this fields identifies with (the dual of) the 4-momentum in Lorentzian signature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Preliminary computations indicate that a similar result also holds for the twist of the Standar Model presented in [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' It remains to be understood why one ends up in the temporal gauge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' And more importantly, does the identification between twisted fluctuation of /∂ and the 4- momentum still makes sense for the bosonic part of the action, given by the spectral action?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Not to mention that the definition of the latter in a twisted context has not been estabilised yet [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Acknowledgments The first author is supported by the POLONEZ BIS program cofunded by a Marie Curie action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' This work is part of the second author’s activity in the mathematical physics group of INDAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Bibliography [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Barrett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A Lorentzian version of the non-commutative geometry of the standard model of particle physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 48:012303, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [2] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Besnard and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Brouder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Noncommutative geometry, the Lorentzian Standard Model and its B-L extension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' D, 103:035003, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Bochniak and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Sitarz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Finite pseudo-riemannian spectral triples and the standard model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' D, 97:115029, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [4] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Boyle and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Farnsworth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Noncommutative geometry, non-associative geometry and the standard model of particle physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 16(123027), 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [5] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Boyle and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Farnsworth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The standard model, the Pati-Salam model, and Jordan geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 22(arXiv: 1910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='11888):073023, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [6] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Brzezinski, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Ciccoli, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Dabrowski, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Sitarz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Twisted reality condition for Dirac operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Geo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 19(3:16), 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [7] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Brzezinski, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Dabrowski, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Sitarz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' On twisted reality conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 109(3):643–659, 04 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Chamseddine and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Connes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The spectral action principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 186:737– 750, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Chamseddine and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Connes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Universal formula for noncommutative geometry actions: unification of gravity and the standard model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 77:486804871, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Chamseddine and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Connes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Why the standard model ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys, 58:38–47, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Chamseddine and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Connes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Resilience of the spectral standard model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' JHEP, 09:104, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [12] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Chamseddine, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Connes, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Marcolli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Gravity and the standard model with neutrino mixing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 11:991–1089, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A critical survey of twisted spectral triples beyond the Standard Model 23 [13] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Chamseddine, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Connes, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' van Suijlekom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Beyond the spectral standard model: emergence of Pati-Salam unification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' JHEP, 11:132, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [14] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Chamseddine, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Connes, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' van Suijlekom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Inner fluctuations in noncommutative geometry without first order condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 73:222–234, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [15] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Chamseddine and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' van Suijlekom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A survey of spectral models of gravity coupled to matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' In: Chamseddine A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', Consani C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', Higson N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', Khalkhali M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', Moscovici H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', Yu G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' (eds) Advances in Noncommutative Geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Springer, pages 1–51, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [16] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Connes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Noncommutative Geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Academic Press, 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [17] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Connes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Noncommutative geometry and reality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 36:6194–6231, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Connes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Gravity coupled with matter and the foundations of noncommutative geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 182:155–176, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [19] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Connes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Noncommutative geometry and the standard model with neutrino mixing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' JHEP, 081, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Connes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' On the spectral characterization of manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Noncom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 7(1):1–82, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [21] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Connes and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Lott.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Particle models and noncommutative geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Nuclear Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' B Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Suppl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 18B:29–47, 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [22] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Connes and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Lott.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The metric aspect of noncommutative geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Nato ASI series B Physics, 295:53–93, 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [23] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Connes and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Marcolli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Noncommutative geometry, quantum fields and motives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' AMS, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [24] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Connes and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Moscovici.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Type III and spectral triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Traces in number theory, geometry and quantum fields, Aspects Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Friedt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Vieweg, Wiesbaden, E38:57–71, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [25] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Kastler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Quantum forms of tensor products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 155:135–142, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [26] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Dabrowski, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' D’Andrea, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Sitarz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' The standard model in noncommutative geometry: fundamental fermions as internal forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 108:1323–1340, 03 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [27] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' D’Andrea, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Kurkov, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Lizzi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Wick rotation and fermion doubling in noncommutative geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' D, 94(2):025030, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [28] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' D’Andrea and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Martinetti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A view on optimal transport from noncommutative geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' SIGMA, 6(057):24 pages, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [29] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Degrassi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Vita, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Elias-Miro, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Espinosa, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Giudice, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Isidori, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Strumia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Higgs mass and vacuum stability in the standard model at nnlo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' JHEP, 08:098, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [30] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Devastato, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Farnsworth, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Lizzi, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Martinetti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Lorentz signature and twisted spectral triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' JHEP, 03(089), 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [31] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Devastato, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Filaci, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Martinetti, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Singh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Actions for twisted spectral triple and the transition from the Euclidean to the Lorentzian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Meth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 17(Supp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' 1):2030001 (10 pages), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [32] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Devastato, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Lizzi, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Martinetti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Grand Symmetry, Spectral Action and the Higgs mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' JHEP, 01:042, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [33] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Devastato, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Lizzi, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Martinetti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Higgs mass in noncommutative geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Fortschritte der Physik, 62(9-10):863–868, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [34] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Devastato and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Martinetti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Twisted spectral triple for the standard model and spontaneous breaking of the grand symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Geo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 20(2):43, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [35] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Dubois-Violette, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Madore, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Kerner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Classical bosons in a noncommutative geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Quantum Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 6:1709, 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [36] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Filaci and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Martinetti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Minimal twist for the Standard Model in noncommutative geometry : the field content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' D, 104:025011, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [37] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Filaci and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Martinetti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Minimal twist of almost commutative geometries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' in preparation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [38] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Franco and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Eckstein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' An algebraic formulation of causality for noncommutative geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Quantum Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 30:135007, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [39] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Goffeng, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Mesland, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Rennie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Untwisting twisted spectral triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' International Journal of Mathematics, 30(14), 03 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A critical survey of twisted spectral triples beyond the Standard Model 24 [40] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Landi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' An introduction to noncommutative spaces and their geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Lecture Notes in Physics m51, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [41] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Landi and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Martinetti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' On twisting real spectral triples by algebra automorphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 106:1499–1530, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [42] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Landi and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Martinetti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Gauge transformations for twisted spectral triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 108:2589–2626, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [43] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Lizzi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Mangano, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Miele, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Sparano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Fermion Hilbert space and fermion doubling in the noncommutative geometry approach to gauge theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' D, 55:6357, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [44] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Martinetti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Spectral distance on the circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Func.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 255(1575-1612), 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [45] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Martinetti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Twisted spectral geometry for the standard model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' : Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 626:012044, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [46] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Martinetti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' From Monge to Higgs: a survey of distance computation in noncommutative geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Contemporary Mathematics, 676:1–46, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [47] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Martinetti and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Singh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Lorentzian fermionic action by twisting euclidean spectral triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Noncomm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Geo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 16(2):513–559, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [48] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Martinetti and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Wulkenhaar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Discrete Kaluza-Klein from scalar fluctuations in noncommutative geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 43(1):182–204, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [49] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Martinetti and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Zanchettin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Twisted spectral triples without the first order condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' arXiv 2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content='15643, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [50] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Rieffel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Morita equivalence for operator algebras, volume 38 of Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Symp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Pure Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', pages 285–298.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' AMS, 1982.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [51] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Stephan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' New scalar fields in noncommutative geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' D, 79:065013, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [52] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Stephan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Quantum Mathematical Physics, chapter Noncommutative Geometry in the LHC- Era.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Birkhauser, 05 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [53] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' van den Dungen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Krein spectral triples and the fermionic action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Geo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 19, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' [54] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' van den Dungen and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' van Suijlekom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Electrodynamics from noncommutative geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Noncommut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
+page_content=', 7:433–456, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/hNE_T4oBgHgl3EQf3Rzj/content/2301.08346v1.pdf'}
diff --git a/ltFRT4oBgHgl3EQfZTcN/content/tmp_files/2301.13552v1.pdf.txt b/ltFRT4oBgHgl3EQfZTcN/content/tmp_files/2301.13552v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..2f1963d97dc3bc5a54906abc36594aabc9a4ab8c
--- /dev/null
+++ b/ltFRT4oBgHgl3EQfZTcN/content/tmp_files/2301.13552v1.pdf.txt
@@ -0,0 +1,1881 @@
+Minimal Left-Right Symmetric Model with A4 modular symmetry
+Ankita Kakoti,1, ∗ Bichitra Bijay Boruah,1, † and Mrinal Kumar Das1, ‡
+1Department of Physics, Tezpur University, Tezpur 784028, India
+Abstract
+In this paper, we have realized the left-right symmetric model with modular symmetry. We have used
+Γ(3) modular group which is isomorphic to non-abelian discrete symmetry group A4. The advantage of
+using modular symmetry is the non-requirement for the use of extra particles called ’flavons’. In this
+model, the Yukawa couplings are expressed in terms of modular forms (Y1, Y2, Y3).
+In this work, we
+have studied minimal Left-Right Symmetric Model for both type-I and type-II dominances. Here, we
+have calculated the values for the Yukawa couplings and then plotted it against the sum of the neutrino
+masses. The results obtained are well within the experimental limits for the desired values of sum of
+neutrino masses. We have also briefly analyzed the effects of the implications of modular symmetry on
+neutrinoless double beta decay with the new physics contributions within Left-Right Symmetric Model.
+∗ ankitak@tezu.ernet.in
+† bijay@tezu.ernet.in
+‡ mkdas@tezu.ernet.in
+1
+arXiv:2301.13552v1 [hep-ph] 31 Jan 2023
+
+I.
+INTRODUCTION
+Despite the huge and continued success of the Standard Model (SM) of particle physics, it leaves
+some of the puzzles unanswered like the existence of neutrino masses, baryon asymmetry of the
+universe, existence of dark matter etc. The discovery of neutrino oscillation by Sudbury neutrino
+observatory and Super-Kamiokande experiments was a milestone discovery in the area of neutrino
+physics. The experiments like MINOS [1], T2K [2], Daya-Bay [3], Double-Chooz [4], RENO [5]
+etc. provided evidence on the neutrinos being massive which is one of the most compelling rev-
+elation that we need to go beyond Standard Model. However inspite of the huge achievements
+in determining the neutrino oscillation parameters in solar, atmospheric , reactor and accelerator
+neutrino experiments, many questions related to neutrino still remain unsolved. Among these lies
+the question regarding the absolute mass scale of neutrinos, exact nature of the particle (Dirac
+or Majorana), hierarchical pattern of the mass spectrum (Normal or Inverted) and leptonic CP
+violation. The absolute mass scale of the neutrinos is not yet known. However experiments like
+Planck has given an upper bound on the sum of the light neutrino masses to be Σ|mνi| < 0.23eV in
+2012 [6] and recently the bound has been constarined to Σ|mνi| < 0.11eV [7]. The most successful
+data pertaining to neutrino oscillation parameters is found in the 3σ global fit data [8] as shown
+in table (1) .
+Parameters
+Normal
+Ordering
+Inverted
+Ordering
+∆ m2
+21
+(10−5eV 2)
+6.82 → 8.04
+6.82 → 8.04
+∆ m2
+3l
+(10−5eV 2)
+2.435 → 2.598
+−2.581 →
+−2.414
+sin2 θ12
+0.264 → 0.343
+0.269 → 0.343
+sin2 θ23
+0.415 → 0.616
+0.419 → 0.617
+sin2 θ13
+0.02032 →
+0.02410
+0.02052 →
+0.02428
+TABLE I: Global fit 3σ values for neutrino oscillation parameters.
+2
+
+We have used the definition,
+∆m2
+3l = ∆m2
+31; ∆m2
+31 > 0; NO
+(1.1)
+∆m2
+3l = ∆m2
+32; ∆m2
+32 < 0; IO
+(1.2)
+The simplest way to look for neutrino masses is by the seesaw mechanism. The mechanism may
+be of type I [9], [10],type II [11], [12],type III [13] and Inverse Seesaw [14]. These are extensions
+of the SM where we incorporate extra particles like right-handed fermions,scalar fermion triplets,
+gauge singlet neutral fermions etc. The BSM physics also sheds light upon the phenomena like
+baryon asymmetry of the universe (BAU) [15], Lepton Number Violation (LNV) [16], Lepton
+Flavor violation (LFV) [17], existence of dark matter [18], [19] etc. A BSM framework which has
+been successful in explaining the first three of the phenomenologies is the Left- Right Symmetric
+Model (LRSM) [20–24], an extension of the SM corresponding to the addition of SU(2)R group
+into the theory. The gauge group of LRSM is SU(3)C ⊗ SU(2)R ⊗ SU(2)L ⊗ U(1)B−L. The type
+I and type II seesaw masses appear naturally in the model. The right-handed neutrinos are an
+essential part of the model, which acquires Majorana mass when SU(2)R symmetry is broken.
+LRSM provides a natural framework to understand the spontaneous breaking of parity and origin
+of small neutrino masses by seesaw mechanism [25].
+Another concerning aspect is the ambiguity regarding nature of neutrinos which has not been yet
+predicted by the SM of particle physics, that whether neutrinos are Dirac or Majorana fermions.
+This problem is directly connected to the issue of lepton number conservation. One of the process
+of fundamental importance which arises in almost any extension of the SM is Neutrinoless Double
+Beta Decay(NDBD) [26], [27] which when verified can assure that neutrinos are Majorana fermions.
+NDBD is a slow, radiative process that transforms a nuclide of atomic number Z into its isobar
+with atomic number Z+2 [28],
+N(A, Z) → N(A, Z + 2) + e− + e−
+(1.3)
+The main aim in the search of NDBD (0νββ) is the measurement of effective Majorana neutrino
+mass, which is a combination of the neutrino mass eigenstates and neutrino mixing matrix terms
+[28]. However, no experimental evidence regarding the decay has been in picture till date. In
+3
+
+addition to the determination of the effective masses, the half-life of the decay [29] combined with
+sufficient knowledge of the nuclear matrix elements (NME), we can set a constraint on the neutrino
+masses. The experiments like KamLAND-Zen [30] and GERDA [31] which uses Xenon-136 and
+Germanium-76 respectively have improved the lower bound on the half-life of the decay process.
+However, KamLAND-Zen imposes the best lower limit on the half life as T 0ν
+1/2 > 1.07 × 1026 yr at
+90 % CL and the corresponding upper limit of the effective Majorana mass in the range (0.061-
+0.165)eV. There are several contributions in LRSM that appear due to additional RH current
+interactions, giving rise to sizeable LFV rates for TeV scale RH neutrino that occur at rates
+accessible in current experiments. It has been found that the most significant constraints has been
+provided by the decays, µ → 3e and µ → γe. In the Standard Model, these LFV decays are
+suppressed by the tiny neutrino masses. No experiment has so far observed any flavor violating
+processes including charged leptons. However, many experiments are currently going on to set
+strong limits on the most relevant LFV observables that will constrain the parameter space of
+many new models. The best bounds on the branching ratio for LFV decays of the form µ → γe
+comes from MEG experiment and it is set at BR(µ → γe) < 4.2 × 10−13. In case of the decay
+µ → 3e, the bound is set by the SINDRUM experiment at BR(µ → 3e) < 1.0 × 10−12.
+As mentioned LRSM is an important theory that incorporates the above mentioned phe-
+nomenologies, i.e., the phenomenologies related to neutrinos. There are many works where the
+authors make use of discrete symmetry groups like A4 [32],S4 [33],Z2 etc. [34] to analyze the prob-
+lem of flavor structure of fermions and to study various related phenomenologies. In our work,
+we have used A4 modular symmetry to study neutrino masses and mixings and hence study Neu-
+trinoless Double Beta Decay within the model. The advantage of using modular symmetry over
+discrete flavor symmetries is that the study of the model using symmetries can be done without
+the introduction of extra particles called ’flavons’. Hence the model is minimal.
+However, in this work we have not done a very detailed analysis of the above mentioned phe-
+nomenologies, but only realized the left-right symmetric model with the help of A4 modular sym-
+metry and studied the variations of new physics contributions of neutrinoless double beta decay
+within LRSM with the range of values for Yukawa couplings, which in our model is expressed as
+modular forms. In section (II), we have given a detailed explanation of the left-right symmetric
+model, the associated Lagrangian and the mass terms. We begin section (III) by introducing
+4
+
+modular symmetry and then in section (IV), we incorporate modular symmetry into LRSM
+and determine the associated mass matrices. In section (V), we present a very brief discussion
+of neutrinoless double beta decay and its associated contributions and their relations with the
+modular forms. In section (VI), the numerical analysis and results of this work has been discussed
+and the last section reads the conclusion for the present work.
+II.
+MINIMAL LEFT-RIGHT SYMMETRIC MODEL
+The Left-Right Symmetric Model (LRSM) was first introduced around 1974 by Pati and Salam.
+Rabindra N. Mohapatra and Goran Senjanovic were also some pioneers of this very elegant theory.
+LRSM is an extension of the Standard Model of particle physics, the gauge group being SU(3)C ⊗
+SU(2)R ⊗ SU(2)L ⊗ U(1)B−L, which has been studied by several groups since 1970’s [25], [21–24].
+The usual type-I and type-II seesaw neutrino masses arises naturally in the model. The seesaw
+scale is identified by the breaking of SU(2)R. Some other problems are also addressed in LRSM
+like parity, CP violation of weak interaction, massive neutrinos, hierarchy problems, etc. LRSM
+removes the disparity between the left and right-handed fields by considering the RH fields to be
+doublet under the additional SU(2)R keeping the right sector couplings same as the left-one by left-
+right symmetry. In this model, the electric charge is given by Q = T3L +T3R + B−L
+2 , where T3L and
+T3R are the generators of SU(2)L and SU(2)R respectively. B − L refers to baryon number minus
+lepton number. The particle content of the model along with their respective charge assignments
+are given in table(III). The matrix representation for the scalar sector is given by,
+φ =
+�
+�φ0
+1 φ+
+1
+φ−
+2
+φ0
+2
+�
+�
+(2.1)
+∆L,R =
+�
+�
+δ+
+L,R
+√
+2
+δ++
+L,R
+δ0
+L,R −
+δ+
+L,R
+√
+2
+�
+�
+(2.2)
+In order for the fermions to attain mass, a Yukawa Lagrangian is necessary which couples to the
+bidoublet φ. The Yukawa Lagrangian incorporating the bidoublet is given by,
+LD = liL(Y l
+ijφ + �
+Y l
+ij �φ)ljR + QiL(Y q
+ijφ + �
+Y q
+ij �φ)QjR + h.c
+(2.3)
+5
+
+where, lL and lR are the left-handed and right-handed lepton fields, QL and QR are the left-
+handed and right-handed quark fields. Y l being the Yukawa coupling corresponding to leptons and
+Y q being the Yukawa coupling for the quarks. The Yukawa Lagrangian incorporating the scalar
+triplets which play a role in providing Majorana mass to the neutrinos is given by,
+LM = fL,ijΨL,i
+TCiσ2∆LΨL,j + fR,ijΨR,i
+TCiσ2∆RΨR,j + h.c
+(2.4)
+fL and fR are the Majorana Yukawa couplings and are equal subjected to discrete left-right sym-
+metry. The scalar potential in LRSM is a combination of interaction terms consisting the potential
+and after spontaneous symmetry breaking the scalars attain VEVs given by,
+< ∆L,R >= 1
+√
+2
+�
+� 0
+0
+vL,R 0
+�
+�
+(2.5)
+< φ >=
+�
+�k
+0
+0 eiθk′
+�
+�
+(2.6)
+The magnitudes of the VEVs follows the relation, |vL|2 < |k2 + k′2| < |vR|2. The breaking pattern
+of the LRSM gauge group takes place in two steps. The LRSM gauge group is first broken down
+to the Standard Model gauge group by the vev of the scalar triplet ∆R, and then the Standard
+Model gauge group is broken down to the electromagnetic gauge group i.e., U(1)em by the vev of
+the bidoublet and a tiny vev of the scalar triplet ∆L.
+The Dirac mass terms for the leptons come from the Yukawa Lagrangian, which for the charged
+leptons and the neutrinos are given by,
+Ml = 1
+√
+2(k′Yl + k ˜Yl)
+(2.7)
+MD = 1
+√
+2(kYl + k′ ˜Yl)
+(2.8)
+The light neutrino mass after spontaneous symmetry breaking (SSB), generated within a type
+(I+II) seesaw can be written as,
+Mν = Mν
+I + Mν
+II,
+(2.9)
+Mν = MDMRR
+−1MD
+T + MLL
+(2.10)
+6
+
+where,
+MLL =
+√
+2vLfL
+(2.11)
+and,
+MRR =
+√
+2vRfR
+(2.12)
+The first and second terms in corresponds to type-I seesaw and type-II seesaw masses respectively.
+It is an interesting fact that in the context of LRSM both type-I and type-II terms can be equally
+dominant or either of the two terms can be dominant, but under certain conditions [35, 36]. It
+has been demonstrated in the Appendix A. In the context of LRSM however, both the type-I and
+type-II mass terms can be expressed in terms of the heavy right-handed Majorana mass matrix,
+so equation (2.10) will follow,
+Mν = MDM −1
+RRM T
+D + γ
+�
+MW
+vR
+�2
+MRR
+(2.13)
+where, γ is a dimensionless parameter which is a function of various couplings, appearing in the
+VEV of the triplet Higgs ∆L, i.e., vL = γ( v2
+vR) and here, v =
+√
+k2 + k′2, and
+γ = β1kk′ + β2k2 + β3k′2
+(2ρ1 − ρ3)(k2 + k′2)
+(2.14)
+In our model, the dimensionless parameter γ has been fine tuned to γ ≈ 10−6 and vR is of the
+order of TeV .
+III.
+MODULAR SYMMETRY
+Modular symmetry has gained much importance in aspects of model building [37], [38]. This
+is because it can minimize the extra particle called ’flavons’ while analyzing a model with respect
+to a particular symmetry group. An element q of the modular group acts on a complex variable τ
+which belongs to the upper-half of the complex plane given as [38] [39]
+qτ = aτ + b
+cτ + d
+(3.1)
+where a, b, c, d are integers and ad − bc = 1, Imτ>0.
+7
+
+The modular group is isomorphic to the projective special linear group PSL(2,Z) = SL(2,Z)/Z2
+where, SL(2,Z) is the special linear group of integer 2 × 2 matrices having determinant unity and
+Z2 = (I, −I) is the centre, I being the identity element. The modular group can be represented in
+terms of two generators S and T which satisfies S2 = (ST)3 = I. S and T satisfies the following
+matrix representations:
+S =
+�
+� 0
+1
+−1 0
+�
+�
+(3.2)
+T =
+�
+�1 1
+0 1
+�
+�
+(3.3)
+corresponding to the transformations,
+S : τ → −1
+τ ; T : τ → τ + 1
+(3.4)
+Finite modular groups (N ≤ 5) are isomorphic to non-abelian discrete groups, for example,
+Γ(3) ≈ A4, Γ(2) ≈ S3, Γ(4) ≈ S4. While using modular symmetry, the Yukawa couplings can
+be expressed in terms of modular forms, and the number of modular forms present depends upon
+the level and weight of the modular form. For a modular form of level N and weight 2k, the
+table below shows the number of modular forms associated within and the non-abelian discrete
+symmetry group to which it is isomorphic [39].
+N No. of modular forms Γ(N)
+2
+k + 1
+S3
+3
+2k + 1
+A4
+4
+4k + 1
+S4
+5
+10k + 1
+A5
+6
+12k
+7
+28k - 2
+TABLE II: No. of modular forms corresponding to modular weight 2k.
+8
+
+In our work, we will be using modular form of level 3, that is, Γ(3) which is isomorphic to A4
+discrete symmetry group. The weight of the modular form is taken to be 2, and hence it will have
+three modular forms (Y1, Y2, Y3) which can be expressed as expansions of q given by,
+Y1 = 1 + 12q + 36q2 + 12q3 + 84q4 + 72q5 + 36q6 + 96q7 + 180q8 + 12q9 + 216q10
+(3.5)
+Y2 = −6q1/3(1 + 7q + 8q2 + 18q3 + 14q4 + 31q5 + 20q6 + 36q7 + 31q8 + 56q9)
+(3.6)
+Y3 = −18q2/3(1 + 2q + 5q2 + 4q3 + 8q4 + 6q5 + 14q6 + 8q7 + 14q8 + 10q9)
+(3.7)
+where, q = exp(2πiτ).
+IV.
+MINIMAL LRSM WITH A4 MODULAR SYMMETRY
+In particle physics, symmetries have always played a very crucial role. The realization of LRSM
+with the help of discrete flavor symmetries have been done in earlier works [40], [41].
+In our
+work we have incorporated A4 modular symmetry into LRSM. The advantage of using modular
+symmetry rather than flavor symmetry is the minimal use of extra particles (flavons) and hence the
+model is minimal. The model contains usual particle content of LRSM [42]. The lepton doublets
+transform as triplets under A4 and the bidoublet and scalar triplets transform as 1 under A4 [43].
+As we have considered modular symmetry, we assign modular weights to the particles, keeping
+in mind that matter multiplets corresponding to the model can have negative modular weights,
+but the modular forms cannot be assigned negative weights. The assignment of these weights are
+done in such a way that in the Lagrangian the sum of the modular weights in each term is zero.
+Modular weights corresponding to each particle is shown in table (III). The Yukawa Lagrangian
+for the leptonic and quark sector in LRSM is given by equation (2.3),(2.4) and with a reference to
+that we can write the Yukawa Lagrangian of our A4 modular symmetric LRSM, for the fermionic
+sector, by introducing Yukawa coupling in the form of modular forms Y is given as,
+LY = lLφlRY + lL ˜φlRY + QLφQRY + QL ˜φQRY + lR
+TCiτ2∆RlRY + lL
+TCiτ2∆LlLY
+(4.1)
+9
+
+Gauge group QL QR lL lR φ ∆L ∆R
+SU(3)C
+3
+3
+1
+1 1
+1
+1
+SU(2)L
+2
+1
+2
+1 2
+3
+1
+SU(2)R
+1
+2
+1
+2 2
+1
+3
+U(1)B−L
+1/3 1/3 -1 -1 0
+2
+2
+A4
+3
+3
+3
+3 1
+1
+1
+kI
+0
+-2
+0 -2 0 -2
+2
+TABLE III: Charge assignments for the particle content of the model.
+The Yukawa couplings Y = (Y1, Y2, Y3) are expressed as modular forms of level 3.
+Y (modular forms)
+A4
+3
+kI
+2
+TABLE IV: Charge assignment and modular weight for the corresponding modular Yukawa form
+for the model.
+In our work, we are concerned with the mass of the neutrinos and as such, using A4 modular
+symmetry and using the multiplication rules for A4 group, we construct the Dirac and Majorana
+mass matrices as given below. The Dirac mass matrix is given by,
+MD = v
+�
+�
+�
+�
+2Y1 −Y3 −Y2
+−Y2 −Y1 2Y3
+−Y3 2Y2 −Y1
+�
+�
+�
+�
+(4.2)
+where, v is considered to be the VEV for the Higgs bidoublet.
+The right-handed Majorana mass matrix is given by,
+MR = vR
+�
+�
+�
+�
+2Y1 −Y3 −Y2
+−Y3 2Y2 −Y1
+−Y2 −Y1 2Y3
+�
+�
+�
+�
+(4.3)
+10
+
+where, vR is the VEV for the scalar triplet ∆R. As it is seen that the Majorana mass matrix for our
+model is found to be symmetric in nature as it should be. Under these assumptions for modular
+symmetric LRSM and the basis that we have considered, our charged lepton mass matrix is also
+found to be diagonal.
+The type-I seesaw mass is then given by,
+MνI = MD.MR
+−1.MD
+T
+(4.4)
+and, the type-II seesaw mass is given by,
+MνII = MLL
+(4.5)
+As mentioned above, in LRSM type-II seesaw mass can also be expressed in terms of the right-
+handed mass MR as,
+MνII = γ
+�
+MW
+vR
+�2
+MR
+(4.6)
+A.
+Type-I dominanace
+In LRSM, the type-I seesaw mass dominates when the vev of the left-handed triplet is taken to
+be negligibly small and hence the type-II term is absent. In such a case the lightest neutrino mass
+can be given in terms of the type-I seesaw mass term given by,
+Mν = MDMR
+−1MD
+T
+(4.7)
+and the heavy right-handed Majorana mass term can be given as,
+MR = fRvR
+(4.8)
+where, fR is the right-handed Majorana Yukawa coupling.
+In the approximation that k′ << k, and if we consider that our Yukawa coupling Y l corresponding
+to the neutrino masses is yD and the coupling �
+Y l for the charged fermion masses is denoted by yL,
+so considering yDk >> yLk′ we can write the type-I mass term as [44],
+Mν = k2
+vR
+yDf −1
+R yT
+D
+(4.9)
+11
+
+If we consider that UR is a unitary matrix that diagonalizes MR, so since the VEV vR is a constant
+the same matrix will also diagonalize the coupling matrix fR. Taking fR = fL = f, so
+f = URf diaU T
+R
+(4.10)
+If we take inverse on both sides and taking into account the property of a unitary matrix (U −1
+R =
+U T
+R), we get,
+f −1 = U T
+R(f dia)−1UR
+(4.11)
+Therefore, we get
+Mν = k2
+vR
+yDU T
+R(f dia)−1URyT
+D
+(4.12)
+Multiplying both sides of the equation with U T
+R from the right and with UR from left, we finally
+arrive at the following equation,
+URMνU T
+R = (Mν)dia
+(4.13)
+where we have used URyDU T
+R = yD. So, the unitary matrix diagonalizing the matrix MR also
+diagonalizes the light neutrino mass matrix.
+So in this case it can be determined that if mi
+denotes the light neutrino mass and Mi denotes the heavy neutrino mass, then they are related as
+mi ∝ 1
+Mi
+(4.14)
+For our model, the Yukawa couplings are modular forms expressed as expansions of q, and the
+mass matrices are expressed in terms of the modular forms (Y1, Y2, Y3). So, the light neutrino mass
+matrix, Mν for type-I dominance is given by the equation (4.7). As already stated in equations
+(4.2) and (4.3), the Dirac and Majorana mass matrices are determined by the application of
+multiplication rules for the A4 group. So, for type-I dominance, our light neutrino mass matrix
+will be given by,
+Mν = v2
+vR
+�
+�
+�
+�
+2Y1 −Y2 −Y3
+−Y2 2Y3 −Y1
+−Y3 −Y1 2Y2
+�
+�
+�
+�
+(4.15)
+As mentioned previously, the value for vR is of the order of TeV and that for v is in GeV . We
+have computed the values of the sum of the neutrino masses for type-I dominance and checked the
+correctness of our model by plotting it against the Yukawa couplings and the result was found to
+match the experimental bounds.
+12
+
+FIG. 1: Variation of |Y1| with sum of neutrino masses.
+FIG. 2: Variation of |Y2| with sum of neutrino masses.
+FIG. 3: Variation of |Y3| with sum of neutrino masses.
+13
+
+.NH
+Excluded KamLAND-Zen region
+0.100
+0.050 F
+(Aa)
+0.010F
+Em
+0.005E
+0.001E
+Allowed 3oregion
+5.10-
+1.×10-9
+5.×10-1.×10-s
+5.×101.×10
+5.x10
+[Y1]IH
+Exciuded KamLAND-Zen region
+0.100
+0.010
+0.001
+10-4
+Allowed 3o region
+10-5
+2.×10-7
+4. ×10-7
+6.× 10-7
+8.×10-7
+[Y1]NH
+Excluded KamLAND-Z
+001°0
+egio
+0.050 F
+(19)
+0.010F
+Zm,
+0.005
+0.001
+Allowed 3gregion
+5.10-
+5.x10-9 1.× 10-s
+5.x10s1.x10
+5.x10-7 1. ×10-6
+[Y2]IH
+Exciuded KamLAND-Zen region
+0.100
+0.010
+0.001
+10-4
+Allowed 3oregion
+10-5
+5.×10-91.×108
+5.×1081.×10-7
+5.×10-71.×10-6
+[Y2]NH
+0.100
+Excluded KamLAND
+0.050
+(19)
+0.010F
+Em.
+0.005
+0.001E
+Allowed3gregion
+5.10-
+5.x10-1.x10
+5.×101.×10
+5.×10-71.×10-6
+[Y3]IH
+Exciuded KamLAND-Zen region
+0.100
+0.010
+Aa)
+0.001
+10-4
+Allowed Bo region
+10-5
+1.×10-8
+5.×10-81.×10-7
+5.×1071.×10-6
+[Y3]B.
+Type-II dominance
+Type-II seesaw mass in LRSM dominates when the Dirac term connecting the right-handed and
+left-handed parts is negligible as compared to that of the type-II term [44]. In that case, our light
+neutrino mass mν will given by the type-II seesaw mass term, i.e.,
+MνL = fLvL
+(4.16)
+And the heavy mass matrix is given by,
+MR = fRvR
+(4.17)
+Again if we consider that UL and UR diagonalizes MνL and MR respectively, so for the reason
+mentioned above the same matrices will also diagonalize fL and fR respectively and since in our
+model, fL = fR, so we can consider UL = UR. In such a case, we arrive at an important result that
+mi ∝ Mi
+(4.18)
+Now using modular symmetry the light neutrino mass matrix for type-II dominance in our model
+is given by,
+mν = vL
+�
+�
+�
+�
+2Y1 −Y3 −Y2
+−Y3 2Y2 −Y1
+−Y2 −Y1 2Y3
+�
+�
+�
+�
+(4.19)
+where, vL is the vev for left-handed scalar triplet. The value of vL is taken to be of the order of
+eV . The sum of the neutrino masses is computed for type-II dominance and plotting of the sum
+is done with the Yukawa couplings which are found to be as shown under,
+FIG. 4: Variation of |Y1| with sum of neutrino masses.
+14
+
+HN
+Excluded KamLAND-Zen region
+0.100
+0.010
+0.001
+10-4
+Allowed 3o region
+10-5
+5.x10-911.x10-8
+5.x10-81.×10-7
+5.×10-7
+(Y1]IH
+Exciuded KamLAND-Zen region
+0.100
+0.010
+0.001
+10-4
+Allowed3o region
+10-5
+2.×10-7
+4.×10-7
+6. × 10-7
+8.×10-7
+[YI]FIG. 5: Variation of |Y2| with sum of neutrino masses.
+FIG. 6: Variation of |Y3| with sum of neutrino masses.
+V.
+NEUTRINOLESS DOUBLE BETA DECAY (0νββ) IN MINIMAL LRSM
+Neutrinoless double beta decay is a lepton number violating process, which if proven to exist will
+directly imply the Majorana nature of neutrinos.
+N(A, Z) → N(A, Z + 2) + e− + e−
+(5.1)
+Many groups have however already done a lot of work on NDBD in the model , [21],[28, 45–50]. In
+LRSM [51], there are several contributions to NDBD in addition to the standard contribution via
+light Majorana neutrino exchange owing to the presence of several heavy additional scalar,vector
+15
+
+.IH
+Exciuded KamLAND-Zen region
+0.100
+1010:0
+0.001
+10-4
+Allowed 3o region
+10-5
+5.×10-91.×108
+5.×10-81.×107
+5. × 10-7 1. × 10-6
+[Y2]NH
+Excluded KamLAND-Zen region
+0.100
+0.010
+0.001
+10-4
+Allowed3oregion
+10-5
+5.×10-91.×10-8
+5.×10-81.×10-7
+5.×10-71.×10-6
+[Y3].IH
+Exciuded KamLAND-Zen region
+0.100
+0.010
+0.001
+10-4
+Allowed 3o region
+10-5
+5.×10-91.×10-8
+5.×10-81.×10-7
+5.×10-71.×10-6
+[Y3]NH
+Excluded KamLAND-Zen region
+0.100
+0.010
+0.001
+10-4
+Allowed3gregion
+10-5
+5.x10-81.x10-7
+5.x10-7
+1.x10-6
+[Y2]and fermionic fields [52–55]. Various contributions to NDBD transition rate in LRSM are discussed
+as follows :
+• Standard Model contribution to NDBD where the intermediate particles are the WL bosons
+and light neutrinos, the process in which the amplitude depends upon the leptonic mixing
+matrix elements and light neutrino masses.
+• Heavy right-handed neutrino contribution in which the mediator particles are the WL bosons
+and the amplitude depends upon the mixing between light and heavy neutrinos as well as
+the mass of the heavy neutrino.
+• Light neutrino contribution to NDBD where the intermediate particles are WR bosons and
+the amplitude depends upon the mixing between light and heavy neutrinos as well as mass
+of the right-handed gauge boson WR.
+• Heavy right-handed neutrino contribution where the mediator particles are the WR bosons.
+The amplitude of this process is dependent on the elements of the right handed leptonic
+mixing matrix and mass of the right-handed gauge boson, WR as well as the mass of the
+heavy right handed Majorana neutrino.
+• Light neutrino contribution from the Feynman diagram mediated by both WL and WR,
+and the amplitude of the process depends upon the mixing between light and heavy neutri-
+nos,leptonic mixing matrix elements, light neutrino masses and the mass of the gauge bosons,
+WL and WR.
+• Heavy neutrino contribution from the Feynman diagram mediated by both WL and WR,
+and the amplitude of the process depends upon the right handed leptonic mixing matrix
+elements, mixing between the light and heavy neutrinos, also the mass of the gauge bosons,
+WL and WR and the mass of the heavy right handed neutrino.
+• Scalar triplet contribution (∆L) in which the mediator particles are WL bosons, and the
+amplitude for the process depends upon the masses of the WL bosons, left-handed triplet
+Higgs, as well as their coupling to leptons.
+16
+
+• Right-handed scalar triplet contribution (∆R) contribution to NDBD in which the mediator
+particles are WR bosons, and the amplitude for the process depends upon the masses of the
+WR bosons, right-handed triplet Higgs, ∆R as well as their coupling to leptons.
+In our work, where we have incorporated A4 modular symmetry to LRSM and in our present
+work we have considered three of the above mentioned contributions, one from the standard light
+neutrino contribution and the other two new physics contribution mediated by W −
+R and ∆R re-
+spectively. For simple approximations, an assumption has been made in the mass scales of heavy
+particles, where,
+MR ≈ MWR ≈ M∆L++ ≈ M∆R++ ≈ TeV
+. Under these assumptions, the amplitude for the light-heavy mixing contribution which is pro-
+portional to mD2
+MR remains very small, since mν ≈ mD2
+MR ≈ (0.01 − 0.1)eV, mD ≈ (105 − 106)eV which
+implies mD
+MR ≈ (10−7 − 10−6)eV . Thus in our model, we ignore the contributions involving the light
+and heavy neutrino mixings.
+When NDBD is done in the framework of LRSM, the standard light neutrino contribution is
+given by,
+meff
+v
+= U 2
+Limi
+(5.2)
+where, ULi are the elements of the first row of the neutrino mixing matrix UPMNS, in which the
+elements are dependent on known mixing angles θ13 , θ12 and the Majorana phases κ and η. The
+UPMNS matrix is given by,
+UPMNS =
+�
+�
+�
+�
+c12c13
+s12c13
+s13e−iδ
+−c23s12 − s23s13c12eiδ −c23c12 − s23s12s13eiδ s23c13
+s23s12 − c23s13c12eiδ
+−s23c12 − c23s13s12eiδ
+c23c13
+�
+�
+�
+� P
+(5.3)
+where, P = diag(1, eiκ, eiη). So the effective mass can be parametrized in terms of the elements of
+the diagonalizing matrix and the eigenvalues as,
+meff
+v
+= m1c2
+12c2
+13 + m2s2
+12c2
+13e2iκ + m3s2
+13e2iη.
+(5.4)
+VI.
+NUMERICAL ANALYSIS AND RESULTS
+In our present work, we have modified left-right symmetric model by incorporating A4 modu-
+17
+
+lar symmetry for both type-I and type-II dominances. As we are using modular symmetry, the
+Yukawa couplings are expressed as expansions of q as shown in equations (3.5),(3.6) and (3.7). In
+our model, the value of q is found to be of the order of 10−1. The aboslute value of the modulus
+should however be greater than 1.
+τ = Re(τ) + Im(τ)
+(6.1)
+Re(τ)
+Im(τ)
+|τ|
+Range [0.715,0.789] [0.8,0.9] [1.073,1.197]
+TABLE V: Range of values corresponding to real and imaginary parts of the modulus τ.
+Yukawa couplings Normal Hierarchy Inverted hierarchy
+Y1(min)
+1.29155 × 10−9
+1.32276 × 10−7
+Y1(max)
+8.22986 × 10−7
+9.21382 × 10−7
+Y2(min)
+3.02229 × 10−9
+2.42826 × 10−9
+Y2(max)
+1.32006 × 10−6
+1.45952 × 10−6
+Y3(min)
+3.39287 × 10−9
+3.759 × 10−9
+Y3(max)
+1.3165 × 10−6
+1.50082 × 10−6
+TABLE VI: Range of Yukawa couplings (Y1, Y2, Y3) for both normal and inverted hierarchy.
+From table (V), it is seen that the absolute value of the modulus is greater than unity, which
+is the expected result. The range of the Yukawa couplings for our model is shown in the table
+above. It is seen from the table that the minimum value of the Yukawa coupling Y1 is in the scale
+of 10−10 for normal hierarchy while for inverted hierarchy it is in the scale of 10−7. However, for
+the maximum of Y1 both the orderings are in the same scale. For Y2 and Y3, the minimum and
+maximum values for both normal and inverted hierarchies are within the same scale. We have
+plotted the effective masses against the Yukawa couplings (Y1, Y2, Y3) and it was found to be well
+within the bound set by experiments.
+As shown both for type-I and type-II dominances, we have plotted the absolute values of the
+18
+
+Yukawa couplings against the sum of the neutrino masses. The range of the values for sum of
+neutrino masses for both the cases are given as under,
+� mν
+Normal Hierarchy Inverted hierarchy
+Type − I(min)
+0.000980556
+0.000437758
+Type − I(max)
+0.177296
+0.186377
+Type − II(min)
+0.000219304
+0.000035
+Type − II(max)
+0.0200981
+0.0203081
+TABLE VII: Range of values for sum of neutrino masses for type-I and type-II dominances for
+both normal and inverted hierarchy.
+A.
+Standard Light Neutrino Contribution to 0νββ
+As mentioned above, in the standard light neutrino contribution to 0νββ, the intermediate
+particles are the WL bosons and light neutrino. The effective mass for the contribution is given
+by equation (5.2). Simplifying for the respective elements of ULi and mi, the value of the effective
+mass is obtained in terms of the modular forms (Y1, Y2, Y3) as,
+meff
+ν
+= meff
+1
++ meff
+2
++ meff
+3
+(6.2)
+where,
+meff
+1
+= ν(Y2 − Y3)2(Y1 + Y2 + Y3)
+νR(Y1 − Y3)2
+meff
+2
+= ν2(Y1 − Y2)2(Y1 + Y2 + Y3 −
+√
+3
+�
+3Y 2
+1 − 2Y1Y2 + 3Y 2
+2 − 2Y1Y3 − 2Y2Y3 + 3Y 2
+3 )
+2νR(Y1 − Y3)2
+meff
+3
+= ν2(Y1 + Y2 + Y3 −
+√
+3
+�
+3Y 2
+1 − 2Y1Y2 + 3Y 2
+2 − 2Y1Y3 − 2Y2Y3 + 3Y 2
+3 )
+2νR
+for type-I dominance, and the plots are shown as,
+19
+
+FIG. 7: Variation of |Y1| with effective neutrino mass for standard light neutrino contribution.
+FIG. 8: Variation of |Y2| with effective neutrino mass for standard light neutrino contribution.
+FIG. 9: Variation of |Y3| with effective neutrino mass for standard light neutrino contribution.
+20
+
+1
+.NH
+Excluded KamLAND-Zen region
+0.100
+0.010
+(Aa)
+0.001
+10-4
+Allowed 3o region
+10-5
+5.×10-9
+1.×10-8
+5.×108
+1.x10~
+5.x10-
+[Y1].H
+Excluded KamLAND-Zen region
+0.100
+(Aa)
+meff
+0T0:0
+0.001
+Allowed 3o region
+107
+2. ×10-7
+4. × 10-7
+6. ×10-7
+8.×10-7
+[Y1]1
+.NH
+Excluded KamLAND-Zen region
+0.100
+0.010
+(eV)
+0.001
+10-4
+Allowed 3o region
+10-5
+5.×1091.×108
+5.×10-81.×10-7
+5.×10-7
+1.×10-6
+[Y2].IH
+Excluded KamLAND-Zen region
+0.100
+(Aa)
+meff
+0.010
+0.001
+Allowed 3o region
+107
+5.×101.×108
+5.×10-81.×10-7
+5.×10-71.×10-6
+[Y2].NH
+Excluded KamLAND-Zen region
+0.100
+0.010
+0.001
+10-4
+Allowed3oregion
+10-5
+5.×10-91.×10-8
+5.×10-1.×10
+5.x10-71.x10-6
+[Y3].IH
+Excluded KamLAND-Zen region
+0.100
+(Aa)
+0.010
+0.0015
+Allowed 3o region
+10-4
+5.×1091.×10-8
+5.×10-81.×10-7
+5.×10-71.×10-6
+/Y3For type-II dominance, we have
+meff
+1
+= −νL(−Y2 + Y3)(Y1 + Y2 + Y3)
+Y1 − Y2
+meff
+2
+= −νL(Y1 − Y3)(Y1 + Y2 + Y3 −
+√
+3
+�
+3Y 2
+1 − 2Y1Y2 + 3Y 2
+2 − 2Y1Y3 − 2Y2Y3 + 3Y 2
+3 )
+2(Y1 − Y2)
+meff
+3
+= νL(Y1 − Y3)(Y1 + Y2 + Y3 +
+√
+3
+�
+3Y 2
+1 − 2Y1Y2 + 3Y 2
+2 − 2Y1Y3 − 2Y2Y3 + 3Y 2
+3 )
+2
+FIG. 10: Variation of |Y1| with effective neutrino mass for standard light neutrino contribution.
+FIG. 11: Variation of |Y2| with effective neutrino mass for standard light neutrino contribution.
+21
+
+.NH
+Excluded KamLAND-Zen region
+0.100
+0.010
+(eV)
+0.001
+10-4
+Allowed3gregion
+10-5
+5.×10-91.×10-8
+5.×10-1.×10-
+5.×10-71.×10-6
+[Y1].IH
+Excluded KamLAND-Zen region
+0.100
+0.010
+0.001E
+Allowed3oregidh
+5.0x10~7
+1.0-10-5
+1.5,10-5
+2.0x10-5
+2.5x10-5
+3.010-5
+3.5x10-5
+YINH
+Excluded KamLAND-Zen region
+0.100
+0.010
+(Aa)
+Meff
+0.001
+10-4
+Allowed 3g region
+10-5
+5.x1091.×108
+5.x101.x107
+5.× 10-71. x10-6
+5.×10-6
+(Y2).IH
+Excluded KamLAND-Zen region
+0.100
+(A)
+O1O1O
+0.001
+Allowed 3o region
+10
+5.×10-8
+1.×10-7
+5.×10-7
+1.×10-6
+5.×10-6
+[Y2]FIG. 12: Variation of |Y3| with effective neutrino mass for standard light neutrino contribution.
+B.
+Heavy Right-Handed Neutrino contribution to 0νββ
+In our work, we have considered contributions of heavy right-handed neutrino and scalar Higgs
+triplet to NDBD. The effective mass for heavy right-handed neutrino is given by,
+meff
+R
+= p2
+�
+M 4
+WL
+M 4
+WR
+��
+U ∗2
+Rei
+Mi
+�
+(6.3)
+where, p2 is the typical momentum exchange of the process. As it is known that TeV scale LRSM
+plays a very important role in the process of neutrinoless double beta decay (0νββ), we have
+considered the values as MWR = 10TeV , MWL = 80GeV , M∆R ≈ 3TeV and after calculation,
+the value for heavy right-handed neutrino is found to be in the scale of TeV . The allowed value
+of p is in the range (100 − 200)MeV and so we consider, p ≈ 180MeV . Thus, we get,
+p2
+�
+M 4
+WL
+M 4
+WR
+�
+= 1010eV 2
+(6.4)
+where, URei refers to the first row elements of the diagonalizing matrix of the heavy Majorana mass
+matrix and Mi are its eigenvalues. The effective mass corresponding to the heavy right-handed
+neutrino can be expressed in terms of the modular forms as,
+mR
+eff = 1010(mR1
+eff + mR2
+eff + mR3
+eff)
+(6.5)
+where,
+mR1
+eff =
+2
+νR(Y1 + Y2 + Y3 +
+√
+3
+�
+3Y 2
+1 − 2Y1Y2 + 3Y 2
+2 − 2Y1Y3 − 2Y2Y3 + 3Y 2
+3 )
+22
+
+1
+NH
+Excluded KamLAND-Zen region
+0.100
+0.010
+(eV)
+0.001
+10-4
+Allowed 3oregion
+10-5
+1.x10-8
+5.×10-81.x10
+5.×1071.×10-6
+5.×10-6
+[Y3].IH
+Excluded KamLAND-Zen region
+0.100
+0.010
+0.001
+Allowed 3oregion
+5.x10~9
+1. ×10-S
+5.×10-8
+1.×10~7
+5.x10-7
+1.x106
+5.×10~6
+(Y3)mR2
+eff =
+2(Y ∗
+1 − Y ∗
+3 )2
+νR(Y1 + Y2 + Y3 −
+√
+3
+�
+3Y 2
+1 − 2Y1Y2 + 3Y 2
+2 − 2Y1Y3 − 2Y2Y3 + 3Y 2
+3 )(Y ∗
+1 − Y ∗
+2 )2
+mR3
+eff =
+(−Y ∗
+2 + Y ∗
+3 )2
+νR(Y1 + Y2 + Y3)(Y ∗
+1 − Y ∗
+2 )2
+The total effective mass is also calculated for the standard light and right-handed heavy neutrino
+contribution, given by,
+|mefftotal
+ν
+| = |meff
+ν
++ mR
+eff|
+(6.6)
+which can be obtained in terms of the modular forms as a summation of the above mentioned
+terms.
+FIG. 13: Variation of |Y1| with total effective neutrino mass.
+FIG. 14: Variation of |Y2| with total effective neutrino mass.
+23
+
+NH
+Excluded KamLAND-Zenregion
+0.100
+0.010
+0.001
+10-4
+Ailowed3oregion
+10-5
+[Y1]IH
+Excluded KamLAND-Zen region
+0.100
+0.010
+0.001
+Allowed3gregion
+5.0-10-7
+1.010-5
+1.5,10-6
+2.0x10-5
+2.5x10-5
+3.0±105
+3.5x10-5
+YI.NH
+Excluded KamLAND-Zenregion
+0.100
+0.010
+(10)
+total
+0.001
+10-4
+Allowed 3o region
+105
+5.×10-91.×10-8
+5.×10-$1.×10-7
+5.×10-71.×10-6
+5.×10-6
+[Y2]H
+Exciuded KamLAND-Zen region
+0.100
+010'0
+100'0
+Ailowed3oregion
+10-4
+1.×10-8
+5.×1081.×107
+5.x10-7
+1.x10-6
+5.×10-6
+/Y2]FIG. 15: Variation of |Y3| with total effective neutrino mass.
+The plots above are for type-I dominance.
+FIG. 16: Variation of |Y1| with total effective neutrino mass.
+FIG. 17: Variation of |Y2| with total effective neutrino mass.
+24
+
+.NH
+Excluded KamLAND-Zen region
+0.100
+0.010
+0.001
+10~4
+Allowed 3g region
+10~5
+1.×108
+5.×108 1.×10-
+5.×10-7
+1.×10-6
+5.×10-6
+[Y3]H
+Excluded KamLAND-Zen region
+0.100
+0.010
+0.001
+Ailowed3o region
+10-4
+1.× 10-8
+5.x10-8
+1.×10-7
+5.×10-7
+1.x10-6
+5.×106
+[Y3]NH
+Excluded KamLAND-Zen.region
+0.100
+O1O'0
+0.001
+10-4
+Ailowed3o region
+10-5
+5.x10-81.x10-7
+5.×10-71.x10-6
+[Y1]IH
+Excluded KamLAND-Zen region
+0.100
+0.010
+0.001E
+Allowed 3g region
+10-4
+5.0x10~7
+1.0-10-5
+1.510-5
+2.0x10-5
+2.5x10-5
+3.010-5
+3.5x10-5
+YI.NH
+Excluded KamLAND-Zen.region
+0.100
+0.010
+(10)
+total
+0.001
+10-4
+Allowed 3o region
+10~5
+5.×10-91.×10-8
+5.×10-81.×10~
+5.×10-71.×10-6
+5.×10-6
+[Y2]H
+Exciuded KamLAND-Zen region
+0.100
+nltot
+0.010
+100'0
+Ailowed3oregion
+10-4
+5.×10-8
+1. × 10-7
+5.×10-7
+1.x10-6
+5.×10-6
+/Y2]FIG. 18: Variation of |Y3| with total effective neutrino mass.
+The figures above are the plots for type-II dominance.
+C.
+Scalar Triplet contribution to 0νββ
+The magnitude of ∆R contribution is controlled by the factor
+Mi
+M∆R [44]. However, scalar triplet
+contribution is not included in the total contribution under the assumption
+Mi
+M∆R < 0.1. But,
+some the mixing parameters in the large part of the parameter space may result in a higher
+Mi
+M∆R
+ratio and in such cases we will have to include it in the total contribution. The impact of this
+contribution here is studied in the limit, M∆R ≊ Mheaviest.
+The effective mass for scalar triplet contribution is given as,
+|meff
+∆ | = |p2 M 4
+WL
+M 4
+WR
+U 2
+ReiMi
+M 2
+∆R
+|
+(6.7)
+The value of the mass for the right-handed scalar triplet is taken as, M∆R = 3TeV . So, the value
+of the coefficient results as,
+p2 M 4
+WL
+M 4
+WR
+1
+M 2
+∆R
+=
+1010
+9 × 1024
+(6.8)
+In terms of modular forms, the effective scalar mass can be expressed as,
+m∆R
+eff = m∆R
+eff1 + m∆R
+eff2 + m∆R
+eff3
+(6.9)
+where,
+m∆R
+eff1 = νR(Y2 + Y3)2(Y1 + Y2Y3)
+(Y1 − Y2)2
+25
+
+.NH
+Excluded KamLAND-Zen region
+0.100
+0.010
+ltotal(
+0.001
+10-4
+Allowed 3g region
+1.×10-8
+5.×10-8 1. ×10
+5.×10-7
+1.×10-6
+5.×10-6
+[Y3]Exciuded KamLAND-Zen region
+0.100
+0.010
+Hltot
+0.001
+Allowed 3o region
+5.×1091.×108
+5.x1081.x10-7
+5.×10-6
+IY3Im∆R
+eff2 = νR(Y1 − Y3)2(Y1 + Y2 + Y3 −
+√
+3
+�
+3Y 2
+1 − 2Y1Y2 + 3Y 2
+2 − 2Y1Y3 − 2Y2Y3 + 3Y 2
+3 )
+2(Y1 − Y2)2
+m∆R
+eff3 = νR(Y1 + Y2 + Y3 +
+√
+3
+�
+3Y 2
+1 − 2Y1Y2 + 3Y 2
+2 − 2Y1Y3 − 2Y2Y3 + 3Y 2
+3 )
+2
+The plots are shown as under.
+FIG. 19: Variation of |Y1| with effective neutrino mass for scalar triplet contribution.
+FIG. 20: Variation of |Y2| with effective neutrino mass for scalar triplet contribution.
+26
+
+. NH
+Excluded KamLAND-Zen region
+0.100
+0.010
+(Aa)
+0.001
+10-4
+Allowed 3o region
+10-5
+5.x1091.x108
+5.x10-81.x10-7
+5.×1071.x10-6
+(Y1]·IH
+Excluded KamLAND-Zen region
+0.100
+0.010
+meffxh
+0.01
+104F
+Allowed3o region
+10-5
+5.010-7
+1.0-10-6
+13:10-6
+2.0-10-5
+25±10-5
+3.0.10-5
+3.5x10-5
+YINH
+Excluded KamLAND-Zen region
+0.100
+0.0105
+(Aa)
+0.001
+10-4
+Allowed 3o region
+10-5
+5.×101.×108
+5.×10-1.×10
+5.×10-71.×10-6
+5.×10-6
+[Y2].IH
+Exciuded KamLAND-Zen region
+0.100
+0.010
+effsclr
+0.001
+10-4
+Allowed 3oregion
+10-5
+5.×10-81.×10-7
+5.×10-71.× 10-6
+5. × 10-6
+[Y2]FIG. 21: Variation of |Y3| with effective neutrino mass for scalar triplet contribution.
+VII.
+CONCLUSION
+The discovery of neutrino oscillations paved the gateway for physics beyond the Standard Model.
+In our paper, we have realized LRSM with the help of modular A4 symmetry for both type-I and
+type-II dominance. Using modular symmetry provides the advantage of using no extra particles
+called ’flavons’. The Yukawa couplings are represented as modular forms expressed as expansions
+of q. The values of the Yukawa couplings (Y1, Y2, Y3) are calculated using ’Mathematica’. The mass
+matrices are then determined using the multiplication rules for A4 group stated in the Appendix.
+The Majorana mass matrix is found to be symmetric and under the considered basis, the charged
+lepton mass matrix is also diagonal. We have expressed the light neutrino and heavy right-handed
+neutrino mass matrix in terms of the modular forms. We have also studied briefly the contributions
+of 0νββ in LRSM. The effective masses corresponding to standard light neutrino contribution,
+right-handed contribution and scalar triplet contributions are determined in terms of (Y1, Y2, Y3)
+and we have plotted the effective mass corresponding to the considered contributions against the
+Yukawa couplings. To summarize our work, some results are stated as under,
+• The absolute value of the modulus was found to be within the range 1.073 to 1.197, which
+is greater than unity, that is the desired result.
+• The Yukawa couplings, expressed in terms of modular forms ranges from 10−9 to 10−6.
+• The sum of the neutrino masses for type-I dominance ranges from the order of 10−4 to 10−1
+27
+
+INH
+Excluded KamLAND-Zen region
+0.100
+0.010
+(Aa)
+0.001
+10-4
+Allowed 3o region
+10-5
+1.×10-8
+5. × 10-8 1. ×107
+5.×10-71.×10-6
+5.×10-6
+[Y3].IH
+Exciuded KamLAND-Zen region
+0.100
+0.010
+effsclr
+0.001
+10-4
+Allowed 3oregion
+10-5
+5. ×10-8 1. × 10-7
+5. × 10-7 1. ×10-6
+5.×10-6
+[Y3]for both normal and inverted hierarchy.
+• The sum of the neutrino masses for type-II dominance ranges from the order of 10−4 to 10−2
+for both normal and inverted hierarchy.
+The effective masses for the 0νββ contributions are calculated and by determining their relations
+with the modular forms, we have plotted the effective masses with the three Yukawa couplings and
+it has been found that the values for the effective mass corresponding to each contribution is well
+within the experimental bounds, which infact makes us clearly state that the building of the model
+with modular symmetry is advantageous to that of flavor symmetries. In this model, we have not
+used any extra particles and the analysis has been done taking into consideration the calculated
+and computed values for the model parameters and the results are found to be satisfactory, so it
+can be stated that the Left-Right Symmetric Model can be constructed with modular symmetry
+while satisfying the experimental bounds on the desired parameters.
+VIII.
+APPENDIX A
+Let us consider the Higgs potential of our model that has quadratic and quartic coupling terms
+given by [36],
+Vφ,∆L,∆R = −µ2
+ijTr[φ†
+iφj] + λijklTr[φ†
+iφj]Tr[φ†
+kφl] + λ
+′
+ijklTr[φ†
+iφjφ†
+kφl] − µ2
+ijTr[Ơ
+L∆L + ∆†
+R∆R]
+ρ1[(Tr[∆†
+L∆L])2 + (Tr[∆†
+L∆L])2] + ρ2(Tr[∆†
+L∆L∆†
+L∆L] + Tr[∆†
+R∆R∆†
+R∆R]) + ρ3Tr[∆†
+L∆L∆†
+R∆R]+
+αijTr[φ†
+iφj](Tr[∆†
+L∆L]+Tr[∆†
+R∆R])+βij(Tr[∆†
+L∆Lφiφ†
+j]+Tr[Ơ
+R∆Rφiφ†
+j])+γij(Tr[∆†
+Lφi∆Rφ†
+j]+h.c)
+(8.1)
+where, i,j,k,l runs from 1 to 2 with φ1 = φ and φ2 = ˜φ. As mentioned above after SSB, the scalar
+sector obtains VEV. So after the substitution of the respective VEVs and determining the traces,
+so after simplification the potential can be written as,
+V = −µ2(v2
+L + v2
+R) + ρ
+4(v4
+L + v4
+R) + ρ′
+2 + α
+2 (v2
+L + v2
+R)k2
+1 + γvLvRk2
+(8.2)
+where, we have used the approximation k′ << k, and ρ′ = 2ρ3. Our minimization conditions are,
+δV
+δvL = δV
+δvR = δV
+δk = δV
+δk′ = 0
+28
+
+Therefore, we get,
+δV
+δvL
+= −2µ2vL + ρv3
+L + ρ′vLk2 + γvRk2
+(8.3)
+Here, it is evident that the Majorana mass of the left-handed neutrino MLL is dependent on the
+vev vL as already defined above. Again, we have
+δV
+δvR
+= −2µ2vR + ρv3
+R + ρ′vRk2 + γvLk2
+(8.4)
+So, the right handed Majorana mass MRR is dependent on the vev vR. Similarly, the calculations
+for the same can be carried out and it can be found out the Dirac mass term MD can be expressed
+in terms of the vev for the Higgs bidoublet as also defined previously.
+Now, we are to determine a relation between the VEVs for the scalars and so after using the
+minimization conditions and simplifying the equations, we come to a relation given by,
+vLvR = γ
+ξ k
+(8.5)
+where, ξ = ρ − ρ′.
+The neutrino mass for LRSM is given as a summation of the type-I and type-II term as already
+mentioned above. So, in the approximation that k′ << k, and if we consider that our Yukawa
+coupling Y l corresponding to the neutrino masses is yD and the coupling �
+Y l for the charged fermion
+masses is denoted by yL, so considering yDk >> ylk′ we can write,
+Mν = k2
+vR
+yDf −1
+R yT
+D + fLvL
+(8.6)
+Since, for due to left-right symmetry, we can consider fL = fR = f, so the above equation can be
+written as,
+Mν = k2
+vR
+yDf −1yT
+D + fvL
+(8.7)
+So, from this equation we can come to a relation given by,
+Mν = (f γ
+ξ + yDf −1yT
+D) k2
+vR
+(8.8)
+Here, we can consider two situations, namely
+• If f( γ
+ξ ) << yDf −1yT
+D, the light neutrino mass is given by the type-I term MDM −1
+RRM T
+D. That
+is, here type-I is dominant and the light neutrino mass is from the suppression of heavy νR.
+• If f( γ
+ξ ) >> yDf −1yT
+D, the light neutrino mass is given by the type-II term fvL. That is, in
+this case type-II mass term is dominant and the light neutrino mass is because of the tiny
+value of νL.
+29
+
+IX.
+APPENDIX B
+Properties of A4 group
+A4 is a non-abelian discrete symmetry group which represents even permuatations of four ob-
+jects. It has four irreducible representations, three out of which are singlets (1, 1′, 1′′) and one
+triplet 3 (3A represents the anti-symmetric part and 3S the symmetric part). Products of the
+singlets and triplets are given by,
+1 ⊗ 1 = 1
+1′ ⊗ 1′ = 1′′
+1′ ⊗ 1′′ = 1
+1′′ ⊗ 1′′ = 1′
+3 ⊗ 3 = 1 ⊕ 1′ ⊕ 1′′ ⊕ 3A ⊕ 3S
+If we have two triplets under A4 say, (a1, a2, a3) and (b1, b2, b3) , then their multiplication rules are
+given by,
+1 ≈ a1b1 + a2b3 + a3b2
+1′ ≈ a3b3 + a1b2 + a2b1
+30
+
+1′′ ≈ a2b2 + a3b1 + a1b2
+3S ≈
+�
+�
+�
+�
+2a1b1 − a2b3 − a3b2
+2a3b3 − a1b2 − a2b1
+2a2b2 − a1b3 − a3b1
+�
+�
+�
+�
+3A ≈
+�
+�
+�
+�
+a2b3 − a3b2
+a1b2 − a2b1
+a3b1 − a1b3
+�
+�
+�
+�
+X.
+REFERENCES
+[1] Justin Evans. The MINOS Experiment: Results and Prospects. Adv. High Energy Phys., 2013:182537,
+2013.
+[2] K. Abe et al. Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis
+Muon Neutrino Beam. Phys. Rev. Lett., 107:041801, 2011.
+[3] F. P. An et al. Observation of electron-antineutrino disappearance at Daya Bay. Phys. Rev. Lett.,
+108:171803, 2012.
+[4] Fumihiko Suekane and Thiago Junqueira de Castro Bezerra. Double Chooz and a history of reactor
+Θ13 experiments. Nucl. Phys. B, 908:74–93, 2016.
+[5] Thierry Lasserre, Guillaume Mention, Michel Cribier, Antoine Collin, Vincent Durand, Vincent
+Fischer, Jonathan Gaffiot, David Lhuillier, Alain Letourneau, and Matthieu Vivier. Comment on
+Phys. Rev. Lett. 108, 191802 (2012): ’Observation of Reactor Electron Antineutrino Disappearance
+in the RENO Experiment’. 5 2012.
+[6] P. A. R. Ade et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys., 571:A16,
+2014.
+[7] N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys., 641:A6,
+2020. [Erratum: Astron.Astrophys. 652, C4 (2021)].
+31
+
+[8] Ivan Esteban, M. C. Gonzalez-Garcia, Michele Maltoni, Thomas Schwetz, and Albert Zhou. The
+fate of hints: updated global analysis of three-flavor neutrino oscillations. JHEP, 09:178, 2020.
+[9] J. Schechter and J. W. F. Valle. Neutrino Masses in SU(2) x U(1) Theories. Phys. Rev. D, 22:2227,
+1980.
+[10] Rabindra N. Mohapatra and Goran Senjanovic. Neutrino Mass and Spontaneous Parity Nonconser-
+vation. Phys. Rev. Lett., 44:912, 1980.
+[11] C. Wetterich. Neutrino Masses and the Scale of B-L Violation. Nucl. Phys. B, 187:343–375, 1981.
+[12] Stefan Antusch and Steve F. King. Type II Leptogenesis and the neutrino mass scale. Phys. Lett.
+B, 597:199–207, 2004.
+[13] Robert Foot, H. Lew, X. G. He, and Girish C. Joshi. Seesaw Neutrino Masses Induced by a Triplet
+of Leptons. Z. Phys. C, 44:441, 1989.
+[14] Naoyuki Haba, Hiroyuki Ishida, and Yuya Yamaguchi. Naturalness and lepton number/flavor viola-
+tion in inverse seesaw models. JHEP, 11:003, 2016.
+[15] Edward W. Kolb and Stephen Wolfram.
+The Development of Baryon Asymmetry in the Early
+Universe. Phys. Lett. B, 91:217–221, 1980.
+[16] S. M. Bilenky and Carlo Giunti. Neutrinoless double-beta decay: A brief review. Mod. Phys. Lett.
+A, 27:1230015, 2012.
+[17] Guido Altarelli, Ferruccio Feruglio, Luca Merlo, and Emmanuel Stamou. Discrete Flavour Groups,
+theta13 and Lepton Flavour Violation. JHEP, 08:021, 2012.
+[18] Marco Taoso, Gianfranco Bertone, and Antonio Masiero. Dark Matter Candidates: A Ten-Point
+Test. JCAP, 03:022, 2008.
+[19] Michael S. Turner. Dark matter: Theoretical perspectives. Proc. Nat. Acad. Sci., 90:4827, 1993.
+[20] Eric Corrigan. LEFT-RIGHT-SYMMETRIC MODEL BUILDING. Master’s thesis, Lund U., 2015.
+[21] Jogesh C. Pati and Abdus Salam. Lepton Number as the Fourth Color. Phys. Rev. D, 10:275–289,
+1974. [Erratum: Phys.Rev.D 11, 703–703 (1975)].
+[22] R. N. Mohapatra and Jogesh C. Pati. A Natural Left-Right Symmetry. Phys. Rev. D, 11:2558, 1975.
+[23] P. S. Bhupal Dev, Rabindra N. Mohapatra, Werner Rodejohann, and Xun-Jie Xu. Vacuum structure
+of the left-right symmetric model. JHEP, 02:154, 2019.
+[24] Goran Senjanovic. SPONTANEOUS BREAKDOWN OF PARITY IN A CLASS OF GAUGE THE-
+32
+
+ORIES. Other thesis, 1 1979.
+[25] W. Grimus. Introduction to left-right symmetric models. In 4th Hellenic School on Elementary
+Particle Physics, pages 619–632, 3 1993.
+[26] J. D. Vergados, H. Ejiri, and F. Simkovic. Theory of Neutrinoless Double Beta Decay. Rept. Prog.
+Phys., 75:106301, 2012.
+[27] L. Cardani. Neutrinoless Double Beta Decay Overview. SciPost Phys. Proc., 1:024, 2019.
+[28] Bichitra Bijay Boruah and Mrinal Kumar Das. Neutrinoless double-beta decay and lepton flavor vio-
+lation in discrete flavor symmetric left–right symmetric model. Int. J. Mod. Phys. A, 37(06):2250026,
+2022.
+[29] Shao-Feng Ge, Werner Rodejohann, and Kai Zuber. Half-life Expectations for Neutrinoless Double
+Beta Decay in Standard and Non-Standard Scenarios. Phys. Rev. D, 96(5):055019, 2017.
+[30] Junpei Shirai. KamLAND-Zen experiment. PoS, HQL2018:050, 2018.
+[31] M. Agostini et al. Final Results of GERDA on the Search for Neutrinoless Double-β Decay. Phys.
+Rev. Lett., 125(25):252502, 2020.
+[32] Ernest Ma and G. Rajasekaran. Softly broken A(4) symmetry for nearly degenerate neutrino masses.
+Phys. Rev. D, 64:113012, 2001.
+[33] Guido Altarelli, Ferruccio Feruglio, and Luca Merlo. Revisiting Bimaximal Neutrino Mixing in a
+Model with S(4) Discrete Symmetry. JHEP, 05:020, 2009.
+[34] Guido Altarelli and Ferruccio Feruglio. Discrete Flavor Symmetries and Models of Neutrino Mixing.
+Rev. Mod. Phys., 82:2701–2729, 2010.
+[35] Debasish Borah and Mrinal Kumar Das. Neutrino Masses and Leptogenesis in Type I and Type II
+Seesaw Models. Phys. Rev. D, 90(1):015006, 2014.
+[36] M. J. Luo and Q. Y. Liu. Small Neutrino Masses From Structural cancellation In Left-Right Sym-
+metric Model. JHEP, 12:061, 2008.
+[37] Simon J. D. King and Stephen F. King. Fermion mass hierarchies from modular symmetry. JHEP,
+09:043, 2020.
+[38] P. P. Novichkov, J. T. Penedo, S. T. Petcov, and A. V. Titov. Generalised CP Symmetry in Modular-
+Invariant Models of Flavour. JHEP, 07:165, 2019.
+[39] Ferruccio Feruglio. Are neutrino masses modular forms?, pages 227–266. 2019.
+33
+
+[40] P. Duka, J. Gluza, and M. Zralek.
+Quantization and renormalization of the manifest left-right
+symmetric model of electroweak interactions. Annals Phys., 280:336–408, 2000.
+[41] Bichitra Bijay Boruah and Mrinal Kumar Das.
+Realization of Left-Right Symmetric Model by
+Discrete Flavor Symmetries. Springer Proc. Phys., 265:285–291, 2022.
+[42] Purushottam Sahu, Sudhanwa Patra, and Prativa Pritimita. A4 realization of left-right symmetric
+linear seesaw. 2 2020.
+[43] Mohammed Abbas.
+Fermion masses and mixing in modular A4 Symmetry.
+Phys. Rev. D,
+103(5):056016, 2021.
+[44] Joydeep Chakrabortty, H. Zeen Devi, Srubabati Goswami, and Sudhanwa Patra. Neutrinoless double-
+β decay in TeV scale Left-Right symmetric models. JHEP, 08:008, 2012.
+[45] Pei-Hong Gu. Neutrinoless double beta decay in the left-right symmetric models for linear seesaw.
+JHEP, 09:152, 2016.
+[46] James Barry, Luis Dorame, and Werner Rodejohann. Linear Collider Test of a Neutrinoless Double
+Beta Decay Mechanism in left-right Symmetric Theories. Eur. Phys. J. C, 72:2023, 2012.
+[47] Gang Li, Michael Ramsey-Musolf, and Juan Carlos Vasquez. Left-Right Symmetry and Leading
+Contributions to Neutrinoless Double Beta Decay. Phys. Rev. Lett., 126(15):151801, 2021.
+[48] Happy Borgohain and Mrinal Kumar Das. Neutrinoless double beta decay and lepton flavour violation
+in broken µ − τ symmetric neutrino mass models. Int. J. Theor. Phys., 56(9):2911–2934, 2017.
+[49] Shao-Feng Ge, Manfred Lindner, and Sudhanwa Patra. New physics effects on neutrinoless double
+beta decay from right-handed current. JHEP, 10:077, 2015.
+[50] Frank F. Deppisch, Chandan Hati, Sudhanwa Patra, Prativa Pritimita, and Utpal Sarkar. Neutri-
+noless double beta decay in left-right symmetric models with a universal seesaw mechanism. Phys.
+Rev. D, 97(3):035005, 2018.
+[51] G. Senjanovic and Rabindra N. Mohapatra. Exact Left-Right Symmetry and Spontaneous Violation
+of Parity. Phys. Rev. D, 12:1502, 1975.
+[52] Ram Lal Awasthi, Arnab Dasgupta, and Manimala Mitra.
+Limiting the effective mass and new
+physics parameters from 0νββ. Phys. Rev. D, 94(7):073003, 2016.
+[53] Gulab Bambhaniya, P. S. Bhupal Dev, Srubabati Goswami, and Manimala Mitra. The Scalar Triplet
+Contribution to Lepton Flavour Violation and Neutrinoless Double Beta Decay in Left-Right Sym-
+34
+
+metric Model. JHEP, 04:046, 2016.
+[54] Debasish Borah, Sudhanwa Patra, and Utpal Sarkar. TeV scale Left Right Symmetry with sponta-
+neous D-parity breaking. Phys. Rev. D, 83:035007, 2011.
+[55] Happy Borgohain and Mrinal Kumar Das. Lepton number violation, lepton flavor violation, and
+baryogenesis in left-right symmetric model. Phys. Rev. D, 96(7):075021, 2017.
+35
+
diff --git a/ltFRT4oBgHgl3EQfZTcN/content/tmp_files/load_file.txt b/ltFRT4oBgHgl3EQfZTcN/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..0fe3c4e635accc2899a48a0482c8fa74383f2fd3
--- /dev/null
+++ b/ltFRT4oBgHgl3EQfZTcN/content/tmp_files/load_file.txt
@@ -0,0 +1,1135 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf,len=1134
+page_content='Minimal Left-Right Symmetric Model with A4 modular symmetry Ankita Kakoti,1, ∗ Bichitra Bijay Boruah,1, † and Mrinal Kumar Das1, ‡ 1Department of Physics, Tezpur University, Tezpur 784028, India Abstract In this paper, we have realized the left-right symmetric model with modular symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' We have used Γ(3) modular group which is isomorphic to non-abelian discrete symmetry group A4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The advantage of using modular symmetry is the non-requirement for the use of extra particles called ’flavons’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In this model, the Yukawa couplings are expressed in terms of modular forms (Y1, Y2, Y3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In this work, we have studied minimal Left-Right Symmetric Model for both type-I and type-II dominances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Here, we have calculated the values for the Yukawa couplings and then plotted it against the sum of the neutrino masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The results obtained are well within the experimental limits for the desired values of sum of neutrino masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' We have also briefly analyzed the effects of the implications of modular symmetry on neutrinoless double beta decay with the new physics contributions within Left-Right Symmetric Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' ∗ ankitak@tezu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='ernet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='in † bijay@tezu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='ernet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='in ‡ mkdas@tezu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='ernet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='in 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='13552v1 [hep-ph] 31 Jan 2023 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' INTRODUCTION Despite the huge and continued success of the Standard Model (SM) of particle physics, it leaves some of the puzzles unanswered like the existence of neutrino masses, baryon asymmetry of the universe, existence of dark matter etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The discovery of neutrino oscillation by Sudbury neutrino observatory and Super-Kamiokande experiments was a milestone discovery in the area of neutrino physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The experiments like MINOS [1], T2K [2], Daya-Bay [3], Double-Chooz [4], RENO [5] etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' provided evidence on the neutrinos being massive which is one of the most compelling rev- elation that we need to go beyond Standard Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' However inspite of the huge achievements in determining the neutrino oscillation parameters in solar, atmospheric , reactor and accelerator neutrino experiments, many questions related to neutrino still remain unsolved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Among these lies the question regarding the absolute mass scale of neutrinos, exact nature of the particle (Dirac or Majorana), hierarchical pattern of the mass spectrum (Normal or Inverted) and leptonic CP violation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The absolute mass scale of the neutrinos is not yet known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' However experiments like Planck has given an upper bound on the sum of the light neutrino masses to be Σ|mνi| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='23eV in 2012 [6] and recently the bound has been constarined to Σ|mνi| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='11eV [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The most successful data pertaining to neutrino oscillation parameters is found in the 3σ global fit data [8] as shown in table (1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Parameters Normal Ordering Inverted Ordering ∆ m2 21 (10−5eV 2) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='82 → 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='04 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='82 → 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='04 ∆ m2 3l (10−5eV 2) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='435 → 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='598 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='581 → −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='414 sin2 θ12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='264 → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='343 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='269 → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='343 sin2 θ23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='415 → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='616 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='419 → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='617 sin2 θ13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='02032 → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='02410 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='02052 → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='02428 TABLE I: Global fit 3σ values for neutrino oscillation parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 2 We have used the definition, ∆m2 3l = ∆m2 31;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' ∆m2 31 > 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' NO (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='1) ∆m2 3l = ∆m2 32;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' ∆m2 32 < 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' IO (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='2) The simplest way to look for neutrino masses is by the seesaw mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The mechanism may be of type I [9], [10],type II [11], [12],type III [13] and Inverse Seesaw [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' These are extensions of the SM where we incorporate extra particles like right-handed fermions,scalar fermion triplets, gauge singlet neutral fermions etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The BSM physics also sheds light upon the phenomena like baryon asymmetry of the universe (BAU) [15], Lepton Number Violation (LNV) [16], Lepton Flavor violation (LFV) [17], existence of dark matter [18], [19] etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' A BSM framework which has been successful in explaining the first three of the phenomenologies is the Left- Right Symmetric Model (LRSM) [20–24], an extension of the SM corresponding to the addition of SU(2)R group into the theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The gauge group of LRSM is SU(3)C ⊗ SU(2)R ⊗ SU(2)L ⊗ U(1)B−L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The type I and type II seesaw masses appear naturally in the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The right-handed neutrinos are an essential part of the model, which acquires Majorana mass when SU(2)R symmetry is broken.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' LRSM provides a natural framework to understand the spontaneous breaking of parity and origin of small neutrino masses by seesaw mechanism [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Another concerning aspect is the ambiguity regarding nature of neutrinos which has not been yet predicted by the SM of particle physics, that whether neutrinos are Dirac or Majorana fermions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' This problem is directly connected to the issue of lepton number conservation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' One of the process of fundamental importance which arises in almost any extension of the SM is Neutrinoless Double Beta Decay(NDBD) [26], [27] which when verified can assure that neutrinos are Majorana fermions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' NDBD is a slow, radiative process that transforms a nuclide of atomic number Z into its isobar with atomic number Z+2 [28], N(A, Z) → N(A, Z + 2) + e− + e− (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='3) The main aim in the search of NDBD (0νββ) is the measurement of effective Majorana neutrino mass, which is a combination of the neutrino mass eigenstates and neutrino mixing matrix terms [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' However, no experimental evidence regarding the decay has been in picture till date.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In 3 addition to the determination of the effective masses, the half-life of the decay [29] combined with sufficient knowledge of the nuclear matrix elements (NME), we can set a constraint on the neutrino masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The experiments like KamLAND-Zen [30] and GERDA [31] which uses Xenon-136 and Germanium-76 respectively have improved the lower bound on the half-life of the decay process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' However, KamLAND-Zen imposes the best lower limit on the half life as T 0ν 1/2 > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='07 × 1026 yr at 90 % CL and the corresponding upper limit of the effective Majorana mass in the range (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='061- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='165)eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' There are several contributions in LRSM that appear due to additional RH current interactions, giving rise to sizeable LFV rates for TeV scale RH neutrino that occur at rates accessible in current experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' It has been found that the most significant constraints has been provided by the decays, µ → 3e and µ → γe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In the Standard Model, these LFV decays are suppressed by the tiny neutrino masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' No experiment has so far observed any flavor violating processes including charged leptons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' However, many experiments are currently going on to set strong limits on the most relevant LFV observables that will constrain the parameter space of many new models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The best bounds on the branching ratio for LFV decays of the form µ → γe comes from MEG experiment and it is set at BR(µ → γe) < 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='2 × 10−13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In case of the decay µ → 3e, the bound is set by the SINDRUM experiment at BR(µ → 3e) < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='0 × 10−12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' As mentioned LRSM is an important theory that incorporates the above mentioned phe- nomenologies, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=', the phenomenologies related to neutrinos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' There are many works where the authors make use of discrete symmetry groups like A4 [32],S4 [33],Z2 etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [34] to analyze the prob- lem of flavor structure of fermions and to study various related phenomenologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In our work, we have used A4 modular symmetry to study neutrino masses and mixings and hence study Neu- trinoless Double Beta Decay within the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The advantage of using modular symmetry over discrete flavor symmetries is that the study of the model using symmetries can be done without the introduction of extra particles called ’flavons’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Hence the model is minimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' However, in this work we have not done a very detailed analysis of the above mentioned phe- nomenologies, but only realized the left-right symmetric model with the help of A4 modular sym- metry and studied the variations of new physics contributions of neutrinoless double beta decay within LRSM with the range of values for Yukawa couplings, which in our model is expressed as modular forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In section (II), we have given a detailed explanation of the left-right symmetric model, the associated Lagrangian and the mass terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' We begin section (III) by introducing 4 modular symmetry and then in section (IV), we incorporate modular symmetry into LRSM and determine the associated mass matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In section (V), we present a very brief discussion of neutrinoless double beta decay and its associated contributions and their relations with the modular forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In section (VI), the numerical analysis and results of this work has been discussed and the last section reads the conclusion for the present work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' MINIMAL LEFT-RIGHT SYMMETRIC MODEL The Left-Right Symmetric Model (LRSM) was first introduced around 1974 by Pati and Salam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rabindra N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Mohapatra and Goran Senjanovic were also some pioneers of this very elegant theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' LRSM is an extension of the Standard Model of particle physics, the gauge group being SU(3)C ⊗ SU(2)R ⊗ SU(2)L ⊗ U(1)B−L, which has been studied by several groups since 1970’s [25], [21–24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The usual type-I and type-II seesaw neutrino masses arises naturally in the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The seesaw scale is identified by the breaking of SU(2)R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Some other problems are also addressed in LRSM like parity, CP violation of weak interaction, massive neutrinos, hierarchy problems, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' LRSM removes the disparity between the left and right-handed fields by considering the RH fields to be doublet under the additional SU(2)R keeping the right sector couplings same as the left-one by left- right symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In this model, the electric charge is given by Q = T3L +T3R + B−L 2 , where T3L and T3R are the generators of SU(2)L and SU(2)R respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' B − L refers to baryon number minus lepton number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The particle content of the model along with their respective charge assignments are given in table(III).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The matrix representation for the scalar sector is given by, φ = � �φ0 1 φ+ 1 φ− 2 φ0 2 � � (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='1) ∆L,R = � � δ+ L,R √ 2 δ++ L,R δ0 L,R − δ+ L,R √ 2 � � (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='2) In order for the fermions to attain mass, a Yukawa Lagrangian is necessary which couples to the bidoublet φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The Yukawa Lagrangian incorporating the bidoublet is given by, LD = liL(Y l ijφ + � Y l ij �φ)ljR + QiL(Y q ijφ + � Y q ij �φ)QjR + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='c (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='3) 5 where, lL and lR are the left-handed and right-handed lepton fields, QL and QR are the left- handed and right-handed quark fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Y l being the Yukawa coupling corresponding to leptons and Y q being the Yukawa coupling for the quarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The Yukawa Lagrangian incorporating the scalar triplets which play a role in providing Majorana mass to the neutrinos is given by, LM = fL,ijΨL,i TCiσ2∆LΨL,j + fR,ijΨR,i TCiσ2∆RΨR,j + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='c (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='4) fL and fR are the Majorana Yukawa couplings and are equal subjected to discrete left-right sym- metry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The scalar potential in LRSM is a combination of interaction terms consisting the potential and after spontaneous symmetry breaking the scalars attain VEVs given by, < ∆L,R >= 1 √ 2 � � 0 0 vL,R 0 � � (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='5) < φ >= � �k 0 0 eiθk′ � � (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='6) The magnitudes of the VEVs follows the relation, |vL|2 < |k2 + k′2| < |vR|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The breaking pattern of the LRSM gauge group takes place in two steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The LRSM gauge group is first broken down to the Standard Model gauge group by the vev of the scalar triplet ∆R, and then the Standard Model gauge group is broken down to the electromagnetic gauge group i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=', U(1)em by the vev of the bidoublet and a tiny vev of the scalar triplet ∆L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The Dirac mass terms for the leptons come from the Yukawa Lagrangian, which for the charged leptons and the neutrinos are given by, Ml = 1 √ 2(k′Yl + k ˜Yl) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='7) MD = 1 √ 2(kYl + k′ ˜Yl) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='8) The light neutrino mass after spontaneous symmetry breaking (SSB), generated within a type (I+II) seesaw can be written as, Mν = Mν I + Mν II, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='9) Mν = MDMRR −1MD T + MLL (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='10) 6 where, MLL = √ 2vLfL (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='11) and, MRR = √ 2vRfR (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='12) The first and second terms in corresponds to type-I seesaw and type-II seesaw masses respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' It is an interesting fact that in the context of LRSM both type-I and type-II terms can be equally dominant or either of the two terms can be dominant, but under certain conditions [35, 36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' It has been demonstrated in the Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In the context of LRSM however, both the type-I and type-II mass terms can be expressed in terms of the heavy right-handed Majorana mass matrix, so equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='10) will follow, Mν = MDM −1 RRM T D + γ � MW vR �2 MRR (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='13) where, γ is a dimensionless parameter which is a function of various couplings, appearing in the VEV of the triplet Higgs ∆L, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=', vL = γ( v2 vR) and here, v = √ k2 + k′2, and γ = β1kk′ + β2k2 + β3k′2 (2ρ1 − ρ3)(k2 + k′2) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='14) In our model, the dimensionless parameter γ has been fine tuned to γ ≈ 10−6 and vR is of the order of TeV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' MODULAR SYMMETRY Modular symmetry has gained much importance in aspects of model building [37], [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' This is because it can minimize the extra particle called ’flavons’ while analyzing a model with respect to a particular symmetry group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' An element q of the modular group acts on a complex variable τ which belongs to the upper-half of the complex plane given as [38] [39] qτ = aτ + b cτ + d (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='1) where a, b, c, d are integers and ad − bc = 1, Imτ>0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 7 The modular group is isomorphic to the projective special linear group PSL(2,Z) = SL(2,Z)/Z2 where, SL(2,Z) is the special linear group of integer 2 × 2 matrices having determinant unity and Z2 = (I, −I) is the centre, I being the identity element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The modular group can be represented in terms of two generators S and T which satisfies S2 = (ST)3 = I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' S and T satisfies the following matrix representations: S = � � 0 1 −1 0 � � (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='2) T = � �1 1 0 1 � � (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='3) corresponding to the transformations, S : τ → −1 τ ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' T : τ → τ + 1 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='4) Finite modular groups (N ≤ 5) are isomorphic to non-abelian discrete groups, for example, Γ(3) ≈ A4, Γ(2) ≈ S3, Γ(4) ≈ S4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' While using modular symmetry, the Yukawa couplings can be expressed in terms of modular forms, and the number of modular forms present depends upon the level and weight of the modular form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' For a modular form of level N and weight 2k, the table below shows the number of modular forms associated within and the non-abelian discrete symmetry group to which it is isomorphic [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' N No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' of modular forms Γ(N) 2 k + 1 S3 3 2k + 1 A4 4 4k + 1 S4 5 10k + 1 A5 6 12k 7 28k - 2 TABLE II: No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' of modular forms corresponding to modular weight 2k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 8 In our work, we will be using modular form of level 3, that is, Γ(3) which is isomorphic to A4 discrete symmetry group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The weight of the modular form is taken to be 2, and hence it will have three modular forms (Y1, Y2, Y3) which can be expressed as expansions of q given by, Y1 = 1 + 12q + 36q2 + 12q3 + 84q4 + 72q5 + 36q6 + 96q7 + 180q8 + 12q9 + 216q10 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='5) Y2 = −6q1/3(1 + 7q + 8q2 + 18q3 + 14q4 + 31q5 + 20q6 + 36q7 + 31q8 + 56q9) (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='6) Y3 = −18q2/3(1 + 2q + 5q2 + 4q3 + 8q4 + 6q5 + 14q6 + 8q7 + 14q8 + 10q9) (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='7) where, q = exp(2πiτ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' MINIMAL LRSM WITH A4 MODULAR SYMMETRY In particle physics, symmetries have always played a very crucial role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The realization of LRSM with the help of discrete flavor symmetries have been done in earlier works [40], [41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In our work we have incorporated A4 modular symmetry into LRSM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The advantage of using modular symmetry rather than flavor symmetry is the minimal use of extra particles (flavons) and hence the model is minimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The model contains usual particle content of LRSM [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The lepton doublets transform as triplets under A4 and the bidoublet and scalar triplets transform as 1 under A4 [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' As we have considered modular symmetry, we assign modular weights to the particles, keeping in mind that matter multiplets corresponding to the model can have negative modular weights, but the modular forms cannot be assigned negative weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The assignment of these weights are done in such a way that in the Lagrangian the sum of the modular weights in each term is zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Modular weights corresponding to each particle is shown in table (III).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The Yukawa Lagrangian for the leptonic and quark sector in LRSM is given by equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='3),(2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='4) and with a reference to that we can write the Yukawa Lagrangian of our A4 modular symmetric LRSM, for the fermionic sector, by introducing Yukawa coupling in the form of modular forms Y is given as, LY = lLφlRY + lL ˜φlRY + QLφQRY + QL ˜φQRY + lR TCiτ2∆RlRY + lL TCiτ2∆LlLY (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='1) 9 Gauge group QL QR lL lR φ ∆L ∆R SU(3)C 3 3 1 1 1 1 1 SU(2)L 2 1 2 1 2 3 1 SU(2)R 1 2 1 2 2 1 3 U(1)B−L 1/3 1/3 -1 -1 0 2 2 A4 3 3 3 3 1 1 1 kI 0 2 0 -2 0 -2 2 TABLE III: Charge assignments for the particle content of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The Yukawa couplings Y = (Y1, Y2, Y3) are expressed as modular forms of level 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Y (modular forms) A4 3 kI 2 TABLE IV: Charge assignment and modular weight for the corresponding modular Yukawa form for the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In our work, we are concerned with the mass of the neutrinos and as such, using A4 modular symmetry and using the multiplication rules for A4 group, we construct the Dirac and Majorana mass matrices as given below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The Dirac mass matrix is given by, MD = v � � � � 2Y1 −Y3 −Y2 −Y2 −Y1 2Y3 −Y3 2Y2 −Y1 � � � � (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='2) where, v is considered to be the VEV for the Higgs bidoublet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The right-handed Majorana mass matrix is given by, MR = vR � � � � 2Y1 −Y3 −Y2 −Y3 2Y2 −Y1 −Y2 −Y1 2Y3 � � � � (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='3) 10 where, vR is the VEV for the scalar triplet ∆R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' As it is seen that the Majorana mass matrix for our model is found to be symmetric in nature as it should be.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Under these assumptions for modular symmetric LRSM and the basis that we have considered, our charged lepton mass matrix is also found to be diagonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The type-I seesaw mass is then given by, MνI = MD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='MR −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='MD T (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='4) and, the type-II seesaw mass is given by, MνII = MLL (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='5) As mentioned above, in LRSM type-II seesaw mass can also be expressed in terms of the right- handed mass MR as, MνII = γ � MW vR �2 MR (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='6) A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Type-I dominanace In LRSM, the type-I seesaw mass dominates when the vev of the left-handed triplet is taken to be negligibly small and hence the type-II term is absent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In such a case the lightest neutrino mass can be given in terms of the type-I seesaw mass term given by, Mν = MDMR −1MD T (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='7) and the heavy right-handed Majorana mass term can be given as, MR = fRvR (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='8) where, fR is the right-handed Majorana Yukawa coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In the approximation that k′ << k, and if we consider that our Yukawa coupling Y l corresponding to the neutrino masses is yD and the coupling � Y l for the charged fermion masses is denoted by yL, so considering yDk >> yLk′ we can write the type-I mass term as [44], Mν = k2 vR yDf −1 R yT D (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='9) 11 If we consider that UR is a unitary matrix that diagonalizes MR, so since the VEV vR is a constant the same matrix will also diagonalize the coupling matrix fR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Taking fR = fL = f, so f = URf diaU T R (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='10) If we take inverse on both sides and taking into account the property of a unitary matrix (U −1 R = U T R), we get, f −1 = U T R(f dia)−1UR (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='11) Therefore, we get Mν = k2 vR yDU T R(f dia)−1URyT D (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='12) Multiplying both sides of the equation with U T R from the right and with UR from left, we finally arrive at the following equation, URMνU T R = (Mν)dia (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='13) where we have used URyDU T R = yD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' So, the unitary matrix diagonalizing the matrix MR also diagonalizes the light neutrino mass matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' So in this case it can be determined that if mi denotes the light neutrino mass and Mi denotes the heavy neutrino mass, then they are related as mi ∝ 1 Mi (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='14) For our model, the Yukawa couplings are modular forms expressed as expansions of q, and the mass matrices are expressed in terms of the modular forms (Y1, Y2, Y3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' So, the light neutrino mass matrix, Mν for type-I dominance is given by the equation (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' As already stated in equations (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='2) and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='3), the Dirac and Majorana mass matrices are determined by the application of multiplication rules for the A4 group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' So, for type-I dominance, our light neutrino mass matrix will be given by, Mν = v2 vR � � � � 2Y1 −Y2 −Y3 −Y2 2Y3 −Y1 −Y3 −Y1 2Y2 � � � � (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='15) As mentioned previously, the value for vR is of the order of TeV and that for v is in GeV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' We have computed the values of the sum of the neutrino masses for type-I dominance and checked the correctness of our model by plotting it against the Yukawa couplings and the result was found to match the experimental bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 12 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 1: Variation of |Y1| with sum of neutrino masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 2: Variation of |Y2| with sum of neutrino masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 3: Variation of |Y3| with sum of neutrino masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 13 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='NH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='050 F (Aa) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010F Em 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='005E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001E Allowed 3oregion 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='10- 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-9 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-s 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10 [Y1]IH Exciuded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed 3o region 10-5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' ×10-7 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='× 10-7 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 [Y1]NH Excluded KamLAND-Z 001°0 egio 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='050 F (19) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010F Zm, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 Allowed 3gregion 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='10- 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='× 10-s 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10s1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' ×10-6 [Y2]IH Exciuded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed 3oregion 10-5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×108 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×1081.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 [Y2]NH 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 Excluded KamLAND 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='050 (19) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010F Em.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001E Allowed3gregion 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='10- 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 [Y3]IH Exciuded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 Aa) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed Bo region 10-5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×1071.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 [Y3]B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Type-II dominance Type-II seesaw mass in LRSM dominates when the Dirac term connecting the right-handed and left-handed parts is negligible as compared to that of the type-II term [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In that case, our light neutrino mass mν will given by the type-II seesaw mass term, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=', MνL = fLvL (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='16) And the heavy mass matrix is given by, MR = fRvR (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='17) Again if we consider that UL and UR diagonalizes MνL and MR respectively, so for the reason mentioned above the same matrices will also diagonalize fL and fR respectively and since in our model, fL = fR, so we can consider UL = UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In such a case, we arrive at an important result that mi ∝ Mi (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='18) Now using modular symmetry the light neutrino mass matrix for type-II dominance in our model is given by, mν = vL � � � � 2Y1 −Y3 −Y2 −Y3 2Y2 −Y1 −Y2 −Y1 2Y3 � � � � (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='19) where, vL is the vev for left-handed scalar triplet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The value of vL is taken to be of the order of eV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The sum of the neutrino masses is computed for type-II dominance and plotting of the sum is done with the Yukawa couplings which are found to be as shown under, FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 4: Variation of |Y1| with sum of neutrino masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 14 HN Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed 3o region 10-5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 (Y1]IH Exciuded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed3o region 10-5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' × 10-7 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 [YI]FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 5: Variation of |Y2| with sum of neutrino masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 6: Variation of |Y3| with sum of neutrino masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' NEUTRINOLESS DOUBLE BETA DECAY (0νββ) IN MINIMAL LRSM Neutrinoless double beta decay is a lepton number violating process, which if proven to exist will directly imply the Majorana nature of neutrinos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' N(A, Z) → N(A, Z + 2) + e− + e− (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='1) Many groups have however already done a lot of work on NDBD in the model , [21],[28, 45–50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In LRSM [51], there are several contributions to NDBD in addition to the standard contribution via light Majorana neutrino exchange owing to the presence of several heavy additional scalar,vector 15 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='IH Exciuded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 1010:0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed 3o region 10-5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×108 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×107 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' × 10-7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' × 10-6 [Y2]NH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed3oregion 10-5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 [Y3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='IH Exciuded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed 3o region 10-5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 [Y3]NH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed3gregion 10-5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-6 [Y2]and fermionic fields [52–55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Various contributions to NDBD transition rate in LRSM are discussed as follows : Standard Model contribution to NDBD where the intermediate particles are the WL bosons and light neutrinos, the process in which the amplitude depends upon the leptonic mixing matrix elements and light neutrino masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Heavy right-handed neutrino contribution in which the mediator particles are the WL bosons and the amplitude depends upon the mixing between light and heavy neutrinos as well as the mass of the heavy neutrino.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Light neutrino contribution to NDBD where the intermediate particles are WR bosons and the amplitude depends upon the mixing between light and heavy neutrinos as well as mass of the right-handed gauge boson WR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Heavy right-handed neutrino contribution where the mediator particles are the WR bosons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The amplitude of this process is dependent on the elements of the right handed leptonic mixing matrix and mass of the right-handed gauge boson, WR as well as the mass of the heavy right handed Majorana neutrino.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Light neutrino contribution from the Feynman diagram mediated by both WL and WR, and the amplitude of the process depends upon the mixing between light and heavy neutri- nos,leptonic mixing matrix elements, light neutrino masses and the mass of the gauge bosons, WL and WR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Heavy neutrino contribution from the Feynman diagram mediated by both WL and WR, and the amplitude of the process depends upon the right handed leptonic mixing matrix elements, mixing between the light and heavy neutrinos, also the mass of the gauge bosons, WL and WR and the mass of the heavy right handed neutrino.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Scalar triplet contribution (∆L) in which the mediator particles are WL bosons, and the amplitude for the process depends upon the masses of the WL bosons, left-handed triplet Higgs, as well as their coupling to leptons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 16 Right-handed scalar triplet contribution (∆R) contribution to NDBD in which the mediator particles are WR bosons, and the amplitude for the process depends upon the masses of the WR bosons, right-handed triplet Higgs, ∆R as well as their coupling to leptons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In our work, where we have incorporated A4 modular symmetry to LRSM and in our present work we have considered three of the above mentioned contributions, one from the standard light neutrino contribution and the other two new physics contribution mediated by W − R and ∆R re- spectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' For simple approximations, an assumption has been made in the mass scales of heavy particles, where, MR ≈ MWR ≈ M∆L++ ≈ M∆R++ ≈ TeV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Under these assumptions, the amplitude for the light-heavy mixing contribution which is pro- portional to mD2 MR remains very small, since mν ≈ mD2 MR ≈ (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='01 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='1)eV, mD ≈ (105 − 106)eV which implies mD MR ≈ (10−7 − 10−6)eV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Thus in our model, we ignore the contributions involving the light and heavy neutrino mixings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' When NDBD is done in the framework of LRSM, the standard light neutrino contribution is given by, meff v = U 2 Limi (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='2) where, ULi are the elements of the first row of the neutrino mixing matrix UPMNS, in which the elements are dependent on known mixing angles θ13 , θ12 and the Majorana phases κ and η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The UPMNS matrix is given by, UPMNS = � � � � c12c13 s12c13 s13e−iδ −c23s12 − s23s13c12eiδ −c23c12 − s23s12s13eiδ s23c13 s23s12 − c23s13c12eiδ −s23c12 − c23s13s12eiδ c23c13 � � � � P (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='3) where, P = diag(1, eiκ, eiη).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' So the effective mass can be parametrized in terms of the elements of the diagonalizing matrix and the eigenvalues as, meff v = m1c2 12c2 13 + m2s2 12c2 13e2iκ + m3s2 13e2iη.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='4) VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' NUMERICAL ANALYSIS AND RESULTS In our present work, we have modified left-right symmetric model by incorporating A4 modu- 17 lar symmetry for both type-I and type-II dominances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' As we are using modular symmetry, the Yukawa couplings are expressed as expansions of q as shown in equations (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='5),(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='6) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In our model, the value of q is found to be of the order of 10−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The aboslute value of the modulus should however be greater than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' τ = Re(τ) + Im(τ) (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='1) Re(τ) Im(τ) |τ| Range [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='715,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='789] [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='8,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='9] [1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='073,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='197] TABLE V: Range of values corresponding to real and imaginary parts of the modulus τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Yukawa couplings Normal Hierarchy Inverted hierarchy Y1(min) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='29155 × 10−9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='32276 × 10−7 Y1(max) 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='22986 × 10−7 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='21382 × 10−7 Y2(min) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='02229 × 10−9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='42826 × 10−9 Y2(max) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='32006 × 10−6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='45952 × 10−6 Y3(min) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='39287 × 10−9 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='759 × 10−9 Y3(max) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='3165 × 10−6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='50082 × 10−6 TABLE VI: Range of Yukawa couplings (Y1, Y2, Y3) for both normal and inverted hierarchy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' From table (V), it is seen that the absolute value of the modulus is greater than unity, which is the expected result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The range of the Yukawa couplings for our model is shown in the table above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' It is seen from the table that the minimum value of the Yukawa coupling Y1 is in the scale of 10−10 for normal hierarchy while for inverted hierarchy it is in the scale of 10−7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' However, for the maximum of Y1 both the orderings are in the same scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' For Y2 and Y3, the minimum and maximum values for both normal and inverted hierarchies are within the same scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' We have plotted the effective masses against the Yukawa couplings (Y1, Y2, Y3) and it was found to be well within the bound set by experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' As shown both for type-I and type-II dominances, we have plotted the absolute values of the 18 Yukawa couplings against the sum of the neutrino masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The range of the values for sum of neutrino masses for both the cases are given as under, � mν Normal Hierarchy Inverted hierarchy Type − I(min) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='000980556 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='000437758 Type − I(max) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='177296 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='186377 Type − II(min) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='000219304 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='000035 Type − II(max) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='0200981 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='0203081 TABLE VII: Range of values for sum of neutrino masses for type-I and type-II dominances for both normal and inverted hierarchy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Standard Light Neutrino Contribution to 0νββ As mentioned above, in the standard light neutrino contribution to 0νββ, the intermediate particles are the WL bosons and light neutrino.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The effective mass for the contribution is given by equation (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Simplifying for the respective elements of ULi and mi, the value of the effective mass is obtained in terms of the modular forms (Y1, Y2, Y3) as, meff ν = meff 1 + meff 2 + meff 3 (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='2) where, meff 1 = ν(Y2 − Y3)2(Y1 + Y2 + Y3) νR(Y1 − Y3)2 meff 2 = ν2(Y1 − Y2)2(Y1 + Y2 + Y3 − √ 3 � 3Y 2 1 − 2Y1Y2 + 3Y 2 2 − 2Y1Y3 − 2Y2Y3 + 3Y 2 3 ) 2νR(Y1 − Y3)2 meff 3 = ν2(Y1 + Y2 + Y3 − √ 3 � 3Y 2 1 − 2Y1Y2 + 3Y 2 2 − 2Y1Y3 − 2Y2Y3 + 3Y 2 3 ) 2νR for type-I dominance, and the plots are shown as, 19 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 7: Variation of |Y1| with effective neutrino mass for standard light neutrino contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 8: Variation of |Y2| with effective neutrino mass for standard light neutrino contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 9: Variation of |Y3| with effective neutrino mass for standard light neutrino contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 20 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='NH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 (Aa) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed 3o region 10-5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×108 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10~ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10- [Y1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='H Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 (Aa) meff 0T0:0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 Allowed 3o region 107 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' ×10-7 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' × 10-7 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' ×10-7 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 [Y1]1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='NH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 (eV) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed 3o region 10-5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×1091.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×108 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 [Y2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='IH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 (Aa) meff 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 Allowed 3o region 107 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×108 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 [Y2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='NH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed3oregion 10-5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-6 [Y3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='IH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 (Aa) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='0015 Allowed 3o region 10-4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×1091.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 /Y3For type-II dominance, we have meff 1 = −νL(−Y2 + Y3)(Y1 + Y2 + Y3) Y1 − Y2 meff 2 = −νL(Y1 − Y3)(Y1 + Y2 + Y3 − √ 3 � 3Y 2 1 − 2Y1Y2 + 3Y 2 2 − 2Y1Y3 − 2Y2Y3 + 3Y 2 3 ) 2(Y1 − Y2) meff 3 = νL(Y1 − Y3)(Y1 + Y2 + Y3 + √ 3 � 3Y 2 1 − 2Y1Y2 + 3Y 2 2 − 2Y1Y3 − 2Y2Y3 + 3Y 2 3 ) 2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 10: Variation of |Y1| with effective neutrino mass for standard light neutrino contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 11: Variation of |Y2| with effective neutrino mass for standard light neutrino contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 21 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='NH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 (eV) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed3gregion 10-5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10- 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 [Y1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='IH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001E Allowed3oregidh 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='0x10~7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='0-10-5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='5,10-5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='0x10-5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='5x10-5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010-5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='5x10-5 YINH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 (Aa) Meff 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed 3g region 10-5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x1091.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×108 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x107 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='× 10-71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' x10-6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 (Y2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='IH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 (A) O1O1O 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 Allowed 3o region 10 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 [Y2]FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 12: Variation of |Y3| with effective neutrino mass for standard light neutrino contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Heavy Right-Handed Neutrino contribution to 0νββ In our work, we have considered contributions of heavy right-handed neutrino and scalar Higgs triplet to NDBD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The effective mass for heavy right-handed neutrino is given by, meff R = p2 � M 4 WL M 4 WR �� U ∗2 Rei Mi � (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='3) where, p2 is the typical momentum exchange of the process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' As it is known that TeV scale LRSM plays a very important role in the process of neutrinoless double beta decay (0νββ), we have considered the values as MWR = 10TeV , MWL = 80GeV , M∆R ≈ 3TeV and after calculation, the value for heavy right-handed neutrino is found to be in the scale of TeV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The allowed value of p is in the range (100 − 200)MeV and so we consider, p ≈ 180MeV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Thus, we get, p2 � M 4 WL M 4 WR � = 1010eV 2 (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='4) where, URei refers to the first row elements of the diagonalizing matrix of the heavy Majorana mass matrix and Mi are its eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The effective mass corresponding to the heavy right-handed neutrino can be expressed in terms of the modular forms as, mR eff = 1010(mR1 eff + mR2 eff + mR3 eff) (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='5) where, mR1 eff = 2 νR(Y1 + Y2 + Y3 + √ 3 � 3Y 2 1 − 2Y1Y2 + 3Y 2 2 − 2Y1Y3 − 2Y2Y3 + 3Y 2 3 ) 22 1 NH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 (eV) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed 3oregion 10-5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×1071.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 [Y3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='IH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 Allowed 3oregion 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10~9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' ×10-S 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10~7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x106 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10~6 (Y3)mR2 eff = 2(Y ∗ 1 − Y ∗ 3 )2 νR(Y1 + Y2 + Y3 − √ 3 � 3Y 2 1 − 2Y1Y2 + 3Y 2 2 − 2Y1Y3 − 2Y2Y3 + 3Y 2 3 )(Y ∗ 1 − Y ∗ 2 )2 mR3 eff = (−Y ∗ 2 + Y ∗ 3 )2 νR(Y1 + Y2 + Y3)(Y ∗ 1 − Y ∗ 2 )2 The total effective mass is also calculated for the standard light and right-handed heavy neutrino contribution, given by, |mefftotal ν | = |meff ν + mR eff| (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='6) which can be obtained in terms of the modular forms as a summation of the above mentioned terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 13: Variation of |Y1| with total effective neutrino mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 14: Variation of |Y2| with total effective neutrino mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 23 NH Excluded KamLAND-Zenregion 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Ailowed3oregion 10-5 [Y1]IH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 Allowed3gregion 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='0-10-7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010-5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='5,10-6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='0x10-5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='5x10-5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='0±105 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='5x10-5 YI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='NH Excluded KamLAND-Zenregion 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 (10) total 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed 3o region 105 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-$1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 [Y2]H Exciuded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content="100 010'0 100'0 Ailowed3oregion 10-4 1." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×1081.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×107 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 /Y2]FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 15: Variation of |Y3| with total effective neutrino mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The plots above are for type-I dominance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 16: Variation of |Y1| with total effective neutrino mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 17: Variation of |Y2| with total effective neutrino mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 24 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='NH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10~4 Allowed 3g region 10~5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×108 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×108 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10- 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 [Y3]H Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 Ailowed3o region 10-4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='× 10-8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×106 [Y3]NH Excluded KamLAND-Zen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content="100 O1O'0 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Ailowed3o region 10-5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-6 [Y1]IH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001E Allowed 3g region 10-4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='0x10~7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='0-10-5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='510-5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='0x10-5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='5x10-5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010-5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='5x10-5 YI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='NH Excluded KamLAND-Zen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 (10) total 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed 3o region 10~5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10~ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 [Y2]H Exciuded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 nltot 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content="010 100'0 Ailowed3oregion 10-4 5." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' × 10-7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 /Y2]FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 18: Variation of |Y3| with total effective neutrino mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The figures above are the plots for type-II dominance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Scalar Triplet contribution to 0νββ The magnitude of ∆R contribution is controlled by the factor Mi M∆R [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' However, scalar triplet contribution is not included in the total contribution under the assumption Mi M∆R < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' But, some the mixing parameters in the large part of the parameter space may result in a higher Mi M∆R ratio and in such cases we will have to include it in the total contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The impact of this contribution here is studied in the limit, M∆R ≊ Mheaviest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The effective mass for scalar triplet contribution is given as, |meff ∆ | = |p2 M 4 WL M 4 WR U 2 ReiMi M 2 ∆R | (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='7) The value of the mass for the right-handed scalar triplet is taken as, M∆R = 3TeV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' So, the value of the coefficient results as, p2 M 4 WL M 4 WR 1 M 2 ∆R = 1010 9 × 1024 (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='8) In terms of modular forms, the effective scalar mass can be expressed as, m∆R eff = m∆R eff1 + m∆R eff2 + m∆R eff3 (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='9) where, m∆R eff1 = νR(Y2 + Y3)2(Y1 + Y2Y3) (Y1 − Y2)2 25 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='NH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 ltotal( 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed 3g region 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' ×10 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 [Y3]Exciuded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 Hltot 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 Allowed 3o region 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×1091.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×108 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x1081.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 IY3Im∆R eff2 = νR(Y1 − Y3)2(Y1 + Y2 + Y3 − √ 3 � 3Y 2 1 − 2Y1Y2 + 3Y 2 2 − 2Y1Y3 − 2Y2Y3 + 3Y 2 3 ) 2(Y1 − Y2)2 m∆R eff3 = νR(Y1 + Y2 + Y3 + √ 3 � 3Y 2 1 − 2Y1Y2 + 3Y 2 2 − 2Y1Y3 − 2Y2Y3 + 3Y 2 3 ) 2 The plots are shown as under.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 19: Variation of |Y1| with effective neutrino mass for scalar triplet contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 20: Variation of |Y2| with effective neutrino mass for scalar triplet contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 26 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' NH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 (Aa) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed 3o region 10-5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x1091.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x108 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×1071.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='x10-6 (Y1]·IH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 meffxh 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='01 104F Allowed3o region 10-5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010-7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='0-10-6 13:10-6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='0-10-5 25±10-5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='10-5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='5x10-5 YINH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='0105 (Aa) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed 3o region 10-5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×108 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 [Y2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='IH Exciuded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 effsclr 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed 3oregion 10-5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='× 10-6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' × 10-6 [Y2]FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 21: Variation of |Y3| with effective neutrino mass for scalar triplet contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' CONCLUSION The discovery of neutrino oscillations paved the gateway for physics beyond the Standard Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In our paper, we have realized LRSM with the help of modular A4 symmetry for both type-I and type-II dominance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Using modular symmetry provides the advantage of using no extra particles called ’flavons’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The Yukawa couplings are represented as modular forms expressed as expansions of q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The values of the Yukawa couplings (Y1, Y2, Y3) are calculated using ’Mathematica’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The mass matrices are then determined using the multiplication rules for A4 group stated in the Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The Majorana mass matrix is found to be symmetric and under the considered basis, the charged lepton mass matrix is also diagonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' We have expressed the light neutrino and heavy right-handed neutrino mass matrix in terms of the modular forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' We have also studied briefly the contributions of 0νββ in LRSM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The effective masses corresponding to standard light neutrino contribution, right-handed contribution and scalar triplet contributions are determined in terms of (Y1, Y2, Y3) and we have plotted the effective mass corresponding to the considered contributions against the Yukawa couplings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' To summarize our work, some results are stated as under, The absolute value of the modulus was found to be within the range 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='073 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='197, which is greater than unity, that is the desired result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The Yukawa couplings, expressed in terms of modular forms ranges from 10−9 to 10−6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The sum of the neutrino masses for type-I dominance ranges from the order of 10−4 to 10−1 27 INH Excluded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 (Aa) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed 3o region 10-5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' × 10-8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' ×107 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 [Y3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='IH Exciuded KamLAND-Zen region 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='010 effsclr 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='001 10-4 Allowed 3oregion 10-5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' ×10-8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' × 10-7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' × 10-7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' ×10-6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='×10-6 [Y3]for both normal and inverted hierarchy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The sum of the neutrino masses for type-II dominance ranges from the order of 10−4 to 10−2 for both normal and inverted hierarchy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The effective masses for the 0νββ contributions are calculated and by determining their relations with the modular forms, we have plotted the effective masses with the three Yukawa couplings and it has been found that the values for the effective mass corresponding to each contribution is well within the experimental bounds, which infact makes us clearly state that the building of the model with modular symmetry is advantageous to that of flavor symmetries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In this model, we have not used any extra particles and the analysis has been done taking into consideration the calculated and computed values for the model parameters and the results are found to be satisfactory, so it can be stated that the Left-Right Symmetric Model can be constructed with modular symmetry while satisfying the experimental bounds on the desired parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' VIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' APPENDIX A Let us consider the Higgs potential of our model that has quadratic and quartic coupling terms given by [36], Vφ,∆L,∆R = −µ2 ijTr[φ† iφj] + λijklTr[φ† iφj]Tr[φ† kφl] + λ ′ ijklTr[φ† iφjφ† kφl] − µ2 ijTr[∆† L∆L + ∆† R∆R] ρ1[(Tr[∆† L∆L])2 + (Tr[∆† L∆L])2] + ρ2(Tr[∆† L∆L∆† L∆L] + Tr[∆† R∆R∆† R∆R]) + ρ3Tr[∆† L∆L∆† R∆R]+ αijTr[φ† iφj](Tr[∆† L∆L]+Tr[∆† R∆R])+βij(Tr[∆† L∆Lφiφ† j]+Tr[∆† R∆Rφiφ† j])+γij(Tr[∆† Lφi∆Rφ† j]+h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='c) (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='1) where, i,j,k,l runs from 1 to 2 with φ1 = φ and φ2 = ˜φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' As mentioned above after SSB, the scalar sector obtains VEV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' So after the substitution of the respective VEVs and determining the traces, so after simplification the potential can be written as, V = −µ2(v2 L + v2 R) + ρ 4(v4 L + v4 R) + ρ′ 2 + α 2 (v2 L + v2 R)k2 1 + γvLvRk2 (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='2) where, we have used the approximation k′ << k, and ρ′ = 2ρ3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Our minimization conditions are, δV δvL = δV δvR = δV δk = δV δk′ = 0 28 Therefore, we get, δV δvL = −2µ2vL + ρv3 L + ρ′vLk2 + γvRk2 (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='3) Here, it is evident that the Majorana mass of the left-handed neutrino MLL is dependent on the vev vL as already defined above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Again, we have δV δvR = −2µ2vR + ρv3 R + ρ′vRk2 + γvLk2 (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='4) So, the right handed Majorana mass MRR is dependent on the vev vR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Similarly, the calculations for the same can be carried out and it can be found out the Dirac mass term MD can be expressed in terms of the vev for the Higgs bidoublet as also defined previously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Now, we are to determine a relation between the VEVs for the scalars and so after using the minimization conditions and simplifying the equations, we come to a relation given by, vLvR = γ ξ k (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='5) where, ξ = ρ − ρ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The neutrino mass for LRSM is given as a summation of the type-I and type-II term as already mentioned above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' So, in the approximation that k′ << k, and if we consider that our Yukawa coupling Y l corresponding to the neutrino masses is yD and the coupling � Y l for the charged fermion masses is denoted by yL, so considering yDk >> ylk′ we can write, Mν = k2 vR yDf −1 R yT D + fLvL (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='6) Since, for due to left-right symmetry, we can consider fL = fR = f, so the above equation can be written as, Mν = k2 vR yDf −1yT D + fvL (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='7) So, from this equation we can come to a relation given by, Mν = (f γ ξ + yDf −1yT D) k2 vR (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='8) Here, we can consider two situations, namely If f( γ ξ ) << yDf −1yT D, the light neutrino mass is given by the type-I term MDM −1 RRM T D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' That is, here type-I is dominant and the light neutrino mass is from the suppression of heavy νR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' If f( γ ξ ) >> yDf −1yT D, the light neutrino mass is given by the type-II term fvL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' That is, in this case type-II mass term is dominant and the light neutrino mass is because of the tiny value of νL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 29 IX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' APPENDIX B Properties of A4 group A4 is a non-abelian discrete symmetry group which represents even permuatations of four ob- jects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' It has four irreducible representations, three out of which are singlets (1, 1′, 1′′) and one triplet 3 (3A represents the anti-symmetric part and 3S the symmetric part).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Products of the singlets and triplets are given by,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 1 ⊗ 1 = 1 1′ ⊗ 1′ = 1′′ 1′ ⊗ 1′′ = 1 1′′ ⊗ 1′′ = 1′ 3 ⊗ 3 = 1 ⊕ 1′ ⊕ 1′′ ⊕ 3A ⊕ 3S If we have two triplets under A4 say,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' (a1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' a2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' a3) and (b1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' b2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' b3) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' then their multiplication rules are given by,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 1 ≈ a1b1 + a2b3 + a3b2 1′ ≈ a3b3 + a1b2 + a2b1 30 1′′ ≈ a2b2 + a3b1 + a1b2 3S ≈ � � � � 2a1b1 − a2b3 − a3b2 2a3b3 − a1b2 − a2b1 2a2b2 − a1b3 − a3b1 � � � � 3A ≈ � � � � a2b3 − a3b2 a1b2 − a2b1 a3b1 − a1b3 � � � � X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' REFERENCES [1] Justin Evans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The MINOS Experiment: Results and Prospects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' High Energy Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=', 2013:182537, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [2] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Abe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=', 107:041801, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [3] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' An et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Observation of electron-antineutrino disappearance at Daya Bay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=', 108:171803, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [4] Fumihiko Suekane and Thiago Junqueira de Castro Bezerra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Double Chooz and a history of reactor Θ13 experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' B, 908:74–93, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [5] Thierry Lasserre, Guillaume Mention, Michel Cribier, Antoine Collin, Vincent Durand, Vincent Fischer, Jonathan Gaffiot, David Lhuillier, Alain Letourneau, and Matthieu Vivier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Comment on Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 108, 191802 (2012): ’Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 5 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [6] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Ade et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Planck 2013 results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' XVI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Cosmological parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=', 571:A16, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [7] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Aghanim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Planck 2018 results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Cosmological parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=', 641:A6, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [Erratum: Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 652, C4 (2021)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 31 [8] Ivan Esteban, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Gonzalez-Garcia, Michele Maltoni, Thomas Schwetz, and Albert Zhou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The fate of hints: updated global analysis of three-flavor neutrino oscillations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' JHEP, 09:178, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Schechter and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Valle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Neutrino Masses in SU(2) x U(1) Theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' D, 22:2227, 1980.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [10] Rabindra N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Mohapatra and Goran Senjanovic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Neutrino Mass and Spontaneous Parity Nonconser- vation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=', 44:912, 1980.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [11] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Wetterich.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Neutrino Masses and the Scale of B-L Violation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' B, 187:343–375, 1981.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [12] Stefan Antusch and Steve F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' King.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Type II Leptogenesis and the neutrino mass scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' B, 597:199–207, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [13] Robert Foot, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Lew, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' He, and Girish C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Joshi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Seesaw Neutrino Masses Induced by a Triplet of Leptons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' C, 44:441, 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [14] Naoyuki Haba, Hiroyuki Ishida, and Yuya Yamaguchi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Naturalness and lepton number/flavor viola- tion in inverse seesaw models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' JHEP, 11:003, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [15] Edward W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Kolb and Stephen Wolfram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The Development of Baryon Asymmetry in the Early Universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' B, 91:217–221, 1980.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [16] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Bilenky and Carlo Giunti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Neutrinoless double-beta decay: A brief review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' A, 27:1230015, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [17] Guido Altarelli, Ferruccio Feruglio, Luca Merlo, and Emmanuel Stamou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Discrete Flavour Groups, theta13 and Lepton Flavour Violation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' JHEP, 08:021, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [18] Marco Taoso, Gianfranco Bertone, and Antonio Masiero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Dark Matter Candidates: A Ten-Point Test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' JCAP, 03:022, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [19] Michael S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Turner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Dark matter: Theoretical perspectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=', 90:4827, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [20] Eric Corrigan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' LEFT-RIGHT-SYMMETRIC MODEL BUILDING.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Master’s thesis, Lund U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=', 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [21] Jogesh C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Pati and Abdus Salam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Lepton Number as the Fourth Color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' D, 10:275–289, 1974.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [Erratum: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content='D 11, 703–703 (1975)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [22] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Mohapatra and Jogesh C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Pati.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' A Natural Left-Right Symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' D, 11:2558, 1975.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [23] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Bhupal Dev, Rabindra N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Mohapatra, Werner Rodejohann, and Xun-Jie Xu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Vacuum structure of the left-right symmetric model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' JHEP, 02:154, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [24] Goran Senjanovic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' SPONTANEOUS BREAKDOWN OF PARITY IN A CLASS OF GAUGE THE- 32 ORIES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Other thesis, 1 1979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [25] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Grimus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Introduction to left-right symmetric models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' In 4th Hellenic School on Elementary Particle Physics, pages 619–632, 3 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [26] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Vergados, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Ejiri, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Simkovic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Theory of Neutrinoless Double Beta Decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=', 75:106301, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [27] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Cardani.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Neutrinoless Double Beta Decay Overview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' SciPost Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=', 1:024, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [28] Bichitra Bijay Boruah and Mrinal Kumar Das.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Neutrinoless double-beta decay and lepton flavor vio- lation in discrete flavor symmetric left–right symmetric model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' A, 37(06):2250026, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [29] Shao-Feng Ge, Werner Rodejohann, and Kai Zuber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Half-life Expectations for Neutrinoless Double Beta Decay in Standard and Non-Standard Scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' D, 96(5):055019, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [30] Junpei Shirai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' KamLAND-Zen experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' PoS, HQL2018:050, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [31] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Agostini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Final Results of GERDA on the Search for Neutrinoless Double-β Decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=', 125(25):252502, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [32] Ernest Ma and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rajasekaran.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Softly broken A(4) symmetry for nearly degenerate neutrino masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' D, 64:113012, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [33] Guido Altarelli, Ferruccio Feruglio, and Luca Merlo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Revisiting Bimaximal Neutrino Mixing in a Model with S(4) Discrete Symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' JHEP, 05:020, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [34] Guido Altarelli and Ferruccio Feruglio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Discrete Flavor Symmetries and Models of Neutrino Mixing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=', 82:2701–2729, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [35] Debasish Borah and Mrinal Kumar Das.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Neutrino Masses and Leptogenesis in Type I and Type II Seesaw Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' D, 90(1):015006, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [36] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Luo and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Small Neutrino Masses From Structural cancellation In Left-Right Sym- metric Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' JHEP, 12:061, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [37] Simon J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' King and Stephen F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' King.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Fermion mass hierarchies from modular symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' JHEP, 09:043, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [38] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Novichkov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Penedo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Petcov, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Titov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Generalised CP Symmetry in Modular- Invariant Models of Flavour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' JHEP, 07:165, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [39] Ferruccio Feruglio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Are neutrino masses modular forms?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=', pages 227–266.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 33 [40] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Duka, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Gluza, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Zralek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Quantization and renormalization of the manifest left-right symmetric model of electroweak interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Annals Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=', 280:336–408, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [41] Bichitra Bijay Boruah and Mrinal Kumar Das.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Realization of Left-Right Symmetric Model by Discrete Flavor Symmetries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Springer Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=', 265:285–291, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [42] Purushottam Sahu, Sudhanwa Patra, and Prativa Pritimita.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' A4 realization of left-right symmetric linear seesaw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 2 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [43] Mohammed Abbas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Fermion masses and mixing in modular A4 Symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' D, 103(5):056016, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [44] Joydeep Chakrabortty, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Zeen Devi, Srubabati Goswami, and Sudhanwa Patra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Neutrinoless double- β decay in TeV scale Left-Right symmetric models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' JHEP, 08:008, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [45] Pei-Hong Gu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Neutrinoless double beta decay in the left-right symmetric models for linear seesaw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' JHEP, 09:152, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [46] James Barry, Luis Dorame, and Werner Rodejohann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Linear Collider Test of a Neutrinoless Double Beta Decay Mechanism in left-right Symmetric Theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' C, 72:2023, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [47] Gang Li, Michael Ramsey-Musolf, and Juan Carlos Vasquez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Left-Right Symmetry and Leading Contributions to Neutrinoless Double Beta Decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=', 126(15):151801, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [48] Happy Borgohain and Mrinal Kumar Das.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Neutrinoless double beta decay and lepton flavour violation in broken µ − τ symmetric neutrino mass models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=', 56(9):2911–2934, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [49] Shao-Feng Ge, Manfred Lindner, and Sudhanwa Patra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' New physics effects on neutrinoless double beta decay from right-handed current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' JHEP, 10:077, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [50] Frank F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Deppisch, Chandan Hati, Sudhanwa Patra, Prativa Pritimita, and Utpal Sarkar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Neutri- noless double beta decay in left-right symmetric models with a universal seesaw mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' D, 97(3):035005, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [51] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Senjanovic and Rabindra N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Mohapatra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Exact Left-Right Symmetry and Spontaneous Violation of Parity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' D, 12:1502, 1975.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [52] Ram Lal Awasthi, Arnab Dasgupta, and Manimala Mitra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Limiting the effective mass and new physics parameters from 0νββ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' D, 94(7):073003, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [53] Gulab Bambhaniya, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Bhupal Dev, Srubabati Goswami, and Manimala Mitra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' The Scalar Triplet Contribution to Lepton Flavour Violation and Neutrinoless Double Beta Decay in Left-Right Sym- 34 metric Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' JHEP, 04:046, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [54] Debasish Borah, Sudhanwa Patra, and Utpal Sarkar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' TeV scale Left Right Symmetry with sponta- neous D-parity breaking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' D, 83:035007, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' [55] Happy Borgohain and Mrinal Kumar Das.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Lepton number violation, lepton flavor violation, and baryogenesis in left-right symmetric model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' D, 96(7):075021, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
+page_content=' 35' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ltFRT4oBgHgl3EQfZTcN/content/2301.13552v1.pdf'}
diff --git a/ntAyT4oBgHgl3EQflfh4/content/tmp_files/2301.00453v1.pdf.txt b/ntAyT4oBgHgl3EQflfh4/content/tmp_files/2301.00453v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..167d7b8e981553756a0d10e501045180bcc8d680
--- /dev/null
+++ b/ntAyT4oBgHgl3EQflfh4/content/tmp_files/2301.00453v1.pdf.txt
@@ -0,0 +1,901 @@
+Page 1/17
+Investigating the Dynamics of Social Norm Emergence within Online
+Communities
+
+Shangde Gao1, Yan Wang2*, My T. Thai3
+
+1 Ph.D. Candidate, Department of Urban and Regional Planning and Florida Institute for Built Environment
+Resilience, College of Design, Construction and Planning, University of Florida, 1480 Inner Road,
+Gainesville, FL, 32601, U.S.; Email: gao.shangde@ufl.edu; ORCID: 0000-0003-2218-2872.
+2*Assistant Professor, Department of Urban and Regional Planning and Florida Institute for Built
+Environment Resilience, University of Florida, P.O. Box 115706, Gainesville, FL 32611, U.S.
+(corresponding author); E-mail: yanw@ufl.edu; ORCID: 0000-0002-3946-9418.
+3 Professor, Department of Computer & Information Science & Engineering and Warren B. Nelms Institute
+for the Connected World, University of Florida, Gainesville, FL 32611, U.S.; E-mail: mythai@cise.ufl.edu;
+ORCID: 0000-0003-0503-2012.
+
+Abstract: Although social norms’ effect on mitigating misinformation is identified, scant knowledge exists
+about the patterns of social norm emergence, such as the patterns and variations of social tipping in online
+communities with diverse characteristics. Accordingly, this study investigates the features of social tipping
+in online communities and examines the correlations between the tipping features and characteristics of
+online communities. Taking “the side effects of COVID-19 vaccination” as the case topic, we first track
+the patterns of tipping features in 100 online communities, which are detected using Louvain Algorithm
+from the aggregated communication network on Twitter between May 2020 and April 2021. Then, we use
+multi-variant linear regression to explore the correlations between tipping features and communities’
+characteristics. We find that social tipping in online communities can sustain for two to four months and
+lead to a 50% increase in populations who accept the normative belief in online communities. The
+regression indicates that the duration of social tipping is positively related to the community populations
+and original acceptance of social norms, while the correlation between the tipping duration and the degrees
+among community members is negative. Additionally, the network modularity and original acceptance of
+social norms have negative relationships with the extent of social tipping, while the users’ degree and
+betweenness centrality can have significant positive relationships with the extent of tipping. Our findings
+shed light on more precise normative interventions on misinformation in digital environments as it offers
+preliminary evidence about the timing and mechanism of social norm emergence.
+
+1 Introduction
+The extensive development of online platforms has fostered the spread of messages generated by
+stakeholders at various levels, e.g., governmental agencies and individual users, during public events (Y.
+Wang et al., 2021). A large proportion of user-generated online messages contain inaccurate and misleading
+information, i.e., misinformation (Del Vicario et al., 2016; Wang et al., 2022). The wide diffusion of
+misinformation has threatened human society from multiple perspectives, e.g., interfering with collective
+decision-making on democratic, environmental, and public health issues (West & Bergstrom, 2021). There
+is an emergent need for suppressing misinformation spreading and mitigating the negative consequences of
+online misinformation on human society (West & Bergstrom, 2021). Existing studies (e.g., D. T. Nguyen
+et al. (2012), N. P. Nguyen et al. (2012), Zhang, Alim, et al. (2015, 2016), Zhang et al. (2018), Zhang,
+Kuhnle, et al. (2016), Zhang, Zhang, et al. (2015)) tend to suppress misinformation with (i) debunking, i.e.,
+correcting the misinformation after people are exposed to it, and (ii) prebunking, i.e., helping people
+
+Page 2/17
+recognize the false/misleading contents (U. K. H. Ecker et al., 2022; Lewandowsky & van der Linden,
+2021). The debunking strategy is widely adopted to provide targeted countermeasures for misinformation
+of specific topics (U. K. H. Ecker et al., 2022), e.g., provide messages with factual elaboration (Gao et al.,
+2021; van der Meer & Jin, 2020; Wang et al., 2022), fact-checking content (Humprecht, 2020), and
+messages that stimulate the health-protective measures (Humprecht, 2020). The debunking strategy is not
+always effective when the explanations that support the misinformation exist widely (Chan et al., 2017).
+The effect of debunking messages tends to be short-term and washed out by future exposure to
+misinformation (Mourali & Drake, 2022). Also, the debunking strategy can only be conducted after
+people’s initial exposure to the misinformation (van der Meer & Jin, 2020), while the negative
+consequences of misinformation may already exist and cause notable social costs.
+On the contrary, the prebunking strategy is potentially an effective vehicle that overcomes the limitations
+of the debunking strategy and confers large-scale resistance against misinformation among the public (van
+der Linden et al., 2020). The prebunking strategy is based on the social psychological theory of
+“inoculation”. If people are pre-warned and form the belief of rejecting misinformation, they might be
+“immune” to misinformation (Lewandowsky & van der Linden, 2021). Compared to the debunking strategy,
+the prebunking strategy focuses on influencing people’s beliefs on the topics of misinformation, posing
+long-term effects on the public and reducing the occurrence of negative consequences of misinformation
+(Basol et al., 2021). When being implemented at a large scale, the pre-bunking strategy is conducted with
+social norm interventions, which aim to generate the social norms and consensus that support the factual
+evidence and reject misinformation (Dow et al., 2022).
+The basis of social norm interventions is people’s adherence to the surrounding social norms (Constantino
+et al., 2022). Existing in both the digital and physical world (Gao et al., 2022), social norms, i.e., the shared
+beliefs or acceptable behaviors in communities, have shown a significant relationship with people’s belief
+in the content of misinformation (Andı & Akesson, 2021; Gimpel et al., 2021; Lapinski & Rimal, 2005).
+Adhering to social norms can satisfy a desire to avoid sanctions, confer benefits by coordinating with others,
+and provide a simple heuristic about what is accepted/wise in a particular context (Constantino et al., 2022).
+Based on this psychological phenomenon, social norm interventions have been implemented to help form
+the belief of supporting factual evidence and rejecting misinformation in both the physical and digital
+realms (Andı & Akesson, 2021; Gimpel et al., 2021; Lapinski & Rimal, 2005), such as suppressing
+misinformation about climate actions and health behaviors (Constantino et al., 2022; U. K. Ecker et al.,
+2022). Specifically, by showing individuals the text that describes the “common beliefs” (i.e., social norms)
+towards the misinformation of a certain topic, individuals tend to modify their beliefs to match the “common
+beliefs” and reduce the reliance on the misinformation (U. K. Ecker et al., 2022). In another case, by
+showing individuals a message that “most responsible people think twice before sharing articles” (a social
+norm), individuals are not likely to share social media articles that contain misleading or contested content
+(Andı & Akesson, 2021).
+Though the role of the social norm in suppressing misinformation has been identified (Dow et al., 2022;
+Constantino et al., 2022; U. K. Ecker et al., 2022), scant empirical evidence has been provided to inform
+the implementation of social norm interventions. Several knowledge gaps and challenges remain. First,
+with the controlled experiments in physical worlds, recent works have identified that social norm emergence
+in their artificially designed communities tended to have a tipping process, i.e., social tipping (Berger, 2021;
+Centola et al., 2018; Ehret et al., 2022). Social tipping is a process that when the “tipping point” is reached,
+a small change in an individual community can create abrupt, nonlinear change in the acceptance of the
+normative beliefs across the community (Berger, 2021). By predicting the occurrence and extent of social
+tipping, policymakers can improve the effectiveness of the social norm interventions by adjusting the timing
+and efforts of implementing the interventions (Andreoni et al., 2021; Ehret et al., 2022). However, due to
+the lack of analysis of the online communities, it is unclear whether social tipping also exists in online
+communities and follows certain patterns regarding the tipping features, e.g., the duration and extent of
+social tipping. Little knowledge exists to guide the practices of social norm interventions regarding the
+
+Page 3/17
+timing and efforts that are needed to promote the tipping process of norm emergence. Second, experiments
+in existing studies have identified some evidence regarding the potential relationships between community
+characteristics and the diffusion of normative beliefs (Hu & Leung, 2017; Savarimuthu & Cranefield, 2011;
+Sen & Sen, 2010; Yu et al., 2014). However, these experiments were generally based on artificially
+designed communities in real-world or virtual scenarios, and the experiment findings may not be applicable
+in the communities of the online environment. Also, how the social tipping process varies in the community
+characteristics has not been disclosed in the existing studies. There is a need for empirical studies that
+explore the relationships between community characteristics and social tipping based on real-world
+communities, providing a reference for the design of social norm interventions.
+To fill this research gap, this study aims to answer the following research questions (RQ):
+•
+RQ1: Does social tipping exist during the social norm emergence of online communities? If so, what
+are the characteristics and patterns of social tipping?
+•
+RQ2: Do the features of social tipping correlate with different network characteristics of individual
+communities?
+This study takes the case of the norms on Twitter regarding the side effects of COVID-19 vaccines. The
+diffusion of vaccine-related misinformation has led to severe consequences during the pandemic (Loomba
+et al., 2021). A survey in 2020 showed that more than 55% of U.S. adult participants became hesitant in
+obtaining COVID-19 vaccines because they believed in the misinformation about the side effects, political
+issues, and safety issues of the vaccines (Graham et al., 2020). When exposed to misinformation about
+COVID-19 vaccines, people can become hesitant to take the COVID-19 vaccines, exacerbating their risks
+to be infected (Loomba et al., 2021). There is an emergent need for suppressing misinformation spreading
+and mitigating the negative consequences of online misinformation on human society. We utilize Louvain
+Algorithm (Blondel et al., 2008) to extract the communication communities between Twitter accounts from
+the tweets containing the topics of COVID-19 vaccines. We adopt the definition of “beliefs” from existing
+psychological studies (Camina et al., 2021; Durando et al., 2016; Herzog et al., 2013; Ritchie et al., 2021)
+and focus on if a user thinks the manipulated “side effects” of COVID-19 vaccines exist and accepts/rejects
+the COVID-19 vaccination. Regarding this case, “supporting COVID-19 vaccination” is our desired online
+social norm and we investigate the social tipping of the expressed normative belief across communities.
+We further examine how the dynamics of norm emergences vary across community characteristics, such as
+modularity and betweenness centrality (Winkelmann et al., 2022). The study contributes to disclosing the
+temporal patterns and mechanisms of social norm emergence in the online environment. Our findings can
+facilitate the strategic design of normative interventions for precisely mitigating the dissemination of
+misinformation in the online environment.
+
+2 Data and Methods
+2.1 Overview
+As shown in Fig. 1, this study starts by collecting real-time tweets regarding the COVID-19 vaccines and
+related misinformation using Twitter Streaming API (Twitter, 2022). We define communities in the online
+environment based on Newman (2003), i.e., groups of vertices that have a high density of edges within
+them, with a lower density of edges between other groups. Specifically for this study, we detect
+communities from the “retweeting” and “mentioning” networks among Twitter users in the whole study
+period. For example, if one Twitter user retweets/mentions another user within the whole study period, one
+edge will exist between these two users. Among the identified individual communities, we select those with
+a relatively large population (i.e., more than ten users) and long periods of existence (i.e., more than ten
+days). With these communities, we track the temporal change of the community population that follows the
+normative belief (i.e., tracking norm emergence) and extract the community characteristics (e.g., modularity,
+average degree). After preparation, we first answer RQ1 by observing if social tipping can be identified in
+
+Page 4/17
+the temporal trend of social norm emergence in our detected individual communities. If tipping exists, we
+capture the patterns of the features of social tipping, which include the tipping extent and duration in this
+study. Based on the tipping features and community characteristics, we answer RQ2 and explore if
+significant correlations exist between social tipping and community characteristics.
+
+Figure 1 Research procedure
+
+2.2 Data Preparation
+The basic dataset is collected with Twitter Streaming API between May 1, 2020, and April 30, 2021,
+regarding COVID-19 vaccines. Specifically, we use keywords of COVID-19 vaccinations to filter out the
+tweets that are related to COVID-19 vaccines, including the keywords of “vaccine,” “vax,” “vaccination,”
+and brands of COVID-19 vaccines, e.g., “Pfizer”. We extract the online communities based on the
+communication networks such as “mentioning/replying” messages (i.e., “@username”) and retweeting
+messages (i.e., “RT @username”) for multiple reasons. First, retweeting/replying behaviors tend to happen
+between the users who have following relationships and represent the active social ties between online users
+(Ozer et al., 2016; B. Wang et al., 2021; Weitzeil et al., 2012). Especially, a study of retweets about COVID-
+19 (B. Wang et al., 2021) indicated that more than 50% of the retweets about COVID-19 information were
+generated between users with follower/following relationships. Second, retweeting/replying behaviors can
+well reflect the social influence of social media users, as the users who tend to retweet or reply to the
+messages from others if they are influenced by the tweet content (Evkoski et al., 2021; Yuan and Crooks,
+2018). We can potentially capture how a certain belief diffuses among social media users based on the
+interactions between the users (e.g., retweeting/replying to tweets) (Evkoski et al., 2021).
+Based on the summary of COVID-19 vaccine-related misinformation from Skafle et al. (2022), we focus
+on the “side effect” topic of COVID-19 vaccines from the collected tweets, which generally discuss: (a)
+whether COVID-19 vaccines have side effects that can heavily threaten human health, (b) whether COVID-
+19 vaccines can make people killed, and (c) whether COVID-19 vaccines have not passed trials and are
+poisonous. We use keywords (Table 1) of these three topics to identify the related tweets in our collected
+dataset. The keywords in the pattern of “word A + word B”, represent the queries that a tweet is regarded
+as relevant to the topics if both “word A” and “word B” can be identified in the main text of the tweet. The
+nodes in the online individual communities are the users of the tweets in the basic dataset. We only keep
+the users whose tweets mentioned other users in the basic dataset, or the users who have been mentioned
+by other users in the basic dataset. The news bot accounts are also removed. We finally extract 19,839,188
+tweets containing the keywords about the three topics of misinformation that were posted by 5,462,900
+distinct users (see Table 1). We furtherly detect individual communities and analyze the norm emergence
+with this dataset.
+Table 1 Keywords of misinformation related to the side effects of COVID-19 vaccines
+Topics
+Keywords
+
+Research Preparation
+Research Questions
+Tracking Norm
+RQ1: Existence and Patterns of
+Emergence in
+Data Preparation
+Social Tipping
+Communities
+Extracting
+RQ2: Relationship between
+Community
+Tipping Features and Community
+Characteristics
+Characteristics (Hypotheses Test)Page 5/17
+COVID-19 vaccines have
+side effects
+"side effect", "autism", "autistic", "mental+illness",
+"psychological+illness", "mental issue", "psychological issue",
+"infertility",
+COVID-19 vaccines can
+make people killed
+"children+die", "children+died", "children+dying", "soldier+die",
+"soldier+died", "soldier+dying", "old+die", " old +died", " old+dying",
+COVID-19 vaccines have
+not passed trials and are
+poisonous
+"skip+trail", "poison", "not tested", "doesn't be tested", "isn't tested",
+"aren't tested", "didn't be tested", "wasn't tested", "weren't tested",
+"haven’t been tested"
+
+2.3 Community Detection
+In the retrieved communication network, the edges between users are formed when users reply to or retweet
+from other users. The weights of the edges are the frequencies of one user mentioning the other user within
+one day. We detect individual communities from social networks using Louvain Algorithms (Blondel et al.,
+2008). Louvain Algorithm is a combinational optimization algorithm that aims to maximize the modularity
+among the detected individual communities. The algorithm has a process that first assigns every node to be
+in its community and then for each node it tries to find the maximum positive modularity gain by moving
+each node to all its neighbor communities. If no positive gain is achieved the node remains in its original
+community (Blondel et al., 2008). Compared to other algorithms, Louvain Algorithm can efficiently capture
+the individual communities from a large-scale network, such as a social media network with millions of
+users. To better reveal the social tipping in large communities instead of small groups (e.g., a small group
+with less than ten members), we select the 100 communities with the largest populations among our detected
+communities for the following analysis.
+2.4 Classifying Individual Users’ Expressed beliefs towards Misinformation about COVID-19 Vaccines
+and Tracking Norm Emergence in Communities
+Based on the user’s tweets, we classify the expressed beliefs of individuals at a certain period regarding the
+side effect of COVID-19 vaccines. We first classify the expressed beliefs in the tweets of individual users.
+We train a Long Short-Term Memory (LSTM) model with 2,000 tweets related to COVID-19 vaccination
+and use this model to estimate if tweets from specific users with expressed beliefs that support or reject
+misinformation about the side effects of the COVID-19 vaccination. LSTM has a good performance in
+existing studies regarding text classification because it captures phrase-level and sentence-level feature
+patterns in the tweet text (Zhou et al., 2018). The validated accuracy and loss of the LSTM classifier during
+training are shown in Fig. 2, which reach 0.8892 and 0.2292 separately after training, and the RMSE of the
+classification outcomes are 0.3719. These metrics indicate that our LSTM classifier has an acceptable
+performance in classifying the expressed beliefs of individual users.
+After classifying the expressed beliefs delivered in the tweets, we obtain the overall expressed belief of
+each user on each day based on their tweets on that day. Specifically, we calculate the proportion of tweets
+that one user generates in one day that rejects the misinformation about COVID-19 vaccines. Specifically,
+if more than 50% of the tweets are supporting the COVID-19 vaccination, we regard the user accept the
+COVID-19 vaccination on that day. If only one tweet is generated by one user on one day, we regard the
+expressed belief in the tweet as the expressed belief of that user on a specific date.
+We then aggregate the individuals’ expressed beliefs to the community level and track the norm emergence
+in our sample communities. We regard the normative belief as “rejecting the misinformation about COVID-
+19 vaccines regarding side effects”, and the emergence of norms within a community is tracked by the
+temporal trend of the proportion of community members who hold the normative belief. From the temporal
+trends, we may identify the tipping points where the acceptance increased rapidly.
+
+Page 6/17
+
+Figure 2 The accuracy and loss of the LSTM classifier during training
+2.5 Characterizing the Emergence of Social Norm
+Based on the temporal trends of norm emergence in the sample communities, we first observe the trends
+and detect if social tipping exists in the communities (RQ1). We detect the existence of social tipping
+according to the tipping’s definition, i.e., the increase of community members adopting the norms in
+specific periods is relatively more rapid than in the past periods (Berger, 2021). We calculate the daily
+increase in the proportion of community members adopting the normative belief, observing if the increase
+in a certain period is relatively more rapid than the previous periods. If so, we will regard the social tipping
+as existing during the norm emergence of our sample communities. If social tipping does exist in the sample
+communities, we adopt the measurements of social tipping in existing studies (Andrighetto & Vriens, 2022),
+including the duration and the extent of the social tipping (illustrated in Fig. 3). The duration represents the
+number of time steps that the social tipping exists. The extent of social tipping is measured as the change
+in the proportion of community members adopting the normative belief before and after social tipping.
+
+Figure 3 Illustration of duration and extent of social tipping
+2.6 Investigating Relationships Between Community Characteristics and Tipping Features
+Some characteristics of online individual communities (Table 2) may influence the duration of social
+tipping by increasing or decreasing the rapidness of the tipping process. Some community characteristics
+
+Validation Accuracy
+1.0
+ValidationLoss
+0.8
+Accuracy
+0.6
+0.4
+0.2
+0
+5
+10
+15
+20
+25
+30
+Epoch1.0
+Extent of Tipping
+NormativeBelief
+0.5
+0.0
+Duration of Tipping
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+DatesPage 7/17
+may also influence the extent of social tipping by causing large-scale social norm acceptance within the
+individual community, e.g., the modularity of online individual communities. This study investigates the
+statistical correlations between the characteristics of online communities (Table 2) and the duration and
+extent of social tipping regarding the proportion of community members accepting the social norms (RQ2).
+Table 2 Characteristics of online communities
+Characteristics
+Reference
+Modularity
+(Winkelmann et al., 2022)
+Messaging frequency
+(Centola et al., 2018)
+Network size
+(Sabarwal & Higgins, 2021)
+Original acceptance levels of social norms
+(Berger, 2021)
+Degree and betweenness centrality of community members
+(Winkelmann et al., 2022)
+
+We specify the influence of each community's characteristics on the duration and extent of social tipping
+when examining each hypothesis. We specifically test the following hypotheses that are designed for each
+of the community characteristics in Table 2.
+•
+H1: The modularity of a community has a positive relationship with the duration and extent of social
+tipping.
+•
+H2: The average messaging frequency among members in an online community has a positive
+relationship with the duration and extent of social tipping.
+•
+H3: The size, i.e., the number of members, of a community has a negative relationship with the duration
+and extent of social tipping.
+•
+H4: The original proportion of community members who accept the normative belief has a negative
+relationship with the duration and extent of social tipping.
+•
+H5.1: The average degree of network communities has a positive relationship with the duration and
+extent of social tipping
+•
+H5.2: The average betweenness centrality of network communities has a positive relationship with the
+duration and extent of social tipping
+Before hypothesis testing, we check the statistical distributions of all the considered community
+characteristics and the features of social tipping. In this way, we can identify if the data of hypothesis testing
+has an obvious bias. As shown in Fig. 4, most communities have modularity that is lower than 0.1. The
+network size of most communities is smaller than 200 users, and the messaging frequency among the
+community users tends to be lower than 10 messages a day. For the original acceptance of social norms,
+most communities have an acceptance level of lower than 40% when the communities emerge. But still,
+more than twenty communities have the original acceptance that is higher than 80% when the communities
+emerge. Additionally, the average degree and betweenness centrality of communities tend to evenly
+distribute in a small range, e.g., 1.8 to 2.0 for the average degree, and 0 to 0.12 for the betweenness centrality.
+
+Page 8/17
+
+Figure 4 Distributions of community characteristics
+We examine all the hypotheses mentioned above with multi-variant linear regression (Eq. 1 and 2). Based
+on the identified communities, we examine our proposed hypotheses based on the statistical significance
+(i.e., ������������ − ������������������������������������������������������������) and whether the coefficients of community characteristics are positive or negative. For
+example, to examine hypothesis H1 regarding the duration of social tipping, if the ������������ − ������������������������������������������������������������ for the
+variable ������������������������������������������������������������������������������������������������������������������������ is low and the coefficient for this variable is positive, we can state that modularity
+has a significantly positive relationship with the duration of social tipping in an online community.
+
+Duration~������������������������������������������������������������������������������������������������������������������������ + ������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������ + ������������������������������������������������������������������������ ������������������������������������������������ + ������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������
++ ������������������������������������������������������������������������������������ ������������������������������������������������������������������������ + ������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������
+(1)
+
+������������������������������������������������������������������������~������������������������������������������������������������������������������������������������������������������������ + ������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������ + ������������������������������������������������������������������������ ������������������������������������������������ + ������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������
++ ������������������������������������������������������������������������������������ ������������������������������������������������������������������������ + ������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������
+(2)
+
+3 Results
+3.1 Trends and Patterns of Social Norm Emergence in the Sample Communities
+To answer RQ1, we first check the temporal trends of social norm emergence, i.e., the change of norm
+acceptance among sample communities, aiming to identify if “social tipping” can be identified. Specifically,
+we determine that social tipping happened within a certain period (e.g., between two specific dates) if the
+daily change of the proportion of the population who adopt the normative belief (i.e., rejecting
+misinformation) in the community is much higher than in the past periods. From the temporal trends of
+social norm emergence in the largest ten sample communities (Fig. 5), we find that social tipping does exist,
+and the social tipping of different communities occurred nearly spontaneously between December 2020
+(when the U.S. FDA first issued emergency usage of COVID-19 vaccines (HHS, 2022)) to April 2021.
+Especially at the end of December 2020, the daily increase of the population who adopt the norms exceeded
+10%, which was much higher than the past daily increase (which tended to be lower than 4%). After tipping
+in these communities, the populations that hold the normative belief towards COVID-19 vaccination in
+each community generally reached 65% after three months of social tipping.
+
+Page 9/17
+
+Figure 5 Temporal trends (a) and daily change (b) of social norm emergence in the ten largest sample
+communities
+Based on the social tipping we identified, we further check the statistical distributions of features of social
+tipping among our detected communities, shown in Fig. 6. The histograms of the tipping durations and
+extent indicate that, for norms related to the misinformation about COVID-19 vaccines, the social tipping
+in online communities tends to be relatively long-term and intense. Specifically, the average duration of
+tipping is 83.26 days, the median tipping duration is 96.5 days, and 95% of the sample communities have
+a tipping duration between 59 days and 103 days. 17% of the communities have durations that are shorter
+than one month, and the duration of 8% of the community is longer than four months. For the extent of
+tipping, we can identify that the increase of population who adopt the normative belief in 86% of the sample
+communities exceeds 40%, and the tipping in 56% of the sample communities even has the extent that
+exceeds 50%. Overall, social tipping in online communities regarding the norms of rejecting
+misinformation tends to exist for two to four months, and the tipping extent in more than half of the online
+communities may exceed 50%.
+
+Figure 6 Distributions of features of social tipping among detected communities
+3.2 Relationships Between Community Characteristics and Tipping Features
+Before conducting the regression, we first check the dependence of the community characteristics, and the
+outcome is shown in Fig. 7. Specifically, the absolute value of the correlation between each pair of
+
+0.8
+0.30
+'Adopting Normative Beliefs
+Community 0
+Tipping
+Community 0
+TippingPeriod
+Period
+Community1
+0.25
+Community 1
+0.6
+Community2
+Community2
+0.20
+Community3
+Community3
+Community 4
+Community 4
+0.4
+0.15
+Community 5
+Community 5
+Community 6
+0.10
+Community6
+0.2
+Community 7
+Community 7
+Community 8
+0.05
+Community8
+0.0
+0.00
+M
+28
+02
+Date (m-d-y)
+Date (m-d-y)Page 10/17
+community characteristics is lower than 0.2. The test outcomes indicate that the considered community
+characteristics in this study are relatively independent of other characteristics and can be included in the
+multi-variant linear regression models.
+
+Figure 7 Dependence test of community characteristics (whiter colors represent lower correlations)
+Relationships between community characteristics and the duration of social tipping. The table of the
+regression outcomes is shown in Table 3, and the estimated coefficients and 95% confidence intervals (CI)
+for each community's characteristics are shown in Fig. 8. Among our selected characteristics of the detected
+communities, the network sizes (H3), original acceptance levels of social norms (H4), and the average
+degree (H5.1) among users have significantly positive impacts on the duration of social tipping. Specifically,
+although not significant, modularity and communication frequency among community members have a
+negative relationship with the duration of social tipping (H1, H2). The high-level betweenness centrality in
+online communities has a positive relationship with the duration of social tipping, but this relationship is
+not significant (H5b). Based on the outcomes of this regression outcomes, we identify that social tipping is
+highly related to the context and interactions among the community members. Specifically, the high-level
+average degree indicates that each community member can communicate with a large number of peers
+within the community. The original proportion of community members adopting the normative belief
+indicates the context literacy of the community members regarding the topics of misinformation. Our results
+indicate that social norms can spread more easily if the individuals are exposed to the information and
+interact with more peers than the communities with few interactions. Also, the community members who
+originally do not reject the misinformation may not easily change their belief if they can expose to many
+interactions with their peers that originally reject the misinformation (i.e., high-level original acceptance).
+Additionally, the speed of norm emergence may not increase in the large-scale communities, making the
+duration of tipping longer in the large-scale communities than in the small communities.
+
+Page 11/17
+
+Figure 8 Estimated values and 95% CI of coefficients in regression for the duration of social tipping
+(significant variables are within red boxes)
+Table 3 Outcomes of multi-variant linear regression for the duration of social tipping (Adjusted ������������2:
+0.648)
+Variables
+Coefficient
+Standard Error
+t Value
+P>|t|
+[0.025
+0.975]
+Modularity
+-0.3648
+0.427
+-0.855
+0.394
+-1.207
+0.477
+Network Size
+0.0012
+0.001
+2.212
+0.028*
+0
+0.002
+Messaging Frequency
+-0.0011
+0.002
+-0.545
+0.587
+-0.005
+0.003
+Original Accept Level
+0.6879
+0.305
+2.258
+0.025*
+0.087
+1.289
+Average Degree of Users 0.4688
+0.08
+5.879
+< 0.001***
+0.311
+0.626
+Average Betweenness
+Centrality of Users
+2.3743
+2.324
+1.022
+0.308
+-2.212
+6.961
+Significance Levels: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+
+Relationships between community characteristics and the extent of social tipping. The table of the
+regression outcomes is shown in Table 4, and estimated coefficients and 95% confidence intervals (95%
+CI) for each variable of community characteristics are shown in Fig. 9. Among our selected characteristics
+of the detected communities, the average degree (H5a) and betweenness centrality (H5b) among users have
+a significantly positive impact on the duration of social tipping. Meanwhile, the modularity (H1) and
+original acceptance (H4) of social norms can have a significantly negative relationship with the extent of
+social tipping. Different from the average degree and betweenness centrality, the significance of the
+relationships between other community characteristics and the extent of social tipping is not high.
+Specifically, network size and communication frequency among community members have an insignificant
+relationship with the extent of social tipping (H2, H3). Based on the regression outcomes, we identify that
+the extent of social tipping is also highly related to the context and interactions among the community
+members. Both the betweenness centrality and degree are related to how closely the community members
+are connected, and the original acceptance of the normative belief is related to the literacy of community
+members regarding the topics of misinformation. The positive and high-level influence of average degree
+and betweenness centrality on the tipping extent indicates that more community members will finally turn
+to the normative belief if they are exposed to heavy interactions with other community peers. Also, similar
+
+Value of Coefficients and 95% Cl
+Average
+Betweenness Centrality
+Average
+Degree
+Original
+Acceptance
+Messaging
+Frequency
+Network Size
+Modularity
+-2
+-1
+0
+1
+2Page 12/17
+to the regression outcomes of tipping duration, the community members who originally do not reject the
+misinformation may not easily change their expressed belief if they can expose to many interactions with
+the peers that originally reject the misinformation (i.e., high-level original acceptance).
+
+Figure 9 Estimated values and 95% CI of coefficients in regression for the extent of social tipping
+(significant variables are within red boxes)
+Table 4 Outcomes of multi-variant linear regression for the extent of social tipping (Adjusted ������������2: 0.972)
+Variables
+Coefficient
+Standard Error
+t Value P>|t|
+[0.025
+0.975]
+Modularity
+-0.1635
+0.073
+-2.256
+0.025*
+-0.307
+-0.02
+Network Size
+-0.0001
+0.0000897
+-1.271
+0.205
+0
+6E-05
+Messaging Frequency
+0.0001
+0.000
+0.272
+0.786
+-0.001
+0.001
+Original Accept Level
+-0.1127
+0.052
+-2.176
+0.031*
+-0.215
+-0.01
+Average Degree of Users 0.4725
+0.014
+34.87
+< 0.001***
+0.446
+0.499
+Average Betweenness
+Centrality of Users
+1.2297
+0.395
+3.113
+0.002**
+0.45
+2.009
+Significance Levels: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
+
+4 Discussion
+Social norm interventions can potentially mitigate the spread of misinformation, while insufficient
+knowledge exists regarding the existence and patterns of social tipping in the online environment, as well
+as how the tipping features vary in communities with different network characteristics. This study
+investigates the existence of social tipping in the emergence process of the norms and focuses on rejecting
+the misinformation about COVID-19 vaccines’ side effects. Also, our regression outcomes indicate that the
+duration of tipping is more correlated to the size, average degree, and original acceptance of the normative
+belief among the community members. The extent of social tipping (i.e., the increase of community
+members adopting the normative belief) is more related to the average degree, average betweenness
+centrality, modularity, and the original acceptance of the normative belief among the community members.
+This study advances existing knowledge bodies from several perspectives. First, existing studies focused
+more on the physical world or artificially designed communities (Berger, 2021; Centola et al., 2018; Ehret
+et al., 2022), lacking exploration of the existence and patterns of social tipping in the online digital
+
+Value of Coefficients and 95% Cl
+Average
+Betweenness Centrality
+Average
+Degree
+Original
+Acceptance
+Messaging
+Frequency
+Network Size
+Modularity
+0.0
+0.5
+1.0
+1.5
+2.0
+2.5
+3.0Page 13/17
+environment. As there can be a difference between the social norm emergence in digital and other
+environments, existing knowledge of social tipping may not be fully applicable to the online social norm
+intervention. To fill this gap, we conduct empirical studies with the online communication dataset from
+Twitter and investigate the social norm emergence in 100 sample communities. To a certain extent, our
+study helps identify the statistical distributions of the duration and extent of social tipping in online
+communities. The large datasets and sample communities with various characteristics in this study make it
+possible to disclose the general patterns of social tipping in online environments.
+Second, the existing knowledge body (e.g., Hu & Leung 2017, Savarimuthu & Cranefield 2011, and Sen &
+Sen 2010) rarely analyzed the relationships between the patterns of social tipping and the network
+characteristics of online communities, e.g., the modularity of the communities or the degree of community
+members. To fill this gap, our hypothesis testing with 100 sample communities can help identify the
+characteristics of online communities that are significantly correlated with the tipping duration and extent.
+We highlight the significant correlation between the features of social tipping and the modularity,
+community size, average degree, average betweenness centrality, and original acceptance of the normative
+belief. Our findings can contribute to disclosing the general relationships between social tipping and
+community characteristics, supporting the future designing of online social norm intervention strategies.
+Limitations still exist in this study and open opportunities for our further studies. First, there are still some
+external factors that can influence the individuals’ expressed belief (changes), such as governmental
+policies, while this study does not include these factors. Our future studies will include the factors of
+physical communities to capture the relationships more accurately between social tipping and online
+community characteristics. Second, this study focuses on the topics of COVID-19 vaccine-related
+misinformation, of which the community characteristics and social tipping may follow distinct temporal
+patterns than other topics. To generate more generalizable findings regarding social tipping in online
+communities, our future studies will study multiple topics of online communications, e.g., other prevention
+measures for COVID-19. Third, this study regards each individual community as relatively isolated from
+its neighboring communities, while it is possible that the norm emergence in the neighboring communities
+also contributes to the social tipping of the individual communities. Our future studies will investigate the
+norm emergence and social tipping in the circumstance of multi-community social networks and explore
+the relationships between social tipping in different communities. Fourth, we regard the characteristics of
+communities as relatively stable in the study period, while community characteristics may be temporally
+dynamic and have different levels of influence on the norm emergence over different periods. Our future
+studies will capture the dynamics of online communities and investigate the temporal interactions between
+the network characteristics of individual communities and the trend of norm emergence.
+
+5 Conclusion
+Exploring the patterns of social tipping and the relationship between social tipping and community
+characteristics is critical for tailoring social norm interventions for mitigating online misinformation. Our
+study contributes to the knowledge regarding the heterogeneous temporal patterns and mechanisms of social
+tipping in online communities. Our findings can guide public health authorities, emergency responders, and
+other crisis managers regarding suppressing online misinformation, such as actively disseminating and
+endorsing messages delivering benign normative beliefs on online platforms. With tailored intervention
+strategies, crisis managers can motivate the online populations to conduct appropriate prevention measures
+(e.g., taking COVID-19 vaccines) as well as mitigate the adverse impacts caused by ineffective prevention
+behaviors (e.g., rejecting vaccinations arbitrarily). With the probunking interventions with social norms,
+individuals can potentially form positive attitudes towards the public health campaign and proactively reject
+and suppress the spread of online misinformation.
+
+
+Page 14/17
+Reference
+Andı, S., & Akesson, J. (2021). Nudging Away False News: Evidence from a Social Norms Experiment.
+Digital Journalism, 9(1), 106–125. https://doi.org/10.1080/21670811.2020.1847674
+Andreoni, J., Nikiforakis, N., & Siegenthaler, S. (2021). Predicting social tipping and norm change in
+controlled experiments. Proceedings of the National Academy of Sciences, 118(16),
+e2014893118. https://doi.org/10.1073/pnas.2014893118
+Andrighetto, G., Castelfranchi, C., Mayor, E., McBreen, J., Lopez-Sanchez, M., & Parsons, S. (2013).
+(Social) Norm Dynamics [Application/pdf]. 36 pages.
+https://doi.org/10.4230/DFU.VOL4.12111.135
+Andrighetto, G., & Vriens, E. (2022). A research agenda for the study of social norm change.
+Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
+Sciences, 380(2227), 20200411. https://doi.org/10.1098/rsta.2020.0411
+Antonakaki, D., Fragopoulou, P., & Ioannidis, S. (2021). A survey of Twitter research: Data model, graph
+structure, sentiment analysis and attacks. Expert Systems with Applications, 164, 114006.
+https://doi.org/10.1016/j.eswa.2020.114006
+Basol, M., Roozenbeek, J., Berriche, M., Uenal, F., McClanahan, W. P., & Linden, S. van der. (2021).
+Towards psychological herd immunity: Cross-cultural evidence for two prebunking interventions
+against COVID-19 misinformation. Big Data & Society, 8(1), 205395172110138.
+https://doi.org/10.1177/20539517211013868
+Berger, J. (2021). Social Tipping Interventions Can Promote the Diffusion or Decay of Sustainable
+Consumption Norms in the Field. Evidence from a Quasi-Experimental Intervention Study.
+Sustainability, 13(6), 3529. https://doi.org/10.3390/su13063529
+Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in
+large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.
+https://doi.org/10.1088/1742-5468/2008/10/P10008
+Camina, E., Bernacer, J., & Guell, F. (2021). Belief operationalization for empirical research in
+psychological sciences. Foundations of Science, 26(2), 325–340. https://doi.org/10.1007/s10699-
+020-09722-9
+Centola, D., Becker, J., Brackbill, D., & Baronchelli, A. (2018). Experimental evidence for tipping points
+in social convention. Science, 360(6393), 1116–1119. https://doi.org/10.1126/science.aas8827
+Chan, M. S., Jones, C. R., Hall Jamieson, K., & Albarracín, D. (2017). Debunking: A Meta-Analysis of
+the Psychological Efficacy of Messages Countering Misinformation. Psychological Science,
+28(11), 1531–1546. https://doi.org/10.1177/0956797617714579
+Constantino, S. M., Sparkman, G., Kraft-Todd, G. T., Bicchieri, C., Centola, D., Shell-Duncan, B., Vogt,
+S., & Weber, E. U. (2022). Scaling Up Change: A Critical Review and Practical Guide to
+Harnessing Social Norms for Climate Action. Psychological Science in the Public Interest, 23(2),
+50–97. https://doi.org/10.1177/15291006221105279
+Del Vicario, M., Bessi, A., Zollo, F., Petroni, F., Scala, A., Caldarelli, G., Stanley, H. E., &
+Quattrociocchi, W. (2016). The spreading of misinformation online. Proceedings of the National
+Academy of Sciences, 113(3), 554–559. https://doi.org/10.1073/pnas.1517441113
+Dow, B. J., Wang, C. S., Whitson, J. A., & Deng, Y. (2022). Mitigating and managing COVID-19
+conspiratorial beliefs. BMJ Leader, leader-2022-000600. https://doi.org/10.1136/leader-2022-
+000600
+Durando, P., Alicino, C., Dini, G., Barberis, I., Bagnasco, A. M., Iudici, R., Zanini, M., Martini, M.,
+Toletone, A., Paganino, C., Massa, E., Orsi, A., & Sasso, L. (2016). Determinants of adherence to
+seasonal influenza vaccination among healthcare workers from an Italian region: Results from a
+cross-sectional study. BMJ Open, 6(5), e010779. https://doi.org/10.1136/bmjopen-2015-010779
+Ecker, U. K. H., Lewandowsky, S., Cook, J., Schmid, P., Fazio, L. K., Brashier, N., Kendeou, P., Vraga,
+E. K., & Amazeen, M. A. (2022). The psychological drivers of misinformation belief and its
+
+Page 15/17
+resistance to correction. Nature Reviews Psychology, 1(1), 13–29. https://doi.org/10.1038/s44159-
+021-00006-y
+Ecker, U. K., Sanderson, J. A., McIlhiney, P., Rowsell, J. J., Quekett, H. L., Brown, G. D., &
+Lewandowsky, S. (2022). Combining refutations and social norms increases belief change.
+Quarterly Journal of Experimental Psychology, 174702182211117.
+https://doi.org/10.1177/17470218221111750
+Ehret, S., Constantino, S. M., Weber, E. U., Efferson, C., & Vogt, S. (2022). Group identities can
+undermine social tipping after intervention. Nature Human Behaviour.
+https://doi.org/10.1038/s41562-022-01440-5
+Evkoski, B., Mozetič, I., Ljubešić, N., & Kralj Novak, P. (2021). Community evolution in retweet
+networks. PLOS ONE, 16(9), e0256175. https://doi.org/10.1371/journal.pone.0256175
+Gao, S., Wang, Y., & Platt, L. S. (2021). Modeling US health agencies’ message dissemination on
+Twitter and users’ exposure to vaccine-related misinformation using system dynamics. In
+Proceedings of the 18th International Conference on Information Systems for Crisis Response
+and Management (ISCRAM). Blacksburg, Virginia, U.S.
+Gao, S., Wang, Y., & Webster, G. D. (2022). Causal Modeling of Descriptive Social Norms from Twitter
+and the Physical World on Expressed Attitudes Change: A Case Study of COVID-19
+Vaccination. Cyberpsychology, Behavior, and Social Networking, cyber.2022.0153.
+https://doi.org/10.1089/cyber.2022.0153
+Gimpel, H., Heger, S., Olenberger, C., & Utz, L. (2021). The Effectiveness of Social Norms in Fighting
+Fake News on Social Media. Journal of Management Information Systems, 38(1), 196–221.
+https://doi.org/10.1080/07421222.2021.1870389
+Han, X., Cao, S., Shen, Z., Zhang, B., Wang, W.-X., Cressman, R., & Stanley, H. E. (2017). Emergence
+of communities and diversity in social networks. Proceedings of the National Academy of
+Sciences, 114(11), 2887–2891. https://doi.org/10.1073/pnas.1608164114
+Herzog, R., Álvarez-Pasquin, M. J., Díaz, C., Del Barrio, J. L., Estrada, J. M., & Gil, Á. (2013). Are
+healthcare workers’ intentions to vaccinate related to their knowledge, beliefs and attitudes? A
+systematic review. BMC Public Health, 13(1), 154. https://doi.org/10.1186/1471-2458-13-154
+HHS. (2022). COVID-19 Vaccines. https://www.hhs.gov/coronavirus/covid-19-vaccines/index.html
+Hu, S., & Leung, H. (2017). Local Norm Phenomena in Multi-Agent Systems under Community
+Networks. Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems,
+1570–1572. https://dl.acm.org/doi/10.5555/3091125.3091365
+Humprecht, E. (2020). How Do They Debunk “Fake News”? A Cross-National Comparison of
+Transparency in Fact Checks. Digital Journalism, 8(3), 310–327.
+https://doi.org/10.1080/21670811.2019.1691031
+Iacopini, I., Petri, G., Baronchelli, A., & Barrat, A. (2022). Group interactions modulate critical mass
+dynamics in social convention. Communications Physics, 5(1), 64.
+https://doi.org/10.1038/s42005-022-00845-y
+Lapinski, M. K., & Rimal, R. N. (2005). An Explication of Social Norms. Communication Theory, 15(2),
+127–147. https://doi.org/10.1111/j.1468-2885.2005.tb00329.x
+Lewandowsky, S., & van der Linden, S. (2021). Countering Misinformation and Fake News Through
+Inoculation and Prebunking. European Review of Social Psychology, 32(2), 348–384.
+https://doi.org/10.1080/10463283.2021.1876983
+Loomba, S., de Figueiredo, A., Piatek, S. J., de Graaf, K., & Larson, H. J. (2021). Measuring the impact
+of COVID-19 vaccine misinformation on vaccination intent in the UK and USA. Nature Human
+Behaviour, 5(3), 337–348. https://doi.org/10.1038/s41562-021-01056-1
+Luo, H., Zhao, L., & Zhang, Z. (2020). The impacts of social interaction-based factors on household
+waste-related behaviors. Waste Management, 118, 270–280.
+https://doi.org/10.1016/j.wasman.2020.08.046
+
+Page 16/17
+Mourali, M., & Drake, C. (2022). The Challenge of Debunking Health Misinformation in Dynamic Social
+Media Conversations: Online Randomized Study of Public Masking During COVID-19. Journal
+of Medical Internet Research, 24(3), e34831. https://doi.org/10.2196/34831
+Newman, M. E. J. (2003). The Structure and Function of Complex Networks. SIAM Review, 45(2), 167–
+256. https://doi.org/10.1137/S003614450342480
+Nguyen, D. T., Nguyen, N. P., & Thai, M. T. (2012). Sources of misinformation in Online Social
+Networks: Who to suspect? MILCOM 2012 - 2012 IEEE Military Communications Conference,
+1–6. https://doi.org/10.1109/MILCOM.2012.6415780
+Nguyen, N. P., Yan, G., Thai, M. T., & Eidenbenz, S. (2012). Containment of misinformation spread in
+online social networks. Proceedings of the 3rd Annual ACM Web Science Conference on -
+WebSci ’12, 213–222. https://doi.org/10.1145/2380718.2380746
+Ozer, M., Kim, N., & Davulcu, H. (2016). Community detection in political Twitter networks using
+Nonnegative Matrix Factorization methods. 2016 IEEE/ACM International Conference on
+Advances in Social Networks Analysis and Mining (ASONAM), 81–88.
+https://doi.org/10.1109/ASONAM.2016.7752217
+Ritchie, D., Van den Broucke, S., & Van Hal, G. (2021). The health belief model and theory of planned
+behavior applied to mammography screening: A systematic review and meta‐analysis. Public
+Health Nursing, 38(3), 482–492. https://doi.org/10.1111/phn.12842
+Sabarwal, T., & Higgins, J. (2021). Control and Spread of Contagion in Networks. SSRN Electronic
+Journal. https://doi.org/10.2139/ssrn.3831245
+Savarimuthu, B. T. R., & Cranefield, S. (2011). Norm creation, spreading and emergence: A survey of
+simulation models of norms in multi-agent systems. Multiagent and Grid Systems, 7(1), 21–54.
+https://doi.org/10.3233/MGS-2011-0167
+Sen, O., & Sen, S. (2010). Effects of Social Network Topology and Options on Norm Emergence. In J.
+Padget, A. Artikis, W. Vasconcelos, K. Stathis, V. T. da Silva, E. Matson, & A. Polleres (Eds.),
+Coordination, Organizations, Institutions and Norms in Agent Systems V (Vol. 6069, pp. 211–
+222). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-14962-7_14
+Shakya, H. B., Christakis, N. A., & Fowler, J. H. (2014). Association Between Social Network
+Communities and Health Behavior: An Observational Sociocentric Network Study of Latrine
+Ownership in Rural India. American Journal of Public Health, 104(5), 930–937.
+https://doi.org/10.2105/AJPH.2013.301811
+Skafle, I., Nordahl-Hansen, A., Quintana, D. S., Wynn, R., & Gabarron, E. (2022). Misinformation About
+COVID-19 Vaccines on Social Media: Rapid Review. Journal of Medical Internet Research,
+24(8), e37367. https://doi.org/10.2196/37367
+Twitter. (2022). Stream Tweets in real-time. https://developer.twitter.com/en/docs/tutorials/stream-
+tweets-in-real-time
+van der Linden, S., Roozenbeek, J., & Compton, J. (2020). Inoculating Against Fake News About
+COVID-19. Frontiers in Psychology, 11, 566790. https://doi.org/10.3389/fpsyg.2020.566790
+van der Meer, T. G. L. A., & Jin, Y. (2020). Seeking Formula for Misinformation Treatment in Public
+Health Crises: The Effects of Corrective Information Type and Source. Health Communication,
+35(5), 560–575. https://doi.org/10.1080/10410236.2019.1573295
+Varsha, K., & Patil, K. K. (2020). An Overview of Community Detection Algorithms in Social Networks.
+2020 International Conference on Inventive Computation Technologies (ICICT), 121–126.
+https://doi.org/10.1109/ICICT48043.2020.9112563
+Wang, Y., Gao, S., & Gao, W. (2022). Investigating dynamic relations between factual information and
+misinformation: Empirical studies of tweets related to prevention measures during COVID‐19.
+Journal of Contingencies and Crisis Management, 30(4), 427–439. https://doi.org/10.1111/1468-
+5973.12385
+
+Page 17/17
+Wang, Y., Hao, H., & Platt, L. S. (2021). Examining risk and crisis communications of government
+agencies and stakeholders during early-stages of COVID-19 on Twitter. Computers in Human
+Behavior, 114, 106568. https://doi.org/10.1016/j.chb.2020.106568
+Wang, B., Liu, B., & Zhang, Q. (2021). An empirical study on Twitter’s use and crisis retweeting
+dynamics amid Covid-19. Natural Hazards, 107(3), 2319–2336. https://doi.org/10.1007/s11069-
+020-04497-5
+Weitzel, L., Quaresma, P., & de Oliveira, J. P. M. (2012). Measuring node importance on Twitter
+microblogging. Proceedings of the 2nd International Conference on Web Intelligence, Mining
+and Semantics - WIMS ’12, 1. https://doi.org/10.1145/2254129.2254145
+West, J. D., & Bergstrom, C. T. (2021). Misinformation in and about science. Proceedings of the National
+Academy of Sciences, 118(15), e1912444117. https://doi.org/10.1073/pnas.1912444117
+Winkelmann, R., Donges, J. F., Smith, E. K., Milkoreit, M., Eder, C., Heitzig, J., Katsanidou, A.,
+Wiedermann, M., Wunderling, N., & Lenton, T. M. (2022). Social tipping processes towards
+climate action: A conceptual framework. Ecological Economics, 192, 107242.
+https://doi.org/10.1016/j.ecolecon.2021.107242
+Yu, C., Zhang, M., & Ren, F. (2014). Collective Learning for the Emergence of Social Norms in
+Networked Multiagent Systems. IEEE Transactions on Cybernetics, 44(12), 2342–2355.
+https://doi.org/10.1109/TCYB.2014.2306919Yuan, X., & Crooks, A. T. (2018). Examining
+Online Vaccination Discussion and Communities in Twitter. Proceedings of the 9th International
+Conference on Social Media and Society, 197–206. https://doi.org/10.1145/3217804.3217912
+Zhang, H., Alim, M. A., Li, X., Thai, M. T., & Nguyen, H. T. (2016). Misinformation in Online Social
+Networks: Detect Them All with a Limited Budget. ACM Transactions on Information Systems,
+34(3), 1–24. https://doi.org/10.1145/2885494
+Zhang, H., Alim, M. A., Thai, M. T., & Nguyen, H. T. (2015). Monitor placement to timely detect
+misinformation in Online Social Networks. 2015 IEEE International Conference on
+Communications (ICC), 1152–1157. https://doi.org/10.1109/ICC.2015.7248478
+Zhang, H., Kuhnle, A., Smith, J. D., & Thai, M. T. (2018). Fight Under Uncertainty: Restraining
+Misinformation and Pushing out the Truth. 2018 IEEE/ACM International Conference on
+Advances in Social Networks Analysis and Mining (ASONAM), 266–273.
+https://doi.org/10.1109/ASONAM.2018.8508402
+Zhang, H., Kuhnle, A., Zhang, H., & Thai, M. T. (2016). Detecting misinformation in online social
+networks before it is too late. 2016 IEEE/ACM International Conference on Advances in Social
+Networks Analysis and Mining (ASONAM), 541–548.
+https://doi.org/10.1109/ASONAM.2016.7752288
+Zhang, H., Zhang, H., Li, X., & Thai, M. T. (2015). Limiting the Spread of Misinformation While
+Effectively Raising Awareness in Social Networks. In Computational Social Networks, 9197, 35–
+47. Springer International Publishing. https://doi.org/10.1007/978-3-319-21786-4_4
+Zhou, P., Xu, J., Qi, Z., Bao, H., Chen, Z., & Xu, B. (2018). Distant supervision for relation extraction
+with hierarchical selective attention. Neural Networks, 108, 240–247.
+https://doi.org/10.1016/j.neunet.2018.08.016
+
diff --git a/ntAyT4oBgHgl3EQflfh4/content/tmp_files/load_file.txt b/ntAyT4oBgHgl3EQflfh4/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..1ba2f0f5fbb450e6b5b367f99cb05ddfd6bae177
--- /dev/null
+++ b/ntAyT4oBgHgl3EQflfh4/content/tmp_files/load_file.txt
@@ -0,0 +1,1289 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf,len=1288
+page_content='Page 1/17 Investigating the Dynamics of Social Norm Emergence within Online Communities Shangde Gao1, Yan Wang2*, My T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Thai3 1 Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Candidate, Department of Urban and Regional Planning and Florida Institute for Built Environment Resilience, College of Design, Construction and Planning, University of Florida, 1480 Inner Road, Gainesville, FL, 32601, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Email: gao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='shangde@ufl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='edu;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' ORCID: 0000-0003-2218-2872.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 2*Assistant Professor, Department of Urban and Regional Planning and Florida Institute for Built Environment Resilience, University of Florida, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Box 115706, Gainesville, FL 32611, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (corresponding author);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' E-mail: yanw@ufl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='edu;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' ORCID: 0000-0002-3946-9418.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 3 Professor, Department of Computer & Information Science & Engineering and Warren B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Nelms Institute for the Connected World, University of Florida, Gainesville, FL 32611, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' E-mail: mythai@cise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='ufl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='edu;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' ORCID: 0000-0003-0503-2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Abstract: Although social norms’ effect on mitigating misinformation is identified, scant knowledge exists about the patterns of social norm emergence, such as the patterns and variations of social tipping in online communities with diverse characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Accordingly, this study investigates the features of social tipping in online communities and examines the correlations between the tipping features and characteristics of online communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Taking “the side effects of COVID-19 vaccination” as the case topic, we first track the patterns of tipping features in 100 online communities, which are detected using Louvain Algorithm from the aggregated communication network on Twitter between May 2020 and April 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Then, we use multi-variant linear regression to explore the correlations between tipping features and communities’ characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' We find that social tipping in online communities can sustain for two to four months and lead to a 50% increase in populations who accept the normative belief in online communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The regression indicates that the duration of social tipping is positively related to the community populations and original acceptance of social norms, while the correlation between the tipping duration and the degrees among community members is negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Additionally, the network modularity and original acceptance of social norms have negative relationships with the extent of social tipping, while the users’ degree and betweenness centrality can have significant positive relationships with the extent of tipping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Our findings shed light on more precise normative interventions on misinformation in digital environments as it offers preliminary evidence about the timing and mechanism of social norm emergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 1 Introduction The extensive development of online platforms has fostered the spread of messages generated by stakeholders at various levels, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', governmental agencies and individual users, during public events (Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' A large proportion of user-generated online messages contain inaccurate and misleading information, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', misinformation (Del Vicario et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The wide diffusion of misinformation has threatened human society from multiple perspectives, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', interfering with collective decision-making on democratic, environmental, and public health issues (West & Bergstrom, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' There is an emergent need for suppressing misinformation spreading and mitigating the negative consequences of online misinformation on human society (West & Bergstrom, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Existing studies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2012), N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2012), Zhang, Alim, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2015, 2016), Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2018), Zhang, Kuhnle, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2016), Zhang, Zhang, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2015)) tend to suppress misinformation with (i) debunking, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', correcting the misinformation after people are exposed to it, and (ii) prebunking, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', helping people Page 2/17 recognize the false/misleading contents (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Ecker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Lewandowsky & van der Linden, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The debunking strategy is widely adopted to provide targeted countermeasures for misinformation of specific topics (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Ecker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2022), e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', provide messages with factual elaboration (Gao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' van der Meer & Jin, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2022), fact-checking content (Humprecht, 2020), and messages that stimulate the health-protective measures (Humprecht, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The debunking strategy is not always effective when the explanations that support the misinformation exist widely (Chan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The effect of debunking messages tends to be short-term and washed out by future exposure to misinformation (Mourali & Drake, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Also, the debunking strategy can only be conducted after people’s initial exposure to the misinformation (van der Meer & Jin, 2020), while the negative consequences of misinformation may already exist and cause notable social costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' On the contrary, the prebunking strategy is potentially an effective vehicle that overcomes the limitations of the debunking strategy and confers large-scale resistance against misinformation among the public (van der Linden et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The prebunking strategy is based on the social psychological theory of “inoculation”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' If people are pre-warned and form the belief of rejecting misinformation, they might be “immune” to misinformation (Lewandowsky & van der Linden, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Compared to the debunking strategy, the prebunking strategy focuses on influencing people’s beliefs on the topics of misinformation, posing long-term effects on the public and reducing the occurrence of negative consequences of misinformation (Basol et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' When being implemented at a large scale, the pre-bunking strategy is conducted with social norm interventions, which aim to generate the social norms and consensus that support the factual evidence and reject misinformation (Dow et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The basis of social norm interventions is people’s adherence to the surrounding social norms (Constantino et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Existing in both the digital and physical world (Gao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2022), social norms, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', the shared beliefs or acceptable behaviors in communities, have shown a significant relationship with people’s belief in the content of misinformation (Andı & Akesson, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Gimpel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Lapinski & Rimal, 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Adhering to social norms can satisfy a desire to avoid sanctions, confer benefits by coordinating with others, and provide a simple heuristic about what is accepted/wise in a particular context (Constantino et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Based on this psychological phenomenon, social norm interventions have been implemented to help form the belief of supporting factual evidence and rejecting misinformation in both the physical and digital realms (Andı & Akesson, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Gimpel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Lapinski & Rimal, 2005), such as suppressing misinformation about climate actions and health behaviors (Constantino et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Ecker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Specifically, by showing individuals the text that describes the “common beliefs” (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', social norms) towards the misinformation of a certain topic, individuals tend to modify their beliefs to match the “common beliefs” and reduce the reliance on the misinformation (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Ecker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' In another case, by showing individuals a message that “most responsible people think twice before sharing articles” (a social norm), individuals are not likely to share social media articles that contain misleading or contested content (Andı & Akesson, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Though the role of the social norm in suppressing misinformation has been identified (Dow et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Constantino et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Ecker et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2022), scant empirical evidence has been provided to inform the implementation of social norm interventions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Several knowledge gaps and challenges remain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' First, with the controlled experiments in physical worlds, recent works have identified that social norm emergence in their artificially designed communities tended to have a tipping process, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', social tipping (Berger, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Centola et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Ehret et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Social tipping is a process that when the “tipping point” is reached, a small change in an individual community can create abrupt, nonlinear change in the acceptance of the normative beliefs across the community (Berger, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' By predicting the occurrence and extent of social tipping, policymakers can improve the effectiveness of the social norm interventions by adjusting the timing and efforts of implementing the interventions (Andreoni et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Ehret et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' However, due to the lack of analysis of the online communities, it is unclear whether social tipping also exists in online communities and follows certain patterns regarding the tipping features, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', the duration and extent of social tipping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Little knowledge exists to guide the practices of social norm interventions regarding the Page 3/17 timing and efforts that are needed to promote the tipping process of norm emergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Second, experiments in existing studies have identified some evidence regarding the potential relationships between community characteristics and the diffusion of normative beliefs (Hu & Leung, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Savarimuthu & Cranefield, 2011;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Sen & Sen, 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' However, these experiments were generally based on artificially designed communities in real-world or virtual scenarios, and the experiment findings may not be applicable in the communities of the online environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Also, how the social tipping process varies in the community characteristics has not been disclosed in the existing studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' There is a need for empirical studies that explore the relationships between community characteristics and social tipping based on real-world communities, providing a reference for the design of social norm interventions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' To fill this research gap, this study aims to answer the following research questions (RQ): RQ1: Does social tipping exist during the social norm emergence of online communities?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' If so, what are the characteristics and patterns of social tipping?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' RQ2: Do the features of social tipping correlate with different network characteristics of individual communities?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' This study takes the case of the norms on Twitter regarding the side effects of COVID-19 vaccines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The diffusion of vaccine-related misinformation has led to severe consequences during the pandemic (Loomba et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' A survey in 2020 showed that more than 55% of U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' adult participants became hesitant in obtaining COVID-19 vaccines because they believed in the misinformation about the side effects, political issues, and safety issues of the vaccines (Graham et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' When exposed to misinformation about COVID-19 vaccines, people can become hesitant to take the COVID-19 vaccines, exacerbating their risks to be infected (Loomba et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' There is an emergent need for suppressing misinformation spreading and mitigating the negative consequences of online misinformation on human society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' We utilize Louvain Algorithm (Blondel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2008) to extract the communication communities between Twitter accounts from the tweets containing the topics of COVID-19 vaccines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' We adopt the definition of “beliefs” from existing psychological studies (Camina et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Durando et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Herzog et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Ritchie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2021) and focus on if a user thinks the manipulated “side effects” of COVID-19 vaccines exist and accepts/rejects the COVID-19 vaccination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Regarding this case, “supporting COVID-19 vaccination” is our desired online social norm and we investigate the social tipping of the expressed normative belief across communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' We further examine how the dynamics of norm emergences vary across community characteristics, such as modularity and betweenness centrality (Winkelmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The study contributes to disclosing the temporal patterns and mechanisms of social norm emergence in the online environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Our findings can facilitate the strategic design of normative interventions for precisely mitigating the dissemination of misinformation in the online environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 2 Data and Methods 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1 Overview As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 1, this study starts by collecting real-time tweets regarding the COVID-19 vaccines and related misinformation using Twitter Streaming API (Twitter, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' We define communities in the online environment based on Newman (2003), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', groups of vertices that have a high density of edges within them, with a lower density of edges between other groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Specifically for this study, we detect communities from the “retweeting” and “mentioning” networks among Twitter users in the whole study period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' For example, if one Twitter user retweets/mentions another user within the whole study period, one edge will exist between these two users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Among the identified individual communities, we select those with a relatively large population (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', more than ten users) and long periods of existence (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', more than ten days).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' With these communities, we track the temporal change of the community population that follows the normative belief (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', tracking norm emergence) and extract the community characteristics (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', modularity, average degree).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' After preparation, we first answer RQ1 by observing if social tipping can be identified in Page 4/17 the temporal trend of social norm emergence in our detected individual communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' If tipping exists, we capture the patterns of the features of social tipping, which include the tipping extent and duration in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Based on the tipping features and community characteristics, we answer RQ2 and explore if significant correlations exist between social tipping and community characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Figure 1 Research procedure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2 Data Preparation The basic dataset is collected with Twitter Streaming API between May 1, 2020, and April 30, 2021, regarding COVID-19 vaccines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Specifically, we use keywords of COVID-19 vaccinations to filter out the tweets that are related to COVID-19 vaccines, including the keywords of “vaccine,” “vax,” “vaccination,” and brands of COVID-19 vaccines, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', “Pfizer”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' We extract the online communities based on the communication networks such as “mentioning/replying” messages (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', “@username”) and retweeting messages (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', “RT @username”) for multiple reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' First, retweeting/replying behaviors tend to happen between the users who have following relationships and represent the active social ties between online users (Ozer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Weitzeil et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Especially, a study of retweets about COVID- 19 (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2021) indicated that more than 50% of the retweets about COVID-19 information were generated between users with follower/following relationships.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Second, retweeting/replying behaviors can well reflect the social influence of social media users, as the users who tend to retweet or reply to the messages from others if they are influenced by the tweet content (Evkoski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Yuan and Crooks, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' We can potentially capture how a certain belief diffuses among social media users based on the interactions between the users (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', retweeting/replying to tweets) (Evkoski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Based on the summary of COVID-19 vaccine-related misinformation from Skafle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2022), we focus on the “side effect” topic of COVID-19 vaccines from the collected tweets, which generally discuss: (a) whether COVID-19 vaccines have side effects that can heavily threaten human health, (b) whether COVID- 19 vaccines can make people killed, and (c) whether COVID-19 vaccines have not passed trials and are poisonous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' We use keywords (Table 1) of these three topics to identify the related tweets in our collected dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The keywords in the pattern of “word A + word B”, represent the queries that a tweet is regarded as relevant to the topics if both “word A” and “word B” can be identified in the main text of the tweet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The nodes in the online individual communities are the users of the tweets in the basic dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' We only keep the users whose tweets mentioned other users in the basic dataset, or the users who have been mentioned by other users in the basic dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The news bot accounts are also removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' We finally extract 19,839,188 tweets containing the keywords about the three topics of misinformation that were posted by 5,462,900 distinct users (see Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' We furtherly detect individual communities and analyze the norm emergence with this dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Table 1 Keywords of misinformation related to the side effects of COVID-19 vaccines Topics Keywords Research Preparation Research Questions Tracking Norm RQ1: Existence and Patterns of Emergence in Data Preparation Social Tipping Communities Extracting RQ2: Relationship between Community Tipping Features and Community Characteristics Characteristics (Hypotheses Test)Page 5/17 COVID-19 vaccines have side effects "side effect",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "autism",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "autistic",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "mental+illness",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "psychological+illness",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "mental issue",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "psychological issue",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "infertility",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' COVID-19 vaccines can make people killed "children+die",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "children+died",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "children+dying",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "soldier+die",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "soldier+died",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "soldier+dying",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "old+die",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' " old +died",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' " old+dying",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' COVID-19 vaccines have not passed trials and are poisonous "skip+trail",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "poison",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "not tested",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "doesn\'t be tested",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "isn\'t tested",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "aren\'t tested",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "didn\'t be tested",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "wasn\'t tested",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "weren\'t tested",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' "haven’t been tested" 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='3 Community Detection In the retrieved communication network, the edges between users are formed when users reply to or retweet from other users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The weights of the edges are the frequencies of one user mentioning the other user within one day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' We detect individual communities from social networks using Louvain Algorithms (Blondel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Louvain Algorithm is a combinational optimization algorithm that aims to maximize the modularity among the detected individual communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The algorithm has a process that first assigns every node to be in its community and then for each node it tries to find the maximum positive modularity gain by moving each node to all its neighbor communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' If no positive gain is achieved the node remains in its original community (Blondel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Compared to other algorithms, Louvain Algorithm can efficiently capture the individual communities from a large-scale network, such as a social media network with millions of users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' To better reveal the social tipping in large communities instead of small groups (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', a small group with less than ten members), we select the 100 communities with the largest populations among our detected communities for the following analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='4 Classifying Individual Users’ Expressed beliefs towards Misinformation about COVID-19 Vaccines and Tracking Norm Emergence in Communities Based on the user’s tweets, we classify the expressed beliefs of individuals at a certain period regarding the side effect of COVID-19 vaccines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' We first classify the expressed beliefs in the tweets of individual users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' We train a Long Short-Term Memory (LSTM) model with 2,000 tweets related to COVID-19 vaccination and use this model to estimate if tweets from specific users with expressed beliefs that support or reject misinformation about the side effects of the COVID-19 vaccination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' LSTM has a good performance in existing studies regarding text classification because it captures phrase-level and sentence-level feature patterns in the tweet text (Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The validated accuracy and loss of the LSTM classifier during training are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 2, which reach 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='8892 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2292 separately after training, and the RMSE of the classification outcomes are 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='3719.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' These metrics indicate that our LSTM classifier has an acceptable performance in classifying the expressed beliefs of individual users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' After classifying the expressed beliefs delivered in the tweets, we obtain the overall expressed belief of each user on each day based on their tweets on that day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Specifically, we calculate the proportion of tweets that one user generates in one day that rejects the misinformation about COVID-19 vaccines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Specifically, if more than 50% of the tweets are supporting the COVID-19 vaccination, we regard the user accept the COVID-19 vaccination on that day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' If only one tweet is generated by one user on one day, we regard the expressed belief in the tweet as the expressed belief of that user on a specific date.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' We then aggregate the individuals’ expressed beliefs to the community level and track the norm emergence in our sample communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' We regard the normative belief as “rejecting the misinformation about COVID- 19 vaccines regarding side effects”, and the emergence of norms within a community is tracked by the temporal trend of the proportion of community members who hold the normative belief.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' From the temporal trends, we may identify the tipping points where the acceptance increased rapidly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Page 6/17 Figure 2 The accuracy and loss of the LSTM classifier during training 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='5 Characterizing the Emergence of Social Norm Based on the temporal trends of norm emergence in the sample communities, we first observe the trends and detect if social tipping exists in the communities (RQ1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' We detect the existence of social tipping according to the tipping’s definition, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', the increase of community members adopting the norms in specific periods is relatively more rapid than in the past periods (Berger, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' We calculate the daily increase in the proportion of community members adopting the normative belief, observing if the increase in a certain period is relatively more rapid than the previous periods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' If so, we will regard the social tipping as existing during the norm emergence of our sample communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' If social tipping does exist in the sample communities, we adopt the measurements of social tipping in existing studies (Andrighetto & Vriens, 2022), including the duration and the extent of the social tipping (illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The duration represents the number of time steps that the social tipping exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The extent of social tipping is measured as the change in the proportion of community members adopting the normative belief before and after social tipping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Figure 3 Illustration of duration and extent of social tipping 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='6 Investigating Relationships Between Community Characteristics and Tipping Features Some characteristics of online individual communities (Table 2) may influence the duration of social tipping by increasing or decreasing the rapidness of the tipping process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Some community characteristics Validation Accuracy 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='0 ValidationLoss 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='8 Accuracy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2 0 5 10 15 20 25 30 Epoch1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='0 Extent of Tipping NormativeBelief 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='0 Duration of Tipping 2 3 4 5 6 7 8 9 10 11 12 13 14 DatesPage 7/17 may also influence the extent of social tipping by causing large-scale social norm acceptance within the individual community, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', the modularity of online individual communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' This study investigates the statistical correlations between the characteristics of online communities (Table 2) and the duration and extent of social tipping regarding the proportion of community members accepting the social norms (RQ2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Table 2 Characteristics of online communities Characteristics Reference Modularity (Winkelmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2022) Messaging frequency (Centola et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2018) Network size (Sabarwal & Higgins, 2021) Original acceptance levels of social norms (Berger, 2021) Degree and betweenness centrality of community members (Winkelmann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=", 2022) We specify the influence of each community's characteristics on the duration and extent of social tipping when examining each hypothesis." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' We specifically test the following hypotheses that are designed for each of the community characteristics in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' H1: The modularity of a community has a positive relationship with the duration and extent of social tipping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' H2: The average messaging frequency among members in an online community has a positive relationship with the duration and extent of social tipping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' H3: The size, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', the number of members, of a community has a negative relationship with the duration and extent of social tipping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' H4: The original proportion of community members who accept the normative belief has a negative relationship with the duration and extent of social tipping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' H5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1: The average degree of network communities has a positive relationship with the duration and extent of social tipping H5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2: The average betweenness centrality of network communities has a positive relationship with the duration and extent of social tipping Before hypothesis testing, we check the statistical distributions of all the considered community characteristics and the features of social tipping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' In this way, we can identify if the data of hypothesis testing has an obvious bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 4, most communities have modularity that is lower than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The network size of most communities is smaller than 200 users, and the messaging frequency among the community users tends to be lower than 10 messages a day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' For the original acceptance of social norms, most communities have an acceptance level of lower than 40% when the communities emerge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' But still, more than twenty communities have the original acceptance that is higher than 80% when the communities emerge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Additionally, the average degree and betweenness centrality of communities tend to evenly distribute in a small range, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='8 to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='0 for the average degree, and 0 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='12 for the betweenness centrality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Page 8/17 Figure 4 Distributions of community characteristics We examine all the hypotheses mentioned above with multi-variant linear regression (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 1 and 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Based on the identified communities, we examine our proposed hypotheses based on the statistical significance (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', ������������ − ������������������������������������������������������������) and whether the coefficients of community characteristics are positive or negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' For example, to examine hypothesis H1 regarding the duration of social tipping, if the ������������ − ������������������������������������������������������������ for the variable ������������������������������������������������������������������������������������������������������������������������ is low and the coefficient for this variable is positive, we can state that modularity has a significantly positive relationship with the duration of social tipping in an online community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='Duration~������������������������������������������������������������������������������������������������������������������������ + ������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������ + ������������������������������������������������������������������������ ������������������������������������������������ + ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='������������������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='������������������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='������������������������������������������������������������������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='������������������������������������������������������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='(1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='������������������������������������������������������������������������~������������������������������������������������������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='������������������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='������������������������������������������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='������������������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='������������������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='������������������������������������������������������������������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='������������������������������������������������������������������������������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='(2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='3 Results ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1 Trends and Patterns of Social Norm Emergence in the Sample Communities To answer RQ1, we first check the temporal trends of social norm emergence, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', the change of norm acceptance among sample communities, aiming to identify if “social tipping” can be identified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Specifically, we determine that social tipping happened within a certain period (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', between two specific dates) if the daily change of the proportion of the population who adopt the normative belief (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', rejecting misinformation) in the community is much higher than in the past periods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' From the temporal trends of social norm emergence in the largest ten sample communities (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 5), we find that social tipping does exist, and the social tipping of different communities occurred nearly spontaneously between December 2020 (when the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' FDA first issued emergency usage of COVID-19 vaccines (HHS, 2022)) to April 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Especially at the end of December 2020, the daily increase of the population who adopt the norms exceeded 10%, which was much higher than the past daily increase (which tended to be lower than 4%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' After tipping in these communities, the populations that hold the normative belief towards COVID-19 vaccination in each community generally reached 65% after three months of social tipping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Page 9/17 Figure 5 Temporal trends (a) and daily change (b) of social norm emergence in the ten largest sample communities Based on the social tipping we identified, we further check the statistical distributions of features of social tipping among our detected communities, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The histograms of the tipping durations and extent indicate that, for norms related to the misinformation about COVID-19 vaccines, the social tipping in online communities tends to be relatively long-term and intense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Specifically, the average duration of tipping is 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='26 days, the median tipping duration is 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='5 days, and 95% of the sample communities have a tipping duration between 59 days and 103 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 17% of the communities have durations that are shorter than one month, and the duration of 8% of the community is longer than four months.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' For the extent of tipping, we can identify that the increase of population who adopt the normative belief in 86% of the sample communities exceeds 40%, and the tipping in 56% of the sample communities even has the extent that exceeds 50%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Overall, social tipping in online communities regarding the norms of rejecting misinformation tends to exist for two to four months, and the tipping extent in more than half of the online communities may exceed 50%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Figure 6 Distributions of features of social tipping among detected communities 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2 Relationships Between Community Characteristics and Tipping Features Before conducting the regression, we first check the dependence of the community characteristics, and the outcome is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Specifically, the absolute value of the correlation between each pair of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content="30 'Adopting Normative Beliefs Community 0 Tipping Community 0 TippingPeriod Period Community1 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='25 Community 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='6 Community2 Community2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='20 Community3 Community3 Community 4 Community 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='15 Community 5 Community 5 Community 6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='10 Community6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2 Community 7 Community 7 Community 8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='05 Community8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='00 M 28 02 Date (m-d-y) Date (m-d-y)Page 10/17 community characteristics is lower than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The test outcomes indicate that the considered community characteristics in this study are relatively independent of other characteristics and can be included in the multi-variant linear regression models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Figure 7 Dependence test of community characteristics (whiter colors represent lower correlations) Relationships between community characteristics and the duration of social tipping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=" The table of the regression outcomes is shown in Table 3, and the estimated coefficients and 95% confidence intervals (CI) for each community's characteristics are shown in Fig." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Among our selected characteristics of the detected communities, the network sizes (H3), original acceptance levels of social norms (H4), and the average degree (H5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1) among users have significantly positive impacts on the duration of social tipping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Specifically, although not significant, modularity and communication frequency among community members have a negative relationship with the duration of social tipping (H1, H2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The high-level betweenness centrality in online communities has a positive relationship with the duration of social tipping, but this relationship is not significant (H5b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Based on the outcomes of this regression outcomes, we identify that social tipping is highly related to the context and interactions among the community members.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Specifically, the high-level average degree indicates that each community member can communicate with a large number of peers within the community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The original proportion of community members adopting the normative belief indicates the context literacy of the community members regarding the topics of misinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Our results indicate that social norms can spread more easily if the individuals are exposed to the information and interact with more peers than the communities with few interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Also, the community members who originally do not reject the misinformation may not easily change their belief if they can expose to many interactions with their peers that originally reject the misinformation (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', high-level original acceptance).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Additionally, the speed of norm emergence may not increase in the large-scale communities, making the duration of tipping longer in the large-scale communities than in the small communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Page 11/17 Figure 8 Estimated values and 95% CI of coefficients in regression for the duration of social tipping (significant variables are within red boxes) Table 3 Outcomes of multi-variant linear regression for the duration of social tipping (Adjusted ������������2: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='648) Variables Coefficient Standard Error t Value P>|t| [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='975] Modularity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='3648 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='427 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='855 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='394 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='207 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='477 Network Size 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='0012 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='001 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='212 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='028* 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='002 Messaging Frequency 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='0011 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='545 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='587 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='003 Original Accept Level 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='6879 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='305 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='258 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='025* 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='087 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='289 Average Degree of Users 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='4688 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='08 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='879 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='001*** 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='311 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='626 Average Betweenness Centrality of Users 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='3743 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='324 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='022 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='308 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='212 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='961 Significance Levels: 0 ‘***’ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='001 ‘**’ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='01 ‘*’ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='05 ‘.’ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1 ‘ ’ 1 Relationships between community characteristics and the extent of social tipping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The table of the regression outcomes is shown in Table 4, and estimated coefficients and 95% confidence intervals (95% CI) for each variable of community characteristics are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Among our selected characteristics of the detected communities, the average degree (H5a) and betweenness centrality (H5b) among users have a significantly positive impact on the duration of social tipping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Meanwhile, the modularity (H1) and original acceptance (H4) of social norms can have a significantly negative relationship with the extent of social tipping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Different from the average degree and betweenness centrality, the significance of the relationships between other community characteristics and the extent of social tipping is not high.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Specifically, network size and communication frequency among community members have an insignificant relationship with the extent of social tipping (H2, H3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Based on the regression outcomes, we identify that the extent of social tipping is also highly related to the context and interactions among the community members.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Both the betweenness centrality and degree are related to how closely the community members are connected, and the original acceptance of the normative belief is related to the literacy of community members regarding the topics of misinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The positive and high-level influence of average degree and betweenness centrality on the tipping extent indicates that more community members will finally turn to the normative belief if they are exposed to heavy interactions with other community peers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Also, similar Value of Coefficients and 95% Cl Average Betweenness Centrality Average Degree Original Acceptance Messaging Frequency Network Size Modularity 2 1 0 1 2Page 12/17 to the regression outcomes of tipping duration, the community members who originally do not reject the misinformation may not easily change their expressed belief if they can expose to many interactions with the peers that originally reject the misinformation (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', high-level original acceptance).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Figure 9 Estimated values and 95% CI of coefficients in regression for the extent of social tipping (significant variables are within red boxes) Table 4 Outcomes of multi-variant linear regression for the extent of social tipping (Adjusted ������������2: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='972) Variables Coefficient Standard Error t Value P>|t| [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='975] Modularity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1635 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='073 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='256 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='025* 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='307 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='02 Network Size 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='0001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='0000897 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='271 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='205 0 6E-05 Messaging Frequency 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='0001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='272 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='786 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='001 Original Accept Level 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1127 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='052 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='176 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='031* 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='215 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='01 Average Degree of Users 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='4725 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='014 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='87 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='001*** 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='446 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='499 Average Betweenness Centrality of Users 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2297 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='395 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='113 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='002** 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='45 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='009 Significance Levels: 0 ‘***’ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='001 ‘**’ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='01 ‘*’ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='05 ‘.’ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1 ‘ ’ 1 4 Discussion Social norm interventions can potentially mitigate the spread of misinformation, while insufficient knowledge exists regarding the existence and patterns of social tipping in the online environment, as well as how the tipping features vary in communities with different network characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' This study investigates the existence of social tipping in the emergence process of the norms and focuses on rejecting the misinformation about COVID-19 vaccines’ side effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Also, our regression outcomes indicate that the duration of tipping is more correlated to the size, average degree, and original acceptance of the normative belief among the community members.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The extent of social tipping (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', the increase of community members adopting the normative belief) is more related to the average degree, average betweenness centrality, modularity, and the original acceptance of the normative belief among the community members.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' This study advances existing knowledge bodies from several perspectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' First, existing studies focused more on the physical world or artificially designed communities (Berger, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Centola et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Ehret et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', 2022), lacking exploration of the existence and patterns of social tipping in the online digital Value of Coefficients and 95% Cl Average Betweenness Centrality Average Degree Original Acceptance Messaging Frequency Network Size Modularity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='0Page 13/17 environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' As there can be a difference between the social norm emergence in digital and other environments, existing knowledge of social tipping may not be fully applicable to the online social norm intervention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' To fill this gap, we conduct empirical studies with the online communication dataset from Twitter and investigate the social norm emergence in 100 sample communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' To a certain extent, our study helps identify the statistical distributions of the duration and extent of social tipping in online communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The large datasets and sample communities with various characteristics in this study make it possible to disclose the general patterns of social tipping in online environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Second, the existing knowledge body (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Hu & Leung 2017, Savarimuthu & Cranefield 2011, and Sen & Sen 2010) rarely analyzed the relationships between the patterns of social tipping and the network characteristics of online communities, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', the modularity of the communities or the degree of community members.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' To fill this gap, our hypothesis testing with 100 sample communities can help identify the characteristics of online communities that are significantly correlated with the tipping duration and extent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' We highlight the significant correlation between the features of social tipping and the modularity, community size, average degree, average betweenness centrality, and original acceptance of the normative belief.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Our findings can contribute to disclosing the general relationships between social tipping and community characteristics, supporting the future designing of online social norm intervention strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Limitations still exist in this study and open opportunities for our further studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' First, there are still some external factors that can influence the individuals’ expressed belief (changes), such as governmental policies, while this study does not include these factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Our future studies will include the factors of physical communities to capture the relationships more accurately between social tipping and online community characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Second, this study focuses on the topics of COVID-19 vaccine-related misinformation, of which the community characteristics and social tipping may follow distinct temporal patterns than other topics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' To generate more generalizable findings regarding social tipping in online communities, our future studies will study multiple topics of online communications, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', other prevention measures for COVID-19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Third, this study regards each individual community as relatively isolated from its neighboring communities, while it is possible that the norm emergence in the neighboring communities also contributes to the social tipping of the individual communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Our future studies will investigate the norm emergence and social tipping in the circumstance of multi-community social networks and explore the relationships between social tipping in different communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Fourth, we regard the characteristics of communities as relatively stable in the study period, while community characteristics may be temporally dynamic and have different levels of influence on the norm emergence over different periods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Our future studies will capture the dynamics of online communities and investigate the temporal interactions between the network characteristics of individual communities and the trend of norm emergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 5 Conclusion Exploring the patterns of social tipping and the relationship between social tipping and community characteristics is critical for tailoring social norm interventions for mitigating online misinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Our study contributes to the knowledge regarding the heterogeneous temporal patterns and mechanisms of social tipping in online communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Our findings can guide public health authorities, emergency responders, and other crisis managers regarding suppressing online misinformation, such as actively disseminating and endorsing messages delivering benign normative beliefs on online platforms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' With tailored intervention strategies, crisis managers can motivate the online populations to conduct appropriate prevention measures (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', taking COVID-19 vaccines) as well as mitigate the adverse impacts caused by ineffective prevention behaviors (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', rejecting vaccinations arbitrarily).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' With the probunking interventions with social norms, individuals can potentially form positive attitudes towards the public health campaign and proactively reject and suppress the spread of online misinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Page 14/17 Reference Andı, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Akesson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Nudging Away False News: Evidence from a Social Norms Experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Digital Journalism, 9(1), 106–125.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1080/21670811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1847674 Andreoni, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Nikiforakis, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Siegenthaler, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Predicting social tipping and norm change in controlled experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Proceedings of the National Academy of Sciences, 118(16), e2014893118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1073/pnas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2014893118 Andrighetto, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Castelfranchi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Mayor, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', McBreen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Lopez-Sanchez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Parsons, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (Social) Norm Dynamics [Application/pdf].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 36 pages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='4230/DFU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='VOL4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='12111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='135 Andrighetto, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Vriens, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' A research agenda for the study of social norm change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380(2227), 20200411.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1098/rsta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='0411 Antonakaki, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Fragopoulou, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Ioannidis, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' A survey of Twitter research: Data model, graph structure, sentiment analysis and attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Expert Systems with Applications, 164, 114006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='eswa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='114006 Basol, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Roozenbeek, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Berriche, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Uenal, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', McClanahan, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Linden, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' van der.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Towards psychological herd immunity: Cross-cultural evidence for two prebunking interventions against COVID-19 misinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Big Data & Society, 8(1), 205395172110138.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1177/20539517211013868 Berger, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Social Tipping Interventions Can Promote the Diffusion or Decay of Sustainable Consumption Norms in the Field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Evidence from a Quasi-Experimental Intervention Study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Sustainability, 13(6), 3529.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='3390/su13063529 Blondel, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Guillaume, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Lambiotte, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Lefebvre, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Fast unfolding of communities in large networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1088/1742-5468/2008/10/P10008 Camina, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Bernacer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Guell, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Belief operationalization for empirical research in psychological sciences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Foundations of Science, 26(2), 325–340.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1007/s10699- 020-09722-9 Centola, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Becker, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Brackbill, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Baronchelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Experimental evidence for tipping points in social convention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Science, 360(6393), 1116–1119.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='aas8827 Chan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Jones, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Hall Jamieson, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Albarracín, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Debunking: A Meta-Analysis of the Psychological Efficacy of Messages Countering Misinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Psychological Science, 28(11), 1531–1546.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1177/0956797617714579 Constantino, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Sparkman, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Kraft-Todd, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Bicchieri, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Centola, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Shell-Duncan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Vogt, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Weber, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Scaling Up Change: A Critical Review and Practical Guide to Harnessing Social Norms for Climate Action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Psychological Science in the Public Interest, 23(2), 50–97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1177/15291006221105279 Del Vicario, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Bessi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Zollo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Petroni, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Scala, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Caldarelli, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Stanley, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Quattrociocchi, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The spreading of misinformation online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Proceedings of the National Academy of Sciences, 113(3), 554–559.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1073/pnas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1517441113 Dow, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Wang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Whitson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Deng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Mitigating and managing COVID-19 conspiratorial beliefs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' BMJ Leader, leader-2022-000600.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1136/leader-2022- 000600 Durando, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Alicino, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Dini, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Barberis, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Bagnasco, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Iudici, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Zanini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Martini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Toletone, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Paganino, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Massa, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Orsi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Sasso, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Determinants of adherence to seasonal influenza vaccination among healthcare workers from an Italian region: Results from a cross-sectional study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' BMJ Open, 6(5), e010779.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1136/bmjopen-2015-010779 Ecker, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Lewandowsky, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Cook, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Schmid, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Fazio, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Brashier, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Kendeou, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Vraga, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Amazeen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The psychological drivers of misinformation belief and its Page 15/17 resistance to correction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Nature Reviews Psychology, 1(1), 13–29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1038/s44159- 021-00006-y Ecker, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Sanderson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', McIlhiney, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Rowsell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Quekett, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Brown, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Lewandowsky, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Combining refutations and social norms increases belief change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Quarterly Journal of Experimental Psychology, 174702182211117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1177/17470218221111750 Ehret, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Constantino, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Weber, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Efferson, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Vogt, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Group identities can undermine social tipping after intervention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Nature Human Behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1038/s41562-022-01440-5 Evkoski, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Mozetič, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Ljubešić, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Kralj Novak, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Community evolution in retweet networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' PLOS ONE, 16(9), e0256175.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1371/journal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='pone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='0256175 Gao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Platt, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Modeling US health agencies’ message dissemination on Twitter and users’ exposure to vaccine-related misinformation using system dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' In Proceedings of the 18th International Conference on Information Systems for Crisis Response and Management (ISCRAM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Blacksburg, Virginia, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Gao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Webster, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Causal Modeling of Descriptive Social Norms from Twitter and the Physical World on Expressed Attitudes Change: A Case Study of COVID-19 Vaccination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Cyberpsychology, Behavior, and Social Networking, cyber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='0153.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1089/cyber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='0153 Gimpel, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Heger, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Olenberger, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Utz, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The Effectiveness of Social Norms in Fighting Fake News on Social Media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Journal of Management Information Systems, 38(1), 196–221.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1080/07421222.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1870389 Han, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Cao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Shen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Zhang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Cressman, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Stanley, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Emergence of communities and diversity in social networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Proceedings of the National Academy of Sciences, 114(11), 2887–2891.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1073/pnas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1608164114 Herzog, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Álvarez-Pasquin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Díaz, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Del Barrio, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Estrada, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Gil, Á.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Are healthcare workers’ intentions to vaccinate related to their knowledge, beliefs and attitudes?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' A systematic review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' BMC Public Health, 13(1), 154.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1186/1471-2458-13-154 HHS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' COVID-19 Vaccines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='hhs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='gov/coronavirus/covid-19-vaccines/index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='html Hu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Leung, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Local Norm Phenomena in Multi-Agent Systems under Community Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, 1570–1572.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://dl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='acm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='5555/3091125.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='3091365 Humprecht, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' How Do They Debunk “Fake News”?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' A Cross-National Comparison of Transparency in Fact Checks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Digital Journalism, 8(3), 310–327.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1080/21670811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1691031 Iacopini, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Petri, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Baronchelli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Barrat, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Group interactions modulate critical mass dynamics in social convention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Communications Physics, 5(1), 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1038/s42005-022-00845-y Lapinski, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Rimal, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' An Explication of Social Norms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Communication Theory, 15(2), 127–147.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1468-2885.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='tb00329.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='x Lewandowsky, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & van der Linden, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Countering Misinformation and Fake News Through Inoculation and Prebunking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' European Review of Social Psychology, 32(2), 348–384.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1080/10463283.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1876983 Loomba, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', de Figueiredo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Piatek, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', de Graaf, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Larson, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Nature Human Behaviour, 5(3), 337–348.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1038/s41562-021-01056-1 Luo, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Zhao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The impacts of social interaction-based factors on household waste-related behaviors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Waste Management, 118, 270–280.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='wasman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='046 Page 16/17 Mourali, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Drake, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The Challenge of Debunking Health Misinformation in Dynamic Social Media Conversations: Online Randomized Study of Public Masking During COVID-19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Journal of Medical Internet Research, 24(3), e34831.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2196/34831 Newman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The Structure and Function of Complex Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' SIAM Review, 45(2), 167– 256.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1137/S003614450342480 Nguyen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Nguyen, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Thai, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Sources of misinformation in Online Social Networks: Who to suspect?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' MILCOM 2012 - 2012 IEEE Military Communications Conference, 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1109/MILCOM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='6415780 Nguyen, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Yan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Thai, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Eidenbenz, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Containment of misinformation spread in online social networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Proceedings of the 3rd Annual ACM Web Science Conference on - WebSci ’12, 213–222.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1145/2380718.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2380746 Ozer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Kim, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Davulcu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Community detection in political Twitter networks using Nonnegative Matrix Factorization methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 81–88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1109/ASONAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='7752217 Ritchie, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Van den Broucke, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Van Hal, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' The health belief model and theory of planned behavior applied to mammography screening: A systematic review and meta‐analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Public Health Nursing, 38(3), 482–492.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1111/phn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='12842 Sabarwal, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Higgins, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Control and Spread of Contagion in Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' SSRN Electronic Journal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2139/ssrn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='3831245 Savarimuthu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Cranefield, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Norm creation, spreading and emergence: A survey of simulation models of norms in multi-agent systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Multiagent and Grid Systems, 7(1), 21–54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='3233/MGS-2011-0167 Sen, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Sen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Effects of Social Network Topology and Options on Norm Emergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' In J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Padget, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Artikis, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Vasconcelos, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Stathis, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' da Silva, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Matson, & A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Polleres (Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' ), Coordination, Organizations, Institutions and Norms in Agent Systems V (Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 6069, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 211– 222).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Springer Berlin Heidelberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1007/978-3-642-14962-7_14 Shakya, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Christakis, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Fowler, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Association Between Social Network Communities and Health Behavior: An Observational Sociocentric Network Study of Latrine Ownership in Rural India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' American Journal of Public Health, 104(5), 930–937.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2105/AJPH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='301811 Skafle, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Nordahl-Hansen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Quintana, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Wynn, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Gabarron, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Misinformation About COVID-19 Vaccines on Social Media: Rapid Review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Journal of Medical Internet Research, 24(8), e37367.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2196/37367 Twitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Stream Tweets in real-time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://developer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='twitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='com/en/docs/tutorials/stream- tweets-in-real-time van der Linden, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Roozenbeek, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Compton, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Inoculating Against Fake News About COVID-19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Frontiers in Psychology, 11, 566790.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='3389/fpsyg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='566790 van der Meer, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Jin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Seeking Formula for Misinformation Treatment in Public Health Crises: The Effects of Corrective Information Type and Source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Health Communication, 35(5), 560–575.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1080/10410236.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1573295 Varsha, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Patil, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' An Overview of Community Detection Algorithms in Social Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 2020 International Conference on Inventive Computation Technologies (ICICT), 121–126.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1109/ICICT48043.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='9112563 Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Gao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Gao, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Investigating dynamic relations between factual information and misinformation: Empirical studies of tweets related to prevention measures during COVID‐19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Journal of Contingencies and Crisis Management, 30(4), 427–439.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1111/1468- 5973.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='12385 Page 17/17 Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Hao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Platt, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Examining risk and crisis communications of government agencies and stakeholders during early-stages of COVID-19 on Twitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Computers in Human Behavior, 114, 106568.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='chb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='106568 Wang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Liu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Zhang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' An empirical study on Twitter’s use and crisis retweeting dynamics amid Covid-19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Natural Hazards, 107(3), 2319–2336.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1007/s11069- 020-04497-5 Weitzel, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Quaresma, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & de Oliveira, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Measuring node importance on Twitter microblogging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Proceedings of the 2nd International Conference on Web Intelligence, Mining and Semantics - WIMS ’12, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1145/2254129.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2254145 West, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Bergstrom, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Misinformation in and about science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Proceedings of the National Academy of Sciences, 118(15), e1912444117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1073/pnas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1912444117 Winkelmann, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Donges, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Smith, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Milkoreit, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Eder, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Heitzig, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Katsanidou, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Wiedermann, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Wunderling, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Lenton, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Social tipping processes towards climate action: A conceptual framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Ecological Economics, 192, 107242.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='ecolecon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='107242 Yu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Zhang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Ren, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Collective Learning for the Emergence of Social Norms in Networked Multiagent Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' IEEE Transactions on Cybernetics, 44(12), 2342–2355.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1109/TCYB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2306919Yuan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Crooks, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Examining Online Vaccination Discussion and Communities in Twitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Proceedings of the 9th International Conference on Social Media and Society, 197–206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1145/3217804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='3217912 Zhang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Alim, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Thai, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Nguyen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Misinformation in Online Social Networks: Detect Them All with a Limited Budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' ACM Transactions on Information Systems, 34(3), 1–24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1145/2885494 Zhang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Alim, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Thai, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Nguyen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Monitor placement to timely detect misinformation in Online Social Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 2015 IEEE International Conference on Communications (ICC), 1152–1157.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1109/ICC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='7248478 Zhang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Kuhnle, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Smith, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Thai, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Fight Under Uncertainty: Restraining Misinformation and Pushing out the Truth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 266–273.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1109/ASONAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='8508402 Zhang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Kuhnle, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Zhang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Thai, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Detecting misinformation in online social networks before it is too late.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 541–548.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1109/ASONAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='7752288 Zhang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Zhang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Thai, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Limiting the Spread of Misinformation While Effectively Raising Awareness in Social Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' In Computational Social Networks, 9197, 35– 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Springer International Publishing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1007/978-3-319-21786-4_4 Zhou, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Xu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Qi, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Bao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=', & Xu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Distant supervision for relation extraction with hierarchical selective attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' Neural Networks, 108, 240–247.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='neunet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
+page_content='016' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ntAyT4oBgHgl3EQflfh4/content/2301.00453v1.pdf'}
diff --git a/oNAyT4oBgHgl3EQfy_n2/content/tmp_files/2301.00696v1.pdf.txt b/oNAyT4oBgHgl3EQfy_n2/content/tmp_files/2301.00696v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..7a2224651f3e9ca452a04b34be0aabef0487b248
--- /dev/null
+++ b/oNAyT4oBgHgl3EQfy_n2/content/tmp_files/2301.00696v1.pdf.txt
@@ -0,0 +1,1042 @@
+arXiv:2301.00696v1 [math.GN] 2 Jan 2023
+ON CERTAIN GENERALIZED NOTIONS USING
+I-CONVERGENCE IN TOPOLOGICAL SPACES
+PRATULANANDA DAS∗, UPASANA SAMANTA∗, SHOU LIN†
+Abstract. In this paper, we consider certain topological properties along
+with certain types of mappings on these spaces defined by the notion of
+ideal convergence.
+In order to do that, we primarily follow in the foot-
+steps of the earlier studies of ideal convergence done by using functions
+(from an infinite set S to X) in [8, 9, 29], as that is the most general per-
+spective and use functions instead of sequences/nets/double sequences etc.
+This functional approach automatically provides the most general settings
+for such studies and consequently extends and unifies the proofs of sev-
+eral old and recent results in the literature about spaces like sequential,
+Fr´echet-Uryshon spaces and sequential, quotient and covering maps.
+In
+particular, we introduce and investigate the notions of I-functional spaces,
+I-functional continuous, quotient and covering mappings and finally I-
+functional Fr´echet-Uryshon spaces. In doing so, we take help of certain set
+theoretic and other properties of ideals.
+Key words and phrases: Ideal, ideal convergence of functions, I-functional
+space, I-functional continuous, quotient and covering mappings, I-functional
+Fr´echet-Uryshon space.
+1. Introduction
+. The idea of statistical convergence of sequence was introduced in [12,33] as an
+extension of the usual notion of convergence. Apart from a lot of investigations
+in the fields of summability theory, measure theory, functional analysis etc., this
+idea has led to various investigations in the settings of topological spaces (for ex-
+ample see [4,5,10,24,25,34–36]). The most important generalization of almost
+all types of convergence including statistical convergence had been proposed
+by Kostyrko et al. [20] who had introduced the concepts of I-convergence and
+I∗-convergence in metric spaces using ideals of the set of all natural numbers.
+Following the line of Kostyrko et al., the same has been studied for sequences
+2010 Mathematics Subject Classification. Primary:
+54A20, 54B15, 54C08 Secondary:
+40A05, 26A03 .
+The
+first
+author
+is
+thankful
+to
+NBHM
+for
+granting
+the
+project
+(sanction
+no.
+02011/9/2022/NBHM(RP)/RD II/10378) during the tenure of which this work was done.
+1
+
+2
+P. DAS, U. SAMANTA, S. LIN
+in general topological spaces [22], for nets in topological and uniform spaces [23]
+(subsequently studied in [6, 7]) and for functions in topological spaces [9, 29],
+uniform spaces [8] for example, where other references can be found.
+On the other hand, it is a well known fact that the topology of a topological
+space, in general, can not be determined by convergent sequences, unlike metric
+spaces where sequences play a much more important role in characterizing several
+notions. From the beginning, it has been a very rich and challenging topic of
+investigations as to, in which topological spaces sequences play a better role.
+The first countable, Fr´echet-Uryshon and sequential spaces are examples of some
+such spaces that are determined by convergence of sequences [11, 28]. Instead
+of usual convergence of sequences, first in [32,34] the authors have worked with
+statistical convergence to define statistical counterparts of Fr´echet-Uryshon and
+sequential spaces. Subsequently the more general idea of ideal convergence of
+sequences has been widely used to introduce these notions as also several other
+new ideas in topological settings (for example one can see [3,31,32,35,36]).
+In particular in [36], Zhou and his co-authors defined I-continuous, I-quotient
+and I-covering mappings and checked how they interact with I-sequential,
+I-Fr´echet spaces.
+As a natural consequence, in this paper, we further generalize the whole set-
+ting of such investigations by considering ideals of an arbitrary infinite set S, and
+as a natural replacement, instead of sequences in X we take functions from S to
+X. This approach unifies the two directions mentioned above and provides the
+most general type of results. Primarily we use the idea of I-convergence of func-
+tions to introduce I-functional open sets, I-functional closed sets, I-functional
+spaces and I-functional Fr´echet-Uryshon spaces and establish several proper-
+ties.
+We also proceed in the same way to extend the ideas of I-continuous,
+I-quotient and I-covering mappings and subsequently investigate their coun-
+terparts, namely, I-functional continuous, quotient and covering mappings and
+their effects on I-functional spaces, I-functional Fr´echet-Uryshon spaces. In or-
+der to clear ambiguity and for the sake of continuity, we call all mappings with
+domain S “functions” (continuing the nomenclature of [8,9,29]) and mappings
+from one topological space to another as just “mappings”.
+As a consequence, not only the results of [3,31,32,35,36] become special cases
+of our results, also the whole treatment seems much more simplified, at the same
+time underscoring the focal point that, several topological concepts can actually
+be studied without restricting the domain set.
+
+ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES3
+2. Preliminaries
+Let N denote the set of all natural numbers and let K ⊂ N. Recall that the nat-
+ural or asymptotic density of K is defined by d(K) =
+lim
+n−→∞
+1
+n|{k ∈ N : k ≤ n}|
+if the limit exists. If X is a topological space then a sequence (xn : n ∈ N)
+in X is statistically convergent to x ∈ X if for each neighbourhood U of x in
+X, d({n ∈ N : xn ̸∈ U}) = 0 [10].
+The notion of statistical convergence has subsequently been extended to the
+notion of I-convergence, which is based on the notion of ideal of subsets of N.
+Let Y be a non-empty set and let P(Y ) be the family of all subsets of Y. A
+family I(⊂ P(Y )) of subsets of a non-empty set Y is said to be an ideal of Y
+if (i) A, B ∈ I imply A ∪ B ∈ I (ii) A ∈ I, B ⊂ A imply B ∈ I, while an
+admissible ideal I of Y covers Y . Such ideals are also called free ideals. If I
+is a proper non-trivial ideal of Y (i.e. Y /∈ I, I ̸= ∅), then the family of sets
+F(I) = {M ⊂ Y : Y \ M ∈ I} is a filter (called the dual filter) of Y whereas
+the coideal of I is I+ = {A ⊂ Y : A ̸∈ I}. We denote the ideal consisting of all
+finite subsets and density zero subsets of N by Ifin and Id respectively.
+If I is a maximal ideal then for any A ⊂ S, we have either A ∈ I or S \A ∈ I.
+For each ideal I of S, the set of all maximal ideals J of S such that I ⊂ J is
+denoted by Θ(I). It is known that I =
+�
+J ∈Θ(I)
+J [17]. Recall that B ⊂ N is said
+to be a pseudounion of a family A ⊂ P(N) if N \ B is infinite and A \ B is finite
+for each A ∈ A [3].
+A sequence (xn : n ∈ N) in a topological space X is said to be I-convergent
+to x ∈ X provided for each neighbourhood U of x, the set {n ∈ N : xn ̸∈ U}
+belongs to I [22]. I-convergence of sequence coincides with ordinary convergence
+of sequence if we take I = Ifin and with the statistical convergence if I = Id.
+The concept of I∗-convergence of real sequence arises from a result of statis-
+tical convergence that: a real sequence (xn : n ∈ N) is statistically convergent to
+x if and only if there exists a set M = {mk : k ∈ N} with m1 < m2 < · · · mk · · ·
+such that d(M) = 1 and
+lim
+k−→∞ xmk = x. This idea has been extended to
+I∗-convergence of a sequence in a topological space as a sequence (xn : n ∈ N)
+in X is I∗-convergent to x ∈ X if and only if there exists a set M ∈ F(I) where
+m1 < m2 < · · · < mk < · · · such that
+lim
+k−→∞ xmk = x [22].
+Throughout the paper X stands for a topological space, S an infinite set and
+I, an admissible ideal of S unless otherwise stated. Further by a “space” we will
+always mean a topological space. Our topological terminology and notation are
+as in the book [11].
+
+4
+P. DAS, U. SAMANTA, S. LIN
+3. I-functional open sets, I-functional closed sets and I-functional
+space
+Before we proceed to introduce our main concepts of this section, we present
+certain basic observations about convergence of functions which happen to be
+the main tool behind these generalizations.
+Definition 3.1. For x ∈ X, we say that a function f : S → X
+• is convergent to x, whenever for every open set U containing x, the set
+f −1(U) is co-finite.
+• is I-convergent to x, whenever for every open set U containing x, the
+set f −1(U) is in F(I) [29].
+• is I∗-convergent to x, whenever there is a set M ∈ F(I) such that g
+defined by “g(s) = f(s) if s ∈ M and g(s) = x if s /∈ M” is convergent
+to x [29].
+Suppose g : S −→ X, is I-convergent to x. Let S′ be an infinite subset of S
+with |S′| = |S|. Let h : S −→ S′ be a bijective function and let Φ = g|S′. Now
+Φ is said to be I-convergent to x if (Φ ◦ h)(s) = g(s), ∀ s ∈ S is I-convergent
+to x.
+Further if f : S −→ X is convergent to x ∈ X, then for any infinite S′ ⊂
+S, f|S′ is convergent to x. In a Hausdorff space I-limit of a function is unique.
+For two ideals I ⊂ J of S, if f : S −→ X is I-convergent to x then f : S −→ X
+is J -convergent to x.
+Following [3] we can say that an ideal I of S has a pseudounion if there exists
+an infinite set A ⊂ S with |S| = |S \ A| such that I \ A is finite for each I ∈ I.
+Lemma 3.1. If I has a pseudounion and f : S −→ X is I-convergent to x then
+there exists a function from S to X which is convergent to x.
+Proof. Let f : S −→ X be I-convergent to x. Since I has a pseudounion, there
+exists an infinite set A ⊂ S with S \ A ∈ I+ such that I ∩ (S \ A) is finite
+for each I ∈ I. As f is I-convergent to x, for every open set O containing
+x, AO = {s ∈ S : f(s) ̸∈ O} ∈ I. Thus AO ∩ (S \ A) is finite. Then Φ : S −→ X
+defined by Φ(s) = f(s) if s ∈ S \A and Φ(s) = x if s ∈ A, is convergent to x.
+□
+Proposition 3.1. Let g : S → X be given. Then g is I-convergent to x if and
+only if g is J -convergent to x for each J ∈ Θ(I).
+Example 3.1. Let I be an ideal of S. Take ∞ ̸∈ S. We define a topology on
+S ∪ {∞} by considering each s ∈ S isolated and each basic open neighbourhood
+U of ∞ as (S \ I) ∪ {∞} for some I ∈ I. This space is denoted by �
+S(I).
+Clearly the inclusion mapping i : S −→ �
+S(I) is I-convergent to ∞. Note that
+
+ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES5
+if I ̸= Ifin, then I contains an infinite set I ‘say’. Then it readily follows that
+the inclusion function is not convergent to ∞ in the usual sense.
+Let us now look back at the history as to how the notion of closed sets in topo-
+logical spaces have been generalized using sequences. Recall that a subset F ⊂ X
+is called sequentially closed if for each sequence (xn : n ∈ N) in F converging to
+x ∈ X, we have x ∈ F. X is called a sequential space [13] if each sequentially
+closed subset of X is closed. A subset U ⊂ X is called sequentially open if X \U
+is sequentially closed. Di Maio and Koˇcinac introduced statistical version of
+sequential space in [10] while Pal [31] further extended it to I-sequential spaces.
+Very recently Zhou et al. revisited the notion of I-sequential space in [36] where
+following notions were introduced. A subset F ⊂ X is called I-closed if for
+each sequence (xn : n ∈ N) in F, I-convergent to x ∈ X, we have x ∈ F. A
+subset U ⊂ X is called I-open if X \ U is I-closed. X is called an I-sequential
+space if each I-closed subset of X is closed. Motivated by the generalization
+of I-sequential spaces from the idea of sequential spaces, we now introduce the
+main concept of this section.
+Definition 3.2. Let X be a topological space. (i) F ⊂ X is said to be I-functional
+closed if for each function g : S → F that is I-convergent to x ∈ X we have
+x ∈ F.
+(ii) U ⊂ X is said to be I-functional open if X \ U is I-functional closed.
+(iii) X is called an I-functional space if each I-functional closed subset of X is
+closed.
+If we consider “usual” convergence of functions (see Definition 3.1) instead
+of I-convergence, we call I-functional closed sets, I-functional open sets and
+I-functional spaces as functional closed, functional open and functional spaces
+respectively. Clearly, every I-functional closed set is functional closed but the
+following example shows that the converse is not generally true.
+Example 3.2. Let I be a maximal ideal of S. We consider the space �
+S(I) as
+in Example 3.1. Then S is a functional closed set in �
+S(I) but not I-functional
+closed.
+As an immediate consequence of Lemma 3.1 we can see that
+Proposition 3.2. A ⊂ X is I-functional closed if and only if A is functional
+closed provided I has a pseudounion. Therefore X is an I-functional space if
+and only if X is a functional space provided I has a pseudounion.
+We can modify Definition 3.2(ii) in the following way.
+Lemma 3.2. A subset O of X is I-functional open if and only if no function
+h : S −→ X \ O is I-convergent to a point in O.
+
+6
+P. DAS, U. SAMANTA, S. LIN
+Proof. Sufficiency directly follows from Definition 3.2(i), (ii). As O is I-functional
+open so X \ O is I-functional closed. Hence for every function h : S −→ X \ O
+which is I-convergent to x, we must have x ∈ X \ O.
+□
+It is evident that every open set (and so every closed set) is I-functional open
+(I-functional closed). Following example establishes the existence of a space
+which is not I-functional.
+Example 3.3. Consider the Cartesian product S × S. For a ∈ S, we call the
+subset S × {a} as the a-th row of S × S. Let I have a pseudounion and let ∞
+be an element outside S × S. Let X = (S × S) ∪ {∞}. We define a topology on
+X as follows. Let τ1 = P(S × S) and let τ2 be the collection of those subsets A
+of X so that ∞ ∈ A and {a ∈ S : ({s ∈ S : (s, a) ∈ A} ∈ F(I))} ∈ F(I). Take
+τ = τ1 ∪ τ2. Then it can be verified that τ is a topology on X.
+No function from S to X can be I-convergent to ∞. If g : S −→ X is
+I-convergent to ∞ then by Lemma 3.1 there is a function f : S −→ X which
+is convergent to ∞. Note that each row contains at most finitely many elements
+of the form f(s). Excluding these terms from each row, we obtain an open set
+containing ∞ which contains no terms of the form f(s). Also no function from S
+to S × S can be I-convergent to a point of S × S unless it is eventually constant.
+But ∞ is a limit point of S ×S. Hence S ×S is I-functional closed but not closed
+and therefore X is not I-functional.
+However there exists an ideal for which every sequential space is I-functional.
+Proposition 3.3. Let S = �
+i∈N Si such that Si ∩ Sj = ∅ for different i, j and
+let I0 = {A ⊂ S : A ∩ Si ̸= ∅ for finitely many i}. Then every sequential space
+X is an I0-functional space.
+Proof. Let O ⊂ X be I-functional open. If O is not open then there is a sequence
+xn ∈ X \ O converging to x ∈ O. Define a function g : S −→ X \ O by g(s) = xi
+if s ∈ Si. Then g is I-convergent to x ∈ O. Hence X \ O is not I-functional
+closed, which is a contradiction.
+□
+Proposition 3.4. The following are equivalent for any A ⊂ X.
+(i) A ⊂ X is I-functional open
+(ii) For any function g : S −→ X which is I-convergent to x ∈ A, we have
+{s ∈ S : g(s) ∈ A} ∈ I+.
+(iii) |{s ∈ S : g(s) ∈ A}| ≥ ω for each function g : S −→ X which is
+I-convergent to x ∈ A.
+Proof. (i) =⇒ (ii) Let A ⊂ X be I-functional open and let g : S −→ X be
+I-convergent to x ∈ A. If possible let C = {s ∈ S : g(s) ∈ A} ∈ I. Fix
+an element a ∈ X \ A. Define a function h : S −→ X \ A by h(s) = g(s)
+for s ∈ S \ C and h(s) = a if s ∈ C. Let U be a neighbourhood of x. Then
+
+ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES7
+{s ∈ S : g(s) ∈ U} ∩S \ C ⊂ {s ∈ S : h(s) ∈ U} ∈ F(I). Thus h : S −→ X \ A is
+I-convergent to x, this contradicts that A is I-functional open. Thus (ii) holds.
+(ii) =⇒ (iii) As I is an admissible ideal, thus (iii) holds.
+(iii) =⇒ (i) If possible let A ⊂ X be not I-functional open. So X \ A is not
+I-functional closed. Therefore there is a function g : S −→ X \ A which is
+I-convergent to x ∈ A and evidently {s ∈ S : g(s) ∈ A} = ∅ which contradicts
+(iii).
+□
+Example 3.4. Let I be a maximal ideal of S and let g : S −→ X be I-convergent
+to x. Let Y = {g(s) : s ∈ S} ∪ {x}. Endow {g(s) : s ∈ S} ⊂ Y with the discrete
+topology and let a basic neighbourhood of x be of the form {x}∪{g(s) : s ∈ A} for
+some A ∈ F(I). Y endowed with this topology is an I-functional space. To prove
+that, let U be I-functional open in Y. Without any loss of generality assume that
+x ∈ U. As I is maximal, by Proposition 3.4(ii), we have {s ∈ S : g(s) ∈ U} ∈
+F(I). Hence {x} ∪ {g(s) ∈ U} ⊂ U which implies that U is open in Y.
+Lemma 3.3. Let X =
+�
+i∈Λ
+Xi have the product topology. Then a function f :
+S −→ X is I-convergent to x = (xi) if and only if πi ◦ f is I-convergent to xi
+for each i ∈ Λ.
+Proof. Let πi ◦ f be I-convergent to xi for each i ∈ Λ. Let O =
+�
+i∈Λ
+Oi be a basic
+open set in X containing x. Let Oi = Ui for i = m1, m2, · · · , mk and Oi = Xi
+otherwise. Then {s ∈ S : (πi ◦ f)(s) ∈ Ui} ∈ F(I) for each i = m1, m2, · · · , mk.
+Now
+�
+i∈{m1,m2,··· ,mk}
+{s ∈ S : (πi ◦ f)(s) ∈ Ui} ∈ F(I). Consequently the result
+follows. Clearly the converse holds.
+□
+Proposition 3.5. Let X =
+�
+i∈Λ
+Xi have the product topology and let O be
+I-functional open in X. Then πi(O) is I-functional open in Xi for each i ∈ Λ.
+Proof. If possible let πi(O) be not I-functional open in Xi. Then there exists a
+function g : S −→ Xi which is I-convergent to x ∈ πi(O) and {s ∈ S : g(s) ∈
+πi(O)} ∈ I. Now fix some aj ∈ πj(O) for j ̸= i. Define a function h : S −→ X
+by
+(πj ◦ h)(s) =
+�
+aj
+if
+j ̸= i
+g(s)
+if
+j = i.
+Let y = (yi) be defined as follows.
+yj =
+�
+aj
+if
+j ̸= i,
+x
+if
+j = i.
+
+8
+P. DAS, U. SAMANTA, S. LIN
+Then h : S −→ X is I-convergent to y (by Lemma 3.3). Also {s ∈ S : g(s) ∈
+πi(O)} = {s ∈ S : h(s) ∈ O} ∈ I, contradicts that O is I-functional open.
+□
+We now state certain basic results regarding I-functional spaces without
+proofs.
+(i) Let I ⊂ J be two ideals of S and let X be a space.
+If U ⊂ X is
+J -functional open then it is I-functional open.
+(ii) Let I ⊂ J be two ideals of S. If X is I-functional then it is J -functional.
+(iii) Suppose that {Iα : α ∈ A} is a collection of ideals of S. If X is a space
+and U ⊂ X is Iα-functional open for some α ∈ A, then U is
+�
+α∈A
+Iα-functional
+open.
+Lemma 3.4. Let I be a maximal ideal of S. If U, V are two I-functional open
+subsets of X then U ∩ V is also I-functional open.
+Proof. Let g : S −→ X be I-convergent to x ∈ U ∩ V. So, {s ∈ S : g(s) ∈ U} ∈
+F(I) and {s ∈ S : g(s) ∈ V } ∈ F(I) (by Proposition 3.4). Now {s ∈ S : g(s) ∈
+U} ∩ {s ∈ S : g(s) ∈ V } = {s ∈ S : g(s) ∈ U ∩ V } ∈ F(I) and therefore U ∩ V
+is I-functional open.
+□
+The I-functional coreflection of a space X is the set X endowed with the
+topology generated by I-functional open subsets of X as a subbase and the
+topology is denoted by I-fX. Clearly for a space X, I-fX is finer than the
+topology of X. Further If I is a maximal ideal of S, then the collection of all
+I-functional open sets itself forms a topology on X.
+Definition 3.3. Let I be an ideal of S and A ⊂ X. A function f : S −→ X
+is said to be I-eventually in A if there is a E ∈ I such that f(s) ∈ A for all
+s ∈ S \ E.
+Proposition 3.6. Let I be a maximal ideal of S. Then A ⊂ X is I-functional
+open if and only if for each function which is I-convergent to a point of A, it is
+I-eventually in A.
+Proof. The result follows from Proposition 3.4.
+□
+Theorem 3.1. Every I-functional space is hereditary with respect to I-functional
+open (I-functional closed) subspaces.
+Proof. Let X be an I-functional space. Suppose that Y is an I-functional open
+set in X. Then Y is open in X. Let U(⫋ Y ) be I-functional open in Y. We
+have to show that U is I-functional open in X. Suppose that g : S −→ X is
+
+ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES9
+I-convergent to x ∈ U ⊂ Y. Since Y is open, {s ∈ S : g(s) ∈ Y } ∈ F(I).
+Let y ∈ Y \ U. Define a function h : S −→ Y by h(s) = g(s) if g(s) ∈ Y
+and h(s) = y if g(s) ̸∈ Y. Therefore, h : S −→ X is I-convergent to x. Since
+|{s ∈ S : g(s) ̸∈ U}| = |{s ∈ S : h(s) ̸∈ U}|, by Proposition 3.4, it follows that
+U is I-functional open in X. As X is I-functional space, so U is open in X and
+so open in Y.
+Let Y be an I-functional closed subset of X. Then Y is closed in X. Let
+F(⫋ Y ) be an I-functional closed subset of Y. We have to show that F is
+I-functional closed subset of X. Suppose that g : S −→ F is I-convergent to
+x. So x ∈ Y as Y is closed. Therefore x ∈ F since F is an I-functional closed
+subset of Y. Thus F is an I-functional closed subset of X, so F is a closed subset
+of X and hence a closed subset of Y.
+□
+Theorem 3.2. I-functional spaces are preserved by topological sums.
+Theorem 3.3. Any quotient space of an I-functional space is an I-functional
+space.
+Proof. Let X be an I-functional space and let f : X −→ Y be a quotient
+mapping. Let F ⊂ Y be I-functional closed. If F is not closed, f −1(F) is not
+closed (as f is a quotient mapping) and so f −1(F) is not I-functional closed.
+Then there exists a function g : S −→ f −1(F) which is I-convergent to x ̸∈
+f −1(F). Since F is I-functional closed and f is continuous, we obtain that f ◦g :
+S −→ F is I-convergent to f(x) ∈ F. This contradicts that x ̸∈ f −1(F).
+□
+Theorem 3.4. Every I-functional space is a quotient of some metric space
+provided I = I0, the ideal defined in Proposition 3.3.
+Proof. Let X be an I-functional space and let tn =
+1
+n + 1, n ∈ N. Define a
+function f : S −→ R by f(s) = tn if s ∈ Sn. Then f is I-convergent to 0.
+Take Y = {
+1
+n + 1 : n ∈ N} ∪ {0}. The topology of Y is induced from the usual
+metric topology of R. Clearly O ⊂ Y is open if and only if either 0 ̸∈ O or if
+0 ∈ O then f(s) ∈ O if s ∈ A for some A ∈ F(I). Let S = {g : S −→ X : g
+is I-convergent to some g0 ∈ g(S)}. Writing {(g(s) : s ∈ S)} = Z, let d be a
+metric on Z × Y = {(Z, y) : y ∈ Y } defined by d(Z, a), (Z, b)) = |a − b|.
+Now consider the topological sum
+L =
+�
+Z∈S
+Z × Y .
+We observe that A ⊂ L is open if and only if {y ∈ Y : (Z, y) ∈ A} is open in Y.
+Consider the mapping Φ : L −→ X defined by Φ(Z, 0) = g0 and Φ(Z, f(s)) =
+g(s). Clearly Φ is onto. Now we show that Φ is a quotient mapping.
+
+10
+P. DAS, U. SAMANTA, S. LIN
+Let U ⊂ X be open.
+Then for every g : S −→ X, I-convergent to a ∈
+U, {s ∈ S : g(s) ∈ U} ∈ F(I). If (Z, 0) ∈ Φ−1(U) then g0 ∈ U, also {s ∈
+S : g(s) ∈ U} ∈ F(I). Write E = {s ∈ S : g(s) ∈ U}. By the definition of
+Φ, Φ(Z, f(s)) = g(s) ∈ U for each s ∈ E. Therefore, Φ−1(U) is open in L.
+Again if U is not open in X, then there exists a function g : S −→ (X \ U)
+which is I-convergent to g0 ∈ U. Consequently {y ∈ Y : (Z, y) ∈ Φ−1(U)} = {0},
+which is not open in Y. Hence Φ−1(U) is not open in L.
+□
+4. I-functional continuity
+In this section our main object of investigation is the notion of I-functional
+continuity.
+Recall that a mapping f from a space X to another space Y is
+called sequentially continuous [2] provided for any sequentially open set U in Y,
+f −1(U) is sequentially open in X. It is proved in [2] that a mapping f : X −→ Y
+is sequentially continuous if and only if f preserves the convergence of sequences,
+i.e., for each sequence (xn : n ∈ N) in X converging to x, the sequence (f(xn) :
+n ∈ N) converges to f(x). In [36], authors introduced the notion of I-continuity
+in terms of I-open sets. Extending this notion in the language of functions, we
+introduce following definitions.
+Definition 4.1. Let I be an ideal of S and f : X −→ Y be a mapping. Then
+(i) f is called an I-functional convergence preserving mapping provided for a
+function g : S −→ X, I-convergent to x, f ◦ g is I-convergent to f(x).
+(ii) f is called I-functional continuous provided for any I-functional open set U
+in Y , f −1(U) is I-functional open in X.
+We call f simply functional continuous if we take functional open set instead
+of I-functional open set in Definition 4.1.
+Lemma 4.1. Let Y ⊂ X and let U be I-functional open in X. Then U ∩ Y is
+I-functional open in Y.
+Proof. Let g : S −→ Y be I-convergent to y ∈ U ∩Y. Then {s ∈ S : g(s) ∈ U} ∈
+I+ (by Proposition 3.4) and therefore {s ∈ S : g(s) ∈ U ∩ Y } ∈ I+.
+□
+Lemma 4.2. Let I be a maximal ideal of S and let U ⊂ Y ⊂ X. Suppose
+that U is I-functional open in Y and Y is I-functional open in X. Then U is
+I-functional open in X.
+Proof. If U is not I-functional open in X then there exits a mapping f : S −→
+X, I-converging to some a ∈ U and f −1(U) ∈ I. As Y is I-functional open in X,
+and I is maximal, f −1(Y ) ∈ F(I). Therefore f −1(Y \ U) = f −1(Y ) \ f −1(U) ∈
+
+ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES
+11
+F(I). Let F = f −1(Y \ U). Define a mapping φ : S −→ Y by
+φ(s) =
+�
+f(s)
+if
+s ∈ F
+a
+if
+s ̸∈ F.
+Evidently φ is I-convergent to a. Also φ−1(U) ∈ I, contradicts that U is
+I-functional open in Y.
+□
+Theorem 4.1. Let X be a space and let U be a cover of X by I-functional
+open sets. Then a mapping f : X −→ Y is I-functional continuous if and only
+if for each U ∈ U the restriction f|U is I-functional continuous provided I is
+maximal.
+Proof. Let f : X −→ Y be I-functional continuous and let U ∈ U. Suppose that
+V ⊂ Y is I-functional open. Then (f|U)−1(V ) = f −1(V ) ∩ U is I-functional
+open in U. Conversely let the condition hold.
+Then by Lemma 4.2 for any
+I-functional open set V ⊂ Y, f −1(V ) ∩ U is I-functional open in X. As X =
+� U, f −1(V ) =
+�
+U∈U
+(f|U)−1(V ) and is I-functional open as each is so.
+□
+In [36, Theorem 4.2], it was shown that every continuous mapping preserves
+I-convergence of sequences and if a mapping preserves I-convergence of se-
+quences then the mapping is I-continuous. Here also, similar kind of results
+hold.
+Proposition 4.1. Let X, Y be two spaces and f : X −→ Y be a mapping.
+(i) If f is continuous then f preserves I-functional convergence.
+(ii) If f preserves I-functional convergence then f is I-functional continu-
+ous.
+The examples given below, show that the converses of preceding Proposition
+are not generally true.
+Example 4.1. Let I be a maximal ideal. Take X = �
+S(I) as in Example 3.1
+and let Y = X be endowed with the discrete topology. Let f : X −→ Y be the
+identity mapping.
+Clearly i : S −→ X, the inclusion function is not convergent to ∞. Let S′ ⊂ S
+and i|S′. If S′ ∈ I then i can not converge to ∞.
+Otherwise take an infinite S′′ ⊂ S′ satisfying |S′ \ S′′| = |S′|. If S′′ ∈ I then
+(S \ S′′) ∪ {∞} is a neighbourhood of ∞. So i|S′ again can not be convergent to
+∞.
+Finally if S′′ ∈ F(I) then S′′ ∪ {∞} is a neighbourhood of ∞ but it does not
+contain all but finitely many terms of i|S′. So i|S′ is not convergent to ∞.
+Therefore there is no convergent function from S to X except for eventual
+constant mappings. So f preserves Ifin-functional convergence trivially. Thus
+
+12
+P. DAS, U. SAMANTA, S. LIN
+by Proposition 4.1, f is also functional continuous. But evidently f is not con-
+tinuous.
+Example 4.2. Let X = �
+S(I) and let Y = {1, 0} be endowed with discrete
+topology. Also let I be a non-maximal ideal of S. Then there is A ⊂ S for which
+both A ∈ I+ and S \ A ∈ I+. Define a mapping g : X −→ Y by g(x) = 1 if
+x ∈ A and g(x) = 0 otherwise. As (S \ A) ∪ {∞} is I-functional open, so g is
+I-functional continuous. But g does not preserve I-functional convergence.
+Let f : X −→ Y be an I-functional continuous mapping and let g : S −→ X
+be I-convergent to x. If V ⊂ Y is an I-functional open set containing f(x) then
+by Proposition 3.4, {s ∈ S : g(s) ∈ f −1(V )} ∈ I+ and thus {s ∈ S : (f ◦ g)(s) ∈
+V } ∈ I+. This observation leads to the following result immediately.
+Theorem 4.2. Let I be a maximal ideal of S. Then a mapping f : X −→ Y is
+I-functional continuous if and only if it preserves I-functional convergence.
+For the next result we recall the following definition. I is called a P-ideal if
+for any (An)n∈ω from F(I) there is A ∈ F such that A \ An is finite for each
+n [29].
+Theorem 4.3. Let I be a P-ideal and X be a first-countable space.
+Then
+f : X −→ Y is I-functional continuous if and only if it preserves I-functional
+convergence.
+Proof. From [29], it follows that I-convergence implies I∗-convergence of func-
+tions, as I is a P-ideal. Let f : X −→ Y be I-functional continuous and let
+g : S −→ X be I-convergent to x. Then there is A ∈ I such that g ⇃S\A−→ X
+is convergent to x. Let U be an open neighbourhood of f(x). Then f −1(U) is
+I-functional open in X, and so is a functional open set containing x. Conse-
+quently g(s) ∈ f −1(U) for all s ∈ S \(A∪F) (for a suitable finite subset F of S)
+and hence (f ◦ g)(s) ∈ U for all s ∈ S \ (A ∪ F). By admissibility of I it follows
+that {s ∈ S : (f ◦ g)(s) ∈ U} ∈ F(I).
+The converse result follows directly from Proposition 4.1.
+□
+Next we investigate the interrelationships between the notions of continuity
+and I-f-continuity.
+Theorem 4.4. Let f be a mapping from an I-functional space X to another
+space Y. Then f is continuous if and only if f is I-functional continuous.
+Proof. Let f : X −→ Y be continuous. Then by Proposition 4.1, f is I-functional
+continuous.
+Since every open set is I-functional open and X is an I-functional space the
+converse follows immediately.
+□
+
+ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES
+13
+Corollary 4.1. Let f be a mapping from a functional space X to another space
+Y. Then following are equivalent.
+(1) f is continuous.
+(2) f preserves I-functional convergence.
+(3) f is I-functional continuous.
+(4) f is functional continuous.
+Proof. (1) =⇒ (2) follows from the Proposition 4.1(i). (2) =⇒ (3) follows di-
+rectly from Proposition 4.1(ii). As each functional space is I-functional space
+and continuity implies functional continuity, preceding theorem establishes that
+(3) =⇒ (4). Finally (4) =⇒ (1) since X is a functional space.
+□
+Theorem 4.5. Let X be a sequential space and I be as defined in Proposition
+3.3. Then for a mapping f : X −→ Y, f is continuous if and only if f preserves
+I-functional convergence.
+Proof. Let V ⊂ Y be an open set. If f −1(V ) is not open then f −1(V ) is not
+I-functional open (by Proposition 3.3). Then there is a function g : S −→ X
+which is I-convergent to x ∈ f −1(V ) such that {s ∈ S : g(s) ∈ f −1(V )} ∈ I. So
+f ◦ g : S −→ Y is I-convergent to f(x). But {s ∈ S : g(s) ∈ f −1(V )} ∈ I =⇒
+{s ∈ S : (f ◦ g)(s) ∈ V } ∈ I, which contradicts that V is I-functional open.
+Converse is obvious.
+□
+Proposition 4.2. If f : X −→ Y preserves J -functional convergence for each
+J ∈ Θ(I) then f preserves I-functional convergence.
+Corollary 4.2. If f : X −→ Y is J -functional continuous for each J ∈ Θ(I)
+then f is I-functional continuous.
+Proof. The result follows from Proposition 4.1 and 4.2.
+□
+Example 4.3. There exists a mapping which preserves Ifin-functional conver-
+gence but is not J -functional continuous for J ∈ Θ(Ifin). Let X = �
+S(J )
+and let Y = S, endowed with discrete topology. Define a mapping f : X −→ Y
+by f(s) = s if s ∈ S and f(∞) = a for some particular a ∈ S. There is no
+function from S to X which is convergent. Hence f preserves Ifin-functional
+convergence but is not J -functional continuous since S \ {a} is J -functional
+closed and f −1(S \ {a}) = S is not J -functional closed in X.
+Lemma 4.3. Let X =
+�
+i∈Λ
+Xi have the product topology. Then πi : X −→ Xi is
+I-functional continuous for each i ∈ Λ.
+Proof. Follows from Lemma 3.3.
+□
+
+14
+P. DAS, U. SAMANTA, S. LIN
+Proposition 4.3. Let X =
+�
+i∈Λ
+Xi have the product topology and let Y be a
+space. Then a mapping f : Y −→ X is I-functional continuous if and only if
+πi ◦ f is so for each i ∈ Λ provided I is maximal.
+Proof. Let πi ◦ f be I-functional continuous for each i ∈ Λ. Let g : S −→ Y
+be I-convergent to y. Then πi ◦ f ◦ g : S −→ Xi is I-convergent to (πi ◦ f)(y)
+for each i ∈ Λ (by Theorem 4.2). Using Lemma 3.3, it follows that f ◦ g is
+I-convergent to f(y). Therefore f is I-functional continuous (by Theorem 4.2).
+Conversely let f be I-functional continuous. Let Uα ⊂ Xi be I-functional
+open in Xi for some i ∈ Λ. Now (πi ◦ f)−1(Uα) = f −1(π−1
+i
+(Uα)) where π−1
+i
+(Uα)
+is I-functional open in X (by Lemma 4.3).
+Consequently f −1(π−1
+i
+(Uα)) is
+I-functional open in Y as f is I-functional continuous
+□
+5. I-functional quotient and I-functional covering mappings
+In the literature (see the papers [2,26–28]), the notions of quotient, sequen-
+tially quotient and sequence covering mappings play an important role in study-
+ing sequential spaces. These notions have been extended using ideal convergence
+of sequences to I-quotient and I-covering mappings in [36]. In this section we
+intend to further extend these concepts by defining them in terms of functions
+over an arbitrary set S.
+Let X, Y be two spaces. Recall that an onto mapping f : X −→ Y is said to
+be a quotient mapping provided U is open in Y if and only if f −1(U) is open in
+X; f is said to be sequentially quotient [2] provided U is sequentially open in Y
+if and only if f −1(U) is sequentially open in X; f is said to be I-quotient [36]
+provided U is I-open in Y if f −1(U) is I-open in X; f is said to be sequence
+covering [2] if whenever (yn : n ∈ N) is a sequence in Y converging to y ∈ Y,
+there exists a sequence (xn : n ∈ N) in X satisfying xn ∈ f −1(yn) for all n ∈ N
+and x ∈ f −1(y) such that xn converges to x; f is said to be I-covering [36] if
+whenever (yn : n ∈ N) is a sequence in Y, I-converging to y ∈ Y, there exists a
+sequence (xn : n ∈ N) in X satisfying xn ∈ f −1(yn) for all n ∈ N and x ∈ f −1(y)
+such that (xn : n ∈ N) is I-convergent to x.
+Our next definitions are introduced following this line.
+Definition 5.1. Let f be a mapping from a space X onto another space Y.
+(i) f is said to be I-functional quotient provided U is I-functional open in Y if
+and only if f −1(U) is I-functional open in X.
+(ii) f is said to be I-functional covering if for any g : S −→ Y , I-converging
+to y ∈ Y, there exists a function h : S −→ X satisfying (f ◦ h)(s) = g(s) for all
+s ∈ S and x ∈ f −1(y) such that h is I-convergent to x.
+
+ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES
+15
+We call f simply functional quotient if we take functional open set instead of
+I-functional open set in Definition 5.1.
+Theorem 5.1. Let X be a space and Y be a non-empty set. Further let f :
+X −→ Y be an onto mapping and I be a maximal ideal of S. There exists a
+strongest topology on Y w.r.t which f is I-functional continuous.
+Proof. Let J = {V ⊂ Y : f −1(V ) is I-functional open in X}. Then J is a
+topology on Y w.r.t which f is I-functional continuous. Next let J ′ be any
+other topology on Y w.r.t which f is I-functional continuous. Then for every
+J ′-functional open set V ⊂ Y, f −1(V ) is I-functional open in X. So for each
+V ∈ J ′, V ∈ J and hence J ′ ⊂ J as required.
+□
+In the above Theorem f is an I-functional quotient mapping.
+Definition 5.2. A mapping f : X −→ Y is said to be I-functional open provided
+f(U) is I-functional open in Y whenever U is I-functional open in X.
+Proposition 5.1. Every I-functional continuous, I-functional open onto map-
+ping is I-functional quotient.
+Proposition 5.2. Let f : X −→ Y and g : Y −→ Z be two mappings. Then
+the following results hold.
+(i) If f and g are I-functional quotient mappings then g ◦ f is an I-functional
+quotient mapping.
+(ii) If f and g ◦ f are I-functional quotient mappings then g is an I-functional
+quotient mapping.
+Proof. (i) If g, f are I-functional continuous then g ◦ f is also I-functional con-
+tinuous. Again for any V ⊂ Z, (g ◦ f)−1(V ) = (f −1(g−1(V ))) and therefore
+g ◦ f is an I-functional quotient mapping.
+(ii) Let V ⊂ Z such that g−1(V ) is I-functional open in Y. So (f −1(g−1(V )))
+is I-functional open in X as f is an I-functional quotient mapping. Now (g ◦
+f)−1(V ) = (f −1(g−1(V ))) and g ◦ f being I-functional quotient, together imply
+that V is I-functional open in Z. Next let V be I-functional open in Z. Then as
+g ◦ f is I-functional continuous and f is I-functional quotient, we have g−1(V )
+is I-functional open in Y.
+□
+Proposition 5.3. I-functional quotient mappings are preserved by finite prod-
+ucts provided I is a maximal ideal of S.
+Proof. Let fi : Xi −→ Yi be an I-functional quotient mapping for i = 1, 2, · · · , N.
+We define a mapping f :
+N
+�
+i=1
+Xi −→
+N
+�
+i=1
+Yi by
+f(x1, x2, · · · , xN) = (f1(x1), f2(x2), · · · , fN(xN)).
+
+16
+P. DAS, U. SAMANTA, S. LIN
+By Proposition 4.3, f is I-functional continuous. It is also onto.
+Next let U ⊂
+N
+�
+i=1
+Yi be such that f −1(U) is I-functional open. Then there
+exists a function g : S −→
+N
+�
+i=1
+Yi, I-convergent to y ∈ U and {s ∈ S : g(s) ∈
+U} ∈ I. Consequently πi◦g : S −→ Yi is I-convergent to πi(y) for i = 1, 2, · · · , N
+(by Lemma 3.3). If {s ∈ S : (πi ◦ g)(s) ∈ πi(U)} ∈ F(I) for each i = 1, 2, · · · , N
+then {s ∈ S : g(s) ∈ U} =
+N
+�
+i=1
+{s ∈ S : (πi ◦ g)(s) ∈ πi(U)} ∈ F(I), which is a
+contradiction. So there exists i such that {s ∈ S : (πi ◦ g)(s) ∈ πi(U)} ̸∈ F(I).
+Maximality of I implies that {s ∈ S : (πi ◦ g)(s) ∈ πi(U)} ∈ I. Consequently
+πi(U) is not I-functional open in Yi. Thus f −1
+i
+(πi(U)) is not I-functional open as
+fi is I-functional quotient. But (πi ◦ f −1)(U) = f −1
+i
+(πi(U)), which contradicts
+the fact that f −1(U) is I-functional open (by Proposition 3.5).
+□
+The interrelationships results among I-quotient, quotient and I-covering map-
+pings that have been studied in [36] can be further generalized as below.
+Proposition 5.4. Let f be a mapping from a space X onto a space Y.
+(i) If f is I-functional continuous and an I-functional covering mapping then
+f is an I-functional quotient mapping.
+(ii) If f is one-to-one and an I-functional quotient mapping then f is an I-functional
+covering provided I is a maximal ideal.
+Proof. (1) Let f : X −→ Y be an I-functional continuous and I-functional
+covering mapping. Suppose U ⊂ Y is such that f −1(U) is I-functional open. If
+U is not I-functional open there exists a function g : S −→ Y, I-converging to
+y ∈ U for which {s ∈ S : g(s) ∈ U} ∈ I. As f is I-functional covering there is a
+function h : S −→ X, I-convergent to x ∈ X such that f ◦ h = g and f(x) = y.
+Also {s ∈ S : g(s) ∈ U} = {s ∈ S : (f ◦ h)(s) ∈ U} = {s ∈ S : h(s) ∈ f −1(U)}
+which implies that f −1(U) is not I-functional open in X.
+(ii) Let f : X −→ Y be an one-to-one and I-functional quotient mapping.
+Let g : S −→ Y be I-convergent to y. As f is one-to-one and onto, for each
+s ∈ S there exists an unique xs ∈ X such that f(xs) = g(s). Define a function
+h : S −→ X by h(s) = xs and let f(x) = y. If h is not I-convergent to x, there
+exists an open set O containing x such that {s ∈ S : h(s) ∈ O} ̸∈ F(I). Since
+I is maximal, {s ∈ S : h(s) ∈ O} ∈ I, so {s ∈ S : (f ◦ h)(s) ∈ f(O)} ∈ I (as f
+is one-to-one) i.e. {s ∈ S : g(s) ∈ f(O)} ∈ I (because f ◦ h = g). Now f(O) is
+
+ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES
+17
+I-functional open in Y as f −1(f(O)) = O is I-functional open in X, and f is
+I-functional quotient. This contradicts Proposition 3.4.
+□
+The next result establishes when an I-functional quotient mapping becomes
+a quotient mapping and conversely.
+Theorem 5.2. Let f be a continuous mapping from an I-functional space X
+to another space Y. Then f is a quotient map if and only if f is I-functional
+quotient and Y is an I-functional space.
+Proof. First let f : X −→ Y be a quotient mapping and let F ⊂ Y be not closed.
+Then f −1(F) is not closed in X as f is a quotient mapping. So f −1(F) is not
+I-functional closed since X is an I-functional space. Hence by Theorem 3.4 there
+exists a function g : S −→ f −1(F) which is I-convergent to x ∈ X \ f −1(F).
+Therefore, f ◦ g : S −→ F is I-convergent to f(x) ∈ Y \ F and consequently F
+is not I-functional closed. Thus Y is an I-functional space. Let F ⊂ Y be such
+that f −1(F) is I-functional closed. Now if F is not I-functional closed, F is not
+closed. Thus f −1(F) is not closed (as f is a quotient mapping). Since X is an
+I-functional space, f −1(F) is not I-functional closed.
+Conversely let f be an I-functional quotient mapping and let Y be an I-functional
+space. Take F ⊂ Y such that f −1(F) is closed in X and so I-functional closed.
+Since f is an I-functional quotient mapping F is I-functional closed. Y is an
+I-functional space, thus F is closed. This concludes that f is a quotient map-
+ping.
+□
+Generally an I-functional quotient mapping is not quotient and vice-versa.
+The next result characterises I-functional spaces in terms of the interrelations of
+I-functional quotient and quotient mappings, which can be proved in the same
+way as that of [36, Theorem 5.6].
+Theorem 5.3. Let X be a space and I be a maximal ideal of S. Then X is an
+I-functional space if and only if each I-functional quotient mapping onto X is
+quotient.
+Theorem 5.4. Let I be a maximal ideal. An onto mapping p : X −→ Y is
+I-functional quotient if and only if it has the property that for any space W and
+a mapping f : Y −→ W, I-functional continuity of f ◦ p implies that of f.
+Proof. First let p : X −→ Y be I-functional quotient and let f be a mapping
+from Y to some space W. Take f ◦ p, an I-functional continuous mapping. Let
+F ⊂ W be I-functional closed. Then (f ◦p)−1(F) = p−1(f −1(F)) is I-functional
+closed in X. Since p : X −→ Y is I-functional quotient, f −1(F) is I-functional
+closed in X.
+Conversely let the condition hold.
+Consider F ⊂ Y such that p−1(F) is
+I-functional closed. Let W = {0, 1}. Define a mapping f : Y −→ W by f(y) = 1
+
+18
+P. DAS, U. SAMANTA, S. LIN
+if y ∈ F and f(y) = 0 if y ∈ Y \ F. So (f ◦ p)(x) = 1 if x ∈ p−1(F) and
+(f ◦p)(x) = 0 if x ̸∈ p−1(F). As in Theorem 5.1, the topology on W is induced by
+f ◦p. As (f ◦p)−1({1}) = p−1(F) is I-functional closed in X, {1} is I-functional
+closed in W. Therefore by I-functional continuity of f, F is I-functional closed
+in Y. Consequently p : X −→ Y is I-functional quotient.
+□
+If I has a pseudounion, then the next theorem readily follows from Proposition
+3.2.
+Theorem 5.5. If f is a mapping from a space X onto Y and if I has a pseu-
+dounion then following results hold.
+(1) f is I-functional continuous if and only if f is functional continuous.
+(2) f is I-functional quotient if and only if f is functional quotient.
+Theorem 5.6. Let f : X −→ Y be a mapping and let I have a pseudounion.
+Then f is I-functional quotient if and only if for any function g : S −→
+Y, I-converging to p there exists a function h : S −→ X which is I-convergent
+to some x ∈ X so that (f ◦ h)(S) ⊂ g(S) and f(x) = p.
+Proof. Let f be a I-functional quotient mapping. Then f is functional quo-
+tient (by Theorem 5.5). Let g : S −→ Y be I-convergent to p. Since I has
+pseudounion, as in Lemma 3.1, we obtain a function g′ : S −→ Y which is
+convergent to p. Now f −1(g′(S) \ {p}) is not functional closed, and so we get a
+function k : S −→ f −1(g′(S) \ {p}), converging to a ̸∈ f −1(g′(S) \ {p}). Now
+(f ◦ k) : S −→ g′(S) is convergent to f(a) = p.
+Conversely let the condition hold and let F ⊂ Y so that f −1(F) is an
+I-functional closed set in X. Let g : S −→ F be I-convergent to y ∈ Y. Then
+there exists an infinite set S′ ⊂ S and g|S′ is convergent to y. Let Φ = g|S′ and
+h : S −→ S′ be an onto mapping satisfying (Φ ◦ h)(s) = g(s) for every s ∈ S.
+Then (Φ◦ h) is convergent to y. So, there is a function k : S −→ f −1((Φ◦ h)(S))
+that is I-convergent to x ∈ f −1(y). As f −1(F) is I-functional closed, x ∈ f −1(F)
+so y ∈ F.
+□
+6. I-functional Fr´echet-Uryshon space
+Recall that a space X is Fr´echet-Uryshon [13] (resp., statistically Fr´echet-
+Uryshon [10], I-Fr´echet-Uryshon [36]) if for each A ⊂ X with x ∈ cl(A)
+there exists a sequence in A which is convergent (resp. statistically convergent,
+I-convergent) to x. We can extend these notions to I-functional Fr´echet-Uryshon
+space in the following way.
+Definition 6.1. A space X is called an I-functional Fr´echet-Uryshon space
+if for each A ⊂ X and each x ∈ cl(A) there exists a function f : S −→
+A, I-convergent to x.
+
+ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES
+19
+Proposition 6.1. Every I-functional Fr´echet-Uryshon space is an I-functional
+space.
+We modify [34, Example 3.1] to show that the converse of the above Propo-
+sition does not hold for a maximal ideal.
+Example 6.1. Let I be a maximal ideal of S and let X be a non-empty set.
+For every a ∈ S, let ga be a function from S to X and take Ga = ga(S). For
+fixed a ∈ S assume that ga(x) ̸= ga(y) for x ̸= y ∈ S. Take G = {xa : a ∈ S}
+with xa ̸= xb for a ̸= b ∈ S. Consider a point ∞ outside �{Ga : a ∈ S} � G and
+take X = �{Ga : a ∈ S} � G �{∞}.
+The topology on X is defined in the following way:
+(1) Each point ga(s) is isolated;
+(2) For each a ∈ S, an open neighbourhood of xa is taken as a set of the form
+{xa} ∪ Ma where Ma = {ga(s) : s ∈ F} for some F ∈ F(I);
+(3) Each open neighbourhood of ∞ is a set of the form {∞}∪M ∪{Ma : a ∈ M}
+where M = {xa : a ∈ F} for some F ∈ F(I).
+First to show that X is an I-functional space, take Y ⊂ X which is I-functional
+closed. Also let y ∈ cl(Y ). Now one of the three cases may occur.
+Case 1: If y ∈ �{Ga : a ∈ S} then {y} is an open neighbourhood of y and
+y ∈ cl(Y ) implies that y ∈ Y.
+Case 2: If y ∈ G, then y = xa for some a ∈ S. If possible let y ̸∈ Y. Now if
+{s ∈ S : ga(s) ∈ Y } ∈ I then U = (Ga\Y )∪{xa} is an open neighbourhood of xa.
+Also U ∩Y = ∅ contradicts that y ∈ cl(Y ). We define a function h : S −→ Y ∩Ga
+by h(s) = ga(s) if ga(s) ∈ Y and h(s) = ga(s0) for some fixed s0 ∈ S. Then h
+is I-convergent to xa. Because Y is I-functional closed, xa = y ∈ Y, which is a
+contradiction. Therefore y ∈ Y.
+Case 3: Consider the case when y = ∞. If A = {s ∈ S : xs ∈ Y } ∈ I
+put V = X \ �{Ga : a ∈ A}. Then V is an open neighbourhood of ∞ and
+V ∩ Y = ∅, which contradicts ∞ ∈ cl(Y ). Hence as in Case 2, we obtain a
+function f : S −→ Y, I-convergent to ∞. As Y is I-functional closed, ∞ ∈ Y.
+To prove that X is not an I-functional Fr´echet-Uryshon space, take ∞ ∈
+cl(X \ ({xa : a ∈ S} ∪ {∞})). Let h : S −→ X \ ({xa : a ∈ S} ∪ {∞}) be
+I-convergent to ∞. Define Aa = h(S) ∩ Ga, a ∈ S. If for each a ∈ S, {s ∈ S :
+ga(s) ∈ h(S)} ∈ I then V = {∞} ∪ {Ga \ Aa : a ∈ S} is an open set containing
+∞. But V ∩ h(S) = ∅ and this contradicts that h is I-convergent to ∞. So there
+is a ∈ S such that {s ∈ S : ga(s) ∈ h(S)} ∈ F(I). As in case 2, a function
+k : S −→ h(S) ∩ Ga can be constructed which is I-convergent to xa.
+Next if {s ∈ S : h(s) ∈ Ga} ∈ I then k : S −→ h(S) ∩ Ga can be made
+to I-converge to a point different from xa. This contradicts Lemma ??. Now if
+{s ∈ S : h(s) ∈ Ga} ∈ F(I) then k can be made to be I-convergent to ∞ ̸= xa,
+
+20
+P. DAS, U. SAMANTA, S. LIN
+which again is a contradiction as X is a Hausdorff space.
+Considering functions over S instead of functions over N, we restate [36,
+Theorem 6.3] as follows.
+Theorem 6.1. A space X is an I-functional Fr´echet-Uryshon space if and only
+if each subset of X is an I-functional space.
+Proposition 6.2. Subspaces of an I-functional Fr´echet-Uryshon space are I-functional
+Fr´echet-Uryshon space.
+Theorem 6.2. I-functional Fr´echet-Uryshon spaces are preserved by topological
+sums.
+Proof. Let {Xa : a ∈ Λ} be a disjoint family of I-functional Fr´echet-Uryshon
+spaces and let X =
+�
+a∈Λ
+Xa be its topological sum. From Proposition 6.1 and
+Theorem 3.2, X is an I-functional space.
+For every Y ⊂ X and for every
+a ∈ Λ, Y ∩Xa is an I-functional Fr´echet-Uryshon space in Xa, and consequently
+is an I-functional space in Xa. Hence the topological sum
+�
+a∈Λ
+Y ∩ Xa becomes
+an I-functional space. As Y is an I-functional space, therefore by Theorem 6.1,
+X is an I-functional Fr´echet-Uryshon space.
+□
+Although the line of proof of the next result is analogous with that of [36,
+Lemma 6.9], it has its own significance.
+Theorem 6.3. Every space is a continuous and I-functional covering image of
+an I-functional Fr´echet-Uryshon space provided I is a maximal ideal of S.
+In general product of two I-functional Fr´echet-Uryshon spaces may not be an
+I-functional Fr´echet-Uryshon space. This follows from a modification of an Ex-
+ample from [32]. Actually product of two I-functional Fr´echet-Uryshon spaces
+need not be an I-functional space either.
+A mapping f : X −→ Y is called pseudo-open [1] if for each y ∈ Y and an
+open subset U in X with f −1(y) ⊂ U, f(U) is a neighbourhood of y in Y.
+Theorem 6.4. Let f be a pseudo-open mapping from an I-functional Fr´echet-
+Uryshon space X onto a space Y. If f preserves I-functional convergence then
+Y is an I-functional Fr´echet-Uryshon space.
+Proof. Let f preserve I-functional convergence. Let A ⊂ Y and choose y ∈
+cl(A). If f −1({y}) ∩ (cl(f −1(A))) = ∅ then f −1(y) ∈ X \ (cl(f −1(A))). Since
+f is pseudo-open, y ∈ int(f(X \ cl(f −1(A))) = int(f(int(X \ f −1(A)))) ⊂
+int(f(X \ f −1(A))) = int(Y \ A) = Y \ cl(A). So, y ∈ Y \ cl(A), a contradiction.
+
+ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES
+21
+Therefore, there exists x ∈ f −1({y}) ∩ (cl(f −1(A))). Since X is an I-functional
+Fr´echet-Uryshon space, there is a function g : S −→ f −1(A), I-convergent to x.
+Hence f ◦ g : S −→ A is I-convergent to f(x) = y, which consequently implies
+that Y is an I-functional Fr´echet-Uryshon space.
+□
+Corollary 6.1. I-functional Fr´echet-Uryshon spaces are preserved by continu-
+ous pseudo-open mappings.
+Theorem 6.5. A space Y is an I-functional Fr´echet-Uryshon space if every
+mapping onto Y that preserves I-functional convergence is pseudo-open provided
+I is a maximal ideal of S.
+Proof. Let Y be a space and let g : S −→ Y be I-convergent to yg. Consider
+Sg = g(S)∪{yg} and S is the family of all functions on S which are I-convergent
+in Y. A topology on Sg is defined as in Example 3.4 and is denoted by SI
+g . Clearly
+g is I-convergent to yg in SI
+g . In view of Example 3.4, Theorem 3.1 and Theorem
+6.1, one can conclude that SI
+g is an I-functional Fr´echet-Uryshon space since
+every subset of Sg is open or closed in SI
+g . Let Z =
+�
+g∈S
+SI
+g be the topological
+sum of {SI
+g }. By Theorem 6.2, Z is an I-functional Fr´echet-Uryshon space. We
+define a mapping f : Z −→ Y such that f|Sg : SI
+g −→ (Sg, τSg) is the identity
+mapping. Then f preserves I-functional convergence and therefore by Theorem
+6.4 Y is an I-functional Fr´echet-Uryshon space.
+□
+But suitably modifying [36, Theorem 6.7], we can obtain the next theorem.
+Theorem 6.6. Let Y be an I-functional Fr´echet-Uryshon space. Then every
+I-functional covering mapping from a space onto Y is pseudo-open.
+We end the section with the following interesting observation.
+Theorem 6.7. A space X is an I-functional Fr´echet-Uryshon space if and
+only if every continuous I-functional covering mapping onto X is pseudo-open
+provided I is a maximal ideal of S.
+Proof. This follows from Theorem 6.6, Theorem 6.3 and corollary 6.1.
+□
+References
+[1] A.V. Arhangel’skiˇi, Mappings and spaces, Russian Math. Surveys, 21 (1966), 115-162.
+[2] J.R. Boone. and F. Siwice, Sequentially quotient mappings, Czechoslov. Math.J, 26 (1976),
+174-182.
+[3] L. Bukovsk´y, P. Das and J. ˇSupina, Ideal quasi-normal convergence and related notions,
+Colloq. Math., 146 (2), (2017), 265 - 281.
+[4] L.X. Cheng, G.C. Lin, Y.Y. Lan and H. Liu, Measure theory of statistical convergence.,
+Sci.China Ser. A., 51 (2008), 2285-2303.
+[5] L.X. Cheng, G.C. Lin. and H.H. Shi, On real-valued measures of statistical type and their
+applications to statistical convergence., Math. Comput. Model., 50 (2009), 116-122.
+
+22
+P. DAS, U. SAMANTA, S. LIN
+[6] P. Das and S. Ghosal, On I-Cauchy nets and completeness, Topology Appl., 157 (2010),
+1152 - 1156.
+[7] P. Das and S. Ghosal, When I-Cauchy nets in complete uniform spaces are I-convergent,
+Topology Appl., 158 (2011), 1529-1533.
+[8] P. Das, M. Sleziak, V. Toma, On IK- Cauchy functions, Topology Appl., 173 (2014), 9-27.
+[9] P. Das, S. sengupta, S. Glab, M. Bienias, Certain aspects of ideal convergence in topo-
+logical spaces, Topology Appl., accepted.
+[10] G. Di Maio and Lj.D.R. Koˇcinac, Statistical convergence in topology, Topology Appl.,
+156 (2008), 28 - 45.
+[11] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
+[12] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (3-4) (1951), 241- 244.
+[13] S.P. Franklin, Spaces in which sequences suffice, Fund. Math., 57 (1965), 107-115.
+[14] S.P. Franklin, Spaces in which sequences suffice II, Fund. Math., 61 (1967), 51-56.
+[15] J.A. Fridy, On statistical convergence, Analysis, 5 (4) (1985), 301 - 313.
+[16] D.N. Georgiou, S.D. Iliadais and A.C. Megaritis and G.A. Prinos, Ideal-convergence
+classes, Topology Appl., 222 (2017), 217-226.
+[17] S. Givant and P. Halmos, Introduction to Boolean Algebra, Undergraduate Texts in Math-
+ematics, Springer, New York, (2009).
+[18] G. Gruenhage, Generalized metric spaces, In: K. Kunen and J.E. Vaughan (eds.), Hand-
+book of Set-theoretic Topology, Amsterdam, North-Holland (1984), 423-501.
+[19] J. Jasinski and I.Reclaw, Ideal convergence of continuous functions, Topology Appl., 153,
+(2006), 3511-3518.
+[20] P. Kostyrko,
+T. ˇSal´at and W. Wilczynski,
+I-convergence,
+Real Anal. Exch.,
+26
+(2000/2001), 669-686.
+[21] K. Kuratowski, Topologie I. PWN, Warszawa, 1962.
+[22] B.K. Lahiri and P. Das, I and I∗-convergence in topological spaces, Math. Bohemica,
+130 (2) (2005), 153 - 160.
+[23] B.K. Lahiri, Pratulananda Das, On I and I∗ convergence of nets, Real Anal. Exchange,
+33 (2) (2007-2008), 431–442.
+[24] K. Li, S. Lin and Y. Ge, On statistical convergence on cone metric spaces, Topol. Appl.,
+196 (2015), 641-651.
+[25] L. Liu, Z. Tang and S. Lin, Statistically sequential spaces and statistically sequential
+quotient mappings, Appl. Math. J. Chin. Univ., 30 (4) (2015), 485-493 (in Chinese).
+[26] S. Lin and P. Yan, Sequence-covering maps of metric spaces, Topology Appl., 109 (2001),
+301-314.
+[27] S. Lin, A note on sequence-covering mappings, Acta Math. Hungar., 107 (3) (2005),
+187-191.
+[28] S. Lin and Z.Q. Yun, Generalized Metric Spaces and Mappings, Atlantis Studies in Math-
+ematics, vol. 6, Atlantis Press, Paris (2016).
+[29] M. Macˆaj, M. Sleziak, IK-convergence, Real Anal. Exchange, 36 (1) (2010-2011), 177–194.
+[30] A.E. Michael, A quintuple quotient quest, Gen. Topol. Appl., 2 (1972), 91-138.
+[31] S.K. Pal, I-sequential topological spaces, Appl. Math. E Not. 14 (2014), 236-241.
+[32] V. Renukadevi and B. Prakash, I-Fr´echet-Uryshon spaces, Math. Morav., 20 (2) (2016),
+87-97.
+[33] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math.,
+2 (1951), 73-74.
+[34] Z. Tang and F. Lin, Statistical versions of sequential and Fr´echet-Urysohn spaces, Adv.
+Math. (China), 44 (2015), 945-954.
+[35] X.G. Zhou and M. Zhang, More about the kernel convergence and the ideal convergence,
+Acta Math. Sin. Engl. Ser. 29 (2013), 2367-2372.
+
+ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES
+23
+[36] X. Zhou, L. Liu and S. Lin, On topological spaces defined by I-convergence, Bull. Iranian
+Math. Soc., (Accepted), July 2019.
+* Department of Mathematics, Jadavpur University, Kolkata-32, West Bengal, In-
+dia
+Email address: pratulananda@yahoo.co.in, samantaupasana@gmail.com
+† Department of Mathematics, Ningde Normal University, Ningde, 352100, Fujian,
+People’s Republic of China
+Email address: shoulin60@163.com
+
diff --git a/oNAyT4oBgHgl3EQfy_n2/content/tmp_files/load_file.txt b/oNAyT4oBgHgl3EQfy_n2/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..0caa959525371f6bb31bf8a8a69817c3e459f135
--- /dev/null
+++ b/oNAyT4oBgHgl3EQfy_n2/content/tmp_files/load_file.txt
@@ -0,0 +1,1046 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf,len=1045
+page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='00696v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='GN] 2 Jan 2023 ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES PRATULANANDA DAS∗, UPASANA SAMANTA∗, SHOU LIN† Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' In this paper, we consider certain topological properties along with certain types of mappings on these spaces defined by the notion of ideal convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' In order to do that, we primarily follow in the foot- steps of the earlier studies of ideal convergence done by using functions (from an infinite set S to X) in [8, 9, 29], as that is the most general per- spective and use functions instead of sequences/nets/double sequences etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' This functional approach automatically provides the most general settings for such studies and consequently extends and unifies the proofs of sev- eral old and recent results in the literature about spaces like sequential, Fr´echet-Uryshon spaces and sequential, quotient and covering maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' In particular, we introduce and investigate the notions of I-functional spaces, I-functional continuous, quotient and covering mappings and finally I- functional Fr´echet-Uryshon spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' In doing so, we take help of certain set theoretic and other properties of ideals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Key words and phrases: Ideal, ideal convergence of functions, I-functional space, I-functional continuous, quotient and covering mappings, I-functional Fr´echet-Uryshon space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Introduction .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' The idea of statistical convergence of sequence was introduced in [12,33] as an extension of the usual notion of convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Apart from a lot of investigations in the fields of summability theory, measure theory, functional analysis etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', this idea has led to various investigations in the settings of topological spaces (for ex- ample see [4,5,10,24,25,34–36]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' The most important generalization of almost all types of convergence including statistical convergence had been proposed by Kostyrko et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [20] who had introduced the concepts of I-convergence and I∗-convergence in metric spaces using ideals of the set of all natural numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Following the line of Kostyrko et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', the same has been studied for sequences 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Primary: 54A20, 54B15, 54C08 Secondary: 40A05, 26A03 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' The first author is thankful to NBHM for granting the project (sanction no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' 02011/9/2022/NBHM(RP)/RD II/10378) during the tenure of which this work was done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' 1 2 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' DAS, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' SAMANTA, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' LIN in general topological spaces [22], for nets in topological and uniform spaces [23] (subsequently studied in [6, 7]) and for functions in topological spaces [9, 29], uniform spaces [8] for example, where other references can be found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' On the other hand, it is a well known fact that the topology of a topological space, in general, can not be determined by convergent sequences, unlike metric spaces where sequences play a much more important role in characterizing several notions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' From the beginning, it has been a very rich and challenging topic of investigations as to, in which topological spaces sequences play a better role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' The first countable, Fr´echet-Uryshon and sequential spaces are examples of some such spaces that are determined by convergence of sequences [11, 28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Instead of usual convergence of sequences, first in [32,34] the authors have worked with statistical convergence to define statistical counterparts of Fr´echet-Uryshon and sequential spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Subsequently the more general idea of ideal convergence of sequences has been widely used to introduce these notions as also several other new ideas in topological settings (for example one can see [3,31,32,35,36]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' In particular in [36], Zhou and his co-authors defined I-continuous, I-quotient and I-covering mappings and checked how they interact with I-sequential, I-Fr´echet spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' As a natural consequence, in this paper, we further generalize the whole set- ting of such investigations by considering ideals of an arbitrary infinite set S, and as a natural replacement, instead of sequences in X we take functions from S to X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' This approach unifies the two directions mentioned above and provides the most general type of results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Primarily we use the idea of I-convergence of func- tions to introduce I-functional open sets, I-functional closed sets, I-functional spaces and I-functional Fr´echet-Uryshon spaces and establish several proper- ties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' We also proceed in the same way to extend the ideas of I-continuous, I-quotient and I-covering mappings and subsequently investigate their coun- terparts, namely, I-functional continuous, quotient and covering mappings and their effects on I-functional spaces, I-functional Fr´echet-Uryshon spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' In or- der to clear ambiguity and for the sake of continuity, we call all mappings with domain S “functions” (continuing the nomenclature of [8,9,29]) and mappings from one topological space to another as just “mappings”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' As a consequence, not only the results of [3,31,32,35,36] become special cases of our results, also the whole treatment seems much more simplified, at the same time underscoring the focal point that, several topological concepts can actually be studied without restricting the domain set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Preliminaries Let N denote the set of all natural numbers and let K ⊂ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Recall that the nat- ural or asymptotic density of K is defined by d(K) = lim n−→∞ 1 n|{k ∈ N : k ≤ n}| if the limit exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If X is a topological space then a sequence (xn : n ∈ N) in X is statistically convergent to x ∈ X if for each neighbourhood U of x in X, d({n ∈ N : xn ̸∈ U}) = 0 [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' The notion of statistical convergence has subsequently been extended to the notion of I-convergence, which is based on the notion of ideal of subsets of N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let Y be a non-empty set and let P(Y ) be the family of all subsets of Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' A family I(⊂ P(Y )) of subsets of a non-empty set Y is said to be an ideal of Y if (i) A, B ∈ I imply A ∪ B ∈ I (ii) A ∈ I, B ⊂ A imply B ∈ I, while an admissible ideal I of Y covers Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Such ideals are also called free ideals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If I is a proper non-trivial ideal of Y (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Y /∈ I, I ̸= ∅), then the family of sets F(I) = {M ⊂ Y : Y \\ M ∈ I} is a filter (called the dual filter) of Y whereas the coideal of I is I+ = {A ⊂ Y : A ̸∈ I}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' We denote the ideal consisting of all finite subsets and density zero subsets of N by Ifin and Id respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If I is a maximal ideal then for any A ⊂ S, we have either A ∈ I or S \\A ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' For each ideal I of S, the set of all maximal ideals J of S such that I ⊂ J is denoted by Θ(I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' It is known that I = � J ∈Θ(I) J [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Recall that B ⊂ N is said to be a pseudounion of a family A ⊂ P(N) if N \\ B is infinite and A \\ B is finite for each A ∈ A [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' A sequence (xn : n ∈ N) in a topological space X is said to be I-convergent to x ∈ X provided for each neighbourhood U of x, the set {n ∈ N : xn ̸∈ U} belongs to I [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' I-convergence of sequence coincides with ordinary convergence of sequence if we take I = Ifin and with the statistical convergence if I = Id.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' The concept of I∗-convergence of real sequence arises from a result of statis- tical convergence that: a real sequence (xn : n ∈ N) is statistically convergent to x if and only if there exists a set M = {mk : k ∈ N} with m1 < m2 < · · · mk · · · such that d(M) = 1 and lim k−→∞ xmk = x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' This idea has been extended to I∗-convergence of a sequence in a topological space as a sequence (xn : n ∈ N) in X is I∗-convergent to x ∈ X if and only if there exists a set M ∈ F(I) where m1 < m2 < · · · < mk < · · · such that lim k−→∞ xmk = x [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Throughout the paper X stands for a topological space, S an infinite set and I, an admissible ideal of S unless otherwise stated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Further by a “space” we will always mean a topological space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Our topological terminology and notation are as in the book [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' 4 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' DAS, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' SAMANTA, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' LIN 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' I-functional open sets, I-functional closed sets and I-functional space Before we proceed to introduce our main concepts of this section, we present certain basic observations about convergence of functions which happen to be the main tool behind these generalizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' For x ∈ X, we say that a function f : S → X is convergent to x, whenever for every open set U containing x, the set f −1(U) is co-finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' is I-convergent to x, whenever for every open set U containing x, the set f −1(U) is in F(I) [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' is I∗-convergent to x, whenever there is a set M ∈ F(I) such that g defined by “g(s) = f(s) if s ∈ M and g(s) = x if s /∈ M” is convergent to x [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Suppose g : S −→ X, is I-convergent to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let S′ be an infinite subset of S with |S′| = |S|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let h : S −→ S′ be a bijective function and let Φ = g|S′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Now Φ is said to be I-convergent to x if (Φ ◦ h)(s) = g(s), ∀ s ∈ S is I-convergent to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Further if f : S −→ X is convergent to x ∈ X, then for any infinite S′ ⊂ S, f|S′ is convergent to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' In a Hausdorff space I-limit of a function is unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' For two ideals I ⊂ J of S, if f : S −→ X is I-convergent to x then f : S −→ X is J -convergent to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Following [3] we can say that an ideal I of S has a pseudounion if there exists an infinite set A ⊂ S with |S| = |S \\ A| such that I \\ A is finite for each I ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If I has a pseudounion and f : S −→ X is I-convergent to x then there exists a function from S to X which is convergent to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let f : S −→ X be I-convergent to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Since I has a pseudounion, there exists an infinite set A ⊂ S with S \\ A ∈ I+ such that I ∩ (S \\ A) is finite for each I ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' As f is I-convergent to x, for every open set O containing x, AO = {s ∈ S : f(s) ̸∈ O} ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Thus AO ∩ (S \\ A) is finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then Φ : S −→ X defined by Φ(s) = f(s) if s ∈ S \\A and Φ(s) = x if s ∈ A, is convergent to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let g : S → X be given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then g is I-convergent to x if and only if g is J -convergent to x for each J ∈ Θ(I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let I be an ideal of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Take ∞ ̸∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' We define a topology on S ∪ {∞} by considering each s ∈ S isolated and each basic open neighbourhood U of ∞ as (S \\ I) ∪ {∞} for some I ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' This space is denoted by � S(I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Clearly the inclusion mapping i : S −→ � S(I) is I-convergent to ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Note that ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES5 if I ̸= Ifin, then I contains an infinite set I ‘say’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then it readily follows that the inclusion function is not convergent to ∞ in the usual sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let us now look back at the history as to how the notion of closed sets in topo- logical spaces have been generalized using sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Recall that a subset F ⊂ X is called sequentially closed if for each sequence (xn : n ∈ N) in F converging to x ∈ X, we have x ∈ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' X is called a sequential space [13] if each sequentially closed subset of X is closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' A subset U ⊂ X is called sequentially open if X \\U is sequentially closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Di Maio and Koˇcinac introduced statistical version of sequential space in [10] while Pal [31] further extended it to I-sequential spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Very recently Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' revisited the notion of I-sequential space in [36] where following notions were introduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' A subset F ⊂ X is called I-closed if for each sequence (xn : n ∈ N) in F, I-convergent to x ∈ X, we have x ∈ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' A subset U ⊂ X is called I-open if X \\ U is I-closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' X is called an I-sequential space if each I-closed subset of X is closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Motivated by the generalization of I-sequential spaces from the idea of sequential spaces, we now introduce the main concept of this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let X be a topological space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (i) F ⊂ X is said to be I-functional closed if for each function g : S → F that is I-convergent to x ∈ X we have x ∈ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (ii) U ⊂ X is said to be I-functional open if X \\ U is I-functional closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (iii) X is called an I-functional space if each I-functional closed subset of X is closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If we consider “usual” convergence of functions (see Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1) instead of I-convergence, we call I-functional closed sets, I-functional open sets and I-functional spaces as functional closed, functional open and functional spaces respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Clearly, every I-functional closed set is functional closed but the following example shows that the converse is not generally true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let I be a maximal ideal of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' We consider the space � S(I) as in Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then S is a functional closed set in � S(I) but not I-functional closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' As an immediate consequence of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1 we can see that Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' A ⊂ X is I-functional closed if and only if A is functional closed provided I has a pseudounion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Therefore X is an I-functional space if and only if X is a functional space provided I has a pseudounion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' We can modify Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2(ii) in the following way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' A subset O of X is I-functional open if and only if no function h : S −→ X \\ O is I-convergent to a point in O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' 6 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' DAS, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' SAMANTA, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' LIN Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Sufficiency directly follows from Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2(i), (ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' As O is I-functional open so X \\ O is I-functional closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Hence for every function h : S −→ X \\ O which is I-convergent to x, we must have x ∈ X \\ O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ It is evident that every open set (and so every closed set) is I-functional open (I-functional closed).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Following example establishes the existence of a space which is not I-functional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Consider the Cartesian product S × S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' For a ∈ S, we call the subset S × {a} as the a-th row of S × S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let I have a pseudounion and let ∞ be an element outside S × S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let X = (S × S) ∪ {∞}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' We define a topology on X as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let τ1 = P(S × S) and let τ2 be the collection of those subsets A of X so that ∞ ∈ A and {a ∈ S : ({s ∈ S : (s, a) ∈ A} ∈ F(I))} ∈ F(I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Take τ = τ1 ∪ τ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then it can be verified that τ is a topology on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' No function from S to X can be I-convergent to ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If g : S −→ X is I-convergent to ∞ then by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1 there is a function f : S −→ X which is convergent to ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Note that each row contains at most finitely many elements of the form f(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Excluding these terms from each row, we obtain an open set containing ∞ which contains no terms of the form f(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Also no function from S to S × S can be I-convergent to a point of S × S unless it is eventually constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' But ∞ is a limit point of S ×S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Hence S ×S is I-functional closed but not closed and therefore X is not I-functional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' However there exists an ideal for which every sequential space is I-functional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let S = � i∈N Si such that Si ∩ Sj = ∅ for different i, j and let I0 = {A ⊂ S : A ∩ Si ̸= ∅ for finitely many i}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then every sequential space X is an I0-functional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let O ⊂ X be I-functional open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If O is not open then there is a sequence xn ∈ X \\ O converging to x ∈ O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Define a function g : S −→ X \\ O by g(s) = xi if s ∈ Si.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then g is I-convergent to x ∈ O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Hence X \\ O is not I-functional closed, which is a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' The following are equivalent for any A ⊂ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (i) A ⊂ X is I-functional open (ii) For any function g : S −→ X which is I-convergent to x ∈ A, we have {s ∈ S : g(s) ∈ A} ∈ I+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (iii) |{s ∈ S : g(s) ∈ A}| ≥ ω for each function g : S −→ X which is I-convergent to x ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (i) =⇒ (ii) Let A ⊂ X be I-functional open and let g : S −→ X be I-convergent to x ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If possible let C = {s ∈ S : g(s) ∈ A} ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Fix an element a ∈ X \\ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Define a function h : S −→ X \\ A by h(s) = g(s) for s ∈ S \\ C and h(s) = a if s ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let U be a neighbourhood of x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES7 {s ∈ S : g(s) ∈ U} ∩S \\ C ⊂ {s ∈ S : h(s) ∈ U} ∈ F(I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Thus h : S −→ X \\ A is I-convergent to x, this contradicts that A is I-functional open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Thus (ii) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (ii) =⇒ (iii) As I is an admissible ideal, thus (iii) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (iii) =⇒ (i) If possible let A ⊂ X be not I-functional open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' So X \\ A is not I-functional closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Therefore there is a function g : S −→ X \\ A which is I-convergent to x ∈ A and evidently {s ∈ S : g(s) ∈ A} = ∅ which contradicts (iii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let I be a maximal ideal of S and let g : S −→ X be I-convergent to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let Y = {g(s) : s ∈ S} ∪ {x}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Endow {g(s) : s ∈ S} ⊂ Y with the discrete topology and let a basic neighbourhood of x be of the form {x}∪{g(s) : s ∈ A} for some A ∈ F(I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Y endowed with this topology is an I-functional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' To prove that, let U be I-functional open in Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Without any loss of generality assume that x ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' As I is maximal, by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='4(ii), we have {s ∈ S : g(s) ∈ U} ∈ F(I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Hence {x} ∪ {g(s) ∈ U} ⊂ U which implies that U is open in Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let X = � i∈Λ Xi have the product topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then a function f : S −→ X is I-convergent to x = (xi) if and only if πi ◦ f is I-convergent to xi for each i ∈ Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let πi ◦ f be I-convergent to xi for each i ∈ Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let O = � i∈Λ Oi be a basic open set in X containing x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let Oi = Ui for i = m1, m2, · · · , mk and Oi = Xi otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then {s ∈ S : (πi ◦ f)(s) ∈ Ui} ∈ F(I) for each i = m1, m2, · · · , mk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Now � i∈{m1,m2,··· ,mk} {s ∈ S : (πi ◦ f)(s) ∈ Ui} ∈ F(I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Consequently the result follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Clearly the converse holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let X = � i∈Λ Xi have the product topology and let O be I-functional open in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then πi(O) is I-functional open in Xi for each i ∈ Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If possible let πi(O) be not I-functional open in Xi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then there exists a function g : S −→ Xi which is I-convergent to x ∈ πi(O) and {s ∈ S : g(s) ∈ πi(O)} ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Now fix some aj ∈ πj(O) for j ̸= i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Define a function h : S −→ X by (πj ◦ h)(s) = � aj if j ̸= i g(s) if j = i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let y = (yi) be defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' yj = � aj if j ̸= i, x if j = i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' 8 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' DAS, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' SAMANTA, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' LIN Then h : S −→ X is I-convergent to y (by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Also {s ∈ S : g(s) ∈ πi(O)} = {s ∈ S : h(s) ∈ O} ∈ I, contradicts that O is I-functional open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ We now state certain basic results regarding I-functional spaces without proofs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (i) Let I ⊂ J be two ideals of S and let X be a space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If U ⊂ X is J -functional open then it is I-functional open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (ii) Let I ⊂ J be two ideals of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If X is I-functional then it is J -functional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (iii) Suppose that {Iα : α ∈ A} is a collection of ideals of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If X is a space and U ⊂ X is Iα-functional open for some α ∈ A, then U is � α∈A Iα-functional open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let I be a maximal ideal of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If U, V are two I-functional open subsets of X then U ∩ V is also I-functional open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let g : S −→ X be I-convergent to x ∈ U ∩ V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' So, {s ∈ S : g(s) ∈ U} ∈ F(I) and {s ∈ S : g(s) ∈ V } ∈ F(I) (by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Now {s ∈ S : g(s) ∈ U} ∩ {s ∈ S : g(s) ∈ V } = {s ∈ S : g(s) ∈ U ∩ V } ∈ F(I) and therefore U ∩ V is I-functional open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ The I-functional coreflection of a space X is the set X endowed with the topology generated by I-functional open subsets of X as a subbase and the topology is denoted by I-fX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Clearly for a space X, I-fX is finer than the topology of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Further If I is a maximal ideal of S, then the collection of all I-functional open sets itself forms a topology on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let I be an ideal of S and A ⊂ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' A function f : S −→ X is said to be I-eventually in A if there is a E ∈ I such that f(s) ∈ A for all s ∈ S \\ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let I be a maximal ideal of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then A ⊂ X is I-functional open if and only if for each function which is I-convergent to a point of A, it is I-eventually in A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' The result follows from Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Every I-functional space is hereditary with respect to I-functional open (I-functional closed) subspaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let X be an I-functional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Suppose that Y is an I-functional open set in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then Y is open in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let U(⫋ Y ) be I-functional open in Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' We have to show that U is I-functional open in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Suppose that g : S −→ X is ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES9 I-convergent to x ∈ U ⊂ Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Since Y is open, {s ∈ S : g(s) ∈ Y } ∈ F(I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let y ∈ Y \\ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Define a function h : S −→ Y by h(s) = g(s) if g(s) ∈ Y and h(s) = y if g(s) ̸∈ Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Therefore, h : S −→ X is I-convergent to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Since |{s ∈ S : g(s) ̸∈ U}| = |{s ∈ S : h(s) ̸∈ U}|, by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='4, it follows that U is I-functional open in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' As X is I-functional space, so U is open in X and so open in Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let Y be an I-functional closed subset of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then Y is closed in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let F(⫋ Y ) be an I-functional closed subset of Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' We have to show that F is I-functional closed subset of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Suppose that g : S −→ F is I-convergent to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' So x ∈ Y as Y is closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Therefore x ∈ F since F is an I-functional closed subset of Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Thus F is an I-functional closed subset of X, so F is a closed subset of X and hence a closed subset of Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' I-functional spaces are preserved by topological sums.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Any quotient space of an I-functional space is an I-functional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let X be an I-functional space and let f : X −→ Y be a quotient mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let F ⊂ Y be I-functional closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If F is not closed, f −1(F) is not closed (as f is a quotient mapping) and so f −1(F) is not I-functional closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then there exists a function g : S −→ f −1(F) which is I-convergent to x ̸∈ f −1(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Since F is I-functional closed and f is continuous, we obtain that f ◦g : S −→ F is I-convergent to f(x) ∈ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' This contradicts that x ̸∈ f −1(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Every I-functional space is a quotient of some metric space provided I = I0, the ideal defined in Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let X be an I-functional space and let tn = 1 n + 1, n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Define a function f : S −→ R by f(s) = tn if s ∈ Sn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then f is I-convergent to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Take Y = { 1 n + 1 : n ∈ N} ∪ {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' The topology of Y is induced from the usual metric topology of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Clearly O ⊂ Y is open if and only if either 0 ̸∈ O or if 0 ∈ O then f(s) ∈ O if s ∈ A for some A ∈ F(I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let S = {g : S −→ X : g is I-convergent to some g0 ∈ g(S)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Writing {(g(s) : s ∈ S)} = Z, let d be a metric on Z × Y = {(Z, y) : y ∈ Y } defined by d(Z, a), (Z, b)) = |a − b|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Now consider the topological sum L = � Z∈S Z × Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' We observe that A ⊂ L is open if and only if {y ∈ Y : (Z, y) ∈ A} is open in Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Consider the mapping Φ : L −→ X defined by Φ(Z, 0) = g0 and Φ(Z, f(s)) = g(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Clearly Φ is onto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Now we show that Φ is a quotient mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' 10 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' DAS, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' SAMANTA, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' LIN Let U ⊂ X be open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then for every g : S −→ X, I-convergent to a ∈ U, {s ∈ S : g(s) ∈ U} ∈ F(I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If (Z, 0) ∈ Φ−1(U) then g0 ∈ U, also {s ∈ S : g(s) ∈ U} ∈ F(I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Write E = {s ∈ S : g(s) ∈ U}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' By the definition of Φ, Φ(Z, f(s)) = g(s) ∈ U for each s ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Therefore, Φ−1(U) is open in L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Again if U is not open in X, then there exists a function g : S −→ (X \\ U) which is I-convergent to g0 ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Consequently {y ∈ Y : (Z, y) ∈ Φ−1(U)} = {0}, which is not open in Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Hence Φ−1(U) is not open in L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' I-functional continuity In this section our main object of investigation is the notion of I-functional continuity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Recall that a mapping f from a space X to another space Y is called sequentially continuous [2] provided for any sequentially open set U in Y, f −1(U) is sequentially open in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' It is proved in [2] that a mapping f : X −→ Y is sequentially continuous if and only if f preserves the convergence of sequences, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', for each sequence (xn : n ∈ N) in X converging to x, the sequence (f(xn) : n ∈ N) converges to f(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' In [36], authors introduced the notion of I-continuity in terms of I-open sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Extending this notion in the language of functions, we introduce following definitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let I be an ideal of S and f : X −→ Y be a mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then (i) f is called an I-functional convergence preserving mapping provided for a function g : S −→ X, I-convergent to x, f ◦ g is I-convergent to f(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (ii) f is called I-functional continuous provided for any I-functional open set U in Y , f −1(U) is I-functional open in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' We call f simply functional continuous if we take functional open set instead of I-functional open set in Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let Y ⊂ X and let U be I-functional open in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then U ∩ Y is I-functional open in Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let g : S −→ Y be I-convergent to y ∈ U ∩Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then {s ∈ S : g(s) ∈ U} ∈ I+ (by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='4) and therefore {s ∈ S : g(s) ∈ U ∩ Y } ∈ I+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let I be a maximal ideal of S and let U ⊂ Y ⊂ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Suppose that U is I-functional open in Y and Y is I-functional open in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then U is I-functional open in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If U is not I-functional open in X then there exits a mapping f : S −→ X, I-converging to some a ∈ U and f −1(U) ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' As Y is I-functional open in X, and I is maximal, f −1(Y ) ∈ F(I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Therefore f −1(Y \\ U) = f −1(Y ) \\ f −1(U) ∈ ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES 11 F(I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let F = f −1(Y \\ U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Define a mapping φ : S −→ Y by φ(s) = � f(s) if s ∈ F a if s ̸∈ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Evidently φ is I-convergent to a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Also φ−1(U) ∈ I, contradicts that U is I-functional open in Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let X be a space and let U be a cover of X by I-functional open sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then a mapping f : X −→ Y is I-functional continuous if and only if for each U ∈ U the restriction f|U is I-functional continuous provided I is maximal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let f : X −→ Y be I-functional continuous and let U ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Suppose that V ⊂ Y is I-functional open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then (f|U)−1(V ) = f −1(V ) ∩ U is I-functional open in U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Conversely let the condition hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then by Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2 for any I-functional open set V ⊂ Y, f −1(V ) ∩ U is I-functional open in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' As X = � U, f −1(V ) = � U∈U (f|U)−1(V ) and is I-functional open as each is so.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ In [36, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2], it was shown that every continuous mapping preserves I-convergence of sequences and if a mapping preserves I-convergence of se- quences then the mapping is I-continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Here also, similar kind of results hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let X, Y be two spaces and f : X −→ Y be a mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (i) If f is continuous then f preserves I-functional convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (ii) If f preserves I-functional convergence then f is I-functional continu- ous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' The examples given below, show that the converses of preceding Proposition are not generally true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let I be a maximal ideal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Take X = � S(I) as in Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1 and let Y = X be endowed with the discrete topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let f : X −→ Y be the identity mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Clearly i : S −→ X, the inclusion function is not convergent to ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let S′ ⊂ S and i|S′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If S′ ∈ I then i can not converge to ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Otherwise take an infinite S′′ ⊂ S′ satisfying |S′ \\ S′′| = |S′|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If S′′ ∈ I then (S \\ S′′) ∪ {∞} is a neighbourhood of ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' So i|S′ again can not be convergent to ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Finally if S′′ ∈ F(I) then S′′ ∪ {∞} is a neighbourhood of ∞ but it does not contain all but finitely many terms of i|S′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' So i|S′ is not convergent to ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Therefore there is no convergent function from S to X except for eventual constant mappings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' So f preserves Ifin-functional convergence trivially.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Thus 12 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' DAS, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' SAMANTA, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' LIN by Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1, f is also functional continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' But evidently f is not con- tinuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let X = � S(I) and let Y = {1, 0} be endowed with discrete topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Also let I be a non-maximal ideal of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then there is A ⊂ S for which both A ∈ I+ and S \\ A ∈ I+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Define a mapping g : X −→ Y by g(x) = 1 if x ∈ A and g(x) = 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' As (S \\ A) ∪ {∞} is I-functional open, so g is I-functional continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' But g does not preserve I-functional convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let f : X −→ Y be an I-functional continuous mapping and let g : S −→ X be I-convergent to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If V ⊂ Y is an I-functional open set containing f(x) then by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='4, {s ∈ S : g(s) ∈ f −1(V )} ∈ I+ and thus {s ∈ S : (f ◦ g)(s) ∈ V } ∈ I+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' This observation leads to the following result immediately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let I be a maximal ideal of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then a mapping f : X −→ Y is I-functional continuous if and only if it preserves I-functional convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' For the next result we recall the following definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' I is called a P-ideal if for any (An)n∈ω from F(I) there is A ∈ F such that A \\ An is finite for each n [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let I be a P-ideal and X be a first-countable space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then f : X −→ Y is I-functional continuous if and only if it preserves I-functional convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' From [29], it follows that I-convergence implies I∗-convergence of func- tions, as I is a P-ideal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let f : X −→ Y be I-functional continuous and let g : S −→ X be I-convergent to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then there is A ∈ I such that g ⇃S\\A−→ X is convergent to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let U be an open neighbourhood of f(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then f −1(U) is I-functional open in X, and so is a functional open set containing x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Conse- quently g(s) ∈ f −1(U) for all s ∈ S \\(A∪F) (for a suitable finite subset F of S) and hence (f ◦ g)(s) ∈ U for all s ∈ S \\ (A ∪ F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' By admissibility of I it follows that {s ∈ S : (f ◦ g)(s) ∈ U} ∈ F(I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' The converse result follows directly from Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ Next we investigate the interrelationships between the notions of continuity and I-f-continuity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let f be a mapping from an I-functional space X to another space Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then f is continuous if and only if f is I-functional continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let f : X −→ Y be continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then by Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1, f is I-functional continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Since every open set is I-functional open and X is an I-functional space the converse follows immediately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES 13 Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let f be a mapping from a functional space X to another space Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then following are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (1) f is continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (2) f preserves I-functional convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (3) f is I-functional continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (4) f is functional continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (1) =⇒ (2) follows from the Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (2) =⇒ (3) follows di- rectly from Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1(ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' As each functional space is I-functional space and continuity implies functional continuity, preceding theorem establishes that (3) =⇒ (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Finally (4) =⇒ (1) since X is a functional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let X be a sequential space and I be as defined in Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then for a mapping f : X −→ Y, f is continuous if and only if f preserves I-functional convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let V ⊂ Y be an open set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If f −1(V ) is not open then f −1(V ) is not I-functional open (by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then there is a function g : S −→ X which is I-convergent to x ∈ f −1(V ) such that {s ∈ S : g(s) ∈ f −1(V )} ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' So f ◦ g : S −→ Y is I-convergent to f(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' But {s ∈ S : g(s) ∈ f −1(V )} ∈ I =⇒ {s ∈ S : (f ◦ g)(s) ∈ V } ∈ I, which contradicts that V is I-functional open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Converse is obvious.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If f : X −→ Y preserves J -functional convergence for each J ∈ Θ(I) then f preserves I-functional convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If f : X −→ Y is J -functional continuous for each J ∈ Θ(I) then f is I-functional continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' The result follows from Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' There exists a mapping which preserves Ifin-functional conver- gence but is not J -functional continuous for J ∈ Θ(Ifin).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let X = � S(J ) and let Y = S, endowed with discrete topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Define a mapping f : X −→ Y by f(s) = s if s ∈ S and f(∞) = a for some particular a ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' There is no function from S to X which is convergent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Hence f preserves Ifin-functional convergence but is not J -functional continuous since S \\ {a} is J -functional closed and f −1(S \\ {a}) = S is not J -functional closed in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let X = � i∈Λ Xi have the product topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then πi : X −→ Xi is I-functional continuous for each i ∈ Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Follows from Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ 14 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' DAS, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' SAMANTA, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' LIN Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let X = � i∈Λ Xi have the product topology and let Y be a space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then a mapping f : Y −→ X is I-functional continuous if and only if πi ◦ f is so for each i ∈ Λ provided I is maximal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let πi ◦ f be I-functional continuous for each i ∈ Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let g : S −→ Y be I-convergent to y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then πi ◦ f ◦ g : S −→ Xi is I-convergent to (πi ◦ f)(y) for each i ∈ Λ (by Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Using Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3, it follows that f ◦ g is I-convergent to f(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Therefore f is I-functional continuous (by Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Conversely let f be I-functional continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let Uα ⊂ Xi be I-functional open in Xi for some i ∈ Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Now (πi ◦ f)−1(Uα) = f −1(π−1 i (Uα)) where π−1 i (Uα) is I-functional open in X (by Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Consequently f −1(π−1 i (Uα)) is I-functional open in Y as f is I-functional continuous □ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' I-functional quotient and I-functional covering mappings In the literature (see the papers [2,26–28]), the notions of quotient, sequen- tially quotient and sequence covering mappings play an important role in study- ing sequential spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' These notions have been extended using ideal convergence of sequences to I-quotient and I-covering mappings in [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' In this section we intend to further extend these concepts by defining them in terms of functions over an arbitrary set S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let X, Y be two spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Recall that an onto mapping f : X −→ Y is said to be a quotient mapping provided U is open in Y if and only if f −1(U) is open in X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' f is said to be sequentially quotient [2] provided U is sequentially open in Y if and only if f −1(U) is sequentially open in X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' f is said to be I-quotient [36] provided U is I-open in Y if f −1(U) is I-open in X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' f is said to be sequence covering [2] if whenever (yn : n ∈ N) is a sequence in Y converging to y ∈ Y, there exists a sequence (xn : n ∈ N) in X satisfying xn ∈ f −1(yn) for all n ∈ N and x ∈ f −1(y) such that xn converges to x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' f is said to be I-covering [36] if whenever (yn : n ∈ N) is a sequence in Y, I-converging to y ∈ Y, there exists a sequence (xn : n ∈ N) in X satisfying xn ∈ f −1(yn) for all n ∈ N and x ∈ f −1(y) such that (xn : n ∈ N) is I-convergent to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Our next definitions are introduced following this line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let f be a mapping from a space X onto another space Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (i) f is said to be I-functional quotient provided U is I-functional open in Y if and only if f −1(U) is I-functional open in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (ii) f is said to be I-functional covering if for any g : S −→ Y , I-converging to y ∈ Y, there exists a function h : S −→ X satisfying (f ◦ h)(s) = g(s) for all s ∈ S and x ∈ f −1(y) such that h is I-convergent to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES 15 We call f simply functional quotient if we take functional open set instead of I-functional open set in Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let X be a space and Y be a non-empty set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Further let f : X −→ Y be an onto mapping and I be a maximal ideal of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' There exists a strongest topology on Y w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='t which f is I-functional continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let J = {V ⊂ Y : f −1(V ) is I-functional open in X}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then J is a topology on Y w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='t which f is I-functional continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Next let J ′ be any other topology on Y w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='t which f is I-functional continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then for every J ′-functional open set V ⊂ Y, f −1(V ) is I-functional open in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' So for each V ∈ J ′, V ∈ J and hence J ′ ⊂ J as required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ In the above Theorem f is an I-functional quotient mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' A mapping f : X −→ Y is said to be I-functional open provided f(U) is I-functional open in Y whenever U is I-functional open in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Every I-functional continuous, I-functional open onto map- ping is I-functional quotient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let f : X −→ Y and g : Y −→ Z be two mappings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then the following results hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (i) If f and g are I-functional quotient mappings then g ◦ f is an I-functional quotient mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (ii) If f and g ◦ f are I-functional quotient mappings then g is an I-functional quotient mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (i) If g, f are I-functional continuous then g ◦ f is also I-functional con- tinuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Again for any V ⊂ Z, (g ◦ f)−1(V ) = (f −1(g−1(V ))) and therefore g ◦ f is an I-functional quotient mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (ii) Let V ⊂ Z such that g−1(V ) is I-functional open in Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' So (f −1(g−1(V ))) is I-functional open in X as f is an I-functional quotient mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Now (g ◦ f)−1(V ) = (f −1(g−1(V ))) and g ◦ f being I-functional quotient, together imply that V is I-functional open in Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Next let V be I-functional open in Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then as g ◦ f is I-functional continuous and f is I-functional quotient, we have g−1(V ) is I-functional open in Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' I-functional quotient mappings are preserved by finite prod- ucts provided I is a maximal ideal of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let fi : Xi −→ Yi be an I-functional quotient mapping for i = 1, 2, · · · , N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' We define a mapping f : N � i=1 Xi −→ N � i=1 Yi by f(x1, x2, · · · , xN) = (f1(x1), f2(x2), · · · , fN(xN)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' 16 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' DAS, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' SAMANTA, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' LIN By Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3, f is I-functional continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' It is also onto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Next let U ⊂ N � i=1 Yi be such that f −1(U) is I-functional open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then there exists a function g : S −→ N � i=1 Yi, I-convergent to y ∈ U and {s ∈ S : g(s) ∈ U} ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Consequently πi◦g : S −→ Yi is I-convergent to πi(y) for i = 1, 2, · · · , N (by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If {s ∈ S : (πi ◦ g)(s) ∈ πi(U)} ∈ F(I) for each i = 1, 2, · · · , N then {s ∈ S : g(s) ∈ U} = N � i=1 {s ∈ S : (πi ◦ g)(s) ∈ πi(U)} ∈ F(I), which is a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' So there exists i such that {s ∈ S : (πi ◦ g)(s) ∈ πi(U)} ̸∈ F(I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Maximality of I implies that {s ∈ S : (πi ◦ g)(s) ∈ πi(U)} ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Consequently πi(U) is not I-functional open in Yi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Thus f −1 i (πi(U)) is not I-functional open as fi is I-functional quotient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' But (πi ◦ f −1)(U) = f −1 i (πi(U)), which contradicts the fact that f −1(U) is I-functional open (by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ The interrelationships results among I-quotient, quotient and I-covering map- pings that have been studied in [36] can be further generalized as below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let f be a mapping from a space X onto a space Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (i) If f is I-functional continuous and an I-functional covering mapping then f is an I-functional quotient mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (ii) If f is one-to-one and an I-functional quotient mapping then f is an I-functional covering provided I is a maximal ideal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (1) Let f : X −→ Y be an I-functional continuous and I-functional covering mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Suppose U ⊂ Y is such that f −1(U) is I-functional open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If U is not I-functional open there exists a function g : S −→ Y, I-converging to y ∈ U for which {s ∈ S : g(s) ∈ U} ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' As f is I-functional covering there is a function h : S −→ X, I-convergent to x ∈ X such that f ◦ h = g and f(x) = y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Also {s ∈ S : g(s) ∈ U} = {s ∈ S : (f ◦ h)(s) ∈ U} = {s ∈ S : h(s) ∈ f −1(U)} which implies that f −1(U) is not I-functional open in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (ii) Let f : X −→ Y be an one-to-one and I-functional quotient mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let g : S −→ Y be I-convergent to y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' As f is one-to-one and onto, for each s ∈ S there exists an unique xs ∈ X such that f(xs) = g(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Define a function h : S −→ X by h(s) = xs and let f(x) = y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If h is not I-convergent to x, there exists an open set O containing x such that {s ∈ S : h(s) ∈ O} ̸∈ F(I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Since I is maximal, {s ∈ S : h(s) ∈ O} ∈ I, so {s ∈ S : (f ◦ h)(s) ∈ f(O)} ∈ I (as f is one-to-one) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' {s ∈ S : g(s) ∈ f(O)} ∈ I (because f ◦ h = g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Now f(O) is ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES 17 I-functional open in Y as f −1(f(O)) = O is I-functional open in X, and f is I-functional quotient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' This contradicts Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ The next result establishes when an I-functional quotient mapping becomes a quotient mapping and conversely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let f be a continuous mapping from an I-functional space X to another space Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then f is a quotient map if and only if f is I-functional quotient and Y is an I-functional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' First let f : X −→ Y be a quotient mapping and let F ⊂ Y be not closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then f −1(F) is not closed in X as f is a quotient mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' So f −1(F) is not I-functional closed since X is an I-functional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Hence by Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='4 there exists a function g : S −→ f −1(F) which is I-convergent to x ∈ X \\ f −1(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Therefore, f ◦ g : S −→ F is I-convergent to f(x) ∈ Y \\ F and consequently F is not I-functional closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Thus Y is an I-functional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let F ⊂ Y be such that f −1(F) is I-functional closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Now if F is not I-functional closed, F is not closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Thus f −1(F) is not closed (as f is a quotient mapping).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Since X is an I-functional space, f −1(F) is not I-functional closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Conversely let f be an I-functional quotient mapping and let Y be an I-functional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Take F ⊂ Y such that f −1(F) is closed in X and so I-functional closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Since f is an I-functional quotient mapping F is I-functional closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Y is an I-functional space, thus F is closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' This concludes that f is a quotient map- ping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ Generally an I-functional quotient mapping is not quotient and vice-versa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' The next result characterises I-functional spaces in terms of the interrelations of I-functional quotient and quotient mappings, which can be proved in the same way as that of [36, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let X be a space and I be a maximal ideal of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then X is an I-functional space if and only if each I-functional quotient mapping onto X is quotient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let I be a maximal ideal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' An onto mapping p : X −→ Y is I-functional quotient if and only if it has the property that for any space W and a mapping f : Y −→ W, I-functional continuity of f ◦ p implies that of f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' First let p : X −→ Y be I-functional quotient and let f be a mapping from Y to some space W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Take f ◦ p, an I-functional continuous mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let F ⊂ W be I-functional closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then (f ◦p)−1(F) = p−1(f −1(F)) is I-functional closed in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Since p : X −→ Y is I-functional quotient, f −1(F) is I-functional closed in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Conversely let the condition hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Consider F ⊂ Y such that p−1(F) is I-functional closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let W = {0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Define a mapping f : Y −→ W by f(y) = 1 18 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' DAS, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' SAMANTA, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' LIN if y ∈ F and f(y) = 0 if y ∈ Y \\ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' So (f ◦ p)(x) = 1 if x ∈ p−1(F) and (f ◦p)(x) = 0 if x ̸∈ p−1(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' As in Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1, the topology on W is induced by f ◦p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' As (f ◦p)−1({1}) = p−1(F) is I-functional closed in X, {1} is I-functional closed in W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Therefore by I-functional continuity of f, F is I-functional closed in Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Consequently p : X −→ Y is I-functional quotient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ If I has a pseudounion, then the next theorem readily follows from Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If f is a mapping from a space X onto Y and if I has a pseu- dounion then following results hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (1) f is I-functional continuous if and only if f is functional continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (2) f is I-functional quotient if and only if f is functional quotient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let f : X −→ Y be a mapping and let I have a pseudounion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then f is I-functional quotient if and only if for any function g : S −→ Y, I-converging to p there exists a function h : S −→ X which is I-convergent to some x ∈ X so that (f ◦ h)(S) ⊂ g(S) and f(x) = p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let f be a I-functional quotient mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then f is functional quo- tient (by Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let g : S −→ Y be I-convergent to p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Since I has pseudounion, as in Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1, we obtain a function g′ : S −→ Y which is convergent to p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Now f −1(g′(S) \\ {p}) is not functional closed, and so we get a function k : S −→ f −1(g′(S) \\ {p}), converging to a ̸∈ f −1(g′(S) \\ {p}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Now (f ◦ k) : S −→ g′(S) is convergent to f(a) = p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Conversely let the condition hold and let F ⊂ Y so that f −1(F) is an I-functional closed set in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let g : S −→ F be I-convergent to y ∈ Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then there exists an infinite set S′ ⊂ S and g|S′ is convergent to y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let Φ = g|S′ and h : S −→ S′ be an onto mapping satisfying (Φ ◦ h)(s) = g(s) for every s ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then (Φ◦ h) is convergent to y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' So, there is a function k : S −→ f −1((Φ◦ h)(S)) that is I-convergent to x ∈ f −1(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' As f −1(F) is I-functional closed, x ∈ f −1(F) so y ∈ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' I-functional Fr´echet-Uryshon space Recall that a space X is Fr´echet-Uryshon [13] (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', statistically Fr´echet- Uryshon [10], I-Fr´echet-Uryshon [36]) if for each A ⊂ X with x ∈ cl(A) there exists a sequence in A which is convergent (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' statistically convergent, I-convergent) to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' We can extend these notions to I-functional Fr´echet-Uryshon space in the following way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' A space X is called an I-functional Fr´echet-Uryshon space if for each A ⊂ X and each x ∈ cl(A) there exists a function f : S −→ A, I-convergent to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES 19 Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Every I-functional Fr´echet-Uryshon space is an I-functional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' We modify [34, Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1] to show that the converse of the above Propo- sition does not hold for a maximal ideal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Example 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let I be a maximal ideal of S and let X be a non-empty set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' For every a ∈ S, let ga be a function from S to X and take Ga = ga(S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' For fixed a ∈ S assume that ga(x) ̸= ga(y) for x ̸= y ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Take G = {xa : a ∈ S} with xa ̸= xb for a ̸= b ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Consider a point ∞ outside �{Ga : a ∈ S} � G and take X = �{Ga : a ∈ S} � G �{∞}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' The topology on X is defined in the following way: (1) Each point ga(s) is isolated;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (2) For each a ∈ S, an open neighbourhood of xa is taken as a set of the form {xa} ∪ Ma where Ma = {ga(s) : s ∈ F} for some F ∈ F(I);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (3) Each open neighbourhood of ∞ is a set of the form {∞}∪M ∪{Ma : a ∈ M} where M = {xa : a ∈ F} for some F ∈ F(I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' First to show that X is an I-functional space, take Y ⊂ X which is I-functional closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Also let y ∈ cl(Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Now one of the three cases may occur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Case 1: If y ∈ �{Ga : a ∈ S} then {y} is an open neighbourhood of y and y ∈ cl(Y ) implies that y ∈ Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Case 2: If y ∈ G, then y = xa for some a ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If possible let y ̸∈ Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Now if {s ∈ S : ga(s) ∈ Y } ∈ I then U = (Ga\\Y )∪{xa} is an open neighbourhood of xa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Also U ∩Y = ∅ contradicts that y ∈ cl(Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' We define a function h : S −→ Y ∩Ga by h(s) = ga(s) if ga(s) ∈ Y and h(s) = ga(s0) for some fixed s0 ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then h is I-convergent to xa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Because Y is I-functional closed, xa = y ∈ Y, which is a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Therefore y ∈ Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Case 3: Consider the case when y = ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If A = {s ∈ S : xs ∈ Y } ∈ I put V = X \\ �{Ga : a ∈ A}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then V is an open neighbourhood of ∞ and V ∩ Y = ∅, which contradicts ∞ ∈ cl(Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Hence as in Case 2, we obtain a function f : S −→ Y, I-convergent to ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' As Y is I-functional closed, ∞ ∈ Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' To prove that X is not an I-functional Fr´echet-Uryshon space, take ∞ ∈ cl(X \\ ({xa : a ∈ S} ∪ {∞})).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let h : S −→ X \\ ({xa : a ∈ S} ∪ {∞}) be I-convergent to ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Define Aa = h(S) ∩ Ga, a ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If for each a ∈ S, {s ∈ S : ga(s) ∈ h(S)} ∈ I then V = {∞} ∪ {Ga \\ Aa : a ∈ S} is an open set containing ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' But V ∩ h(S) = ∅ and this contradicts that h is I-convergent to ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' So there is a ∈ S such that {s ∈ S : ga(s) ∈ h(S)} ∈ F(I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' As in case 2, a function k : S −→ h(S) ∩ Ga can be constructed which is I-convergent to xa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Next if {s ∈ S : h(s) ∈ Ga} ∈ I then k : S −→ h(S) ∩ Ga can be made to I-converge to a point different from xa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' This contradicts Lemma ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='. Now if {s ∈ S : h(s) ∈ Ga} ∈ F(I) then k can be made to be I-convergent to ∞ ̸= xa, 20 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' DAS, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' SAMANTA, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' LIN which again is a contradiction as X is a Hausdorff space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Considering functions over S instead of functions over N, we restate [36, Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3] as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' A space X is an I-functional Fr´echet-Uryshon space if and only if each subset of X is an I-functional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Subspaces of an I-functional Fr´echet-Uryshon space are I-functional Fr´echet-Uryshon space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' I-functional Fr´echet-Uryshon spaces are preserved by topological sums.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let {Xa : a ∈ Λ} be a disjoint family of I-functional Fr´echet-Uryshon spaces and let X = � a∈Λ Xa be its topological sum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' From Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1 and Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2, X is an I-functional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' For every Y ⊂ X and for every a ∈ Λ, Y ∩Xa is an I-functional Fr´echet-Uryshon space in Xa, and consequently is an I-functional space in Xa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Hence the topological sum � a∈Λ Y ∩ Xa becomes an I-functional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' As Y is an I-functional space, therefore by Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1, X is an I-functional Fr´echet-Uryshon space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ Although the line of proof of the next result is analogous with that of [36, Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='9], it has its own significance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Every space is a continuous and I-functional covering image of an I-functional Fr´echet-Uryshon space provided I is a maximal ideal of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' In general product of two I-functional Fr´echet-Uryshon spaces may not be an I-functional Fr´echet-Uryshon space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' This follows from a modification of an Ex- ample from [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Actually product of two I-functional Fr´echet-Uryshon spaces need not be an I-functional space either.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' A mapping f : X −→ Y is called pseudo-open [1] if for each y ∈ Y and an open subset U in X with f −1(y) ⊂ U, f(U) is a neighbourhood of y in Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let f be a pseudo-open mapping from an I-functional Fr´echet- Uryshon space X onto a space Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If f preserves I-functional convergence then Y is an I-functional Fr´echet-Uryshon space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let f preserve I-functional convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let A ⊂ Y and choose y ∈ cl(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' If f −1({y}) ∩ (cl(f −1(A))) = ∅ then f −1(y) ∈ X \\ (cl(f −1(A))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Since f is pseudo-open, y ∈ int(f(X \\ cl(f −1(A))) = int(f(int(X \\ f −1(A)))) ⊂ int(f(X \\ f −1(A))) = int(Y \\ A) = Y \\ cl(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' So, y ∈ Y \\ cl(A), a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES 21 Therefore, there exists x ∈ f −1({y}) ∩ (cl(f −1(A))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Since X is an I-functional Fr´echet-Uryshon space, there is a function g : S −→ f −1(A), I-convergent to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Hence f ◦ g : S −→ A is I-convergent to f(x) = y, which consequently implies that Y is an I-functional Fr´echet-Uryshon space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' I-functional Fr´echet-Uryshon spaces are preserved by continu- ous pseudo-open mappings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' A space Y is an I-functional Fr´echet-Uryshon space if every mapping onto Y that preserves I-functional convergence is pseudo-open provided I is a maximal ideal of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let Y be a space and let g : S −→ Y be I-convergent to yg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Consider Sg = g(S)∪{yg} and S is the family of all functions on S which are I-convergent in Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' A topology on Sg is defined as in Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='4 and is denoted by SI g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Clearly g is I-convergent to yg in SI g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' In view of Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='4, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1 and Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1, one can conclude that SI g is an I-functional Fr´echet-Uryshon space since every subset of Sg is open or closed in SI g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let Z = � g∈S SI g be the topological sum of {SI g }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' By Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='2, Z is an I-functional Fr´echet-Uryshon space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' We define a mapping f : Z −→ Y such that f|Sg : SI g −→ (Sg, τSg) is the identity mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then f preserves I-functional convergence and therefore by Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='4 Y is an I-functional Fr´echet-Uryshon space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ But suitably modifying [36, Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='7], we can obtain the next theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Let Y be an I-functional Fr´echet-Uryshon space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Then every I-functional covering mapping from a space onto Y is pseudo-open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' We end the section with the following interesting observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' A space X is an I-functional Fr´echet-Uryshon space if and only if every continuous I-functional covering mapping onto X is pseudo-open provided I is a maximal ideal of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' This follows from Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='6, Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='3 and corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' □ References [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Arhangel’skiˇi, Mappings and spaces, Russian Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Surveys, 21 (1966), 115-162.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Boone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Siwice, Sequentially quotient mappings, Czechoslov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='J, 26 (1976), 174-182.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [3] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Bukovsk´y, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Das and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' ˇSupina, Ideal quasi-normal convergence and related notions, Colloq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', 146 (2), (2017), 265 - 281.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [4] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Cheng, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Lin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Lan and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Liu, Measure theory of statistical convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='China Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', 51 (2008), 2285-2303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [5] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Cheng, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Lin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Shi, On real-valued measures of statistical type and their applications to statistical convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', 50 (2009), 116-122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' 22 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' DAS, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' SAMANTA, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' LIN [6] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Das and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Ghosal, On I-Cauchy nets and completeness, Topology Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', 157 (2010), 1152 - 1156.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [7] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Das and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Ghosal, When I-Cauchy nets in complete uniform spaces are I-convergent, Topology Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', 158 (2011), 1529-1533.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [8] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Das, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Sleziak, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Toma, On IK- Cauchy functions, Topology Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', 173 (2014), 9-27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [9] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Das, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' sengupta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Glab, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Bienias, Certain aspects of ideal convergence in topo- logical spaces, Topology Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', accepted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [10] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Di Maio and Lj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Koˇcinac, Statistical convergence in topology, Topology Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', 156 (2008), 28 - 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [11] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Engelking, General Topology, Heldermann Verlag, Berlin, 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [12] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Fast, Sur la convergence statistique, Colloq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', 2 (3-4) (1951), 241- 244.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Franklin, Spaces in which sequences suffice, Fund.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', 57 (1965), 107-115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [14] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Franklin, Spaces in which sequences suffice II, Fund.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', 61 (1967), 51-56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Fridy, On statistical convergence, Analysis, 5 (4) (1985), 301 - 313.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [16] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Georgiou, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Iliadais and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Megaritis and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Prinos, Ideal-convergence classes, Topology Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', 222 (2017), 217-226.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [17] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Givant and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Halmos, Introduction to Boolean Algebra, Undergraduate Texts in Math- ematics, Springer, New York, (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [18] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Gruenhage, Generalized metric spaces, In: K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Kunen and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Vaughan (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' ), Hand- book of Set-theoretic Topology, Amsterdam, North-Holland (1984), 423-501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [19] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Jasinski and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='Reclaw, Ideal convergence of continuous functions, Topology Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', 153, (2006), 3511-3518.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [20] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Kostyrko, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' ˇSal´at and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Wilczynski, I-convergence, Real Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Exch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', 26 (2000/2001), 669-686.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [21] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Kuratowski, Topologie I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' PWN, Warszawa, 1962.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [22] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Lahiri and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Das, I and I∗-convergence in topological spaces, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Bohemica, 130 (2) (2005), 153 - 160.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [23] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Lahiri, Pratulananda Das, On I and I∗ convergence of nets, Real Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Exchange, 33 (2) (2007-2008), 431–442.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [24] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Lin and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Ge, On statistical convergence on cone metric spaces, Topol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', 196 (2015), 641-651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [25] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Liu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Tang and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Lin, Statistically sequential spaces and statistically sequential quotient mappings, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Chin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', 30 (4) (2015), 485-493 (in Chinese).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [26] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Lin and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Yan, Sequence-covering maps of metric spaces, Topology Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', 109 (2001), 301-314.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [27] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Lin, A note on sequence-covering mappings, Acta Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Hungar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', 107 (3) (2005), 187-191.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [28] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Lin and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Yun, Generalized Metric Spaces and Mappings, Atlantis Studies in Math- ematics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' 6, Atlantis Press, Paris (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [29] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Macˆaj, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Sleziak, IK-convergence, Real Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Exchange, 36 (1) (2010-2011), 177–194.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [30] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Michael, A quintuple quotient quest, Gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Topol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', 2 (1972), 91-138.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [31] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Pal, I-sequential topological spaces, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' E Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' 14 (2014), 236-241.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [32] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Renukadevi and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Prakash, I-Fr´echet-Uryshon spaces, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Morav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', 20 (2) (2016), 87-97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [33] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', 2 (1951), 73-74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [34] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Tang and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Lin, Statistical versions of sequential and Fr´echet-Urysohn spaces, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' (China), 44 (2015), 945-954.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' [35] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Zhou and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Zhang, More about the kernel convergence and the ideal convergence, Acta Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Sin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Engl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' 29 (2013), 2367-2372.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' ON CERTAIN GENERALIZED NOTIONS USING I-CONVERGENCE IN TOPOLOGICAL SPACES 23 [36] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Zhou, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Liu and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Lin, On topological spaces defined by I-convergence, Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Iranian Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=', (Accepted), July 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content=' Department of Mathematics, Jadavpur University, Kolkata-32, West Bengal, In- dia Email address: pratulananda@yahoo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='co.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='in, samantaupasana@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='com † Department of Mathematics, Ningde Normal University, Ningde, 352100, Fujian, People’s Republic of China Email address: shoulin60@163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
+page_content='com' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/oNAyT4oBgHgl3EQfy_n2/content/2301.00696v1.pdf'}
diff --git a/pdFQT4oBgHgl3EQfsDaJ/content/tmp_files/2301.13386v1.pdf.txt b/pdFQT4oBgHgl3EQfsDaJ/content/tmp_files/2301.13386v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..c551e4d7fbdce8763afbcf0ce8f454fb26536ebb
--- /dev/null
+++ b/pdFQT4oBgHgl3EQfsDaJ/content/tmp_files/2301.13386v1.pdf.txt
@@ -0,0 +1,673 @@
+Emergence of extreme events in a quasi-periodic oscillator
+Premraj Durairaj1, Sathiyadevi Kanagaraj1, Suresh Kumarasamy1, Karthikeyan Rajagopal1,2
+1Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai-600 069, Tamilnadu, India.
+2Department of Electronics and Communications Engineering, University Centre for
+Research and Development, Chandigarh University, Mohali, 140 413, Punjab, India.
+(Dated: February 1, 2023; Received :)
+Extreme events are unusual and rare large-amplitude fluctuations that occur can unexpectedly in
+nonlinear dynamical systems. Events above the extreme event threshold of the probability distri-
+bution of a nonlinear process characterize extreme events. Different mechanisms for the generation
+of extreme events and their prediction measures have been reported in the literature.
+Based on
+the properties of extreme events, such as rare in the frequency of occurrence and extreme in am-
+plitude, various studies have shown that extreme events are both linear and nonlinear in nature.
+Interestingly, in this work, we report on a special class of extreme events which are nonchaotic and
+nonperiodic. These nonchaotic extreme events appear in between the quasi-periodic and chaotic
+dynamics of the system. We report the existence of such extreme events with various statistical
+measures and characterization techniques.
+PACS numbers: 05.45.-a
+Extreme events are unanticipated, rare events that oc-
+cur in many natural and engineering systems. Extreme
+events (EE) can exist in various forms, including floods,
+cyclones, droughts, pandemics, power outages, material
+ruptures, explosions, chemical contamination, and stock
+market crashes, among others [1]. Such events have a
+severe impact on real-world situations. Thus, it is nec-
+essary to understand the relevant mechanism and its
+generic characteristics for the occurrence of EE in order
+to prevent such EE. As a result, the researchers focused
+on exploring the EE in diverse nonlinear oscillators [2–5],
+maps [6], and neural networks [7]. Further, the extreme
+events have also been identified in a super-fluid helium
+[8], plasma[9], optical fibers [10], lasers [11], and capillary
+wave [12] etc.
+However, depending on the characteristics of a dynam-
+ical system, the occurrence of EE has been discovered
+under a variety of mechanisms, including internal crises,
+on-off intermittency, blowout bifurcations, stick-slip bi-
+furcations, and so on [6, 11, 13–15]. For instance, prior
+studies reveal that EE can arise as a result of the abrupt
+expansion and destruction of chaotic attractors produced
+by internal or external crises [11, 14]. Further, interior
+crises are found to be a critical mechanism for the oc-
+currence of EE, when the trajectory of chaotic attractors
+reaches the stable manifold of a saddle or unstable peri-
+odic orbit, which increases the size of the chaotic attrac-
+tors. Such a sudden expansion of the chaotic attractor
+may result in EE. In addition, Pomeau-Manneville in-
+termittency is identified as another mechanism for the
+existence of EE. Such intermittency can occur when the
+periodic oscillations are interspersed by chaotic bursts,
+which further results in very large amplitude events. EEs
+can also exist through the following other mechanisms.
+The sliding bifurcation near the discontinuous boundary
+can cause EE. The trajectory of the attractors might hop
+between coexisting attractors due to noise in multi-stable
+systems, which can cause unusually large events. This is
+referred to as noise-induced intermittency. The trajec-
+tory of the attractors in coupled systems departs from
+the synchronization manifold to the transverse direction
+of the manifold. During such a transition, a synchroniza-
+tion error of dynamics can show zero or nonzero and is
+referred to as on-off intermittency [16].
+Moreover, previous studies discovered that extreme or
+rare events can occur as a result of chaotic or stochas-
+tic processes [16].
+In particular, the appearance of
+EE has been reported in micro-electromechanical can-
+tilevers with discontinuous boundaries and diode lasers
+with phase-conjugate feedback [17, 18]. By applying the
+harmonic pump modulation to the fiber laser the emer-
+gence of Rogue waves has been identified [2, 19–21]. The
+EE in stochastic transport on networks has been demon-
+strated using multiple random walks on complex net-
+works [23, 24]. Now the interesting question is whether
+extreme events can be induced by nonchaotic signals.
+In literature, a study has shown nonchaotic and non-
+periodic have been well studied in the name of strange
+nonchaotic dynamics, which arises during the attractor
+transition from quasi-periodicity to chaos [31]. One can
+find the generation mechanisms of these strange non-
+chaotic attractors in literature [25, 26, 31]. The results
+in the present work show that similar to the strange
+nonchaotic dynamics, the nonperiodic and nonchaotic
+dynamics show large-amplitude extreme events.
+The
+present study opens a new area of study where the non-
+chaotic nonlinear process can also lead to extreme events
+and the same has not been found reported.
+To show the nonchaotic extreme events, we consider
+the Morse Oscillator (MO) which is used to describe the
+motion of diatomic molecules. Importantly, the MO has
+made substantial contributions in the fields of classical,
+semi-classical, and quantum mechanics [27, 28].
+The
+MO was used for photo-dissociation molecules without
+any damping.
+In the presence of driving and damp-
+ing, the MO was exploited for multi-photon excitation
+arXiv:2301.13386v1 [physics.data-an] 31 Jan 2023
+
+2
+of molecules, pumping the local mode of polyatomic
+molecules [29]. We consider the quasi-periodically forced
+MO and its dynamical equation can be written as
+˙x = y
+˙y = fsin(ω1t) + gsin(ω2t) + e−2x − e−x − γy
+(1)
+where x, and y are the state variables of the system and
+γ is a damping parameter. The amplitudes of the first
+and second force are represented by f and g and the
+corresponding frequencies are denoted by ω1 and ω2, re-
+spectively.
+FIG. 1: (a) Time evolution of xn for the nonchaotic dynamics
+with forcing amplitudes as (a) f = g = 0.255, and (b) f =
+g = 0.278. The xn is the nth local peaks of the variable x.
+The horizontal black dot-dashed and red dashed lines are the
+critical threshold lines defining the extreme events (refer to
+the text for the meaning of N and A). (c) The probability
+distribution function corresponds to the extreme events and
+(d) return interval (R) (inter-event interval) with respect to
+the probability of recurrence times (PR) of the EE for (b).
+The filled circles and solid lines in (d) represent the numerical
+data and the corresponding power-law fit. We fixed the other
+parameter values as γ = 0.35, ω1 = 0.3, and ω2 = (
+√
+5−1
+2
+).
+To manifest the existence of extreme events, we first
+depicted the time evolution of the x-variable in Fig. 1(a)
+and Fig. 1(b) by fixing the amplitude of the first and sec-
+ond forcing as f = g = 0.255 and f = g = 0.278. We
+observe from Fig. 1(a) that some of the oscillation(event)
+has larger amplitudes, while the rest of them take lower
+amplitudes. To check the larger amplitude oscillations
+satisfy the extreme events criteria defined in the litera-
+ture, we use the following relation:
+xEE =< xn > +Nσxn,
+(2)
+where xEE is the critical amplitude threshold and N is a
+multiplication factor. The mean and standard deviation
+of the variable x is represented by < xn > and σxn, re-
+spectively. Here, the xn (an event) are the local peaks
+of the variable x. An event or a local peak can satisfy
+extreme event criteria if it has a value higher than the
+critical threshold defined by Eq. (2) with N ≥ 4. To con-
+firm the presence of EE, we plotted the critical threshold
+on the time series for N = 5 and N = 4 in Figs. 1(a)
+and 1(b). We used two different N values depending on
+the time series. Though the choice of N is arbitrary, we
+set the minimum N value as 4 in the present study. We
+also find the critical value of Nmax for a range of each f
+value – the details will be discussed below. In both cases,
+we can see that some of the large amplitude events cross
+the threshold line, confirming the presence of EE. Since
+the choice of N is arbitrary in the previous criterion, we
+use another criterion defined by the abnormality index;
+An = Hfn
+H1/3 [17], where Hfn is the difference between the
+maximum height of the event n and the mean height of
+its population, Hfn = xn − ⟨xn⟩n and H1/3 is the av-
+erage value among the highest one-third values of Hfn.
+If an event xn has abnormality An greater than 2 then
+the event is termed an extreme event. We find that both
+cases in Figs. 1(a) and 1(b) satisfy the above criterion
+with abnormality index A = 3 denoted by a dashed hori-
+zontal line in the plots. It is evident that a few rare large
+amplitude events cross the abnormality index line. We
+computed the probability distribution function (PDF) in
+Fig. 1(c) for the time series shown in Fig. 1(b). The EE
+critical threshold at N = 4 is plotted as a vertical dashed
+line on the PDF diagram. In the plot, the events with
+a finite probability above the critical threshold line char-
+acterize the extreme events. We can plot similar proba-
+bility distribution for Fig. 1(a), however, for simplicity,
+we have plotted the PDF corresponding to Fig. 1(b).
+The above analysis shows that the observed behavior
+satisfies the extreme events criterion in the amplitudes.
+Another important characteristic of extreme events is
+an inter-event interval. The inter-event interval defines
+the frequency occurrence of the events and should not
+have discrete values (discrete values mean the periodic
+occurrence of events), rather it should have a distribu-
+tion over a range. In order to examine the distribution
+of events in the observed time series, we find inter-event
+intervals (R) between successive extreme events. Subse-
+quently, we find the probability of such inter-event in-
+tervals (PR) as shown in Fig. 1(d). Inter-event interval
+and its probability obey power-law relations as given by
+log10(PR) = a log10(R)b, where a and b are constants
+with values a = −0.006 and b = 2.96, respectively. The
+obtained numerical values are depicted in a filled circle,
+
+(a)
+7.0
+N=5
+A=3
+X3.5
+0.0
+(b)
+2.30×106
+4.60×106
+7.0
+N=4
+X 3.5
+0.0
+0
+3.50×105
+7.00×105
+(c)
+n
+(d)
+-2
+N= 4:
+log R vs. log PR
+0.1
+Power law
+PDF
+PR
+0.01
+log
+4
+0.001
+0.0001
+6
+0.0
+3.5
+7.0
+6.9
+7.9
+8.9
+9.7
+x.
+log R3
+and a continuous line shows the corresponding power-
+law fit. The route for the emergence of EE and its tran-
+sitions is further estimated below using Lyapunov ex-
+ponents (LE), amplitude maxima Xmax, critical factor
+Nmax, and two-parameter analysis.
+FIG. 2:
+(a) The two-parameter bifurcation diagram in (f, g)
+space. Using the range of Lyapunov exponents (λ) (denoted
+by the color bar) the dynamical regions are marked. (b) The
+maximum Lyapunov exponents as a function of forcing am-
+plitude f(= g), (c) maximum amplitude of the events xmax
+(red) and the corresponding Nmax (Eq. 3) of the event (blue)
+by varying the magnitude of f(= g). The black line repre-
+sents the extreme events critical threshold (xEE) drawn from
+Eq. (2) for N=4. The other parameter values are fixed as the
+same as in Fig. 1.
+To illustrate the global dynamical transition of the at-
+tractors and route of the EE, the two-parameter diagram
+is drawn in (f, g) space using the maximum LE as shown
+in Fig. 2(a). The range of LE (shown in the color bar)
+denotes the emergence of quasi-periodic, nonchaotic, and
+chaotic attractors in the respective parameters of f and
+g. If the forcing amplitudes f and g are small, attractors
+have a maximum negative LE, indicating the presence of
+a quasi-periodic (QP) attractor region. To better com-
+prehend QP attractors, we plotted their time-evolution
+and phase portrait trajectories in Supplementary Mate-
+rial Fig. S1 a(i, ii) for f = g = 0.23, which show their
+bounded nature. Thus, the EE critical threshold for this
+attractor is greater than the amplitude of QP attrac-
+tors.
+By increasing f and g values, the QP attractor
+transits to a chaotic (CH) attractor via strange and non-
+chaotic dynamics in which the LE takes the values from
+negative (near zero) to positive. To distinguish between
+the strange nonchaotic and chaotic attractors, the time-
+evolution and phase portrait trajectories are shown in
+Figs. S1 b(i,ii) and Figs. S1 c(i,ii) in the supplementary
+materials by fixing f = g = 0.278 and f = g = 0.33,
+respectively.
+Also, the frequency spectra can be used
+to distinguish quasiperiodic, SNA and chaos. We have
+the frequency spectrum analysis in the Supplementary
+material in Fig. S4 (a-c). When compared to the chaotic
+attractor (which has a greater number of large ampli-
+tude oscillations), we found the SNA shows fewer large
+amplitude oscillations. The supplemental material’s Fig.
+S1 can be consulted for more information. Furthermore,
+to show the dynamical transitions clearly, we displayed
+maximum Lyapunov exponents in Fig. 2(b) by keeping
+the parameter (f = g) and varying it along the diagonal
+dashed line shown in Fig. 2(a). In Fig. 2(b), the maxi-
+mum LE is illustrated as a function of forcing amplitudes
+f and g (f = g) in the range (0.23 < f(= g) < 0.32). We
+observe that when the forcing amplitudes are minimum
+in the mentioned range, LE takes negative values, in-
+dicating quasi-periodic dynamics. While increasing the
+parameter, the transition of LE from negative to posi-
+tive values indicates the dynamical transition of quasi-
+periodic behavior to chaotic behavior. Furthermore, we
+found that the negative values of LE near-zero exhibit
+strange nonchaotic behavior; extreme events are seen in
+this region. The literature has shown that the EEs occur
+under chaotic dynamics [16] through distinct routes and
+stochastic processes like stochastic transport on networks
+has been demonstrated using multiple random walks on
+complex networks [23, 24]. Among the various routes, the
+occurrence of EEs in nonchaotic dynamics is new and it
+has not been reported to the best of our knowledge.
+To validate the occurrence of EEs in the SNA region,
+we find the maximum amplitude xmax, extreme event
+threshold xEE, and maximum value of N (Nmax) of a
+given time series. In Fig. 2(c), we have plotted the above
+quantities by varying the magnitude of f = g. The plot
+explains the regime of extreme events in the following
+way. During the non-extreme regime, the critical thresh-
+old xEE is larger than the xmax.
+It means that the
+threshold is larger than the large amplitude oscillations
+and does not satisfy the extreme events criterion. While
+in the EE regime, the xmax is larger than the EE crit-
+ical threshold xEE (shaded EE region).
+This explains
+that extreme events have a larger amplitude than the ex-
+treme event criterion. Note that the SNA regime in the
+
+(a)
+0.32
+0.02
+0.0
+0.29
+0.02
+0.04
+0.26
+-0.06
+0.08
+0.23
+0.23
+0.26
+0.29
+0.32
+-0.10
+(b) 0.03
+Chaotic
+0.00
+-0.03
+Quasi-Periodic
+SNA
+-0.06
+0.23
+0.26
+0.29
+0.32
+12
+(c)
+Chaotic
+10
+E
+XEE
+8
+Quasi-Periodic
+Xmax
+6
+Z
+N=5.6114
+N=4
+4
+N.
+2
+0.23
+0.26
+0.29
+0.324
+parameter range f ∈ 0.28
+to 0.2912 shows no extreme
+events. As we discussed above, we fixed N = 4 as an
+arbitrary constant from the literature [30]. However, the
+maximum value of the N can be determined by rewriting
+Eq. (2), as
+Nmax = max(xEE) − ⟨xn⟩
+σxn
+.
+(3)
+In the SNA region shown in Fig. 2(c), we found that the
+SNA
+QP1
+QP2
+QP3
+x0
+y0
+FIG. 3: Basin of attraction for f = g = 0.278. QP1, QP2,
+and QP3 are the quasi-periodic attractor-1, quasi-periodic
+attractor-2, and quasi-periodic attractor-3, respectively. SNA
+represents the strange nonchaotic attractor.
+We fixed the
+other parameter values the same as in Fig. 1.
+multiplication factor taking values between 4 ≤ Nmax ≤
+5.611 when the forcing amplitudes in the range from
+0.256 to 0.28 denoted by shaded transparent pattern.
+The plot of Nmax shows that depending on the parameter
+choice, the arbitrary value can be chosen N∈ {4, 5.611}.
+Thus above results satisfy all the criteria proposed for
+the extreme events and justify the existence of EEs in
+the SNA regime.
+As we discussed earlier, the observed EEs are non-
+chaotic and nonperiodic. At the same time, the param-
+eters corresponding to the strange nonchaotic EEs show
+multiple stable behaviors. The multi-stable behavior can
+be seen from the basins of attraction drawn for a range
+of initial conditions. Figure 3 is drawn by varying the
+initial states x0 and y0 of the system for the parameters
+given in Fig. 1 caption. We can see that basin of non-
+chaotic and nonperiodic behavior or SNA is embedded
+within the basin of quasi-periodic dynamics. Outside the
+SNA basin, we have found three different basins which
+contain quasi-periodic attractors.
+All the three differ-
+ent quasi-periodic attractor basins and the SNA basin,
+denoted by QP1, QP2, QP3, and SNA respectively in
+Fig. 3. In supplemental material Fig. (S2), each of the
+quasi-periodic attractors is depicted. Figure 3 shows that
+extreme events occur for specific values of initial condi-
+tions. The size of these basins changes as we vary the
+parameter within the EEs regime marked in Fig. 2.
+EE
+NEE
+f
+g
+FIG. 4: Two parameter phase diagram in (f, g) space (plot-
+ted using Eq. 2 for fixed initial condition (x0, y0) = (0.3, 0.2)),
+to distinguish the existence of extreme events (EE) and non-
+extreme events (NEE), respectively. We fixed the other pa-
+rameter values as the same as in Fig. 1.
+Similarly, to determine the regime of the extreme
+event in the parametric space between f and g, a two-
+parameter diagram is drawn as shown in Fig. 4.
+The
+white regime in the plot shows the extreme events for the
+combinations of parameter (f, g) separated with the help
+of Eq.
+2 from the non-extreme events (NEE– denoted
+by blue color). By comparing Fig. 2(a) with Fig. 4 we
+can say that EEs occur in the SNA region (however some
+of the SNA parameter regime may not contain EEs).
+-20
+30
+-60
+10
+80
+lm[x(α,N)]
+Re[x(α,N)]
+(b)
+0
+2.7
+5.5
+3
+5
+7
+log10|x(α,N)|2
+log10 N
+(a)(a)
+(b)
+FIG. 5:
+Singular continuous spectrum for fixing the forc-
+ing amplitudes f, g = 0.278.
+(a) The logarithmic plot of
+|x(α, N)|2 against N.
+The red and black lines denote the
+numerical values and the corresponding power-law fit.
+(b)
+Fractal path in the complex plane of x. The other parameter
+values are defined as γ = 0.35, ω1 = 0.3, ω2 = (
+√
+5−1
+2
+).
+To show the generality of the existence of EEs in the
+SNA regime, we present the regime of EEs for γ = 0.4
+in the supplementary material Figs. S3 (a),(b). This re-
+sult validates the presence of strange nonchaotic extreme
+events in the selected parameter regime. In the following
+section, we characterize the observed behavior as strange
+and nonchaotic in nature. For this purpose, we perform
+
+10
+5
+0
+-5
+-10
+-15
+-20
+-5
+0
+5
+10
+15
+200.32
+0.29
+0.26
+0.23
+0.23
+0.26
+0.29
+0.325
+singular continuous spectrum analysis and distribution
+of finite-time Lyapunov exponents.
+To validate the strange nonchaotic dynamics, we plot
+singular continuous spectrum [31] in Fig. 5 using par-
+tial Fourier sum of the signal x given by X(α, N) =
+�N
+m=1 xme2πimα, where α is proportional to the exter-
+nal frequency (ω1) and N is the length of the time series.
+The red and black lines show the singular continuous
+spectrum and the corresponding power-law fit. When N
+is considered as time, |X(α, N)|2 grows with N, that is
+|X(α, N)|2 ∼ N β, where β is the slope. When the signal
+possesses the properties of strange nonchaotic dynamics,
+the corresponding slope values lie between 1 < β < 2.
+For this case, the slope value β = 1.576 confirms the exis-
+tence of strange nonchaotic dynamics shown in Fig. 5(a).
+The corresponding path of Brownian motion with fractal
+structure in complex [Re(x), Im(x)] plane also confirms
+the strange nonchaotic dynamics in Fig. 5(b).
+ 0.0001
+ 0.001
+ 0.01
+ 0.1
+ 1
+-0.08 -0.06 -0.04 -0.02
+ 0
+ 0.02 0.04
+P
+–λ
+FIG. 6: Finite time Lyapunov exponent with respect to prob-
+ability distribution function (PDF) for SNAs by fixing the
+three distinct finite time periods T = 500 (red line), T = 1000
+(blue dashed line), and T = 1500 (black dotted line) with
+f, g = 0.278.
+The strange nonchaotic dynamics are also validated
+using another statistical characterization known as the
+distribution of finite-time Lyapunov exponents. The dis-
+tribution takes both positive and negative values, but
+the area under the curve is maximum in the negative
+regime for strange nonchaotic dynamics. Figure 6 plot-
+ted for three different finite time intervals T = 500, 1000,
+and 1500, the distribution has a large negative region
+compared to the positive region showing nonchaotic dy-
+namics. From these analyses, the observed dynamics are
+strange (nonperiodic) as well as nonchaotic, which also
+shows the large amplitude and rare events.
+The present letter shows a mechanism of the emergence
+of extreme events in a quasi-periodically forced Morse os-
+cillator. As a function of forcing amplitude, we found the
+transition from quasi-periodic (QP) to chaotic (CH) at-
+tractor via strange nonchaotic extreme events. During
+such extreme event dynamics, we found a long excur-
+sion of trajectories that are away from the bounded at-
+tractor, while the chaotic attractors show many higher
+amplitude peaks. To confirm the existence of EEs, we
+estimated the critical threshold, and it is observed that
+the higher amplitude peaks in the EE cross the critical
+threshold while the peaks in the CH and QP attractor do
+not. The dynamical transitions of the attractors and the
+occurrence of nonchaotic EE dynamics are manifested
+through maximum Lyapunov exponents. The observed
+extreme events are further validated using the probabil-
+ity distribution and return interval (inter-event interval)
+with respect to the probability of recurrence times of the
+EE. Extreme events are abnormal and unexpected events
+that occur in many natural and man-made systems. Un-
+derstanding the mechanism or route can help to antici-
+pate the onset of EEs. Early works on extreme events
+show the chaotic nature of the extreme events because
+of the rare and extreme amplitude properties of extreme
+events. The present study shows an unknown emergence
+of extreme events that are nonchaotic and nonperiodic
+extreme events. This finding shed light on the new direc-
+tion where extreme events can happen as a nonchaotic
+process.
+We gratefully acknowledge this work is funded by
+the Center for Nonlinear Systems, Chennai Institute
+of
+Technology
+(CIT),
+India,
+vide
+funding
+number
+CIT/CNS/2022/RP-016.
+[1] S.
+Albeverio,
+V.
+Jentsch
+and
+H.
+Kantz,
+Extreme
+Events in Nature and Society, The Frontiers Collection
+(Springer, Berlin, 2006).
+[2] R. H¨ohmann, U. Kuhl, H. J. St¨ockmann, L. Kaplan and
+E. J. Heller, Phys. Rev. Lett., 104, (2010) 093901.
+[3] J. J. Metzger, R. Fleischmann and T. Geisel, Phys. Rev.
+Lett., 112, (2014) 203903.
+[4] A. Mathis, L. Froehly, S. Toenger, F. Dias, G. Genty and
+J. M. Dudley, Sci. Rep., 5, (2015) 12822.
+[5] S. Birkholz, C. Br´ee, I. Veseli´c, A. Demircan and G.
+Steinmeyer, Sci. Rep., 6, (2016) 35207.
+[6] D. Premraj, K. Suresh, S. A. Pawar, L. Kabiraj, A.
+Prasad, and R. I. Sujith, EPL, 134, (2021) 34006.
+[7] A. Saha, and U. Feudel, Phys. Rev. E, 5, (2017) 062219.
+[8] A. N. Ganshin, V. B. Efimov, G. V. Kolmakov, L. P.
+Mezhov-Deglin and P. V. E. McClintock, Phys. Rev.
+Lett., 101, (2008) 065303.
+[9] H. Bailung, S. K. Sharma and Y. Nakamura, Phys. Rev.
+Lett., 107, (2011) 255005.
+[10] D. R. Solli, C. Ropers, P. Koonath and B. Jalali, Nature,
+450, (2007) 1054.
+[11] J. Zamora-Munt, B. Garbin, S. Barland, M. Giudici, J.
+
+6
+R. Rios Leite, C. Masoller and J. R. Tredicce, Phys. Rev.
+A, 87, (2013) 035802.
+[12] M. Onorato, T. Waseda, A. Toffoli, L. Cavaleri, O. Gram-
+stad, P. A. E. M. Janssen, T. Kinoshita, J. Monbaliu, N.
+Mori, A. R. Osborne and M. Serio, Phys. Rev. Lett. 102,
+(2009) 114502.
+[13] S. C. Venkataramani, B. R. Hunt, E. Ott, D. J. Gauthier
+and J. C. Bienfang, Phys. Rev. Lett., 77, (1996) 5361.
+[14] C. Grebogi, E. Ott, F. Romeiras and J. A. Yorke, Phys.
+Rev. A, 36, (1987) 5365.
+[15] J. A. Reinoso, J. Zamora-Munt, and C. Masoller, Phys.
+Rev. E, 87, (2013) 062913.
+[16] S. N. Chowdhury, A. Ray, S. K. Dana and D. Ghosh,
+Phys. Rep., 966, (2022) 1-52.
+[17] E. Mercier, A. Even, E. Mirisola, D. Wolfersberger, and
+M. Sciamanna, Phys. Rev. E, 91, 042914 (2015).
+[18] K. Suresh, and A. N. Pisarchik, Phys. Rev. E, 98, (2018)
+032203.
+[19] A.
+N.
+Pisarchik,
+R.
+Jaimes-Re´ategui,
+R.
+Sevilla-
+Escoboza, G. Huerta-Cuellar, and M. Taki, Phys. Rev.
+Let., 107, 274101 (2011).
+[20] A.N. Pisarchik, A.E. Hramov, Multistability in Physical
+and Living Systems: Characterization and Applications
+(Springer, 2022).
+[21] F. T. Arecchi, U. Bortolozzo, A. Montina, and S. Resi-
+dori, Phys. Rev. Lett., 106, 153901 (2011).
+[22] A. S. Pikovsky, U. Feudel and S. P. Kuznetsov, Strange
+nonchaotic attractors:
+Dynamics between order and
+chaos in quasi periodically forced systems (World Sci-
+entific (2006)).
+[23] V. Kishore, M. S. Santhanam, and R. E. Amritkar, Phys.
+Rev. let., 106, 188701 (2011).
+[24] A. Kumar, S. Kulkarni and M. S. Santhanam, Chaos, 30,
+043111, (2020).
+[25] A. Prasad, S. S. Negi and R. Ramaswamy, Inter. J. Bifur.
+and Chaos, 11, (2001) 291-309.
+[26] D. Premraj, K. Suresh, J. Palanivel and K. Thamil-
+maran, Communica. Non. Scie. Numer. Simula., 50,
+(2017) 103.; D. Premraj, K. Suresh, K. Thamilmaran and
+K. Rajagopal, The European Phys. J. Spe. Top., (2022)
+1-7.
+[27] G. C. Lie and J. M. Yuan, The J. chem. phys., 84, (1986)
+5486.
+[28] W. Knop and W. Lauterborn, The J. chem. phys., 93,
+(1990) 3950.
+[29] S. Zdravkovic, A. N. Bugay and A. Y. Parkhomenko,
+Nonlinear Dyn., 90, (2017) 2841.
+[30] C. Bonatto and A. Endler, Phys. Rev. E, 96, (2017)
+012216.
+[31] A. S. Pikovsky and U. Feudel, J. Phys. A, 27, (1994)
+5209.
+
diff --git a/pdFQT4oBgHgl3EQfsDaJ/content/tmp_files/load_file.txt b/pdFQT4oBgHgl3EQfsDaJ/content/tmp_files/load_file.txt
new file mode 100644
index 0000000000000000000000000000000000000000..f2535af3d4135f1cb985dae1dd6501f3968a59a1
--- /dev/null
+++ b/pdFQT4oBgHgl3EQfsDaJ/content/tmp_files/load_file.txt
@@ -0,0 +1,587 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf,len=586
+page_content='Emergence of extreme events in a quasi-periodic oscillator Premraj Durairaj1, Sathiyadevi Kanagaraj1, Suresh Kumarasamy1, Karthikeyan Rajagopal1,2 1Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai-600 069, Tamilnadu, India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 2Department of Electronics and Communications Engineering, University Centre for Research and Development, Chandigarh University, Mohali, 140 413, Punjab, India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' (Dated: February 1, 2023;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Received :) Extreme events are unusual and rare large-amplitude fluctuations that occur can unexpectedly in nonlinear dynamical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Events above the extreme event threshold of the probability distri- bution of a nonlinear process characterize extreme events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Different mechanisms for the generation of extreme events and their prediction measures have been reported in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Based on the properties of extreme events, such as rare in the frequency of occurrence and extreme in am- plitude, various studies have shown that extreme events are both linear and nonlinear in nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Interestingly, in this work, we report on a special class of extreme events which are nonchaotic and nonperiodic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' These nonchaotic extreme events appear in between the quasi-periodic and chaotic dynamics of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' We report the existence of such extreme events with various statistical measures and characterization techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' PACS numbers: 05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='-a Extreme events are unanticipated, rare events that oc- cur in many natural and engineering systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Extreme events (EE) can exist in various forms, including floods, cyclones, droughts, pandemics, power outages, material ruptures, explosions, chemical contamination, and stock market crashes, among others [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Such events have a severe impact on real-world situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Thus, it is nec- essary to understand the relevant mechanism and its generic characteristics for the occurrence of EE in order to prevent such EE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' As a result, the researchers focused on exploring the EE in diverse nonlinear oscillators [2–5], maps [6], and neural networks [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Further, the extreme events have also been identified in a super-fluid helium [8], plasma[9], optical fibers [10], lasers [11], and capillary wave [12] etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' However, depending on the characteristics of a dynam- ical system, the occurrence of EE has been discovered under a variety of mechanisms, including internal crises, on-off intermittency, blowout bifurcations, stick-slip bi- furcations, and so on [6, 11, 13–15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' For instance, prior studies reveal that EE can arise as a result of the abrupt expansion and destruction of chaotic attractors produced by internal or external crises [11, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Further, interior crises are found to be a critical mechanism for the oc- currence of EE, when the trajectory of chaotic attractors reaches the stable manifold of a saddle or unstable peri- odic orbit, which increases the size of the chaotic attrac- tors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Such a sudden expansion of the chaotic attractor may result in EE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' In addition, Pomeau-Manneville in- termittency is identified as another mechanism for the existence of EE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Such intermittency can occur when the periodic oscillations are interspersed by chaotic bursts, which further results in very large amplitude events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' EEs can also exist through the following other mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The sliding bifurcation near the discontinuous boundary can cause EE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The trajectory of the attractors might hop between coexisting attractors due to noise in multi-stable systems, which can cause unusually large events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' This is referred to as noise-induced intermittency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The trajec- tory of the attractors in coupled systems departs from the synchronization manifold to the transverse direction of the manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' During such a transition, a synchroniza- tion error of dynamics can show zero or nonzero and is referred to as on-off intermittency [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Moreover, previous studies discovered that extreme or rare events can occur as a result of chaotic or stochas- tic processes [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' In particular, the appearance of EE has been reported in micro-electromechanical can- tilevers with discontinuous boundaries and diode lasers with phase-conjugate feedback [17, 18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' By applying the harmonic pump modulation to the fiber laser the emer- gence of Rogue waves has been identified [2, 19–21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The EE in stochastic transport on networks has been demon- strated using multiple random walks on complex net- works [23, 24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Now the interesting question is whether extreme events can be induced by nonchaotic signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' In literature, a study has shown nonchaotic and non- periodic have been well studied in the name of strange nonchaotic dynamics, which arises during the attractor transition from quasi-periodicity to chaos [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' One can find the generation mechanisms of these strange non- chaotic attractors in literature [25, 26, 31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The results in the present work show that similar to the strange nonchaotic dynamics, the nonperiodic and nonchaotic dynamics show large-amplitude extreme events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The present study opens a new area of study where the non- chaotic nonlinear process can also lead to extreme events and the same has not been found reported.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' To show the nonchaotic extreme events, we consider the Morse Oscillator (MO) which is used to describe the motion of diatomic molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Importantly, the MO has made substantial contributions in the fields of classical, semi-classical, and quantum mechanics [27, 28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The MO was used for photo-dissociation molecules without any damping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' In the presence of driving and damp- ing, the MO was exploited for multi-photon excitation arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='13386v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='data-an] 31 Jan 2023 2 of molecules, pumping the local mode of polyatomic molecules [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' We consider the quasi-periodically forced MO and its dynamical equation can be written as ˙x = y ˙y = fsin(ω1t) + gsin(ω2t) + e−2x − e−x − γy (1) where x, and y are the state variables of the system and γ is a damping parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The amplitudes of the first and second force are represented by f and g and the corresponding frequencies are denoted by ω1 and ω2, re- spectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 1: (a) Time evolution of xn for the nonchaotic dynamics with forcing amplitudes as (a) f = g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='255, and (b) f = g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='278.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The xn is the nth local peaks of the variable x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The horizontal black dot-dashed and red dashed lines are the critical threshold lines defining the extreme events (refer to the text for the meaning of N and A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' (c) The probability distribution function corresponds to the extreme events and (d) return interval (R) (inter-event interval) with respect to the probability of recurrence times (PR) of the EE for (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The filled circles and solid lines in (d) represent the numerical data and the corresponding power-law fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' We fixed the other parameter values as γ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='35, ω1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='3, and ω2 = ( √ 5−1 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' To manifest the existence of extreme events, we first depicted the time evolution of the x-variable in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 1(a) and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 1(b) by fixing the amplitude of the first and sec- ond forcing as f = g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='255 and f = g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='278.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' We observe from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 1(a) that some of the oscillation(event) has larger amplitudes, while the rest of them take lower amplitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' To check the larger amplitude oscillations satisfy the extreme events criteria defined in the litera- ture, we use the following relation: xEE =< xn > +Nσxn, (2) where xEE is the critical amplitude threshold and N is a multiplication factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The mean and standard deviation of the variable x is represented by < xn > and σxn, re- spectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Here, the xn (an event) are the local peaks of the variable x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' An event or a local peak can satisfy extreme event criteria if it has a value higher than the critical threshold defined by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' (2) with N ≥ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' To con- firm the presence of EE, we plotted the critical threshold on the time series for N = 5 and N = 4 in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 1(a) and 1(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' We used two different N values depending on the time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Though the choice of N is arbitrary, we set the minimum N value as 4 in the present study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' We also find the critical value of Nmax for a range of each f value – the details will be discussed below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' In both cases, we can see that some of the large amplitude events cross the threshold line, confirming the presence of EE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Since the choice of N is arbitrary in the previous criterion, we use another criterion defined by the abnormality index;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' An = Hfn H1/3 [17], where Hfn is the difference between the maximum height of the event n and the mean height of its population, Hfn = xn − ⟨xn⟩n and H1/3 is the av- erage value among the highest one-third values of Hfn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' If an event xn has abnormality An greater than 2 then the event is termed an extreme event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' We find that both cases in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 1(a) and 1(b) satisfy the above criterion with abnormality index A = 3 denoted by a dashed hori- zontal line in the plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' It is evident that a few rare large amplitude events cross the abnormality index line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' We computed the probability distribution function (PDF) in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 1(c) for the time series shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 1(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The EE critical threshold at N = 4 is plotted as a vertical dashed line on the PDF diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' In the plot, the events with a finite probability above the critical threshold line char- acterize the extreme events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' We can plot similar proba- bility distribution for Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 1(a), however, for simplicity, we have plotted the PDF corresponding to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 1(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The above analysis shows that the observed behavior satisfies the extreme events criterion in the amplitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Another important characteristic of extreme events is an inter-event interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The inter-event interval defines the frequency occurrence of the events and should not have discrete values (discrete values mean the periodic occurrence of events), rather it should have a distribu- tion over a range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' In order to examine the distribution of events in the observed time series, we find inter-event intervals (R) between successive extreme events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Subse- quently, we find the probability of such inter-event in- tervals (PR) as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 1(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Inter-event interval and its probability obey power-law relations as given by log10(PR) = a log10(R)b, where a and b are constants with values a = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='006 and b = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='96, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The obtained numerical values are depicted in a filled circle, (a) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='0 N=5 A=3 X3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='0 (b) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='30×106 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='60×106 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='0 N=4 X 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='0 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='50×105 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='00×105 (c) n (d) 2 N= 4: log R vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' log PR 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='1 Power law PDF PR 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='01 log 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='0001 6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='5 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='0 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='9 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='9 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='9 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='7 x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' log R3 and a continuous line shows the corresponding power- law fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The route for the emergence of EE and its tran- sitions is further estimated below using Lyapunov ex- ponents (LE), amplitude maxima Xmax, critical factor Nmax, and two-parameter analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 2: (a) The two-parameter bifurcation diagram in (f, g) space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Using the range of Lyapunov exponents (λ) (denoted by the color bar) the dynamical regions are marked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' (b) The maximum Lyapunov exponents as a function of forcing am- plitude f(= g), (c) maximum amplitude of the events xmax (red) and the corresponding Nmax (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 3) of the event (blue) by varying the magnitude of f(= g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The black line repre- sents the extreme events critical threshold (xEE) drawn from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' (2) for N=4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The other parameter values are fixed as the same as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' To illustrate the global dynamical transition of the at- tractors and route of the EE, the two-parameter diagram is drawn in (f, g) space using the maximum LE as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 2(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The range of LE (shown in the color bar) denotes the emergence of quasi-periodic, nonchaotic, and chaotic attractors in the respective parameters of f and g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' If the forcing amplitudes f and g are small, attractors have a maximum negative LE, indicating the presence of a quasi-periodic (QP) attractor region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' To better com- prehend QP attractors, we plotted their time-evolution and phase portrait trajectories in Supplementary Mate- rial Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' S1 a(i, ii) for f = g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='23, which show their bounded nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Thus, the EE critical threshold for this attractor is greater than the amplitude of QP attrac- tors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' By increasing f and g values, the QP attractor transits to a chaotic (CH) attractor via strange and non- chaotic dynamics in which the LE takes the values from negative (near zero) to positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' To distinguish between the strange nonchaotic and chaotic attractors, the time- evolution and phase portrait trajectories are shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' S1 b(i,ii) and Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' S1 c(i,ii) in the supplementary materials by fixing f = g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='278 and f = g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='33, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Also, the frequency spectra can be used to distinguish quasiperiodic, SNA and chaos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' We have the frequency spectrum analysis in the Supplementary material in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' S4 (a-c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' When compared to the chaotic attractor (which has a greater number of large ampli- tude oscillations), we found the SNA shows fewer large amplitude oscillations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The supplemental material’s Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' S1 can be consulted for more information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Furthermore, to show the dynamical transitions clearly, we displayed maximum Lyapunov exponents in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 2(b) by keeping the parameter (f = g) and varying it along the diagonal dashed line shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 2(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 2(b), the maxi- mum LE is illustrated as a function of forcing amplitudes f and g (f = g) in the range (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='23 < f(= g) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='32).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' We observe that when the forcing amplitudes are minimum in the mentioned range, LE takes negative values, in- dicating quasi-periodic dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' While increasing the parameter, the transition of LE from negative to posi- tive values indicates the dynamical transition of quasi- periodic behavior to chaotic behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Furthermore, we found that the negative values of LE near-zero exhibit strange nonchaotic behavior;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' extreme events are seen in this region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The literature has shown that the EEs occur under chaotic dynamics [16] through distinct routes and stochastic processes like stochastic transport on networks has been demonstrated using multiple random walks on complex networks [23, 24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Among the various routes, the occurrence of EEs in nonchaotic dynamics is new and it has not been reported to the best of our knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' To validate the occurrence of EEs in the SNA region, we find the maximum amplitude xmax, extreme event threshold xEE, and maximum value of N (Nmax) of a given time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 2(c), we have plotted the above quantities by varying the magnitude of f = g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The plot explains the regime of extreme events in the following way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' During the non-extreme regime, the critical thresh- old xEE is larger than the xmax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' It means that the threshold is larger than the large amplitude oscillations and does not satisfy the extreme events criterion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' While in the EE regime, the xmax is larger than the EE crit- ical threshold xEE (shaded EE region).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' This explains that extreme events have a larger amplitude than the ex- treme event criterion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Note that the SNA regime in the (a) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='10 (b) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='03 Chaotic 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='03 Quasi-Periodic SNA 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='32 12 (c) Chaotic 10 E XEE 8 Quasi-Periodic Xmax 6 Z N=5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='6114 N=4 4 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='324 parameter range f ∈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='28 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='2912 shows no extreme events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' As we discussed above, we fixed N = 4 as an arbitrary constant from the literature [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' However, the maximum value of the N can be determined by rewriting Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' (2), as Nmax = max(xEE) − ⟨xn⟩ σxn .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' (3) In the SNA region shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 2(c), we found that the SNA QP1 QP2 QP3 x0 y0 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 3: Basin of attraction for f = g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='278.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' QP1, QP2, and QP3 are the quasi-periodic attractor-1, quasi-periodic attractor-2, and quasi-periodic attractor-3, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' SNA represents the strange nonchaotic attractor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' We fixed the other parameter values the same as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' multiplication factor taking values between 4 ≤ Nmax ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='611 when the forcing amplitudes in the range from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='256 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='28 denoted by shaded transparent pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The plot of Nmax shows that depending on the parameter choice, the arbitrary value can be chosen N∈ {4, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='611}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Thus above results satisfy all the criteria proposed for the extreme events and justify the existence of EEs in the SNA regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' As we discussed earlier, the observed EEs are non- chaotic and nonperiodic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' At the same time, the param- eters corresponding to the strange nonchaotic EEs show multiple stable behaviors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The multi-stable behavior can be seen from the basins of attraction drawn for a range of initial conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Figure 3 is drawn by varying the initial states x0 and y0 of the system for the parameters given in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 1 caption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' We can see that basin of non- chaotic and nonperiodic behavior or SNA is embedded within the basin of quasi-periodic dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Outside the SNA basin, we have found three different basins which contain quasi-periodic attractors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' All the three differ- ent quasi-periodic attractor basins and the SNA basin, denoted by QP1, QP2, QP3, and SNA respectively in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' In supplemental material Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' (S2), each of the quasi-periodic attractors is depicted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Figure 3 shows that extreme events occur for specific values of initial condi- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The size of these basins changes as we vary the parameter within the EEs regime marked in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' EE NEE f g FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 4: Two parameter phase diagram in (f, g) space (plot- ted using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 2 for fixed initial condition (x0, y0) = (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='2)), to distinguish the existence of extreme events (EE) and non- extreme events (NEE), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' We fixed the other pa- rameter values as the same as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Similarly, to determine the regime of the extreme event in the parametric space between f and g, a two- parameter diagram is drawn as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The white regime in the plot shows the extreme events for the combinations of parameter (f, g) separated with the help of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 2 from the non-extreme events (NEE– denoted by blue color).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' By comparing Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 2(a) with Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 4 we can say that EEs occur in the SNA region (however some of the SNA parameter regime may not contain EEs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 20 30 60 10 80 lm[x(α,N)] Re[x(α,N)] (b) 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='5 3 5 7 log10|x(α,N)|2 log10 N (a)(a) (b) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 5: Singular continuous spectrum for fixing the forc- ing amplitudes f, g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='278.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' (a) The logarithmic plot of |x(α, N)|2 against N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The red and black lines denote the numerical values and the corresponding power-law fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' (b) Fractal path in the complex plane of x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The other parameter values are defined as γ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='35, ω1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='3, ω2 = ( √ 5−1 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' To show the generality of the existence of EEs in the SNA regime, we present the regime of EEs for γ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='4 in the supplementary material Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' S3 (a),(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' This re- sult validates the presence of strange nonchaotic extreme events in the selected parameter regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' In the following section, we characterize the observed behavior as strange and nonchaotic in nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' For this purpose, we perform 10 5 0 5 10 15 20 5 0 5 10 15 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='325 singular continuous spectrum analysis and distribution of finite-time Lyapunov exponents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' To validate the strange nonchaotic dynamics, we plot singular continuous spectrum [31] in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 5 using par- tial Fourier sum of the signal x given by X(α, N) = �N m=1 xme2πimα, where α is proportional to the exter- nal frequency (ω1) and N is the length of the time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The red and black lines show the singular continuous spectrum and the corresponding power-law fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' When N is considered as time, |X(α, N)|2 grows with N, that is |X(α, N)|2 ∼ N β, where β is the slope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' When the signal possesses the properties of strange nonchaotic dynamics, the corresponding slope values lie between 1 < β < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' For this case, the slope value β = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='576 confirms the exis- tence of strange nonchaotic dynamics shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 5(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The corresponding path of Brownian motion with fractal structure in complex [Re(x), Im(x)] plane also confirms the strange nonchaotic dynamics in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 5(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='0001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='1 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='08 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='06 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='04 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='02 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='04 P –λ FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 6: Finite time Lyapunov exponent with respect to prob- ability distribution function (PDF) for SNAs by fixing the three distinct finite time periods T = 500 (red line), T = 1000 (blue dashed line), and T = 1500 (black dotted line) with f, g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='278.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The strange nonchaotic dynamics are also validated using another statistical characterization known as the distribution of finite-time Lyapunov exponents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The dis- tribution takes both positive and negative values, but the area under the curve is maximum in the negative regime for strange nonchaotic dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Figure 6 plot- ted for three different finite time intervals T = 500, 1000, and 1500, the distribution has a large negative region compared to the positive region showing nonchaotic dy- namics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' From these analyses, the observed dynamics are strange (nonperiodic) as well as nonchaotic, which also shows the large amplitude and rare events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The present letter shows a mechanism of the emergence of extreme events in a quasi-periodically forced Morse os- cillator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' As a function of forcing amplitude, we found the transition from quasi-periodic (QP) to chaotic (CH) at- tractor via strange nonchaotic extreme events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' During such extreme event dynamics, we found a long excur- sion of trajectories that are away from the bounded at- tractor, while the chaotic attractors show many higher amplitude peaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' To confirm the existence of EEs, we estimated the critical threshold, and it is observed that the higher amplitude peaks in the EE cross the critical threshold while the peaks in the CH and QP attractor do not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The dynamical transitions of the attractors and the occurrence of nonchaotic EE dynamics are manifested through maximum Lyapunov exponents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The observed extreme events are further validated using the probabil- ity distribution and return interval (inter-event interval) with respect to the probability of recurrence times of the EE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Extreme events are abnormal and unexpected events that occur in many natural and man-made systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Un- derstanding the mechanism or route can help to antici- pate the onset of EEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Early works on extreme events show the chaotic nature of the extreme events because of the rare and extreme amplitude properties of extreme events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' The present study shows an unknown emergence of extreme events that are nonchaotic and nonperiodic extreme events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' This finding shed light on the new direc- tion where extreme events can happen as a nonchaotic process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' We gratefully acknowledge this work is funded by the Center for Nonlinear Systems, Chennai Institute of Technology (CIT), India, vide funding number CIT/CNS/2022/RP-016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Albeverio, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Jentsch and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Kantz, Extreme Events in Nature and Society, The Frontiers Collection (Springer, Berlin, 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [2] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' H¨ohmann, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Kuhl, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' St¨ockmann, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Kaplan and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Heller, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=', 104, (2010) 093901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Metzger, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Fleischmann and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Geisel, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=', 112, (2014) 203903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Mathis, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Froehly, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Toenger, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Dias, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Genty and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Dudley, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=', 5, (2015) 12822.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [5] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Birkholz, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Br´ee, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Veseli´c, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Demircan and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Steinmeyer, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=', 6, (2016) 35207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [6] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Premraj, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Suresh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Pawar, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Kabiraj, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Prasad, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Sujith, EPL, 134, (2021) 34006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Saha, and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Feudel, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' E, 5, (2017) 062219.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Ganshin, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Efimov, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Kolmakov, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Mezhov-Deglin and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' McClintock, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=', 101, (2008) 065303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [9] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Bailung, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Sharma and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Nakamura, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=', 107, (2011) 255005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [10] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Solli, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Ropers, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Koonath and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Jalali, Nature, 450, (2007) 1054.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Zamora-Munt, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Garbin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Barland, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Giudici, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 6 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Rios Leite, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Masoller and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Tredicce, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' A, 87, (2013) 035802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Onorato, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Waseda, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Toffoli, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Cavaleri, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Gram- stad, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Janssen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Kinoshita, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Monbaliu, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Mori, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Osborne and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Serio, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' 102, (2009) 114502.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Venkataramani, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Hunt, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Ott, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Gauthier and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Bienfang, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=', 77, (1996) 5361.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [14] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Grebogi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Ott, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Romeiras and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Yorke, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' A, 36, (1987) 5365.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Reinoso, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Zamora-Munt, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Masoller, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' E, 87, (2013) 062913.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [16] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Chowdhury, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Ray, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Dana and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Ghosh, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=', 966, (2022) 1-52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [17] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Mercier, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Even, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Mirisola, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Wolfersberger, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Sciamanna, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' E, 91, 042914 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [18] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Suresh, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Pisarchik, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' E, 98, (2018) 032203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [19] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Pisarchik, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Jaimes-Re´ategui, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Sevilla- Escoboza, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Huerta-Cuellar, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Taki, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Let.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=', 107, 274101 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Pisarchik, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Hramov, Multistability in Physical and Living Systems: Characterization and Applications (Springer, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [21] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Arecchi, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Bortolozzo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Montina, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Resi- dori, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=', 106, 153901 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [22] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Pikovsky, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Feudel and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Kuznetsov, Strange nonchaotic attractors: Dynamics between order and chaos in quasi periodically forced systems (World Sci- entific (2006)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [23] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Kishore, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Santhanam, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Amritkar, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' let.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=', 106, 188701 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [24] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Kumar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Kulkarni and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Santhanam, Chaos, 30, 043111, (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [25] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Prasad, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Negi and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Ramaswamy, Inter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Bifur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' and Chaos, 11, (2001) 291-309.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [26] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Premraj, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Suresh, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Palanivel and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Thamil- maran, Communica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Non.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Scie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Numer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Simula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=', 50, (2017) 103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Premraj, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Suresh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Thamilmaran and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Rajagopal, The European Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Spe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Top.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=', (2022) 1-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [27] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Lie and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Yuan, The J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=', 84, (1986) 5486.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [28] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Knop and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Lauterborn, The J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=', 93, (1990) 3950.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [29] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Zdravkovic, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Bugay and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Parkhomenko, Nonlinear Dyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=', 90, (2017) 2841.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [30] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Bonatto and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Endler, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' E, 96, (2017) 012216.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' [31] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Pikovsky and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Feudel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
+page_content=' A, 27, (1994) 5209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdFQT4oBgHgl3EQfsDaJ/content/2301.13386v1.pdf'}
diff --git a/ptAzT4oBgHgl3EQf5v4s/vector_store/index.faiss b/ptAzT4oBgHgl3EQf5v4s/vector_store/index.faiss
new file mode 100644
index 0000000000000000000000000000000000000000..ab0f03d8663f057ff57ca2fde93b99f67ecc7bc4
--- /dev/null
+++ b/ptAzT4oBgHgl3EQf5v4s/vector_store/index.faiss
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7fcff498daab768ddbba5eb13fafa390c2f03b123d8eb42b7c5db046c587c9dc
+size 3145773
diff --git a/rdE1T4oBgHgl3EQf2wXf/content/tmp_files/2301.03483v1.pdf.txt b/rdE1T4oBgHgl3EQf2wXf/content/tmp_files/2301.03483v1.pdf.txt
new file mode 100644
index 0000000000000000000000000000000000000000..cc43b5ead12bf0fda5bcb2d383793b14764c5ba2
--- /dev/null
+++ b/rdE1T4oBgHgl3EQf2wXf/content/tmp_files/2301.03483v1.pdf.txt
@@ -0,0 +1,1081 @@
+arXiv:2301.03483v1 [hep-ph] 9 Jan 2023
+Is d∗(2380) a compact hexaquark state?
+ManYing Pana,∗ Xinmei Zhub,† and Jialun Pinga‡
+aDepartment of Physics and Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems,
+Nanjing Normal University, Nanjing 210023, People’s Republic of China and
+bDepartment of Physics, Yangzhou University, Yangzhou 225009, P.R. China
+The most fascinating dibaryon in the non-strange quark sector is d∗(2380), which was reported
+by WASA-at-COSY Collaboration and confirmed by A2@MAMI Collaboration. The reported mass
+and width are M ≈ 2.37 GeV, Γ ≈ 70 MeV and the quantum numbers IJP = 03+. The structure of
+d∗(2380) is still in controversy. In the present calculation, the powerful method in few-body system,
+Gaussian expansion method is employed to explore the structure of d∗(2380) in the framework of
+constituent quark models without assuming the presupposed structure. The results show that the
+radius of d∗(2380) is around 0.7 fm, a very compact object. Because of the compact structure, the
+color singlet-singlet component has a large overlap with the color octet-octet one, two colorless,
+large overlapped ∆s dominate the state is possible.
+I.
+INTRODUCTION
+In addition to the popular “XYZ” particles and the
+hidden charm pentaquarks, the dibaryon states are also
+important exotic hadron states.
+Generally, any object
+with a baryon number B = 2 can be called a dibaryon.
+Since the baryon number of each quark is 1/3, the
+dibaryon is composed of six valence quarks.
+The pro-
+posal of looking for dibaryons was in the same year as the
+publication of quark model by Gell-Mann [1]. In 1964,
+based on SU(6) symmetry of strong interaction, Dyson
+and Xuong predicted the possible existence of dibaryon
+states and obtained the mass of these particles by a mass
+formula [2], the predicted mass of D03 is surprisingly close
+to that of d∗(2380) later found [3–9].
+Deuteron is a state with B = 2, which was discovered
+by Urey, Brickwedde and Murphy in 1932 [10]. It is a
+loosely bound state of proton and neutron with quan-
+tum numbers IJ = 01.
+At the quark level, the con-
+tent of deuteron is uuuddd, these six quarks could also
+make up ∆∆, so whether the deuteron contains a non-
+nucleon component is a meaningful subject [11, 12]. Due
+to the large separation between proton and neutron in
+deuteron [13], it can safely be regarded as a molecule.
+Of course, the dibaryon state may also be a more ex-
+otic compact six quark structure, that is, the state can-
+not represented by two well separated color singlet quark
+clusters. It is more interesting because it is a new form
+of matter.
+d∗ with quantum numbers IJ = 03 is ex-
+pected to be a compact object in quark model calcu-
+lations.
+Dibaryon search has experienced a long and
+eventful history, there are many twists and turns dur-
+ing the searches of dibaryons, A comprehensive review
+of dibaryons can be found in the references [14, 15], the
+status of d∗ can be seen in [16].
+After the initial study of d∗ in 1964, the further study
+∗E-mail: 211001005@stu.njnu.edu.cn
+†E-mail: zxm yz@126.com
+‡E-mail: jlping@njnu.edu.cn (corresponding author)
+of dibaryon state related to d∗ was traced back to 1977.
+Inspired by the anomalous results of proton polarization
+in the γd → pn reaction [17], Kamae and Fujita inves-
+tigated the possible existence of deep bound dibaryon
+state, in which they calculated the ∆∆ atate with quan-
+tum numbers IJ = 03 and IJ = 30 using the non rela-
+tivistic one boson exchange model, and obtained a bind-
+ing energy of about 100 MeV [18]. In fact, the experi-
+mental results are coincide with the present results of the
+state d∗ [3–9].
+In 1989, Goldman et al proposed “an inevitable non-
+strange dibaryon” based on the basic idea of constituent
+quark model [19], which was named d∗. The following
+realistic calculations in quark delocalization and color
+screening model confirmed the prediction of d∗ [20–22].
+In the framework of chiral quark model, The results
+shown that there are attractions between two ∆’s, the
+dynamical calculation with the help of the resonating
+group method (RGM) obtained small binding energy,
+22.2-64.8 MeV for d∗ and a compact structure, the root-
+mean-square radius (RMS) is about 0.84-1.01 fm [23].
+To guide the experimental searching, a nucleon-nucleon
+(NN) scattering phase shifts calculation including d∗
+was performed, the phase shifts of D-wave NN scat-
+tering show a clear resonance structure, with the mass
+2273-2404 MeV and width 33-149 MeV [24]. The break-
+through comes in 2009, CELSIUS/WASA-at-COSY Col-
+laboration reported their results on double pionic fusion
+reaction pn → dπ0π0, a resonance with mass and width
+2.36 GeV and 80 MeV is needed to describe the exper-
+imental data [3]. the subsequent series of experiments
+confirmed the resonance and fixed quantum numbers.
+The updated results are the resonance mass is around
+2.37 MeV, the decay width is about 70 MeV and quan-
+tum numbers are IJP = 03+. It is a dibaryon d∗, a spin
+excitation of deuteron. Especially, the re-analysis of NN
+scattering amplitude in 3D3-3G3 partial waves by incor-
+porating new data suggest a pole which corresponding to
+d∗ [7]. The theoretical study a d∗ resonance in the cou-
+pled 3D3-3G3 partial waves of nucleon-nucleon scattering
+reproduced the experimental data [25]. The recent po-
+larization experiment of A2 Collaboration at MAMI also
+
+2
+TABLE I: The transformation coefficients between physical
+bases and symmetry bases. [ν] and [µ] denote the symmetry
+of orbital and spin-flavor for six-quark systems.
+[ν][µ] = [6][33]
+[ν][µ] = [42][33]
+∆∆
+−
+�
+1/5
+−
+�
+4/5
+CC
+−
+�
+4/5
+�
+1/5
+find signatures of the d∗(2380) hexaquark in d(γ,p⃗n) [26].
+After the experiment discovery, more researches are de-
+voted to the structure and the narrow decay width of d∗.
+To understand the narrow decay width of d∗, the assump-
+tion that the dominant component of d∗ is hidden color
+channel was proposed [27]. The assumption comes from
+the transformation between the physical bases (denoted
+by two q3 state) and the symmetry bases (denoted by the
+orbital symmetry and isospin-spin symmetry) [28, 29].
+From the table, one can see that if the orbital symmetry
+of d∗ is [6] in the symmetry bases, all six quarks occupy
+the same orbital state, then in the physical bases, the
+hidden color channel (CC) is the dominant component
+(80%). Really in the resonating-group-method (RGM)
+approach, by including the hidden-color channel (CC),
+the calculation of d∗ in chiral quark model gave that d∗
+has a mass of about 2.38 − 2.42 GeV and a root-mean-
+square radius (RMS) of about 0.76 − 0.88 fm, and the
+fraction of CC component in the d∗ is found to be about
+66%-68% [30].
+However, there is a mis-understanding
+of the above transformation table. If the orbital sym-
+metry of six-quark state d∗ is [6], then only one basis
+in the symmetry bases scheme is available, the corre-
+sponding available physical basis must be one, too, the
+color-singlet channel ∆∆ is the same as the hidden-color
+channel CC. In the RGM approach, the overlap between
+∆∆ and CC is about 1 when the separation between two
+clusters are small, for example ⟨∆∆|CC⟩ = 0.98 with
+separation s = 0.5 fm.
+Very recently, Huang showed
+a revised quark model investigation of d∗(2380) [31], he
+pointed out that there are some inadequacies in the pre-
+vious quark model calculations, it would be imprecise
+to set size parameter to be same for all the considered
+baryons. In the updated the chiral quark model calcu-
+lation, he found the effects of hidden-color channel are
+much less important, which is different from their previ-
+ous work [30].
+As for the structure of d∗, the most quark model cal-
+culation show that it is compact object [23, 24, 32].
+However, in the three-body Faddeev equation approach
+of πN∆, the extended object is invoked to explain
+d∗ [33, 34].
+In lattice QCD approach, the similar re-
+sults with that of quark model calculations are obtained,
+the short-range strong attraction between two ∆’s leads
+to the quasi-bound states with compact structure [35].
+In quark model calculations, RGM is often employed.
+It is an approximation method for few-body system, in
+which the system is separated into two sub-clusters and
+the structures of the sub-clusters are frozen in the dy-
+namical calculation. In this way, the few-body problem
+was turned into two-body one.
+It is expected to be a
+good approximation in nucleon-nucleon scattering study.
+It maybe not suitable for studying the structure and the
+percentage of hidden-color channel in d∗. In the present
+work, the powerful few-body method, gaussian expansion
+method (GEM) [36] is invoked to determine the contri-
+bution of hidden-color channels and root-mean-square ra-
+dius of d∗.
+This paper is structured as follows: Sec.
+II briefly
+introduced the quark models, the construction of hex-
+aquark wave functions and GEM. The calculated results
+and discussions are presented in Sec. III. The summary
+of our investigation is given in the last section.
+II.
+MODELS AND WAVE FUNCTIONS
+To check the model dependence of the calculation, two
+quark models are used, one is the na´ıve quark model,
+another is the chiral quark model. The calculations are
+limited to the ground states, so only the central parts of
+Hamiltonian are given below.
+A.
+Naive Quark Model
+In the na´ıive quark model, the Hamiltonian includes
+kinetic energy term, color confinement potential and one
+gluon exchange potential, which can be written as:
+H =
+6
+�
+i=1
+�
+mi + p2
+i
+2mi
+�
+− TCM +
+6
+�
+j>i=1
+Vij,
+(1)
+Vij = V C
+ij + V G
+ij ,
+V C
+ij
+= −acλc
+i · λc
+j(r2
+ij + V0),
+(2)
+V G
+ij
+= αs
+4 λc
+i · λc
+j
+� 1
+rij
+− σi · σj
+6mimj
+e−rij/r0(µ)
+rijr2
+0(µ)
+�
+,
+(3)
+r0(µ) = ˆr0/µ.
+Where TCM is center of mass kinetic energy, other sym-
+bols have their usual meanings.
+B.
+Chiral Quark Model
+Chiral quark model was setup based on the dynamic
+breaking of chiral symmetry [37].
+In addition to the
+color confinement and one-gluon-exchange potentials, the
+Goldstone boson and its chiral partner exchange poten-
+tials are invoked. The Hamiltonian in chiral quark model
+is written as [38]:
+
+3
+H =
+6
+�
+i=1
+�
+mi + p2
+i
+2mi
+�
+− TCM +
+�
+i