diff --git "a/WdAzT4oBgHgl3EQfmP2O/content/tmp_files/load_file.txt" "b/WdAzT4oBgHgl3EQfmP2O/content/tmp_files/load_file.txt" new file mode 100644--- /dev/null +++ "b/WdAzT4oBgHgl3EQfmP2O/content/tmp_files/load_file.txt" @@ -0,0 +1,1436 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf,len=1435 +page_content='Astronomy & Astrophysics manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' XAI ©ESO 2023 January 5, 2023 Identifying preflare spectral features using explainable artificial intelligence Brandon Panos1, 2, Lucia Kleint1, 2, and Jonas Zbinden1, 2 1 University of Geneva, 7, route de Drize, 1227 Carouge, Switzerland 2 Astronomical Institute of the University of Bern, Sidlerstrasse 5, 3012 Bern Received 29 August;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Accepted 24 December 2022 ABSTRACT The prediction of solar flares is of practical and scientific interest;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' however, many machine learning methods used for this prediction task do not provide the physical explanations behind a model’s performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' We made use of two recently developed explainable artificial intelligence techniques called gradient-weighted class activation mapping (Grad-CAM) and expected gradients (EG) to reveal the decision-making process behind a high-performance neural network that has been trained to distinguish between Mg ii spectra derived from flaring and nonflaring active regions, a fact that can be applied to the task of short timescale flare forecasting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' The two techniques generate visual explanations (heatmaps) that can be projected back onto the spectra, allowing for the identification of features that are strongly associated with precursory flare activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' We automated the search for explainable interpretations on the level of individual wavelengths, and provide multiple examples of flare prediction using IRIS spectral data, finding that prediction scores in general increase before flare onset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Large IRIS rasters that cover a significant portion of the active region and coincide with small preflare brightenings both in IRIS and SDO/AIA images tend to lead to better forecasts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' The models reveal that Mg ii triplet emission, flows, as well as broad and highly asymmetric spectra are all important for the task of flare prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Additionally, we find that intensity is only weakly correlated to a spectrum’s prediction score, meaning that low intensity spectra can still be of great importance for the flare prediction task, and that 78% of the time, the position of the model’s maximum attention along the slit during the preflare phase is predictive of the location of the flare’s maximum UV emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Key words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Sun: flares;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' chromosphere — line: profiles — methods: data analysis;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' statistical 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Introduction A solar flare is a sudden release of energy due to magnetic reconnection, resulting in an enhancement across the entire electromagnetic spectrum (Carmichael 1964;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Sturrock 1966;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Hirayama 1974;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Kopp & Pneuman 1976;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Low 1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' For large flares this energy can reach an order of ∼ 1032 ergs (Aulanier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2013), and is used to accelerate charged particles toward and away from the solar surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' The energy dissipates over stages with timescales that vary from seconds to hours (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=', Fletcher et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' The outward bound material fills the interplanetary medium with high-energy particles and perturbs the heliospheric magnetic field (Rouillard et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2016), both of which interact with Earth’s magnetosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' These events, if directed toward Earth, can trigger power grid blackouts and adversely affect communication systems (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=', Boteler 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Schrijver et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2014), which in today’s technologically saturated environment comes with a high socioeconomic cost, making their prediction critical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Machine learning has provided us with a set of powerful al- gorithms that can be used to attempt to predict whether an active region (a patch on the Sun associated with enhanced magnetic activity), will produce a flare or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' One of the most successful algorithms for such a task is the so-called neural network (NN) (Rosenblatt 1958), which is a computational graph-like structure that draws inspiration directly from the mammalian brain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Just as an organic brain, these networks automatically program them- selves through experience (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=', Goodfellow et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2016) and can generalize what they have learned to make informed decisions about new observations (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=', Vidyasagar 2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' The majority of flare prediction efforts rely on full photo- spheric vector magnetograms recorded by the Helioseismic and Magnetic Imager (HMI, Scherrer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Hoeksema et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2014) onboard the Solar Dynamic Observatory (SDO, Lemen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' These photospheric magnetic data are typically fed into a machine learning algorithm such as a NN (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=', Bobra & Couvidat 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Florios et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Soós et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' In terms of the true skill statistic (TSS), the standard met- ric for evaluating a model’s predictive performance (1 being op- timal and -1 being adverse), the expected baseline TSS using data from SDO is around ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content='7, regardless of the sophistica- tion of the machine learning algorithm (Jonas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' This indicates an apparent bottleneck and limit to the utility of photo- spheric magnetic data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' As a way to overcome this bottleneck, researchers have started experimenting with novel parameterizations of the HMI magnetic data using topological data analysis to codify their rich spatial features (Deshmukh, Varad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Deshmukh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Moreover, additional information from complementary data sources such as soft X-ray, flare history, and AIA photo- spheric, chromospheric, and coronal images have been incorpo- rated in an attempt to improve model performance (Nishizuka et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Jonas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' New evidence suggests that high resolution spectral data can be used to predict solar flares at least on short subhour timescales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Panos & Kleint (2020) created two classes of Mg ii spectra captured by NASA’s Interface Region Imaging Spectro- Article number, page 1 of 21 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content='01560v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content='SR] 4 Jan 2023 A&A proofs: manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' XAI graph (IRIS) (De Pontieu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' The first class consisted of spectra from active regions that did not lead to solar flares (here- after referred to as the AR class), and the second one consisted of spectra collected from active regions 25 minutes before flare onset (referred to as the preflare PF class).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' It was demonstrated that a simple feed forward fully connected NN could distinguish between spectra from either class with an 80% accuracy, pre- cision, and recall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Furthermore, the network’s performance in- creased monotonically when successively feeding spectra from t = 30 to t = 0 minutes before the onset of a large X1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content='6-class flare, albeit over a restricted region of the slit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' It is not, however, clear why the network performed so well at the classification task, and on what grounds it based its decisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Nevertheless, these results open up the possibility of not only improving the current performance of our models, but due to the high diag- nostic capabilities of spectra (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=', Leenaarts et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2013), could also provide critical information about the state of the preflare atmosphere, and any necessary conditions that might facilitate a solar flare (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=', Yang 2019), thus shifting the focus from model performance to physical understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Along these lines, and in an attempt to explain the above results, a recent study made use of a clustering technique to identify common spectroscopic precursors and atmospheric conditions that might facilitate flare triggering events (Woods et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' It was found that single-peak emission in both the Mg ii h&k lines as well as the pair of subordinate lines located at ∼ 2798.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content='8 Å appeared most commonly, but not exclusively, within the study’s PF dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Inversions of these single-peaked profiles using the STiC inversion code (de la Cruz Rodríguez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2019) indicate enhanced chromospheric temperatures and electron densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Similar to previous findings (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=', Cheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 1984;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Machado et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 1988;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Harra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Panos & Kleint 2020), the authors speculate this to be a consequence of small-scale heating events possibly driven by reconnection as far back as 40 minutes before flare onset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Since this clustering approach of identifying important PF spectra is manually inten- sive and time-consuming, a recent study automated the process via the use of multiple instance learning (MIL) (Huwyler & Melchior 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' In addition to high accuracies on the AR/PF classification task, their models automatically identified spectra that were judged to be important for flare prediction, confirming the results found in Woods et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Their work however does not indicate the particular features of each spectrum that are responsible for high model scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' For this study, we made use of the same Mg ii dataset from the original paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' We then trained a powerful "visual" NN called a convolutional neural network or ConvNet on the AR/PF binary classification problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Once the model learned to distinguish be- tween AR and PF spectra, we used a class of techniques, col- lectively referred to as Explainable Artificial Intelligence (XAI) (Barredo Arrieta et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2019) to derive direct explanations from the ConvNet without having to perform intermediate manual steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' These techniques allowed us not only to automatically discover which spectra are important, but which features of the spectra are most critical for predicting solar flares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Data The data used in this study are composed of Mg ii spectra cap- tured by the IRIS satellite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' For consistency, the dataset is iden- tical to that used in Panos & Kleint (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' As before, we se- lected a spectral window spanning 2794.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content='14 − 2805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content='72 Å, which includes both the Mg ii h&k lines as well as the triplet emission around 2798.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content='77 Å.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' We then partitioned observations into two classes based on the GOES soft X-ray flux: The first partition is called the AR class, and is composed of roughly 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content='5 million spectra derived from 18 observations and extracted from a 25 minute window at the start of each observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' An observation here means a period with a predefined observing scheme, which can last several hours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' The only criterion for an observation in this class was that a large flare (M- or X-class) did not appear over the entire duration of the IRIS observation, as verified by the GOES X-ray flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' This does not preclude smaller flares such as C-class and lower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Since this study probes short timescales (as apposed to the normal 24 hour margins used in flare predic- tion studies), it is not guaranteed that the active region did not produce a large flare after the IRIS observation’s time window ended, leading to a possible weak mixing of the classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' The second partition is called the PF class and consists of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content='4 million spectra taken from 19 observations in a time window 25 minutes (sometimes shorter if IRIS was not recording) before each X- or M-class flare’s onset as defined by the NOAA catalog flare start time (Table 1 of the same study).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Like previous studies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=', Jonas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' Angryk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdAzT4oBgHgl3EQfmP2O/content/2301.01560v1.pdf'} +page_content=' 2020), we do not consider small flares (