diff --git "a/ItE3T4oBgHgl3EQfXAqD/content/tmp_files/load_file.txt" "b/ItE3T4oBgHgl3EQfXAqD/content/tmp_files/load_file.txt" new file mode 100644--- /dev/null +++ "b/ItE3T4oBgHgl3EQfXAqD/content/tmp_files/load_file.txt" @@ -0,0 +1,1461 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf,len=1460 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='04475v1 [math-ph] 11 Jan 2023 MIURA-RECIPROCAL TRANSFORMATIONS AND LOCALIZABLE POISSON PENCILS P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' LORENZONI, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' SHADRIN, AND R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' VITOLO Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We show that the equivalence classes of deformations of localizable semisimple Poisson pencils of hydrodynamic type with respect to the action of the Miura-reciprocal group contain a local representative and are in one-to-one correspondence with the equivalence classes of deformations of local semisimple Poisson pencils of hydrodynamic type with respect to the action of the Miura group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Contents 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Introduction 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' A variety of jet space transformation groups 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Action of the transformation groups 4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Weakly non-local Poisson bi-vectors of localizable shape 5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Localizability 6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Projective group and Doyle–Pot¨emin form 7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Acknowledgments 8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Formulae for the action 8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The Ferapontov–Pavlov formula 10 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Weakly non-local bi-vectors of localizable shape 11 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Schouten bracket for weakly non-local operators of localizable shape 13 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The two approaches 13 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Identification of the two approaches 14 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Pencils of weakly non-local bi-vectors of localizable shape 16 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Bi-Hamiltonian cohomology 16 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Comparison with the purely local deformations 20 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Roots of the characteristic polynomial of the symbol 21 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Projective-reciprocal invariance of the Doyle–Pot¨emin form 23 References 24 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Introduction In 2001, Dubrovin and Zhang initiated a classification programme of bi-Hamiltonian inte- grable PDEs in two independent variables [DZ01].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The group action that they considered was that of Miura transformations, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=', transformations depending on the field variables and, polynomially, by their derivatives of higher order through a perturbative series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Among the questions that the above approach raises there is the issue of extending the group action to include (possibly non-local) changes of variables in one of the independent variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Indeed, an important class of such transformations is that of reciprocal transformations, which play an important role in Mathematical Physics (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [Rog69;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Rog68;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Fer89;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Fer91;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' FP03;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' XZ06;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' AG07;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Abe09;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' BS09;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' LZ11;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' AL13]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 2020 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 37K05, 37K10, 37K20, 37K25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' bi-Hamiltonian PDE, Hamiltonian operator, Miura transformation, reciprocal trans- formation, integrable systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 1 2 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' LORENZONI, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' SHADRIN, AND R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' VITOLO This paper is concerned with the action of the group of Miura-reciprocal transformations, that is a natural group of simultaneous transformations of the independent and the dependent variables of a (bi-)Hamiltonian system through a perturbative series of derivatives of the field variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Among other things, we consider (1) the Miura-reciprocal transformations of the 1st kind and rederive from the scratch the Ferapontov–Pavlov formula for the transformation of a hydrodynamic bivector;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (2) Miura-reciprocal transformations of the 2nd kind (close to identity) and classify the orbits of their action on Poisson pencils of weakly non-local bi-vectors of localizable shape with localizable semi-simple hydrodynamic leading term;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (3) a smaller group of projective-reciprocal transformations and prove that they preserve the Doyle–Pot¨emin canonical form of the bi-vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' A detailed comparison between previous results and our results can be read in the following Subsections;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' we just stress that our result on the classification of bi-Hamiltonian integrable structures provides a natural extension for the classification program in [DZ01] (that also in- corporates and explains some of the results in [LZ11]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' To the best of our knowledge it is the first result in the literature that provides a systematic classification of orbits of the action of the group of Miura-reciprocal transformations in the bi-Hamiltonian context (for a single Poisson structure this type of result is established in [FP03;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' LZ11]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' A variety of jet space transformation groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We consider a jet space Jr(1, N), r ≥ 0, with independent variable x and dependent variables ui, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , N, considered as coordinates on some open domain U ⊂ RN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let ui,σ denote the x-derivative of ui taken σ times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Consider the transformations (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' diffeomorphisms) of the jet space Jr(1, n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We begin from the most general type of transformation: a reciprocal transformation coupled with a differential substitution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Reciprocal transformations in a modern setting were introduced in [Rog69;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Rog68] in the study of gas dynamics, and later analyzed under a geometric viewpoint in [Fer89;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Fer91] and many other authors (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [FP03;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' XZ06;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' AG07;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Abe09;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' BS09;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' LZ11;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' AL13] and references therein).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The class of differential substitutions was introduced in [Ibr85], although many particular differential substitutions were already present in the literature (in particular, the Miura transformations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' A reciprocal differential substitution is a nonlocal transformation of the inde- pendent variable x into the independent variable y of the type (1) dy = Bdx, B = B(x, ui, ui,σ) coupled with a differential substitution of the dependent variables of the form (2) wi = Qi(x, uj, uj,σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' By the fact that dx(∂x) = 1 = dy(∂y) we obtain that total derivatives are related by the formula ∂x = B∂y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Note that, in general, the inversion of a differential substitution is a nonlocal operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We will soon focus on a more restrictive class of transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Reciprocal differential substitutions admit several interesting subclasses: A reciprocal transformation is a nonlocal transformation of the independent variables x into the independent variable y of the type (3) dy = Bdx, B = B(x, ui, ui,σ) coupled with the identical transformation of the dependent variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In practical ap- plications the functions ui depend also on an additional parameter that plays the role of “time” of the system of evolutionary PDEs ui t = F i(x, ui, ui,σ), i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=', n governing their evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Taking into account this additional variable reciprocal trans- formations are often defined as dy = Adt + Bdx, MIURA-RECIPROCAL TRANSFORMATIONS AND LOCALIZABLE POISSON PENCILS 3 where the function A, B are submitted to the closure condition Bt = Ax, that is, dy is a conservation low for the equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Note that the coefficient A doesn’t enter the transformation law for ∂x, and thus can be disregarded throughout this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' A reciprocal differential substitution is said to be holonomic if there exists a differential function P such that B = ∂xP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' A general differential substitution of (x, ui) into (y, wj): (4) y = P(x, uj, uj,σ), wi = Qi(x, uj, uj,σ), yields a holonomic reciprocal differential substitution dy = ∂xPdx, wi = Qi by differen- tiation (in this sense the two classes of transformations coincide).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The above two categories of transformations, basically local and nonlocal differential substi- tutions, are, on the one hand, too wide to be used in the context of the classification programs for evolutionary PDEs and related geometric structures as, for instance, the one initiated by Dubrovin and Zhang in [DZ01], and on the other hand too restrictive since we are limited by fixing the parameter r ≥ 0 that controls the maximal order of jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' For this reason, we introduce the space of differential polynomials A, and the following group of transformations, which is a subclass of the reciprocal differential substitutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Consider a jet space J∞(1, N) (considered as an inductive limit of the jet spaces Jr(1, N), r → ∞) with independent variable x and dependent variables ui, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Denote ui,σ the x-derivative of ui taken σ times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We associate with this space the algebra of functions A := C∞(U)[[ui,σ, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , N, σ ≥ 1]], where C∞(U) is the space of smooth functions on a domain U ⊂ RN in the coordinates u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , uN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' There is a natural gradation on the algebra of densities A given by deg∂x ui,σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let Ad denote the deg∂x-degree d part of A, which is a finite dimensional module over C∞(U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' A Miura-type reciprocal differential substitution, or Miura-reciprocal trans- formation for short, is a transformation of the type dy = � ∞ � k=0 ǫkHk(uj, uj,1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , uj,k) � dx, (5) wi = ∞ � k=0 ǫkKi k(uj, uj,1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , uj,k), i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , N, with Hk, Ki k ∈ Ak and H0 ̸= 0, det �∂Ki 0(uj) ∂uk � ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (6) The formal dispersive parameter ǫ that we introduce here to control the deg∂x-degree is, in principle, not strictly necessary but it is very convenient in particular computations and applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The set of all Miura-reciprocal transformations is denoted by R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' It is a group with respect to the composition, and it has some distinguished subgroups: the subgroup RDS of Miura differential substitutions, that are Miura-type reciprocal differential substitutions which are also holonomic differential substitutions of the fol- lowing type: There exists P = x + P0, with P0 = �∞ k=0 ǫkFk and Fk ∈ Ak, such that (7) ∂xP = ∞ � k=0 ǫkHk(uj, uj x, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , uj σ);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' the subgroup of Miura transformations characterized by H0 = 1 and Hk = 0 for all k ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' This subgroup is called the Miura group G ⊂ R [DZ01] and bears his name from the transformation relating KdV and modified KdV equations introduced by Miura 4 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' LORENZONI, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' SHADRIN, AND R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' VITOLO [Miu68].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Note that the Miura group is also a subgroup of the group of Miura differential substitutions: G ⊂ RDS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' By analogy with the way the standard Miura group is typically presented, we introduce the following two subgroups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We define Miura-reciprocal transformations of the 1st kind to be the Miura-reciprocal transformations of the form dy = H0(uj)dx, (8) wi = Ki 0(uj), i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The group of all Miura RDS of the first type is denoted by RI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' This group contains as a subgroup the group of Miura transformations of the 1st kind, GI ⊂ RI, characterized by H0 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We define Miura-reciprocal transformations of the 2nd kind to be the Miura-reciprocal transformations of the form dy = � 1 + ∞ � k=1 ǫkHk(uj, uj,1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , uj,σ) � dx, (9) wi = ui + ∞ � k=1 ǫkKi k(uj, uj,x, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , uj,σ), i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The group of all Miura-reciprocal transformations of the second type is denoted by RII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' It contains as a subgroup the group of Miura transformations of the 2nd kind, GII ⊂ RII, characterized by Hk = 0 for all k ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' A distinguished subgroup of RI is the group of projective reciprocal transfor- mations P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Such transformations are characterized by the requirements that Ki in Equation (8) is a projective transformation (in an affine chart) and H0 is the common denominator of the projective transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' More explicitly, dy = (a0 juj + a0 0)dx, (10) wi = ai juj + ai 0 a0 juj + a0 0 , i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The goal of this paper is to discuss some aspects of the actions of these groups on the natural suitable geometric structures that emerge in the study of integrable systems of evolutionary PDEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In order to describe our results we have to recall some of these structures, which we do in the rest of the introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Action of the transformation groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The above group of Miura reciprocal differential substitutions act on spaces of geometric entities that play important roles in the geometric theory of integrability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In particular, it acts on: densities, that have the form (11) F = � f(uj, uj,σ) dx ∈ F := A/∂xA, with f ∈ A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' variational vector fields, that include symmetries of partial differential equations, and have the form (12) ϕ = ϕi(uj, uj,σ)δui, ϕi ∈ A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' covector-valued densities, that include characteristic vectors of conserved quantities of differential equations, and have the form (13) ψ = ψi(uj, uj,σ)dui ⊗ dx, ψi ∈ A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' MIURA-RECIPROCAL TRANSFORMATIONS AND LOCALIZABLE POISSON PENCILS 5 the Euler–Lagrange operator, which sends densities into covector-valued densities, (14) E(F) = δuiFdui ⊗ dx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' variational multivectors of degree p, that include Hamiltonian operators of partial dif- ferential equations as particular bivectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' They can be regarded as maps from (p − 1)- covector-valued densities to variational vector fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In Section 2 we will prove our change of coordinate formulae for reciprocal differential substi- tutions for these geometric objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' As an example, we re-derive in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1 the Ferapontov– Pavlov formula for the reciprocal transformation of a Poisson bi-vector of the differential order 1 [FP03], and this brings us to the realm of weakly non-local Poisson structures of localizable shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Weakly non-local Poisson bi-vectors of localizable shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let dependent variables ui also dependent on one external parameter, denoted by t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The most studied structures in geometric theory of integrability are the local Poisson structures needed for representation of equations of the form ui t = f i(uj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' uj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='σ) (15) in Hamiltonian form (note that we don’t allow possible explicit dependence of f i’s on x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' that is,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' in the form ui t = d � s=0 P ij s ∂s δ δuj � h(uk,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' uk,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='σ)dx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (16) where H = � h(uk,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' uk,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='σ)dx is the Hamiltonian functional and P = �d s=0 P ij s ∂s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' P ij s ∈ A defines a bi-vector which in the language of densities can be written as {ui(x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' uj(y)}P = d � s=0 P ij s ∂s xδ(x − y) (17) (in this paper bi-vectors and,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' more generally,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' multivectors are assumed to be skew-symmetric by default).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In addition to the language of densities, there is a very convenient formalism, the so-called θ-formalism, to encode the variational multivectors [Get02], see also [IVV02].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Namely, extend the space A to a space ˆ A := A[[θσ i , i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , N, σ ≥ 0]], where θσ i are formal odd variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We often denote θ0 i by θi, and we extend the ∂x operator to ˆ A as ∂x := �∞ s=0 ui,s+1∂ui,s + θs+1 i ∂θs i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The deg∂x-gradation is extended to ˆ A by deg∂x θσ i = σ, and there is a natural θ-degree given by degθ ui,σ = 0 and degθ θσ i = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let ˆ Ap denote the subspace ˆ A of θ-degree p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We can consider it as a space of densities of variational p-vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let ˆ Ap d := ˆ Ad ∩ ˆ Ap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The space ˆF := ˆ A/∂x ˆ A can be considered as the space of variational multivectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' It inherits under the projection � : ˆ A → ˆF both gradations, deg∂x and degθ, and F p d denotes its subspace of p-vectors of differential degree deg∂x = d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The Schouten bracket is defined as (18) � � P, � Q � = � (−1)degθ PδuiPδθiQ + δθiPδuiQ for P, Q ∈ ˆ A, where δui := �∞ s=0(−∂x)s∂ui,s and δθi := �∞ s=0(−∂x)s∂θs i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Various cohomological computations in terms of this space and related formalism allow to efficiently control the de- formation theory of Poisson bi-vectors and their pencils, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [LZ05;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' LZ11;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' DLZ06;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' LZ13a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' CPS18;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' CKS18;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' CPS16a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' CPS16b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' CCS17;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' CCS18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' However, studying the action of the group of Miura-reciprocal transformations we can not restrict ourselves to the local Poisson bi-vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' As we have seen, the reciprocal transformations 6 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' LORENZONI, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' SHADRIN, AND R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' VITOLO generate non-locality of some very particular shape, and in terms of the operator P we have to extend its possible shape to P = d � s=0 P ij s ∂s + ui,1∂−1 x V j + V i∂−1 x uj,1, P ij s , V i ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (19) Hamiltonian operators of the form above with d = 1, P ij 1 = gij(u) (det gij ̸= 0), P ij 0 = −gilΓj lkuk x and V i = V i j (u)uj x were studied by Ferapontov in [Fer95a].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' They belong to the larger class of weakly non-local operators, that was introduced in [MN01].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Like in the local case the coefficients gij define a metric and the coefficients Γj lk the Christoffel symbols of the associated Levi-Civita connection but unlike in the local case the metric is no longer flat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' It turns out that the Riemann tensor R and the tensor field V defining the non-local tail satisfy the conditions gisV s j = gjsV s i , ∇jV k i = ∇iV k j , Rij kl = V i kδj l + V j l δi k − V j k δi l − V i l δj k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' These are a particular instance of Ferapontov’s conditions for weakly non-local Hamiltonian operators of hydrodynamic type [Fer95b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' An algorithm to compute such conditions for general weakly non-local Hamiltonian operators has been developed in [CLV20] and implemented in three different computer algebra systems in [Cas+22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' A natural question here is how to extend the θ-formalism briefly recalled above to accommo- date this type of non-locality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' There are two recipes in the literature given in [LZ11] (specific for this case) and [LV20] (suitable for general weakly non-local operators).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The identification of the two approaches should indirectly follow from the uniqueness arguments in [LZ11], but we wanted to establish an explicit identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We do it by an explicit computation in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' It is important to comment on the action of the operator ∂−1 x .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' It can be defined on ∂xA by ∂−1 x (∂x(f)) = f + C for any f ∈ A, here C is some constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' For a more general element g ∈ A, g ̸∈ ∂xA, we can represent ∂−1 x (g), for instance, as an element of a localization of A given by A(( 1 u1,1)), that is, we can perturbatively represent it as a series C + �∞ i=1 hi (u1,1)i with hi ∈ A such that ∂u1,1hi = 0 (this idea is coming from [DLZ06]), here C is also a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Both approaches that we compare assert that for the analysis of the weakly non-local Poisson bi-vectors of localizable shape it is sufficient to formally apply ∂−1 x to just one element −ui,1θi ∈ ˆ A and denote the result by ζ, which has different meaning in these two approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The subsequent usage of ζ in computations implies that the extra constant that might occur by inverting ∂x is uniformly set to C = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Localizability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Consider a dispersive weakly non-local Poisson structure of localizable shape given by P = ∞ � d=1 ǫd−1 � d � s=0 P ij d,d−s∂s + ui,1∂−1 x V j d + V i d∂−1 x uj,1 � , P ij d,k, V i k ∈ Ak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (20) The leading term (d = 1) of this structure is a Poisson structure of hydrodynamic type and thus the full Poisson structure can be thought as a deformation of a Poisson structure of hydrodynamic type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' If det P ij 1,0 ̸= 0, Liu and Zhang prove in [LZ11] that there is always an element in R that turns P into a constant local Poisson structure ηij∂x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In the case of a purely local structure the same results is established under the action of group G in [Get02] (see also [DMS05] and [DZ01]), and in the case ǫ = 0 (that is, a purely degree 1 case) it is established under the action of the group RI in [LZ11] for N = 1, 2 and in [FP03] for N ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Now consider a pencil P − λQ of dispersive weakly non-local Poisson structure of localizable shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let us fix the leading term (P − λQ)|ǫ=0 of the pencil and assume it is semi-simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In the purely local case (that is, under the additional assumption that both P and Q are purely local), it was suggested in [LZ05;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' DLZ06] (see also [Lor02] for the scalar case) and proved in [LZ13a] (N = 1 case) and [CPS18;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' CKS18] (any N ≥ 1) that the space of orbits of the MIURA-RECIPROCAL TRANSFORMATIONS AND LOCALIZABLE POISSON PENCILS 7 action of GII on such pencils is naturally parametrized by N smooth functions of one variable, called the central invariants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In Section 4 we generalize these results in the following way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let us fix the leading term (P − λQ)|ǫ=0 of the pencil and assume that P|ǫ=0 and Q|ǫ=0 are simultaneously localizable under the action of the group RI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We also still assume that (P − λQ)|ǫ=0 is semi-simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In this case, we prove that the set of orbits of the action of RII on such pencils is also naturally parametrized by N smooth functions of one variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Note that while the statement is literally the same as in the purely local case, it is quite different as both the group and the space of structures on which the group acts is much bigger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We show that it is still possible to read the central invariants from the symbol of the pencil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' This result is proved by a direct application of various techniques and results proposed in [LZ11;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' LZ13a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' CPS18;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' CKS18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' From the comparison with the computations in the local case, we obtain the following extra result: under the assumptions above, each orbit of RII contains a purely local representative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In other words, we prove that if the leading term of a semi-simple pencil P −λQ of dispersive weakly non-local Poisson structure of localizable shape is localizable by the action of the group RI, then the whole pencil is localizable by the action of the group R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' It is worth to mention that this result also generalizes and put in the right context a theorem of Liu and Zhang [LZ11, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3] that states that if two local Poisson pencils with the leading semi-simple hydrodynamic term are related by a reciprocal transformation, then their central invariants are the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Projective group and Doyle–Pot¨emin form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Finally, we consider the action of the group P ⊂ RI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' It is a quite small group with transparent structure, and we expect that in general the orbits of its action should have a rich geometric structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In this paper we find a surprising connection of this group to a conjecture of Mokhov on the possible form of the local Poisson structures of differential degree deg∂x ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' It was independently proved by Doyle [Doy93] and Pot¨emin [Pot91;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Pot97] that homogeneous local Poisson structures of differential degree d = 2, 3, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' of the form (21) d � s=0 P ij d−s∂s x, P ij k ∈ Ak, can always be transformed by the action of the group GI to an operator of the shape (22) ∂x ◦ d−2 � s=0 Qij d−2−s∂s x ◦ ∂x, Qij k ∈ Ak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Mokhov made the following interesting conjecture: Conjecture 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='6 (See [Mok98, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3 and text afterwards]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let P = �d+2 e=1 P ij e ∂d+2−e x be a local operator of homogeneous differential order d + 2 (that is, deg∂x P ij e = e), d ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Assume that P defines a Poisson bracket.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Then there exists a local skew-symmetric operator Qij of homogenenous differential order d such that P = ∂x ◦ Qij ◦ ∂x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The form (22) is called the Doyle–Pot¨emin form of a local homogeneous bi-vector of differ- ential degree deg∂x ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' It was recently proved that in the cases of homogeneous local Poisson structures of degree d = 2 [VV] and d = 3 [FPV14] the form (22) is preserved by the action of the group P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In Section 5, thanks to our change of coordinates formulae from Subsection 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2, we generalize the above results to local homogeneous bi-vectors (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=', not necessarily Poisson structures) of degree d ≥ 2 and prove that the group P preserves the set of local bi-vectors of Doyle–Pot¨emin form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' A nice example of application to a Hamiltonian operator for the Dubrovin–Zhang hierarchy is pointed out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 8 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' LORENZONI, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' SHADRIN, AND R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' VITOLO 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Acknowledgments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' were supported by the Netherlands Organization for Scientific Research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' are supported by funds of INFN (Istituto Nazionale di Fisica Nucleare) by IS-CSN4 Mathematical Methods of Nonlinear Physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' is supported by funds of H2020-MSCA-RISE-2017 Project No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 778010 IPaDEGAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' are also thankful to GNFM (Gruppo Nazionale di Fisica Matematica) for supporting activities that contributed to the research reported in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Formulae for the action The goal of this Section is to compute from the scratch the effect of general reciprocal differential substitutions on variational (multi)vector fields and related geometric objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' It is clear that a reciprocal differential substitution given by dy = Bdx (or y = P in the holonomic case), wi = Qi, also yields a coordinate change of the y-derivative variables: (23) wi,τ = ∂τ y Qi = � 1 B ∂x �τ Qi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' It is convenient to introduce the Fr´echet derivative1 of a differential function F ∈ A, as (24) ℓF(X) = (ℓF)i(Xi) = ∞ � σ=0 ∂F ∂ui,σ ∂σ xXi, where X = Xiδui is a variational vector field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The formal adjoint of the above operator is (25) (ℓ∗ F)i = ∞ � σ=0 (−∂x)σ ◦ ∂F ∂ui,σ acting on covector-valued densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' A change of coordinates formula for Hamiltonian operators under the action of differential substitutions was already given in [Mok87;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Olv88].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We rephrase the arguments of the proof in [Olv88] and obtain change of coordinates formulae for the geometric objects that we listed in Subsection 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2 which turn out to be valid in the more general case of reciprocal differential substitutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We observe that also in [LZ11] there are formulae for coordinate change, but their validity is limited to the action of Miura reciprocal transformations on operators of localizable shape, while we do not have this limitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' First of all, we provide a formula for the coordinate change of an variational vector field under a differential substitution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let Xiδui = Y iδwi be a variational vector field in the coordinate systems (x, ui,σ) and (y, wi,σ), respectively, where the latter coordinates systems are related by a holo- nomic reciprocal differential substitution y = P, wi = Qi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Then the following change of coordi- nate formula holds: (26) Y j = 1 ∂xP Dj i (Xi) where (27) Dj i = ∂xP(ℓQj)i − ∂xQj(ℓP)i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The proof uses arguments that provide a change of coordinates formula for Euler– Lagrange operators in [Olv93], Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='8 and Exercise 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let (28) ui = f i(x), x ∈ Ω, wi = gi(y), y ∈ ˜Ω be functions that are put in correspondence by a transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We can consider a one- parameter family of such functions defined by the variation field Xi∂ui: (29) ui ǫ = f i(x, ǫ) = f i(x) + ǫXi(x), 1It should be the Gateaux derivative, but Fr´echet is prevailing in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' MIURA-RECIPROCAL TRANSFORMATIONS AND LOCALIZABLE POISSON PENCILS 9 where Xi∂ui has compact support in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Its transformed version (30) wi ǫ = gi(y, ǫ) = gi(y) + ǫY i(y) + O(ǫ2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' is determined by the formulae (31) y = P(x, ∂σ x(f j(x) + ǫXj(x))), wi ǫ = Qi(x, ∂σ x(f j(x) + ǫXj(x))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Since η has compact support on Ω, each gi(y, ǫ) is defined on a common compact domain ˜Ω = {x ∈ Ω | y = P(x, ∂σ xf j(x))}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The transformed variation field is given by Y i(y) = ∂ǫgi(y, ǫ) �� ǫ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' As variation fields do not depend on ǫ we have (32) ∂ǫy = 0 = ∂xP∂ǫx + ∞ � σ=0 ∂uj,σP∂σ xXj, hence (33) ∂ǫx �� ǫ=0 = − 1 ∂xP ∞ � σ=0 ∂uj,σP∂σ xXj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We have: Y j = ∂ǫgj(y, ǫ) �� ǫ=0 = ∞ � σ=0 ∂ui,σQj∂σ x∂ǫf i(x, ǫ) �� ǫ=0 + ∂xQj∂ǫx �� ǫ=0 (34) = 1 ∂xP � ∂xP(ℓQj)i − ∂xQj(ℓP)i � Xi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' □ In the non-holonomic case, we have to regard the differential function P as the primitive of a differential function B, P = ∂−1 x B, and we obtain the following Corollary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In the non-holonomic case of the reciprocal differential substitution dy = Bdx, wi = Qi the following change of coordinate formula holds for an variational vector field Xiδui = Y iδwi: (35) Y j = 1 B Dj i (Xi), where (36) Dj i = B(ℓQj)i − ∂xQj ◦ ∂−1 x (ℓB)i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Note that we used the property ℓB ◦ ∂−1 = ∂−1 ◦ ℓB, which is very useful in computations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Dualizing the computation above, we obtain the formulae for the change of coordinates formula for the Euler–Lagrange operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let the coordinate systems (x, ui,σ) and (y, wi,σ), respectively, where the latter coordinates systems are related by a reciprocal differential distribution dy = Bdx, wi = Qi, and let Ex i , Ey i be the Euler–Lagrange operator with respect to the coordinates (x, ui σ), (y, wi,σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Then the change of coordinate formula is (37) Ey i = (D∗)k i ◦ Ex k , with D given by Equation (36).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In the holonomic case, the formula reduces to the known formula in [Olv93, Exercise 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='49] (with D given by Equation (27)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In the particular case of a differential substitution of the dependent variable only we have ℓB = 0 and the above formula reduces to the well-known formula Ex = (ℓ∗ Qk)i ◦ Ey k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 10 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' LORENZONI, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' SHADRIN, AND R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' VITOLO Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Consider a covector-valued density Ξidui ⊗ dx = Ψidwi ⊗ dy in the coordinate systems (x, ui,σ) and (y, wi,σ) related by dy = Bdx, wi = Qi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Then we have the following change of coordinates formula: (38) Ξi = (D∗)k i (Ψk), where D is as in Equation (36) (or as in Equation (27) in the holonomic case y = P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Finally, we obtain the following: Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Consider a reciprocal differential substitution dy = Bdx, wi = Qi and let P ij x , P ij y be its coordinate expressions of a (possibly non-local or non-Poisson) bi-vector with respect to the coordinates (x, ui σ) and (y, wi σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Then we have the change of coordinate formula (39) P hk y = 1 B (D)h i P ij x (D∗)k j, where D is as in Equation (36).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The proposition has already been proved in [Mok87;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Olv88] for the particular case of Hamiltonian operators and differential substitutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In our case, the proof follows from the fact that P ij maps covector-valued densities into variational vector fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' So, we can use the change of coordinates formulae for these two geometric objects (independently of the Hamiltonian property) and find the above result, that holds also in the case of (nonlocal) reciprocal differential substitutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' □ Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The same argument can be applied to multivector fields considered as maps from multicovector-valued densities to variational vector fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' For instance, in the same set-up as Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='5 let T ijk and ˜T ijk be the coordinate expressions of a trivector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Then (40) ˜T ijk = 1 B (D)i mT mnp((D∗)j n, (D∗)k p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The Ferapontov–Pavlov formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let us apply a special case of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='5 to a local Poisson bi-vector of order deg∂x = 1 and a reciprocal transformation in R that only changes the independent variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' This should reproduce the Ferapontov–Pavlov formula first derived in [FP03, Section 3] (based on [Fer95a]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Consider the change of x given by ∂x = B∂y, ∂−1 y B−1 = ∂−1 x (41) as an element of RI, that is, we assume that B = B(uj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let a local Poisson bracket of differential degree 1 be given by the operator P ij := gij∂x + Γij k uk x, (P ∗)ji = −P ij (42) Convention 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Throughout the computations in this Section it is important for us to distin- guish between ∂xuk and ∂yuk, so we use the notation uk x and uk y rather than uk,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The action of the reciprocal transformation (41) on the operator (42) pro- duces a weakly non-local operator of localizable shape, whose local part is given explicitly as (43) gijB2∂y + Γij k B2uk y − 1 2giℓB2 � gℓm ∂B−2 ∂uk + gkm ∂B−2 ∂uℓ − gℓk ∂B−2 ∂um � gmjB2uk y and the non-local part is equal to (44) � P iℓ �∂B ∂uℓ � − 1 2ui y ∂B ∂uk gkℓ ∂B ∂uℓ � ∂−1 y uj y + ui y∂−1 y � P jk � ∂B ∂uk � − 1 2 ∂B ∂uk gkℓ ∂B ∂uℓuj y � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Note that Γij k B2 − 1 2giℓB2 (gℓm∂ukB−2 + gkm∂uℓB−2 − gℓk∂umB−2) gmjB2 is exactly the covariant Christoffel symbol for the metric gijB2, so we indeed reproduce the Ferapontov– Pavlov formula in [FP03].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' MIURA-RECIPROCAL TRANSFORMATIONS AND LOCALIZABLE POISSON PENCILS 11 Proof of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' By Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='5 the bi-vector P ij is transformed under the substitu- tion (41) to B−1 � Bδi k − ui x∂−1 x ∂B ∂uk � P kℓ � Bδj ℓ + ∂B ∂uℓ∂−1 x uj x � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (45) Expanding the brackets, we have the following four summands (we intentionally keep derivatives in x instead of y as long as possible): −B−1ui x∂−1 x ∂B ∂uk P kℓ ∂B ∂uℓ∂−1 x uj x = −1 2B−1ui x∂−1 x � ∂x ∂B ∂uk gkℓ ∂B ∂uℓ + ∂B ∂uk gkℓ ∂B ∂uℓ∂x � ∂−1 x uj x (46) = −1 2B−1ui x ∂B ∂uk gkℓ ∂B ∂uℓ∂−1 x uj x − 1 2B−1ui x∂−1 x ∂B ∂uk gkℓ ∂B ∂uℓuj x = −1 2ui y ∂B ∂uk gkℓ ∂B ∂uℓ∂−1 y uj y − 1 2ui y∂−1 y ∂B ∂uk gkℓ ∂B ∂uℓuj y ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' B−1Bδi kP kℓ ∂B ∂uℓ∂−1 x uj x = P iℓ �∂B ∂uℓ � ∂−1 x uj x + giℓ ∂B ∂uℓuj x (47) = P iℓ �∂B ∂uℓ � ∂−1 y uj y + giℓ ∂B ∂uℓ Buj y ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' −B−1ui x∂−1 x ∂B ∂uk P kℓBδj ℓ = −B−1ui x∂−1 x (P ∗)kj � ∂B ∂uk � B − B−1ui x ∂B ∂uk gkjB (48) = ui y∂−1 y P jk � ∂B ∂uk � − ui y ∂B ∂uk gkjB ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' B−1Bδi kP kℓBδj ℓ = P ijB .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (49) Thus the non-local term is given by Equation (44), and the local term is given by P ijB + giℓ ∂B ∂uℓBuj y − ui y ∂B ∂uk gkjB (50) = gijB2∂y + gijB ∂B ∂uk uk y + Γij k B2uk y − 1 2giℓB4∂B−2 ∂uℓ uj y + 1 2ui y ∂B−2 ∂uk gkjB4, where the latter expression is equal to (43).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' □ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Weakly non-local bi-vectors of localizable shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The goal of this Section is to prove that the space of weakly non-local bi-vectors of localizable shape is closed under the action of reciprocal differential substitutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We narrow the scope to the Miura-type substitutions R as in Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let us consider the effect of a reciprocal transformation of the form (41) on a general weakly nonlocal bi-vector of localizable shape: (51) P ij = ∞ � d=1 ǫd−1 � d � s=0 P ij d,d−s∂s x + ui,1∂−1 x V j d + V i d∂−1 x uj,1 � = P ij loc + P ij nonloc, where P ij d,d−s ∈ Ad−s and V i d ∈ Ad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Note that both P ij loc and P ij nonloc define skew-symmetric bi-vectors, that is (P ∗ loc)ij = −P ji loc and (P ∗ nonloc)ij = −P ji nonloc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Consider a Miura-reciprocal transformation in R given by dy = Bdx, wi = Qi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Under this transformation any weakly non-local bi-vector P ij of localizable shape (51) is transformed into a weakly non-local bi-vector of localizable shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In principle, this proposition follows from the arguments of [LZ11] and [FP03].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' However, it can also be directly obtained using Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 12 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' LORENZONI, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' SHADRIN, AND R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' VITOLO Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Repeating mutatis mutandis the proof of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='8 one can check that the local part P ij loc produces a weakly non-local operator of localizable shape (the only thing that matters for that computation is skew-symmetry of the bi-vector defined by P ij loc).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' So let us focus on the non-local part P ij nonloc = ui x∂−1 x V j + V i∂−1 x uj x, where V i = �∞ d=1 ǫd−1V i d and we use Convention 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='7 here and below in computations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We have: B−1 � B ∂Qi ∂uk,s∂s x − Qi x∂−1 x ∂B ∂uk,s∂s x � � uk x∂−1 x V l + V k∂−1 x ul x � (52) � (−∂x)t ◦ ∂Qj ∂ul,tB + (−∂x)t ◦ ∂B ∂ul,t∂−1 x Qj x � (we omit the summation over s and t for brevity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We compute (52) as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' First, note that ∂Qi ∂uk,s∂s x ◦ uk x∂−1 x V l(−∂x)t ◦ ∂Qj ∂ul,tB = Qi x∂−1 x (ℓQj)l(V l)B + loc;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (53) ∂Qi ∂uk,s∂s x ◦ V k∂−1 x ul x(−∂x)t ◦ ∂Qj ∂ul,tB = (ℓQi)k(V k)∂−1 x Qj xB + loc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Here loc are the terms where we collect some purely local operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Furthermore, − 1 B Qi x∂−1 x ∂B ∂uk,s∂s x ◦ uk x∂−1 x V l(−∂x)t ◦ ∂Qj ∂ul,tB = − 1 B Qi x∂−1 x Bx∂−1 x (ℓQj)l(V l)B − 1 B Qi x∂−1 x Oj BuV QB;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (54) − 1 B Qi x∂−1 x ∂B ∂uk,s∂s x ◦ V k∂−1 x ul x(−∂x)t ◦ ∂Qj ∂ul,tB = − 1 B Qi x∂−1 x (ℓB)k(V k)∂−1 x Qj xB − 1 B Qi x∂−1 x Oj BV uQB;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' ∂Qi ∂uk,s∂s x ◦ uk x∂−1 x V l(−∂x)t ◦ ∂B ∂ul,t∂−1 x Qj x = Qi x∂−1 x (ℓB)l(V l)∂−1 x Qj x + Oi QuV B∂−1 x Qj x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' ∂Qi ∂uk,s∂s x ◦ V k∂−1 x ul x(−∂x)t ◦ ∂B ∂ul,t∂−1 x Qj x = (ℓQi)l(V l)∂−1 x Bx∂−1 x Qj x + Oi QV uB∂−1 x Qj x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Here Oj BuV Q, Oj BV uQ, Oi QuV B, and Oi QV uB are some scalar local operators, whose main property is that (Oj BuV Q)∗ = −Oj QV uB and (Oj BV uQ)∗ = −Oj QuV B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We omit their explicit formulas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Finally, − 1 B Qi x∂−1 x ∂B ∂uk,s∂s x ◦ uk x∂−1 x V l(−∂x)t ◦ ∂B ∂ul,t∂−1 x Qj x = − 1 B Qi x∂−1 x Bx∂−1 x (ℓB)l(V l)∂−1 x Qj x (55) − 1 B Qi x∂−1 x OBuV B∂−1 x Qj x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' − 1 B Qi x∂−1 x ∂B ∂uk,s∂s x ◦ V k∂−1 x ul x(−∂x)t ◦ ∂B ∂ul,t∂−1 x Qj x = − 1 B Qi x∂−1 x (ℓB)l(V l)∂−1 x Bx∂−1 x Qj x − 1 B Qi x∂−1 x OBV uB∂−1 x Qj x, where OBuV B and OBV uB are scalar local operators such that O∗ BuV B = −OBV uB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We omit their explicit formulas, but we use below that OBuV B +OBV uB = − ˜O∗∂x −∂x ◦ ˜O for some local operator ˜O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Now we collect the terms together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Firstly,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' we list all terms with Bx that emerged in (54) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='and (55): ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='− 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='B Qi ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x Bx∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x (ℓQj)l(V l)B = −Qi ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x (ℓQj)l(V l)B + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='B Qi ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x (ℓQj)l(V l)B2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='(56) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='(ℓQi)l(V l)∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x Bx∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x Qj ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x = (ℓQi)l(V l)B∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x Qj ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x − (ℓQi)l(V l)∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x Qj ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='xB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='− 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='B Qi ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x Bx∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x (ℓB)l(V l)∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x Qj ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x = −Qi ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x (ℓB)l(V l)∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x Qj ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='B Qi ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x B(ℓB)l(V l)∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x Qj ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='MIURA-RECIPROCAL TRANSFORMATIONS AND LOCALIZABLE POISSON PENCILS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='− 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='B Qi ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x (ℓB)l(V l)∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x Bx∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x Qj ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x = − 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='B Qi ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x (ℓB)l(V l)B∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x Qj ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='B Qi ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x (ℓB)l(V l)∂−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='x Qj ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='xB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='Note some cancellations: the non-local terms in (53) cancel with the corresponding summands ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='in the first and the second line of (56),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' two non-local terms in the second and third line of (54) cancel with the two terms in the third and forth line of (56),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' are there are two terms in the latter lines that cancel each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' So, modulo the purely local terms, (52) is equal to the sum of the following four expressions: 1 B Qi x∂−1 x (ℓQj)l(V l)B2 + (ℓQi)l(V l)B∂−1 x Qj x = wi y∂−1 y (ℓQj)l(V l)B + (ℓQi)l(V l)B∂−1 y wj y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (57) 1 B Qi x∂−1 x (Oj QV uB)∗B + Oi QV uB∂−1 x Qj x = 1 B Qi x∂−1 x Oj QV uB(1)B + Oi QV uB(1)∂−1 x Qj x + loc = wi y∂−1 y Oj QV uB(1) + Oi QV uB(1)∂−1 y wj y + loc;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 1 B Qi x∂−1 x (Oj QuV B)∗B + Oi QuV B∂−1 x Qj x = 1 B Qi x∂−1 x Oj QuV B(1)B + Oi QuV B(1)∂−1 x Qj x + loc = wi y∂−1 y Oj QuV B(1) + Oi QuV B(1)∂−1 y wj y + loc;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' − 1 B Qi x∂−1 x OBuV B∂−1 x Qj x − 1 B Qi x∂−1 x OBV uB∂−1 x Qj x = 1 B Qi x∂−1 x ( ˜O∗∂x + ∂x ◦ ˜O)∂−1 x Qj x = 1 B Qi x∂−1 x ˜O(1)Qj x + 1 B Qi x ˜O(1)∂−1 x Qj x + loc = wi y∂−1 y 1 B ˜O(1)Qj x + 1 B Qi x ˜O(1)∂−1 y wj y + loc, which is manifestly a weakly non-local operator of localizable shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Schouten bracket for weakly non-local operators of localizable shape The goal of this Section is to compare two ways to encode weakly non-local Poisson structures of localizable shape: the one given in [LZ11] (by design only working for the localizable shape case) and [LV20] (it is working for general weakly non-local case, but we specialize it for the localizable shape).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In principle, the identification of these two approaches follows from the uniqueness property of the bracket, c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [LZ11, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1], but we want to present an explicit computation for this identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The two approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In both approaches the weakly non-local p-vectors of localizable shape are encoded as � P = � PL + ζPN, (58) where PL ∈ ˆ Ap, PN ∈ ˆ Ap−1, and (59) ∂xζ = −ui,1θi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The difference in two approaches is the meaning of ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In the approach of [LZ11], ζ is a new dependent variable such that deg∂x ζ = 0 and degθ ζ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The new space of multivector densities is defined as S := ˆ A[ζ], equipped with the operator ∂x = −ui,1θi∂ζ + � ui,d+1∂ui,d + θd+1 i ∂θd i , (60) and the space of weakly non-local multivectors of localizable shape is defined as E := S/∂xS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In the approach of [LV20], ζ is not a new dependent variable, but rather an expression in the existing dependent variables (still of differential degree deg∂x ζ = 0 and multivector degree degθ ζ = 1), such that Equation (59) is satisfied for the standard operator ˜∂x = � ui,d+1∂ui,d + θd+1 i ∂θd i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (61) 14 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' LORENZONI, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' SHADRIN, AND R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' VITOLO For instance, one can find such a function in ˆ A(( 1 u1,1)), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [DLZ06].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' To this end, one looks for a unique solution ˜∂xζ = −ui,1θi of the form ζ = �∞ i=1 fi (u1,1)i, with fi ∈ ˆ A such that ∂u1,1fi = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Once the objects are defined, we have two different formulae for the Schouten bracket in these two approaches: The formula in the approach of [LV20] is (62) � � P, � Q � = � (−1)degθ P ˜δuiP ˜δθiQ + ˜δθiP ˜δuiQ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Recall that ζ is regarded as a function of (ui σ, θσ i ) in the variational derivatives (which are denoted by ˜δui and ˜δθi for that reason).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The formula in the approach of [LZ11] is (63) � � P, � Q � = � (−1)degθ PδuiPδθiQ + δθiPδuiQ + (−1)degθ P ˆE(P)∂ζQ + ∂ζP ˆE(Q) Here ζ is regarded as an extra dependent variable, and the operator ˆE is defined as ˆE = � s≥1 t≥0 � ui,s(−∂x)t∂ui,s+t + θs i (−∂x)t∂θs+t i � − 1 + θiδθi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (64) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Identification of the two approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We prove the following: Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The identity map ˆ A[ζ] → ˆ A[ζ] induces the isomorphism of the Lie algebras of local multivector fields defined by the Schouten brackets in these two approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We represent any density P ∈ ˆ A[ζ] as P = PL + ζPN and consider ζ to be a nonlocal function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Note that ˜δuiP = δuiP + (−∂x)σ (∂ui,σζPN) (65) = δuiPL + (−∂x)σ (ζ∂ui,σPN) + (−∂x)σ (∂ui,σζPN) , ˜δθiP = δθiP + (−∂x)σ � ∂θσ i ζPN � (66) = δθiPL − (−∂x)σ � ζ∂θσ i PN � + (−∂x)σ � ∂θσ i ζPN � , where we used that δuiP =δuiPL + (−∂x)σ (ζ∂ui,σPN) , (67) δθiP =δθiPL − (−∂x)σ � ζ∂θσ i PN � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (68) Using these formulas, we obtain ˜δuiP ˜δθiQ = (δuiP + (−∂x)σ (∂ui,σζPN)) � δθiQ + (−∂x)σ � ∂θσ i ζQN �� (69) = δuiPδθiQ + δuiP(−∂x)σ � ∂θσ i ζQN � + (−∂x)σ (∂ui,σζPN) δθiQ + (−∂x)σ (∂ui,σζPN) (−∂x)σ � ∂θσ i ζQN � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' ˜δθiP ˜δuiQ = � δθiP + (−∂x)σ � ∂θσ i ζPN �� (δuiQ + (−∂x)σ (∂ui,σζQN)) (70) = δθiPδuiQ + δθiP(−∂x)σ (∂ui,σζQN) + (−∂x)σ � ∂θσ i ζPN � δuiQ + (−∂x)σ � ∂θσ i ζPN � (−∂x)σ (∂ui,σζQN) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' MIURA-RECIPROCAL TRANSFORMATIONS AND LOCALIZABLE POISSON PENCILS 15 If we want to treat ζ as a new dependent variable,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' we have ˆE(P)∂ζQ = ˆE(P)QN (and similarly for the other summand in the formula),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' so we have to prove that � (−1)degθ P ˆE(P)QN + PN ˆE(Q) (71) = � (−1)degθ P� δuiP(−∂x)σ � ∂θσ i ζQN � + (−∂x)σ (∂ui,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='σζPN) δθiQ + (−∂x)σ (∂ui,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='σζPN) (−∂x)σ � ∂θσ i ζQN � � + � δθiP(−∂x)σ (∂ui,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='σζQN) + (−∂x)σ � ∂θσ i ζPN � δuiQ + (−∂x)σ � ∂θσ i ζPN � (−∂x)σ (∂ui,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='σζQN) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let us use the following property of the operator ˆE: ∂x ˆE = −ui,1δui + θi∂xδθi + ui,1θiδζ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (72) So, we obtain � ˆE(P)QN = � ∂−1 x � −ui,1δuiP + θi∂xδθiP + ui,1θiPN � QN (73) = � − � −ui,1δuiP + θi∂xδθiP + ui,1θiPN � ∂−1 x (QN), � PN ˆE(Q) = � PN∂−1 x � −ui,1δuiQ + θi∂xδθiQ + ui,1θiQN � (74) = � −∂−1 x (PN) � −ui,1δuiQ + θi∂xδθiQ + ui,1θiQN � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Substituting Equations (73) and (74) into (71), we see that the statement of the theorem reduces to the following equality: � (−1)degθ P +1 � −ui,1δuiP + θi∂xδθiP + ui,1θiPN � ∂−1 x (QN) (75) − ∂−1 x (PN) � −ui,1δuiQ + θi∂xδθiQ + ui,1θiQN � = � (−1)degθ P� δuiP(−∂x)σ � ∂θσ i ζQN � + (−∂x)σ (∂ui,σζPN) δθiQ + (−∂x)σ (∂ui,σζPN) (−∂x)σ � ∂θσ i ζQN � � + � δθiP(−∂x)σ (∂ui,σζQN) + (−∂x)σ � ∂θσ i ζPN � δuiQ + (−∂x)σ � ∂θσ i ζPN � (−∂x)σ (∂ui,σζQN) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In order to prove this equality, our strategy is move ∂−1 x in ζ = ∂−1 x (−ui,1θi) to the other factor (PN or QN) using integration by parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We have: δuiP(−∂x)σ � ∂θσ i ζQN � = δuiPui,1∂−1 x (QN), (76) (−∂x)σ � ∂uiσζPN � δθiQ = −∂x � θi∂−1 x (PN) � δθiQ (77) (−∂x)σ � ∂uiσζPN � (−∂x)σ � ∂θσ i ζQN � = −∂x � θi∂−1 x (PN) � ui,1∂−1 x (QN) (78) (−∂x)σ � ∂θσ i ζPN � δuiQ = ui,1∂−1 x (PN) δuiQ (79) δθiP(−∂x)σ � ∂uiσζQN � = −δθiP∂x � θi∂−1 x (QN) � (80) (−∂x)σ � ∂θσ i ζPN � (−∂x)σ � ∂uiσζQN � = − � ui,1∂−1 x (PN) � ∂x � θi∂−1 x (QN) � (81) 16 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' LORENZONI, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' SHADRIN, AND R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' VITOLO Substituting the above expressions into the equality (75) that we shall prove, we are led to the simplified equality: � (−1)degθ P +1 � θi∂xδθiP + ui,1θiPN � ∂−1 x (QN) − ∂−1 x (PN) � θi∂xδθiQ + ui,1θiQN � (82) = � (−1)degθ P +1� ∂x(θi∂−1 x (PN))δθiQ + ∂x(θi∂−1 x (PN))ui,1∂−1 x (QN) � − � δθiP∂x(θi∂−1 x (QN)) + ui,1∂−1 x (PN)∂x(θi∂−1 x (QN)) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Integrating by parts the summands containing ∂xδθiP, ∂xδθiQ we obtain the further simplifica- tion of the equality (75) (note that degθ PN = degθ P − 1): � (−1)degθ P +1ui,1θiPN∂−1 x (QN) − ∂−1 x (PN)ui,1θiQN (83) = � (−1)degθ P +1∂x(θi∂−1 x (PN))ui,1∂−1 x (QN) − ui,1∂−1 x (PN)∂x(θi∂−1 x (QN)) Expanding the total derivatives on the right-hand side we easily see that the above equality is an identity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' This completes the proof of the theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Pencils of weakly non-local bi-vectors of localizable shape In this Section we compute the bi-Hamiltonian cohomology for a semi-simple pencil of weakly non-local Poisson bi-vectors of localizable shape of differential order deg∂x = 1 satisfying the extra condition: the pencil of these bi-vectors should be localizable (or, equivalently, they should be simultaneously localizable) with respect to the Miura-reciprocal group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' As a result of this computation and some further arguments we prove the following theorem: Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let P1 and P2 be two of commuting non-local Poisson bi-vectors of localizable shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We assume that P1 and P2 have dispersive expansion given by Pa = �∞ i=1 ǫi−1Pa,i, deg∂x Pa,i = i, a = 1, 2, i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' If the leading terms of degree deg∂x = 1, P1,1 and P2,1, are simultaneously localizable under the action of the Miura-reciprocal group and form a semi-simple Poisson pencil, then the full dispersive brackets P1 and P2 are simultaneously localizable under the action of the Miura- reciprocal group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In order to prove this theorem, we have to make a few preliminary computations with bi- Hamiltonian cohomology, following the ideas in [LZ11] subsequent steps in [CPS18;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' CKS18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Bi-Hamiltonian cohomology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Setup for a deformation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Recall that following Liu and Zhang [LZ11] we denote S := ˆ A[ζ], with ∂x : S → S given by ∂x = −ui,1θi∂ζ + � ui,d+1∂ui,d + θd+1 i ∂θd i , and E := S/∂xS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let P1, P2 ∈ S2 1 such that � P1 and � P2 form a pencil of Poisson structures (possibly non- local, but then they are automatically weakly non-local of localizable shape, since it is the only type of non-locality accommodated in the space E), that is, we assume that � � P2 − λP1, � P2 − λP1 � = 0 (84) Recall that there is a group RI of the Miura-reciprocal transformations of the 1st kind acting on them, see Equation (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We assume that the pencil � P2−λP1 is localizable under the action of RI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We also assume that the pencil formed by P1 and P2 is semi-simple, which together with the assumption of localizability implies that the we can choose the coordinates x, u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , uN MIURA-RECIPROCAL TRANSFORMATIONS AND LOCALIZABLE POISSON PENCILS 17 such that the densities P1 and P2 of the bivectors � P1 and � P2 take the form P1 = � N � i=1 f iθiθ1 i � + Γij 1,kuk,1θiθj;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (85) P2 = � N � i=1 uif iθiθ1 i � + Γij 2,kuk,1θiθj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (86) We are interested to classify the equivalence classes of the higher order dispersive deforma- tions of the Poisson pencil � P2−λP1 in E with respect to the Miura-reciprocal transformations of the 2nd kind, RII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let di := adPi : E → E, i = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Then the deformation problem is con- trolled by the bi-Hamiltonian cohomology BHp d(E, d1, d2) of cohomological degree p = 2 and p = 3 and of differential degrees d ≥ 2 and d ≥ 4, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' It is a rather standard argument, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [LZ11, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The only extra bit that one needs in our case, that is, the space E and the group RII of Miura-reciprocal transformations of the 2nd kind, in comparison with the usual local case, that is, the space ˆF and the group GII of Miura transformations of the 2nd kind, is the identification of the action of the Lie algebra of RII on weakly non-local bi-vectors (or, more generally, multivectors) of localizable shape with the adjoint action of E1 on E2 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=', E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' This is established in [LZ11, Theorems 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='7 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='5] 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Bi-Hamiltonian cohomology computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We prove the following Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We have: BH2 d(E, d1, d2) ∼= � 0, d = 2 and d ≥ 4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' �N i=1 C∞(R, ui), d = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (87) BH3 d(E, d1, d2) ∼= 0, d ≥ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (88) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' For the proof we use that for d ≥ 2 we have [LZ13b, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='4]: BHp d(E, d1, d2) ∼= Hp d(E[λ], d2 − λd1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (89) In order to compute Hp d(E[λ], d2−λd1), we recall the definition of Di := DPi : S → S from [LZ11]: DPi := ˆE(Pi)∂ζ + ∞ � s=0 ∂s x � δujPi � ∂θs j + ∂s x � δθjPi � ∂uj,s, i = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (90) Note that [∂x, Di] = 0 (by direct computation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We prove that it is a homological vector field (which is not true in general, for a non-local bi-vector Pi): Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' For a purely local bivector � P the operator DP does not depend on the choice of a purely local density P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Moreover, for purely local densities of the bivectors P, Q ∈ ˆ A2 and for any T ∈ S we have: � DP(T) = � � P, � T � (91) and [DP, DQ] = D[P,Q], (92) where [P, Q] = δθiPδuiQ + δuiPδθiQ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In particular, for a purely local density P of a Poisson bivector � P we have D2 P = 0 on S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The statements of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3 do not hold for not purely local densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 18 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' LORENZONI, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' SHADRIN, AND R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' VITOLO Proof of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Firstly, we check the DP does not depend on the choice of a local density P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' To this end, we remind the definitions and basic properties of ˆE and ∂x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We have: ∂x = −ui,1θi∂ζ + � ui,d+1∂ui,d + θd+1 i ∂θd i ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (93) ˆE = � s≥1 t≥0 � ui,s(−∂x)t∂ui,s+t + θs i (−∂x)t∂θs+t i � − 1 + θiδθi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (94) ∂x ˆE = −ui,1δui + θi∂xδθi + ui,1θiδζ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (95) ˆE∂x = −ui,1θi∂ζ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (96) δui∂x = ∂xθi∂ζ, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , N;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (97) δθi∂x = −ui,1∂ζ, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (98) With the last three equations we immediately see that for any local X ∈ ˆ A ˆE(∂xX)∂ζ + ∞ � s=0 � ∂s x � δuj∂xX � ∂θs j + ∂s x � δθj∂xX � ∂uj,s � = (99) − ui,1θi∂ζX∂ζ + ∞ � s=0 � ∂s x � ∂x(θi∂ζX) � ∂θs j + ∂s x � − ui,1∂ζX � ∂uj,s � = 0, since ∂ζ = 0, which implies the first assertion of the lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Now, Equation (91) is obvious from the definition of the Schouten bracket.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' So we focus on Equation (92).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let us compute the coefficient of ∂ζ on the left hand side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Using the vanishing of ∂ζ derivatives,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' we have: ∞ � s=0 � ∂s x � δujP � ∂θs j + ∂s x � δθjP � ∂uj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='s � ˆE(Q) = (100) ∂−1 x ∞ � s=0 � ∂s x � δujP � ∂θs j + ∂s x � δθjP � ∂uj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='s � (−ui,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1δui + θi∂xδθi)(Q) = ∂−1 x � δujP∂x(δθjQ) − ∂x(δθjP)δujQ � + ∂−1 x (−ui,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1) ∞ � s=0 � ∂s x � δujP � ∂θs j + ∂s x � δθjP � ∂uj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='s � δuiQ + ∂−1 x (−θi∂x) ∞ � s=0 � ∂s x � δujP � ∂θs j + ∂s x � δθjP � ∂uj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='s � δθiQ Adding to the latter expression the same one with interchanged P and Q and using that for purely local densities ∞ � s=0 � ∂s x � δujP � ∂θs j + ∂s x � δθjP � ∂uj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='s � δuiQ + ∞ � s=0 � ∂s x � δujQ � ∂θs j + ∂s x � δθjQ � ∂uj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='s � δuiP (101) = δui ∞ � s=0 � ∂s x � δujP � ∂θs jQ + ∂s x � δθjP � ∂uj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='sQ � = δui ∞ � s=0 � δujPδθjQ + δθjPδujQ � and ∞ � s=0 � ∂s x � δujP � ∂θs j + ∂s x � δθjP � ∂uj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='s � δθiQ + ∞ � s=0 � ∂s x � δujQ � ∂θs j + ∂s x � δθjQ � ∂uj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='s � δθiP (102) = −δθi ∞ � s=0 � ∂s x � δujP � ∂θs jQ + ∂s x � δθjP � ∂uj,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='sQ � = −δθi ∞ � s=0 � δujPδθjQ + δθjPδujQ � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' MIURA-RECIPROCAL TRANSFORMATIONS AND LOCALIZABLE POISSON PENCILS 19 we obtain that the coefficient of ∂ζ on the left hand side of Equation (92) is equal to ∂−1 x (−ui,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1δui + θi∂xδθi)[P,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Q] = ˆE � [P,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Q] � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (103) which is the coefficient of ∂ζ on the right hand side of Equation (92).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The coefficients of all other components of the vector fields on the left hand side of Equation (92) are computed in a very similar way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' □ Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3 implies that D2−λD1 is a differential on S[λ], and we have a short exact sequence 0 � S[λ] R ∂x � D2−λD1 � S[λ] � � D2−λD1 � E[λ] � d2−λd1 � 0 (104) and it implies a long exact sequence in the cohomology which reads Hp d−1(S[λ]/R, D2 − λD1) � Hp d(S[λ], D2 − λD1) � Hp d(E[λ], d2 − λd1) � Hp+1 d (S[λ]/R, D2 − λD1) � Hp+1 d+1(S[λ], D2 − λD1) (105) Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We have Hp d(S[λ], D2 − λD1) ∼= \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 0 p ≤ d and (p, d) ̸= (3, 3), (0, 0) R[λ] p = 0, d = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' �N i=1 C∞(R, ui) p = 3, d = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (106) Also, H3 2(S[λ], D2 − λD1) ∼= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' This lemma can be derived from [CKS18, Theorems 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='12 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Indeed, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3 in particular implies that we have a bicomplex (S[λ], Dloc, Dζ) with the differentials given by Dζ := ( ˆE(P2)−λ ˆE(P1))∂ζ and Dloc := D2 −λD1 −Dζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We start a spectral sequence associated with this bicomplex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Obviously, it converges on the second page.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The computation of the first page splits as Hp d(S[λ], Dloc) ∼= Hp d(A[λ], Dloc) ⊕ Hp d(A[λ]ζ, Dloc) (107) ∼= Hp d(A[λ], Dloc) ⊕ Hp−1 d (A[λ], Dloc), which implies all desired vanishings (for p ≤ d the only non-trivial cohomology groups are H0 0(A[λ], Dloc) ∼= R[λ] and H3 3(A[λ], Dloc) ∼= �N i=1 C∞(R, ui) [CKS18, Theorems 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='12 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='13]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Since both Hi i(S[λ], Dloc) = 0 for i = 1, 2, 4, and the induced differential on the first page has the (p, d)-degree (1, 1), we conclude that H0 0(S[λ], D2 − λD1) ∼= H0 0(S[λ], Dloc) ∼= R[λ];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (108) H3 3(S[λ], D2 − λD1) ∼= H3 3(S[λ], Dloc) ∼= N � i=1 C∞(R, ui).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (109) □ Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Almost the same statement holds for the cohomology of S[λ]/R, the only difference is H0 0(S[λ]/R, D2 − λD1) ∼= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Now we can complete the computation of the cohomology Hp d(E[λ], d2 − λd1) for p < d and p = 2, d = 2 using the long exact sequence (105).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The relevant pieces of this long exact sequence 20 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' LORENZONI, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' SHADRIN, AND R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' VITOLO are 0 = Hp d(S[λ], D2 − λD1) � Hp d(E[λ], dloc 2 − λdloc 1 ) � Hp+1 d (S[λ]/R, D2 − λD1) = 0 , (110) for p < d and (p + 1, d) ̸= (3, 3), which implies the vanishing for p < d, (p, d) ̸= (2, 3), and p = 2, d = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Moreover, we have 0 = H2 3(S[λ], D2 − λD1) � H2 3(E[λ], dloc 2 − λdloc 1 ) � H3 3(S[λ]/R, D2 − λD1) ∼= �N i=1 C∞(R, ui) � H3 4(S[λ], D2 − λD1) = 0 , (111) which gives the answer for (p, d) = (2, 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Now, the special cases of these computations for p = 2, d ≥ 2 and p = 3, d ≥ 4 imply all statements of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' □ An immediate corollary of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2 is the following: Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let � P2 − λP1 be a semi-simple pencil of local Poisson bivectors of differen- tial order 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We consider the higher order dispersive extensions of � P2 − λP1 in the realm of weakly non-local Poisson pencils of localizable shape, that is, we consider Poisson pencils � �∞ d=1 ǫd−1(P2,d −λP1,d) ∈ E such that deg∂x(P2,d −λP1,d) = d and � P2,1 −λP1,1 = � P2 −λP1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The space of orbits of the action of the group RII (the group of Miura-reciprocal transfor- mation of the 2nd kind) onto the set of these dispersive extensions is isomorphic to the space �N i=1 C∞(R, ui).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' This result is strikingly similar to the corresponding statement in the local case, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [CPS18, Theorem 1], see also [LZ05;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' LZ13a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' DLZ06].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' However, in the local case both the space ˆF where the deformations of � P2 − λP1 are allowed as well as the group GII acting on them are much smaller than in Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Our next goal is to compare these two situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Comparison with the purely local deformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Within this section it is important to have a notation that distinguishes between the operator ∂x as given by Equation (93) on the space S = ˆ A[ζ] and its purely local version ˜∂x := ∂x + ui,1θi∂ζ defined both on S and on A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Note that on S the operator ˜∂x commutes with multiplication by ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let T nl denote the space of dispersive weakly non-local Poisson pencils of localizable shape � �∞ d=1 ǫd−1(P2,d − λP1,d) ∈ E with the fixed leading term � P2,1 − λP1,1 = � P2 − λP1 that is purely local and semi-simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let T loc denote the space of dispersive local Poisson pencils � �∞ d=1 ǫd−1(P2,d − λP1,d) ∈ ˆF with the same fixed leading term � P2,1 − λP1,1 = � P2 − λP1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The group RII acts on T nl and the group GII acts on T loc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Moreover, there is a natural embedding I : T loc → T nl that is GII-equivariant (GII acts on T nl as a subgroup of RII).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The map I induces a map of the sets of orbits ι: T loc/GII → T nl/RII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The map ι is injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' This proposition immediately follows from [LZ11, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3] and [CPS18, Theorem 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' By the latter result in the local case, we have an isomorphism of sets ˜c: T loc/GII → �N i=1 C∞(R, ui) (these are the so-called central invariants in the local case).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' On the other hand, [LZ11, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3] states that for any x, y ∈ T loc/GII such that ι(x) = ι(y) we have ˜c(x) = ˜c(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Hence, x = y, and ι is surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' □ Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='7 implies that there is a RII invariant map C : T nl → �N i=1 C∞(R, ui) that descends to a bijection c: T nl/RII → �N i=1 C∞(R, ui).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We have the following Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The composition c ◦ ι: T loc/GII → �N i=1 C∞(R, ui) is surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' MIURA-RECIPROCAL TRANSFORMATIONS AND LOCALIZABLE POISSON PENCILS 21 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Basically, we want to show that any cohomology class in H2 3(E) has a representative with a purely local density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let � a2 + a1ζ represent a class in H2 3(E), a2 ∈ ˆ A2 3[λ] and a1 ∈ ˆ A1 3[λ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' This means that (D2 − λD1)(a2 + a1ζ) ∈ ∂x(S3 3[λ]), (112) or, in other words, that there exist b3 ∈ ˆ A3 3[λ] and b2 ∈ ˆ A2 3[λ] such that Dloc(a2) − ( ˆE(P2) − λ ˆE(P1))(a1) + Dloc(a1)ζ = ˜∂x(b3) + ui,1θib2 + ˜∂x(b2)ζ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (113) Since H1 3( ˆ A[λ], Dloc) = 0 [CKS18, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='13], there exist e0 ∈ ˆ A0 2[λ] and f 1 ∈ ˆ A1 2[λ] such that Dloce0 = a1 + ˜∂x(f 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Then, (D2 − λD1)(e0ζ) = a1ζ + ˜∂x(f 1)ζ − ( ˆE(P2) − λ ˆE(P1))(e0) (114) = a1ζ − ( ˆE(P2) − λ ˆE(P1))(e0) − ui,1θif 1 + ∂x(f 1ζ), which implies that (d2 − λd1) � e0ζ = � a1ζ − ( ˆE(P2) − λ ˆE(P1))(e0) − ui,1θif 1 (115) Thus, the cocycle � a2 + a1ζ is cohomologous to � a2 + ( ˆE(P2) − λ ˆE(P1))(e0) + ui,1θif 1, which gives a pure local deformation for � P2 − λP1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' □ Taking into account that that c is a bijection, an immediate corollary of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='9 is the following: Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The map ι is surjective (and hence a bijection).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In particular, every orbit of the action of RII on T nl contains a purely local representative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' It is just a different way to state Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1, so this corollary also completes the proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Roots of the characteristic polynomial of the symbol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In the purely local case the central invariants, besides a purely cohomological definition, can be computed directly from a representative of a deformation (see [DLZ06] for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' More precisely, one has to compute the eigenvalues of the symbol of a representative of a deformation, which behave as scalars with respect to the Miura group action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In this section we extend this viewpoint to the invariants of the Miura-reciprocal group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' First, we recall the construction from [DLZ06].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let � �∞ d=1 ǫd−1(P2,d −λP1,d) ∈ T loc, and the densities are expanded as �d s=0(P2,d,s − λP1,d,s)ijθiθd−s j , d ≥ 1, such that d � s=0 (P2,d,s − λP1,d,s)ij∂d−s x = − d � s=0 (−∂x)d−s ◦ (P2,d,s − λP1,d,s)ji (116) Consider the symbol of the densities of the bi-vector � �∞ d=1 ǫd−1(P2,d −λP1,d), that is, the sum �∞ d=1 ǫd−1(P2,d,0 − λP1,d,0)ij = �∞ d=1(−ǫ)d−1(P2,d,0 − λP1,d,0)ji.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The construction of the Miura group invariants from the eigenvalues of the symbol is based on the following lemma: Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Under the group of Miura transformations G the symbol transforms linearly as a pencil of bi-linear forms: ∞ � d=1 ǫd−1(P2,d,0 − λP1,d,0)ij �→ ∞ � d=0 ǫd ∂wi d ∂uk,d ∞ � d=1 ǫd−1(P2,d,0 − λP1,d,0)kℓ ∞ � d=1 (−ǫ)d ∂wj d ∂uℓ,d (117) (here wi = �∞ d=0 ǫdwi d, wi d ∈ Ad, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , N, are the new coordinates).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Hence, the eigenvalues of this pencil behave as scalar with respect to the action of the Miura group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 22 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' LORENZONI, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' SHADRIN, AND R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' VITOLO There are N roots λi, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , N, of the λ-polynomial (118) det � ∞ � d=1 ǫd−1(P2,d,0 − λP1,d,0) � which are the formal power series in ǫ with the coefficients given by smooth functions in u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , uN, with the leading terms in ǫ given by mi = ui + O(ǫ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' These eigenvalues are fur- ther used to derive the closed formulas for the central invariants of a pencil � �∞ d=1 ǫd−1(P2,d − λP1,d) ∈ T loc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In the weakly non-local case of localizable shape, the densities of � �∞ d=1 ǫd−1(P2,d −λP1,d) ∈ T nl can be uniquely expanded as �d s=0(P2,d,s − λP1,d,s)ijθiθd−s j + (Q2,d − λQ1,d)iθiζ, d ≥ 1, such that d � s=0 (P2,d,s − λP1,d,s)ij∂d−s x = − d � s=0 (−∂x)d−s ◦ (P2,d,s − λP1,d,s)ji.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (119) (this expansion we call the “normal form” below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Let � �∞ d=1 ǫd−1(P2,d − λP1,d) ∈ T nl and let λi = ri + ǫ2λi 2 + ǫ4λi 4 + · · · be the λ-roots of the characteristic polynomial (118).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The quantities ci 2k = λi 2k (f i)k , k = 0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (where f i are the diagonal entries of the first metric in canonical coordinates) are invariant under the action of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Taking into account the above lemma we focus on pure reciprocal transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The action of reciprocal transformations of 1st kind on the coefficients of the symbols can be easily obtained using the same arguments used in the proof of Proposition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Indeed ˜P ij λ = B−1 � Bδi k − ui x∂−1 x ∂B ∂uk � P kℓ λ � Bδj ℓ + ∂B ∂uℓ∂−1 x uj x � = BP ij λ + P il λ ∂B ∂uℓ∂−1 x uj x − 1 B ui x∂−1 x ∂B ∂uk P kj λ − ui x∂−1 x ∂B ∂uk P kℓ λ ∂B ∂uℓ ∂−1 x uj x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The second, the third and the fourth terms cannot contribute to the symbol of ˜P ij λ , while in the first term the only contributions come from B ∞ � d=1 ǫd−1(P2,d,0−λP1,d,0)∂d x = B ∞ � d=1 ǫd−1(P2,d,0−λP1,d,0)Bd∂d y = B2 ∞ � d=1 (Bǫ)d−1(P2,d,0−λP1,d,0)∂d y that implies ∞ � d=1 ǫd−1(P2,d,0 − λP1,d,0)ij → B2 ∞ � d=1 (Bǫ)d−1(P2,d,0 − λP1,d,0)ij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' This means that λi → ri + (Bǫ)2λi 2 + (Bǫ)4λi 4 + · · · or, equivalently, that λi 2k → B2kλi 2k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The result then follows from the transformation rule for the contravariant metric (see (43)): f i → B2f i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In the case of reciprocal transformation of 2nd kind we observe that they do not affect the symbol of the pencil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Indeed a bivector transforms according to the following rule ˜P ij := B−1 � Bδi k − ui x∂−1 x ∂B ∂uk σ ∂σ x � P kℓ � Bδj ℓ + (−∂x)τ ∂B ∂uℓ τ ∂−1 x uj x � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (120) MIURA-RECIPROCAL TRANSFORMATIONS AND LOCALIZABLE POISSON PENCILS 23 where B = 1 + H = 1 + ∞ � k=1 ǫkHk(uj, uj x, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , uj σ), Hk ∈ Ak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Thus we have ˜P ij := P ij − 1 B ui x∂−1 x ∂H ∂uk σ ∂σ xP kj + � δi k − 1 B ui x∂−1 x ∂H ∂uk σ ∂σ x � P kℓ � Hδj ℓ + (−∂x)τ ∂H ∂uℓ τ ∂−1 x uj x � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (121) Since the symbol of the bivector contains only the subset of the coefficients which depend only on the u’s but not on their x-derivatives the second term and the third terms above cannot contribute to it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' This implies that the symbol of each bivector defining the pencil is unaffected by these transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' For Miura reciprocal transformations (5) the transformation rule for the symbol of the pencil is obtained combining the Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='11 with the above rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' It turns out that the symbol of the pencil transforms in the following way ∞ � d=1 ǫd−1(P2,d,0 − λP1,d,0)ij �→ B2 ∞ � d=0 ǫd ∂wi d ∂uk,d ∞ � d=1 (Bǫ)d−1(P2,d,0 − λP1,d,0)kℓ ∞ � d=1 (−ǫ)d ∂wj d ∂uℓ,d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (122) □ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Projective-reciprocal invariance of the Doyle–Pot¨emin form In this Section we make a first step towards the study of the projective-reciprocal group action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Consider a local operator of homogeneous differential order d + 2, d ≥ 2 of the form P ij = ∂x ◦ Qij ◦ ∂x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We call this presentation of an operator the Doyle–Pot¨emin form (see Subsection 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' We prove the following theorem: Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' The projective group preserves the Doyle–Pot¨emin form of an operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' More precisely, the image of a homogeneous skew-symmetric operator of the form ∂x ◦ Qij ◦ ∂x, deg∂x Qij = d ≥ 0 under the action of an element of P is a homogeneous skew-symmetric operator of the form ∂x ◦ ˜Qij ◦ ∂x, deg∂x ˜Qij = d ≥ 0 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Consider an element of the group P given by dy = A0dx, (123) wi = Ai/A0, i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , N, where Ai := ai juj + ai 0, i = 0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Since the functions Ai and A0 do not depend on the higher jet variables, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='5 implies that the operator P ij = ∂x◦Qij ◦∂x in the coordinates y, w1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , wN is represented as ˜P ij = 1 A0 � A0∂uk � Ai A0 � − ∂x � Ai A0 � ∂−1 x ∂ukA0 � ∂x ◦ Qkl ◦ ∂x◦ (124) � ∂ul �Aj A0 � A0 + ∂ulA0∂−1 x ∂x �Aj A0 �� Now we see that ∂x ◦ � ∂ul �Aj A0 � A0 + ∂ulA0∂−1 x ∂x �Aj A0 �� = ∂x ◦ � aj l − a0 l �Aj A0 � + a0 l ∂−1 x ∂x �Aj A0 �� (125) = � aj l − a0 l �Aj A0 �� ∂x = (A0)2∂ulwj∂y 24 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' LORENZONI, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' SHADRIN, AND R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' VITOLO and analogously 1 A0 � A0∂uk � Ai A0 � − ∂x � Ai A0 � ∂−1 x ∂ukA0 � ∂x = 1 A0 � ai k − � Ai A0 � a0 k − ∂x � Ai A0 � ∂−1 x a0 k � ∂x (126) = 1 A0∂x ◦ � ai k − � Ai A0 � a0 k � = ∂y ◦ 1 A0∂ukwi(A0)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Thus we see that ˜P ij takes the form ∂y ◦ ˜Qij ◦ ∂y, where the operator ˜Qij is equal to ˜Qij = 1 A0∂ukwi(A0)2Qkl(A0)2∂ulwj (127) after the substitution wi(u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' , uN) = Ai/A0 and ∂y = (A0)−1∂x, which makes it manifestly skew-symmetric and homogeneous of the same degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' □ Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Note that we don’t use the Poisson property in the proof (and we don’t have it in the statement of the theorem).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' This allows us to apply the projective-reciprocal transformation to any homogeneous skew-symmetric operators of the Doyle–Pot¨emin form, and the action would preserve the form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Interesting examples of skew-symmetric operators in the Doyle–Pot¨emin form are coming from the theory of Dubrovin–Zhang hierarchies [DZ01].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Is it proved in [BPS12b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' BPS12a] that Dubrovin–Zhang hierarchies posses a Poisson bracket given by an operator of the shape �∞ p=0 ǫ2pP ij 2p+1, where P ij 1 = ηij∂x for some constant inner product ηij, and for p ≥ 1 the operators P ij 2p+1 are homogeneous skew-symmetric operators of the shape �2p+1 e=0 P ij 2p+1,e∂2p+1−e x , where deg∂x P ij 2p+1,e = e, such that P ij 2p+1,0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Using that the operators P ij 2p+1, p ≥ 1, are skew-symmetric, it is easy to show that each of them is of the Doyle–Pot¨emin form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' References [Abe09] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Abenda.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Reciprocal transformations and local Hamiltonian structures of hydro- dynamic-type systems”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' A 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='9 (2009), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 095208, 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1088/1751-8113/42/9/095208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [AG07] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Abenda and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Grava.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Reciprocal transformations and flat metrics on Hurwitz spaces”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' A 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='35 (2007), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 10769–10790.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1088/1751-8113/40/35/004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [AL13] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Arsie and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Lorenzoni.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Reciprocal F-manifolds”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 70 (2013), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 185–204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='geomphys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='029.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [BPS12a] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Buryak, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Posthuma, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Shadrin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “On deformations of quasi-Miura trans- formations and the Dubrovin-Zhang bracket”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='7 (2012), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 1639–1651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='geomphys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [BPS12b] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Buryak, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Posthuma, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Shadrin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “A polynomial bracket for the Dubrovin- Zhang hierarchies”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Differential Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1 (2012), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 153–185.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: http://projecteuclid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/euclid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='jdg/1352211225.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [BS09] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' B�laszak and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Sergyeyev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “A coordinate-free construction of conservation laws and reciprocal transformations for a class of integrable hydrodynamic-type systems”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1-2 (2009), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 341–354.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1016/S0034-4877(09)90038-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [Cas+22] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Casati, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Lorenzoni, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Valeri, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Vitolo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Weakly nonlocal Poisson brack- ets: tools, examples, computations”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 274 (2022), Paper No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 108284, 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='cpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='108284.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [CCS17] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Carlet, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Casati, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Shadrin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Poisson cohomology of scalar multidimen- sional Dubrovin-Novikov brackets”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 114 (2017), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 404–419.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='geomphys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [CCS18] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Carlet, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Casati, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Shadrin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Normal forms of dispersive scalar Pois- son brackets with two independent variables”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='10 (2018), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 2229–2253.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1007/s11005-018-1076-x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' REFERENCES 25 [CKS18] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Carlet, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Kramer, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Shadrin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Central invariants revisited”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' ´Ec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' polytech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 5 (2018), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 149–175.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='5802/jep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [CLV20] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Casati, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Lorenzoni, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Vitolo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Three computational approaches to weakly nonlocal Poisson brackets”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Stud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 144.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='4 (2020), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 412–448.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1111/sapm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='12302.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [CPS16a] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Carlet, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Posthuma, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Shadrin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Bihamiltonian cohomology of KdV brack- ets”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 341.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3 (2016), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 805–819.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1007/s00220-015-2540-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [CPS16b] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Carlet, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Posthuma, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Shadrin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “The bi-Hamiltonian cohomology of a scalar Poisson pencil”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Lond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='4 (2016), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 617–627.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1112/blms/bdw017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [CPS18] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Carlet, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Posthuma, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Shadrin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Deformations of semisimple Poisson pen- cils of hydrodynamic type are unobstructed”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Differential Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1 (2018), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 63–89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='4310/jdg/1513998030.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [DLZ06] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Dubrovin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='-Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Liu, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “On Hamiltonian perturbations of hyperbolic systems of conservation laws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Quasi-triviality of bi-Hamiltonian perturbations”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Pure Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='4 (2006), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 559–615.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1002/cpa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='20111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [DMS05] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Degiovanni, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Magri, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Sciacca.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “On deformation of Poisson manifolds of hydrodynamic type”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 253.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1 (2005), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 1–24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1007/s00220-004-1190-8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [Doy93] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Doyle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Differential geometric Poisson bivectors in one space variable”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='4 (1993), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 1314–1338.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='530213.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [DZ01] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Dubrovin and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Normal forms of hierarchies of integrable PDEs, Frobe- nius manifolds and Gromov - Witten invariants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/abs/math/0108160.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [Fer89] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Ferapontov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Reciprocal transformations and their invariants”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Differ- entsial ′nye Uravneniya 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='7 (1989), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 1256–1265, 1286.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [Fer91] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Ferapontov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Autotransformations with respect to the solution, and hydro- dynamic symmetries”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Differentsial ′nye Uravneniya 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='7 (1991), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 1250–1263, 1287.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [Fer95a] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Ferapontov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Conformally flat metrics, systems of hydrodynamic type and nonlocal Hamiltonian operators”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Uspekhi Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Nauk 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='4(304) (1995), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 175– 176.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1070/RM1995v050n04ABEH002582.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [Fer95b] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Ferapontov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Nonlocal Hamiltonian operators of hydrodynamic type: differ- ential geometry and applications”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Topics in topology and mathematical physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 170.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Transl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=', Providence, RI, 1995, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 33–58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1090/trans2/170/03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [FP03] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Ferapontov and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Pavlov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Reciprocal transformations of Hamiltonian op- erators of hydrodynamic type: nonlocal Hamiltonian formalism for linearly degener- ate systems”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3 (2003), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 1150–1172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1542921.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [FPV14] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Ferapontov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Pavlov, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Vitolo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Projective-geometric aspects of homogeneous third-order Hamiltonian operators”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 85 (2014), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 16–28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='geomphys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='027.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [Get02] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Getzler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “A Darboux theorem for Hamiltonian operators in the formal calculus of variations”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Duke Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3 (2002), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 535–560.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1215/S0012-7094-02-11136-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [Ibr85] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Ibragimov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Transformation groups applied to mathematical physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Mathe- matics and its Applications (Soviet Series).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Translated from the Russian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Reidel Publishing Co.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=', Dordrecht, 1985, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' xv+394.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1007/978-94-009-5243-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [IVV02] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Igonin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Verbovetsky, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Vitolo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' On the formalism of local variational differ- ential operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Memorandum 1641.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' University of Twente, Department of Applied Mathematics, 2002, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 1–34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='utwente.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='nl/en/publications/on-the-formalism-of-local-variational-differential-operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [Lor02] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Lorenzoni.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Deformations of bi-Hamiltonian structures of hydrodynamic type”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2-3 (2002), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 331–375.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1016/S0393-0440(02)00080-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [LV20] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Lorenzoni and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Vitolo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Weakly nonlocal Poisson brackets, Schouten brackets and supermanifolds”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 149 (2020), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 103573, 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='geomphys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='103573.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 26 REFERENCES [LZ05] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='-Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Liu and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Deformations of semisimple bihamiltonian structures of hydrodynamic type”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='4 (2005), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 427–453.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='geomphys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [LZ11] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='-Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Liu and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Jacobi structures of evolutionary partial differential equa- tions”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 227.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1 (2011), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 73–130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='aim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [LZ13a] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='-Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Liu and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Bihamiltonian cohomologies and integrable hierarchies I: A special case”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 324.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3 (2013), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 897–935.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1007/s00220-013-1822-y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [LZ13b] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='-Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Liu and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Bihamiltonian cohomologies and integrable hierarchies I: A special case”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 324.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3 (2013), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 897–935.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1007/s00220-013-1822-y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [Miu68] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Miura.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Korteweg-de Vries equation and generalizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' A remarkable explicit nonlinear transformation”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Mathematical Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 9 (1968), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 1202– 1204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1664700.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [MN01] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Maltsev and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Novikov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “On the local systems Hamiltonian in the weakly non-local Poisson brackets”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' D 156.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1-2 (2001), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 53–80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1016/S0167-2789(01)00280-9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [Mok87] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Mokhov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Hamiltonian differential operators and contact geometry”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Funk- tsional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' i Prilozhen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3 (1987), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 53–60, 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [Mok98] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Mokhov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Symplectic and Poisson structures on loop spaces of smooth mani- folds, and integrable systems”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Uspekhi Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Nauk 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3(321) (1998), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 85–192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1070/rm1998v053n03ABEH000019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [Olv88] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Olver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Darboux’s theorem for Hamiltonian differential operators”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Dif- ferential Equations 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1 (1988), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 10–33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1016/0022-0396(88)90036-8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [Olv93] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Olver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Applications of Lie groups to differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Second.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Graduate Texts in Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Springer-Verlag, New York, 1993, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' xxviii+513.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1007/978-1-4612-4350-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [Pot91] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Pot¨emin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Some questions of differential geometry and algebraic geometry in the theory of solitons”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' PhD thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Moscow State University, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [Pot97] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Pot¨emin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “On third-order differential-geometric Poisson brackets”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Uspekhi Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Nauk 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='3(315) (1997), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 173–174.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1070/RM1997v052n03ABEH001817.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [Rog68] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Rogers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Reciprocal relations in non-steady one-dimensional gasdynamics”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Angew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 19 (1968), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 58–63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [Rog69] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Rogers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Invariant transformations in non-steady gasdynamics and magneto- gasdynamics”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Angew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 20 (1969), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 370–382.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [VV] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Vergallo and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Vitolo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Projective geometry of homogeneous second order Hamil- tonian operators”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' preprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/abs/2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='04237.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' [XZ06] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Xue and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' “Bihamiltonian systems of hydrodynamic type and reciprocal transformations”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' In: Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1 (2006), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' 79–92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' url: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='1007/s11005-005-0031-9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' (P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Lorenzoni) Department of Mathematics and Applications, University of Milano Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy and INFN sezione di Milano-Bicocca Email address: paolo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='lorenzoni@unimib.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='it (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Shadrin) Korteweg–de Vries Institut for Mathematics, University of Amsterdam, Postbus 94248, 1090 GE Amsterdam, The Netherlands Email address: s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='shadrin@uva.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='nl (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' Vitolo) Department of Mathematics and Physics “E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content=' De Giorgi”, University of Salento, via per Arnesano, 73100 Lecce, Italy and INFN sezione di Lecce Email address: raffaele.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='vitolo@unisalento.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'} +page_content='it' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE3T4oBgHgl3EQfXAqD/content/2301.04475v1.pdf'}