jackkuo commited on
Commit
265a654
·
verified ·
1 Parent(s): a59c8f6

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9E3T4oBgHgl3EQfrwpm/vector_store/index.faiss +3 -0
  2. .gitattributes +15 -0
  3. 49E3T4oBgHgl3EQfQQn6/content/tmp_files/2301.04412v1.pdf.txt +1411 -0
  4. 49E3T4oBgHgl3EQfQQn6/content/tmp_files/load_file.txt +0 -0
  5. 49FJT4oBgHgl3EQfkSwi/content/tmp_files/2301.11578v1.pdf.txt +2297 -0
  6. 49FJT4oBgHgl3EQfkSwi/content/tmp_files/load_file.txt +0 -0
  7. 8NE1T4oBgHgl3EQfngRF/content/tmp_files/2301.03309v1.pdf.txt +1059 -0
  8. 8NE1T4oBgHgl3EQfngRF/content/tmp_files/load_file.txt +0 -0
  9. DdFRT4oBgHgl3EQfADdX/content/2301.13460v1.pdf +3 -0
  10. DdFRT4oBgHgl3EQfADdX/vector_store/index.faiss +3 -0
  11. DdFRT4oBgHgl3EQfADdX/vector_store/index.pkl +3 -0
  12. DtAzT4oBgHgl3EQfT_x1/content/tmp_files/2301.01259v1.pdf.txt +0 -0
  13. DtAzT4oBgHgl3EQfT_x1/content/tmp_files/load_file.txt +0 -0
  14. EtAzT4oBgHgl3EQfUPx6/content/2301.01263v1.pdf +3 -0
  15. EtE0T4oBgHgl3EQfQwBZ/vector_store/index.pkl +3 -0
  16. FNAyT4oBgHgl3EQf4_q8/content/2301.00797v1.pdf +3 -0
  17. FdE0T4oBgHgl3EQfRAAw/content/tmp_files/2301.02200v1.pdf.txt +1454 -0
  18. FdE0T4oBgHgl3EQfRAAw/content/tmp_files/load_file.txt +0 -0
  19. FdE1T4oBgHgl3EQf-wYy/content/tmp_files/2301.03572v1.pdf.txt +1607 -0
  20. FdE1T4oBgHgl3EQf-wYy/content/tmp_files/load_file.txt +0 -0
  21. FtAyT4oBgHgl3EQfrPm5/content/tmp_files/2301.00558v1.pdf.txt +922 -0
  22. FtAyT4oBgHgl3EQfrPm5/content/tmp_files/load_file.txt +0 -0
  23. FtE2T4oBgHgl3EQfTAfF/content/2301.03799v1.pdf +3 -0
  24. FtE2T4oBgHgl3EQfTAfF/vector_store/index.faiss +3 -0
  25. FtE2T4oBgHgl3EQfTAfF/vector_store/index.pkl +3 -0
  26. GNAyT4oBgHgl3EQffPgF/content/tmp_files/2301.00334v1.pdf.txt +2546 -0
  27. GNAyT4oBgHgl3EQffPgF/content/tmp_files/load_file.txt +0 -0
  28. HtAzT4oBgHgl3EQfjf0-/vector_store/index.pkl +3 -0
  29. JdE3T4oBgHgl3EQfXQrW/content/tmp_files/2301.04478v1.pdf.txt +870 -0
  30. JdE3T4oBgHgl3EQfXQrW/content/tmp_files/load_file.txt +466 -0
  31. KtFOT4oBgHgl3EQfzTRj/content/tmp_files/2301.12931v1.pdf.txt +897 -0
  32. KtFOT4oBgHgl3EQfzTRj/content/tmp_files/load_file.txt +0 -0
  33. MNAzT4oBgHgl3EQfV_xV/content/2301.01293v1.pdf +3 -0
  34. N9E0T4oBgHgl3EQfjgF4/content/tmp_files/2301.02460v1.pdf.txt +854 -0
  35. N9E0T4oBgHgl3EQfjgF4/content/tmp_files/load_file.txt +0 -0
  36. NNAyT4oBgHgl3EQfgvgA/content/2301.00362v1.pdf +3 -0
  37. NNE3T4oBgHgl3EQfBglT/content/2301.04267v1.pdf +3 -0
  38. NNE3T4oBgHgl3EQfBglT/vector_store/index.faiss +3 -0
  39. PNAzT4oBgHgl3EQfWvwu/content/tmp_files/2301.01305v1.pdf.txt +1600 -0
  40. PNAzT4oBgHgl3EQfWvwu/content/tmp_files/load_file.txt +0 -0
  41. PdAyT4oBgHgl3EQf7fpb/content/tmp_files/2301.00839v1.pdf.txt +0 -0
  42. PdAyT4oBgHgl3EQf7fpb/content/tmp_files/load_file.txt +0 -0
  43. T9E4T4oBgHgl3EQfLwz0/content/tmp_files/2301.04942v1.pdf.txt +3949 -0
  44. T9E4T4oBgHgl3EQfLwz0/content/tmp_files/load_file.txt +0 -0
  45. VtFKT4oBgHgl3EQfmy5j/vector_store/index.pkl +3 -0
  46. YNE1T4oBgHgl3EQfwAWP/content/tmp_files/2301.03406v1.pdf.txt +790 -0
  47. YNE1T4oBgHgl3EQfwAWP/content/tmp_files/load_file.txt +0 -0
  48. YNE5T4oBgHgl3EQfdQ-k/content/tmp_files/2301.05610v1.pdf.txt +1327 -0
  49. YNE5T4oBgHgl3EQfdQ-k/content/tmp_files/load_file.txt +0 -0
  50. YtFRT4oBgHgl3EQf_ziQ/content/tmp_files/2301.13696v1.pdf.txt +1887 -0
-9E3T4oBgHgl3EQfrwpm/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44e138c0eabaa55e7c63987425c9088f1fb8b7d72290a6c1ee642488c6a3d3f8
3
+ size 5439533
.gitattributes CHANGED
@@ -269,3 +269,18 @@ MtE0T4oBgHgl3EQfjQEE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
269
  qdFRT4oBgHgl3EQfejci/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
270
  MtE0T4oBgHgl3EQfjQEE/content/2301.02455v1.pdf filter=lfs diff=lfs merge=lfs -text
271
  6tAyT4oBgHgl3EQfpvgE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269
  qdFRT4oBgHgl3EQfejci/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
270
  MtE0T4oBgHgl3EQfjQEE/content/2301.02455v1.pdf filter=lfs diff=lfs merge=lfs -text
271
  6tAyT4oBgHgl3EQfpvgE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
272
+ EtAzT4oBgHgl3EQfUPx6/content/2301.01263v1.pdf filter=lfs diff=lfs merge=lfs -text
273
+ FNAyT4oBgHgl3EQf4_q8/content/2301.00797v1.pdf filter=lfs diff=lfs merge=lfs -text
274
+ i9E1T4oBgHgl3EQfzwXg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
275
+ NNE3T4oBgHgl3EQfBglT/content/2301.04267v1.pdf filter=lfs diff=lfs merge=lfs -text
276
+ i9E1T4oBgHgl3EQfzwXg/content/2301.03449v1.pdf filter=lfs diff=lfs merge=lfs -text
277
+ qdFRT4oBgHgl3EQfejci/content/2301.13571v1.pdf filter=lfs diff=lfs merge=lfs -text
278
+ idFMT4oBgHgl3EQf4zEN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
279
+ DdFRT4oBgHgl3EQfADdX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
280
+ MNAzT4oBgHgl3EQfV_xV/content/2301.01293v1.pdf filter=lfs diff=lfs merge=lfs -text
281
+ DdFRT4oBgHgl3EQfADdX/content/2301.13460v1.pdf filter=lfs diff=lfs merge=lfs -text
282
+ -9E3T4oBgHgl3EQfrwpm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
283
+ NNAyT4oBgHgl3EQfgvgA/content/2301.00362v1.pdf filter=lfs diff=lfs merge=lfs -text
284
+ NNE3T4oBgHgl3EQfBglT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
285
+ FtE2T4oBgHgl3EQfTAfF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
286
+ FtE2T4oBgHgl3EQfTAfF/content/2301.03799v1.pdf filter=lfs diff=lfs merge=lfs -text
49E3T4oBgHgl3EQfQQn6/content/tmp_files/2301.04412v1.pdf.txt ADDED
@@ -0,0 +1,1411 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04412v1 [stat.ME] 11 Jan 2023
2
+ Observational Studies (2023)
3
+ Submitted ; Published
4
+ RobustIV and controlfunctionIV: Causal Inference for Linear
5
+ and Nonlinear Models with Invalid Instrumental Variables
6
+ Taehyeon Koo
7
+ tk587@stat.rutgers.edu
8
+ Department of Statistics
9
+ Rutgers University
10
+ Piscataway, NJ 08854
11
+ Youjin Lee
12
+ youjin lee@brown.edu
13
+ Department of Biostatistics
14
+ Brown University
15
+ Providence, RI 02912
16
+ Dylan S. Small
17
+ dsmall@wharton.upenn.edu
18
+ Department of Statistics
19
+ The Wharton School, University of Pennsylvania
20
+ Philadelphia, PA 19104
21
+ Zijian Guo
22
+ zijguo@stat.rutgers.edu
23
+ Department of Statistics
24
+ Rutgers University
25
+ Piscataway, NJ 08854
26
+ Abstract
27
+ We present R software packages RobustIV and controlfunctionIV for causal inference
28
+ with possibly invalid instrumental variables. RobustIV focuses on the linear outcome model.
29
+ It implements the two-stage hard thresholding method to select valid instrumental variables
30
+ from a set of candidate instrumental variables and make inferences for the causal effect in
31
+ both low- and high-dimensional settings. Furthermore, RobustIV implements the high-
32
+ dimensional endogeneity test and the searching and sampling method, a uniformly valid
33
+ inference method robust to errors in instrumental variable selection. controlfunctionIV
34
+ considers the nonlinear outcome model and makes inferences about the causal effect based
35
+ on the control function method. Our packages are demonstrated using two publicly avail-
36
+ able economic data sets together with applications to the Framingham Heart Study.
37
+ Keywords: Instrumental variable selection, confidence interval, nonlinear outcome model,
38
+ control function, maximum clique
39
+ ©2023 Taehyeon Koo, Youjin Lee, Dylan S. Small, and Zijian Guo.
40
+
41
+ Koo, Lee, Small, and Guo
42
+ 1. Introduction
43
+ A common problem in making causal inferences from observational studies is that there may
44
+ be unmeasured confounders. The instrumental variable (IV) method is one of the most use-
45
+ ful methods to estimate the causal effect when there might exist unmeasured confounding.
46
+ The validity of IV methods relies on that the constructed IVs satisfy the following three
47
+ assumptions simultaneously (Wooldridge, 2010, e.g.): conditioning the measured covariates,
48
+ (A1) the IVs are associated with the treatment;
49
+ (A2) the IVs are independent with the unmeasured confounders;
50
+ (A3) the IVs have no direct effect on the outcome.
51
+ The main challenge of applying IV-based methods in practice is that the proposed IVs
52
+ might not satisfy the above assumptions (A1)-(A3). For example, in studying the causal
53
+ effect of education on earning, the proximity of school (Angrist and Krueger, 1991; Card,
54
+ 1999) has been used as an instrumental variable. However, this instrument might be re-
55
+ lated to other factors, such as socioeconomic status, which could affect one’s earnings.
56
+ Also, there might be other advantages due to the proximity; for instance, people living
57
+ close to college could be more likely to be exposed to vocational programs linked to col-
58
+ leges. So, the instrument could have a direct effect on earnings. In addition, the problem
59
+ of IVs not satisfying assumptions (A1) to (A3) is a fundamental problem in Mendelian
60
+ Randomization (MR), whose goal is to estimate the causal effect of exposure on the disease
61
+ by using genetic variants as instruments.
62
+ These genetic variants might violate assump-
63
+ tions (A2) and (A3) due to pleiotropic effects (Bowden, Davey Smith, and Burgess, 2015;
64
+ Bowden, Davey Smith, Haycock, and Burgess, 2016; Kang, Zhang, Cai, and Small, 2016).
65
+ This paper presents the R packages RobustIV and controlfunctionIV, implementing
66
+ robust causal inference approaches proposed in Guo, Kang, Cai, and Small (2018a,b); Guo
67
+ (2021); Guo and Small (2016); Li and Guo (2020).
68
+ The implemented inference methods
69
+ choose the valid IVs among a set of candidate IVs that may violate the assumptions (A2)
70
+ and (A3). The proposed methods target both linear and nonlinear causal effects. We also
71
+ include the algorithm implementation for settings with high-dimensional covariates and IVs.
72
+ In the package RobustIV, we implement robust and high-dimensional IV algorithms for
73
+ models assuming a constant and linear treatment effect.
74
+ We implement the Two Stage
75
+ Hard Thresholding (TSHT) proposed in Guo et al. (2018b), which selects valid IVs based on
76
+ a voting method. The selected IVs are then used to infer the linear treatment effect. Addi-
77
+ tionally, RobustIV implements uniformly valid confidence intervals proposed in Guo (2021),
78
+ which guarantees valid coverage even if there are errors in selecting valid IVs. RobustIV also
79
+ contains the high-dimensional endogeneity test proposed in Guo et al. (2018a), generalizing
80
+ the Durbin-Wu-Hausman test (Durbin, 1954; Wu, 1973; Hausman, 1978).
81
+ 2
82
+
83
+ RobustIV and controlfunctionIV
84
+ We implement several control function methods in the package controlfunctionIV
85
+ to infer causal effects under nonlinear outcome models. We implement the control func-
86
+ tion for the continuous outcome variable by showing it as the two-stage least squares
87
+ (TSLS) estimator with an augmented set of IVs (Guo and Small, 2016). We further follow
88
+ Guo and Small (2016) to test the validity of the augmented set of IVs and construct the
89
+ pretest estimator by comparing the control function estimator and the TSLS estimator. We
90
+ implement the probit control function method for the binary outcome and make inferences
91
+ for the conditional average treatment effect (CATE) with possibly invalid IVs. Moreover,
92
+ the controlfunctionIV package implements the SpotIV method proposed in Li and Guo
93
+ (2020) for the semi-parametric outcome model with possibly invalid IVs.
94
+ In R, there are well-developed IV methods when all IVs are assumed to satisfy the
95
+ assumptions (A1) to (A3), such as AER by Kleiber and Zeileis (2008) and ivmodel by
96
+ Kang, Jiang, Zhao, and Small (2020). The main difference in our packages RobustIV and
97
+ controlfunctionIV is that we allow for invalid IVs and leverage the multiple IVs to
98
+ learn the validity of the candidate IVs. We shall mention other R packages implementing
99
+ causal inference approaches with possibly invalid IVs: sisvive implemented the method
100
+ proposed in Kang et al. (2016) to estimate the treatment effect under the majority rule;
101
+ CIIV by Windmeijer, Liang, Hartwig, and Bowden (2021) considered the causal inference
102
+ approaches with possibly invalid IVs for the low-dimensional linear outcome model. In con-
103
+ trast, our packages RobustIV and controlfunctionIV are designed under a broader frame-
104
+ work by allowing for linear and nonlinear outcome models with low- and high-dimensional
105
+ IVs and covariates. Moreover, our package RobustIV provides a uniformly valid confidence
106
+ interval robust to the errors in separating valid and invalid IVs.
107
+ The GitHub repository at https://github.com/bluosun/MR-GENIUS implemented the
108
+ MR Genius method (Tchetgen, Sun, and Walter, 2021), generalizing the method in Lewbel
109
+ (2012) and leveraging the heteroscedastic regression errors in the treatment model to identify
110
+ the causal parameter. The R package TSCI implemented the two-stage curvature identifica-
111
+ tion method proposed in Guo and B¨uhlmann (2022), which leveraged the machine learning
112
+ methods to capture the nonlinearity in the treatment and identify the treatment effect
113
+ with possibly invalid instruments. In contrast, our packages use the different identification
114
+ conditions from Tchetgen et al. (2021); Lewbel (2012); Guo and B¨uhlmann (2022).
115
+ The paper is organized as follows. In Section 2, we review the methods implemented in
116
+ RobustIV under the linear outcome model; in Section 3, we discuss the inference approaches
117
+ for the nonlinear outcome models implemented in controlfunctionIV. In Section 4, we
118
+ demonstrate the usage of RobustIV and controlfunctionIV by analyzing economics data
119
+ sets from Angrist and Krueger (1991) and Mroz data. In Section 5, we demonstrate our
120
+ packages with an MR application to analyze the data from Framingham Heart Study (FHS).
121
+ 3
122
+
123
+ Koo, Lee, Small, and Guo
124
+ Notation.
125
+ Let Rp be the set of real numbers with dimension p. For any vector v ∈ Rp,
126
+ vj denotes its jth element, v−j denotes whole v except for j-th index, and ∥v∥0 denotes
127
+ the number of non-zero elements in v. For any n × p matrix M, denote the (i, j) entry by
128
+ Mij, the ith row by Mi· , the jth column by M·j, and the transpose of M by MT; also,
129
+ MIJ denotes the submatrix of M consisting of rows specified by the set I ⊂ {1, ..., n} and
130
+ columns specified by the set J ⊂ {1, ..., p}, MI· denotes the submatrix of M consisting of
131
+ rows indexed by the set I and all columns, and M·J denotes the submatrix of M consisting of
132
+ columns specified by the set J and all rows. Ip denotes p × p identity matrix.
133
+ 1 denotes the
134
+ indicator function. Φ denotes the CDF of the standard normal distribution. For a sequence
135
+ of random variable Xn, we use Xn
136
+ d→ X to denote that Xn converges to X in distribution.
137
+ 2. Linear outcome models
138
+ Throughout the paper, we consider n i.i.d.
139
+ observations.
140
+ For 1 ≤ i ≤ n, let Yi ∈ R,
141
+ Di ∈ R, Zi· ∈ Rpz, and Xi· ∈ Rpx denote the outcome, the treatment, the instruments, and
142
+ the baseline covariates, respectively. This section reviews the robust instrumental variable
143
+ approaches in Guo et al. (2018a,b); Guo (2021), which are implemented in the RobustIV
144
+ package. We demonstrate the usage of RobustIV in Sections 4.1 and 4.2.
145
+ 2.1 Model assumption
146
+ We assume the following outcome model with possibly invalid IVs (Small, 2007; Kang et al.,
147
+ 2016; Guo et al., 2018a; Windmeijer et al., 2021)
148
+ Yi = Diβ + ZT
149
+ i·π + XT
150
+ i·φ + ǫi,
151
+ E[ǫiZi·] = 0, E[ǫiXi·] = 0.
152
+ (1)
153
+ This is the linear structural model in econometrics (Wooldridge, 2010). Here, we aim to
154
+ estimate the constant causal effect β ∈ R. If Di is correlated with ǫi in the model (1), we
155
+ say it is an endogenous variable, and we cannot use popular estimators such as the OLS
156
+ estimator. We also assume the linear association model for the treatment
157
+ Di = ZT
158
+ i·γ + XT
159
+ i·ψ + δi,
160
+ E[δiZi·] = 0, E[δiXi·] = 0.
161
+ (2)
162
+ As a remark, the errors in (1) and (2) are allowed to be heteroscedastic. In (1) and (2),
163
+ πj = 0 if j-th IV satisfies the exclusion restriction conditions (A2) and (A3), and γj ̸= 0 if
164
+ it satisfies the strong IV assumption (A1).
165
+ We discuss the causal interpretation of the above model (1) using the potential outcome
166
+ framework (Small, 2007; Kang et al., 2016). Let Y (d,z)
167
+ i
168
+ be the potential outcome if individual
169
+ i were to receive the treatment d and the instruments z. For two possible values of the
170
+ treatment d′, d and instruments z′, z, if we assume the following potential outcomes model
171
+ Y (d′,z′)
172
+ i
173
+ − Y (d,z)
174
+ i
175
+ = (d′ − d)β + (z′ − z)Tκ,
176
+ E[Y (0,0)
177
+ i
178
+ |Zi·, Xi·] = XT
179
+ i·φ + ZT
180
+ i·η,
181
+ (3)
182
+ 4
183
+
184
+ RobustIV and controlfunctionIV
185
+ and define π = κ + η, and ǫi = Y (0,0)
186
+ i
187
+ − E[Y (0,0)
188
+ i
189
+ |Zi·, Xi·], we obtain the model (1).
190
+ By combining (1) and (2), we obtain the reduced form models of Y and D as
191
+ Yi = ZT
192
+ i·Γ + XT
193
+ i·Ψ + ξi,
194
+ E[ξiZi·] = 0, E[ξiXi·] = 0,
195
+ (4)
196
+ Di = ZT
197
+ i·γ + XT
198
+ i·ψ + δi,
199
+ E[δiZi·] = 0, E[δiXi·] = 0.
200
+ (5)
201
+ Here, Γ = βγ +π, Ψ = βψ +φ are reduced form parameters and ξi = βδi +ǫi is the reduced
202
+ form error term.
203
+ We introduce identifiability conditions for models (4) and (5).
204
+ Let S be the set of
205
+ relevant IVs, i.e., S = {1 ≤ j ≤ pz : γj ̸= 0} and V be the set of relevant and valid IVs, i.e.,
206
+ V = {j ∈ S : πj = 0}. The set S contains all candidate IVs that are strongly associated
207
+ with the treatment. The set V is a subset of S, which contains all candidate IVs satisfying
208
+ all classical IV assumptions. The main challenge is that the set V is not known a priori in
209
+ the data analysis. Additional identifiability conditions are needed for identifying the causal
210
+ effect without any prior knowledge of V. The majority rule is introduced to identify causal
211
+ effects with invalid IVs (Bowden et al., 2016; Kang et al., 2016).
212
+ Condition 1 (Majority Rule). More than half of the relevant IVs are valid: |V| > |S|/2.
213
+ The following plurality rule is a weaker identification condition than the majority rule
214
+ (Hartwig, Davey Smith, and Bowden, 2017; Guo, Kang, Cai, and Small, 2018b).
215
+ Condition 2 (Plurality Rule). The valid instruments form a plurality compared to the
216
+ invalid instruments: |V| > maxc̸=0 |{j ∈ S : πj/γj = c}|.
217
+ We present two inference methods for β utilizing the majority and plurality: two stage
218
+ hard thresholding in Section 2.2 and searching and sampling in Section 2.3. To present the
219
+ methods, we consider the reduced form estimators (�Γ⊺, �γ⊺)⊺ satisfying
220
+ √n
221
+ ���Γ
222
+ �γ
223
+
224
+
225
+
226
+ Γ
227
+ γ
228
+ ��
229
+ d→ N2pz
230
+
231
+ 02pz,
232
+
233
+
234
+ C
235
+ CT
236
+
237
+ ��
238
+ .
239
+ (6)
240
+ We use �VΓ, �C, and �Vγ to denote consistent estimators of asymptotic covariance matrix
241
+ terms. In low dimensions, we estimate the reduced form (Γ⊺, γ⊺)⊺ by the OLS estimator
242
+ (�Γ⊺, �γ⊺)⊺ and estimate the variance covariance matrices by sandwich estimators; see the
243
+ detailed construction in Section 2 of Guo (2021). In high-dimensional settings, we can con-
244
+ struct (�Γ⊺, �γ⊺)⊺ as the debiased Lasso estimator (Belloni, Chernozhukov, and Wang, 2011;
245
+ Javanmard and Montanari, 2014; Guo, Kang, Cai, and Small, 2018b); see more details in
246
+ Section 4.1 of Guo et al. (2018b).
247
+ 5
248
+
249
+ Koo, Lee, Small, and Guo
250
+ 2.2 Two stage hard thresholding (TSHT)
251
+ The TSHT consists of two steps: the first step is to screen out the weak IVs, and the
252
+ second step is to screen out invalid IVs. Specifically, the first step of TSHT is to estimate
253
+ the set S of relevant IVs by �S =
254
+
255
+ 1 ≤ j ≤ pz : |�γj| ≥ λ1
256
+
257
+ �Vγ
258
+ jj/n
259
+
260
+ , where λ1 > 0 is a tuning
261
+ parameter adjusting the testing multiplicity.
262
+ The second thresholding step estimates the set V of valid instruments. Our main strategy
263
+ is to assume that one IV is valid and evaluate whether the other IVs are valid from the
264
+ point of view of that IV. Particularly, for j ∈ �S, we assume the j-th IV to be valid (i.e.,
265
+ πj = 0) and construct an estimator �π−j of π−j using the equation π−j = Γ−j − β[j]γ−j
266
+ with β[j] = Γj/γj, and get the standard error of the estimator. We test whether π−j = 0
267
+ by comparing �π−j to a threshold, calculated as multiplying the standard error of �π−j by
268
+ a tuning parameter λ2, which is a Bonferroni correction adjusting for testing multiplicity.
269
+ Using the above test procedures, we construct a voting matrix ˜Π ∈ R| �S|×| �
270
+ S| where ˜Πj,k = 1
271
+ indicates that the k-th and j-th IVs agree with each other to be valid. Finally, we get a
272
+ symmetric voting matrix �Π by setting �Πj,k = min{˜Πj,k, ˜Πk,j}.
273
+ Once we get �Π, we estimate V by two options. Let VMk denote the number of votes
274
+ that the kth IV, with k ∈ �S, received from other candidates of IVs. First, we define �V by
275
+ the set of IVs that receive a majority and a plurality of votes (Guo et al., 2018b)
276
+ �VMP := {k ∈ �S : VMk > | �S|/2} ∪ {k ∈ �S : VMk = max
277
+ l∈ �
278
+ S
279
+ VMl}.
280
+ (7)
281
+ The next method is to estimate V by the maximum clique method. We can generate a graph
282
+ G with indexes belonging to �S and the adjacency matrix as �Π. That is, the indexes j, k ∈ �S
283
+ are connected if and only if �Πj,k = 1. Then as suggested in Windmeijer et al. (2021), we can
284
+ estimate �VMC as the maximum clique of the graph G, which is the largest fully connected sub-
285
+ graph of G (Csardi and Nepusz, 2006). Note that there might be several maximum cliques.
286
+ In this case, each maximum clique forms an estimator of V and our proposal reports several
287
+ causal effect estimators based on each maximum clique.
288
+ We further illustrate the definitions of �VMP and �VMC using the following example. Consider
289
+ pz = 8 with {z1, z2, z3, z4} being valid and {z5, z6, z7} being invalid with the same invalidity
290
+ level, and z8 being invalid IV with a different invalidity level.
291
+ The left side of Table 1
292
+ corresponds to an ideal setting where the valid and invalid IVs are well separated and the
293
+ valid IVs {z1, z2, z3, z4} only vote for each other. In this case, �VMC = �VMP = {z1, z2, z3, z4}.
294
+ On the right side of Table 1, we consider the setting that the invalidity level of z5 might be
295
+ mild and the IV z5 receives the votes from three valid IVs {z2, z3, z4}. In this case, �VMP =
296
+ {z2, z3, z4, z5}. In contrast, there are two maximum cliques {z1, z2, z3, z4} and {z2, z3, z4, z5}
297
+ and �VMC can be either of these two.
298
+ 6
299
+
300
+ RobustIV and controlfunctionIV
301
+ z1
302
+ z2
303
+ z3
304
+ z4
305
+ z5
306
+ z6
307
+ z7
308
+ z8
309
+ z1
310
+
311
+
312
+
313
+
314
+ X
315
+ X
316
+ X
317
+ X
318
+ z2
319
+
320
+
321
+
322
+
323
+ X
324
+ X
325
+ X
326
+ X
327
+ z3
328
+
329
+
330
+
331
+
332
+ X
333
+ X
334
+ X
335
+ X
336
+ z4
337
+
338
+
339
+
340
+
341
+ X
342
+ X
343
+ X
344
+ X
345
+ z5
346
+ X
347
+ X
348
+ X
349
+ X
350
+
351
+
352
+
353
+ X
354
+ z6
355
+ X
356
+ X
357
+ X
358
+ X
359
+
360
+
361
+
362
+ X
363
+ z7
364
+ X
365
+ X
366
+ X
367
+ X
368
+
369
+
370
+
371
+ X
372
+ z8
373
+ X
374
+ X
375
+ X
376
+ X
377
+ X
378
+ X
379
+ X
380
+
381
+ Votes
382
+ 4
383
+ 4
384
+ 4
385
+ 4
386
+ 3
387
+ 3
388
+ 3
389
+ 1
390
+ z1
391
+ z2
392
+ z3
393
+ z4
394
+ z5
395
+ z6
396
+ z7
397
+ z8
398
+ z1
399
+
400
+
401
+
402
+
403
+ X
404
+ X
405
+ X
406
+ X
407
+ z2
408
+
409
+
410
+
411
+
412
+
413
+ X
414
+ X
415
+ X
416
+ z3
417
+
418
+
419
+
420
+
421
+
422
+ X
423
+ X
424
+ X
425
+ z4
426
+
427
+
428
+
429
+
430
+
431
+ X
432
+ X
433
+ X
434
+ z5
435
+ X
436
+
437
+
438
+
439
+
440
+
441
+
442
+ X
443
+ z6
444
+ X
445
+ X
446
+ X
447
+ X
448
+
449
+
450
+
451
+ X
452
+ z7
453
+ X
454
+ X
455
+ X
456
+ X
457
+
458
+
459
+
460
+ X
461
+ z8
462
+ X
463
+ X
464
+ X
465
+ X
466
+ X
467
+ X
468
+ X
469
+
470
+ Votes
471
+ 4
472
+ 5
473
+ 5
474
+ 5
475
+ 6
476
+ 3
477
+ 3
478
+ 1
479
+ Table 1: The left voting matrix �Π denotes that all valid IVs {z1, z2, z3, z4} vote each other
480
+ but not any other invalid IV. The right voting matrix �Π denotes that the locally
481
+ invalid IV z5 receives votes from valid IVs {z2, z3, z4} and invalid IVs {z6, z7}.
482
+ Once we have �V, we can construct an efficient point estimator �β for β in a low-
483
+ dimensional setting via one-step iteration as follows. First, we construct an initial estimator
484
+ ˜β =
485
+ �γT
486
+ �V
487
+ ˜
488
+ A�Γ�V
489
+ �γT
490
+ �V
491
+ ˜
492
+ A�γ�V , where ˜A = �Σ�V,�V −�Σ�V,�Vc �Σ−1
493
+ �Vc,�Vc �Σ�Vc,�V, �Σ = 1
494
+ n
495
+ �n
496
+ i=1 Wi·WT
497
+ i· , and Wi· = (ZT
498
+ i·, XT
499
+ i·)T.
500
+ Next, we get a point estimator �β by one-step iteration (Holland and Welsch, 1977)
501
+ �β =
502
+ �γT
503
+ �V �A�Γ�V
504
+ �γT
505
+ �V �A�γ�V
506
+ ,
507
+ where
508
+ �A = [( �VΓ − 2˜β �C + ˜β2 �Vγ)�V,�V]−1.
509
+ (8)
510
+ Finally, the 1 − α confidence interval for β is
511
+ (�β − z1−α/2 �
512
+ SE, �β + z1−α/2 �
513
+ SE)
514
+ where
515
+
516
+ SE =
517
+
518
+
519
+
520
+ ��γT
521
+ �V �A( �VΓ − 2�β �C + �β2 �Vγ)�V,�V �A�γ�V
522
+ n(�γT
523
+ �V �A�γ�V)2
524
+ .
525
+ (9)
526
+ As a remark, �VΓ, �Vγ, and �C are heteroscedasticity-robust covariance estimators and hence
527
+ (9) is also robust to heteroscedastic errors in a low-dimensional setting. In a high-dimensional
528
+ setting, we set �A = I in (8), and �VΓ, �Vγ, and �C are constructed under the homoscedastic
529
+ error assumptions; see more details in Guo et al. (2018b).
530
+ 2.3 Searching and Sampling
531
+ We now review the searching and sampling method proposed in Guo (2021), which provides
532
+ uniformly valid conference intervals even if there are errors in separating valid and invalid
533
+ IVs. The right-hand side of Table 1 illustrates an example of the invalid IVs not being
534
+ separated from valid IVs in finite samples. In the following, we review the idea of searching
535
+ 7
536
+
537
+ Koo, Lee, Small, and Guo
538
+ and sampling under the majority rule and the more general method with the plurality rule
539
+ can be found in Guo (2021).
540
+ Let α ∈ (0, 1) denote the pre-specified significance level. Given β ∈ R and the reduced
541
+ form estimator �Γ and �γ, we estimate πj with j ∈ �S by
542
+ �πj(β) = (�Γj − β�γj)1(|�Γj − β�γj| ≥ �ρj(β, α)),
543
+ (10)
544
+ where �ρj(β, α) = Φ−1 �
545
+ 1 −
546
+ α
547
+ 2| �
548
+ S|
549
+
550
+
551
+ SE(�Γj − β�γj) with �
552
+ SE(�Γj − β�γj) denoting a consistent
553
+ estimator of the standard error of �Γj − β�γj. We search for the value of β leading to enough
554
+ valid IVs and construct the searching confidence interval as
555
+ CIsearch =
556
+
557
+ β ∈ R :
558
+ ���π �
559
+ S(β)
560
+ ��
561
+ 0 < | �S|/2
562
+
563
+ ,
564
+ (11)
565
+ which collects all β values such that more than half of IVs in �S are selected as valid.
566
+ Based on the searching method, Guo (2021) proposed a sampling confidence interval,
567
+ which retains the uniform coverage property and improves the precision of the con��dence
568
+ interval. In particular, we sample
569
+ ��Γ[m]
570
+ �γ[m]
571
+
572
+ iid
573
+ ∼ N
574
+ ���Γ
575
+ �γ
576
+
577
+ , 1
578
+ n
579
+ � �VΓ
580
+ �C
581
+ �CT
582
+ �Vγ
583
+ ��
584
+ ,
585
+ for
586
+ 1 ≤ m ≤ M.
587
+ For 1 ≤ m ≤ M and j ∈ �S, we modify (10) and define
588
+ �π[m]
589
+ j
590
+ (β, λ) = (�Γ[m]
591
+ j
592
+ − β�γ[m]
593
+ j
594
+ )1(|�Γ[m]
595
+ j
596
+ − β�γ[m]
597
+ j
598
+ | ≥ λ · �ρj(β, α))
599
+ with the shrinkage parameter λ ≍ (log n/M)
600
+ 1
601
+ 2| �
602
+ S| . A data-dependent way of choosing λ can
603
+ be found in Remark 3 of Guo (2021). For each 1 ≤ m ≤ M, we construct a searching
604
+ interval (β[m]
605
+ min, β[m]
606
+ max) where
607
+ β[m]
608
+ min = min
609
+ β∈B[m]
610
+ λ
611
+ β
612
+ and
613
+ β[m]
614
+ max = max
615
+ β∈B[m]
616
+ λ
617
+ β
618
+ with B[m]
619
+ λ
620
+ =
621
+
622
+ β ∈ R :
623
+ ����π[m]
624
+
625
+ S (β, λ)
626
+ ���
627
+ 0 < | �S|/2
628
+
629
+ . Then the sampling CI is defined as
630
+ CIsample =
631
+
632
+ min
633
+ m∈M β[m]
634
+ min, max
635
+ m∈M β[m]
636
+ max
637
+
638
+ .
639
+ (12)
640
+ with M = {1 ≤ m ≤ M : (β[m]
641
+ min, β[m]
642
+ max) ̸= ∅}. The sampling confidence intervals in general
643
+ improve the precision of the searching confidence intervals. But both intervals can provide
644
+ uniformly valid coverage robust to the errors in separating valid and invalid IVs.
645
+ 8
646
+
647
+ RobustIV and controlfunctionIV
648
+ 2.4 Endogeneity test in high dimensions
649
+ We review the high-dimensional endogeneity test proposed in Guo et al. (2018a). We focus
650
+ on the homoscedastic error setting by writing Θ11 = Var[ξi|Zi·, Xi·], Θ22 = Var[δi|Zi·, Xi·],
651
+ and Θ12 = Cov[ξi, δi|Zi·, Xi·] for the reduced form models (4) and (5).
652
+ With the same
653
+ estimators from TSHT in the high-dimensional settings in Section 2.2, we can estimate the
654
+ covariance σ12 by �σ12 = �Θ12 − �β �Θ22 where �β =
655
+
656
+ j∈ �V �γj�Γj
657
+
658
+ j∈ �V �γ2
659
+ j
660
+ and �Θ12 and �Θ22 are consistent
661
+ estimators of the reduced form covariance Θ22 and Θ12. We establish the asymptotic nor-
662
+ mality of �σ12 − σ12 in Guo et al. (2018a) and propose a testing procedure for H0 : σ12 = 0.
663
+ 3. Nonlinear outcome models
664
+ This section reviews the control function IV methods (Guo and Small, 2016; Li and Guo,
665
+ 2020) implemented in the controlfunctionIV package, whose usage is demonstrated in
666
+ Sections 4.3 and 4.4.
667
+ 3.1 Control function and pretest estimators
668
+ We consider the following nonlinear outcome and treatment models:
669
+ Yi = G(Di)Tβ + XT
670
+ i·φ + ui, E[uiZi·] = E[uiXi·] = 0,
671
+ (13)
672
+ Di = H(Zi·)Tγ + XT
673
+ i·ψ + vi, E[viZi·] = E[viXi·] = 0,
674
+ (14)
675
+ where G(Di) = (Di, g2(Di), ..., gk(Di))T, H(Zi·) = (Zi·, h2(Zi·), ..., hk(Zi·))T with {gj(·)}2≤j≤k
676
+ and {hj(·)}2≤j≤k denoting the known nonlinear transformations. Under the models (13)
677
+ and (14), the IVs are assumed to be valid and the causal effect of increasing the value of D
678
+ from d2 to d1 is defined as G(d1)Tβ − G(d2)Tβ.
679
+ The control function (CF) method is a two-stage procedure. In the first stage, regress D
680
+ on H(Z) and X, and obtain the predicted value �D and its associated residual �v = D− �D. In
681
+ the second stage, we use �v as the proxies for the unmeasured confounders and regress Y on
682
+ G(D), X, and �v. We use �βCF to denote the estimated regression coefficient corresponding
683
+ to D. Guo and Small (2016) showed that �βCF is equivalent to the TSLS estimator with
684
+ the augmented set of IVs.
685
+ Even if all IVs satisfy the classical assumptions (A1)-(A3),
686
+ there is no guarantee of the validity of the augmented IVs generated by the CF estimator.
687
+ Guo and Small (2016) applied the Hausman test to assess the validity of the augmented set
688
+ of IVs generated by the CF estimator. The test statistic is defined as
689
+ H(�βCF, �βTSLS) = (�βCF − �βTSLS)T[Cov(�βTSLS) − Cov(�βCF)]−(�βCF − �βTSLS),
690
+ (15)
691
+ where �βTSLS is the two stage least square estimator, Cov(�βTSLS) and Cov(�βCF) are the
692
+ covariance matrices of �βTSLS and �βCF, and A− denote the Moore-Penrose pseudoinverse.
693
+ 9
694
+
695
+ Koo, Lee, Small, and Guo
696
+ If the p-value P
697
+
698
+ χ2
699
+ 1 ≥ H(�βCF, �βTSLS)
700
+
701
+ is less than α = 0.05, then we define the level α
702
+ pretest estimator �βPretest as �βTSLS; otherwise, �βCF defined above (Guo and Small, 2016).
703
+ 3.2 Probit CF and SpotIV
704
+ We now consider the binary outcome model and continuous treatment model,
705
+ E [Yi|Di = d, Wi· = w, ui = u] =
706
+ 1(dβ + wTκ + u > 0),
707
+ and
708
+ Di = WT
709
+ i· γ + vi,
710
+ (16)
711
+ where Wi· = (ZT
712
+ i·, XT
713
+ i·)T, the errors (ui, vi)⊺ are bivariate normal random variables with
714
+ zero means and independent of Wi·, κ = (κT
715
+ z , κT
716
+ x)T is the coefficient vector of the IVs and
717
+ measured covariates, and γ = (γT
718
+ z , γT
719
+ x)T is a parameter representing the association between
720
+ Di and Wi·. When κz ̸= 0, the instruments are invalid. Since ui and vi are bivariate normal,
721
+ we write ui = ρvi +ei. The model (16) implies E [Yi|Wi·, vi] = Φ(Diβ∗ +W ⊺
722
+ i·Γ∗ +ρ∗vi) where
723
+ β∗ = β/σe, Γ∗ = κ/σe + β∗ · γ, and ρ∗ = ρ/σe + β∗ with σe denoting the standard error
724
+ of ei = ui − ρvi. That is, the conditional outcome model of Yi given Wi,· and vi is a probit
725
+ regression model.
726
+ Our goal is to estimate the conditional average treatment effect (CATE) from d2 to d1
727
+ CATE(d1, d2|w) := E[Yi|Di = d1, Wi· = w] − E[Yi|Di = d2, Wi· = w].
728
+ (17)
729
+ We first construct the OLS estimator �γ of γ. We compute its residual �v = D − W�γ and
730
+ define �Σ = 1
731
+ n
732
+ �n
733
+ i=1 Wi·WT
734
+ i· . We estimate S = {1 ≤ j ≤ pz : (γz)j ̸= 0} by
735
+ �S =
736
+
737
+ 1 ≤ j ≤ pz : |�γj| ≥ �σv
738
+
739
+ 2{�Σ−1}j,j log n/n
740
+
741
+ (18)
742
+ with �σ2
743
+ v = �n
744
+ i=1 �v2
745
+ i /n. Next, as CF in Section 3.1, we use �v as the proxy for unmeasured con-
746
+ founders and implement the probit regression Y on W and �v. We use �Γ and �ρ to denote the
747
+ probit regression coefficients of W of �v respectively. We apply the majority rule and compute
748
+ �β as the median of (�Γj/�γj)j∈ �S. We then estimate �κ = �Γ − �γ �β. Finally, we estimate CATE
749
+ defined in (17) by the partial mean method (Newey, 1994; Mammen, Rothe, and Schienle,
750
+ 2012),
751
+ 1
752
+ n
753
+ n
754
+
755
+ i=1
756
+
757
+ Φ(d1 �β + wT�κ + �vi�ρ)
758
+
759
+ − 1
760
+ n
761
+ n
762
+
763
+ i=1
764
+
765
+ Φ(d2 �β + wT�κ + �vi�ρ)
766
+
767
+ and construct the confidence interval by bootstrap (Li and Guo, 2020).
768
+ Li and Guo (2020) has proposed a more general methodology, named SpotIV, to con-
769
+ duct robust causal inference with possibly invalid IVs. The model considered in Li and Guo
770
+ (2020) includes the probit outcome model in (16) as a special case. In particular, Li and Guo
771
+ (2020) replaced the known probit transformation in (16) with the more general non-parametric
772
+ function, which is possibly unknown. Moreover, Li and Guo (2020) allows some instruments
773
+ to be correlated with the unmeasured confounders ui in the outcome model.
774
+ 10
775
+
776
+ RobustIV and controlfunctionIV
777
+ 4. RobustIV and controlfunctonIV Usage
778
+ In this section, we illustrate the basic usage of RobustIV with the data set from Angrist and Krueger
779
+ (1991) and simulated high-dimensional data. Also, we use the Mroz data set from Wooldridge
780
+ (2010) to demonstrate the usage of controlfunctionIV.
781
+ 4.1 TSHT and SearchingSampling
782
+ In the following, we introduce usages of the R functions TSHT and SearchingSampling
783
+ with the data used in Angrist and Krueger (1991).
784
+ Angrist and Krueger (1991) studied
785
+ the causal effect of the years of education (EDUC) on the log weekly earnings (LWKLYWGE).
786
+ Following Angrist and Krueger (1991), we take 30 interactions (QTR120-QTR129, QTR220-
787
+ QTR229, QTR320-QTR329) between three quarter-of-birth dummies (QTR1-QTR3) and ten year-
788
+ of-birth dummies (YR20-YR29) as the instruments Z. For example, QTR120 is element-wise
789
+ product of QTR1 and YR20. Here, the quarter-of-birth dummies are the indicators of whether
790
+ the observed person was born in the first, second, and third quarter of the year respectively,
791
+ and the year-of-birth dummies are indicators of which year the subject was born from 1940
792
+ to 1949 respectively. We also include the following baseline covariates X: 9 year-of-birth
793
+ dummies (YR20-YR28), a race dummy (RACE), a marital status dummy (MARRIED), a dummy
794
+ for residence in an SMSA (SMSA), and eight region-of-residence dummies (NEWENG, MIDATL,
795
+ ENOCENT, WNOCENT, SOATL, ESOCENT, WSOCENT, MT). We first apply the function TSHT.
796
+ R> Y <- as.vector(LWKLYWGE); D <- as.vector(EDUC)
797
+ R> Z <- sapply(paste0("QTR", c(seq(120,129), seq(220,229), seq(320,329))),
798
+ function(x){get(x)})
799
+ R> X <- cbind(sapply(paste0("YR",seq(20,28)),function(x){get(x)}),RACE, MARRIED,
800
+ SMSA, NEWENG, MIDATL, ENOCENT, WNOCENT, SOATL, ESOCENT, WSOCENT, MT)
801
+ R> pz <- ncol(Z)
802
+ R> out.TSHT <- TSHT(Y=Y,D=D,Z=Z,X=X,
803
+ tuning.1st = sqrt(2.01*log(pz)), tuning.2nd = sqrt(2.01*log(pz)))
804
+ R> summary(out.TSHT)
805
+ betaHat Std.Error CI(2.5%) CI(97.5%) Valid IVs
806
+ 0.0874
807
+ 0.019
808
+ 0.0502
809
+ 0.1247
810
+ QTR120 QTR121 QTR122 QTR220 QTR222 QTR227 QTR322
811
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
812
+ Detected invalid IVs: QTR126 QTR226
813
+ Here, tuning.1st and tuning.2nd are tuning parameters λ1 and λ2 used for the thresholds
814
+ to get �S and �V in Section 2.2 respectively. The default values for these parameters are
815
+ √log n in the low-dimensional setting. However, in theory, any value above √2 log p and
816
+ diverging to infinity would suffice. Since the data has 486926 observations, we choose the
817
+ tuning parameters as √2.01 log pz to avoid too conservative threshold levels due to the
818
+ huge sample. Once TSHT is implemented, we can call summary to see the outputs of TSHT
819
+ 11
820
+
821
+ Koo, Lee, Small, and Guo
822
+ including the point estimator, its standard error, confidence interval, and valid IVs as we
823
+ discussed in Section 2.2.
824
+ The above result shows that TSHT selected QTR120, QTR121, QTR122, QTR220, QTR222,
825
+ QTR227, and QTR322 as valid IVs. Thus, valid IVs are interactions with the first quarter
826
+ of birth and dummies representing births in 1940, 1941, and 1942, interactions with the
827
+ second quarter of birth and dummies representing births in 1940, 1942, and 1947, and
828
+ finally the interaction between the third quarter-of-birth and dummy representing births in
829
+ 1942. On the other hand, it is reported that QTR126 and QTR226 are invalid IVs. That is,
830
+ interactions with the first and the second quarter of birth and dummy representing births
831
+ in 1946 are relevant but invalid IVs. The remaining IVs have been screened out of the
832
+ first-stage selection as individually weak IVs.
833
+ The detection of invalid IVs implies that using whole Z as valid IVs can cause the
834
+ estimate to be biased. In Angrist and Krueger (1991), the TSLS estimate by using whole Z
835
+ as valid IVs is 0.0393. In contrast, our procedure is more robust to the existence of possibly
836
+ invalid IVs, giving the causal estimate as 0.0874. Our 95% confidence interval is above zero,
837
+ indicating a positive effect of education on earning.
838
+ In addition to the above output, the class object TSHT has other values that are not
839
+ reported by summary, for example, whether the majority rule is satisfied or not, and the
840
+ voting matrix to construct �V in Section 2.2. These can be checked by directly calling TSHT.
841
+ As discussed in Section 2.2, there are different voting options to get �V, where the default
842
+ option voting = ’MaxClique’ stands for �VMC and voting = ’MP’ stands for �VMP in (7).
843
+ If there are several maximum cliques, summary returns results corresponding to each maxi-
844
+ mum clique. Furthermore, since the default argument for which estimator to use is method =
845
+ ’OLS’, one can choose other estimators by method = ’DeLasso’ for the debiased Lasso esti-
846
+ mator with SIHR R package (Rakshit, Cai, and Guo, 2021) and method = ’Fast.DeLasso’
847
+ for the fast computation of the debiased Lasso estimator (Javanmard and Montanari, 2014).
848
+ The above methods are useful in a high-dimensional setting.
849
+ Next, we implement the uniformly valid confidence intervals by calling the function
850
+ SearchingSampling. We start with the searching CI defined in (11) with the argument
851
+ Sampling = FALSE.
852
+ R> out1 = SearchingSampling(Y=Y, D=D, Z=Z, X=X, Sampling=FALSE,
853
+ tuning.1st = sqrt(2.01*log(pz)), tuning.2nd = sqrt(2.01*log(pz)))
854
+ R> summary(out1)
855
+ Confidence Interval for Causal Effect: [-0.0964,0.2274]
856
+ With the default argument Sampling = TRUE, one can use the following code to implement
857
+ the more efficient sampling CI in (12).
858
+ 12
859
+
860
+ RobustIV and controlfunctionIV
861
+ R> set.seed(1)
862
+ R> out.SS = SearchingSampling(Y=Y, D=D, Z=Z, X=X,
863
+ tuning.1st = sqrt(2.01*log(pz)), tuning.2nd = sqrt(2.01*log(pz)))
864
+ R> summary(out.SS)
865
+ Confidence Interval for Causal Effect: [0.0135,0.1775]
866
+ The SearchingSampling confidence intervals are generally wider than that of the TSHT
867
+ since they are robust to the IV selection errors. The function summary displays confidence
868
+ interval for β, which are discussed in Section 2.3. As in TSHT, one can use the argument
869
+ method to employ the high-dimensional debiased estimators instead of OLS.
870
+ 4.2 endo.test
871
+ In the following, we show the usage of endo.test, a function for the endogeneity test in high
872
+ dimension with a simulated example. The corresponding model and method are presented
873
+ in Section 2.4. We consider the models (1) and (2) and set pz = 600 with only the first
874
+ 10 IVs being relevant. Among these 10 IVs, the first 3 IVs are invalid but the remaining
875
+ IVs are valid. Moreover, we set Corr (ǫi, δi) = 0.8, which indicates a level of endogeneity.
876
+ The function endo.test generates a class object with same arguments in TSHT. The class
877
+ object from endo.test can be used by calling summary function, which enable us to see a
878
+ brief result of ento.test.
879
+ R> set.seed(5)
880
+ R> n = 500; L = 600; s = 3; k = 10; px = 10; epsilonSigma = matrix(c(1,0.8,0.8,1),2,2)
881
+ R> beta = 1; gamma = c(rep(1,k),rep(0,L-k))
882
+ R> phi = (1/px)*seq(1,px)+0.5; psi = (1/px)*seq(1,px)+1
883
+ R> Z = matrix(rnorm(n*L),n,L); X = matrix(rnorm(n*px),n,px);
884
+ R> epsilon = MASS::mvrnorm(n,rep(0,2),epsilonSigma)
885
+ R> D = 0.5 + Z %*% gamma + X %*% psi + epsilon[,1]
886
+ R> Y = -0.5 + Z %*% c(rep(1,s),rep(0,L-s)) + D * beta + X %*% phi + epsilon[,2]
887
+ R> endo.test.model <- endo.test(Y,D,Z,X, invalid = TRUE)
888
+ R> summary(endo.test.model)
889
+ P-value Test
890
+ Valid IVs
891
+ 0
892
+ H0 rejected Z4 Z5 Z6 Z7 Z8 Z9 Z10
893
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
894
+ Detected invalid IVs: Z1 Z2 Z3
895
+ When we call summary function, p-value, it reports the test result with significance level
896
+ α (default alpha = 0.05), the valid IVs, and detected invalid IVs. H0 rejected means
897
+ that the treatment is endogenous, otherwise not. Since we set invalid = TRUE, ento.test
898
+ allows some of IVs to be invalid and conducts the endogeneity test with the selected �V
899
+ defined in Section 2.2. With invalid = FALSE, the function assumes that all IVs are valid.
900
+ 13
901
+
902
+ Koo, Lee, Small, and Guo
903
+ As in the above sections, one can use method argument to employ other estimators both in
904
+ the low and high dimensions.
905
+ 4.3 cf and pretest
906
+ In this section, we introduce usages of cf and pretest in the package controlfunctionIV.
907
+ The Mroz data was introduced in Mroz (1987) and then used in various works of literature
908
+ including Wooldridge (2010), which has n = 428 individuals after removing the data with
909
+ NA. Following Wooldridge (2010), we estimate the causal effect of education on the log
910
+ earnings of married working women. The data is available in the Wooldridge package.
911
+ Here, the outcome Y is log earnings (lwage), and the exposure D is years of schooling
912
+ (educ). Moreover, there are other variables such as the father’s education (fatheduc), the
913
+ mother’s education (motheduc), the husband’s education (huseduc), actual labor market
914
+ experience (exper), its square (expersq), and the women’s age (age).
915
+ Following Example 5.3 in Wooldridge (2010), we assume motheduc, fatheduc, and
916
+ huseduc to be valid IVs, denoted as Zi = (Zi1, Zi2, Zi3)T; we use and exper, expersq,
917
+ and age as baseline covariates, denoted as Xi = (Xi1, Xi2, Xi3)T. Also assume that the
918
+ outcome and treatment models are (13) and (14) respectively with G(Di) = (Di, D2
919
+ i )T and
920
+ H(Zi·) = (Zi1, Zi2, Zi3, Z2
921
+ i1, Z2
922
+ i2, Z2
923
+ i3)T.
924
+ Then we can implement the cf function by inputting a formula object, which has the
925
+ same form as that of ivreg in AER package. The function summary gives us information on
926
+ coefficients of the control function estimators, including the point estimator, its standard
927
+ error, t value, and p value.
928
+ R> library(wooldridge); library(controlfunctionIV); data(mroz); mroz <- na.exclude(mroz)
929
+ R> Y <- mroz[,"lwage"]; D <- mroz[,"educ"]
930
+ R> Z <- as.matrix(mroz[,c("motheduc","fatheduc","huseduc")])
931
+ R> X <- as.matrix(mroz[,c("exper","expersq","age")])
932
+ R> cf.model <- cf(Y~D+I(D^2)+X|Z+I(Z^2)+X)
933
+ R> summary(cf.model)
934
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
935
+ Coefficients of the control function estimators:
936
+ Estimate
937
+ Std.Error t value Pr(>|t|)
938
+ (Intercept)
939
+ 1.2573907
940
+ 0.7871438
941
+ 1.597 0.055457 .
942
+ D
943
+ -0.1434395
944
+ 0.1102058
945
+ 1.302 0.096884 .
946
+ I(D^2)
947
+ 0.0086426
948
+ 0.0041004
949
+ 2.108 0.017817 *
950
+ Xexper
951
+ 0.0438690
952
+ 0.0131574
953
+ 3.334 0.000465 ***
954
+ Xexpersq
955
+ -0.0008713
956
+ 0.0003984
957
+ 2.187 0.014631 *
958
+ Xage
959
+ -0.0011636
960
+ 0.0048634
961
+ 0.239 0.405511
962
+ ---
963
+ Signif. codes:
964
+ 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
965
+ 14
966
+
967
+ RobustIV and controlfunctionIV
968
+ The following code infers the causal effect G(d1)Tβ−G(d2)Tβ by changing the treatment
969
+ level from d2 to d1 = d2 + 1. Since the second and third coefficients are related to D, we
970
+ use the second and third index to get the causal effect and its standard error.
971
+ R> d2 = median(D); d1 = median(D)+1;
972
+ R> D.diff <- c(d1,d1^2)-c(d2,d2^2); CE <- (D.diff)%*%cf.model$coefficients[c(2,3)]
973
+ R> CE.sd <-sqrt(D.diff%*%cf.model$vcov[c(2,3),c(2,3)]%*%D.diff)
974
+ R> CE.ci <- c(CE-qnorm(0.975)*CE.sd,CE+qnorm(0.975)*CE.sd)
975
+ R> cmat <- cbind(CE,CE.sd,CE.ci[1],CE.ci[2])
976
+ R> colnames(cmat)<-c("Estimate","Std.Error","CI(2.5%)","CI(97.5%)"); rownames(cmat)<- "CE"
977
+ R>
978
+ print(cmat, digits = 4)
979
+ Estimate Std.Error CI(2.5%) CI(97.5%)
980
+ CE
981
+ 0.07263
982
+ 0.02171
983
+ 0.03007
984
+ 0.1152
985
+ The function pretest can be used to choose between the TSLS or the control function
986
+ method. If we run pretest with the same argument above and call summary, it will output
987
+ the following result:
988
+ R> pretest.model <- pretest(Y~D+I(D^2)+X|Z+I(Z^2)+X)
989
+ R> summary(pretest.model)
990
+ Level 0.05 pretest estimator is control function estimator.
991
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
992
+ Coefficients of the pretest estimators:
993
+ Estimate
994
+ Std.Error t value Pr(>|t|)
995
+ (Intercept)
996
+ 1.2573907
997
+ 0.7871438
998
+ 1.597 0.055457 .
999
+ D
1000
+ -0.1434395
1001
+ 0.1102058
1002
+ 1.302 0.096884 .
1003
+ I(D^2)
1004
+ 0.0086426
1005
+ 0.0041004
1006
+ 2.108 0.017817 *
1007
+ Xexper
1008
+ 0.0438690
1009
+ 0.0131574
1010
+ 3.334 0.000465 ***
1011
+ Xexpersq
1012
+ -0.0008713
1013
+ 0.0003984
1014
+ 2.187 0.014631 *
1015
+ Xage
1016
+ -0.0011636
1017
+ 0.0048634
1018
+ 0.239 0.405511
1019
+ ---
1020
+ Signif. codes:
1021
+ 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
1022
+ The first section of the output of summary reports which estimator is chosen after the
1023
+ pretesting step. The second section lists brief information on coefficients of pretest estima-
1024
+ tors including the point estimator, its standard error, t value, and p-value, similar to cf.
1025
+ Since the pretest estimator is the control function estimator, the second section of summary
1026
+ is the same as that of summary(cf.model).
1027
+ 4.4 Probit.cf
1028
+ Finally, we conclude the usage part by looking at the usage of Probit.cf, which is designed
1029
+ for the binary outcome with unmeasured confounders and possibly invalid IVs. For illus-
1030
+ 15
1031
+
1032
+ Koo, Lee, Small, and Guo
1033
+ tration, we use the Mroz data and define the binary outcome variable Y0 to take the value
1034
+ 1 if the continuous outcome Y is greater than the median of Y and 0 otherwise. We use the
1035
+ same treatment variable D as in the cf example. Contrary to the cf example, we set the
1036
+ candidates of IVs Z as motheduc, fatheduc, huseduc, exper, and expersq, and assume
1037
+ that we have covariates X as age.
1038
+ We implement the Probit.cf function to estimate the CATE by increasing the treat-
1039
+ ment value from the median of D to the median plus one. We can call summary to see the
1040
+ result of Probit.cf. The function summary provides information on the valid IVs �V, the
1041
+ point estimator, standard error, and 95% confidence interval for β in (16), and the point
1042
+ estimator, the standard error, and 95% confidence interval of CATE.
1043
+ R> Z <- as.matrix(mroz[,c("motheduc","fatheduc","huseduc","exper","expersq")])
1044
+ R> Y0 <- as.numeric((Y>median(Y)))
1045
+ R> d2 = median(D); d1 = d2+1; w0 = apply(cbind(Z,X)[which(D == d2),], 2, mean)
1046
+ R> Probit.model <- Probit.cf(Y0,D,Z,X,d1 = d1,d2 = d2,w0 = w0)
1047
+ R> summary(Probit.model)
1048
+ Estimate Std.Error CI(2.5%) CI(97.5%) Valid IVs
1049
+ Beta 0.2119
1050
+ 0.092
1051
+ 0.0316
1052
+ 0.3922
1053
+ motheduc fatheduc huseduc
1054
+ CATE 0.0844
1055
+ 0.033
1056
+ 0.0198
1057
+ 0.1489
1058
+ motheduc fatheduc huseduc
1059
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1060
+ No invalid IV is detected
1061
+ With the option invalid = TRUE, we allow invalid IVs and choose the valid IVs among all
1062
+ provided IVs. If one wants to assume all IVs are valid, one can set invalid = FALSE.
1063
+ 5. Application to Framingham Heart Study
1064
+ We analyze the Framingham Heart Study (FHS) data and illustrate our package using ge-
1065
+ netic variants as IVs. The FHS is an ongoing cohort study of participants from the town of
1066
+ Framingham, Massachusetts, that has grown over the years to include five cohorts with a
1067
+ total sample of over 15,000. The FHS, initiated in 1948, is among the most critical sources
1068
+ of data on cardiovascular epidemiology (Sytkowski, Kannel, and D’Agostino, 1990; Kannel,
1069
+ 2000; Mahmood, Levy, Vasan, and Wang, 2014). Since the late 1980s, researchers across
1070
+ human health-related fields have used genetic factors underlying cardiovascular diseases
1071
+ and other disorders. Over the last two decades, DNA has been collected from blood sam-
1072
+ ples and immortalized cell lines from members of the Original Cohort, the Offspring Cohort,
1073
+ and the Third Generation Cohort (Govindaraju et al., 2008). Several large-scale genotyping
1074
+ projects and genome-wide linkage analysis have been conducted, and several other recent
1075
+ collaborative projects have completed thousands of SNP genotypes for candidate gene re-
1076
+ gions in subsets of FHS subjects with available DNA. The FHS has recently been used for
1077
+ Mendelian Randomization to determine causal relationships even in the presence of unmea-
1078
+ 16
1079
+
1080
+ RobustIV and controlfunctionIV
1081
+ sured confounding thanks to the availability of genotype and phenotype data (Holmes et al.,
1082
+ 2014; Dalbeth et al., 2015; Hughes et al., 2014). As candidate IVs, we will use genotype
1083
+ data from the FHS associated with the phenotype of interest and apply the proposed meth-
1084
+ ods described above.
1085
+ We apply the RobustIV package to investigate the effect of low-density lipoprotein (LDL-
1086
+ C) on globulin levels among individuals in the Framingham Heart Study (FHS) Offspring
1087
+ Cohort, as was studied in Kang et al. (2020).
1088
+ We use eight SNP genotypes (rs646776,
1089
+ rs693, rs2228671, rs2075650, rs4299376, rs3764261, rs12916, rs2000999) that are known to be
1090
+ significantly associated with LDL-C measured in mg/dL as candidate IVs (Kathiresan et al.,
1091
+ 2007; Ma et al., 2010; Smith et al., 2014). See Table 2 for details. The outcome of interest
1092
+ Yi is a continuous globulin level (g/L) and the exposure variable Di is the LDL-C level.
1093
+ Globulin is known to play a crucial role in liver function, clotting, and the immune system.
1094
+ We also use the age and sex of the subjects as covariates Xi·. The study includes n = 1445
1095
+ subjects, with an average globulin level of 27.27 (SD: 3.74) and an average LDL-C of 1.55
1096
+ (SD: 0.50). An average age is 35.58 (SD: 9.74) and 54.95% are males.
1097
+ Zj
1098
+ SNP
1099
+ Position
1100
+ lm(D ∼ Z)
1101
+ lm(Y ∼ Z)
1102
+ Estimate (Std. Error)
1103
+ t-statistic (p-value)
1104
+ Estimate (Std. Error)
1105
+ t-statistic (p-value)
1106
+ Z1
1107
+ rs646776
1108
+ chr1:109275908
1109
+ -5.160 (1.610)
1110
+ -3.205 (0.001)
1111
+ -0.001 (0.170)
1112
+ -0.007 (0.994)
1113
+ Z2
1114
+ rs693
1115
+ chr2:21009323
1116
+ -3.600 (1.286)
1117
+ -2.799 (0.005)
1118
+ 0.318 (0.135)
1119
+ 2.349 (0.019)
1120
+ Z3
1121
+ rs2228671
1122
+ chr19:11100236
1123
+ 7.138 (2.029)
1124
+ 3.518 (<0.001)
1125
+ 0.529 (0.214)
1126
+ 2.474 (0.014)
1127
+ Z4
1128
+ rs2075650
1129
+ chr19:44892362
1130
+ 8.451 (2.021)
1131
+ 4.183 (<0.001)
1132
+ 0.471 (0.213)
1133
+ 2.208 (0.027)
1134
+ Z5
1135
+ rs4299376
1136
+ chr2:43845437
1137
+ 3.847 (1.387)
1138
+ 2.773 (0.006)
1139
+ 0.110 (0.146)
1140
+ 0.752(0.452)
1141
+ Z6
1142
+ rs3764261
1143
+ chr16:56959412
1144
+ 3.651 (1.429)
1145
+ 2.555 (0.011)
1146
+ 0.275 (0.151)
1147
+ 1.829 (0.067)
1148
+ Z7
1149
+ rs12916
1150
+ chr5:75360714
1151
+ 3.363 (1.365)
1152
+ 2.463 (0.014)
1153
+ -0.195 (0.144)
1154
+ -1.357 (0.175)
1155
+ Z8
1156
+ rs2000999
1157
+ chr16:72074194
1158
+ -2.961 (1.629)
1159
+ -1.818 (0.069)
1160
+ -0.119 (0.172)
1161
+ -0.691 (0.489)
1162
+ Table 2: Summary of the relationship between the single nucleotide polymorphisms (SNPs)
1163
+ and low-density lipoprotein. The point estimator, its standard error, t value, and
1164
+ p-value are summary statistics from running a marginal regression model specified
1165
+ in the column title. Position refers to the position of the SNP in the chromosome,
1166
+ denoted as chr.
1167
+ By applying endo.test, we detect one invalid IV and observe the evidence for the
1168
+ existence of unmeasured confounders since the null hypothesis H0 : σ12 = 0 is rejected.
1169
+ R> pz <- ncol(Z)
1170
+ R> globulin.endo2 <- endo.test(Y,D,Z,X, invalid = TRUE,
1171
+ tuning.1st = sqrt(2.01*log(pz)), tuning.2nd = sqrt(2.01*log(pz)))
1172
+ R> summary(globulin.endo2)
1173
+ P-value Test
1174
+ Valid IVs
1175
+ 0.0091
1176
+ H0 rejected Z.1 Z.3 Z.4 Z.5 Z.6 Z.8
1177
+ 17
1178
+
1179
+ Koo, Lee, Small, and Guo
1180
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1181
+ Detected invalid IVs: Z.2
1182
+ Next, we implement TSHT with the default method of "OLS" under the low-dimensional
1183
+ setting. Again, the same invalid IV is detected and the confidence interval is above zero,
1184
+ indicating a positive effect of LDL on the glucose level.
1185
+ R> pz <- ncol(Z)
1186
+ R> TSHT2 <- TSHT(Y, D, Z, X,
1187
+ tuning.1st = sqrt(2.01*log(pz)), tuning.2nd = sqrt(2.01*log(pz)))
1188
+ R> summary(TSHT2)
1189
+ betaHat Std.Error CI(2.5%) CI(97.5%) Valid IVs
1190
+ 0.0529
1191
+ 0.0146
1192
+ 0.0243
1193
+ 0.0814
1194
+ Z.1 Z.3 Z.4 Z.5 Z.6 Z.8
1195
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1196
+ Detected invalid IVs: Z.2
1197
+ We also constructed the confidence interval using the searching method, which provides
1198
+ robustness to the IV selection errors.
1199
+ R> SS1 <- SearchingSampling(Y, D, Z, X, tuning.1st = sqrt(2.01*log(pz)),
1200
+ tuning.2nd = sqrt(2.01*log(pz)), Sampling = FALSE)
1201
+ R> summary(SS1)
1202
+ Confidence Interval for Causal Effect: [-0.2427,0.1894]
1203
+ We further implement the sampling method, which leads to a shorter uniformly valid CI
1204
+ than the searching method.
1205
+ R> SS2 <- SearchingSampling(Y, D, Z, X, tuning.1st = sqrt(2.01*log(pz)),
1206
+ tuning.2nd = sqrt(2.01*log(pz)), Sampling = TRUE)
1207
+ R> summary(SS2)
1208
+ Confidence Interval for Causal Effect: [-0.0521,0.1259]
1209
+ In the following, we study nonlinear causal relationships using the controlfunctionIV
1210
+ package. Burgess, Davies, and Thompson (2014) investigated a nonlinear causal relation-
1211
+ ship between BMI and diverse cardiovascular risk factors. Here we examine BMI’s possibly
1212
+ nonlinear causal effect on the insulin level. Among n = 3733 subjects, we excluded 618
1213
+ subjects with missing information on insulin level, and 50 subjects whose insulin level is
1214
+ greater than 300pmol/L and whose BMI is greater than 45kg/m2. We use log-transformed
1215
+ insulin as the outcome of interest Yi measured at Exam 2. The exposure Di denotes the BMI
1216
+ measures at Exam 1. The covariates Xi· that we adjusted for are age and sex. As valid IVs
1217
+ Zi·, we propose using four SNP genotypes known to be significantly associated with obesity.
1218
+ In our analysis, we include I(D^2) and I(X^2) to account for quadratic effects of BMI, age,
1219
+ and sex on the outcome. We also include I(Z^2) to account for possible quadratic effects
1220
+ of SNPs on the exposure. The result from the pretest estimator is as follows:
1221
+ 18
1222
+
1223
+ RobustIV and controlfunctionIV
1224
+ R> insulin.pretest = pretest( Y ~ D + I(D^2) + X
1225
+ + I(X^2) | Z + I(Z^2) + X + I(X^2))
1226
+ R> summary(insulin.pretest)
1227
+ Level 0.05 pretest estimator is control function estimator.
1228
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1229
+ Coefficients of Pretest Estimators:
1230
+ Estimate
1231
+ Std.Err t value Pr(>|t|)
1232
+ (Intercept)
1233
+ 2.674e+00
1234
+ 6.006e-01
1235
+ 4.453 4.39e-06 ***
1236
+ D
1237
+ 8.295e-02
1238
+ 2.828e-02
1239
+ 2.933 0.001690 **
1240
+ I(D^2)
1241
+ -7.784e-04
1242
+ 2.742e-04
1243
+ 2.839 0.002276 **
1244
+ X1
1245
+ -1.780e-02
1246
+ 7.816e-03
1247
+ 2.277 0.011427 *
1248
+ I(X1^2)
1249
+ 2.954e-04
1250
+ 8.852e-05
1251
+ 3.337 0.000428 ***
1252
+ X2
1253
+ -1.361e-01
1254
+ 5.654e-02
1255
+ 2.406 0.008087 **
1256
+ ---
1257
+ Signif. codes:
1258
+ 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
1259
+ The pretest estimator chooses the control function over the standard TSLS. The results also
1260
+ show that BMI has a positive linear effect on the outcome but a negative quadratic effect
1261
+ on the outcome.
1262
+ Acknowledgement
1263
+ The research of T. Koo was supported in part by NIH grants R01GM140463 and R01LM013614.
1264
+ The research of D. Small was supported in part by NIH grant 5R01AG065276-02.The re-
1265
+ search of Z. Guo was partly supported by the NSF grants DMS 1811857 and 2015373 and
1266
+ NIH grants R01GM140463 and R01LM013614. Z. Guo is grateful to Dr. Frank Windmeijer
1267
+ for bringing up the maximum clique method.
1268
+ The Framingham Heart Study is conducted and supported by the National Heart, Lung,
1269
+ and Blood Institute (NHLBI) in collaboration with Boston University (Contract No. N01-
1270
+ HC-25195, HHSN268201500001I, and 75N92019D00031). This manuscript was not prepared
1271
+ in collaboration with investigators of the Framingham Heart Study and does not necessarily
1272
+ reflect the opinions or views of the Framingham Heart Study, Boston University, or NHLBI.
1273
+ Funding for SHARe Affymetrix genotyping was provided by NHLBI Contract N02-HL64278.
1274
+ SHARe Illumina genotyping was provided under an agreement between Illumina and Boston
1275
+ University. Funding for Affymetrix genotyping of the FHS Omni cohorts was provided by
1276
+ Intramural NHLBI funds from Andrew D. Johnson and Christopher J. O’Donnell.
1277
+ 19
1278
+
1279
+ Koo, Lee, Small, and Guo
1280
+ References
1281
+ Joshua D. Angrist and Alan B. Krueger. Does compulsory school attendance affect schooling
1282
+ and earnings? The Quarterly Journal of Economics, 106(4):979–1014, 1991.
1283
+ A. Belloni, V. Chernozhukov, and L. Wang. Square-root lasso: pivotal recovery of sparse
1284
+ signals via conic programming. Biometrika, 98(4):791–806, 2011.
1285
+ Jack Bowden, George Davey Smith, and Stephen Burgess. Mendelian randomization with
1286
+ invalid instruments: Effect estimation and bias detection through egger regression. In-
1287
+ ternational Journal of Epidemiology, 44, 2015.
1288
+ Jack Bowden, George Davey Smith, Philip C. Haycock, and Stephen Burgess. Consistent
1289
+ estimation in mendelian randomization with some invalid instruments using a weighted
1290
+ median estimator. Genetic Epidemiology, 40(4):304–314, 2016.
1291
+ Stephen Burgess, Neil M Davies, and Simon G Thompson. Instrumental variable analysis
1292
+ with a nonlinear exposure–outcome relationship. Epidemiology (Cambridge, Mass.), 25
1293
+ (6):877, 2014.
1294
+ David Card. The causal effect of education on earnings. In O. Ashenfelter and D. Card,
1295
+ editors, Handbook of Labor Economics, volume 3, Part A, chapter 30, pages 1801–1863.
1296
+ Elsevier, 1 edition, 1999.
1297
+ Gabor Csardi and Tamas Nepusz. The igraph software package for complex network re-
1298
+ search. InterJournal, Complex Systems:1695, 2006.
1299
+ Nicola Dalbeth, Ruth Topless, Tanya Flynn, Murray Cadzow, Mark J Bolland, and Tony R
1300
+ Merriman. Mendelian randomization analysis to examine for a causal effect of urate on
1301
+ bone mineral density. Journal of Bone and Mineral Research, 30(6):985–991, 2015.
1302
+ J. Durbin. Errors in variables. Revue de l’Institut International de Statistique / Review of
1303
+ the International Statistical Institute, 22(1/3):23–32, 1954.
1304
+ Diddahally R Govindaraju, L Adrienne Cupples, William B Kannel, Christopher J
1305
+ O’Donnell, Larry D Atwood, Ralph B D’Agostino Sr, Caroline S Fox, Marty Larson,
1306
+ Daniel Levy, Joanne Murabito, et al. Genetics of the framingham heart study popula-
1307
+ tion. Advances in genetics, 62:33–65, 2008.
1308
+ Zijian Guo.
1309
+ Causal Inference with Invalid Instruments: Post-selection Problems and A
1310
+ Solution Using Searching and Sampling. arXiv e-prints, art. arXiv:2104.06911, 2021.
1311
+ 20
1312
+
1313
+ RobustIV and controlfunctionIV
1314
+ Zijian Guo and Peter B¨uhlmann. Two stage curvature identification with machine learn-
1315
+ ing:
1316
+ Causal inference with possibly invalid instrumental variables.
1317
+ arXiv preprint
1318
+ arXiv:2203.12808, 2022.
1319
+ Zijian Guo and Dylan S. Small. Control function instrumental variable estimation of non-
1320
+ linear causal effect models. J. Mach. Learn. Res., 17(1):3448–3482, 2016.
1321
+ Zijian Guo, Hyunseung Kang, T Tony Cai, and Dylan S Small. Testing endogeneity with
1322
+ high dimensional covariates. Journal of Econometrics, 207(1):175–187, 2018a.
1323
+ Zijian Guo, Hyunseung Kang, Tony Cai, and Dylan S. Small. Confidence intervals for causal
1324
+ effects with invalid instruments by using two-stage hard thresholding with voting. Journal
1325
+ of the Royal Statistical Society: Series B (Statistical Methodology), 80(4):793–815, 2018b.
1326
+ Fernando Pires Hartwig, George Davey Smith, and Jack Bowden.
1327
+ Robust inference in
1328
+ summary data Mendelian randomization via the zero modal pleiotropy assumption. In-
1329
+ ternational Journal of Epidemiology, 46(6):1985–1998, 2017.
1330
+ J. A. Hausman. Specification tests in econometrics. Econometrica, 46(6):1251–1271, 1978.
1331
+ Paul W Holland and Roy E Welsch. Robust regression using iteratively reweighted least-
1332
+ squares. Communications in Statistics-theory and Methods, 6(9):813–827, 1977.
1333
+ Michael V Holmes, Leslie A Lange, Tom Palmer, Matthew B Lanktree, Kari E North,
1334
+ Berta Almoguera, Sarah Buxbaum, Hareesh R Chandrupatla, Clara C Elbers, Yiran
1335
+ Guo, et al. Causal effects of body mass index on cardiometabolic traits and events: a
1336
+ mendelian randomization analysis. The American Journal of Human Genetics, 94(2):
1337
+ 198–208, 2014.
1338
+ Kim Hughes, Tanya Flynn, Janak De Zoysa, Nicola Dalbeth, and Tony R Merriman.
1339
+ Mendelian randomization analysis associates increased serum urate, due to genetic vari-
1340
+ ation in uric acid transporters, with improved renal function. Kidney international, 85
1341
+ (2):344–351, 2014.
1342
+ Adel Javanmard and Andrea Montanari. Confidence intervals and hypothesis testing for
1343
+ high-dimensional regression. Journal of Machine Learning Research, 15(82):2869–2909,
1344
+ 2014.
1345
+ Hyunseung Kang, Anru Zhang, T. Tony Cai, and Dylan S. Small. Instrumental variables
1346
+ estimation with some invalid instruments and its application to mendelian randomization.
1347
+ Journal of the American Statistical Association, 111(513):132–144, 2016.
1348
+ 21
1349
+
1350
+ Koo, Lee, Small, and Guo
1351
+ Hyunseung Kang, Yang Jiang, Qingyuan Zhao, and Dylan S. Small. ivmodel: An R Pack-
1352
+ age for Inference and Sensitivity Analysis of Instrumental Variables Models with One
1353
+ Endogenous Variable. arXiv e-prints, art. arXiv:2002.08457, 2020.
1354
+ Hyunseung Kang, Youjin Lee, T Tony Cai, and Dylan S Small.
1355
+ Two robust tools for
1356
+ inference about causal effects with invalid instruments. Biometrics, 2020.
1357
+ William B Kannel. The framingham study: Its 50-year legacy and future promise. Journal
1358
+ of atherosclerosis and thrombosis, 6(2):60–66, 2000.
1359
+ Sekar Kathiresan, Alisa K Manning, Serkalem Demissie, Ralph B D’agostino, Aarti Surti,
1360
+ Candace Guiducci, Lauren Gianniny, N¨oel P Burtt, Olle Melander, Marju Orho-Melander,
1361
+ et al. A genome-wide association study for blood lipid phenotypes in the framingham
1362
+ heart study. BMC Medical Genetics, 8(1):S17, 2007.
1363
+ Christian Kleiber and Achim Zeileis. Applied Econometrics with R. Springer-Verlag, New
1364
+ York, 2008.
1365
+ Arthur Lewbel. Using heteroscedasticity to identify and estimate mismeasured and endoge-
1366
+ nous regressor models. Journal of Business & Economic Statistics, 30(1):67–80, 2012.
1367
+ Sai Li and Zijian Guo. Causal Inference for Nonlinear Outcome Models with Possibly Invalid
1368
+ Instrumental Variables. arXiv e-prints, art. arXiv:2010.09922, 2020.
1369
+ Li Ma, Jing Yang, H Birali Runesha, Toshiko Tanaka, Luigi Ferrucci, Stefania Bandinelli,
1370
+ and Yang Da. Genome-wide association analysis of total cholesterol and high-density
1371
+ lipoprotein cholesterol levels using the framingham heart study data.
1372
+ BMC Medical
1373
+ Genetics, 11(1):55, 2010.
1374
+ Syed S Mahmood, Daniel Levy, Ramachandran S Vasan, and Thomas J Wang. The framing-
1375
+ ham heart study and the epidemiology of cardiovascular disease: a historical perspective.
1376
+ The lancet, 383(9921):999–1008, 2014.
1377
+ Enno Mammen, Christoph Rothe, and Melanie Schienle. Nonparametric regression with
1378
+ nonparametrically generated covariates. The Annals of Statistics, 40(2):1132–1170, 2012.
1379
+ Thomas A. Mroz. The sensitivity of an empirical model of married women’s hours of work
1380
+ to economic and statistical assumptions. Econometrica, 55(4):765–799, 1987.
1381
+ Whitney K Newey. Kernel estimation of partial means and a general variance estimator.
1382
+ Econometric Theory, 10(2):1–21, 1994.
1383
+ 22
1384
+
1385
+ RobustIV and controlfunctionIV
1386
+ Prabrisha Rakshit, T. Tony Cai, and Zijian Guo.
1387
+ SIHR: An R Package for Statistical
1388
+ Inference in High-dimensional Linear and Logistic Regression Models. arXiv e-prints,
1389
+ art. arXiv:2109.03365, 2021.
1390
+ Dylan S Small. Sensitivity analysis for instrumental variables regression with overidentifying
1391
+ restrictions. Journal of the American Statistical Association, 102(479):1049–1058, 2007.
1392
+ J Gustav Smith, Kevin Luk, Christina-Alexandra Schulz, James C Engert, Ron Do, George
1393
+ Hindy, Gull Rukh, Line Dufresne, Peter Almgren, David S Owens, et al. Association of
1394
+ low-density lipoprotein cholesterol–related genetic variants with aortic valve calcium and
1395
+ incident aortic stenosis. Journal of the American Medical Association, 312(17):1764–1771,
1396
+ 2014.
1397
+ Pamela A Sytkowski, William B Kannel, and Ralph B D’Agostino. Changes in risk factors
1398
+ and the decline in mortality from cardiovascular disease: the framingham heart study.
1399
+ New England Journal of Medicine, 322(23):1635–1641, 1990.
1400
+ Eric Tchetgen Tchetgen, BaoLuo Sun, and Stefan Walter.
1401
+ The GENIUS Approach to
1402
+ Robust Mendelian Randomization Inference. Statistical Science, 36(3):443 – 464, 2021.
1403
+ Frank Windmeijer, Xiaoran Liang, Fernando P. Hartwig, and Jack Bowden. The confidence
1404
+ interval method for selecting valid instrumental variables. Journal of the Royal Statistical
1405
+ Society: Series B (Statistical Methodology), 83(4):752–776, 2021.
1406
+ Jeffrey M Wooldridge. Econometric Analysis of Cross Section and Panel Data, volume 1 of
1407
+ MIT Press Books. The MIT Press, 2010.
1408
+ De-Min Wu. Alternative tests of independence between stochastic regressors and distur-
1409
+ bances. Econometrica, 41(4):733–750, 1973.
1410
+ 23
1411
+
49E3T4oBgHgl3EQfQQn6/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
49FJT4oBgHgl3EQfkSwi/content/tmp_files/2301.11578v1.pdf.txt ADDED
@@ -0,0 +1,2297 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Preprint. Under review.
2
+ LEARNING TO UNLEARN: INSTANCE-WISE UNLEARN-
3
+ ING FOR PRE-TRAINED CLASSIFIERS
4
+ Sungmin Cha1,2*, Sungjun Cho1*, Dasol Hwang1*, Honglak Lee1,4, Taesup Moon2, and Moontae Lee1,3
5
+ 1LG AI Research
6
+ 2Seoul National University
7
+ 3University of Illinois Chicago
8
+ 4University of Michigan
9
+ sungmin.cha@snu.ac.kr, {sungjun.cho, dasol.hwang, honglak.lee}@lgresearch.ai,
10
+ tsmoon@snu.ac.kr, moontae.lee@lgresearch.ai
11
+ * denotes equal contribution
12
+ ABSTRACT
13
+ Since the recent advent of regulations for data protection (e.g., the General Data
14
+ Protection Regulation), there has been increasing demand in deleting information
15
+ learned from sensitive data in pre-trained models without retraining from scratch.
16
+ The inherent vulnerability of neural networks towards adversarial attacks and un-
17
+ fairness also calls for a robust method to remove or correct information in an
18
+ instance-wise fashion, while retaining the predictive performance across remain-
19
+ ing data. To this end, we define instance-wise unlearning, of which the goal is to
20
+ delete information on a set of instances from a pre-trained model, by either mis-
21
+ classifying each instance away from its original prediction or relabeling the in-
22
+ stance to a different label. We also propose two methods that reduce forgetting on
23
+ the remaining data: 1) utilizing adversarial examples to overcome forgetting at the
24
+ representation-level and 2) leveraging weight importance metrics to pinpoint net-
25
+ work parameters guilty of propagating unwanted information. Both methods only
26
+ require the pre-trained model and data instances to forget, allowing painless ap-
27
+ plication to real-life settings where the entire training set is unavailable. Through
28
+ extensive experimentation on various image classification benchmarks, we show
29
+ that our approach effectively preserves knowledge of remaining data while un-
30
+ learning given instances in both single-task and continual unlearning scenarios.
31
+ 1
32
+ INTRODUCTION
33
+ Humans remember and forget: efficiently learning useful knowledge yet regulating privately sensi-
34
+ tive information and protecting from malicious attacks. Recent advances in large-scale pre-training
35
+ enable models to memorize massive information for intelligent operations (Radford et al., 2019),
36
+ but there is a cost. Language models trained on indiscriminately collected data often disclose pri-
37
+ vate information such as occupations, phone numbers, and family background during text genera-
38
+ tion (Heikkil¨a, 2022). Vision models trained on numerous image data sometimes misclassify natu-
39
+ rally adversarial or adversarially attacked examples with high-confidence (Hendrycks et al., 2021).
40
+ A na¨ıve solution is to retrain these models from scratch after refining or reweighting their training
41
+ datasets (Lison et al., 2021; Zemel et al., 2013; Lahoti et al., 2020). However, such post-hoc process-
42
+ ing is impractical due to growing volumes of data and substantial cost of large-scale training: while
43
+ exercising the Right to be Forgotten (Rosen, 2011; Villaronga et al., 2018) may be straightforward
44
+ to humans, it is not so straightforward in the context of machine learning. This has sparked the field
45
+ of machine unlearning, in which the main goal is to efficiently delete information while preserving
46
+ information on the remaining data.
47
+ While many machine unlearning approaches have shown promising results deleting data from tradi-
48
+ tional machine learning algorithms (Mahadevan & Mathioudakis, 2021; Ginart et al., 2019; Brophy
49
+ & Lowd, 2021) as well as DNN-based classifiers (Tarun et al., 2021; Chundawat et al., 2022; Ye
50
+ et al., 2022; Yoon et al., 2022; Golatkar et al., 2020; Kim & Woo, 2022; Mehta et al., 2022), existing
51
+ work are built upon assumptions far too restrictive compared to real-life scenarios. First off, many
52
+ approaches assume a class-wise unlearning setup, where the task is to delete information from all
53
+ data points that belong to a particular class or set of classes. However, data deletion requests are
54
+ 1
55
+ arXiv:2301.11578v1 [cs.LG] 27 Jan 2023
56
+
57
+ Preprint. Under review.
58
+ practically received at a per-instance basis, potentially resulting in a set of data points with a mix-
59
+ ture of class labels (Heikkil¨a, 2022; Mehrabi et al., 2021). Another widely used assumption is that
60
+ at least a subset of the original training data is available at the time of unlearning. In real settings,
61
+ however, loading the original dataset may not be an option due to data expiration policies or lack
62
+ of storage for large amounts of data. Lastly, many approaches consider the main objective as re-
63
+ moving the previous effect of the deleting data during training. While this is indeed the ideal case,
64
+ recent work have shown that fulfilling the objective can still lead to information leakage (Suriyaku-
65
+ mar & Wilson, 2022), and unlearning mechanisms must explicitly enforce misprediction for tighter
66
+ security (Graves et al., 2021).
67
+ In light of aforementioned limitations, we propose a framework for instance-wise unlearning that
68
+ deletes information with access only to the pre-trained model and the data points requested for
69
+ unlearning. Instead of undoing the previous influence of deleting data, we pursue a stronger goal
70
+ where all requested data points are misclassified, preventing collection of information via interpo-
71
+ lation of nearby data points. Inspired by work in the continual learning literature (Ebrahimi et al.,
72
+ 2020; Aljundi et al., 2018), we propose two regularization methods that minimize loss in predic-
73
+ tive performance on the remaining data, while completely forgetting information on deleting data.
74
+ Specifically, we 1) generate adversarial examples by attacking each deleting data point with the
75
+ pre-trained model and retrain on these examples to prevent representation-level forgetting and 2)
76
+ use weight importance measures from unlearning instances to focus gradient updates more towards
77
+ parameters responsible for the originally correct classification of such instances. Extensive experi-
78
+ ments on CIFAR-10/-100 (Krizhevsky et al., 2009) and ImageNet-1K (Deng et al., 2009) datasets
79
+ show that our proposed method effectively preserves overall predictive performance, while com-
80
+ pletely misclassifying images chosen for deletion. Our qualitative analyses also reveal interesting
81
+ insights, including lack of any discernible pattern in misclassification that may be exploited by
82
+ adversaries, preservation of the previously learned decision boundary, and forgetting of high-level
83
+ features within deleted images. In summary, our main contributions are as follows:
84
+ • We propose instance-wise unlearning through intended misclassification, under the as-
85
+ sumption that only the pre-trained model and data to forget are available at hand.
86
+ • We present two model-agnostic regularization methods that reduce forgetting on remaining
87
+ data while misclassifying data for deletion.
88
+ • Empirical evaluations on well-known image classification benchmarks show that our pro-
89
+ posed method significantly boosts predictive performance after unlearning.
90
+ 2
91
+ RELATED WORK
92
+ Machine unlearning.
93
+ Machine unlearning (Cao & Yang, 2015) is a field that makes a pre-trained
94
+ model forget information learned from a specified subset of data. For this, the existing studies have
95
+ taken an approach that deletes the influence of unwanted data points (denoted as Df) from the model
96
+ while retaining the predictive performance on the rest of the data (denoted as Dr). Mahadevan &
97
+ Mathioudakis (2021); Ginart et al. (2019); Brophy & Lowd (2021) proposed unlearning methods for
98
+ a linear/logistic regression, k-means clustering, and random forests, respectively. These methods are
99
+ specifically designed for simple machine learning models, not for neural networks.
100
+ Table 1: Comparison between existing unlearning methods.
101
+ Methods
102
+ Unit
103
+ Goal
104
+ Dr
105
+ Df
106
+ Tarun et al. (2021)
107
+ class
108
+ undo
109
+ 
110
+ 
111
+ Chundawat et al. (2022)
112
+ class
113
+ undo
114
+ 
115
+ 
116
+ Ye et al. (2022)
117
+ class
118
+ undo
119
+ 
120
+ 
121
+ Yoon et al. (2022)
122
+ class
123
+ undo
124
+ 
125
+ 
126
+ Golatkar et al. (2020)
127
+ instance
128
+ undo
129
+ 
130
+ 
131
+ Kim & Woo (2022)
132
+ instance
133
+ undo
134
+ 
135
+ 
136
+ Mehta et al. (2022)
137
+ instance
138
+ undo
139
+ 
140
+ 
141
+ Our methods
142
+ instance
143
+ misclassify
144
+ 
145
+ 
146
+ Recently, the machine unlearning for
147
+ neural networks have been studied in
148
+ different settings, shown in Table 1.
149
+ These methods can be categorized
150
+ into two approaches: class-wise and
151
+ instance-wise unlearning. The class-
152
+ wise unlearning is to forget a cer-
153
+ tain class (e.g., 9-th class of CIFAR-
154
+ 10) while retaining the performance
155
+ on the remaining class (Tarun et al.,
156
+ 2021; Chundawat et al., 2022; Ye
157
+ et al., 2022; Yoon et al., 2022). On
158
+ the other hand, the instance-wise un-
159
+ learning is designed to delete instance-wise information (e.g., several images of CIFAR-10) from
160
+ 2
161
+
162
+ Preprint. Under review.
163
+ the pre-trained model (Golatkar et al., 2020; Kim & Woo, 2022; Mehta et al., 2022). In other words,
164
+ only instances that are requested to be forgotten should be deleted and the others from the same class
165
+ should be remembered.
166
+ The goal of the existing methods is to make the already trained model identical to the model trained
167
+ on the dataset with unwanted instances removed (denote as undo). Unfortunately, even if the model
168
+ is trained on the removed dataset, the interpolation capabilities of the neural networks may correctly
169
+ predict even that we want to erase. This does not lead to complete unlearning in practical applica-
170
+ tions. Therefore, we define the goal of unlearning as to make the already trained model completely
171
+ misclassifies the set of instances that should be forgotten (denote as misclassify).
172
+ Also, the existing methods have different access level to the unlearning data Df and the rest Dr. The
173
+ existing solutions for instance-wise unlearning require access to the entire dataset (i.e., Dr ∪ Df).
174
+ These methods which rely on the availability of the entire data are very far from real-world scenarios.
175
+ On the other hand, our proposed methods only need to the unlearning dataset (i.e., Df).
176
+ Adversarial examples.
177
+ Since the vulnerability of neural networks has been revealed (Szegedy
178
+ et al., 2013), various methods have been proposed to generate adversarial examples that can de-
179
+ ceive neural networks (Goodfellow et al., 2014; Kurakin et al., 2016; Madry et al., 2017; Carlini &
180
+ Wagner, 2017). In the case of white-box attack, an adversarial example can be generated by adding
181
+ a hardly visible perturbation on a given image based on the gradient information from the model,
182
+ making the model classify the image to a wrong class. The injected noise of the example is hard
183
+ to distinguish visually but it causes a serious misclassification of the model. Recently, (Ilyas et al.,
184
+ 2019) experimentally demonstrates that those noise is not meaningless but it rather contains (attack)
185
+ target label’s features for the model.
186
+ Weight importance.
187
+ Weight importance is a measure of how important each weight is when the
188
+ model predicts an output for a given input data, and it has been used for different purposes, such
189
+ as weight pruning (Molchanov et al., 2019; Liu et al., 2017; Wen et al., 2016; Alvarez & Salz-
190
+ mann, 2016; Li et al., 2016) and regularization-based continual learning (Kirkpatrick et al., 2017;
191
+ Aljundi et al., 2018; Chaudhry et al., 2018; Jung et al., 2020; Aljundi et al., 2019). Among them,
192
+ regularization-based continual learning has actively proposed various methods for measuring the
193
+ weight importance. For overcoming catastrophic forgetting of previous tasks, the weight importance
194
+ is utilized as the strength of the L2 regularization between a current model’s weight and the model’s
195
+ weight trained up to the previous task. Most methods estimate the weight-level importance based on
196
+ a gradient of a given input data (Kirkpatrick et al., 2017; Aljundi et al., 2018).
197
+ 3
198
+ METHOD
199
+ 3.1
200
+ PRELIMINARIES AND NOTATIONS
201
+ Dataset and pre-trained model.
202
+ Let Dtrain be the entire training dataset used to pre-train a clas-
203
+ sification model gθ : X → Y. We denote Df ⊂ Dtrain as the unlearning dataset that we want to
204
+ intentionally forget from the pre-trained model and Dr as the remaining dataset on which we wish
205
+ to maintain predictive accuracy (Dr := Dtrain \ Df). We denote a pair of an input image x ∈ X
206
+ and its ground-truth label y ∈ Y from Dtrain as (x, y) ∼ Dtrain, similarly (xf, yf) ∼ Df and
207
+ (xr, yr) ∼ Dr. Also, Dtest denotes the test dataset used for evaluation. Note that our approaches
208
+ assumes access to only the pre-trained model gθ and the unlearning dataset Df during unlearning.
209
+ Adversarial examples.
210
+ The goal of an adversarial attack on an input (x, y) is to generate an
211
+ adversarial example x′ that is similar to x, but leads to misclassification (gθ(x′) ̸= y) when fed
212
+ to the pre-trained model gθ. In the case of targeted adversarial attack, it makes the model predict a
213
+ specific class different from the true class (gθ(x′) = ¯y). The typical optimization form of generating
214
+ adversarial examples in targeted attack is denoted as
215
+ x′ =
216
+ arg min
217
+ z:∥z−x∥p≤ϵ
218
+ LCE(gθ(z), ¯y; θ)
219
+ (1)
220
+ where LCE stands for the cross-entropy loss. The ∥z − x∥p ≤ ϵ condition requires that the Lp-
221
+ norm is less than a perturbation budget ϵ. The optimization above is intractable in general, and
222
+ 3
223
+
224
+ Preprint. Under review.
225
+ Figure 1: Illustrations of our approaches that reduce forgetting on the remaining data. (Top) Aug-
226
+ menting adversarial examples from unlearning data provides support for preserving the overall de-
227
+ cision boundary. (Bottom) Weight importance measures allow us to pinpoint weights we should
228
+ change to induce misclassification while maintaining other weights to mitigate forgetting.
229
+ thus several papers have proposed approximations that can generate adversarial examples without
230
+ directly solving it (Goodfellow et al., 2014; Kurakin et al., 2016; Carlini & Wagner, 2017; Madry
231
+ et al., 2017). In this paper, we make use of L2-PGD targeted attacks Madry et al. (2017) for all
232
+ experiments.
233
+ Measuring weight importance with MAS.
234
+ To measure weight importance Ω, we consider
235
+ MAS (Aljundi et al., 2018), an algorithm that estimates weight importance by finding parameters
236
+ that brings a significant change in the output when perturbed slightly. It estimates the weight impor-
237
+ tance via a sum of gradients on the L2 norm of the outputs:
238
+ Ωi = 1
239
+ N
240
+ N
241
+
242
+ n=1
243
+ ����
244
+ ∂∥gθ(x(n); θ)∥2
245
+ 2
246
+ ∂θi
247
+ ����
248
+ (2)
249
+ where i stands for the index of network parameter weights and x(n) denotes n-th input image from
250
+ a total of N numbers of images. Note that each Ωi can be interpreted as a measure of influence or
251
+ importance of θi in producing the output of given N input images.
252
+ 3.2
253
+ INSTANCE-WISE UNLEARNING FOR PRE-TRAINED CLASSIFIERS
254
+ Definition of instance-wise unlearning.
255
+ Let ˆgθ denote the model after unlearning. We consider
256
+ two types of goals for instance-wise unlearning: (i) misclassifying all data points in Df, (i.e.,
257
+ ˆgθ(xf) ̸= yf). (ii) relabeling (or correcting) the predictions of Df (i.e., ˆgθ(xf) = y∗
258
+ f) where
259
+ y∗
260
+ f ̸= yf is chosen individually for each input xf. Let LUL denote a loss function used for unlearn-
261
+ ing on a classification model. The above two goals can be realized with the following loss functions:
262
+ LMS
263
+ UL(Df; θ) = −LCE(gθ(xf), yf; θ)
264
+ (3)
265
+ LCor
266
+ UL (Df; θ) = LCE(gθ(xf), y∗
267
+ f; θ)
268
+ (4)
269
+ When unlearning solely based on the two loss functions above, the model is likely to suffer from
270
+ significant forgetting on Dr. Therefore, a crucial objective shared across both unlearning goals is to
271
+ overcome forgetting of previously learning knowledge, and maintain as much classification accuracy
272
+ as possible on Dr.
273
+ When both Df and Dr are available, we can easily obtain an oracle model that satisfies the objec-
274
+ tive by re-training the model with the following loss function: Loracle(Df, Dr; θ) = LUL(Df; θ) +
275
+ LCE(Dr; θ). However in real-settings, access to Dr may not be an option due to high cost in data
276
+ 4
277
+
278
+ Unlearning dataset D
279
+ Adversarial examples D
280
+ ★:(★,★)
281
+ Remaining dataset DrPreprint. Under review.
282
+ Algorithm 1 Generate adversarial examples
283
+ Input: Forgetting data Df, Model gθ
284
+ Output: Adversarial examples ¯Dr
285
+ 1: ¯Dr ← ∅
286
+ 2: for i in range Nf do
287
+ 3:
288
+ (x(i), y(i)) ∼ Df
289
+ 4:
290
+ Randomly sample ¯y(i) ̸= y(i)
291
+ 5:
292
+ for j in range Nadv do
293
+ 6:
294
+ x′(j)
295
+ f
296
+ ← L2-PGD(x(i), ¯y(i)) (Eq. 1)
297
+ 7:
298
+ ¯Dr ← ¯Dr ∪ {(x′(j)
299
+ f
300
+ , ¯y(j))}
301
+ 8:
302
+ end for
303
+ 9: end for
304
+ 10: return ¯Dr
305
+ Algorithm 2 Measure weight importance
306
+ Input: Forgetting data Df, Model gθ
307
+ Output: Weight importance ¯Ω
308
+ 1: ¯Ω ← {0}
309
+ 2: Ω ← weight importances(Df, gθ) (Eq. 2)
310
+ 3: for l in range L do
311
+ 4:
312
+ Get importance of l-th layer Ωl ← Ω
313
+ 5:
314
+ Normalize Ωl ←
315
+ Ωl − Min(Ωl)
316
+ Max(Ωl) − Min(Ωl)
317
+ 6:
318
+ Update ¯Ωl ← {1 − Ωl}
319
+ 7: end for
320
+ 8: return ¯Ω
321
+ storage. To tackle this limitation, we define regularization-based unlearning for which the goal is to
322
+ achieve the goal above without explicit use of Dr:
323
+ LRegUL(Df; θ) = LUL(Df; θ) + R(Df, gθ)
324
+ (5)
325
+ Here, R(·) is the regularization term used to overcome forgetting of knowledge on the remaining
326
+ data Dr. In the following subsections, we introduce two novel regularization methods designed to
327
+ overcome representation- and weight-level forgetting during the unlearning process.
328
+ Regularization using adversarial examples.
329
+ The motivation of using adversarial examples stems
330
+ from the work of Ilyas et al. (2019), which showed that perturbations added to x to generate an ad-
331
+ versarial example x′ contain class-specific features of the attack target label ¯y ̸= y. Based on this
332
+ finding, we utilize generated adversarial examples as part of regularization R(·) to preserve class-
333
+ specific knowledge previously learned by the model, overcoming forgetting during unlearning at the
334
+ representation-level. Let Df be a set of Nf images: {(x(i)
335
+ f , y(i)
336
+ f )}Nf
337
+ i=1. Prior to the unlearning pro-
338
+ cess, we generate adversarial examples x′
339
+ f using the targeted PGD attack with a randomly selected
340
+ attack target label ¯y ̸= yf. We generate Nadv adversarial examples per input xf. Then, we have
341
+ ¯Df = {(x′(k)
342
+ f
343
+ , ¯y(k)
344
+ f )}
345
+ ¯
346
+ Nf
347
+ k=1 where ¯Nf = Nf × Nadv. During unlearning, we add LCE( ¯Df; θ) as a
348
+ regularization term with adversarial examples:
349
+ LAdv
350
+ UL (Df; θ) = LUL(Df; θ) + RAdv(Df, gθ)
351
+ = LUL(Df; θ) + LCE( ¯Df; θ)
352
+ (6)
353
+ An intuitive illustration of this approach in the representation-level is shown in Figure 1. The gen-
354
+ erated adversarial examples ¯Df mimic the remaining dataset Dr, providing information of the pre-
355
+ trained decision boundary within the representation space. As a result, by adding LCE( ¯Df; θ) as a
356
+ regularizer to the unlearning process, the model can learn a new decision boundary that minimizes
357
+ LUL (in Eq. 3 and 4) while simultaneously attempting to keep the decision boundary of the original
358
+ model. The pseudocode for generating adversarial examples is in Algorithm 1.
359
+ Regularization with weight importance.
360
+ We also propose a regularization using weight impor-
361
+ tance to overcome forgetting at the weight-level. As depicted in Figure 1, our approach is to maintain
362
+ the weights that were less important for Df prediction as much as possible, while allowing changes
363
+ in weights that are considered important for correctly predicting Df. That is, it is to prevent the
364
+ weight-level forgetting by penalizing weights that were less important when predicting Df.
365
+ For this, we calculate the weight importance with MAS before unlearning given gθ and Df, and
366
+ normalize the measured importances Ωl within each l-th layer to lie within [0, 1]. Note that this
367
+ normalized importance Ωl assigns large values to weights important for Df. Therefore, we define
368
+ ¯Ωl = 1 − Ωl as the weight importance for the regularization used for unlearning, so that more
369
+ important weights are updated more. The objective including weight importance regularization in
370
+ 5
371
+
372
+ Preprint. Under review.
373
+ Table 2: Evaluation results before and after unlearning k instances from ResNet-50 pretrained on
374
+ respective image classification datasets. While using negative gradients only loses significant infor-
375
+ mation on Dr, our proposed methods ADV and ADV+IMP retain predictive performance on Dr as
376
+ well as Dtest, while completely forgetting instances in Df.
377
+ CIFAR-10
378
+ CIFAR-100
379
+ ImageNet-1K
380
+ k = 4
381
+ k = 16
382
+ k = 64
383
+ k = 128
384
+ k = 4
385
+ k = 16
386
+ k = 64
387
+ k = 128
388
+ k = 4
389
+ k = 16
390
+ k = 64
391
+ k = 128
392
+ Df (↓)
393
+ BEFORE
394
+ 100.0
395
+ 100.0
396
+ 99.38
397
+ 99.53
398
+ 100.0
399
+ 100.0
400
+ 100.0
401
+ 100.0
402
+ 91.66
403
+ 87.50
404
+ 84.90
405
+ 86.72
406
+ NEGGRAD
407
+ 0.0
408
+ 0.0
409
+ 0.0
410
+ 0.0
411
+ 0.0
412
+ 0.0
413
+ 0.0
414
+ 0.0
415
+ 0.0
416
+ 0.0
417
+ 0.0
418
+ 0.0
419
+ ADV
420
+ 0.0
421
+ 0.0
422
+ 0.0
423
+ 0.0
424
+ 0.0
425
+ 0.0
426
+ 0.0
427
+ 0.0
428
+ 0.0
429
+ 0.0
430
+ 0.0
431
+ 0.0
432
+ ADV+IMP
433
+ 0.0
434
+ 0.0
435
+ 0.0
436
+ 0.0
437
+ 0.0
438
+ 0.0
439
+ 0.0
440
+ 0.0
441
+ 0.0
442
+ 0.0
443
+ 0.0
444
+ 0.0
445
+ Dr (↑)
446
+ BEFORE
447
+ 99.60
448
+ 99.60
449
+ 99.60
450
+ 99.60
451
+ 99.98
452
+ 99.98
453
+ 99.98
454
+ 99.98
455
+ 87.42
456
+ 87.42
457
+ 87.42
458
+ 87.42
459
+ NEGGRAD
460
+ 38.44
461
+ 15.79
462
+ 9.22
463
+ 7.11
464
+ 99.71
465
+ 66.97
466
+ 26.20
467
+ 11.64
468
+ 83.34
469
+ 61.18
470
+ 40.50
471
+ 30.16
472
+ ADV
473
+ 79.40
474
+ 69.70
475
+ 66.97
476
+ 53.49
477
+ 83.90
478
+ 89.18
479
+ 81.07
480
+ 76.28
481
+ 74.13
482
+ 81.09
483
+ 76.02
484
+ 69.01
485
+ ADV+IMP
486
+ 82.95
487
+ 85.75
488
+ 72.77
489
+ 54.51
490
+ 83.89
491
+ 89.91
492
+ 89.48
493
+ 82.86
494
+ 74.16
495
+ 81.77
496
+ 79.36
497
+ 75.33
498
+ Dtest (↑)
499
+ BEFORE
500
+ 92.59
501
+ 92.59
502
+ 92.59
503
+ 92.59
504
+ 77.10
505
+ 77.10
506
+ 77.10
507
+ 77.10
508
+ 76.01
509
+ 76.01
510
+ 76.01
511
+ 76.01
512
+ NEGGRAD
513
+ 36.56
514
+ 15.87
515
+ 9.28
516
+ 7.11
517
+ 74.54
518
+ 48.07
519
+ 21.11
520
+ 10.19
521
+ 72.53
522
+ 53.30
523
+ 35.61
524
+ 26.73
525
+ ADV
526
+ 74.34
527
+ 65.14
528
+ 62.23
529
+ 49.47
530
+ 60.00
531
+ 63.17
532
+ 57.43
533
+ 53.89
534
+ 62.12
535
+ 70.42
536
+ 65.89
537
+ 59.73
538
+ ADV+IMP
539
+ 77.53
540
+ 79.65
541
+ 67.08
542
+ 50.82
543
+ 60.50
544
+ 63.69
545
+ 62.83
546
+ 58.44
547
+ 65.15
548
+ 70.97
549
+ 68.72
550
+ 65.09
551
+ addition to regularization via adversarial examples can be written as:
552
+ LAdv+Imp
553
+ UL
554
+ (Df; θ) = LAdv
555
+ UL (Df; θ) + RImp(Df, gθ)
556
+ = LAdv
557
+ UL (Df; θ) +
558
+
559
+ i
560
+ ¯Ωi(θi − ˜θi)2
561
+ (7)
562
+ where i is the index of each weight and ˜θ is the initial weight of the pre-trained classifier before
563
+ unlearning. The pseudocode of measuring weight importance is shown in Algorithm 2. Throughout
564
+ various experiments, we observe that applying the regularization using adversarial examples is al-
565
+ ready effective to overcome the forgetting for knowledge of Dr, and the additional regularization
566
+ with weight importance further enhances performance even further, especially in more harder sce-
567
+ narios such as continual unlearning. The pseudocode of the overall unlearning pipeline is shown in
568
+ the supplementary material.
569
+ 4
570
+ EXPERIMENTS
571
+ In this section, we evaluate our proposed instance-wise unlearning methods in various image clas-
572
+ sification benchmarks. We first describe our experimental setup, including datasets, baselines and
573
+ experimental details. We then show that our methods effectively preserves knowledge of remaining
574
+ data while unlearning instances that should be forgotten in both single-task and continual unlearning
575
+ scenarios. Lastly, we offer qualitative analyses on three parts: prediction patterns, decision boundary
576
+ and layer-wise representations in unlearning.
577
+ 4.1
578
+ SETUP
579
+ Datasets and baselines.
580
+ We evaluate our unlearning methods on three different image classifi-
581
+ cation datasets: CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and ImageNet-1K (Deng et al.,
582
+ 2009). Also, we use the ResNet-50 (He et al., 2016) as a base model. The experimental results of
583
+ various base models are available in the appendix. The compared methods are as follows: BEFORE,
584
+ the pre-trained model before unlearning; NEGGRAD (Golatkar et al., 2020), fine-tuning on Df using
585
+ negative gradients (i.e. LMS
586
+ UL); CORRECT, fine-tuning using LCor
587
+ UL ; ADV is our proposed method using
588
+ adversarial examples (i.e. LAdv
589
+ UL ); ADV+IMP, our unlearning method using both adversarial examples
590
+ and the weight importance regularization (i.e. LAdv+Imp
591
+ UL
592
+ ).
593
+ Experimental details.
594
+ For each dataset, we randomly pick k ∈ {4, 16, 64, 128} images from the
595
+ entire training dataset as the unlearning data Df and consider the remaining as Dr. For the unlearn-
596
+ ing, we use a SGD optimizer with a learning rate of 1e-3, weight decay of 1e-5, and momentum
597
+ of 0.9 across all experiments. We take early stopping when the model attains zero accuracy from
598
+ the unlearning data Df. For generating adversarial examples from Df, we use L2-PGD targeted
599
+ attack (Madry et al., 2017) with a learning rate of 1e-1, attack iterations of 100 and ϵ = 0.4. It gen-
600
+ erates 20 adversarial examples for CIFAR-10 and 200 examples for CIFAR-100 and ImageNet-1K.
601
+ For the weight importance regularization, we set regularization strength λ = 1 in Eq. 5.
602
+ 6
603
+
604
+ Preprint. Under review.
605
+ Table 3: Results analogous to Table 6, but with unlearning via relabeling each image in Df to an
606
+ arbitrarily chosen class. We see a similar trend where CORRECT loses significant information on
607
+ Dr, while our proposed methods retain predictive performance on Dr as well as Dtest.
608
+ CIFAR-10
609
+ CIFAR-100
610
+ ImageNet-1K
611
+ k = 4
612
+ k = 16
613
+ k = 64
614
+ k = 128
615
+ k = 4
616
+ k = 16
617
+ k = 64
618
+ k = 128
619
+ k = 4
620
+ k = 16
621
+ k = 64
622
+ k = 128
623
+ Df (↑)
624
+ BEFORE
625
+ 0.0
626
+ 0.0
627
+ 0.0
628
+ 0.0
629
+ 0.0
630
+ 0.0
631
+ 0.0
632
+ 0.0
633
+ 0.0
634
+ 0.0
635
+ 0.0
636
+ 0.0
637
+ CORRECT
638
+ 100.0
639
+ 100.0
640
+ 100.0
641
+ 100.0
642
+ 100.0
643
+ 100.0
644
+ 100.0
645
+ 99.84
646
+ 100.0
647
+ 100.0
648
+ 100.0
649
+ 100.0
650
+ ADV
651
+ 95.0
652
+ 100.0
653
+ 99.375
654
+ 98.28
655
+ 90.0
656
+ 100.0
657
+ 100.0
658
+ 98.28
659
+ 100.0
660
+ 100.0
661
+ 87.5
662
+ 71.32
663
+ ADV+IMP
664
+ 90.0
665
+ 100.0
666
+ 53.75
667
+ 50.16
668
+ 80.0
669
+ 86.25
670
+ 20.63
671
+ 15.16
672
+ 100.0
673
+ 100.0
674
+ 8.59
675
+ 4.30
676
+ Dr (↑)
677
+ BEFORE
678
+ 99.60
679
+ 99.60
680
+ 99.60
681
+ 99.60
682
+ 99.98
683
+ 99.98
684
+ 99.98
685
+ 99.98
686
+ 87.42
687
+ 87.42
688
+ 87.42
689
+ 87.42
690
+ CORRECT
691
+ 28.39
692
+ 11.75
693
+ 12.33
694
+ 9.71
695
+ 96.14
696
+ 74.84
697
+ 31.79
698
+ 18.64
699
+ 84.34
700
+ 82.94
701
+ 76.21
702
+ 68.03
703
+ ADV
704
+ 81.43
705
+ 85.53
706
+ 83.36
707
+ 81.06
708
+ 69.55
709
+ 92.94
710
+ 94.64
711
+ 96.32
712
+ 70.05
713
+ 83.09
714
+ 84.75
715
+ 84.54
716
+ ADV+IMP
717
+ 83.43
718
+ 91.15
719
+ 94.76
720
+ 90.57
721
+ 68.77
722
+ 90.73
723
+ 96.68
724
+ 96.44
725
+ 74.18
726
+ 83.34
727
+ 83.27
728
+ 80.15
729
+ Dtest (↑)
730
+ BEFORE
731
+ 92.59
732
+ 92.59
733
+ 92.59
734
+ 92.59
735
+ 77.10
736
+ 77.10
737
+ 77.10
738
+ 77.10
739
+ 76.01
740
+ 76.01
741
+ 76.01
742
+ 76.01
743
+ CORRECT
744
+ 27.62
745
+ 11.79
746
+ 12.16
747
+ 9.80
748
+ 69.82
749
+ 53.11
750
+ 24.37
751
+ 14.64
752
+ 73.26
753
+ 71.90
754
+ 65.68
755
+ 58.25
756
+ ADV
757
+ 76.35
758
+ 79.15
759
+ 76.95
760
+ 74.61
761
+ 51.23
762
+ 65.62
763
+ 66.79
764
+ 68.56
765
+ 64.81
766
+ 72.02
767
+ 73.41
768
+ 73.32
769
+ ADV+IMP
770
+ 78.08
771
+ 84.24
772
+ 86.92
773
+ 82.82
774
+ 50.60
775
+ 64.28
776
+ 69.15
777
+ 68.60
778
+ 64.94
779
+ 72.20
780
+ 71.82
781
+ 68.92
782
+ 4.2
783
+ MAIN RESULTS
784
+ Results on various datasets.
785
+ Table 6 shows evaluation results before and after unlearning k in-
786
+ stances from ResNet-50 models pre-trained on each of three different datasets. With respect to
787
+ accuracies on Df, we find that ResNet-50 can completely forget up to k = 128 instances with
788
+ consistently zero post-unlearning accuracies. On CIFAR-10, using negative gradients only results
789
+ in significant loss of accuracy on the remaining data (i.e. Dr and Dtest), performing worse than
790
+ random-choice when the number of forgetting instances is as large as 128. Meanwhile, adding regu-
791
+ larization with adversarial examples boosts the accuracy by more than 40% depending on the number
792
+ of instances to forget. Incorporating weight importances from MAS provides further improvement.
793
+ Results from CIFAR-100 and ImageNet-1K show a similar trend except when k = 4, where adding
794
+ our regularization approaches deteriorates performance. This well aligns with our intuition as the
795
+ model can easily misclassify a small number of examples by tweaking a small number of model
796
+ parameters, hence forgetting Df without losing much information on Dr and Dtest despite lack
797
+ of regularization. The benefit of using adversarial examples is also small when k is small as the
798
+ diversity amongst images in Dadv is limited by the number of instances to forget.
799
+ Table 7 shows results analogous to Table 6, but with the goal of relabeling data points in Df to
800
+ arbitrarily chosen labels rather than misclassifying. We find that a similar trend, where ADV attains
801
+ significantly less forgetting in Dr and Dtest compared to CORRECT, while succesfully relabeling all
802
+ points in most cases. While ADV+IMP show even less forgetting, it loses accuracy in relabeling Df,
803
+ showing that regularization via weight importance focuses too much on retaining previous knowl-
804
+ edge rather than adapting to corrections provided in Df. An intuitive explanation on why this occurs
805
+ particularly in relabeling is that while misclassifying can be done easily by driving the input to its
806
+ closest decision boundary, relabeling can be difficult if the new class is far from the original class in
807
+ the representation space. The difficulty rises even more when the size of Df is large, in which case
808
+ more parameters in the network are discouraged from being updated during unlearning.
809
+ Correcting natural adversarial examples.
810
+ Leveraging the ImageNet-A (Hendrycks et al., 2021)
811
+ dataset consisting of natural images that are misclassified with high-confidence by strong classifiers,
812
+ we test whether our method can make corrections on these adversarial examples, while preserving
813
+ knowledge from the original training data. For this experiment, we consider Df to consist k adver-
814
+ sarial images from ImageNet-A, and adjust a ResNet-50 model pre-trained on ImageNet-1K to cor-
815
+ rectly classify Df via our unlearning framework. Table 4 shows the results for k = {16, 32, 64, 128}.
816
+ We find that correcting predictions of a small number of images (e.g. k = 16), finetuning the model
817
+ na¨ıvely with cross-entropy only attains the best accuracy in both Dr and Dtest. When correcting
818
+ larger number of images, however, the absence of regularization terms results in larger forgetting in
819
+ Dr compared to ADV and ADV+IMP, with a performance gap that consistently increases with the
820
+ number of adversarial images. Another takeaway is that regularization via weight importance does
821
+ not help in this scenario, even showing a significant drop in Df accuracy when a large number of
822
+ adversarial images are introduced. This implies that using weight importances imposes too strong
823
+ a regularzation that correcting predictions for Df itself becomes non-trivial. We conjecture that the
824
+ aggregation of important parameters for predictions in Df cover a large proportion of the network
825
+ with large k, and that careful search for the Pareto optimal between accuracies on Df and on Dr is
826
+ required.
827
+ 7
828
+
829
+ Preprint. Under review.
830
+ Table 4: Correcting adversarial images from
831
+ ImageNet-A. ADV achieves the least forgetting,
832
+ while ADV+IMP fails to correct large number of
833
+ predictions due to strong regularization.
834
+ ImageNet-A
835
+ k = 16
836
+ k = 32
837
+ k = 64
838
+ k = 128
839
+ Df (↑)
840
+ BEFORE
841
+ 0.0
842
+ 0.0
843
+ 0.0
844
+ 0.0
845
+ CORRECT
846
+ 100.0
847
+ 100.0
848
+ 100.0
849
+ 100.0
850
+ ADV
851
+ 100.0
852
+ 100.0
853
+ 95.31
854
+ 83.44
855
+ ADV+IMP
856
+ 100.0
857
+ 100.0
858
+ 10.94
859
+ 9.38
860
+ Dr (↑)
861
+ BEFORE
862
+ 87.46
863
+ 87.46
864
+ 87.46
865
+ 87.46
866
+ CORRECT
867
+ 84.41
868
+ 83.29
869
+ 80.79
870
+ 77.38
871
+ ADV
872
+ 81.75
873
+ 83.80
874
+ 83.74
875
+ 83.44
876
+ ADV+IMP
877
+ 81.82
878
+ 83.73
879
+ 83.53
880
+ 82.86
881
+ Dtest (↑)
882
+ BEFORE
883
+ 76.15
884
+ 76.15
885
+ 76.15
886
+ 76.15
887
+ CORRECT
888
+ 73.21
889
+ 72.04
890
+ 69.91
891
+ 66.73
892
+ ADV
893
+ 70.89
894
+ 72.58
895
+ 72.68
896
+ 72.36
897
+ ADV+IMP
898
+ 70.98
899
+ 72.51
900
+ 72.39
901
+ 71.68
902
+ Table 5: Unlearning instances continually by in-
903
+ crements of kCL = 8 images per step. Our meth-
904
+ ods outperform NEGGRAD in the continual un-
905
+ learning scenario as well.
906
+ CIFAR-100 (kCL = 8)
907
+ k = 8
908
+ k = 16
909
+ k = 64
910
+ k = 128
911
+ Df (↓)
912
+ BEFORE
913
+ 100.0
914
+ 100.0
915
+ 100.0
916
+ 100.0
917
+ NEGGRAD
918
+ 0.0
919
+ 0.0
920
+ 0.0
921
+ 0.52
922
+ ADV
923
+ 0.0
924
+ 0.0
925
+ 1.04
926
+ 0.0
927
+ ADV+IMP
928
+ 0.0
929
+ 0.0
930
+ 0.0
931
+ 1.04
932
+ Dr (↑)
933
+ BEFORE
934
+ 99.98
935
+ 99.98
936
+ 99.98
937
+ 99.98
938
+ NEGGRAD
939
+ 80.58
940
+ 31.85
941
+ 6.60
942
+ 1.89
943
+ ADV
944
+ 80.33
945
+ 70.54
946
+ 59.67
947
+ 38.16
948
+ ADV+IMP
949
+ 81.46
950
+ 72.78
951
+ 62.30
952
+ 47.14
953
+ Dtest (↑)
954
+ BEFORE
955
+ 77.10
956
+ 77.10
957
+ 77.10
958
+ 77.10
959
+ NEGGRAD
960
+ 58.20
961
+ 24.48
962
+ 5.73
963
+ 1.22
964
+ ADV
965
+ 57.56
966
+ 50.43
967
+ 43.48
968
+ 30.10
969
+ ADV+IMP
970
+ 58.33
971
+ 51.97
972
+ 45.09
973
+ 36.17
974
+ Continual unlearning.
975
+ In real-world scenarios, it is likely that data removal requests come as
976
+ a stream, rather than all at once. Ultimately, despite continual unlearning requests, we need the
977
+ unlearning method that can delete the requested data while maintaining performance for the rest data.
978
+ Thus, we consider the setting of deleting k = {8, 16, 64, 128} data by repeating the procedure of
979
+ continually unlearning Df in small fragments of size kCL = 8. Table 5 shows the results of continual
980
+ unlearning in the model trained with ResNet-50 on CIFAR-100. We observe that NEGGRAD suffers
981
+ from large forgetting as the iteration of unlearning procedure increases. On the other hand, our
982
+ proposed method shows significantly less forgetting while effectively deleting for Df even after
983
+ multiple iterations of unlearning.
984
+ 4.3
985
+ QUALITATIVE ANALYSIS
986
+ Through further analysis, we gather insight on the following questions: Q1. Is there any particular
987
+ pattern in how the model unlearns a set of instances (i.e. does the model use any particular label as
988
+ a retainer for deleted data)? Q2. How does the model isolate out instances in Df from its previous
989
+ decision boundary? Q3. How do layer-wise representations of data points in Df and Dr change
990
+ before and after unlearning? For interpretable visualizations, we perform the following analysis on
991
+ a ResNet-18 model pre-trained on CIFAR-10.
992
+ (a) NEGGRAD
993
+ (b) ADV
994
+ (c) ADV+IMP
995
+ Figure 2: Confusion matrices showing average
996
+ pairwise frequencies of pre- (Y-axis) and post-
997
+ unlearning (X-axis) prediction labels from Df. A
998
+ hue closer to blue indicates higher frequency. Our
999
+ unlearning framework does not produce any dis-
1000
+ cernible correlation in misclassification.
1001
+ A1. Our method shows no pattern in mis-
1002
+ classification.
1003
+ We first check whether the un-
1004
+ learned model classifies all instances in Df to
1005
+ a particular set of labels. The model exhibit-
1006
+ ing no correlation between true labels and new
1007
+ misclassified labels is crucial with respect to
1008
+ data privacy, as it indicates that the unlearn-
1009
+ ing process avoids the so-called Streisand ef-
1010
+ fect where data instances being forgotten unin-
1011
+ tentionally becomes more noticeable (Golatkar
1012
+ et al., 2020). Figure 2 shows the confusion ma-
1013
+ trices of (pre-unlearning label, post-unlearning
1014
+ label) pairs from Df for k = 512. We find no
1015
+ distinguishable pattern when unlearning with our methods as well as NegGrad, which shows that no
1016
+ specific label is used as a retainer, which adds another layer of security against adversaries in search
1017
+ of unlearned data points.
1018
+ A2. Our method effectively preserves the decision boundary.
1019
+ We check whether the adversar-
1020
+ ial examples generated from forgetting data help in preserving the decision boundary in the feature
1021
+ space. Figure 3 shows t-SNE (Van der Maaten & Hinton, 2008) visualizations of final-layer acti-
1022
+ vations from examples in Dr and Df before and after unlearning. We find that unlearning through
1023
+ only negative gradient significantly distorts the previous decision boundary, leading to poor predic-
1024
+ 8
1025
+
1026
+ NegGrad
1027
+ 0.5
1028
+ 9
1029
+ 80
1030
+ 0.4
1031
+ 7
1032
+ 6
1033
+ labels
1034
+ 0.3
1035
+ 5
1036
+ 4
1037
+ 0.2
1038
+ m
1039
+ 2
1040
+ 0.1
1041
+ 1
1042
+ 0.0
1043
+ 0
1044
+ 2
1045
+ 7
1046
+ Predicted labelsOurs (Adv)
1047
+ 0.5
1048
+ 9
1049
+ 8
1050
+ 0.4
1051
+ 7
1052
+ 6
1053
+ labels
1054
+ 0.3
1055
+ 5
1056
+ 4
1057
+ 0.2
1058
+ m
1059
+ 2
1060
+ 0.1
1061
+ 1
1062
+ 1
1063
+ 0.0
1064
+ 0
1065
+ 2
1066
+ 7
1067
+ Predicted labelsOurs(Adv+Imp)
1068
+ 0.5
1069
+ 9
1070
+ 8
1071
+ 0.4
1072
+ 7
1073
+ 6
1074
+ labels
1075
+ 0.3
1076
+ 5
1077
+ 4
1078
+ 0.2
1079
+ m
1080
+ 2
1081
+ 0.1
1082
+ 1
1083
+ 1
1084
+ 1
1085
+ 0.0
1086
+ 0
1087
+ 2
1088
+ 3
1089
+ 4
1090
+ >
1091
+ 9
1092
+ Predicted labelsPreprint. Under review.
1093
+ (a) BEFORE
1094
+ (b) NEGGRAD
1095
+ (c) ADV
1096
+ (d) ADV+IMP
1097
+ Figure 3: t-SNE plots of CIFAR-10 datapoints in Df (triangles) and Dr (dots) before and after
1098
+ unlearning. Colors indicate true labels for all plots. Regularization with adversarial examples and
1099
+ weight importance effectively preserves the decision boundary while migrating instances in Df
1100
+ towards the class boundary to induce misclassification.
1101
+ tive performance across Dr. However, when we incorporate adversarial samples from instances in
1102
+ Df, the decision boundary is well-preserved with unlearned examples being inferred as boundary
1103
+ cases in-between multiple classes. Even for examples that lie far from the decision boundary be-
1104
+ fore unlearning, our method successfully relocates the corresponding representations towards the
1105
+ decision boundary, while keeping each class cluster intact.
1106
+ (a) NEGGRAD
1107
+ (b) ADV
1108
+ (c) ADV+IMP
1109
+ Figure 4: Layer-wise CKA correlations on Df
1110
+ (top row) and Dr (bottom row) between repre-
1111
+ sentations before (X-axis) and after (Y-axis) un-
1112
+ learning. Brighter color indicates higher CKA cor-
1113
+ relation. NEGGRAD results in large forgetting of
1114
+ high-level features in not only Df, but also Dr.
1115
+ Our approaches, on the other hand, selectively for-
1116
+ get high-level features only in Df.
1117
+ A3. Our method unlearns data by forgetting
1118
+ high-level features.
1119
+ Lastly, we compare the
1120
+ representations at each layer of the model be-
1121
+ fore and after unlearning to identify where the
1122
+ intended forgetting occurs. For this analysis, we
1123
+ leverage CKA (Kornblith et al., 2019) which
1124
+ measures correlations between representations
1125
+ given two distinct models. Figure 4 shows the
1126
+ CKA correlation heatmaps between the origi-
1127
+ nal ResNet-18 model pre-trained on CIFAR-10
1128
+ and the same model after unlearning. Results
1129
+ show that for examples in Df, representations
1130
+ are no longer aligned starting from the 10-th
1131
+ layer while the representations before that layer
1132
+ still resemble those from the original model.
1133
+ This indicates that the model forgets examples
1134
+ by forgetting high-level features, while simi-
1135
+ larly recognizing low-level features in images
1136
+ as the original model. This insight is consis-
1137
+ tent with previous observations in the contin-
1138
+ ual learning literature that more forgettable ex-
1139
+ amples exhibit peculiarities in high-level fea-
1140
+ tures (Toneva et al., 2018).
1141
+ 5
1142
+ CONCLUDING REMARKS
1143
+ We propose an instance-wise unlearning framework that deletes information from a pre-trained
1144
+ model given a set of data instances with mixed labels. Rather than undoing the influence of given
1145
+ instances during the pre-training, we aim for a stronger form of unlearning via intended misclas-
1146
+ sification. We develop two regularization techniques that reduce forgetting on the remaining data,
1147
+ one utilizing adversarial examples of deleting instances and another leveraging weight importances
1148
+ to focus updates to parameters responsible for propagating information we wish to forget. Both ap-
1149
+ proaches are agnostic to the choice of architecture, and requires access only to the pre-trained model
1150
+ and instances requested for deletion. Experiments on various image classification datasets showed
1151
+ that our methods effectively mitigates forgetting on remaining data, while completely misclassify-
1152
+ ing deletion data. Further qualitative analyses show that our unlearning framework does not show
1153
+ any pattern in misclassification (i.e. the Streisand effect), preserves the decision boundary with the
1154
+ help of adversarial examples, and unlearns by forgetting high-level features of deleting data. These
1155
+ 9
1156
+
1157
+ Residual Data (D_r)
1158
+ 1.0
1159
+ 16
1160
+ 14
1161
+ 0.8
1162
+ Case 3: -CE(D_f) + CE(adv) + Reg(importance)
1163
+ 12
1164
+ 0.6
1165
+ 10
1166
+ 0.4
1167
+ 4 -
1168
+ 0.2
1169
+ 2
1170
+ Fo
1171
+ 0.0
1172
+ 0
1173
+ 2
1174
+ 4
1175
+ 6
1176
+ 8
1177
+ 10
1178
+ 12
1179
+ 14
1180
+ 16
1181
+ Before UnlearningForgettingData(D_f)
1182
+ 1.0
1183
+ 16
1184
+ 14 -
1185
+ F0.8
1186
+ 12
1187
+ 0.6
1188
+ 10
1189
+ Case 1: - CE(D_f)
1190
+ 8
1191
+ 0.4
1192
+ 6
1193
+ 4 -
1194
+ 0.2
1195
+ 2
1196
+ 0
1197
+ 0.0
1198
+ 2
1199
+ 4
1200
+ 6
1201
+ 8
1202
+ 10
1203
+ 12
1204
+ 14
1205
+ 16
1206
+ Before UnlearningForgettingData(D_f)
1207
+ 1.0
1208
+ 16
1209
+ 14
1210
+ 0.8
1211
+ 12
1212
+ Case 2: -CE(D_f) + CE(adv)
1213
+ 0.6
1214
+ 10
1215
+ 8
1216
+ 0.4
1217
+ 6
1218
+ 4 -
1219
+ 0.2
1220
+ 2
1221
+ 0
1222
+ 0.0
1223
+ 2
1224
+ 4
1225
+ 6
1226
+ 8
1227
+ 10
1228
+ 12
1229
+ 14
1230
+ 16
1231
+ Before UnlearningForgettingData(D_f)
1232
+ 1.0
1233
+ 16
1234
+ 14
1235
+ 0.8
1236
+ Case 3: -CE(D_f) + CE(adv) + Reg(importance)
1237
+ 12
1238
+ 0.6
1239
+ 10
1240
+ 8
1241
+ 0.4
1242
+ 6
1243
+ 4
1244
+ 0.2
1245
+ 2
1246
+ 0.0
1247
+ 2
1248
+ 4
1249
+ 6
1250
+ 8
1251
+ 10
1252
+ 12
1253
+ 14
1254
+ 16
1255
+ Before UnlearningResidual Data (D_r)
1256
+ 1.0
1257
+ 16
1258
+ 14
1259
+ 0.8
1260
+ 12
1261
+ 0.6
1262
+ Case 1: - CE(D_f)
1263
+ 10
1264
+ 0.4
1265
+ 9
1266
+ 4 -
1267
+ 0.2
1268
+ 2
1269
+ 0
1270
+ 0.0
1271
+ 0
1272
+ 2
1273
+ 4
1274
+ 6
1275
+ 8
1276
+ 10
1277
+ 12
1278
+ 14
1279
+ 16
1280
+ Before UnlearningResidual Data (D_r)
1281
+ 1.0
1282
+ 16
1283
+ 14
1284
+ 0.8
1285
+ 12
1286
+ Case 2: -CE(D_f) + CE(adv)
1287
+ 0.6
1288
+ 10
1289
+ 8
1290
+ 0.4
1291
+ 6
1292
+ 4 -
1293
+ 0.2
1294
+ 2
1295
+ 0.0
1296
+ 0
1297
+ 2
1298
+ 4
1299
+ 6
1300
+ 8
1301
+ 10
1302
+ 12
1303
+ 14
1304
+ 16
1305
+ Before UnlearningPreprint. Under review.
1306
+ observations shed light towards future work evaluating the utility our approach as a defense mech-
1307
+ anism against membership inference attacks that predict whether a data point was included in the
1308
+ training set by using posterior confidence (Shokri et al., 2017; Salem et al., 2018; Yeom et al., 2018;
1309
+ Sablayrolles et al., 2019) or its distance to nearby decision boundaries (Choquette-Choo et al., 2021;
1310
+ Li & Zhang, 2021). Removing harmful information that lead to socially unfair and biased predic-
1311
+ tions based upon sensitive traits such as race, gender, and religion (Mehrabi et al., 2021) is another
1312
+ potential contribution from this work.
1313
+ REFERENCES
1314
+ Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
1315
+ Memory aware synapses: Learning what (not) to forget. In Proceedings of the European Confer-
1316
+ ence on Computer Vision (ECCV), pp. 139–154, 2018.
1317
+ Rahaf Aljundi, Marcus Rohrbach, and Tinne Tuytelaars. Selfless sequential learning. In Interna-
1318
+ tional Conference on Learning Representations (ICLR), 2019.
1319
+ Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons in deep networks. Ad-
1320
+ vances in neural information processing systems, 29, 2016.
1321
+ Jonathan Brophy and Daniel Lowd. Machine unlearning for random forests. In International Con-
1322
+ ference on Machine Learning, pp. 1092–1104. PMLR, 2021.
1323
+ Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
1324
+ IEEE Symposium on Security and Privacy, pp. 463–480. IEEE, 2015.
1325
+ Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
1326
+ ieee symposium on security and privacy (sp), pp. 39–57. IEEE, 2017.
1327
+ Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
1328
+ walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of the
1329
+ European Conference on Computer Vision (ECCV), pp. 532–547, 2018.
1330
+ Christopher A Choquette-Choo, Florian Tramer, Nicholas Carlini, and Nicolas Papernot. Label-only
1331
+ membership inference attacks. In International conference on machine learning, pp. 1964–1974.
1332
+ PMLR, 2021.
1333
+ Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Zero-shot machine
1334
+ unlearning. arXiv preprint arXiv:2201.05629, 2022.
1335
+ Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
1336
+ erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
1337
+ pp. 248–255. Ieee, 2009.
1338
+ Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
1339
+ Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
1340
+ An
1341
+ image is worth 16x16 words: Transformers for image recognition at scale.
1342
+ arXiv preprint
1343
+ arXiv:2010.11929, 2020.
1344
+ Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor Darrell, and Marcus Rohrbach. Adver-
1345
+ sarial continual learning. In European Conference on Computer Vision, pp. 386–402. Springer,
1346
+ 2020.
1347
+ Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data
1348
+ deletion in machine learning. Advances in neural information processing systems, 32, 2019.
1349
+ Aditya Golatkar, Alessandro Achille, and Stefano Soatto.
1350
+ Eternal sunshine of the spotless net:
1351
+ Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer
1352
+ Vision and Pattern Recognition, pp. 9304–9312, 2020.
1353
+ Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
1354
+ examples. arXiv preprint arXiv:1412.6572, 2014.
1355
+ 10
1356
+
1357
+ Preprint. Under review.
1358
+ Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In Proceedings of
1359
+ the AAAI Conference on Artificial Intelligence, volume 35, pp. 11516–11524, 2021.
1360
+ Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
1361
+ nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
1362
+ 770–778, 2016.
1363
+ Melissa
1364
+ Heikkil¨a.
1365
+ What
1366
+ does
1367
+ gpt-3
1368
+ ”know”
1369
+ about
1370
+ me?,
1371
+ Aug
1372
+ 2022.
1373
+ URL
1374
+ https://www.technologyreview.com/2022/08/31/1058800/
1375
+ what-does-gpt-3-know-about-me/.
1376
+ Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
1377
+ examples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
1378
+ nition, pp. 15262–15271, 2021.
1379
+ Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
1380
+ Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size.
1381
+ arXiv preprint arXiv:1602.07360, 2016.
1382
+ Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
1383
+ Madry. Adversarial examples are not bugs, they are features. Advances in neural information
1384
+ processing systems, 32, 2019.
1385
+ Sangwon Jung, Hongjoon Ahn, Sungmin Cha, and Taesup Moon. Continual learning with node-
1386
+ importance based adaptive group sparse regularization. In Advances in Neural Information Pro-
1387
+ cessing Systems (NeurIPS), volume 33, pp. 3647–3658. Curran Associates, Inc., 2020.
1388
+ Junyaup Kim and Simon S Woo.
1389
+ Efficient two-stage model retraining for machine unlearning.
1390
+ In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1391
+ 4361–4369, 2022.
1392
+ James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
1393
+ Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
1394
+ ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
1395
+ 114(13):3521–3526, 2017.
1396
+ Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
1397
+ network representations revisited. In International Conference on Machine Learning, pp. 3519–
1398
+ 3529. PMLR, 2019.
1399
+ Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
1400
+ 2009.
1401
+ Alexey Kurakin, Ian Goodfellow, Samy Bengio, et al. Adversarial examples in the physical world,
1402
+ 2016.
1403
+ Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee, Flavien Prost, Nithum Thain, Xuezhi Wang, and
1404
+ Ed Chi. Fairness without demographics through adversarially reweighted learning. Advances in
1405
+ neural information processing systems, 33:728–740, 2020.
1406
+ Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
1407
+ efficient convnets. arXiv preprint arXiv:1608.08710, 2016.
1408
+ Zheng Li and Yang Zhang. Membership leakage in label-only exposures. In Proceedings of the
1409
+ 2021 ACM SIGSAC Conference on Computer and Communications Security, pp. 880–895, 2021.
1410
+ Pierre Lison, Ildik´o Pil´an, David S´anchez, Montserrat Batet, and Lilja Øvrelid. Anonymisation
1411
+ models for text data: State of the art, challenges and future directions. In Proceedings of the 59th
1412
+ Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
1413
+ Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4188–4203, 2021.
1414
+ Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
1415
+ ing efficient convolutional networks through network slimming.
1416
+ In Proceedings of the IEEE
1417
+ international conference on computer vision, pp. 2736–2744, 2017.
1418
+ 11
1419
+
1420
+ Preprint. Under review.
1421
+ Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
1422
+ Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
1423
+ 2017.
1424
+ Ananth Mahadevan and Michael Mathioudakis. Certifiable machine unlearning for linear models.
1425
+ arXiv preprint arXiv:2106.15093, 2021.
1426
+ Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey
1427
+ on bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6):1–35, 2021.
1428
+ Ronak Mehta, Sourav Pal, Vikas Singh, and Sathya N Ravi. Deep unlearning via randomized condi-
1429
+ tionally independent hessians. In Proceedings of the IEEE/CVF Conference on Computer Vision
1430
+ and Pattern Recognition, pp. 10422–10431, 2022.
1431
+ Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Timothy Nguyen, Razvan Pascanu, Dilan
1432
+ Gorur, and Mehrdad Farajtabar.
1433
+ Architecture matters in continual learning.
1434
+ arXiv preprint
1435
+ arXiv:2202.00275, 2022.
1436
+ Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
1437
+ for neural network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision
1438
+ and Pattern Recognition, pp. 11264–11272, 2019.
1439
+ Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
1440
+ models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.
1441
+ Jeffrey Rosen. The right to be forgotten. Stan. L. Rev. Online, 64:88, 2011.
1442
+ Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, Yann Ollivier, and Herv´e J´egou. White-
1443
+ box vs black-box: Bayes optimal strategies for membership inference. In International Confer-
1444
+ ence on Machine Learning, pp. 5558–5567. PMLR, 2019.
1445
+ Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and Michael Backes.
1446
+ Ml-leaks: Model and data independent membership inference attacks and defenses on machine
1447
+ learning models. arXiv preprint arXiv:1806.01246, 2018.
1448
+ Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
1449
+ bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
1450
+ computer vision and pattern recognition, pp. 4510–4520, 2018.
1451
+ Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
1452
+ tacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP),
1453
+ pp. 3–18. IEEE, 2017.
1454
+ Vinith M. Suriyakumar and Ashia C. Wilson. Algorithms that approximate data removal: New
1455
+ results and limitations, 2022.
1456
+ Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
1457
+ and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.
1458
+ Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and Mohan Kankanhalli. Fast yet effective
1459
+ machine unlearning. arXiv preprint arXiv:2111.08947, 2021.
1460
+ Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
1461
+ and Geoffrey J Gordon. An empirical study of example forgetting during deep neural network
1462
+ learning. arXiv preprint arXiv:1812.05159, 2018.
1463
+ Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
1464
+ learning research, 9(11), 2008.
1465
+ Eduard Fosch Villaronga, Peter Kieseberg, and Tiffany Li. Humans forget, machines remember:
1466
+ Artificial intelligence and the right to be forgotten. Computer Law & Security Review, 34(2):
1467
+ 304–313, 2018.
1468
+ Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
1469
+ deep neural networks. Advances in neural information processing systems, 29, 2016.
1470
+ 12
1471
+
1472
+ Preprint. Under review.
1473
+ Jingwen Ye, Yifang Fu, Jie Song, Xingyi Yang, Songhua Liu, Xin Jin, Mingli Song, and Xinchao
1474
+ Wang. Learning with recoverable forgetting. arXiv preprint arXiv:2207.08224, 2022.
1475
+ Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learn-
1476
+ ing: Analyzing the connection to overfitting. In 2018 IEEE 31st computer security foundations
1477
+ symposium (CSF), pp. 268–282. IEEE, 2018.
1478
+ Youngsik Yoon, Jinhwan Nam, Hyojeong Yun, Dongwoo Kim, and Jungseul Ok. Few-shot unlearn-
1479
+ ing by model inversion. arXiv preprint arXiv:2205.15567, 2022.
1480
+ Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representations.
1481
+ In International conference on machine learning, pp. 325–333. PMLR, 2013.
1482
+ 13
1483
+
1484
+ Preprint. Under review.
1485
+ A
1486
+ APPENDIX
1487
+ A.1
1488
+ PSEUDO CODE OF OVERALL UNLEARNING PROCESS
1489
+ Algorithm 3 The pseudo code of overall unlearning process the case of using LMS
1490
+ UL.
1491
+ 1: UNLEARNACC = 100
1492
+ 2: MAXEP = 100
1493
+ 3: EP = 0
1494
+ 4: ¯Dr ← Generate adversarial examples with Algorithm 1
1495
+ 5: ¯Ω ← Measure weight importance with Algorithm 2
1496
+ 6: ˜θ ← θ
1497
+ 7: while UNLEARNACC ̸= 0 do
1498
+ 8:
1499
+ Minimize Eqn (6) and (7)
1500
+ 9:
1501
+ UNLEARNACC = GetAccuracy(Df, gθ)
1502
+ 10:
1503
+ if EP > MAXEP then
1504
+ 11:
1505
+ break
1506
+ 12:
1507
+ EP += 1
1508
+ 13:
1509
+ end if
1510
+ 14: end while
1511
+ 15: return ˆθ
1512
+ Algorithm 4 The pseudo code of overall unlearning process the case of using LCor
1513
+ UL .
1514
+ 1: UNLEARNACC = 0
1515
+ 2: MAXEP = 100
1516
+ 3: EP = 0
1517
+ 4: ¯Dr ← Generate adversarial examples with Algorithm 1
1518
+ 5: ¯Ω ← Measure weight importance with Algorithm 2
1519
+ 6: ˜θ ← θ
1520
+ 7: while UNLEARNACC ̸= 100 do
1521
+ 8:
1522
+ Minimize Eqn (6) and (7)
1523
+ 9:
1524
+ UNLEARNACC = GetAccuracy(Df, gθ)
1525
+ 10:
1526
+ if EP > MAXEP then
1527
+ 11:
1528
+ break
1529
+ 12:
1530
+ EP += 1
1531
+ 13:
1532
+ end if
1533
+ 14: end while
1534
+ 15: return ˆθ
1535
+ A.2
1536
+ ADDITIONAL RESULTS ON VARIOUS MODELS
1537
+ Results on various models.
1538
+ Figure 5 shows unlearning results on CIFAR-100, but with different
1539
+ model architectures. We find that our methods effectively preserve knowledge outside the forgetting
1540
+ data, resulting in up to 40% boost in accuracy. NegGrad again outperforms our methods when k = 4,
1541
+ but soon breaks down when unlearning more instances. Interestingly, SqueezeNet and MobileNetv2
1542
+ suffer from larger forgetting in Dr and Dtest than ResNet-50, possibly due to the width being nar-
1543
+ rower as previously investigated by Mirzadeh et al. (2022). ViT also suffers from large forgetting, an
1544
+ observation consistent with previous work which showed that ViT suffers more catastrophic forget-
1545
+ ting compared to other CNN-based methods in continual learning due to Transformer architectures
1546
+ requiring large amounts of data. We also evaluate the results of unlearning on ImageNet-1K with
1547
+ varying k in Figure 6. Our proposed methods prevent forgetting knowledge about the rest data Dr
1548
+ better than NegGrad in all cases where k is greater than 8. At the same time, the methods effectively
1549
+ delete information about Df.
1550
+ A.3
1551
+ SUPPLEMENTARY MATERIALS FOR REBUTTAL
1552
+ 14
1553
+
1554
+ Preprint. Under review.
1555
+ Table 6: Evaluation results before and after unlearning k instances from ResNet-50 pretrained on
1556
+ respective image classification datasets. While using negative gradients only loses significant infor-
1557
+ mation on Dr, our proposed methods ADV and ADV+IMP retain predictive performance on Dr as
1558
+ well as Dtest, while completely forgetting instances in Df.
1559
+ CIFAR-10
1560
+ CIFAR-100
1561
+ k = 4
1562
+ k = 16
1563
+ k = 64
1564
+ k = 128
1565
+ k = 4
1566
+ k = 16
1567
+ k = 64
1568
+ k = 128
1569
+ Df (↓)
1570
+ BEFORE
1571
+ 100.0
1572
+ 100.0
1573
+ 99.38
1574
+ 99.53
1575
+ 100.0
1576
+ 100.0
1577
+ 100.0
1578
+ 100.0
1579
+ ORACLE
1580
+ 0.0
1581
+ 0.0
1582
+ 0.0
1583
+ 0.0
1584
+ 0.0
1585
+ 0.0
1586
+ 0.0
1587
+ 0.0
1588
+ NEGGRAD
1589
+ 0.0
1590
+ 0.0
1591
+ 0.0
1592
+ 0.0
1593
+ 0.0
1594
+ 0.0
1595
+ 0.0
1596
+ 0.0
1597
+ ADV
1598
+ 0.0
1599
+ 0.0
1600
+ 0.0
1601
+ 0.0
1602
+ 0.0
1603
+ 0.0
1604
+ 0.0
1605
+ 0.0
1606
+ ADV+IMP
1607
+ 0.0
1608
+ 0.0
1609
+ 0.0
1610
+ 0.0
1611
+ 0.0
1612
+ 0.0
1613
+ 0.0
1614
+ 0.0
1615
+ Dr (↑)
1616
+ BEFORE
1617
+ 99.60
1618
+ 99.60
1619
+ 99.60
1620
+ 99.60
1621
+ 99.98
1622
+ 99.98
1623
+ 99.98
1624
+ 99.9
1625
+ ORACLE
1626
+ 93.43
1627
+ 98.74
1628
+ 99.72
1629
+ 98.97
1630
+ 99.68
1631
+ 99.96
1632
+ 96.17
1633
+ 96.74
1634
+ NEGGRAD
1635
+ 38.44
1636
+ 15.79
1637
+ 9.22
1638
+ 7.11
1639
+ 99.71
1640
+ 66.97
1641
+ 26.20
1642
+ 11.64
1643
+ ADV
1644
+ 79.40
1645
+ 69.70
1646
+ 66.97
1647
+ 53.49
1648
+ 83.90
1649
+ 89.18
1650
+ 81.07
1651
+ 76.28
1652
+ ADV+IMP
1653
+ 82.95
1654
+ 85.75
1655
+ 72.77
1656
+ 54.51
1657
+ 83.89
1658
+ 89.91
1659
+ 89.48
1660
+ 82.86
1661
+ Dtest (↑)
1662
+ BEFORE
1663
+ 92.59
1664
+ 92.59
1665
+ 92.59
1666
+ 92.59
1667
+ 77.10
1668
+ 77.10
1669
+ 77.10
1670
+ 77.10
1671
+ ORACLE
1672
+ 86.28
1673
+ 90.21
1674
+ 91.01
1675
+ 89.44
1676
+ 77.49
1677
+ 64.41
1678
+ 67.06
1679
+ 66.88
1680
+ NEGGRAD
1681
+ 36.56
1682
+ 15.87
1683
+ 9.28
1684
+ 7.11
1685
+ 74.54
1686
+ 48.07
1687
+ 21.11
1688
+ 10.19
1689
+ ADV
1690
+ 74.34
1691
+ 65.14
1692
+ 62.23
1693
+ 49.47
1694
+ 60.00
1695
+ 63.17
1696
+ 57.43
1697
+ 53.89
1698
+ ADV+IMP
1699
+ 77.53
1700
+ 79.65
1701
+ 67.08
1702
+ 50.82
1703
+ 60.50
1704
+ 63.69
1705
+ 62.83
1706
+ 58.44
1707
+ Table 7: Results analogous to Table 6, but with unlearning via relabeling each image in Df to an
1708
+ arbitrarily chosen class. We see a similar trend where CORRECT loses significant information on
1709
+ Dr, while our proposed methods retain predictive performance on Dr as well as Dtest.
1710
+ CIFAR-10
1711
+ CIFAR-100
1712
+ ImageNet-1K
1713
+ k = 4
1714
+ k = 16
1715
+ k = 64
1716
+ k = 128
1717
+ k = 4
1718
+ k = 16
1719
+ k = 64
1720
+ k = 128
1721
+ k = 4
1722
+ k = 16
1723
+ k = 64
1724
+ k = 128
1725
+ Df (↑)
1726
+ BEFORE
1727
+ 0.0
1728
+ 0.0
1729
+ 0.0
1730
+ 0.0
1731
+ 0.0
1732
+ 0.0
1733
+ 0.0
1734
+ 0.0
1735
+ 0.0
1736
+ 0.0
1737
+ 0.0
1738
+ 0.0
1739
+ ORACLE
1740
+ 100.0
1741
+ 100.0
1742
+ 100.0
1743
+ 100.0
1744
+ 100.0
1745
+ 100.0
1746
+ 100.0
1747
+ 100.0
1748
+ CORRECT
1749
+ 100.0
1750
+ 100.0
1751
+ 100.0
1752
+ 100.0
1753
+ 100.0
1754
+ 100.0
1755
+ 100.0
1756
+ 99.84
1757
+ 100.0
1758
+ 100.0
1759
+ 100.0
1760
+ 100.0
1761
+ ADV
1762
+ 95.0
1763
+ 100.0
1764
+ 99.375
1765
+ 98.28
1766
+ 90.0
1767
+ 100.0
1768
+ 100.0
1769
+ 98.28
1770
+ 100.0
1771
+ 100.0
1772
+ 87.5
1773
+ 71.32
1774
+ ADV+IMP
1775
+ 90.0
1776
+ 100.0
1777
+ 53.75
1778
+ 50.16
1779
+ 80.0
1780
+ 86.25
1781
+ 20.63
1782
+ 15.16
1783
+ 100.0
1784
+ 100.0
1785
+ 8.59
1786
+ 4.30
1787
+ Dr (↑)
1788
+ BEFORE
1789
+ 99.60
1790
+ 99.60
1791
+ 99.60
1792
+ 99.60
1793
+ 99.98
1794
+ 99.98
1795
+ 99.98
1796
+ 99.98
1797
+ 87.42
1798
+ 87.42
1799
+ 87.42
1800
+ 87.42
1801
+ ORACLE
1802
+ 94.90
1803
+ 99.73
1804
+ 99.94
1805
+ 99.90
1806
+ 97.94
1807
+ 99.90
1808
+ 99.97
1809
+ 99.79
1810
+ CORRECT
1811
+ 28.39
1812
+ 11.75
1813
+ 12.33
1814
+ 9.71
1815
+ 96.14
1816
+ 74.84
1817
+ 31.79
1818
+ 18.64
1819
+ 84.34
1820
+ 82.94
1821
+ 76.21
1822
+ 68.03
1823
+ ADV
1824
+ 81.43
1825
+ 85.53
1826
+ 83.36
1827
+ 81.06
1828
+ 69.55
1829
+ 92.94
1830
+ 94.64
1831
+ 96.32
1832
+ 70.05
1833
+ 83.09
1834
+ 84.75
1835
+ 84.54
1836
+ ADV+IMP
1837
+ 83.43
1838
+ 91.15
1839
+ 94.76
1840
+ 90.57
1841
+ 68.77
1842
+ 90.73
1843
+ 96.68
1844
+ 96.44
1845
+ 74.18
1846
+ 83.34
1847
+ 83.27
1848
+ 80.15
1849
+ Dtest (↑)
1850
+ BEFORE
1851
+ 92.59
1852
+ 92.59
1853
+ 92.59
1854
+ 92.59
1855
+ 77.10
1856
+ 77.10
1857
+ 77.10
1858
+ 77.10
1859
+ 76.01
1860
+ 76.01
1861
+ 76.01
1862
+ 76.01
1863
+ ORACLE
1864
+ 87.33
1865
+ 91.65
1866
+ 91.99
1867
+ 91.57
1868
+ 71.56
1869
+ 74.05
1870
+ 74.93
1871
+ 74.15
1872
+ CORRECT
1873
+ 27.62
1874
+ 11.79
1875
+ 12.16
1876
+ 9.80
1877
+ 69.82
1878
+ 53.11
1879
+ 24.37
1880
+ 14.64
1881
+ 73.26
1882
+ 71.90
1883
+ 65.68
1884
+ 58.25
1885
+ ADV
1886
+ 76.35
1887
+ 79.15
1888
+ 76.95
1889
+ 74.61
1890
+ 51.23
1891
+ 65.62
1892
+ 66.79
1893
+ 68.56
1894
+ 64.81
1895
+ 72.02
1896
+ 73.41
1897
+ 73.32
1898
+ ADV+IMP
1899
+ 78.08
1900
+ 84.24
1901
+ 86.92
1902
+ 82.82
1903
+ 50.60
1904
+ 64.28
1905
+ 69.15
1906
+ 68.60
1907
+ 64.94
1908
+ 72.20
1909
+ 71.82
1910
+ 68.92
1911
+ 15
1912
+
1913
+ Preprint. Under review.
1914
+ (a) MobileNetv2 (Sandler et al., 2018)
1915
+ (b) SqueezeNet (Iandola et al., 2016)
1916
+ (c) ViT (Dosovitskiy et al., 2020)
1917
+ Figure 5: Experimental results before and after unlearning varying k instances from various models
1918
+ on CIFAR-100.
1919
+ 16
1920
+
1921
+ 100
1922
+ Original
1923
+ NegGrad
1924
+ Ours (Adv)
1925
+ 80
1926
+ Ours (Adv+Imp)
1927
+ Acc.
1928
+ 60
1929
+ 40
1930
+ 20
1931
+ 0
1932
+ 1
1933
+ 2
1934
+ 4
1935
+ 8
1936
+ 16
1937
+ 32
1938
+ 64
1939
+ 128
1940
+ 256
1941
+ Number of unlearning dataset (Df)100
1942
+ Original
1943
+ NegGrad
1944
+ Ours (Adv)
1945
+ 80
1946
+ Ours (Adv+Imp)
1947
+ Acc.
1948
+ 60
1949
+ 40
1950
+ 20
1951
+ 0
1952
+ 1
1953
+ 2
1954
+ 4
1955
+ 8
1956
+ 16
1957
+ 32
1958
+ 64
1959
+ 128
1960
+ 256
1961
+ Number of unlearning dataset (Df)100
1962
+ 80
1963
+ Acc.
1964
+ Original
1965
+ 60
1966
+ NegGrad
1967
+ Ours (Adv)
1968
+ 40
1969
+ Ours (Adv+Imp)
1970
+ 20
1971
+ 0
1972
+ 1
1973
+ 2
1974
+ 4
1975
+ 8
1976
+ 16
1977
+ 32
1978
+ 64
1979
+ 128
1980
+ 256
1981
+ Number of unlearnina dataset (Df)100
1982
+ 80
1983
+ Dr Acc.
1984
+ 60
1985
+ 40
1986
+ Original
1987
+ 20
1988
+ NegGrad
1989
+ Ours (Adv)
1990
+ Ours (Adv+Imp)
1991
+ 0
1992
+ 1
1993
+ 2
1994
+ 4
1995
+ 8
1996
+ 16
1997
+ 32
1998
+ 64
1999
+ 128
2000
+ 256
2001
+ Number of unlearning dataset (Df)100
2002
+ 80
2003
+ Df Acc.
2004
+ 60
2005
+ .★-Original
2006
+ -. NegGrad
2007
+ Ours (Adv)
2008
+ 40
2009
+ Ours (Adv+Imp)
2010
+ 20
2011
+ 0
2012
+ 1
2013
+ 2
2014
+ 4
2015
+ 8
2016
+ 16
2017
+ 32
2018
+ 64
2019
+ 128
2020
+ 256
2021
+ Number of unlearning dataset (Df)100
2022
+ 80
2023
+ Dr Acc.
2024
+ 60
2025
+ 40
2026
+ Original
2027
+ 20
2028
+ NegGrad
2029
+ Ours (Adv)
2030
+ Ours (Adv+Imp)
2031
+ 0
2032
+ 1
2033
+ 2
2034
+ 4
2035
+ 8
2036
+ 16
2037
+ 32
2038
+ 64
2039
+ 128
2040
+ 256
2041
+ Number of unlearning dataset (Df)100
2042
+ 80
2043
+ Df Acc.
2044
+ 60
2045
+ ★:Original
2046
+ NegGrad
2047
+ Ours (Adv)
2048
+ 40
2049
+ Ours (Adv+Imp)
2050
+ 20
2051
+ 0
2052
+ 1
2053
+ 2
2054
+ 4
2055
+ 8
2056
+ 16
2057
+ 32
2058
+ 64
2059
+ 128
2060
+ 256
2061
+ Number of unlearning dataset (Df)100
2062
+ 80
2063
+ Dr Acc.
2064
+ Original
2065
+ 60
2066
+ NegGrad
2067
+ Ours (Adv)
2068
+ 40
2069
+ Ours (Adv+Imp)
2070
+ 20
2071
+ 0
2072
+ 1
2073
+ 2
2074
+ 4
2075
+ 8
2076
+ 16
2077
+ 32
2078
+ 64
2079
+ 128
2080
+ 256
2081
+ Number of unlearning dataset (Df)100
2082
+ 80
2083
+ Dr Acc.
2084
+ Original
2085
+ 60
2086
+ NegGrad
2087
+ Ours (Adv)
2088
+ 40
2089
+ Ours (Adv+Imp)
2090
+ 20
2091
+ 0
2092
+ 1
2093
+ 2
2094
+ 4
2095
+ 8
2096
+ 16
2097
+ 32
2098
+ 64
2099
+ 128
2100
+ 256
2101
+ Number of unlearning dataset (Df)Preprint. Under review.
2102
+ (a) MobileNet v2
2103
+ (b) ResNet34
2104
+ (c) DenseNet121
2105
+ Figure 6: Experimental results before and after unlearning varying k instances from various models
2106
+ on ImageNet-1K.
2107
+ (a) Analysis for entropy-accuracy
2108
+ (b) Analysis for a forgotten label
2109
+ Figure 7: Experimental analysis with CIFAR-10 dataset using ResNet-18. We randomly select single
2110
+ image (k = 1) for unlearning and unlearn it with NegGrad. All experiments are conducted with 100
2111
+ seeds. Each class number denotes a specific label, such as {airplane : 0, automobile : 1, bird : 2, cat
2112
+ : 3, deer : 4, dog : 5, frog : 6, horse : 7, ship : 8, truck : 9}.
2113
+ 17
2114
+
2115
+ 100
2116
+ Original
2117
+ NegGrad
2118
+ Ours (Adv)
2119
+ 80
2120
+ Ours (Adv+Imp)
2121
+ Acc.
2122
+ 60
2123
+ 40
2124
+ 20
2125
+ 0
2126
+ 1
2127
+ 2
2128
+ 4
2129
+ 8
2130
+ 16
2131
+ 32
2132
+ 64
2133
+ 128
2134
+ 256
2135
+ Number of unlearning dataset (Df)100
2136
+ 80
2137
+ Acc.
2138
+ 60
2139
+ 40
2140
+ Original
2141
+ 20
2142
+ NegGrad
2143
+ Ours (Adv)
2144
+ Ours (Adv+Imp)
2145
+ 0
2146
+ 1
2147
+ 2
2148
+ 4
2149
+ 8
2150
+ 16
2151
+ 32
2152
+ 64
2153
+ 128
2154
+ 256
2155
+ Number of unlearning dataset (Df)100
2156
+ 80
2157
+ Acc.
2158
+ 60
2159
+ 40
2160
+ Original
2161
+ 20
2162
+ NegGrad
2163
+ Ours (Adv)
2164
+ Ours (Adv+Imp)
2165
+ 0
2166
+ 1
2167
+ 2
2168
+ 4
2169
+ 8
2170
+ 16
2171
+ 32
2172
+ 64
2173
+ 128
2174
+ 256
2175
+ Number of unlearning dataset (Df)100
2176
+ 80
2177
+ r Acc.
2178
+ 60
2179
+ D
2180
+ 40
2181
+ Original
2182
+ 20
2183
+ NegGrad
2184
+ Ours (Adv)
2185
+ Ours (Adv+Imp)
2186
+ 0
2187
+ L
2188
+ 2
2189
+ 4
2190
+ 8
2191
+ 16
2192
+ 32
2193
+ 64
2194
+ 128
2195
+ 256
2196
+ Number of unlearning dataset (Df)100
2197
+ 80
2198
+ Df Acc.
2199
+ 60
2200
+ ★:Original
2201
+ NegGrad
2202
+ Ours (Adv)
2203
+ 40
2204
+ Ours (Adv+Imp)
2205
+ 20
2206
+ 0
2207
+ 1
2208
+ 2
2209
+ 4
2210
+ 8
2211
+ 16
2212
+ 32
2213
+ 64
2214
+ 128
2215
+ 256
2216
+ Number of unlearning dataset (Df)100
2217
+ 80
2218
+ r Acc.
2219
+ 60
2220
+ D
2221
+ 40
2222
+ Original
2223
+ 20
2224
+ NegGrad
2225
+ Ours (Adv)
2226
+ Ours (Adv+Imp)
2227
+ 0
2228
+ 1
2229
+ 2
2230
+ 4
2231
+ 8
2232
+ 16
2233
+ 32
2234
+ 64
2235
+ 128
2236
+ 256
2237
+ Number of unlearning dataset (Df)100
2238
+ 80
2239
+ Df Acc.
2240
+ 60
2241
+ ★:Original
2242
+ NegGrad
2243
+ Ours (Adv)
2244
+ 40
2245
+ Ours (Adv+Imp)
2246
+ 20
2247
+ 0
2248
+ 1
2249
+ 2
2250
+ 4
2251
+ 8
2252
+ 16
2253
+ 32
2254
+ 64
2255
+ 128
2256
+ 256
2257
+ Number of unlearning dataset (Df)100
2258
+ 80
2259
+ Dr Acc.
2260
+ 60
2261
+ 40
2262
+ Original
2263
+ 20
2264
+ NegGrad
2265
+ Ours (Adv)
2266
+ Ours (Adv+Imp)
2267
+ 0
2268
+ 1
2269
+ 2
2270
+ 4
2271
+ 8
2272
+ 16
2273
+ 32
2274
+ 64
2275
+ 128
2276
+ 256
2277
+ Number of unlearning dataset (Df)100
2278
+ 80
2279
+ Df Acc.
2280
+ 60
2281
+ Original
2282
+ NegGrad
2283
+ Ours (Adv)
2284
+ 40
2285
+ Ours (Adv+Imp)
2286
+ 20
2287
+ 0
2288
+ 1
2289
+ 2
2290
+ 4
2291
+ 8
2292
+ 16
2293
+ 32
2294
+ 64
2295
+ 128
2296
+ 256
2297
+ Number of unlearning dataset (Df)
49FJT4oBgHgl3EQfkSwi/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8NE1T4oBgHgl3EQfngRF/content/tmp_files/2301.03309v1.pdf.txt ADDED
@@ -0,0 +1,1059 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Mapping Charge-Transfer Excitations in
2
+ Bacteriochlorophyll Dimers from First Principles
3
+ Zohreh Hashemi1, Matthias Knodt1, Mario R. G. Marques1, Linn
4
+ Leppert1,2
5
+ 1)Institute of Physics, University of Bayreuth, Bayreuth 95440, Germany,
6
+ 2)MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The
7
+ Netherlands
8
+ E-mail: l.leppert@utwente.nl
9
+ Abstract.
10
+ Photoinduced charge-transfer excitations are key to understand the primary
11
+ processes of natural photosynthesis and for designing photovoltaic and photocatalytic devices.
12
+ In this paper, we use Bacteriochlorophyll dimers extracted from the light harvesting apparatus
13
+ and reaction center of a photosynthetic purple bacterium as model systems to study such
14
+ excitations using first-principles numerical simulation methods. We distinguish four different
15
+ regimes of intermolecular coupling, ranging from very weakly coupled to strongly coupled,
16
+ and identify the factors that determine the energy and character of charge-transfer excitations
17
+ in each case.
18
+ We also construct an artificial dimer to systematically study the effects of
19
+ intermolecular distance and orientation on charge-transfer excitations, as well as the impact of
20
+ molecular vibrations on these excitations. Our results provide design rules for tailoring charge-
21
+ transfer excitations in Bacteriochloropylls and related photoactive molecules, and highlight
22
+ the importance of including charge-transfer excitations in accurate models of the excited-state
23
+ structure and dynamics of Bacteriochlorophyll aggregates.
24
+ arXiv:2301.03309v1 [physics.chem-ph] 9 Jan 2023
25
+
26
+ 2
27
+ 1. Introduction
28
+ Photoinduced charge-transfer excitations are of central importance to the primary processes
29
+ of natural photosynthesis and for photovoltaic and photocatalytic applications [1, 2].
30
+ In
31
+ organic semiconductors, charge-transfer excitations are believed to be important intermediates
32
+ between excited states localized on donor molecules and charge-separated electron-hole states
33
+ on acceptor and donor units, respectively, even though the exact mechanism of charge-
34
+ separation is debated [3–12].
35
+ In photosynthesis, the efficient conversion of solar energy
36
+ into chemical energy is achieved by structurally complex aggregates of Bacteriochlorophylls
37
+ (BCL), Chlorophylls, and other pigment molecules embedded in transmembrane proteins
38
+ that modulate their structure and function. These pigment-protein complexes form light-
39
+ harvesting complexes and reaction centers that are responsible for photon absorption,
40
+ excitation-energy transfer, and charge-separation. Their main operating principles are well-
41
+ understood due to a wealth of crystallographic and spectroscopic studies complemented by
42
+ numerical modelling using semi-empirical and first-principles approaches [13–22].
43
+ Figure 1. Crystal structure of BCL aggregates in the reaction center (RC) and light-harvesting
44
+ II (LHII) complex of the purple bacteria Rhodobacter sphaeroides and Rhodoblastus
45
+ acidophilus, respectively. Dimers of BCLs are highlighted in color using (a) pink for the
46
+ special pair PA – PB, (b) orange for the A branch dimer PA – BA, (c) red for a dimer from
47
+ the B800 and blue for a dimer from the B850 ring of the LHII complex. Hydrogen atoms are
48
+ omitted for clarity.
49
+ In purple bacteria, charge separation occurs in reaction centers (RCs) comprising a
50
+ hexameric aggregate of four BCLs and two Bacteriopheophytins, tightly surrounded by
51
+ several protein chains [23–25]. The primary four BCL molecules of this reaction center are
52
+ shown in Figure 1a, highlighting the so-called special pair (SP), a strongly-coupled dimer of
53
+ BCLs called PA – PB in the following. Charge separation in the bacterial RC is initiated by a
54
+ series of energy- and charge-transfer excitations that involve the SP and proceed along the A
55
+ branch, the photoactive of the two pseudo-symmetric branches the RC consists of [19,26–28].
56
+ In Figure 1b, we have highlighted the A-branch dimer PA – BA that has been speculated to be
57
+ involved in the primary charge-separation step, although this assignment is debated in the
58
+ literature [29–32]. Excitation energy reaches the RC through a cascade of excitation-energy
59
+
60
+ c
61
+ B
62
+ B
63
+ A
64
+ B850
65
+ B
66
+ B
67
+ A
68
+ B8003
69
+ transfer processes that are initiated in the light harvesting II (LHII) complex, consisting of
70
+ two rings of BCL molecules dubbed B850 and B800, respectively, and shown in Figure 1c.
71
+ Neighboring BCLs in the B800 ring are only weakly coupled and excitation-energy transfer
72
+ is well-described by Förster dipole-dipole coupling [33]. In the B850 ring, neighboring BCL
73
+ molecules are closer and intermediate between the weakly coupled B800 and the strongly
74
+ coupled special pair BCLs.
75
+ The excited states that are believed to be responsible for excitation energy transfer
76
+ in and between the light-harvesting complexes and the RC, are commonly thought of as
77
+ Frenkel-like excitons that are spatially relatively localized on one or two BCL molecules [34].
78
+ Semi-empirical models based on Frenkel-excitons Hamiltonians have played an important
79
+ role in modelling the excitation-energy and charge-transfer dynamics in large photosynthetic
80
+ pigment-protein complexes [35–37]. However, for a reliable and predictive representation
81
+ of the electronic coupling between adjacent pigments, charge-transfer excitations need to
82
+ be included in these model Hamiltonians [36, 38–40], calling for accurate first-principles
83
+ calculations of such excitations.
84
+ For computationally efficient first-principles methods such as time-dependent density
85
+ functional theory (TDDFT), charge-transfer excitations were long considered a major
86
+ challenge due to their inherently nonlocal nature, i.e., the spatial separation of the occupied
87
+ and virtual orbitals contributing to these excitations [41].
88
+ TDDFT with optimally-tuned
89
+ range-separated hybrid functionals is a viable solution to this problem, and has been used
90
+ to predict excited states of molecular systems and solids with great success [42–48]. In
91
+ these exchange-correlation functionals, the presence of long-range exact exchange leads to
92
+ asymptotically correct potentials. Additionally, a parameter controlling the range-separation
93
+ of exact and semilocal exchange can be used to tune the energies of the highest occupied and
94
+ the lowest unoccupied orbitals to correspond to the negative of the ionization potentials and
95
+ the electron affinity, respectively, within the conceptual framework of generalized Kohn-Sham
96
+ [49]. Both conditions are crucial for accurately capturing charge-transfer excitations within
97
+ linear-response TDDFT [50] and have been extended to solvated molecular systems [46, 51]
98
+ and extended solids [48].
99
+ An alternative approach for calculating charge-transfer excitations of molecules and
100
+ solids is the GW+Bethe-Salpeter Equation (GW+BSE) approach [52,53]. While this method
101
+ was initially primarily applied to solids, recent years have witnessed a multitude of studies
102
+ that have demonstrated the accuracy and predictive power of the GW+BSE method for small
103
+ molecules [54–56] and larger molecular complexes [57–61].
104
+ In particular, we [62] and
105
+ others [61] benchmarked the accuracy of the GW+BSE approach against experiment and
106
+ wavefunction-based methods and found excellent agreement for the Qy and Qx excitations
107
+ of a range of BCL and Chlorophyll molecules.
108
+ We showed that both eigenvalue self-
109
+ consistent GW calculations and one-shot G0W0 calculations where the zeroth-order single-
110
+ particle Green’s function G0 and screened Coulomb interaction W0 were constructed from a
111
+ DFT eigensystem obtained with an optimally-tuned range-separated hybrid functional lead
112
+ to the best results. TDDFT with an optimally-tuned hybrid-functional performed slightly
113
+ worse and tended to overestimate the energy of the Qy excitations, in agreement with previous
114
+
115
+ 4
116
+ studies [57].
117
+ In this article, we report a systematic first-principles study of charge-transfer excitations
118
+ in BCL dimers - the smallest structural units in which excitations with intermolecular charge-
119
+ transfer character can be observed. These BCL dimers, extracted from the LHII complex and
120
+ RC of purple bacteria, constitute our model systems. Our goal is to elucidate the factors that
121
+ determine the energy and character of these excitations, in particular their mixing with the
122
+ coupled Qy and Qx excitations of the dimers. We treat these dimers as representative of four
123
+ different regimes of intermolecular coupling resulting in distinct charge-transfer properties:
124
+ 1. The B800 dimer is very weakly coupled with Qy and Qx excitations resembling those
125
+ of the monomeric units and high-energy charge-transfer excitations due to vanishing orbital
126
+ overlap. 2. The A-branch dimer is more strongly coupled and exhibits one charge-transfer
127
+ excitation corresponding to electron transfer from PA to BA. We use the notation P+
128
+ A B−
129
+ A to
130
+ indicate the direction of charge-transfer in the following.
131
+ This charge-transfer excitation
132
+ is ∼0.4 eV higher in energy than the coupled Qx excitations. 3. The B850 dimer is even
133
+ more strongly coupled. The lowest-energy charge-transfer excitation mixes with the coupled
134
+ Qx excitations and another charge-transfer state appears at higher energies. 4. Finally, the
135
+ special pair SP is the most strongly coupled case with three charge-transfer excitations mixing
136
+ with the coupled Qx excitations. Additionally, we construct an artificial BCL dimer and
137
+ systematically study the effects of intermolecular distance and orientation on charge-transfer
138
+ excitations. We also estimate the effect of molecular vibrations on charge-transfer excitations.
139
+ We do this by calculating the vibrational normal modes of a dimeric system and determining
140
+ the renormalization of excitation energies for structures distorted along normal modes. This
141
+ allows us to identify vibrational modes with pronounced effects on charge-transfer excitations.
142
+ Finally, we comment on differences and similarities between TDDFT with an optimally-tuned
143
+ range separated hybrid functional and the GW+BSE approach.
144
+ 2. Computational Methods
145
+ 2.1. First-Principles Methods and Computational Details
146
+ For all calculations reported in this article, we used TDDFT as implemented in TURBOMOLE
147
+ version 7.5 [63] and the GW+BSE approach as implemented in MOLGW version 3.0 [64].
148
+ Briefly, in the linear-response formulation of both methods the excitation energies Ωn can be
149
+ obtained by solving the matrix eigenvalue equation CZ = Ω2
150
+ nZ, where C is
151
+ Cijσ,klτ = (εiσ −εjσ)2δi jδ jlδστ +2�εiσ −εjσ
152
+ √εkτ −εlτKi jσ,klτ
153
+ (1)
154
+ and the indices i,k refer to occupied, j,l to virtual orbitals and σ,τ to spin-indices.
155
+ Differences between TDDFT and the GW+BSE approach enter Equation 1 in two distinct
156
+ ways: 1. Through the differences between virtual and occupied orbital energies εiσ − εjσ
157
+ which are obtained from a (generalized) Kohn-Sham calculation in TDDFT and from the GW
158
+ approach in GW+BSE. 2. Through the kernel matrix element Ki jσ,klτ, which depends on
159
+ the exchange-correlation kernel fxc,σ - the functional derivative of the exchange-correlation
160
+
161
+ 5
162
+ potential - in TDDFT, and on the screened Coulomb interaction W, typically evaluated in the
163
+ random phase approximation and at zero frequency, in the BSE approach [65–68].
164
+ Here we use the optimally-tuned range-separated hybrid functional ωPBE for our
165
+ TDDFT calculations.
166
+ We use a range-separation parameter ω=0.171 a−1
167
+ 0 , which we
168
+ determined previously for a single BCL a molecule [62].
169
+ The optimal-tuning procedure
170
+ follows the recipe by Stein et al. and ensures that the HOMO eigenvalue corresponds to
171
+ the ionization potential and the LUMO eigenvalue corresponds to the electron affinity of the
172
+ molecule [69]. We do not perform a new tuning procedure for the dimers for general reasons:
173
+ Using the same ω for each dimer allows us to compare the electronic and excited state
174
+ structure of these systems on the same footing. Furthermore, optimal tuning of conjugated
175
+ systems of increasing size leads to artificially low values of ω and, thus, a dominance
176
+ of semilocal exchange at long range, which deteriorates the description of charge-transfer
177
+ excitations [46,70].
178
+ For our GW+BSE calculations we use a "one-shot" G0W0 approach in which we
179
+ construct the zeroth-order single-particle Green’s function G0 and the screened Coulomb
180
+ interaction W0 from DFT eigenvalues and eigenfunctions calculated using the same ωPBE
181
+ as described above. This approach leads to excellent agreement with experimental excitation
182
+ energies and reference values from wavefunction-based methods for a range of BCL and
183
+ Chlorophyll molecules [62]. Range-separated hybrid functionals have been shown to lead
184
+ to accurate charge-transfer excitations for larger molecular complexes as well [57,71]. In all
185
+ calculations we used a def2-TZVP basis set, and the frozen core and resolution-of-the-identity
186
+ approximations (with the DeMon auxiliary basis set [72]). We did not apply the Tamm-
187
+ Dancoff approximation in any of the results reported in this paper. In our G0W0 calculations,
188
+ we used the optimized virtual subspace method by Bruneval with an aug-cc-pVDZ basis set
189
+ for the reduced virtual orbital subspace [73]. With these settings, our excitation energies
190
+ are converged to within 40 meV. Further details on our convergence tests can be found in
191
+ Section 2.2 and in the Supplemental Material (SM).
192
+ For evaluating the character of the excited states, we calculated their transition densities.
193
+ Since the transition density vanishes for charge-transfer states, we calculated the difference
194
+ density ∆ni = ni − n0 between the excited (ni) and the ground-state density (n0) for every
195
+ excitation i. The excited-state density ni is calculated as the diagonal part of the excited
196
+ state density matrix γii(r,r′) = N
197
+ � Ψi(r,r2,r3,...,rn)Ψi(r′,r2,r3,...,rn)dr2...drn, where N is
198
+ the number of electrons and Ψi is the generalized Kohn-Sham excited-state wavefunction, that
199
+ consists of a sum of Slater determinants of generalized Kohn-Sham orbitals with coefficients
200
+ obtained from TDDFT [74]. To quantify the magnitude of charge transfer we integrated over
201
+ subsystem difference densities. For this purpose, we subdivided the volume containing the
202
+ difference densities of the dimer into subsystem volumes, each containing one pigment. Our
203
+ aim is to assign each grid point of the difference-density grid to its closest pigment molecule.
204
+ For achieving this, we used the distances between grid points and each molecule’s atomic
205
+ coordinates (including hydrogen atoms), as previously done in Ref. [75].
206
+ Finally, to obtain a mode-resolved picture of the effect of thermally-activated vibrations
207
+ (Section 3.3), we relaxed a dimer structure using the B3LYP approximation for the exchange-
208
+
209
+ 6
210
+ correlation functional and def2-TZVP basis set, and evaluated its normal modes and
211
+ frequencies. Using the harmonic approximation, we can relate the amplitude of these normal
212
+ modes with the thermal energy of a molecule. Thus, we distorted the dimer structure along
213
+ its lowest-frequency normal modes at a temperature of 300 K. In this manner, we generated
214
+ 60 distortions of the dimer, that we then studied using TDDFT calculations using the ωPBE
215
+ functional. All these calculations were performed using the tools provided in the TURBOMOLE
216
+ package.
217
+ 2.2. Convergence of G0W0+BSE calculations
218
+ We carefully tested that our GW+BSE results are converged. Due to the large size of a
219
+ BCL dimer, featuring more than 300 electrons, the calculation of the GW self-energy which
220
+ requires summation over virtual states is computationally demanding. We therefore used the
221
+ optimized virtual subspace method implemented in the MOLGW code, in which a reduced
222
+ virtual orbital subspace represented by a comparably small basis set is used to evaluate the
223
+ GW self-energy [73].
224
+ Figure 2. Convergence of GW (a) HOMO-LUMO gap and (c) energy of the first excited
225
+ state of BCL a monomer as a function of the number of basis functions. Blue data points
226
+ correspond to calculations in which the same basis set is used for the occupied orbitals and the
227
+ virtual subspace. Red points correspond to calculations using the optimized virtual subspace
228
+ method. Lines are fits to these data points. Convergence of the HOMO-LUMO gap and energy
229
+ of the first excited state is shown in panel (b) and (d) for the B850 dimer, respectively. Here,
230
+ green corresponds to using the same basis set for the occupied orbitals and the virtual subspace
231
+ and pink to calculations using the optimized virtual subspace method.
232
+
233
+ (c)
234
+ +
235
+ SCF basis = GW basis
236
+ 1.65
237
+ SCF basis = GW basis
238
+ SCF basis = Def2-TZVP
239
+ SCF basis = Def2-TZVP
240
+ 4.20
241
+ 1.60
242
+ 4.15
243
+ .55
244
+ 4.10
245
+ 1.50
246
+ 4.05
247
+ Monomer
248
+ Monomer
249
+ 1.45
250
+ 4.00
251
+ 120014001600
252
+ 800
253
+ 1000 1200 1400 1600
254
+ 800
255
+ 1000
256
+ N
257
+ (d)
258
+ N
259
+ b
260
+ basis
261
+ basis
262
+ SCF basis = GW basis
263
+ .65
264
+ 4.00
265
+ SCF basis = GW basis
266
+ excitation (eV)
267
+ SCF basis = Def2-TZVP
268
+ SCF basis = Def2-TZVP
269
+ 3.95
270
+ 1.60
271
+ 3.90
272
+ 1.55
273
+ 3.85
274
+ 1.50
275
+ 3.80
276
+ >1.45
277
+ 3.75
278
+ 3.70
279
+ Dimer
280
+ 1.40
281
+ Dimer
282
+ 3.65
283
+ 1500
284
+ 2000
285
+ 2500
286
+ 3000
287
+ 3500
288
+ 1500
289
+ 2500
290
+ 3500
291
+ 2000
292
+ 3000
293
+ N
294
+ N
295
+ basis
296
+ basis7
297
+ We start by testing the convergence of the HOMO-LUMO gap, and the Qy and Qx
298
+ excitations of a BCL a monomer with respect to basis set size without the optimized virtual
299
+ subspace method (Table S1). In agreement with our previous results [62], we find that the
300
+ def2-TZVP basis set deviates by less than 10 meV from the considerably larger aug-cc-pVTZ
301
+ basis. We proceeded by calculating the convergence of the Qy and Qx excitations of the BCL
302
+ monomer as a function of the number of virtual orbitals Nvirt included in the evaluation of
303
+ the GW self-energy using the def2-TZVP basis (Figure S1). We find that for Nvirt = 500
304
+ both excitations are converged to within 80 meV from the limit of infinite Nvirt. Based on
305
+ these findings we continued by evaluating the effect of using a smaller basis set for the
306
+ virtual subspace [73].
307
+ The results for the HOMO-LUMO gap and the Qy excitation are
308
+ plotted in Figure 2a and c, and show that the optimized virtual subspace method leads to
309
+ an underestimation of the HOMO-LUMO gap and the Qy excitation energy as compared to
310
+ the conventional method in which the same basis set is used for all orbitals. We find that using
311
+ the aug-ccpVDZ basis for the optimized virtual subspace in conjunction with Nvirt = 500 leads
312
+ to a fortuitous error cancellation and results in a HOMO-LUMO gap and Qy and Qx excitation
313
+ energies that are within less than 50 meV of the results obtained with the conventional method
314
+ and Nvirt → ∞ (Figure S2).
315
+ For the dimer, we therefore chose Nvirt = 1000 and the same strategy for determining the
316
+ optimized virtual subspace. We find very similar results for the convergence of the HOMO-
317
+ LUMO gap and the first bright coupled Qy excitation shown in Figure 2b and d. All GW+BSE
318
+ results reported in this paper are therefore based on calculations using the def2-TZVP basis
319
+ set for the occupied orbitals and the aug-ccpVDZ basis for the optimized virtual subspace.
320
+ 2.3. Construction of the Model Systems
321
+ We constructed our model systems from the x-ray crystallographic structures of the purple
322
+ bacteria Rhodobacter sphaeroides (structure ID 1M3X in the Protein Data Base) [76] and
323
+ Rhodoblastus acidophilus (structure ID 1NKZ) [77].
324
+ In all structures, we replaced the
325
+ phytyl tail with hydrogen. Hydrogen atoms not resolved in the experimental crystal structure
326
+ were added using AVOGADRO and their positions were optimized while keeping the rest of
327
+ the structure fixed. These geometry optimizations were performed using TURBOMOLE and
328
+ the B3LYP exchange-correlation functional. The reaction center dimers PA – PB and PA –
329
+ BA (Figures 1a and b) were constructed using structure 1M3X while the B800 and B850
330
+ ring dimers (Figure 1c) were extracted from 1NKZ.
331
+ These molecules correspond to ID
332
+ numbers BCL307 and BCL309 for the B800, and BCL302 and BCL303 for the B850 ring.
333
+ We additionally constructed an artificial dimer consisting of two exactly equivalent BCL a
334
+ molecules (using molecule PA) that we initially oriented in the same way as the special pair
335
+ dimer PA – PB by aligning their transition dipole moments (as calculated with TDDFT) with
336
+ those of PA and PB, respectively. We are providing all relevant structure files necessary to
337
+ reproduce the results of this article in the SM.
338
+
339
+ 8
340
+ 3. Discussion and Results
341
+ 3.1. Charge-Transfer Excitations in RC and LHII Dimers
342
+ We start by comparing the excitation spectrum of the four dimeric systems shown in Figure 1a-
343
+ c using TDDFT and GW+BSE. The energies and oscillator strengths of the first 15 excitations
344
+ of each system can be found in Table S3 and S4.
345
+ The spectra are shown in Figure 3a
346
+ and b, respectively, and allow for several observations.
347
+ First, we find that TDDFT and
348
+ GW+BSE predict qualitatively very similar spectra. The most striking difference appears for
349
+ the B800 dimer, for which the coupled Qy excitations calculated with TDDFT are ∼0.3 eV
350
+ higher in energy than with GW+BSE while all other excitations are at similar energies. This
351
+ observation is consistent with our results for single BCL a molecules for which TDDFT with
352
+ optimally-tuned ωPBE consistently overestimates the Qy excitation energy by ∼0.3 eV [62]
353
+ and therefore leads to an underestimation of the Qy – Qx energy difference as compared
354
+ to experiment.
355
+ Interestingly, this overestimation as compared to GW+BSE, while still
356
+ present, is less pronounced for the other three dimers and seems to decrease with increasing
357
+ intermolecular coupling.
358
+ Figure 3. Excitation spectrum of B800, A-branch, B850, and SP dimers using (a) TDDFT
359
+ with ωPBE and (b) the G0W0@ωPBE+BSE approach. Arrows mark dark excitations without
360
+ (D) and with (CT) charge-transfer character. The shaded areas are calculated by folding the
361
+ excitation energies with Gaussian functions with a width of 0.08 eV as a guide to the eye.
362
+ Second, we find several dark excitations for all four systems, predicted at very similar
363
+ energies with TDDFT and the GW+BSE approach. We analyze the charge-transfer character
364
+
365
+ (b)
366
+ (a)
367
+ TD-OPBE
368
+ G.W.@oPBE/BSE
369
+ 0.8
370
+ 0.8
371
+ Str
372
+ B800
373
+ Str
374
+ B800
375
+ lator
376
+ Oscillator
377
+ 0.6
378
+ 0.6
379
+ Oscil
380
+ 0.4
381
+ 0.4
382
+ D.D
383
+ 2.3
384
+ 0
385
+ 0.2
386
+ 0.2
387
+ 0
388
+ 0
389
+ 0.8
390
+ 0.8
391
+ Str
392
+ Str
393
+ A-branch
394
+ A-branch
395
+ 0.6
396
+ lat
397
+ 0.4
398
+ 0.4
399
+ Osci
400
+ 0.2
401
+ 0.2
402
+ 0
403
+ 0.8
404
+ B850
405
+ B850
406
+ 0.6
407
+ Oscill
408
+ 0.4
409
+ CT
410
+ CT
411
+ 0.2
412
+ 0.2
413
+ 0
414
+ 0.8
415
+ Str
416
+ 0.8
417
+ SP
418
+ SP
419
+ S
420
+ ≥0.6
421
+ lato
422
+ OsC
423
+ 0.2
424
+ 0.2
425
+ 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
426
+ 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
427
+ Excitation energy (eV)
428
+ Excitation energy (eV)9
429
+ of these excitations by calculating their difference densities and integrating over subsystem
430
+ difference densities as described in Section 2.1. The energy and character of these dark
431
+ excitations considerably differs for our four dimers. For the B800 dimer, we find three dark
432
+ excitations, E5, E6, and E7, ∼0.7 eV above the coupled Qx excitations which are almost
433
+ degenerate. The difference densities (Figure S3 and Table 1) do not indicate any charge-
434
+ transfer character for these excitations - their charge distribution is primarily localized on
435
+ only one BCL in each excitation, and looks similar to those of the monomeric system. Charge-
436
+ transfer excitations can be found at around 3.0 eV, consistent with the large distance of 20 Å
437
+ between the B800 molecules, measured as the distance between their centers of masses.
438
+ dimer
439
+ molecule label
440
+ charge distribution
441
+ E3
442
+ E4
443
+ E5
444
+ E6
445
+ E7
446
+ B800
447
+ B307
448
+ 0
449
+ 0
450
+ 0
451
+ 0
452
+ 0
453
+ B309
454
+ 0
455
+ 0
456
+ 0
457
+ 0
458
+ 0
459
+ A-branch
460
+ PA
461
+ 0
462
+ 0
463
+ -0.97
464
+ 0
465
+ 0
466
+ BA
467
+ 0
468
+ 0
469
+ 0.97
470
+ 0
471
+ 0
472
+ B850
473
+ B302
474
+ 0
475
+ -0.78
476
+ -0.11
477
+ 0.91
478
+ 0
479
+ B303
480
+ 0
481
+ 0.78
482
+ 0.11
483
+ -0.91
484
+ 0
485
+ SP
486
+ PA
487
+ -0.69
488
+ 0
489
+ 0
490
+ 0.83
491
+ -0.76
492
+ PB
493
+ 0.69
494
+ 0
495
+ 0
496
+ -0.83
497
+ 0.76
498
+ Table 1. Difference density integrated over subsystem volumes. The first two excitations,
499
+ i.e., E1 and E2, are not included since their difference densities integrate to zero in all studied
500
+ systems.
501
+ The molecules PA and BA of the A-branch dimer are ∼13 Å apart, leading to stronger
502
+ intermolecular coupling and the appearance of a charge-transfer state in the energy range
503
+ considered here. Figure 3 shows that for this system the coupled Qy and Qx excitations
504
+ are split and the first dark excitation is ∼0.3 eV higher in energy than the second coupled
505
+ Qx excitation. Contrary to the B800 dimer, this dark excitation has clear charge-transfer
506
+ character (Table 1) and corresponds to P+
507
+ A B−
508
+ A . The character of the two following dark states
509
+ is unchanged as compared to B800 apart from a redshift.
510
+ In the B850 dimer with ∼ 11Å distance, the stronger intermolecular coupling leads to
511
+ a further redshift of the dark excitations. We find that a dark state mixes with the coupled
512
+ Qx excitations leading to charge-transfer character in E4 and E5. Another charge-transfer
513
+ excitation in which charge is moved in the other direction is found ∼0.3 eV higher in energy.
514
+ The excitation spectrum of the special pair dimer SP is yet different. Due to the strong
515
+ intermolecular coupling of the two molecules which are only 9 Å apart, three charge-transfer
516
+ excitations appear at relatively low energies.
517
+ The first one is lower in energy than the
518
+ first coupled Qx excitation and corresponds to P+
519
+ A P−
520
+ B , whereas the other two are above the
521
+ coupled Qx excitations and correspond to P−
522
+ A P+
523
+ B and P+
524
+ A P−
525
+ B , respectively. Note that due to
526
+
527
+ 10
528
+ the overestimation of the coupled Qy excitations by TDDFT, GW+BSE predicts the energy
529
+ gap between the coupled Qy excitations and CT1 to be twice as large as TDDFT. Nonetheless,
530
+ since the qualitative features of all four excitation spectra and the charge-transfer character
531
+ of all excitations is similar, we use TDDFT for all further calculations and report GW+BSE
532
+ results in the SM.
533
+ 3.2. Charge-Transfer Excitations in Artificial Dimer
534
+ The dimeric systems extracted from the RC and LHII crystal structures discussed in
535
+ Section 3.1, differ in their distance, relative orientation, and the structural details of the two
536
+ molecular subunits comprising the dimer. To disentangle these effects, we therefore proceeded
537
+ by performing TDDFT calculations for an artificial dimeric system constructed as discussed
538
+ in Section 2. The structural parameters that define the distance and relative orientations of
539
+ this dimer are shown in Figure 4. We measure the distance between the molecules r as the
540
+ distance between their centers of masses R1 and R2, i.e., r = |r| = |R1 − R2|. Their relative
541
+ orientation is defined by three angles α, β, and γ. The first angle, α, is a rotation around the
542
+ normal vector of the plane spanned by the Qy and Qx transition dipole moments of a single
543
+ molecule, i.e., it is approximately perpendicular to the porphyrin-ring plane. The second
544
+ rotation axis, associated with β, corresponds to r = R1 −R2. The third rotation, γ, is around
545
+ the axis given by the cross product of r and the normal vector of the Qy – Qx plane. For our
546
+ further discussion, we also distinguish between the four functional groups FG1, FG2, FG3,
547
+ and FG4, highlighted in Figure 4.
548
+ Figure 4. Structure of artificial dimer based on two identical PA molecules. We highlight four
549
+ functional groups FG1 (in green), FG2 (in red), FG3 (in pink), and FG4 (in orange). Hydrogen
550
+ atoms are omitted for clarity.
551
+ We start by investigating the effect of changing the distance r between the molecules PA1
552
+ and PA2, fixing the relative orientation of the molecules such that it corresponds to the one
553
+ found in the special pair dimer SP. Figure 5a shows the excitation spectra of dimers separated
554
+ by 9, 11, and 13 Å, corresponding to the center-of-mass difference found in the special pair
555
+ SP, the B850 dimer, and the A-branch dimer of Section 3.1, respectively. Note that distances
556
+ smaller than 9 Å are not possible for the artificial dimer due to overlap between the FG3
557
+ functional groups. Decreasing the center-of-mass difference leads to a redshift and splitting of
558
+ the coupled Qy excitations accompanied by a redistribution of oscillator strength between the
559
+
560
+ P
561
+ P
562
+ A2
563
+ FG
564
+ PaintX lite11
565
+ two excitations, in accordance with expectations from Kasha’s exciton theory [78]. The effect
566
+ on the coupled Qx excitations cannot be discussed without also considering the higher-energy
567
+ charge-transfer excitations. The latter are redshifted when going from 13 Å to 11 Å, and mix
568
+ with the coupled Qx excitations at 9 Å, similar to the situation in the special pair dimer SP.
569
+ The corresponding charge distributions based on subsystem integrals of difference densities
570
+ are shown in Table 2 and demonstrate that for the system at r = 9 Å , all excitations in the
571
+ energy-range of the coupled Qx excitations and the higher energy dark states exhibit charge-
572
+ transfer character. We classify E4, which is in the energy range of the coupled Qx excitations
573
+ and corresponds to transfer of half an electron from PA1 to PA2 as a partial charge-transfer state
574
+ (PCT) in Figure 5a. Our results are qualitatively similar when using the GW+BSE approach,
575
+ as shown in Figure S5 and consistent with our discussion in Section 3.1.
576
+ Figure 5.
577
+ (a) Absorption spectra of artificial dimer with r = 9 Å (blue), r = 11 Å (red),
578
+ and r = 13 Å (green). Arrows mark excitations with charge-transfer character. The shaded
579
+ areas are calculated by folding the excitation energies with Gaussian functions with a width of
580
+ 0.08 eV as a guide to the eye. (b) The excitation energy of the first two charge-transfer (CT1
581
+ and CT2) excitations and the first four dark states (D1-D4) as a function of r. The color scale
582
+ represents the charge-transfer character of each excitation based on the absolute value of the
583
+ integrated subsystem difference densities. (c) ∆R (see main text) as a function of the rotation
584
+ angle α (top), β (middle), and γ (bottom). Blue lines are periodic fits and serve as a guide to
585
+ the eye. The color scale corresponds to the change in energy ∆E of CT1 as compared to the
586
+ unrotated reference structure.
587
+ These trends are even more apparent in Figure 5b, where we plot the energy of all
588
+ dark excitations as a function of distance and indicate their charge-transfer character in color.
589
+ In the energy range considered here, there are four dark excitations without charge-transfer
590
+ character which are essentially independent of distance and are only redshifted and acquire
591
+ substantial charge-transfer character at relatively small r.
592
+ The two charge-transfer states
593
+ exhibit a significant distance dependence and are red-shifted by almost 1 eV with decreasing
594
+ r but lose some of their charge-transfer character at the smallest distance where they start
595
+ mixing with the coupled Qx excitations.
596
+ For investigating the effect of the relative orientation of the two molecules, we fixed
597
+ the intermolecular distance at 13 Å. Shorter distances were not possible due to overlap of
598
+ functional groups for some orientations. Since rotations around the angles α, β, and γ do not
599
+ commute, we treat them separately from each other, i.e., we first consider rotations around
600
+
601
+ (a)
602
+ (b)
603
+ (c)
604
+ 0.9
605
+ 1.0
606
+ 2
607
+ 0.1
608
+ α
609
+ ■ CT,
610
+ ●CT.
611
+ ^D1
612
+ ←D2
613
+ 13 A
614
+ 1
615
+ 0.9
616
+ 0.0
617
+ 0.8
618
+ 3.0
619
+ 11A
620
+ 0
621
+ 0.8
622
+ -1
623
+ -0.1
624
+ 0.7
625
+ 9A
626
+
627
+ -2
628
+ Excitation energy (eV)
629
+ 2.8
630
+ -0.2
631
+ 0.7
632
+ -3
633
+ 2
634
+ 0.1
635
+ 0.6
636
+ 2.6
637
+ 0.5
638
+ 0
639
+ 0.5
640
+ △R
641
+ -1
642
+ 0.4
643
+ -2
644
+ 2.4
645
+ 0.4
646
+ -0.2
647
+ -3
648
+ 0.3
649
+ 0.3
650
+ 0.1
651
+ V
652
+ 2.2
653
+ 0.2
654
+ 0.2
655
+ 0.0
656
+ 0
657
+ PCT
658
+ CT
659
+ -1
660
+ -0.1
661
+ 0.1
662
+ 0.1
663
+ 2.0
664
+ -2
665
+ -0.2
666
+ -3
667
+ 0.0
668
+ 0.0
669
+ 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7
670
+ 8
671
+ 10
672
+ 12
673
+ 14
674
+ 18
675
+ 20
676
+ 22
677
+ 0
678
+ 50
679
+ 100
680
+ 150
681
+ 200
682
+ 250
683
+ ¥300
684
+ 350
685
+ 16
686
+ Angle
687
+ Excitation energy (eV)
688
+ r (A)12
689
+ r (Å)
690
+ molecule
691
+ charge distribution
692
+ E4
693
+ E5
694
+ E6
695
+ E7
696
+ E8
697
+ 9
698
+ PA1
699
+ -0.48
700
+ 0.21
701
+ 0.28
702
+ -0.62
703
+ -0.63
704
+ PA2
705
+ 0.48
706
+ -0.21
707
+ -0.28
708
+ 0.62
709
+ 0.63
710
+ 11
711
+ PA1
712
+ 0
713
+ -0.96
714
+ 0.96
715
+ 0
716
+ 0
717
+ PA2
718
+ 0
719
+ 0.96
720
+ -0.96
721
+ 0
722
+ 0
723
+ 13
724
+ PA1
725
+ 0
726
+ 0
727
+ 0
728
+ -0.99
729
+ 0.99
730
+ PA2
731
+ 0
732
+ 0
733
+ 0
734
+ 0.99
735
+ -0.99
736
+ Table 2.
737
+ Charge distribution on each molecule in the artificial dimer upon excitation as
738
+ calculated by integration over subsystem difference densities. The first two excitations, i.e.,
739
+ E1 and E2, are not included since their subsystem difference densities integrate to zero.
740
+ α for fixed β and γ, then rotations around β for fixed α and γ, and finally rotations around
741
+ γ for fixed α and β. For each structure, we determine the smallest intermolecular distance
742
+ between every two individual atoms in PA1 and PA2, R. The difference between R in the
743
+ reference (unrotated) structure from each rotated structure, ∆R = Rre f −Rrot, as a function of
744
+ rotation angle, is shown in Figure 5c. Since charge-transfer excitations CT1 and CT2 follow
745
+ similar trends, we only show the change in energy of CT1 upon rotation in Figure 5c. Negative
746
+ (positive) values of ∆ECT1 = ECT1
747
+ ref −ECT1
748
+ rot correspond to a redshift (blue-shift) of the excitation
749
+ energy.
750
+ Rotations around α and β correspond to orientations with smaller R than in the reference
751
+ structure. Consequently, we observe increased intermolecular coupling and hence a redshift
752
+ of the charge-transfer state by up to ∼0.2 eV. For the structure for which we observe the largest
753
+ effect (corresponding to a β rotation of 120 degrees), it is primarily the relative orientation and
754
+ distance of carbon chains determining the intermolecular coupling (Figure S7a). For many of
755
+ the other structures that show pronounced redshifts, we find that the functional groups of
756
+ the two BCLs highlighted in Figure 4 are in close spatial proximity (see Figure S7b for an
757
+ example). In contrast, the rotation around the angle γ results primarily in structures with
758
+ positive ∆R and a blueshift of the charge-transfer excitation by up to ∼0.1 eV. We note that in
759
+ the majority of structures rotated around γ, the functional groups FG1, FG2, and FG4 are
760
+ far apart from the second BCL. However, for some structures, overlap between FG2 and
761
+ the second BCL molecule led to unrealistic structures that were excluded from Figure 5c.
762
+ Overall, the γ rotation primarily leads to geometries with weaker intermolecular coupling and
763
+ an overall blueshift in energy of the charge-transfer excitation.
764
+ 3.3. Vibrational Renormalization of Charge-Transfer Excitations
765
+ Excitations of different spatial localization and character are known to be affected in different
766
+ ways by molecular vibrations [79]. Our goal here is to provide a mode-resolved picture
767
+ of excitation energy renormalization in a BCL dimer due to thermally-activated vibrations,
768
+
769
+ 13
770
+ following earlier work by Hele et al. [80]. For this purpose we started from the crystal
771
+ structure of the special pair dimer SP and performed a full geometry optimization using
772
+ the def2-TZVP basis set and B3LYP exchange-correlation functional. In the absence of the
773
+ protein environment and other co-factors, no external force fixes PA and PB in the parallel
774
+ configuration they have in vivo.
775
+ Consequently, the relaxed structure differs considerably
776
+ from SP, and is more akin to the A-branch dimer. Since our aim is to provide a qualitative
777
+ picture, we proceed with this structure which is dynamically stable, i.e., without imaginary
778
+ normal modes. We note, however, that the excitation spectrum of the relaxed dimer, shown
779
+ in Figure 6a, differs from the spectra discussed so far. In particular, the spectrum displays a
780
+ charge-transfer state CT1 at ∼1.6 eV (see also Table S8). This state mixes with the coupled
781
+ Qy excitations and corresponds to the transfer of 0.78 of an electron from PA to PB (see Table
782
+ S9). A second charge-transfer state CT2 mixes with the coupled Qx excitations, while the
783
+ third one, CT3, is energetically well-separated from the Q-band excitations at ∼2.7 eV.
784
+ Figure 6. (a) Absorption spectrum of relaxed dimer. Arrows mark the first three charge-
785
+ transfer excitations, (b) Excitation energy renormalization ∆E as a function of normal mode
786
+ frequency for CT1, CT2, and CT3. Negative (positive) values of ∆E correspond to a redshift
787
+ (blueshift), (c) Visualization of the first two normal modes which correspond to intermolecular
788
+ rotations (see main text).
789
+ We calculate the vibrational normal modes of the relaxed dimer using the same basis
790
+ set and exchange-correlation functional but with a very fine grid for the quadrature of the
791
+ exchange-correlation energy. We then distort the structure along the 60 first vibrational normal
792
+ modes with a distortion amplitude corresponding to a temperature of 300 K. The excitation
793
+ spectrum of each distorted structure is then calculated with TDDFT as before, i.e., with
794
+ ωPBE with ω = 0.171 a−1
795
+ 0 . We define the excitation energy renormalization of excitation
796
+ n as ∆En = En
797
+ ref − En
798
+ dis. Here we focus on how molecular vibrations affect charge-transfer
799
+ excitations, but note that ∆E for the coupled Qy and Qx excitations can also be substantial as
800
+ shown in Figure S8.
801
+ The excitation energy renormalization of the charge-transfer excitations CT1, CT2, and
802
+ CT3 is shown in Figure 6b. High-frequency modes correspond to intramolecular vibrations
803
+ such as C-C and C-H stretch modes, which are not thermally activated and only have a small
804
+ effect on the energy of the three charge-transfer states. In contrast, low-frequency modes
805
+ correspond to intermolecular vibrations that change the orbital overlap between neighboring
806
+ molecules and thus have a more substantial impact. In particular, we find that the two lowest-
807
+
808
+ (a)
809
+ (b)
810
+ (c)
811
+ CT
812
+ 0.5
813
+ 0.10
814
+ CT
815
+ (2)
816
+ 0.05
817
+ O
818
+ 30-0000
819
+ -0.05
820
+ 0.10
821
+ CT
822
+ -0.15
823
+ 0.1
824
+ 0 (1)
825
+ -0.20
826
+ 80
827
+ 1.6
828
+ 1.8
829
+ 2.0
830
+ 2.2
831
+ 2.4
832
+ 2.6
833
+ 2.8
834
+ 20
835
+ 40
836
+ 60
837
+ 100
838
+ 140
839
+ 0
840
+ 160
841
+ Excitation energy (eV)
842
+ 0 (cm-l)14
843
+ frequency modes lead to substantial changes of all three charge-transfer states. Both modes
844
+ correspond to a rotational motion of the porphyrin planes of the BCL molecules with respect to
845
+ each other as indicated in Figure 6c. The first modes leads to a redshift of all three excitations
846
+ which is with ∼0.2 eV most pronounced for CT1, the second one leads to a smaller blueshift
847
+ of CT1 and CT3 and a slight redshift of CT2. These results qualitatively agree with our results
848
+ in Section 3.2, suggesting that thermally-activated vibrational modes can significantly affect
849
+ the energy of charge-transfer excitations affecting their charge-transfer character and mixing
850
+ with other delocalized and localized excitations of the system.
851
+ 4. Summary and Conclusions
852
+ In summary, we have presented a systematic first-principles study of charge-transfer
853
+ excitations in BCL dimers. Our model systems are inspired by molecular aggregates found
854
+ in the LHII complex and RC of purple bacteria and cover a wide range of intermolecular
855
+ coupling strengths, and consequently, excited-state structures. Charge-transfer excitations
856
+ can be found in a wide range of energies, primarily depending on intermolecular distance
857
+ and orientation. BCL molecules have a complex three-dimensional structure with several
858
+ functional groups, a long phytyl tail, and other carbon chains protruding out of the porphyrin
859
+ plane. In vivo, i.e., within the evolutionary-optimized protein networks of the photosynthetic
860
+ apparatus, the protein environment determines the distance, orientation, and structural
861
+ details of these aggregates.
862
+ Furthermore, the protein environment indirectly affects the
863
+ excited state structure and dynamics of BCL aggregates through dielectric screening and
864
+ electrostatic effects [75,81,82,82–89]. Therefore our results can not directly be used to infer
865
+ charge-transfer mechanisms in photosynthetic systems Nonetheless, they provide an intuitive
866
+ understanding and design rules for tailoring charge-transfer excitations in BCLs and similar
867
+ photoactive molecules. Furthermore, they explicitly confirm the importance of charge-transfer
868
+ excitations for a correct description of the Q-band excitations of BCL aggregates [40]. We
869
+ hope that our results inspire future calculations of the excited-state structure and dynamics of
870
+ pigment-protein complexes and chromophore aggregates based on model Hamiltonians, that
871
+ include charge-transfer excitations.
872
+ Furthermore, we have compared our results based on TDDFT with the optimally-
873
+ tuned ωPBE functional to calculations using the GW+BSE approach.
874
+ While charge-
875
+ transfer excitations appear at very similar energies with both approaches, coupled Qy
876
+ excitations are systematically overestimated by TDDFT as compared to the GW+BSE
877
+ approach.
878
+ Previous studies suggest that Qy excitation energies from GW+BSE are in
879
+ better agreement with wavefunction-based methods and experiment than TDDFT with ωPBE
880
+ [61, 62]. However, accurate benchmarks for larger molecular aggregates are missing and
881
+ we therefore do not think that a clear recommendation for using GW+BSE instead of
882
+ TDDFT is warranted. Nonetheless, with advances in code implementation [90–92] and in the
883
+ combination of GW+BSE with discrete and polarizable continuum models [93,94] and other
884
+ QM/MM methods [95], GW+BSE calculations of large molecular aggregates are becoming
885
+ computationally feasible, demonstrated in a recent study by Förster et al. [61]. Further study
886
+
887
+ 15
888
+ of the accuracy and predictive power of TDDFT, with exchange-correlation functionals that
889
+ capture the nonlocal nature of charge-transfer excitations for such aggregates is necessary.
890
+ Supplementary Material
891
+ Additional convergence data, excitation energies, difference densities and transition densities
892
+ not shown in the main text, and structure files.
893
+ Acknowledgements
894
+ This work was supported by the Bavarian State Ministry of Science and the Arts through the
895
+ Elite Network Bavaria (ENB) and through computational resources provided by the Bavarian
896
+ Polymer Institute (BPI).
897
+ References
898
+ [1] Wahadoszamen M, Margalit I, Ara A M, van Grondelle R and Noy D 2014 Nat. Comm. 5 5287 URL
899
+ https://www.nature.com/articles/ncomms6287
900
+ [2] Zoppi L and Baldridge K K 2018 Int. J. Quant. Chem. 118 e25413 URL https://onlinelibrary.
901
+ wiley.com/doi/abs/10.1002/qua.25413
902
+ [3] Muntwiler M, Yang Q, Tisdale W A and Zhu X Y 2008 Phys. Rev. Lett. 101 196403 URL https:
903
+ //link.aps.org/doi/10.1103/PhysRevLett.101.196403
904
+ [4] Ohkita H, Cook S, Astuti Y, Duffy W, Tierney S, Zhang W, Heeney M, McCulloch I, Nelson J, Bradley
905
+ D D C and Durrant J R 2008 J. Am. Chem. Soc. 130 3030–3042 URL https://doi.org/10.1021/
906
+ ja076568q
907
+ [5] Pensack R D and Asbury J B 2009 J. Am. Chem. Soc. 131 15986–15987 URL https://doi.org/10.
908
+ 1021/ja906293q
909
+ [6] Lee J, Vandewal K, Yost S R, Bahlke M E, Goris L, Baldo M A, Manca J V and Van Voorhis T 2010 J. Am.
910
+ Chem. Soc. 132 11878–11880 URL https://doi.org/10.1021/ja1045742
911
+ [7] Bakulin A A, Rao A, Pavelyev V G, van Loosdrecht P H M, Pshenichnikov M S, Niedzialek D, Cornil
912
+ J, Beljonne D and Friend R H 2012 Science 335 1340–1344 URL https://www.science.org/doi/
913
+ 10.1126/science.1217745
914
+ [8] Caruso D and Troisi A 2012 Proc. Natl. Acad. Sci. 109 13498–13502 URL https://www.pnas.org/
915
+ doi/full/10.1073/pnas.1206172109
916
+ [9] Murthy D H K, Gao M, Vermeulen M J W, Siebbeles L D A and Savenije T J 2012 J. Phys. Chem. C 116
917
+ 9214–9220 URL https://doi.org/10.1021/jp3007014
918
+ [10] Yost S R and Van Voorhis T 2013 J. Phys. Chem. C 117 5617–5625 URL https://doi.org/10.1021/
919
+ jp3125186
920
+ [11] Jakowetz A C, Böhm M L, Zhang J, Sadhanala A, Huettner S, Bakulin A A, Rao A and Friend R H 2016
921
+ J. Am. Chem. Soc. 138 11672–11679 URL https://doi.org/10.1021/jacs.6b05131
922
+ [12] Lee D, Forsuelo M A, Kocherzhenko A A and Whaley K B 2017 J. Phys. Chem. C 121 13043–13051 URL
923
+ https://doi.org/10.1021/acs.jpcc.7b03197
924
+ [13] Jordanides X J, Scholes G D and Fleming G R 2001 J. Phys. Chem. B 105 1652–1669
925
+ [14] Camara-Artigas A, Brune D and Allen J P 2002 Proc. Natl. Acad. Sci. 99 11055–11060 URL https:
926
+ //www.pnas.org/doi/10.1073/pnas.162368399?url_ver=Z39.88-2003&rfr_id=ori:rid:
927
+ crossref.org&rfr_dat=cr_pub%20%200pubmed
928
+ [15] Jonas D M, Lang M J, Nagasawa Y, Joo T and Fleming G R 1996 J. Phys. Chem. 100 12660–12673
929
+ [16] Schlau-Cohen G S, Re E D, Cogdell R J and Fleming G R 2012 J. Phys. Chem. Lett. 3 2487–2492
930
+
931
+ 16
932
+ [17] Rancova O, Jankowiak R, Kell A, Jassas M and Abramavicius D 2016 J. Phys. Chem. B 120 5601–5616
933
+ [18] Mirkovic T, Ostroumov E E, Anna J M, Van Grondelle R and Scholes G D 2017 Chem. Rev. 117 249–293
934
+ [19] Niedringhaus A, Policht V R, Sechrist R, Konar A, Laible P D, Bocian D F, Holten D, Kirmaier C and
935
+ Ogilvie J P 2018 Proc. Nat. Acad. Sci. 115 3563–3568
936
+ [20] Kawashima K and Ishikita H 2018 Chem. Sci. 9 4083–4092 URL http://xlink.rsc.org/?DOI=
937
+ C8SC00424B
938
+ [21] Kavanagh M A, Karlsson J K, Colburn J D, Barter L M and Gould I R 2020 Proc. Nat. Acad. Sci. 117
939
+ 19705–19712
940
+ [22] Cupellini L, Bondanza M, Nottoli M and Mennucci B 2020 Biochim. Biophys. Acta Bioenerg. 1861 148049
941
+ [23] Wraight C A and Clayton R K 1974 Biochim. Biophys. Acta Bioenerg. 333 246–260 URL https:
942
+ //www.sciencedirect.com/science/article/pii/0005272874900097
943
+ [24] Kirmaier C, Holten D and Parson W W 1985 Biochim. Biophys. Acta Bioenerg. 810 49–61 URL https:
944
+ //www.sciencedirect.com/science/article/pii/0005272885902051
945
+ [25] Zinth W and Wachtveitl J 2005 ChemPhysChem 6 871–880 URL https://onlinelibrary.wiley.
946
+ com/doi/abs/10.1002/cphc.200400458
947
+ [26] Ma F, Romero E, Jones M R, Novoderezhkin V I and van Grondelle R 2018 J. Phys. Chem. Lett. 9 1827–
948
+ 1832 URL https://doi.org/10.1021/acs.jpclett.8b00108
949
+ [27] Ma F, Romero E, Jones M R, Novoderezhkin V I and van Grondelle R 2019 Nat. Comm. 10
950
+ [28] Policht V R, Niedringhaus A, Willow R, Laible P D, Bocian D F, Kirmaier C, Holten D, Manˇcal T and
951
+ Ogilvie J P 2022 Sci. Adv. 8 eabk0953 URL https://www.science.org/doi/10.1126/sciadv.
952
+ abk0953
953
+ [29] van Brederode M E, Ridge J P, van Stokkum I H M, van Mourik F, Jones M R and van Grondelle R 1998
954
+ Photosyn. Res. 55 141–146 ISSN 1573-5079 URL https://doi.org/10.1023/A:1005925917867
955
+ [30] Zhou H and Boxer S G 1998 J. Phys. Chem. B 102 9139–9147 URL https://doi.org/10.1021/
956
+ jp982043w
957
+ [31] Lin S, Jackson J, Taguchi A K W and Woodbury N W 1998 J. Phys. Chem. B 102 4016–4022 URL
958
+ https://doi.org/10.1021/jp980360x
959
+ [32] Huang L, Ponomarenko N, Wiederrecht G P and Tiede D M 2012 Proc. Natl. Acad. Sci. 109 4851–4856
960
+ URL https://www.pnas.org/doi/10.1073/pnas.1116862109
961
+ [33] Fassioli F, Dinshaw R, Arpin P C and Scholes G D 2014 J. Roy. Soc. Inter. 11 20130901 URL https:
962
+ //royalsocietypublishing.org/doi/10.1098/rsif.2013.0901
963
+ [34] Jang S J and Mennucci B 2018 Rev. Mod. Phys. 90 35003 URL https://doi.org/10.1103/
964
+ RevModPhys.90.035003
965
+ [35] van der Vegte C P, Prajapati J D, Kleinekathöfer U, Knoester J and Jansen T L C 2015 J. Phys. Chem. B
966
+ 119 1302–13URL http://www.ncbi.nlm.nih.gov/pubmed/25554919
967
+ [36] Curutchet C and Mennucci B 2016 Chem. Rev. URL http://pubs.acs.org/doi/abs/10.1021/acs.
968
+ chemrev.5b00700
969
+ [37] Thyrhaug E, Tempelaar R, Alcocer M J P, Žídek K, Bína D, Knoester J, Jansen T L C and Zigmantas D
970
+ 2018 Nat. Chem. 10 780–786 URL https://www.nature.com/articles/s41557-018-0060-5
971
+ [38] Voityuk A A 2014 J. Chem. Phys. 140 244117 ISSN 0021-9606 URL https://aip.scitation.org/
972
+ doi/full/10.1063/1.4884944
973
+ [39] Voityuk A A 2015 J. Phys. Chem. B 119 7417–7421 URL https://doi.org/10.1021/jp511035p
974
+ [40] Li X, Parrish R M, Liu F, Kokkila Schumacher S I and Martínez T J 2017 J. Chem. Theor. Comp. 13
975
+ 3493–3504
976
+ [41] Dreuw A and Head-Gordon M 2004 J. Am. Chem. Soc. 126 4007–4016
977
+ [42] Refaely-Abramson S, Baer R and Kronik L 2011 Phys. Rev. B 84 075144
978
+ [43] Refaely-Abramson S, Sharifzadeh S, Govind N, Autschbach J, Neaton J B, Baer R and Kronik L 2012 Phys.
979
+ Rev. Lett. 109 226405 URL http://link.aps.org/doi/10.1103/PhysRevLett.109.226405
980
+ [44] Körzdörfer T and Marom N 2012 Phys. Rev. B 86 041110 URL http://link.aps.org/doi/10.1103/
981
+ PhysRevB.86.041110
982
+ [45] Refaely-Abramson S, Sharifzadeh S, Jain M, Baer R, Neaton J B and Kronik L 2013 Phys. Rev. B 88
983
+
984
+ 17
985
+ 081204 URL http://link.aps.org/doi/10.1103/PhysRevB.88.081204
986
+ [46] De Queiroz T B and Kümmel S 2014 J. Chem. Phys. 141 084303URL http://dx.doi.org/10.1063/
987
+ 1.4892937
988
+ [47] Manna A K, Refaely-Abramson S, Reilly A M, Tkatchenko A, Neaton J B and Kronik L 2018 J. Chem.
989
+ Theo. Comp. 14 2919–2929 URL https://doi.org/10.1021/acs.jctc.7b01058
990
+ [48] Wing D, Ohad G, Haber J B, Filip M R, Gant S E, Neaton J B and Kronik L 2020 Proc. Nat. Acad. Sci.
991
+ 118 e2104556118 URL http://arxiv.org/abs/2012.03278
992
+ [49] Seidl A, Görling A, Vogl P, Majewski J A and Levy M 1996 Phys. Rev. B 53 3764–3774 URL http:
993
+ //www.ncbi.nlm.nih.gov/pubmed/9983927
994
+ [50] Kümmel S 2017 Adv. Energy Mater. 7 1700440
995
+ [51] Bhandari S, Cheung M S, Geva E, Kronik L and Dunietz B D 2018 J. Chem. Theo. Comp. 14 6287–6294
996
+ URL https://doi.org/10.1021/acs.jctc.8b00876
997
+ [52] Rohlfing M and Louie S G 1998 Phys. Rev. Lett. 81 2312–2315
998
+ [53] Rohlfing M and Louie S G 2000 Phys. Rev. B 62 4927 ISSN 0163-1829 iSBN: 0163-1829\r1095-3795
999
+ URL http://link.aps.org/doi/10.1103/PhysRevB.62.4927
1000
+ [54] van Setten M J, Caruso F, Sharifzadeh S, Ren X, Scheffler M, Liu F, Lischner J, Lin L, Deslippe J R, Louie
1001
+ S G, Yang C, Weigend F, Neaton J B, Evers F and Rinke P 2015 J. Chem. Theo. Comp. 11 5665–5687
1002
+ URL http://pubs.acs.org/doi/10.1021/acs.jctc.5b00453
1003
+ [55] Bruneval F, Hamed S M and Neaton J B 2015 J. Chem. Phys. 142 244101
1004
+ [56] Rangel T, Hamed S M, Bruneval F and Neaton J B 2017 J. Chem. Phys. 146 194108 URL http:
1005
+ //dx.doi.org/10.1063/1.4983126
1006
+ [57] Duchemin I, Deutsch T and Blase X 2012 Phys. Rev. Lett. 109 167801
1007
+ [58] Duchemin I and Blase X 2013 Phys. Rev. B 87 245412 URL https://link.aps.org/doi/10.1103/
1008
+ PhysRevB.87.245412
1009
+ [59] Sharifzadeh S, Darancet P, Kronik L and Neaton J B 2013 J. Phys. Chem. Lett. 4 2197 URL http:
1010
+ //pubs.acs.org/doi/abs/10.1021/jz401069f
1011
+ [60] Blase X, Duchemin I and Jacquemin D 2018 Chem. Soc. Rev. 47 1022–1043
1012
+ [61] Förster A and Visscher L 2022 J. Chem. Theo. Comp. 18 6779–6793 URL https://doi.org/10.1021/
1013
+ acs.jctc.2c00531
1014
+ [62] Hashemi Z and Leppert L 2021 J. Phys. Chem. A 125 2163–2172
1015
+ [63] Ahlrichs R, Bär M, Häser M, Horn H and Kölmel C 1989 Chem. Phys. Lett. 162 165–169
1016
+ [64] Bruneval F, Rangel T, Hamed S M, Shao M, Yang C and Neaton J B 2016 Comp. Phys. Comm. 208 149–161
1017
+ [65] Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys. 74 601
1018
+ [66] Blase X, Duchemin I and Jacquemin D 2018 Chem. Soc. Rev. 47 1022–1043
1019
+ [67] Blase X, Duchemin I, Jacquemin D and Loos P F 2020 J. Phys. Chem. Lett. 11 7371–7382
1020
+ [68] Marques M A and Gross E K 2004 Ann. Rev. Phys. Chem. 55 427–455
1021
+ [69] Stein T, Eisenberg H, Kronik L and Baer R 2010 Phys. Rev. Lett. 105 266802 ISSN 0031-9007 URL
1022
+ http://link.aps.org/doi/10.1103/PhysRevLett.105.266802
1023
+ [70] Körzdörfer T, Sears J S, Sutton C and Brédas J L 2011 J. Chem. Phys. 135 204107
1024
+ [71] Baumeier B, Andrienko D and Rohlfing M 2012 J. Chem. Theo. Comp. 8 2790–2795 URL https:
1025
+ //doi.org/10.1021/ct300311x
1026
+ [72] Godbout N, Salahub D R, Andzelm J and Wimmer E 1992 Can. J. Chem. 70 560���571
1027
+ [73] Bruneval F 2016 J. Chem. Phys. 145 URL http://dx.doi.org/10.1063/1.4972003
1028
+ [74] Plasser F, Wormit M and Dreuw A 2014 J. Chem. Phys. 141 024106
1029
+ [75] Volpert S, Hashemi Z, Foerster J M, Marques M R G, Schelter I, Kümmel S and Leppert L 2022 submitted
1030
+ [76] Camara-Artigas A, Brune D and Allen J 2002 Proc. Nal. Acad. Sci. 99 11055–11060
1031
+ [77] Papiz M Z, Prince S M, Howard T, Cogdell R J and Isaacs N W 2003 J. Mol. Bio. 326 1523–1538
1032
+ [78] Kasha M, Rawls H R and El-Bayoumi M A 1965 Pure Appl. Chem. 11 371–392
1033
+ [79] Alvertis A M, Pandya R, Muscarella L A, Sawhney N, Nguyen M, Ehrler B, Rao A, Friend R H, Chin
1034
+ A W and Monserrat B 2020 Phys. Rev. B 102 081122 URL https://link.aps.org/doi/10.1103/
1035
+ PhysRevB.102.081122
1036
+
1037
+ 18
1038
+ [80] Hele T J H, Monserrat B and Alvertis A M 2021 The J. Chem. Phys. 154 244109 URL https:
1039
+ //aip.scitation.org/doi/10.1063/5.0052247
1040
+ [81] Stanley R J, King B and Boxer S G 1996 J. Phys. Chem. 100 12052–12059
1041
+ [82] Steffen M A, Lao K and Boxer S G 1994 Science 264 810–816
1042
+ [83] Hiyama M and Koga N 2011 Photochem. Photobiol. 87 1297–1307
1043
+ [84] Lockhart D J, Kirmaier C, Holten D and Boxer S G 1990 J. Chem. Phys. 94 6987–6995
1044
+ [85] Alden R G, Parson W W, Chu Z T and Warshel A 1995 J. Am. Chem. Soc. 12284–12298
1045
+ [86] Gunner M R, Nicholls A and Honig B 1996 J. Phys. Chem. 100 4277–4291
1046
+ [87] Saggu M, Fried S D and Boxer S G 2019 J. Phys. Chem. B 123 1527–1536
1047
+ [88] Tamura H, Saito K and Ishikita H 2021 Chem. Sci. 12 8131–8140
1048
+ [89] Brütting M, Foerster J M and Kümmel S 2021 J. Phys. Chem. B 125 3468–3475
1049
+ [90] Bruneval F, Rangel T, Hamed S M, Shao M, Yang C and Neaton J B 2016 Comput. Phys. Comm. 208
1050
+ 149–161 URL http://dx.doi.org/10.1016/j.cpc.2016.06.019
1051
+ [91] Förster A and Visscher L 2020 J. Chem. Theo. Comp. 16 7381–7399
1052
+ [92] Duchemin I and Blase X 2021 J. of Chem. Theo. Comp. 17 2383–2393 URL https://doi.org/10.
1053
+ 1021/acs.jctc.1c00101
1054
+ [93] Duchemin I, Jacquemin D and Blase X 2016 J. Chem. Phys. 144 164106URL http://dx.doi.org/10.
1055
+ 1063/1.4946778
1056
+ [94] Duchemin I, Guido C A, Jacquemin D and Blase X 2018 Chem. Sci. 9 4430–4443
1057
+ [95] Wehner J, Brombacher L, Brown J, Junghans C, Çaylak O, Khalak Y, Madhikar P, Tirimbò G and Baumeier
1058
+ B 2018 J. Chem. Theo. Comp. 14 6253–6268
1059
+
8NE1T4oBgHgl3EQfngRF/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
DdFRT4oBgHgl3EQfADdX/content/2301.13460v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d8c762d3876b3e978535cbe7926c89677a7e4d24fe4669b77f8715500fd319d
3
+ size 1478087
DdFRT4oBgHgl3EQfADdX/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46aae215a6a0921951457278760ec3602fb5164337d839e1399cda40b576226c
3
+ size 2162733
DdFRT4oBgHgl3EQfADdX/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffb044d3d6c18122f155de26f77c183073e03ab4d7dc0f226be70cc068768b29
3
+ size 76730
DtAzT4oBgHgl3EQfT_x1/content/tmp_files/2301.01259v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
DtAzT4oBgHgl3EQfT_x1/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
EtAzT4oBgHgl3EQfUPx6/content/2301.01263v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6505feed51cafc5240bbc7d307e2c844dbff18588db408ee34e3f13ca8dc30d
3
+ size 9774229
EtE0T4oBgHgl3EQfQwBZ/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b5098b9763017ffd798cc9a0dd4e7cbf6b20775084196f5856aa6f52d3fd59b
3
+ size 275429
FNAyT4oBgHgl3EQf4_q8/content/2301.00797v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:187bf4d2fcd32b0480583319d5f8946f6d37aa3ee2c5c9a20514650b23be5ac3
3
+ size 790111
FdE0T4oBgHgl3EQfRAAw/content/tmp_files/2301.02200v1.pdf.txt ADDED
@@ -0,0 +1,1454 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Impact, Attention, Influence:
2
+ Early Assessment of Autonomous Driving Datasets
3
+ Daniel Bogdoll†‡*, Jonas Hendl‡*, Felix Schreyer†, Nishanth Gowda†, Michael F¨arber‡ and J. Marius Z¨ollner†‡
4
+ †FZI Research Center for Information Technology, Germany
5
+ bogdoll@fzi.de
6
+ ‡Karlsruhe Institute of Technology, Germany
7
+ Abstract—Autonomous Driving (AD), the area of robotics with
8
+ the greatest potential impact on society, has gained a lot of
9
+ momentum in the last decade. As a result of this, the number
10
+ of datasets in AD has increased rapidly. Creators and users of
11
+ datasets can benefit from a better understanding of developments
12
+ in the field. While scientometric analysis has been conducted in
13
+ other fields, it rarely revolves around datasets. Thus, the impact,
14
+ attention, and influence of datasets on autonomous driving
15
+ remains a rarely investigated field. In this work, we provide a
16
+ scientometric analysis for over 200 datasets in AD. We perform
17
+ a rigorous evaluation of relations between available metadata
18
+ and citation counts based on linear regression. Subsequently, we
19
+ propose an Influence Score to assess a dataset already early on
20
+ without the need for a track-record of citations, which is only
21
+ available with a certain delay.
22
+ Index Terms—Robotics, Autonomous Driving, Datasets, Influ-
23
+ ence, Impact, Attention, Scientometrics, Bibliometrics
24
+ I. INTRODUCTION
25
+ Autonomous driving technology does not only affect ur-
26
+ ban transportation [1] and delivery of goods [2], but also
27
+ farming [3] or warehouse logistics [4]. With the progress
28
+ of deep learning and this growing interest in AD in many
29
+ fields of robotic, the number of related datasets is consistently
30
+ increasing. The datasets have also increased in size and many
31
+ have become increasingly specialized [5]. The most extensive
32
+ collection of datasets known to us, ad-datasets, currently
33
+ lists 231 datasets in the domain [6]. However, not all of
34
+ them are being equally used in the robotics community, the
35
+ distribution of their citations is heavily skewed. As part of
36
+ the more impactful works, well known datasets for the core
37
+ tasks perception and prediction dominate [7]–[9]. As part of
38
+ the long tail, many datasets for niche research areas exist [10]–
39
+ [12]. Well known datasets tend to bring many advantages with
40
+ them: They enable comparison between works, have higher
41
+ quality, advanced tooling, and often community knowledge
42
+ and support is available. The increasing number of datasets,
43
+ which are potentially interesting but lack reputation, leads to a
44
+ lot of untapped potential: Many researchers are hesitant to use
45
+ such datasets and stick to old, but established ones instead [6].
46
+ This is why we asked ourselves the question: Given a novel
47
+ dataset without a multi-year track record of citations, is there
48
+ a way to estimate its future development? Datasets with a high
49
+ potential might be more appealing already in their early days.
50
+ * These authors contributed equally
51
+ 2008
52
+ 2010
53
+ 2012
54
+ 2014
55
+ 2016
56
+ 2018
57
+ 2020
58
+ 2022
59
+ year
60
+ 5
61
+ 10
62
+ 15
63
+ 20
64
+ 25
65
+ 30
66
+ 35
67
+ 40
68
+ publications
69
+ 0
70
+ 2000
71
+ 4000
72
+ 6000
73
+ 8000
74
+ 10000
75
+ citations
76
+ Fig. 1.
77
+ Course of published datasets and citations of the accompanying
78
+ publications in the domain of AD. This growing number of datasets, initially
79
+ without reputation, holds a great deal of untapped potential as researchers
80
+ struggle to use new datasets for their research. Datasets as listed on ad-
81
+ datasets [6], citation counts from Semantic Scholar [13].
82
+ Research Gap. To date, citations are mostly used to as-
83
+ sess datasets, which are not available early on. Thus, new
84
+ datasets can have a hard time gaining traction, which results
85
+ in untapped potential. It is yet not well understood if and
86
+ how metadata of datasets relate to future impact or how they
87
+ can be utilized to assess datasets early on. To the best of our
88
+ knowledge, such an analysis has not yet been performed.
89
+ Contribution. In order to analyze the field of dataset, we
90
+ first assembled the largest collection of datasets with enriched
91
+ metadata available, including over 200 datasets with metadata
92
+ from three different sources. We then applied linear regression
93
+ to evaluate factors which relate to the future impact of datasets,
94
+ measured in citations. Finally, we propose the Influence Score
95
+ (IS), which is a mean to assess datasets early on without the
96
+ need of a multi-year track record of citations. The IS can be
97
+ used to assess any datasets at any given year, which also allows
98
+ for later analysis. Our work aims to help researchers from
99
+ the robotics community to better understand and assess the
100
+ performance of datasets. This can lead to the design of better
101
+ and thus more influential datasets as well as an actionable
102
+ analysis of new datasets to assess their potential. All data used
103
+ in this work is as of January 04, 2023. All code is available
104
+ on GitHub.
105
+ arXiv:2301.02200v1 [cs.DL] 5 Jan 2023
106
+
107
+ II. RELATED WORK
108
+ Here, we give an introduction to the scientometrics, biblio-
109
+ metrics, and altmetrics, followed by dataset analysis.
110
+ A. Scientometrics, Bibliometrics, and Altmetrics
111
+ Scientometrics, Bibliometrics, and Altmetrics are highly
112
+ intertwined fields that focus on the analysis of science and
113
+ its processes as a whole, written works of science, and online
114
+ communication of science, respectively [14].
115
+ Scientometrics. Ravenscroft et al. [15] examined the impact
116
+ of research by comparing citation-based metrics, such as
117
+ citation count or h-index [16], with altmetrics and impact other
118
+ than citations, e.g., societal and economic impact. However,
119
+ they found no strong relationship between the fields. Hicks
120
+ et al. [17] suggest using multiple factors to portray multiple
121
+ aspects.
122
+ Leydesdorff et al. [18] claim that citations are equated to im-
123
+ pact and evaluate the relationship between impact and research
124
+ quality. They found that short-term citations signify the invest-
125
+ ment in a current discourse, while long-term citations signify
126
+ acceptance as reliable scientific knowledge. However, some
127
+ researchers question if or to what extent citations measure
128
+ scientific impact and point to issues, e.g., inconsistent reasons
129
+ for citations [19]. Problems include the cumulative advantages
130
+ already successful papers experience [20], self-citations, which
131
+ men do more often [21], negative citations, and citing out
132
+ of reasons that do not reflect actual use or relevance [22].
133
+ Valenzuela et al. [23] presented a method to identify four types
134
+ of citations: ”Related work, Comparison, Using the work,
135
+ Extending the work” [23], which is used by Semantic Scholar
136
+ to determine “Highly Influential Citations” [24]. However, it
137
+ shows a high correlation with citations.
138
+ The field of trend detection analyzes large corpora of works
139
+ to detect upcoming patterns [25]–[28]. Lopez Belmonte et
140
+ al. [29] analyzed publications in Machine Learning and Big
141
+ Data and found exponential growth of publications. They
142
+ compared the popularity of keywords and the h-index.
143
+ Bibliometrics. Citations can be aggregated on different
144
+ levels, e.g., for the papers of one author as the h-index does,
145
+ or on the journal level, like the journal impact factor (JIF),
146
+ which is the two-year average ratio of citations to articles
147
+ published. The JIF is ill-suited for evaluating individual papers
148
+ by means of the journal it was published in [30]. This is due
149
+ to the heavy skewness of the distribution of citation counts
150
+ within journals [31]. The Hirsch-index, usually referred to as
151
+ the h-index, combines the productivity of an author with the
152
+ impact of their individual papers. Using the h-index increases
153
+ robustness compared to simply counting the total number of
154
+ citations, as few highly cited papers have little effect on the
155
+ h-index. In addition, there have been efforts to recommend
156
+ papers and citations [32], [33], predict future citation counts
157
+ of papers [34]–[37] and the impact of scientists [38]. Such
158
+ approaches remain challenging and are often domain-specific.
159
+ Bornmann and Marx [39] have proposed to expand the
160
+ bibliometric analysis by not only considering citations but also
161
+ references. Following this idea, reference analysis has been
162
+ used to identify influential references [40].
163
+ Altmetrics. Online interactions with papers are referred to
164
+ as altmetrics and are usually available earlier than citations,
165
+ which gives altmetrics an advantage over bibliometrics [41].
166
+ Bornmann and Marx [42] examined if Altmetrics can be used
167
+ to predict paper quality which was measured through peer as-
168
+ sessments and found that both tweets and readers do, with the
169
+ latter having a stronger relationship. Lamb et al. [43] showed
170
+ that the Altmetric Attention Score is a predictor of the citations
171
+ of a paper in ecology and conservation. Zavrel et al. [44]
172
+ clustered papers released at the International Conference on
173
+ Machine Learning (ICML) in 2022 and calculated a score
174
+ for their impact. They used Twitter mentions, citations, the
175
+ authors’ average h-index, and an award for outstanding papers
176
+ rewarded by the conference itself. They claim to do a “sim-
177
+ ple combination of these four scores to calculate an impact
178
+ score” [44] but do not reveal the formula. F¨arber analyzed
179
+ GitHub repositories of papers, mostly from the field of AI, and
180
+ found a power-law distribution of stars and forks [45]. While
181
+ Haustein et al. claim that ”Altmetrics measures scientific
182
+ impact based on online references and activity” [46], many
183
+ disagree with equating altmetrics with impact. For example,
184
+ Sugimoto states that ”attention is not impact” and calls online
185
+ interaction with scientific works ”attention” [47]. Altmetrics
186
+ might reflect broader or societal impact [41].
187
+ B. Dataset Analysis
188
+ Bogdoll et al. [5] gathered metadata of over 200 datasets
189
+ in the field of autonomous driving. Similarly, F¨arber and
190
+ Lamprecht released the data set knowledge graph, which is
191
+ a collection of over 2,000 datasets with added metadata [48].
192
+ D’Ulizia et al. [49] analyzed the metadata of datasets for fake
193
+ news detection. Utamachant and Anutariya [50] analyzed the
194
+ datasets of Thailand’s national open data portal, but relied
195
+ on domain experts to assess impact. Nguyen and Weller
196
+ proposed FAIRnets, a service to search for neural networks
197
+ and their related datasets [51] published on GitHub. They build
198
+ upon the Findable, Accessible, Interoperable, Reusable (FAIR)
199
+ principles [52], which ”put specific emphasis on enhancing
200
+ the ability of machines to automatically find and use the
201
+ data” [52]. Khan et al. [53] analyzed datasets from the Global
202
+ Biodiversity Information Facility (GBIF) which publishes
203
+ datasets with a DOI and indexes datasets in biodiversity.
204
+ They promote data standards and the reuse of datasets [54]
205
+ as well as accompanying publications, which they call ”data
206
+ papers”, that describe a dataset thoroughly [55]. Khan et
207
+ al. [53] report a strong correlation between dataset download
208
+ numbers and citation counts, and suggest that downloads and
209
+ citations signify a similar kind of impact. They also find
210
+ correlations between altmetrics and citations. Moreover, they
211
+ question whether every citation means the usage of a dataset
212
+ and point to differences in citation behavior. F¨arber et al.
213
+ proposed an approach to find methods and datasets which
214
+ authors actually used when citing the related paper [56].
215
+ However, unrealistically few dataset usages were identified.
216
+
217
+ AD-Datasets
218
+ Altmetric
219
+ Semantic Scholar
220
+ List of Datasets
221
+ with Enriched
222
+ Metadata
223
+ Regression Analysis
224
+ of Citations
225
+ and Metadata
226
+ Influence
227
+ Score
228
+ Fig. 2. Overview: First, we collect data from various sources and combine them to a single list of datasets. Based on this, we perform a regression analysis
229
+ to determine which metadata correlate with future prediction counts. Based on the metadata, we compute our Influence Score (IS).
230
+ III. REGRESSION ANALYSIS
231
+ Here, we first introduce our taxonomy of terms related to the
232
+ assessment of datasets. Subsequently, we introduce our data
233
+ sources. Based on these, we describe the regression analysis of
234
+ citations and metadata. In Section IV, we present the resulting
235
+ Influence Score. Figure 2 gives an overview over this process.
236
+ A. Taxonomy
237
+ As became clear in Section II, no common language for
238
+ specific aspects in the domain has evolved yet. Thus, we
239
+ introduce a taxonomy to clearly describe different aspects with
240
+ respect to the development of a dataset or paper. As general
241
+ terms for this, we utilize success, progress, performance, or
242
+ potential. For concrete aspects, we establish the following
243
+ terms, where each one can be applied to any single paper:
244
+ Impact: We use the number of citations to measure the sci-
245
+ entific impact of a paper, which is common in Scientometrics,
246
+ but not without criticism [19].
247
+ Attention: The online reception, such as tweets and
248
+ Wikipedia articles mentioning a paper, represents the attention
249
+ by researchers and the public.
250
+ Influence: We refer to the resulting score of our proposed
251
+ method, which combines a multitude of aspects, as the influ-
252
+ ence, or IS, of a dataset. We deem this term appropriate for
253
+ any method that goes beyond purely impact-based assessment.
254
+ B. Data Sources and Selection
255
+ We used three sources for our data: ad-datasets.com [6],
256
+ the
257
+ Semantic
258
+ Scholar
259
+ Academic
260
+ Graph
261
+ API
262
+ [13],
263
+ and
264
+ altmetric.com [57]. Based on the DOI and arXiv-Id from
265
+ ad-datasets, we automatically extracted the metadata of papers
266
+ from Semantic Scholar and altmetric.com. Based on these
267
+ papers, all of which describe datasets, we performed data
268
+ exploration, regression, and the computation of the IS.
269
+ AD-Datasets: This web tool offers an overview of over
270
+ 200 data sets in AD
271
+ [5]. It includes a detailed breakdown
272
+ of most dataset entries by 20 different meta categories,
273
+ provided by the authors and the research community. This
274
+ way, relations between datasets, accompanying papers and
275
+ further metadata are available. The underlying data is stored
276
+ in the JSON format and can be accessed accordingly. In this
277
+ work, we utilize the nframes and nsensors metadata, which
278
+ indicate the size of datasets in different dimensions, which is
279
+ a potential aspect of the relevance of a dataset.
280
+ Altmetric: We used the API by altmetric.com [57], which
281
+ provides insight into online attention and readership. These
282
+ properties are provided by the following categories:
283
+ Attention Score: The aascurr aggregates different sources
284
+ into a single score [58]. It is a weighted count of different
285
+ online sources. For example, the weight for a reference on
286
+ Wikipedia is 3, while Twitter and Reddit mentions are both
287
+ weighted with 0.25. Unfortunately, the history of this score is
288
+ only provided for the most recent year.
289
+ Attention Score after three months: The aas3m is the
290
+ percentile of the papers’ Attention Score three months after
291
+ publication. The percentile is calculated in comparison to
292
+ papers that have been released at a similar time.
293
+ Readers: The number of people nreaders that have saved
294
+ a paper in their reference management software. Reading
295
+ a paper is less significant than citing it, but the number of
296
+ readers might imply interest in a paper early on. The number
297
+ of readers is provided individually for multiple reference
298
+ management services, which we sum into a single count for
299
+ online readers. Altmetric.com cannot verify the number of
300
+ readers, thus, it is not included in the attention score. This
301
+ is a relevant attribute, as it decouples the metrics. However,
302
+ there are no historic data available.
303
+ Semantic Scholar: For every accompanying paper of a
304
+ dataset, we pulled data from Semantic Scholar. Sometimes,
305
+ multiple datasets are described in the same paper, which will
306
+ lead to the same information for those datasets. We extracted
307
+ the following nested data:
308
+ • List of referenced papers, including for each a list of all
309
+ citing papers and the year of citation.
310
+ • List of authors and their respective publications, including
311
+ for each publication a list of citing papers and the year
312
+ of citation.
313
+ • List of citing papers, including for each a list of citing
314
+ papers and the year of citation.
315
+ Wherever possible, we collected associated timestamps,
316
+ including the publication year apub of each paper. The first
317
+
318
+ two categories, while dynamic, are directly available. We use
319
+ the citations of references as a measure of the impact of
320
+ references. Having impactful references might indicate that a
321
+ paper is covering popular topics within AD or that the authors
322
+ are knowledgeable in the field.
323
+ The performance of authors can be estimated by evaluating
324
+ their paper count and how many citations they have received,
325
+ which becomes only meaningful over time. As discussed
326
+ earlier, not every citation means usage of a dataset. While it
327
+ would have been interesting to take into account, in which
328
+ section a paper has been cited, this data was not available for
329
+ most papers. Based on the ncit3 citations from the previous
330
+ three years, citations of works that cited a dataset signify the
331
+ value created by working with the dataset, which is why we
332
+ included those.
333
+ A critical aspect of the collected data is that oftentimes, no
334
+ historic information was available. Also, oftentimes, data was
335
+ not available due to limitations, e.g., Altmetric is incompatible
336
+ with DOIs from IEEE publications, which are common in the
337
+ fields of robotics, autonomous driving, and machine learning.
338
+ Similarly, Ravenscroft et al. [15] expressed concerns about
339
+ Altmetric, as they were unable to find 40 % of the papers
340
+ they analyzed, all from the field of computer science.
341
+ C. Data Aggregation
342
+ To further utilize the raw data we collected, we aggregated
343
+ some of it with the aim to assemble a finite list of features
344
+ that describe a dataset. We aggregated some of our data
345
+ sources using the concept of the h-index formula, as it is
346
+ widely known, transparent, and easy to reproduce. In order
347
+ to analyze smaller timespans, we deviated from the typical 5-
348
+ year duration and calculated multiple 3-year indexes ourselves.
349
+ For authors, we applied the h3-index for each individual.
350
+ We then aggregated the h-indices of all authors of a paper via
351
+ the arithmetic mean in autµh3. Respectively, we applied the
352
+ h-index formula to references and citations. For the references
353
+ of a paper, the refh3 is calculated identically to the way it
354
+ is utilized for authors. Just like an author has papers with
355
+ citations, a paper has references with citations. A high h-index
356
+ for references would signify that several of the referenced
357
+ papers gained lots of attraction. We also applied the h3-index
358
+ formula to the citations and their citations to get the h3-index
359
+ of citations cith3, following Schubert et al. [59]. The final list
360
+ of all extracted and calculated features can be found in Table I.
361
+ D. Cluster Analysis and Regression Setup
362
+ We evaluated our computed features with respect to their
363
+ ability to predict future citations. Therefor, we performed
364
+ linear regression. For this, we first computed clusters of
365
+ the datasets to determine a meaningful time horizon. Subse-
366
+ quently, we defined our regression setup.
367
+ Cluster Analysis: To show that there are meaningful vari-
368
+ ations between clusters, we looked at the impact of papers
369
+ for up to 2 years after publication in a journal or conference
370
+ 1
371
+ 0
372
+ 1
373
+ 2
374
+ years after publication
375
+ 0
376
+ 50
377
+ 100
378
+ 150
379
+ 200
380
+ 250
381
+ 300
382
+ 350
383
+ 400
384
+ ncits
385
+ Fig. 3. Development of the number of citations for publication-clusters over
386
+ a dynamic 3-year window. Papers are clustered based on similar performance.
387
+ Semantic Scholar also tracks citations of pre-prints, which leads to citations
388
+ prior to the publication date of the final work.
389
+ proceedings. As visualized in Fig. 3, clear clusters are visi-
390
+ ble, where line-thickness indicates cluster size. For k-means
391
+ clustering, we used six clusters based on the elbow plot,
392
+ which shows which additional cluster provides a non-marginal
393
+ reduction of the total variation within clusters. The growth of
394
+ citation counts behaves exponentially for the top performing
395
+ works. A clear differentiation between all clusters becomes
396
+ apparent already after one year, which we chose as the time
397
+ horizon for the regression. This allowed us to include more
398
+ recent papers, which would have been excluded otherwise due
399
+ to their missing track record of citations.
400
+ Regression Setup: As independent variables, we included
401
+ the features nsensors, apub, refh3, autµh3, ncit3, and aas3m,
402
+ as shown in Table I, in order to estimate the citation count after
403
+ one year. Preliminary data exploration suggested a curvilinear
404
+ relationship between aas3m and the number of citations.
405
+ Therefore, a quadratic term was added. All predictors were
406
+ standardized by subtracting the mean and dividing by the
407
+ standard deviation prior to the analysis. The feature ncit3 was
408
+ log(x+1)-transformed to ensure a normal distribution of the
409
+ residuals, which are the error terms of the regression.
410
+ For the regression, we were able to utilize 111 datasets, as
411
+ values for all included features were available, and they had
412
+ been released at least one year prior. Residuals and collinearity,
413
+ the ability to linearly predict one independent variable with
414
+ other independent variables, were checked. The collinearity
415
+ was quantified through the variance inflation factor of each
416
+ regressor which all were lower than three. We performed the
417
+ Breusch-Pagan and White test for heteroskedasticity, which is
418
+ the inconsistency of the variance of residuals at different levels
419
+ of the dependent variable. Both tests indicated that we do not
420
+ have sufficient evidence for the presence of heteroskedasticity.
421
+ Still, robust standard errors were used to ensure the standard
422
+ errors are calculated correctly in the presence of heteroskedas-
423
+ ticity which at worst leads to standard errors being estimated
424
+ larger.
425
+
426
+ Feature
427
+ Description
428
+ Availability
429
+ Standardized
430
+ Log(x+1)
431
+ Influence Score
432
+ Source
433
+ nframes
434
+ Number of frames in the dataset
435
+ At publication
436
+
437
+
438
+
439
+ AD-Datasets [6]
440
+ nsensors
441
+ Number of sensor types
442
+ At publication
443
+
444
+
445
+
446
+ AD-Datasets [6]
447
+ apub
448
+ Year of publication
449
+ At publication
450
+
451
+
452
+
453
+ Semantic Scholar [13]
454
+ refh3
455
+ 3 year h-index of references
456
+ At publication
457
+
458
+
459
+
460
+ Semantic Scholar [13]
461
+ autµh3
462
+ Mean 3 year h-index of authors papers
463
+ At publication
464
+
465
+
466
+
467
+ Semantic Scholar [13]
468
+ ncit3
469
+ Number of citations within past 3 years
470
+ Anytime after publication
471
+
472
+
473
+
474
+ Semantic Scholar [13]
475
+ cith3
476
+ 3 year h-index of citations
477
+ >3 years after publication
478
+
479
+
480
+
481
+ Semantic Scholar [13]
482
+ aascurr
483
+ Altmetric Attention Score
484
+ Anytime after publication
485
+
486
+
487
+
488
+ Altmetric [57]
489
+ aas3m
490
+ Altmetric Attention Score at 3 mos
491
+ After 3 months
492
+
493
+
494
+
495
+ Altmetric [57]
496
+ nreaders
497
+ Number of readers
498
+ Anytime after publication
499
+
500
+
501
+
502
+ Altmetric [57]
503
+ TABLE I
504
+ OVERVIEW OF METADATA USED FOR THE REGRESSION ANALYSIS AND THE INFLUENCE SCORE.
505
+ We chose not to include nframes for the regression because
506
+ numerous of the datasets did not contain this meta-information.
507
+ However, we examined a model in which the feature was
508
+ included, which did not lead to new findings.
509
+ E. Regression Analysis
510
+ With the explained regression setup, we were now interested
511
+ in finding statistically significant predictor variables for the
512
+ citation count at the end of the year after publication.
513
+ The aas3m and aas2
514
+ 3m were positively related to the number
515
+ of citations and both relationships were significant at <0.0001.
516
+ Both coefficients were positive. All other features were not
517
+ significantly related to the number of citations. The results are
518
+ reported in Table II.
519
+ coef
520
+ std err
521
+ z
522
+ P>|z|
523
+ [0.025
524
+ 0.975]
525
+ refh3
526
+ 0.0987
527
+ 0.103
528
+ 0.96
529
+ 0.337
530
+ -0.103
531
+ 0.3
532
+ autµh3
533
+ 0.071
534
+ 0.086
535
+ 0.824
536
+ 0.41
537
+ -0.098
538
+ 0.24
539
+ apub
540
+ 0.0281
541
+ 0.084
542
+ 0.337
543
+ 0.736
544
+ -0.136
545
+ 0.192
546
+ nsensors
547
+ 0.1383
548
+ 0.108
549
+ 1.287
550
+ 0.198
551
+ -0.072
552
+ 0.349
553
+ aas3m
554
+ 0.803
555
+ 0.116
556
+ 6.895
557
+ 0
558
+ 0.575
559
+ 1.031
560
+ aas2
561
+ 3m
562
+ 0.3375
563
+ 0.072
564
+ 4.72
565
+ 0
566
+ 0.197
567
+ 0.478
568
+ intercept
569
+ 2.6402
570
+ 0.117
571
+ 22.48
572
+ 0
573
+ 2.41
574
+ 2.87
575
+ TABLE II
576
+ REGRESSION FOR CITATIONS AFTER ONE YEAR. REGRESSION
577
+ COEFFICIENTS AND 95% CONFIDENCE INTERVAL ARE REPRESENTED ON
578
+ THE LOG SCALE.
579
+ Since only one feature showed a relationship with the
580
+ number of citations, we do not consider a stable prediction
581
+ of citations possible with the available data. In order to still
582
+ perform an early evaluation of datasets, in the following we
583
+ present our Influence Score (IS).
584
+ IV. INFLUENCE SCORE
585
+ We propose the Influence Score (IS), which includes a
586
+ variety of features that are available early on. These are
587
+ weighted dynamically in order to receive an indication of the
588
+ relative performance of any given dataset at any given time.
589
+ The calculation compares each data set with all existing ones
590
+ from the domain, so that relative differences and trends are
591
+ immediately recognizable.
592
+ Percentiles are used to allow relative scoring within the
593
+ surrounding group of datasets. The data sets roughly follow a
594
+ normal distribution in their IS scores. As shown in Table I, we
595
+ utilize eight different features for the IS: nframes, nsensors,
596
+ refh3, autµh3, ncit3, cith3, aascurr and nreaders. This way,
597
+ we consider more than just the citations, but do not exclude
598
+ them: If early citations are already available, they become a
599
+ meaningful part of the score, as the relation to other datasets
600
+ of the peer group is relevant. This way, citation velocity is
601
+ included. The IS is defined as follows:
602
+ IS(paper) = 1/n ∗
603
+ n
604
+
605
+ i=0
606
+ percentile(featurei)
607
+ (1)
608
+ where:
609
+ i = Feature Index
610
+ n = Number of available features
611
+ Only features, which are available, are dynamically included
612
+ in the IS. As we used percentiles of each feature to facil-
613
+ itate the understanding of the features, common issues are
614
+ mitigated. E.g., typical feature values change over time: For
615
+ example, with the growth of AD, the ncit value of a paper
616
+ today is likely higher than a decade ago, which becomes
617
+ clearly visible in Figure 1. Furthermore, commonly observed
618
+ values for features might differ between different fields. This
619
+ helps people who are not familiar with AD or the features to
620
+ easily assess if the score a dataset achieved is high or low.
621
+ A. Qualitative Demonstration
622
+ To showcase the IS, we compare exemplary the development
623
+ of the five most and least cited papers with a latest publication
624
+ in 2019, by their IS and visualize the results in Fig. 4.
625
+ It becomes clearly visible, that the two groups are easily
626
+ distinguishable by their IS, but also that differences within
627
+ the groups are visible.
628
+ The individual features show different pictures: For refh3,
629
+ also papers with only a few citations can have meaningful
630
+ references in their works. ncitt3 and cith3 only confirm what
631
+ was known by our data selection, as we selected the datasets
632
+ by citation count. autµh3 shows, how successful datasets can
633
+ also boost personal careers, as some authors became professors
634
+ and remained active in their field. nsensors and nframes show
635
+
636
+ 2014
637
+ 2016
638
+ 2018
639
+ 2020
640
+ 2022
641
+ years
642
+ 0.0
643
+ 0.2
644
+ 0.4
645
+ 0.6
646
+ 0.8
647
+ 1.0
648
+ IS
649
+ 2014
650
+ 2016
651
+ 2018
652
+ 2020
653
+ 2022
654
+ years
655
+ 0.0
656
+ 0.2
657
+ 0.4
658
+ 0.6
659
+ 0.8
660
+ 1.0
661
+ percentile refh3
662
+ 2014
663
+ 2016
664
+ 2018
665
+ 2020
666
+ 2022
667
+ years
668
+ 0.0
669
+ 0.2
670
+ 0.4
671
+ 0.6
672
+ 0.8
673
+ 1.0
674
+ percentile ncit3
675
+ 2014
676
+ 2016
677
+ 2018
678
+ 2020
679
+ 2022
680
+ years
681
+ 0.0
682
+ 0.2
683
+ 0.4
684
+ 0.6
685
+ 0.8
686
+ 1.0
687
+ percentile cith3
688
+ 2014
689
+ 2016
690
+ 2018
691
+ 2020
692
+ 2022
693
+ years
694
+ 0.0
695
+ 0.2
696
+ 0.4
697
+ 0.6
698
+ 0.8
699
+ 1.0
700
+ percentile aut h3
701
+ 2014
702
+ 2016
703
+ 2018
704
+ 2020
705
+ 2022
706
+ years
707
+ 0.0
708
+ 0.2
709
+ 0.4
710
+ 0.6
711
+ 0.8
712
+ 1.0
713
+ percentile nsensors
714
+ 2014
715
+ 2016
716
+ 2018
717
+ 2020
718
+ 2022
719
+ years
720
+ 0.0
721
+ 0.2
722
+ 0.4
723
+ 0.6
724
+ 0.8
725
+ 1.0
726
+ percentile nframes
727
+ KITTI
728
+ nuImages
729
+ Cars
730
+ Synthia
731
+ Waymo Open Perception
732
+ Daimler Stereo Pedestrian Detection Benchmark
733
+ TRoM
734
+ DriveSeg (Semi-auto)
735
+ DriveSeg (MANUAL)
736
+ WZ-traffic
737
+ Fig. 4. Influence Score and individual features for different datasets. We show exemplary results for the five best and worst performing datasets of all time,
738
+ measured by citations, with a latest release in 2019 for historical data. We also show six individual features of the IS, where historical data was available.
739
+ rather static results, with a trend towards larger datasets being
740
+ more successful.
741
+ B. Quantitative Demonstration
742
+ In order to show the quantitative performance of the IS, we
743
+ showcase all datasets released in 2022 in a detailed overview
744
+ in Table III. Such a pre-filtering process is useful in order
745
+ to explore novel datasets. Here, it becomes clear that the
746
+ IS captures a wide variety of different aspects of a dataset.
747
+ Of particular interest is the fact that even low-performing
748
+ data sets can lead in certain features. Thus, if a researcher
749
+ is interested in certain aspects of a dataset, they can simply
750
+ focus on the features they are interested in and omit the others,
751
+ which enables less-known datasets to be discovered and used.
752
+ Figure 5 shows an overview of the IS distributions.
753
+ 0.0
754
+ 0.1
755
+ 0.2
756
+ 0.3
757
+ 0.4
758
+ 0.5
759
+ 0.6
760
+ 0.7
761
+ 0.8
762
+ 0.9
763
+ 1.0
764
+ IS
765
+ 0
766
+ 2
767
+ 4
768
+ 6
769
+ 8
770
+ 10
771
+ number of datasets from 2022
772
+ Fig. 5. Distribution of the Influence Score (IS) of all datasets from 2022.
773
+ V. CONCLUSION
774
+ In this paper, we addressed the lack of knowledge with
775
+ respect to the scientific impact, attention, and influence of
776
+ datasets in robotics. Our focus was on an early assessment
777
+ of datasets, given a flood of new datasets published every
778
+ year. We analyzed impact measured by citations and evalu-
779
+ ated relations of metadata and features which we extracted
780
+ from multiple online sources. Our regression analysis showed
781
+ no strong relation between future citations and our selected
782
+ features. Subsequently, we presented our developed Influence
783
+ Score (IS). This score utilizes a set of eight features to assess
784
+ any dataset also early on. This is based on an analysis within
785
+ the peer group of all datasets, which allows for the early
786
+ detection of relative trends.
787
+ Our work contributes to a better understanding of datasets,
788
+ which enables researchers to find and assess published
789
+ datasets in the domain of autonomous driving without the
790
+ need of waiting for a track record of citations.
791
+ Limitations and Outlook: For our work, we evaluated the
792
+ paper accompanying the dataset assuming that the paper is a
793
+ good representation of the dataset. When measuring scientific
794
+ impact through citations, we think this holds because the
795
+ paper is actually the cited scientific work. However, not every
796
+ citation might be meaningful, positive, or indicate the usage
797
+ of a dataset. Ideally, large language models could evaluate
798
+ if a dataset is actually used, if cited. Khan et al. [53], who
799
+ analyzed datasets in biodiversity, suggested that the correlation
800
+ between the number of downloads and citations signifies
801
+ that these two measures are comparable representations of
802
+ impact. However, in the domain of AD, download numbers
803
+ are typically not available, but this might change. As some
804
+ datasets are presented in the same paper, a further decoupling
805
+ of accompanying papers and the respective datasets would be
806
+ helpful. We found, that the quality and availability of metadata
807
+ in AD provided by the creators of datasets varies strongly.
808
+ Thus, standards should be established [90]. While we focussed
809
+ on dataset and paper specific features for this work, we are
810
+ also interested in the venue or journal of publication, which
811
+ can be considered as an additional feature in future work.
812
+
813
+ IS
814
+ ncit3
815
+ cith3
816
+ refh3
817
+ autµh3
818
+ nframes
819
+ nsensors
820
+ aascurr
821
+ nreaders
822
+ Waymo Block-NeRF [60]
823
+ 0.82
824
+ 0.7
825
+ 0.53
826
+ 0.95
827
+ 0.87
828
+
829
+
830
+ 1.0
831
+ 0.89
832
+ SHIFT [61]
833
+ 0.62
834
+ 0.25
835
+ 0.2
836
+ 0.99
837
+ 0.88
838
+ 0.94
839
+ 0.77
840
+ 0.65
841
+ 0.42
842
+ Street Hazards [62]
843
+ 0.62
844
+ 0.67
845
+ 0.58
846
+ 0.83
847
+ 0.92
848
+ 0.16
849
+ 0.25
850
+ 0.73
851
+ 0.45
852
+ KITTI-360-APS [63]
853
+ 0.48
854
+ 0.23
855
+ 0.06
856
+ 0.68
857
+ 0.67
858
+ 0.56
859
+ 0.25
860
+ 0.97
861
+ 0.21
862
+ ScribbleKITTI [64]
863
+ 0.45
864
+ 0.2
865
+ 0.15
866
+ 0.83
867
+ 0.97
868
+ 0.32
869
+ 0.25
870
+ 0.63
871
+ 0.02
872
+ BDD100K-APS [63]
873
+ 0.42
874
+ 0.23
875
+ 0.06
876
+ 0.68
877
+ 0.67
878
+ 0.1
879
+ 0.25
880
+ 0.97
881
+ 0.21
882
+ Ithaca365 [65]
883
+ 0.4
884
+ 0.15
885
+ 0.15
886
+ 0.68
887
+ 0.22
888
+ 0.82
889
+ 0.58
890
+ 0.53
891
+ 0.26
892
+ CODA [66]
893
+ 0.39
894
+ 0.2
895
+ 0.15
896
+ 0.75
897
+ 0.36
898
+
899
+ 0.25
900
+ 0.53
901
+ 0.33
902
+ Rope3D [67]
903
+ 0.37
904
+ 0.15
905
+ 0.15
906
+ 0.83
907
+ 0.42
908
+ 0.53
909
+ 0.58
910
+ 0.25
911
+ 0.25
912
+ Comma2k19 LD [68]
913
+ 0.37
914
+ 0.12
915
+ 0.15
916
+ 0.71
917
+ 0.56
918
+
919
+
920
+ 0.64
921
+ 0.02
922
+ RoadSaW [69]
923
+ 0.29
924
+ 0.09
925
+ 0.06
926
+ 0.27
927
+ 0.19
928
+ 0.83
929
+ 0.25
930
+
931
+
932
+ K-Radar [70]
933
+ 0.26
934
+ 0.09
935
+ 0.06
936
+ 0.47
937
+ 0.11
938
+ 0.44
939
+ 0.93
940
+ 0.4
941
+ 0.26
942
+ CARLA-WildLife [71]
943
+ 0.26
944
+ 0.03
945
+ 0.06
946
+ 0.92
947
+ 0.12
948
+
949
+ 0.25
950
+ 0.34
951
+ 0.08
952
+ AugKITTI [72]
953
+ 0.25
954
+ 0.03
955
+ 0.06
956
+ 0.88
957
+ 0.16
958
+
959
+
960
+ 0.25
961
+ 0.1
962
+ WildDash 2 [73]
963
+ 0.24
964
+ 0.17
965
+ 0.2
966
+ 0.52
967
+ 0.08
968
+
969
+ 0.25
970
+
971
+
972
+ MONA [74]
973
+ 0.23
974
+ 0.03
975
+ 0.06
976
+ 0.36
977
+ 0.48
978
+
979
+ 0.25
980
+
981
+
982
+ Street Obstacle Sequences [71]
983
+ 0.23
984
+ 0.03
985
+ 0.06
986
+ 0.92
987
+ 0.12
988
+ 0.07
989
+ 0.25
990
+ 0.34
991
+ 0.08
992
+ HDBD [75]
993
+ 0.22
994
+ 0.03
995
+ 0.06
996
+ 0.16
997
+ 0.64
998
+
999
+ 0.58
1000
+
1001
+
1002
+ GLARE [76]
1003
+ 0.22
1004
+ 0.03
1005
+ 0.06
1006
+ 0.47
1007
+ 0.29
1008
+
1009
+
1010
+ 0.42
1011
+ 0.06
1012
+ Boreas [77]
1013
+ 0.22
1014
+ 0.29
1015
+ 0.25
1016
+ 0.14
1017
+ 0.2
1018
+
1019
+
1020
+
1021
+
1022
+ Autonomous Platform Inertial [78]
1023
+ 0.21
1024
+ 0.2
1025
+ 0.25
1026
+ 0.36
1027
+ 0.03
1028
+
1029
+
1030
+
1031
+
1032
+ aiMotive [79]
1033
+ 0.2
1034
+ 0.03
1035
+ 0.06
1036
+ 0.33
1037
+ 0.04
1038
+ 0.41
1039
+ 0.93
1040
+ 0.44
1041
+ 0.13
1042
+ CarlaScenes [80]
1043
+ 0.2
1044
+ 0.03
1045
+ 0.06
1046
+ 0.52
1047
+ 0.2
1048
+
1049
+ 0.77
1050
+
1051
+
1052
+ LUMPI [81]
1053
+ 0.19
1054
+ 0.09
1055
+ 0.06
1056
+ 0.02
1057
+ 0.07
1058
+ 0.74
1059
+ 0.58
1060
+
1061
+
1062
+ A9 [82]
1063
+ 0.19
1064
+ 0.25
1065
+ 0.25
1066
+ 0.14
1067
+ 0.1
1068
+
1069
+ 0.58
1070
+ 0.29
1071
+ 0.12
1072
+ Amodal Cityscapes [83]
1073
+ 0.19
1074
+ 0.09
1075
+ 0.06
1076
+ 0.27
1077
+ 0.43
1078
+ 0.11
1079
+ 0.25
1080
+ 0.29
1081
+ 0.08
1082
+ R-U-MAAD [84]
1083
+ 0.16
1084
+ 0.03
1085
+ 0.06
1086
+ 0.33
1087
+ 0.35
1088
+
1089
+ 0.25
1090
+ 0.15
1091
+ 0.06
1092
+ TJ4DRadSet [85]
1093
+ 0.15
1094
+ 0.12
1095
+ 0.15
1096
+ 0.14
1097
+ 0.05
1098
+
1099
+
1100
+ 0.42
1101
+ 0.02
1102
+ OpenMPD [86]
1103
+ 0.14
1104
+ 0.18
1105
+ 0.15
1106
+ 0.02
1107
+ 0.07
1108
+ 0.27
1109
+ 0.58
1110
+
1111
+
1112
+ I see you [87]
1113
+ 0.12
1114
+ 0.03
1115
+ 0.06
1116
+ 0.09
1117
+ 0.01
1118
+
1119
+
1120
+ 0.44
1121
+ 0.08
1122
+ SceNDD [88]
1123
+ 0.11
1124
+ 0.09
1125
+ 0.06
1126
+ 0.16
1127
+ 0.19
1128
+
1129
+
1130
+ 0.15
1131
+ 0.02
1132
+ exiD [89]
1133
+ 0.11
1134
+ 0.12
1135
+ 0.06
1136
+ 0.02
1137
+ 0.24
1138
+
1139
+ 0.25
1140
+
1141
+
1142
+ TABLE III
1143
+ INFLUENCE SCORE AND FEATURES FOR DATASETS RELEASED IN 2022. SORTED BY IS, TOP 3 FEATURES BOLD.
1144
+ VI. ACKNOWLEDGMENT
1145
+ This work results partly from the KIGLIS project supported
1146
+ by the German Federal Ministry of Education and Research
1147
+ (BMBF), grant number 16KIS1231. We want to thank both
1148
+ Altmetric and Semantic Scholar, who have provided us with
1149
+ the necessary API accesses for this work.
1150
+ REFERENCES
1151
+ [1] Waymo, “Waymo One,” https://waymo.com/waymo-one/, 2022, ac-
1152
+ cessed: 2022-12-14.
1153
+ [2] Waabi, “Introducing the Waabi Driver,” https://waabi.ai/introducing-the-
1154
+ waabi-driver/, 2022, accessed: 2022-12-14.
1155
+ [3] World Economic Forum, “3 Ways Autonomous Farming is Driving
1156
+ a New Era of Agriculture,” https://www.weforum.org/agenda/2022/01/
1157
+ autonomous-farming-tractors-agriculture/, 2022, accessed: 2022-12-14.
1158
+ [4] Amazon News, “Meet Amazon’s First Fully Autonomous Mobile
1159
+ Robot,”
1160
+ https://www.youtube.com/watch?v=AmmEbYkYfHY,
1161
+ 2022,
1162
+ accessed: 2022-12-14.
1163
+ [5] D. Bogdoll, F. Schreyer, and J. M. Z¨ollner, “AD-Datasets: A Meta-
1164
+ Collection of Data Sets for Autonomous Driving,” in International
1165
+ Conference on Vehicle Technology and Intelligent Transport Systems,
1166
+ 2022.
1167
+ [6] D. Bogdoll, “ad-datasets,” https://ad-datasets.com/, 2022, accessed:
1168
+ 2022-09-02.
1169
+ [7] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
1170
+ The KITTI dataset,” International Journal of Robotics Research, 2013.
1171
+ [8] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
1172
+ J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam,
1173
+ H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi,
1174
+ Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov, “Scalability in Per-
1175
+ ception for Autonomous Driving: Waymo Open Dataset,” in IEEE/CVF
1176
+ Conference on Computer Vision and Pattern Recognition, 2020.
1177
+ [9] S. Qiao, Y. Zhu, H. Adam, A. Yuille, and L.-C. Chen, “VIP-DeepLab:
1178
+ Learning Visual Perception With Depth-Aware Video Panoptic Seg-
1179
+ mentation,” in IEEE/CVF Conference on Computer Vision and Pattern
1180
+ Recognition, 2021.
1181
+ [10] H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, and H. Omata, “Road
1182
+ damage detection using deep neural networks with images captured
1183
+ through a smartphone,” arXiv:1801.09454, 2018.
1184
+ [11] F. Codevilla, E. Santana, A. M. Lopez, and A. Gaidon, “Exploring
1185
+ the Limitations of Behavior Cloning for Autonomous Driving,” in
1186
+ IEEE/CVF International Conference on Computer Vision, 2019.
1187
+ [12] A. Lehner, S. Gasperini, A. Marcos-Ramiro, M. Schmidt, M.-A. N.
1188
+ Mahani, N. Navab, B. Busam, and F. Tombari, “3D-VField: Adversarial
1189
+ Augmentation of Point Clouds for Domain Generalization in 3D Object
1190
+ Detection,” in IEEE/CVF Conference on Computer Vision and Pattern
1191
+ Recognition, 2022.
1192
+ [13] Allen Institute for AI, “Semantic Scholar Academic Graph API,” https:
1193
+ //www.semanticscholar.org/product/api, accessed: 2022-09-17.
1194
+ [14] P. Chellappandi and C. S. Vijayakumar, “Bibliometrics, Scientometrics,
1195
+ Webometrics/Cybermetrics, Informetrics and Altmetrics – An Emerging
1196
+
1197
+ Field in Library and Information Science Research,” Shanlax Interna-
1198
+ tional Journal of Education, 2018.
1199
+ [15] J. Ravenscroft, M. Liakata, A. Clare, and D. Duma, “Measuring scientific
1200
+ impact beyond academia: An assessment of existing impact metrics and
1201
+ proposed improvements,” PLOS ONE, 2017.
1202
+ [16] J. E. Hirsch, “An index to quantify an individual’s scientific research
1203
+ output,” National Academy of Sciences, 2005.
1204
+ [17] D. Hicks, P. Wouters, L. Waltman, S. de Rijcke, and I. Rafols, “Biblio-
1205
+ metrics: The Leiden Manifesto for research metrics,” Nature, 2015.
1206
+ [18] L. Leydesdorff, L. Bornmann, J. A. Comins, and S. Milojevi´c, “Cita-
1207
+ tions: Indicators of Quality? The Impact Fallacy,” Frontiers in Research
1208
+ Metrics and Analytics, 2016.
1209
+ [19] L. Bornmann and H.-D. Daniel, “What do citation counts measure? A
1210
+ review of studies on citing behavior,” Journal of Documentation, 2008.
1211
+ [20] D. D. S. Price, “A general theory of bibliometric and other cumulative
1212
+ advantage processes,” Journal of the American Society for Information
1213
+ Science, 1976.
1214
+ [21] D. S. Chawla, “Men cite themselves more than women do,” Nature,
1215
+ 2016.
1216
+ [22] J. Mingers and L. Leydesdorff, “A review of theory and practice in
1217
+ scientometrics,” European Journal of Operational Research, 2015.
1218
+ [23] M. Valenzuela, V. A. Ha, and O. Etzioni, “Identifying meaningful
1219
+ citations,” in AAAI Workshop: Scholarly Big Data, 2015.
1220
+ [24] Semantic Scholar, “What are highly influential citations?” https:
1221
+ //www.semanticscholar.org/faq#influential-citations,
1222
+ 2022,
1223
+ accessed:
1224
+ 2022-12-18.
1225
+ [25] M.-H. Le, T.-B. Ho, and Y. Nakamori, “Detecting Emerging Trends from
1226
+ Scientific Corpora,” International Journal of Knowledge and Systems
1227
+ Sciences, 2005.
1228
+ [26] A. A. Salatino, “Early Detection and Forecasting of Research Trends,”
1229
+ in Doctoral Consortium Co-located with the International Semantic Web
1230
+ Conference, 2015.
1231
+ [27] M. Farber and A. Jatowt, “Finding Temporal Trends of Scientific Con-
1232
+ cepts,” in International Workshop on Bibliometric-enhanced Information
1233
+ Retrieval, 2019.
1234
+ [28] M. Farber, C. Nishioka, and A. Jatowt, “ScholarSight: Visualizing
1235
+ Temporal Trends of Scientific Concepts,” in ACM/IEEE Joint Conference
1236
+ on Digital Libraries, 2019.
1237
+ [29] J. L´opez Belmonte, A. Segura-Robles, A.-J. Moreno-Guerrero, and
1238
+ M. E. Parra-Gonz´alez, “Machine Learning and Big Data in the Impact
1239
+ Literature. A Bibliometric Review with Scientific Mapping in Web of
1240
+ Science,” Symmetry, 2020.
1241
+ [30] F. M. Paulus, N. Cruz, and S. Krach, “The Impact Factor Fallacy,”
1242
+ Frontiers in Psychology, 2018.
1243
+ [31] E. Callaway, “Beat it, impact factor! Publishing elite turns against
1244
+ controversial metric,” Nature, 2016.
1245
+ [32] J. Beel, B. Gipp, S. Langer, and C. Breitinger, “Research-paper recom-
1246
+ mender systems: a literature survey,” International Journal on Digital
1247
+ Libraries, 2016.
1248
+ [33] M. F¨arber, A. Thiemann, and A. Jatowt, “To cite, or not to cite? detecting
1249
+ citation contexts in text,” in European Conference on Information
1250
+ Retrieval, 2018.
1251
+ [34] L. Fu and C. Aliferis, “Using content-based and bibliometric features
1252
+ for machine learning models to predict citation counts in the biomedical
1253
+ literature,” Scientometrics, 2010.
1254
+ [35] N. Pobiedina and R. Ichise, “Citation count prediction as a link predic-
1255
+ tion problem,” Applied Intelligence, 2016.
1256
+ [36] A. Ma, Y. Liu, X. Xu, and T. Dong, “A deep-learning based citation
1257
+ count prediction model with paper metadata semantic features,” Scien-
1258
+ tometrics, 2021.
1259
+ [37] M. Li, J. Xu, B. Ge, J. Liu, J. Jiang, and Q. Zhao, “A Deep Learning
1260
+ Methodology for Citation Count Prediction with Large-scale Biblio-
1261
+ Features,” in 2019 IEEE International Conference on Systems, Man and
1262
+ Cybernetics, 2019.
1263
+ [38] E. B¨ut¨un and M. Kaya, “Predicting Citation Count of Scientists as a
1264
+ Link Prediction Problem,” IEEE Transactions on Cybernetics, 2020.
1265
+ [39] L. Bornmann and W. Marx, “The proposal of a broadening of perspective
1266
+ in evaluative bibliometrics by complementing the times cited with a cited
1267
+ reference analysis,” Journal of Informetrics, 2013.
1268
+ [40] A. W. K. Yeung, M. G. Georgieva, A. G. Atanasov, and N. T. Tzvetkov,
1269
+ “Monoamine Oxidases (MAOs) as Privileged Molecular Targets in
1270
+ Neuroscience: Research Literature Analysis,” Frontiers in Molecular
1271
+ Neuroscience, 2019.
1272
+ [41] L. Bornmann, “Do altmetrics point to the broader impact of research?
1273
+ An overview of benefits and disadvantages of altmetrics,” Journal of
1274
+ Informetrics, 2014.
1275
+ [42] L. Bornmann and R. Haunschild, “Do altmetrics correlate with the
1276
+ quality of papers? A large-scale empirical study based on F1000Prime
1277
+ data,” PLOS ONE, 2018.
1278
+ [43] C. T. Lamb, S. L. Gilbert, and A. T. Ford, “Tweet success? Scientific
1279
+ communication correlates with increased citations in Ecology and Con-
1280
+ servation,” PeerJ, 2018.
1281
+ [44] J. Zavrel, “Can AI help us understand ICML 2022?” https://www.zeta-
1282
+ alpha.com/post/can-ai-help-us-understand-icml-2022, 2022, accessed:
1283
+ 2022-08-18.
1284
+ [45] M. F¨arber, “Analyzing the github repositories of research papers,” in
1285
+ ACM/IEEE Joint Conference on Digital Libraries, 2020.
1286
+ [46] S. Haustein, I. Peters, J. Bar-Ilan, J. Priem, H. Shema, and J. Terlies-
1287
+ ner, “Coverage and adoption of altmetrics sources in the bibliometric
1288
+ community,” Scientometrics, 2014.
1289
+ [47] C. Sugimoto, “”Attention is not Impact” and Other Challenges for Alt-
1290
+ metrics,”
1291
+ https://www.wiley.com/network/researchers/promoting-your-
1292
+ article/attention-is-not-impact-and-other-challenges-for-altmetrics,
1293
+ 2015, accessed: 2022-07-04.
1294
+ [48] M. F¨arber and D. Lamprecht, “The data set knowledge graph: Creating
1295
+ a linked open data source for data sets,” Quantitative Science Studies,
1296
+ 2021.
1297
+ [49] A. D’Ulizia, M. C. Caschera, F. Ferri, and P. Grifoni, “Fake news
1298
+ detection: A survey of evaluation datasets,” PeerJ Computer Science,
1299
+ 2021.
1300
+ [50] P. Utamachant and C. Anutariya, “An Analysis of High-Value Datasets:
1301
+ A Case Study of Thailand’s Open Government Data,” in International
1302
+ Joint Conference on Computer Science and Software Engineering, 2018.
1303
+ [51] A. Nguyen and T. Weller, “FAIRnets Search - A Prototype Search
1304
+ Service to Find Neural Networks,” in International Conference on
1305
+ Semantic Systems Posters&Demos Track, 2019.
1306
+ [52] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton,
1307
+ M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos,
1308
+ P. E. Bourne, J. Bouwman, A. J. Brookes, T. Clark, M. Crosas, I. Dillo,
1309
+ O. Dumon, S. Edmunds, C. T. Evelo, R. Finkers, A. Gonzalez-Beltran,
1310
+ A. J. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa, P. A. ’t Hoen,
1311
+ R. Hooft, T. Kuhn, R. Kok, J. Kok, S. J. Lusher, M. E. Martone, A. Mons,
1312
+ A. L. Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik, S.-A.
1313
+ Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn, M. A. Swertz,
1314
+ M. Thompson, J. van der Lei, E. van Mulligen, J. Velterop, A. Waag-
1315
+ meester, P. Wittenburg, K. Wolstencroft, J. Zhao, and B. Mons, “The
1316
+ fair guiding principles for scientific data management and stewardship,”
1317
+ Scientific Data, 2016.
1318
+ [53] N. Khan, M. Thelwall, and K. Kousha, “Measuring the impact of bio-
1319
+ diversity datasets: Data reuse, citations and altmetrics,” Scientometrics,
1320
+ 2021.
1321
+ [54] Global Biodiversity Information Facility, “What is gbif?” https://
1322
+ www.gbif.org/what-is-gbif, 2022, accessed: 2022-09-19.
1323
+ [55] ——, “Data papers,” https://www.gbif.org/data-papers, 2022, accessed:
1324
+ 2022-09-19.
1325
+ [56] M. F¨arber, A. Albers, and F. Sch¨uber, “Identifying used methods
1326
+ and datasets in scientific publications,” in AAAI Workshop: Scientific
1327
+ Document Understanding, 2021.
1328
+ [57] altmetric.com, “Altmetric,” https://www.altmetric.com/, accessed: 2022-
1329
+ 09-17.
1330
+ [58] Williams, “The Altmetric score is now the Altmetric Attention Score,”
1331
+ 2016.
1332
+ [59] A. Schubert, “Using the h-index for assessing single publications,”
1333
+ Scientometrics, 2008.
1334
+ [60] M. Tancik, V. Casser, X. Yan, S. Pradhan, B. Mildenhall, P. P. Srinivasan,
1335
+ J. T. Barron, and H. Kretzschmar, “Block-NeRF: Scalable Large Scene
1336
+ Neural View Synthesis,” arXiv:2202.05263, 2022.
1337
+ [61] T. Sun, M. Segu, J. Postels, Y. Wang, L. Van Gool, B. Schiele,
1338
+ F. Tombari, and F. Yu, “SHIFT: A Synthetic Driving Dataset for
1339
+ Continuous Multi-Task Domain Adaptation,” arXiv:2206.08367, 2022.
1340
+ [62] D. Hendrycks, S. Basart, M. Mazeika, A. Zou, J. Kwon, M. Mostajabi,
1341
+ J. Steinhardt, and D. Song, “Scaling Out-of-Distribution Detection for
1342
+ Real-World Settings,” arXiv:1911.11132, 2022.
1343
+ [63] R.
1344
+ Mohan
1345
+ and
1346
+ A.
1347
+ Valada,
1348
+ “Amodal
1349
+ Panoptic
1350
+ Segmentation,”
1351
+ arXiv:2202.11542, 2022.
1352
+ [64] O. Unal, D. Dai, and L. Van Gool, “Scribble-Supervised LiDAR
1353
+ Semantic Segmentation,” arXiv:2203.08537, 2022.
1354
+
1355
+ [65] C. A. Diaz-Ruiz, Y. Xia, Y. You, J. Nino, J. Chen, J. Monica,
1356
+ X. Chen, K. Luo, Y. Wang, M. Emond, W.-L. Chao, B. Hariharan,
1357
+ K. Q. Weinberger, and M. Campbell, “Ithaca365: Dataset and Driv-
1358
+ ing Perception under Repeated and Challenging Weather Conditions,”
1359
+ arXiv:2208.01166, 2022.
1360
+ [66] K. Li, K. Chen, H. Wang, L. Hong, C. Ye, J. Han, Y. Chen, W. Zhang,
1361
+ C. Xu, D.-Y. Yeung, X. Liang, Z. Li, and H. Xu, “CODA: A Real-
1362
+ World Road Corner Case Dataset for Object Detection in Autonomous
1363
+ Driving,” arXiv:2203.07724, 2022.
1364
+ [67] X. Ye, M. Shu, H. Li, Y. Shi, Y. Li, G. Wang, X. Tan, and E. Ding,
1365
+ “Rope3D: TheRoadside Perception Dataset for Autonomous Driving and
1366
+ Monocular 3D Object Detection Task,” arXiv:2203.13608, 2022.
1367
+ [68] T. Sato and Q. A. Chen, “Towards Driving-Oriented Metric for Lane
1368
+ Detection Models,” arXiv:2203.16851, 2022.
1369
+ [69] K. Cordes, C. Reinders, P. Hindricks, J. Lammers, B. Rosenhahn,
1370
+ and H. Broszio, “RoadSaW: A Large-Scale Dataset for Camera-Based
1371
+ Road Surface and Wetness Estimation,” in IEEE/CVF Conference on
1372
+ Computer Vision and Pattern Recognition Workshops, 2022.
1373
+ [70] D.-H. Paek, S.-H. Kong, and K. T. Wijaya, “K-Radar: 4D Radar Object
1374
+ Detection for Autonomous Driving in Various Weather Conditions,”
1375
+ arXiv:2206.08171, 2022.
1376
+ [71] K. Maag, R. Chan, S. Uhlemeyer, K. Kowol, and H. Gottschalk, “Two
1377
+ Video Data Sets for Tracking and Retrieval of Out of Distribution
1378
+ Objects,” arXiv:2210.02074, 2022.
1379
+ [72] Y. Pan, F. Xie, and H. Zhao, “Understanding the Challenges When
1380
+ 3D Semantic Segmentation Faces Class Imbalanced and OOD Data,”
1381
+ arXiv:2203.00214, 2022.
1382
+ [73] O. Zendel, M. Schorghuber, B. Rainer, M. Murschitz, and C. Belez-
1383
+ nai, “Unifying Panoptic Segmentation for Autonomous Driving,” in
1384
+ IEEE/CVF Conference on Computer Vision and Pattern Recognition,
1385
+ 2022.
1386
+ [74] L. Gressenbuch, K. Esterle, T. Kessler, and M. Althoff, “MONA: The
1387
+ Munich Motion Dataset of Natural Driving,” in IEEE International
1388
+ Conference on Intelligent Transportation Systems, 2022.
1389
+ [75] Y. Qiu, C. Busso, T. Misu, and K. Akash, “Incorporating Gaze Behav-
1390
+ ior Using Joint Embedding With Scene Context for Driver Takeover
1391
+ Detection,” in IEEE International Conference on Acoustics, Speech and
1392
+ Signal Processing, 2022.
1393
+ [76] N. Gray, M. Moraes, J. Bian, A. Tian, A. Wang, H. Xiong, and
1394
+ Z. Guo, “GLARE: A Dataset for Traffic Sign Detection in Sun Glare,”
1395
+ arXiv:2209.08716, 2022.
1396
+ [77] K. Burnett, D. J. Yoon, Y. Wu, A. Z. Li, H. Zhang, S. Lu, J. Qian,
1397
+ W.-K. Tseng, A. Lambert, K. Y. K. Leung, A. P. Schoellig, and
1398
+ T. D. Barfoot, “Boreas: A Multi-Season Autonomous Driving Dataset,”
1399
+ arXiv:2203.10168, 2022.
1400
+ [78] A. Shurin, A. Saraev, M. Yona, Y. Gutnik, S. Faber, A. Etzion, and
1401
+ I. Klein, “The Autonomous Platforms Inertial Dataset,” IEEE Access,
1402
+ vol. 10, 2022.
1403
+ [79] T. Matuszka, I. Barton, ´A. Butykai, P. Hajas, D. Kiss, D. Kov´acs,
1404
+ S.
1405
+ Kuns´agi-M´at´e,
1406
+ P.
1407
+ Lengyel,
1408
+ G.
1409
+ N´emeth,
1410
+ L.
1411
+ Pet˝o,
1412
+ D.
1413
+ Ribli,
1414
+ D. Szeghy, S. Vajna, and B. Varga, “aiMotive Dataset: A Multimodal
1415
+ Dataset for Robust Autonomous Driving with Long-Range Perception,”
1416
+ arXiv:2211.09445, 2022.
1417
+ [80] A. Kloukiniotis, A. Papandreou, C. Anagnostopoulos, A. Lalos, P. Kap-
1418
+ salas, D.-V. Nguyen, and K. Moustakas, “CarlaScenes: A synthetic
1419
+ dataset for odometry in autonomous driving,” in IEEE/CVF Conference
1420
+ on Computer Vision and Pattern Recognition Workshops, 2022.
1421
+ [81] S. Busch, C. Koetsier, J. Axmann, and C. Brenner, “LUMPI: The Leibniz
1422
+ University Multi-Perspective Intersection Dataset,” in IEEE Intelligent
1423
+ Vehicles Symposium, 2022.
1424
+ [82] C. Creß, W. Zimmer, L. Strand, V. Lakshminarasimhan, M. Fortkord,
1425
+ S. Dai, and A. Knoll, “A9-Dataset: Multi-Sensor Infrastructure-Based
1426
+ Dataset for Mobility Research,” arXiv:2204.06527, 2022.
1427
+ [83] J. Breitenstein and T. Fingscheidt, “Amodal Cityscapes: A New Dataset,
1428
+ its Generation, and an Amodal Semantic Segmentation Challenge Base-
1429
+ line,” arXiv:2206.00527, 2022.
1430
+ [84] J. Wiederer, J. Schmidt, U. Kressel, K. Dietmayer, and V. Belagiannis,
1431
+ “A Benchmark for Unsupervised Anomaly Detection in Multi-Agent
1432
+ Trajectories,” arXiv:2209.01838, 2022.
1433
+ [85] L. Zheng, Z. Ma, X. Zhu, B. Tan, S. Li, K. Long, W. Sun, S. Chen,
1434
+ L. Zhang, M. Wan, L. Huang, and J. Bai, “TJ4DRadSet: A 4D Radar
1435
+ Dataset for Autonomous Driving,” in IEEE International Conference on
1436
+ Intelligent Transportation Systems, 2022.
1437
+ [86] X. Zhang, Z. Li, Y. Gong, D. Jin, J. Li, L. Wang, Y. Zhu, and H. Liu,
1438
+ “OpenMPD: An Open Multimodal Perception Dataset for Autonomous
1439
+ Driving,” IEEE Transactions on Vehicular Technology, vol. 71, no. 3,
1440
+ 2022.
1441
+ [87] H. Quispe, J. Sumire, P. Condori, E. Alvarez, and H. Vera, “I see
1442
+ you: A Vehicle-Pedestrian Interaction Dataset from Traffic Surveillance
1443
+ Cameras,” arXiv:2211.09342, 2022.
1444
+ [88] A. Prabu, N. Ranjan, L. Li, R. Tian, S. Chien, Y. Chen, and R. Sherony,
1445
+ “SceNDD: A Scenario-based Naturalistic Driving Dataset,” in IEEE
1446
+ International Conference on Intelligent Transportation Systems, 2022.
1447
+ [89] T. Moers, L. Vater, R. Krajewski, J. Bock, A. Zlocki, and L. Eckstein,
1448
+ “The exiD Dataset: A Real-World Trajectory Dataset of Highly Inter-
1449
+ active Highway Scenarios in Germany,” in IEEE Intelligent Vehicles
1450
+ Symposium, 2022.
1451
+ [90] Google Search Central, “Dataset (dataset, datacatalog, datadownload)
1452
+ structured data,” https://developers.google.com/search/docs/appearance/
1453
+ structured-data/dataset, accessed: 2023-01-05.
1454
+
FdE0T4oBgHgl3EQfRAAw/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
FdE1T4oBgHgl3EQf-wYy/content/tmp_files/2301.03572v1.pdf.txt ADDED
@@ -0,0 +1,1607 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Non-oscillating Early Dark Energy and
2
+ Quintessence from α-Attractors
3
+ Lucy Brissenden, Konstantinos Dimopoulos and Samuel S´anchez
4
+ L´opez
5
+ Consortium for Fundamental Physics, Physics Department,
6
+ Lancaster University, Lancaster LA1 4YB, United Kingdom.
7
+ E-mail: l.brissenden@lancaster.ac.uk, k.dimopoulos1@lancaster.ac.uk,
8
+ s.sanchezlopez@lancaster.ac.uk
9
+ Abstract.
10
+ Early dark energy (EDE) is one of the most promising possibilities in order to
11
+ resolve the Hubble tension: the discrepancy between early and late-Universe measurements
12
+ of the Hubble constant. In this paper we propose a model of a scalar field which can explain
13
+ both EDE and late Dark Energy (DE) in a joined manner without additional fine-tuning.
14
+ The field features kinetic poles as with α-attractors. Our model provides an injection of EDE
15
+ near matter-radiation equality, and redshifts away shortly after via free-fall, later refreezing to
16
+ become late-time DE at the present day. Using reasonable estimates of the current constraints
17
+ on EDE from the literature, we find that the parameter space is narrow but viable. As such
18
+ our model is readily falsifiable. In contrast to other work in EDE, our model is non-oscillatory,
19
+ which causes its decay to be faster than that of the usual oscillatory EDE, thereby achieving
20
+ better agreement with observations.
21
+ arXiv:2301.03572v1 [astro-ph.CO] 9 Jan 2023
22
+
23
+ Contents
24
+ 1
25
+ Introduction
26
+ 1
27
+ 1.1
28
+ The Hubble tension
29
+ 2
30
+ 1.2
31
+ Early Dark Energy
32
+ 2
33
+ 1.3
34
+ α-attractors
35
+ 3
36
+ 1.4
37
+ Quintessence
38
+ 4
39
+ 2
40
+ The Model
41
+ 5
42
+ 2.1
43
+ Lagrangian and Field Equations
44
+ 5
45
+ 2.2
46
+ Shape of Potential and Expected Behaviour
47
+ 5
48
+ 2.3
49
+ Asymptotic forms of the scalar potential
50
+ 5
51
+ 2.3.1
52
+ Expected Field Behaviour
53
+ 7
54
+ 2.4
55
+ Tuning requirements
56
+ 8
57
+ 3
58
+ Numerical Simulation
59
+ 9
60
+ 4
61
+ Results and analysis
62
+ 11
63
+ 4.1
64
+ Parameter Space
65
+ 11
66
+ 4.2
67
+ Field Behaviour
68
+ 13
69
+ 5
70
+ Initial Conditions
71
+ 14
72
+ 6
73
+ Conclusions
74
+ 18
75
+ A Quintessential Inflation
76
+ 19
77
+ 1
78
+ Introduction
79
+ In the last few decades cosmological observations of the early and late Universe have con-
80
+ verged into a broad understanding of the history of our Universe from the very first seconds
81
+ of its existence until today. Thus, cosmology has developed a standard model called the
82
+ concordance model, or in short ΛCDM.
83
+ However, the latest data might imply that the celebrated ΛCDM model is not that
84
+ robust after all. In particular, there is a 5-σ discrepancy between the measurements of the
85
+ current expansion rate, the Hubble constant H0, as inferred by early Universe observations
86
+ compared with late Universe observations. This Hubble tension has undermined our confi-
87
+ dence in ΛCDM and as such it is investigated intensely at present.
88
+ In this work we study a toy model that can simultaneously solve the Hubble tension
89
+ and explain the current accelerated expansion with no more tuning that in ΛCDM. Our
90
+ model introduces a scalar field which plays both the role of early dark energy (EDE) and
91
+ quintessence. In contrast to most other works in the literature which consider scalar fields
92
+ as EDE, ours is not an oscillating scalar field.
93
+ We use natural units with c = ¯h = 1, the reduced Planck mass mP = 1/
94
+
95
+ 8πG =
96
+ 2.43 × 1018GeV and consider a positive signature metric (−1, +1, +1, +1) throughout the
97
+ present work.
98
+ – 1 –
99
+
100
+ 1.1
101
+ The Hubble tension
102
+ Measurements in observational cosmology can broadly be classified into two groups. These
103
+ are measurements of quantities which depend only on the early-time history of our Universe
104
+ (such as the cosmic microwave background (CMB) radiation at redshift z ≃ 1100, or Baryon
105
+ Acoustic Oscillations (BAO)) and measurements of quantities which depend on present-day
106
+ observations (the primary example of this is the cosmic distance ladder, which measures the
107
+ redshift of observable astrophysical objects such as Cepheid stars and type-1a supernovae,
108
+ at redshift z = O(1)).
109
+ The value of the Hubble constant H0 can in principle be inferred from both early and
110
+ late-time measurements. However, it has been found that while early-time measurements are
111
+ in good agreement with each other, they disagree with current late-time data. Latest analysis
112
+ of the CMB temperature anisotropies’ data gives the value inferred from Planck satellite [1],
113
+ H0 = 67.44 ± 0.58 km s−1Mpc−1,
114
+ (1.1)
115
+ and a distance scale measurement using Cepheid-SN 1a data from the SH0ES collaboration
116
+ [2] as
117
+ H0 = 73.04 ± 1.04 km s−1Mpc−1.
118
+ (1.2)
119
+ This is a 5σ tension which includes estimates of all systematic errors and which the SH0ES
120
+ team conclude has “no indication of arising from measurement uncertainties or analysis varia-
121
+ tions considered to date”. It is becoming increasingly apparent with successive measurements
122
+ that this tension is likely to have a theoretical resolution [3, 4], which can have many possible
123
+ sources [5, 6].
124
+ 1.2
125
+ Early Dark Energy
126
+ One proposed class of solutions to the Hubble tension is models of Early Dark Energy (EDE),
127
+ whose early works include references [7–10], followed by many others, e.g. see Refs. [5, 11–32].
128
+ These involve an injection of energy in the dark energy sector at around the time of matter-
129
+ radiation equality, which then dilutes or otherwise decays away faster than the background
130
+ energy density, such that it becomes negligible before it can be detected in the CMB. As
131
+ briefly reviewed below, such models result in a slight change in the expansion history of the
132
+ Universe, bumping up the value of the Hubble parameter at the present day.
133
+ It has previously been concluded [3, 5, 6] that EDE models are most likely to source
134
+ a theoretical resolution to the Hubble tension. One reason for this is that EDE can effect
135
+ substantial modifications to H0 without significant effect on other cosmological parameters
136
+ which are tightly constrained by observations.1 In particular, EDE models can be incorpo-
137
+ rated into existing scalar-field models of inflation and late-time dark energy; one example of
138
+ the latter is the model detailed in this work.
139
+ However, precisely because EDE models exist so close in time to existing observational
140
+ data, they have significant constraints; the primary consideration being that EDE must be
141
+ subdominant at all times and must decay away fast enough to be essentially negligible at
142
+ the time of last scattering translating to a redshift rate that is faster than radiation [8]. So
143
+ far, in previous works in EDE, this has been achieved by considering first or second-order
144
+ phase transitions (e.g. [23], [29]). These abrupt events might have undesirable side-effects
145
+ 1Models which modify other cosmological parameters are often unable to reconcile their changes with
146
+ current observational constraints on said parameters (see Ref. [5] for a comprehensive review).
147
+ – 2 –
148
+
149
+ such as inhomogeneities from bubble collisions or topological defects. Other proposed models
150
+ [5, 7, 8, 23–30] typically feature oscillatory behaviour to achieve the rapid decay rate necessary
151
+ for EDE to be negligible at last scattering. As with the original proposal in Ref. [7], the
152
+ EDE field is taken to oscillate around its Vacuum Expectation Value (VEV) in a potential
153
+ minimum which is tuned to be of order higher than quartic. As a result, its energy density
154
+ decays on average as ∝ a−n, with 4 < n < 6. In contrast, in our model, the EDE scalar field
155
+ experiences a period of kinetic domination, where the field is in non-oscillatory free-fall and
156
+ its density decreases as ∝ a−6, exactly rather than approximately.
157
+ Before continuing, we briefly explain how EDE manages to increase the value of H0
158
+ as from CMB observations. Measurements of the CMB temperature anisotropies provide
159
+ very tight constraints on the cosmological parameters. One would therefore think that this
160
+ severely limits models which alter the Universe content and dynamics at this time. However,
161
+ there are certain classes of models for which this is not the case. These are models that affect
162
+ both the Hubble parameter and rs, the comoving sound horizon2 (in this case during the
163
+ drag epoch, shortly after recombination), given by
164
+ rs =
165
+ � ∞
166
+ zd
167
+ cs(z)
168
+ H(z)dz,
169
+ (1.3)
170
+ where cs(z) is the sound speed and H(z) is the Hubble parameter, both as a function of
171
+ redshift.
172
+ An additional amount of dark energy in the Universe increases the total density, which in
173
+ turn increases the Hubble parameter because of the Friedmann equation ρ ∝ H2. Therefore,
174
+ EDE considers such a brief increase at or before decoupling, which lowers the value of the
175
+ sound horizon because it increases H(z) in Eq. (1.3). However, there is a way to avoid this
176
+ being evident in and therefore disproved by current CMB measurements. This is because
177
+ BAO and CMB measurements do not constrain the value of the sound horizon directly.
178
+ For example, BAO measurements do not constrain the sound horizon alone, but the com-
179
+ bination H(z)rs [33]. The observations of the Planck satellite measure the quantity θ∗ ≡ r∗
180
+ D∗
181
+ [34], the angular scale of the sound horizon; given by ratio of the comoving sound horizon to
182
+ the angular diameter distance at which we observe fluctuations. Both of these measurements
183
+ entail an assumption of ΛCDM cosmology and can be shown to be equally constrained by
184
+ other models, provided that they make only small modifications which simultaneously lower
185
+ the value of rs and increase H0.
186
+ EDE may have a significant drawback, however, in that it does not alleviate the σ8
187
+ tension (associated with matter clustering) and may in fact exacerbate it [3, 35]. As with
188
+ many others, our model does not attempt to solve this problem.
189
+ 1.3
190
+ α-attractors
191
+ Our model unifies EDE with late DE in the context of α-attractors. An earlier attempt
192
+ for such unification in the same theoretical context can be seen in Ref. [30]. However, this
193
+ proposal is also of oscillatory EDE.
194
+ α-attractors [36–44], which appear naturally in conformal field theory or supergravity
195
+ theories, are a class of models whose inflationary predictions continuously interpolate between
196
+ those of chaotic inflation [45] and those of Starobinsky [46] and Higgs inflation [47].
197
+ In
198
+ 2This is the characteristic scale of BAO, typically approximately proportional to the value of the cosmo-
199
+ logical horizon at that point by rs =
200
+ 1
201
+
202
+ 3rH assuming spatial flatness.
203
+ – 3 –
204
+
205
+ supergravity, introducing curvature to the internal field-space manifold can give rise to a
206
+ non-trivial K¨ahler metric, which results in kinetic poles for some of the scalar fields of the
207
+ theory. The free parameter α is inversely proportional to said curvature. It is also worth
208
+ clarifying what is meant by the word “attractor”. It is not only used in the usual sense (i.e.,
209
+ field trajectories during inflation flowing to a unique one, regardless of the initial conditions),
210
+ but also to refer to the fact that the inflationary predictions are largely insensitive of the
211
+ specific characteristics of the model under consideration. Such an attractor behaviour is seen
212
+ for sufficiently large curvature (small α) in the internal field-space manifold.
213
+ In practical terms, the scalar field has a non-canonical kinetic term, featuring two poles,
214
+ which the field cannot transverse. To aid our intuition, the field can be canonically normalised
215
+ via a field redefinition, such that the finite poles for the non-canonical field are transposed
216
+ to infinity for the canonical one. As a result, the scalar potential is “stretched” near the
217
+ poles, resulting in two plateau regions, which are useful for modelling inflation, see e.g. Refs.
218
+ [48–53] or quintessence [54], or both, in the context of quintessential inflation [54–56].
219
+ Following the standard recipe, we introduce two poles at ϕ = ±
220
+
221
+ 6α mP by considering
222
+ the Lagrangian
223
+ L =
224
+ − 1
225
+ 2(∂ϕ)2
226
+ (1 −
227
+ ϕ2
228
+ 6α m2
229
+ P )2 − V (ϕ) ,
230
+ (1.4)
231
+ where ϕ is the non-canonical scalar field and we use the short-hand notation (∂ϕ)2 ≡
232
+ gµν∂µϕ ∂νϕ. We then redefine the non-canonical field in terms of the canonical scalar field φ
233
+ as
234
+ dφ =
235
+
236
+ 1 −
237
+ ϕ2
238
+ 6αm2
239
+ P
240
+
241
+ ϕ = mP
242
+
243
+ 6α tanh
244
+
245
+ φ
246
+
247
+ 6α mP
248
+
249
+ .
250
+ (1.5)
251
+ It is obvious that the poles ϕ = ±
252
+
253
+ 6α are transposed to infinity.
254
+ In terms of the canonical field, the Lagrangian now reads
255
+ L = −1
256
+ 2(∂φ)2 − V (φ).
257
+ (1.6)
258
+ 1.4
259
+ Quintessence
260
+ “Early” Dark Energy is so named in order to make it distinct from “late” Dark Dnergy,
261
+ which is the original source of the name (and often just called Dark Energy (DE)). In cos-
262
+ mological terms the latter is just beginning to dominate the Universe at present, making up
263
+ approximately 70% of the Universe’s energy density [57]. This is the mysterious unknown
264
+ substance that is responsible for the current accelerating expansion of the Universe and has
265
+ equation-of-state (barotropic) parameter of w = −1.03 ± 0.03 [1].
266
+ Late DE that is due to an (as-yet-undiscovered) scalar field is called quintessence [58],
267
+ so-named because it is the “fifth element” making up the content of the Universe 3. In this
268
+ case, the Planck-satellite bound on the barotropic parameter of DE is −1 ≤ w < −0.95 [1].
269
+ Quintessence is distinct from other explanations for DE because a scalar field has a variable
270
+ barotropic parameter and can therefore exhibit completely different behaviour in different
271
+ periods of the Universe’s history. In order to get it to look like late-time DE, a scalar field
272
+ should be dominated by its potential density, making its barotropic parameter sufficiently
273
+ 3After baryonic matter, dark matter, photons and neutrinos.
274
+ – 4 –
275
+
276
+ close to −1. It is useful to consider the CPL parametrization, which is obtained by Taylor
277
+ expanding w(z) near the present as [59, 60]
278
+ w(z) = w0 + wa
279
+ z
280
+ z + 1 ,
281
+ (1.7)
282
+ where wa ≡ −(dw/da)0. The Planck satellite observations impose the bounds [1]
283
+ −1 ≤ w < −0.95
284
+ wa = −0.29+0.32
285
+ −0.26 .
286
+ (1.8)
287
+ 2
288
+ The Model
289
+ 2.1
290
+ Lagrangian and Field Equations
291
+ Consider a potential of the form
292
+ V (ϕ) = VX exp
293
+
294
+ −λeκϕ/mP
295
+
296
+ ,
297
+ with VΛ ≡ exp
298
+
299
+ −λeκ
300
+
301
+ 6α�
302
+ VX ,
303
+ (2.1)
304
+ where α, κ, λ are dimensionless model parameters, VX is a constant energy density scale and
305
+ ϕ is the non-canonical scalar field with kinetic poles given by the typical alpha attractors form
306
+ (see [40]) with Lagrangian density given by Eq. (1.4).4 In the above, VΛ is the vacuum density
307
+ at present. To assist our intuition, we switch to the canonically normalised (canonical) scalar
308
+ field φ, using the transformation in Eq. (1.5). In terms of the canonical scalar field, the
309
+ Lagrangian density is then given by Eq. (1.6), where the scalar potential is
310
+ V (φ) = exp
311
+
312
+ λeκ
313
+
314
+ 6α�
315
+ VΛ exp
316
+
317
+ −λeκ
318
+
319
+ 6α tanh(φ/
320
+
321
+ 6α mP)�
322
+ .
323
+ (2.2)
324
+ As usual, the Klein-Gordon equation of motion for the homogeneous canonical field is
325
+ ¨φ + 3H ˙φ + V ′(φ) = 0 ,
326
+ (2.3)
327
+ where the dot and prime denote derivatives with respect to the cosmic time and the scalar
328
+ field respectively, and we assumed that the field was homogenised by inflation, when the
329
+ latter overcame the horizon problem.
330
+ 2.2
331
+ Shape of Potential and Expected Behaviour
332
+ Henceforth we will discuss the behaviour of the field in terms of the variation, i.e. movement
333
+ in field space, of the canonical field.
334
+ 2.3
335
+ Asymptotic forms of the scalar potential
336
+ We are interested in two limits for the potential above: φ → 0 (ϕ → 0) and φ → +∞ (ϕ →
337
+
338
+ 6α mP ). The first limit would correspond to matter-radiation equality. In this limit, the
339
+ potential is
340
+ 4The model parameter is VX and not VΛ, the latter being generated by VX and the remaining model
341
+ parameters as shown in Eq. (2.1).
342
+ – 5 –
343
+
344
+ Veq ≃ exp
345
+
346
+ λ(eκ
347
+
348
+ 6α − 1)
349
+
350
+ VΛ exp(−κλ φeq/mP) ,
351
+ (2.4)
352
+ where the subscript ‘eq’ denotes the time of matter-radiation equality when the field un-
353
+ freezes. It is assumed that the field was originally frozen there. We discuss and justify this
354
+ assumption in Sec. 5. After unfreezing, it is considered that the field has not varied much,
355
+ for the above approximation to hold, i.e.
356
+ 0 ≲ φeq ≪
357
+
358
+ 6αmP .
359
+ (2.5)
360
+ This is a reasonable assumption given that the field begins shortly before matter-radiation
361
+ equality frozen at the origin, unfreezing at some point during this time 5.
362
+ At large φ (φ → ∞), the non-canonical field is near the kinetic pole (ϕ →
363
+
364
+ 6α mP).
365
+ Then the potential in this limit is
366
+ V0 ≃ VΛ
367
+
368
+ 1 + 2κλeκ
369
+
370
+ 6α√
371
+ 6α exp
372
+
373
+
374
+ 2φ0
375
+
376
+ 6α mP
377
+ ��
378
+ ,
379
+ (2.6)
380
+ which, even for sub-Planckian total field excursion in φ, should be a good approximation for
381
+ sufficiently small α. The subscript ‘0’ denotes the present time.
382
+ The above approximations describe well the scalar potential near equality and the
383
+ present time, as shown in Fig. 1. As we exlain below, in between these regions, the scalar
384
+ field free-falls and becomes oblivious of the scalar potential as the term V ′(φ) in its equation
385
+ of motion (2.3) becomes negligible.
386
+ Canonical Potential
387
+ Approximation at Low Field Values
388
+ Approximation at High Field Values
389
+ 0.0
390
+ 0.5
391
+ 1.0
392
+ 1.5
393
+ 2.0
394
+ 2.5
395
+ 3.0
396
+ -120
397
+ -119
398
+ -118
399
+ -117
400
+ -116
401
+ -115
402
+ ϕ
403
+ mP √(6 α)
404
+ log V(ϕ)
405
+ mP
406
+ 4
407
+
408
+ mP
409
+ 4 = 10-120.068
410
+ α =0.0002
411
+ κ=200
412
+ λ=0.01
413
+ Figure 1: Graph of the canonical potential and its two approximations for small and large
414
+ field values, given in Eqs. (2.4) and (2.6) respectively.
415
+ These approximations are useful
416
+ because they are simple exponential potentials with known attractors, so we know the type
417
+ of behaviour the field should exhibit when each approximation is valid. It can be readily seen
418
+ that, after leaving the origin the field jumps off a potential plateau and is free-falling as a
419
+ result.
420
+ 5There is no suggestion in the EDE literature [5, 7, 8, 23–30] that the field has to unfreeze at any particular
421
+ time, as long as it does not grow to larger than the allowed fraction and its energy density is essentially
422
+ negligible by the time of decoupling.
423
+ – 6 –
424
+
425
+ 2.3.1
426
+ Expected Field Behaviour
427
+ Here we explain the rationale behind the mechanism envisaged. We make a number of crude
428
+ approximations, which enable us to follow the evolution of the scalar field, but which need
429
+ to be carefully examined numerically. We do so in the next section.
430
+ First, we consider that originally the field is frozen at zero (for reasons explained in
431
+ Sec. 5). Its energy density is such that it remains frozen there until equality, when it thaws
432
+ following the appropriate exponential attractor, since Veq in Eq. (2.4) is approximately ex-
433
+ ponential [61]. Assuming that this is the subdominant attractor requires that the strength
434
+ of the exponential is [62, 63]
435
+ Z ≡ κλ >
436
+
437
+ 3 .
438
+ (2.7)
439
+ The subdominant exponential attractor dictates that the energy density of the rolling scalar
440
+ field mimics the dominant background energy density. Thus, the density parameter of the
441
+ field is constant, given by the value [61–63]
442
+ Ωeq
443
+ φ ≃ 3
444
+ Z2 =
445
+ 3
446
+ (κλ)2 < 1
447
+ (2.8)
448
+ This provides an estimate of the moment when the originally frozen scalar field, unfreezes and
449
+ begins rolling down its potential. Unfreezing happens when Ωφ (which is growing while the
450
+ field is frozen, because the background density decreases with the expansion of the Universe)
451
+ obtains the above value.
452
+ However, after unfreezing, the field soon experiences the full exp(exp) steeper than
453
+ exponential potential so, it does not follow the subdominant attractor any more but it free-
454
+ falls,6 such that its density scales as ρφ ≃ 1
455
+ 2 ˙φ2 ∝ a−6, until it refreezes at a larger value φF .
456
+ This value is estimated as follows.
457
+ In free-fall, the slope term in the equation of motion (2.3) of the field is negligible, so
458
+ that the equation is reduced to ¨φ + 3H ˙φ ≃ 0, where H = 2/3t after equality. The solution is
459
+ φ(t) = φeq + C
460
+ teq
461
+
462
+ 1 − teq
463
+ t
464
+
465
+ ,
466
+ (2.9)
467
+ where C is an integration constant.
468
+ From the above, it is straightforward to find that
469
+ ˙φ = Ct−2. Thus, the density parameter at equality is
470
+ Ωeq
471
+ φ = ρφ
472
+ ρ
473
+ ����
474
+ eq
475
+ =
476
+ 1
477
+ 2C2t−4
478
+ eq
479
+ 4
480
+ 3( mP teq)2 = 3
481
+ 8
482
+ C2
483
+ (mP teq)2
484
+ ⇒ C =
485
+
486
+ 8
487
+ 3Ωeq
488
+ φ mP teq =
489
+
490
+ 8
491
+ κλ mP teq ,
492
+ (2.10)
493
+ where we used Eq. (2.8), ρφ ≃ 1
494
+ 2 ˙φ2 and that ρ = 1/6πGt2 = 4
495
+ 3(mP /t)2. Thus, the field freezes
496
+ at the value
497
+ φ0 = φeq + C/teq = φeq +
498
+
499
+ 8
500
+ κλ mP ,
501
+ (2.11)
502
+ where we considered that teq ≪ tfreeze < t0 .
503
+ Using that teq ∼ 104 y and t0 ∼ 1010 y, we can estimate
504
+ Veq
505
+ V0
506
+
507
+ Ωeq
508
+ φ ρeq
509
+ 0.7 ρ0
510
+
511
+ 30
512
+ 7(κλ)2
513
+ � t0
514
+ teq
515
+ �2
516
+
517
+ 3
518
+ 7(κλ)2 × 1013 .
519
+ (2.12)
520
+ 6i.e. its energy density is dominated by its kinetic energy density only.
521
+ – 7 –
522
+
523
+ Now, from Eqs. (2.4) and (2.6) we find
524
+ Veq
525
+ V0
526
+
527
+ eλ(eκ
528
+
529
+ 6α−1) exp(−κλ φeq/mP )
530
+ 1 + 2κλ eκ
531
+
532
+ 6α√
533
+ 6α exp
534
+
535
+ −2φ0/
536
+
537
+ 6α mP
538
+ � .
539
+ (2.13)
540
+ In view of Eqs. (2.5) and (2.11), the above can be written as
541
+ Veq
542
+ V0
543
+
544
+ eλ(eκ
545
+
546
+ 6α−1)
547
+ 1 + 2κλ eκ
548
+
549
+ 6α√
550
+ 6α e−2
551
+
552
+ 8/κλ
553
+
554
+ 6α .
555
+ (2.14)
556
+ Taking Ωeq
557
+ φ ≃ 0.1 as required by EDE, Eq. (2.8) suggests
558
+ κλ ≃
559
+
560
+ 30 .
561
+ (2.15)
562
+ Combining this with Eq. (2.12) we obtain
563
+ e
564
+
565
+ 30
566
+ κ (eκ
567
+
568
+ 6α−1) ∼ 1012/7 ,
569
+ (2.16)
570
+ where we have ignored the 2nd term in the denominator of the right-hand-side of Eq. (2.14).
571
+ From the above we see that, κ is large when α is small. Taking, as an example, α = 0.01
572
+ we obtain κ ≃ 18 and λ ≃ 0.30 (from Eq. (2.15)). With these values, the second term in the
573
+ denominator of the right-hand-side of Eq. (2.14), which was ignored above, amounts to the
574
+ value 3.2. This forces a correction to the ratio Veq/V0 of order unity, which means that the
575
+ order-of-magnitude estimate in Eq. (2.16) is not affected.
576
+ Using the selected values, Eq. (2.11) suggests that the total excursion of the field is
577
+ ∆φ = φ0 − φeq =
578
+
579
+ 8
580
+ κλ mP ≃ 0.5 mP ,
581
+ (2.17)
582
+ i.e. it is sub-Planckian. In the approximation of Eq. (2.4), we see that the argument of the
583
+ exponential becomes κλ∆φ/mP ≃ 2.7 > 1, where we used Eq. (2.15). This means that the
584
+ approximation breaks down and the exp(exp) potential is felt as considered, as depicted also
585
+ in Fig. 1.
586
+ For small α the eventual exponential potential in Eq. (2.6) is steep, which suggests that
587
+ field rushes towards the minimum at infinity and the barotropic parameter is w ≈ −1 because
588
+ the potential is dominated by the constant VΛ.
589
+ 2.4
590
+ Tuning requirements
591
+ Our model addresses in a single shot two cosmological problems: firstly, the Hubble tension
592
+ between inferences of H0 using early and late-time data; and secondly, the reason for the
593
+ late-time accelerated expansion of the Universe; late DE. However, it is subject to some
594
+ tuning. Namely, the two free parameters κ and λ, the intrinsic field-space curvature dictated
595
+ by α, and the scale of the potential introduced by VΛ.
596
+ As we have seen κ and λ seem to take natural values, not too far from order unity.
597
+ Regarding α we only need that it is small enough to lead to rapid decrease of the exponential
598
+ contribution in the scalar potential in Eq. (2.6), leaving the constant VΛ to dominate at
599
+ present. We show in the next section that α ∼ 10−4 is sufficient for this task. This leaves
600
+ VΛ itself. The required tuning of this parameter is given by VΛ =
601
+ � HPlanck
602
+ 0
603
+ HSH0ES
604
+ 0
605
+ �2
606
+ V Planck
607
+ Λ
608
+ , where
609
+ – 8 –
610
+
611
+ V Planck
612
+ Λ
613
+ is given by the Planck 2018 [1] estimate of ρ0, the density today, multiplied by ΩΛ,
614
+ the estimate of the density parameter of dark energy today, i.e.
615
+ V Planck
616
+ Λ
617
+ = ΩΛρ0.
618
+ Since
619
+ � HPlanck
620
+ 0
621
+ HSH0ES
622
+ 0
623
+ �2
624
+ ≃ ( 67.44
625
+ 73.04)2 = 0.8525 we see that the required fine-tuning of our VΛ is not different
626
+ from the fine-tuning introduced in ΛCDM, but, in contrast to ΛCDM, our proposal addresses
627
+ two cosmological problems; not only late DE but also the Hubble tension.7
628
+ 3
629
+ Numerical Simulation
630
+ In order to numerically solve the dynamics of the system, it is enough to solve for the scale
631
+ factor a(t), the field φ(t) and the background fluid densities ρm(t) and ρr(t), as every other
632
+ quantity depends on these.
633
+ They are governed by the Friedmann equations, the Klein-
634
+ Gordon equation and the continuity equations respectively. Of course, the Klein-Gordon
635
+ equation is a second order ODE, while the continuity equations are first order so that we
636
+ need the initial value and velocity of φ and just the initial value of ρm and ρr as initial
637
+ conditions. As described above, the field starts frozen and unfreezes around matter-radiation
638
+ equality. Effectively, this means using φini = 0 and ˙φini = 0 as initial conditions, a few e-
639
+ folds before matter-radiation equality, while the initial radiation and matter energy densities
640
+ are chosen to satisfy the bounds obtained by Planck [1] at matter-radiation equality, i.e.,
641
+ ρm(teq) = ρr(teq) = 1.27 × 10−110m4
642
+ P.
643
+ For convenience, we rewrite the equations in terms of the logarithmic energy densities
644
+ ˜ρm(t) = ln (ρm(t)/m4
645
+ P) and ˜ρr(t) = ln (ρr(t)/m4
646
+ P). Plugging the first Friedmann equation in
647
+ the Klein-Gordon equation, gives
648
+ ¨φ(t) +
649
+
650
+ 3ρ(t)
651
+ mP
652
+ ˙φ(t) + dV
653
+ dφ = 0,
654
+ (3.1)
655
+ ˙˜ρm(t) +
656
+
657
+ 3ρ(t)
658
+ mP
659
+ = 0,
660
+ (3.2)
661
+ ˙˜ρr(t) + 4
662
+ 3
663
+
664
+ 3ρ(t)
665
+ mP
666
+ = 0,
667
+ (3.3)
668
+ where 3m2
669
+ PH2(t) = ρ(t) = [ exp(˜ρm(t))+exp(˜ρr(t))]m4
670
+ P+ρφ(t) and ρφ(t) = K(φ(t))+V (φ(t))
671
+ where K(φ(t)) = 1
672
+ 2( ˙φ(t))2 and V (φ(t)) is given by Eq. (2.2).
673
+ As mentioned above, we assume the field to be frozen at an ESP, such that it could have
674
+ been the inflaton or a spectator field at earlier times. The time of unfreezing is then controlled
675
+ only by the parameters of the model’s potential.8 The densities of matter and radiation are
676
+ scaled back to find some initial conditions at some arbitrary redshift, zini = 104, before
677
+ equality.
678
+ The differential solver records three “events” during solving: matter-radiation equality,
679
+ triggered by the obvious condition; decoupling, triggered by the total energy density taking
680
+ the correct value; and the present day, triggered by the field making up the correct fraction of
681
+ the total energy density (as estimated by the Planck satellite [1]). These values are saved to
682
+ an association so that they can later be searched to identify points which fulfill the necessary
683
+ 7In our simulations we use VΛ = 10−120.068 m4
684
+ P as assumed also in Fig. 1.
685
+ 8 Although we could use an estimate for the initial time, it turns out that it makes no difference to the
686
+ numerical results or the behaviour of the field and simply offsets the differential equations.
687
+ – 9 –
688
+
689
+ Initial Densities
690
+ Calculation
691
+ Value
692
+ Matter
693
+ ρm = 3ΩPlanck
694
+ m,0
695
+ m2
696
+ P (HSH0ES
697
+ 0
698
+ )2
699
+ 3.84 × 10−121m4
700
+ P
701
+ Radiation
702
+ π2
703
+ 30g∗(T Planck
704
+ CMB, 0)4
705
+ 9.56 × 10−125m4
706
+ P
707
+ Table 1: Table of present-day densities, where the present matter density parameter is
708
+ ΩPlanck
709
+ m,0
710
+ = 0.3111, T Planck
711
+ CMB, 0 = 2.7255 K and the effective relativistic degrees of freedom of
712
+ radiation are g∗ = 3.36, calculated by taking the photon and neutrino contribution into
713
+ account (see section 5 of [64]).
714
+ Variable
715
+ Initial Value
716
+ Source
717
+ Redshift
718
+ zinitial = 104
719
+ chosen to be shortly before
720
+ matter-radiation equality
721
+ Time
722
+ tini = 0.1m−1
723
+ P
724
+ chosen to be close to zero
725
+ (see footnote 8)
726
+ Field Value
727
+ φ(tini) = 0
728
+ simplified initial conditions
729
+ Rate of change of Field
730
+ Value
731
+ ˙φ(tini) = 0
732
+ simplified initial conditions
733
+ Density of Matter
734
+ ρm(tini) = 3.84 × 10−109m4
735
+ P
736
+ ρm(t0)Planck(zini + 1)3
737
+ Density of Radiation
738
+ ρr(tini) = 1.24 × 10−108m4
739
+ P
740
+ ρr(t0)Planck(zini + 1)4
741
+ E-folds elapsed
742
+ Nini = 0
743
+ chosen for convenience
744
+ Table 2: Table detailing the initial conditions for the differential equations.
745
+ constraints, in order to find a viable parameter space. Once the final event is recorded, the
746
+ solver is terminated.
747
+ Event
748
+ Criteria
749
+ Justification
750
+ Matter-Radiation
751
+ Equality
752
+ ρm(teq) = ρr(teq)
753
+ Theoretical Definition
754
+ Last Scattering
755
+ ρm(tls) = 4.98 × 10−112 m4
756
+ P
757
+ Extrapolation
758
+ from
759
+ ΛCDM
760
+ initial conditions (see Table 2)
761
+ using Planck results ρm(zeq)
762
+ with zeq = 1089.80 [1]
763
+ Present Day
764
+ Ωφ = 0.6889
765
+ Planck data [1]
766
+ Table 3: Table of events recorded during the numerical solving of equations and how.
767
+ If a field point does not meet the conditions for the final event (i.e. the present day),
768
+ this indicates that the field began the simulation as the dominant component and will never
769
+ reach the correct energy density. The point is thrown away. Finally, reasonable observational
770
+ and theoretical constraints to the parameter space are applied to the data collected, which
771
+ are outlined in Table 4.
772
+ – 10 –
773
+
774
+ Parameter
775
+ to
776
+ be
777
+ constrained
778
+ Source
779
+ Description
780
+ Constraint
781
+ Density
782
+ parameter
783
+ of
784
+ the field at equality
785
+ EDE
786
+ literature
787
+ [25]
788
+ Upper limit governed by the
789
+ maximum value that does
790
+ not impede structure forma-
791
+ tion; lower limit is so that
792
+ EDE actually has an effect
793
+ 0.015 ≤ Ωeq
794
+ φ < 0.107
795
+ Density parameter
796
+ of the field at
797
+ Last Scattering
798
+ EDE
799
+ literature
800
+ [8]
801
+ This is the upper limit that
802
+ ensures EDE cannot cur-
803
+ rently be detected in the
804
+ CMB
805
+ Ωls
806
+ φ < 0.015
807
+ Density parameters of
808
+ the field at Last Scatter-
809
+ ing and Equality
810
+ Theoretical
811
+ Achieves desired behaviour
812
+ of the field
813
+ Ωeq
814
+ φ > Ωls
815
+ φ
816
+ Density
817
+ parameter
818
+ of
819
+ the field today
820
+ Planck 2018
821
+ [1]
822
+ Observational constraint
823
+ 0.6833 ≤ Ω0
824
+ φ ≤ 0.6945
825
+ Barotropic parameter of
826
+ the field today
827
+ Planck 2018
828
+ Observational constraint
829
+ −1 ≤ w0
830
+ φ ≤ −0.95
831
+ Running of the
832
+ barotropic parameter
833
+ today
834
+ Planck 2018
835
+ [1]
836
+ Observational constraint
837
+ −0.55 ≤ wa
838
+ φ ≤ 0.03
839
+ Hubble constant
840
+ SH0ES
841
+ 2021 [2]
842
+ Observational constraint
843
+ 72.00≤
844
+ H0
845
+ km s−1 Mpc−1 ≤74.08
846
+ Total Field Excursion
847
+ Theoretical
848
+ From analytical estimates,
849
+ the total excursion of the
850
+ field should ideally be sub-
851
+ Planckian
852
+ φ0 − φeq < mP
853
+ Table 4: Table describing and justifying constraints used to identify the viable parameter
854
+ space. In the above, wa
855
+ φ = − dwφ
856
+ da
857
+ ���
858
+ 0, c.f. Eq. (1.8).
859
+ 4
860
+ Results and analysis
861
+ 4.1
862
+ Parameter Space
863
+ As evident from Figs. 2, 3 and 4, we find that κ ∼ 102 and λ ∼ 10−3, which are rather
864
+ reasonable values. In particular, the value of κ suggests that the mass-scale which suppresses
865
+ the non-canonical field ϕ in the original potential in Eq. (2.1) is near the scale of grand
866
+ unification ∼ 10−2 mP. Regarding the curvature of field space we find α ∼ 10−4, which again
867
+ is not unreasonable.
868
+ The viable parameter space suggests that κλ >
869
+
870
+ 3, which contradicts our assumption
871
+ in Eq. (2.7). This implies that, unlike the analytics in Sec. 2.3.1, the field does not adopt
872
+ the subdominant exponential scaling attractor but the slow-roll exponential attractor, which
873
+ leads to domination [61, 63].
874
+ As the field thaws and starts following this attractor, the
875
+ approximation in Eq. (2.4) breaks down as the field experiences the full exp(exp) potential,
876
+ which is steeper that exponential (see Fig. 1). Consequently, instead of becoming dominant
877
+ the field free-falls. This contradiction with our discussion in Sec. 2.3.1 is not very important.
878
+ – 11 –
879
+
880
+ 0.0000
881
+ 0.0001
882
+ 0.0002
883
+ 0.0003
884
+ 0.0004
885
+ 0.0005
886
+ 0.0006
887
+ 0.0007
888
+ 0
889
+ 100
890
+ 200
891
+ 300
892
+ 400
893
+ 500
894
+ 600
895
+ 700
896
+ α
897
+ κ
898
+
899
+ mP
900
+ 4
901
+ = 10-120.068,
902
+ 0 < λ < 0.027
903
+ Figure 2:
904
+ Parameter space slice in the κ − α plane with 0 < λ < 0.027 and VΛ =
905
+ 10−120.068m4
906
+ P.
907
+ The blue dotted line is the boundary of the region that produces non-
908
+ inflationary results (see below), while the orange region is constituted by the success-
909
+ ful points, i.e., those for which the constraints detailed in Table 4 are satisfied.
910
+ Note
911
+ that the region bounded in blue is not equal to the range of the scan, which goes from
912
+ 0 ≤ κ ≤ 700, 0 ≤ α ≤ 0.00071. This is because points with potential larger than a certain
913
+ starting value result in the field beginning the simulation dominant, which means that the
914
+ Universe goes into inflation which cannot terminate and will never meet the numerical end
915
+ condition for the present day. These points are very close to the viable parameter space for
916
+ these two parameters and therefore must be thrown away.
917
+ The existence of the scaling attractor provided an easy analytic estimate for the moment
918
+ when the field unfreezes. It turns out that, because the scaling attractor has been substituted
919
+ by the slow-roll attractor, the field unfreezes because its potential energy density becomes
920
+ comparable to the total energy density, going straight into free-fall. In is much harder to
921
+ analytically estimate when exactly this takes place, but the eventual result (free-fall) is the
922
+ same.
923
+ The redshift of matter-radiation equality occurs earlier than usual at zeq ≃ 4000. How-
924
+ ever, equality occurs well before last scattering, zeq > zls and its redshift is only indirectly
925
+ inferred by observations. In contrast, the redshift of last scattering is where we would expect
926
+ it at zls ≃ 1087. Theoretical constraints suggest zls ≃ 1090 [65], and the observations of the
927
+ Planck satellite suggest zls = 1089.80 ± 0.21 [1].
928
+ – 12 –
929
+
930
+ 0.0000
931
+ 0.0001
932
+ 0.0002
933
+ 0.0003
934
+ 0.0004
935
+ 0.0005
936
+ 0.0006
937
+ 0.0007
938
+ 0.000
939
+ 0.005
940
+ 0.010
941
+ 0.015
942
+ 0.020
943
+ 0.025
944
+ α
945
+ λ
946
+
947
+ mP
948
+ 4
949
+ = 10-120.068,
950
+ 0 < κ < 700
951
+ Figure 3: Parameter space slice in the λ−α plane with 0 < κ < 700 and VΛ = 10−120.068m4
952
+ P.
953
+ The orange region is constituted by the successful points, i.e., those for which the constraints
954
+ detailed in Table 4 are satisfied.
955
+ 4.2
956
+ Field Behaviour
957
+ The field behaves as expected, with the mild modification of the attractor solution at un-
958
+ freezing (slow-roll instead of scaling), which leads to free-fall. The evolution is depicted in
959
+ Figs. 5, 6, 7 and 8 for the example point at α = 0.0005, κ = 145, λ = 0.008125, and Vλ
960
+ tuned to the SH0ES cosmological constant [2]. The observables obtained in this case (i.e. the
961
+ values of H0, w0 and wa) are shown in Table 5. The behaviour of the Hubble parameter is a
962
+ function of redshift as can be seen in Fig. 7.
963
+ As mentioned in Table 4, the maximum allowed value of the EDE density parameter
964
+ at equality is just over 0.1.
965
+ However, it is possible that this is too lenient a constraint
966
+ because unlike the models for which this constraint was developed, our model has a true
967
+ free-fall period, which means it redshifts away exactly as a−6 rather than below this rate
968
+ as in oscillatory behaviour (see Figs. 5 and 8). A full MCMC analysis may provide a more
969
+ accurate constraint for non-oscillatory models.
970
+ At present, the exponential contribution to the potential density in Eq. (2.6) is largely
971
+ subdominant to VΛ, so the contribution of the scalar field to the total density budget is
972
+ almost constant, as in ΛCDM. Its barotropic parameter is, therefore, wφ ≈ −1 (see Fig. 5).
973
+ Technically, it is not exactly -1 but its running is negligible, with the viable parameter space
974
+ for wa fitting easily within the constraint in Eq. (1.8) by some ten orders of magnitude (see
975
+ Table 5).
976
+ – 13 –
977
+
978
+ 0
979
+ 100
980
+ 200
981
+ 300
982
+ 400
983
+ 500
984
+ 600
985
+ 700
986
+ 0.000
987
+ 0.005
988
+ 0.010
989
+ 0.015
990
+ 0.020
991
+ 0.025
992
+ κ
993
+ λ
994
+
995
+ mP
996
+ 4
997
+ = 10-120.068,
998
+ 0 < α < 0.00071
999
+ Figure 4: Parameter space slice in the λ − κ plane with 0 < α < 0.00071 and VΛ =
1000
+ 10−120.068m4
1001
+ P. The orange region is constituted by the successful points, i.e., those for which
1002
+ the constraints detailed in Table 4 are satisfied.
1003
+ 5
1004
+ Initial Conditions
1005
+ Our model accounts for both EDE and late-time dark energy in a non-oscillatory manner
1006
+ (in contrast to Ref. [30]). The field is frozen at early times, thawing just before matter-
1007
+ radiation equality when its density grows to nearly 0.1 of the total value (see Fig. 6), as set
1008
+ by constraints in Ref. [25]. A steep exp(− exp) potential then forces the field into free-fall,
1009
+ causing its energy density to dilute away as ρφ ∝ a−6. After this, the field hits the asymptote
1010
+ of the exponential decay and refreezes, becoming dominant at present (see Fig. 8).
1011
+ Thus, we achieve DE-like behaviour at the present day by ensuring that the field re-
1012
+ freezes after its period of free-fall, therefore remaining at a constant energy density equal to
1013
+ the value of the potential density at that point. Although this constant potential density is
1014
+ initially negligible, the expansion of the Universe causes the density of matter to decrease.
1015
+ Because the field refreezes at a potential density that is comparable to the density of matter
1016
+ at present, the field starts to become dominant at the present day. Once it begins to domi-
1017
+ nate the Universe, the field thaws again, but the density of the Universe is dominated by a
1018
+ constant contribution VΛ, as with ΛCDM.
1019
+ The obvious question is why our scalar field finds itself frozen at the origin in the first
1020
+ place. One compelling explanation is the following. We assume that the origin is an enhanced
1021
+ symmetry point (ESP) such that, at very early times, an interaction of ϕ with some other
1022
+ scalar field χ traps the rolling of ϕ at zero. The idea follows the scenario explored in Ref. [66].
1023
+ – 14 –
1024
+
1025
+
1026
+ wm+r
1027
+ wUniverse
1028
+ 0
1029
+ 2
1030
+ 4
1031
+ 6
1032
+ 8
1033
+ -1.0
1034
+ -0.5
1035
+ 0.0
1036
+ 0.5
1037
+ 1.0
1038
+ 3671
1039
+ 1350
1040
+ 496
1041
+ 182
1042
+ 66
1043
+ 24
1044
+ 8
1045
+ 2
1046
+ N
1047
+ z
1048
+
1049
+ mP
1050
+ 4 = 10-120.068
1051
+ α =0.0005
1052
+ κ=145
1053
+ λ=0.008125
1054
+ Figure 5: Barotropic parameter of the scalar field (dotted green), of the background perfect
1055
+ fluid (full blue) and of the sum of both components (full black), for α = 0.0005, κ = 145, λ =
1056
+ 0.008125, and VΛ = 10−120.068m4
1057
+ P.
1058
+ Density parameter of field Ωϕ
1059
+ 0
1060
+ 2
1061
+ 4
1062
+ 6
1063
+ 8
1064
+ 0.0
1065
+ 0.1
1066
+ 0.2
1067
+ 0.3
1068
+ 0.4
1069
+ 0.5
1070
+ 0.6
1071
+ 0.7
1072
+ 3671
1073
+ 1350
1074
+ 496
1075
+ 182
1076
+ 66
1077
+ 24
1078
+ 8
1079
+ 2
1080
+ N
1081
+ z
1082
+
1083
+ mP
1084
+ 4 = 10-120.068
1085
+ α =0.0005
1086
+ κ=145
1087
+ λ=0.008125
1088
+ Figure 6: The density parameter of the scalar field, for α = 0.0005, κ = 145, λ = 0.008125,
1089
+ and VΛ = 10−120.068m4
1090
+ P, as a function of the redshift (top) and e-folds (bottom) elapsed since
1091
+ the beginning of the simulation.
1092
+ In this scenario, the scalar potential includes the interaction
1093
+ ∆V = 1
1094
+ 2g2ϕ2χ2 ,
1095
+ (5.1)
1096
+ – 15 –
1097
+
1098
+ HϕCDM
1099
+ HCDM only
1100
+ HΛCDM
1101
+ 8.0
1102
+ 8.2
1103
+ 8.4
1104
+ 8.6
1105
+ 8.8
1106
+ 9.0
1107
+ 9.2
1108
+ 50
1109
+ 100
1110
+ 150
1111
+ 200
1112
+ 250
1113
+ 2.35 2.03 1.74 1.48 1.24 1.03 0.84 0.66 0.50 0.36 0.23 0.11 0.01
1114
+ N
1115
+ z
1116
+
1117
+ mP
1118
+ 4 = 10-120.068
1119
+ α =0.0005
1120
+ κ=145
1121
+ λ=0.008125
1122
+ Figure 7: The Hubble parameter (in units of km s−1Mpc−1) of a Universe with the modelled
1123
+ scalar field (green), a classical ΛCDM simulation (black), and one with only matter and
1124
+ radiation (blue), as a function of the redshift (top) and the e-folds (bottom) elapsed since
1125
+ the beginning of the simulation.
1126
+ log[ρm/mP
1127
+ 4]
1128
+ log[ρr/mP
1129
+ 4]
1130
+ log[ρϕ/mP
1131
+ 4]
1132
+ log[(ρm+ρr)/mP
1133
+ 4]
1134
+ 0
1135
+ 2
1136
+ 4
1137
+ 6
1138
+ 8
1139
+ -125
1140
+ -120
1141
+ -115
1142
+ -110
1143
+ -105
1144
+ 3671
1145
+ 1350
1146
+ 496
1147
+ 182
1148
+ 66
1149
+ 24
1150
+ 8
1151
+ 2
1152
+ N
1153
+ z
1154
+
1155
+ mP
1156
+ 4 = 10-120.068
1157
+ α =0.0005
1158
+ κ=145
1159
+ λ=0.008125
1160
+ Figure 8: The logarithmic densities of matter (dot-dashed red), radiation (dotted orange),
1161
+ the sum of both (solid blue) and the scalar field (dashed green), as a function of the redshift
1162
+ (top) and the e-folds (bottom) elapsed since the beginning of the simulation. The horizontal
1163
+ full line represents the (SH0ES) energy density of the Universe at present.
1164
+ where the coupling g < 1 parametrises the strength of the interaction.
1165
+ – 16 –
1166
+
1167
+ Constraint
1168
+ Field Value
1169
+ 0.015 ≤ Ωeq
1170
+ φ < 0.107
1171
+ 0.05178
1172
+ Ωls
1173
+ φ < 0.015
1174
+ 0.001722
1175
+ Ωeq
1176
+ φ > Ωls
1177
+ φ
1178
+ YES
1179
+ 0.6833 ≤ Ω0
1180
+ φ ≤ 0.6945
1181
+ 0.6889
1182
+ −1 ≤ w0
1183
+ φ ≤ −0.95
1184
+ -1.000
1185
+ −0.55 ≤ wa
1186
+ φ ≡ − dwφ
1187
+ da
1188
+ ���
1189
+ 0 ≤ 0.03
1190
+ −4.850 × 10−11
1191
+ 72.00 ≤
1192
+ H0
1193
+ km s−1 Mpc−1 ≤ 74.08
1194
+ 73.27
1195
+ κλ
1196
+ 1.178
1197
+ (φ0 − φeq)/mP < 1
1198
+ 0.4274
1199
+ Table 5: Table giving the constraints and their corresponding values for an example point,
1200
+ α = 0.0005, κ = 145, λ = 0.008125, and VΛ tuned to the SH0ES cosmological con-
1201
+ stant, in the viable parameter space.
1202
+ The Hubble constant obtained in this example is
1203
+ H0 = 73.27 km/s Mpc.
1204
+ We assume that initially ϕ is rolling down its steep potential.9 Then, the interaction
1205
+ in Eq. (5.1) provides a modulated effective mass-squared m2
1206
+ eff = g2ϕ2 to the scalar field χ.
1207
+ When ϕ crosses the origin, this effective mass becomes momentarily zero. If the variation of
1208
+ the ϕ field (i.e. the speed | ˙ϕ| in field space) is large enough, then there is a window around
1209
+ the origin when | ˙meff| ≫ m2
1210
+ eff (because, | ˙ϕ| ≫ ϕ2 ≃ 0). This violates adiabaticity and leads
1211
+ to copious production of χ-particles [66].10
1212
+ As the field moves past the ESP, the produced χ particles become heavy, which takes
1213
+ more energy from the ϕ field, producing an effective potential incline in the direction the
1214
+ ϕ field is moving. Indeed, the particle production generates an additional linear potential
1215
+ ∼ g|ϕ|nχ [66], where nχ is the number density of the produced χ-particles. This number
1216
+ density is constant because the duration of the effect is much smaller than a Hubble time,
1217
+ so that we can ignore dilution from the Universe expansion. The rolling ϕ field climbs up
1218
+ the linear potential until its kinetic energy density is depleted. Then the field momentarily
1219
+ stops and afterwards reverses its motion (variation) back to the origin. When crossing the
1220
+ origin again, there is another bout of χ-particle production, which increases nχ and makes the
1221
+ linear potential steeper to climb. This time, ϕ variation halts at a value closer to the origin.
1222
+ Then, the field reverses its motion and rushes through the origin again. Another outburst of
1223
+ χ-particle production steepens the linear potential further. The process continues until the
1224
+ 9For away from the origin, the scalar potential V (ϕ) does not have to be of the form in Eq. (2.1). In fact,
1225
+ it is conceivable that ϕ might play the role of the inflaton field too (see Appendix).
1226
+ 10Near the origin, when ϕ ≃ 0, the ϕ-field is approximately canonically normalised, as suggested by Eq. (1.5),
1227
+ so the considerations of Ref. [66] are readily applicable.
1228
+ – 17 –
1229
+
1230
+ ϕ-field is trapped at the origin [63, 66].
1231
+ The trapping of a rolling scalar field at an ESP can take place only if the χ-particles do
1232
+ not decay before trapping occurs. If they did, the nχ would decrease and the potential g|ϕ|nχ
1233
+ would not be able to halt the motion (variation) of the ϕ-field. The end result of this process is
1234
+ that all the kinetic energy density of the rolling ϕ has been given to the χ-particles. Now, since
1235
+ ϕ is trapped at the origin, the effective mass of the χ-particles is zero, which means that they
1236
+ are relativistic matter, with density scaling as ρχ ∝ a−4. As far as ϕ is concerned, it is trapped
1237
+ at the origin and its density is only ρϕ = V (ϕ = 0) = e−λVX = constant (cf. Eq. (2.1)).
1238
+ After some time, it may be assumed that the χ-particles do eventually decay into the
1239
+ standard model particles, which comprise the thermal bath of the hot Big Bang. The con-
1240
+ fining potential, which is proportional to nχ, disappears but, we expect the ϕ-field to remain
1241
+ frozen at the origin because the scalar potential V (ϕ) in Eq. (2.1) is flat enough there. As we
1242
+ have discussed, the ϕ-field unfreezes again in matter-radiation equality. The above scenario
1243
+ is depicted in Fig. 9
1244
+ For simplicity, we have considered that, apart from the obvious violation of adiabacity at
1245
+ the ESP, the χ direction is otherwise approximately flat and the χ-field has a negligible bare
1246
+ mass compared to the ϕ field. It would be more realistic to consider a non-zero bare mass for
1247
+ the χ-particles, which when they become non-relativistic (much later than the trapping of
1248
+ ϕ) can safely decay to the thermal bath of the hot Big Bang, reheating thereby the Universe,
1249
+ e.g. in a manner not dissimilar to Ref. [67].
1250
+ The above scenario is one possible explanation of the initial condition considered and
1251
+ not directly relevant to the scope of this work - numerical simulations simply assume that
1252
+ the field begins frozen at the origin. Other possibilities to explain our initial condition exist,
1253
+ for example considering a thermal correction of the form δV ∝ T 2ϕ2, which would make the
1254
+ origin an effective minimum of the potential at high temperatures and drive the ϕ-field there.
1255
+ 6
1256
+ Conclusions
1257
+ In conclusion, we have studied in detail a non-oscillatory model of unified early and late dark
1258
+ energy, which resolves the Hubble tension and simultaneously explains the observed current
1259
+ accelerated expansion with no more fine tuning than ΛCDM. Our model considers a single
1260
+ scalar field in the context of α-attractors, as in Ref. [30], but in our case the field is not
1261
+ oscillating; instead after equality, it free-falls with energy density decreasing as a−6, faster
1262
+ than most early dark energy (EDE) proposals and the fastest possible.
1263
+ In our proposed scenario, the scalar field lies originally frozen at the origin, until it
1264
+ thaws near the time of equal matter-radiation densities, when it becomes EDE. Afterwards
1265
+ it free-falls until it refreezes at a lower potential energy density value, which provides the
1266
+ vacuum density of ΛCDM. We showed that the total excursion of the field in configuration
1267
+ space is sub-Planckian, which implies that our potential is stable under radiative corrections.
1268
+ One explanation of our initial conditions is that the origin is an enhanced symmetry
1269
+ point (ESP). Our scalar field is originally kinetically dominated until it is trapped at the ESP
1270
+ when crossing it.11 As we discuss in Appendix A, the scalar field could even be the inflaton,
1271
+ which after inflation rolls down its runaway potential until it becomes trapped at the ESP.
1272
+ Our potential in Eq. (2.1) really serves to demonstrate that a model unifying EDE with
1273
+ ΛCDM can be achieved with a suitably steep runaway potential. With the parameters of
1274
+ our model assuming rather natural values, thereby not introducing fine-tuning additional to
1275
+ 11A thermal correction to the scalar potential can have a similar effect.
1276
+ – 18 –
1277
+
1278
+ ln ρ
1279
+ ln a
1280
+ ρφ
1281
+ ρr + ρm
1282
+ today
1283
+ equality
1284
+ ESP
1285
+ e−λVX
1286
+
1287
+ Figure 9: Schematic log-log plot depicting the evolution of the density of the scalar field
1288
+ ρφ (solid blue line) and the density of radiation and matter ρr + ρm (dashed red line) in
1289
+ the case when the decay of the kinetic energy density of the trapped scalar field generates
1290
+ the thermal bath of the hot Big Bang (as in Ref. [REF]). Originally the φ-field is rushing
1291
+ towards the minimum of the potential, dominated by its kinetic density, so that ρφ ∝ a−6
1292
+ (free-fall). When it crosses the enhanced symmetry point (ESP) its interaction to the χ-
1293
+ field (cf. Eq. (5.1)) traps the rolling φ-field at the ESP while all its kinetic energy is given
1294
+ to χ-particles, which soon decay into the radiation and matter of the hot Big Bang (the
1295
+ decay is assumed to be quick, just after trapping). Afterwards, the φ-field stays frozen, with
1296
+ energy density V (φ = 0) = e−λVX (cf. Eq. (2.1)) until much later, when its potential density
1297
+ is comparable to the background. Then it unfreezes before dominating, acting as early dark
1298
+ energy at the time near matter-radiation equality, and subsequently free-falls to its value φ0,
1299
+ with potential density approximately VΛ = constant. The field stays there until the present
1300
+ when it dominates the Universe and becomes late dark energy.
1301
+ that of ΛCDM, we show that this is indeed possible with a simple design. The challenge lies
1302
+ in constructing a concrete theoretical framework for such a potential.
1303
+ Acknowledgements: LB is supported by STFC. KD is supported (in part) by the Lancaster-
1304
+ Manchester-Sheffield Consortium for Fundamental Physics under STFC grant: ST/T001038/1.
1305
+ SSL is supported by the FST of Lancaster University.
1306
+ A
1307
+ Quintessential Inflation
1308
+ Is it possible that our scalar field can not only be early and late dark energy, but also be the
1309
+ inflaton field, responsible for accelerated expansion in the early Universe?
1310
+ – 19 –
1311
+
1312
+ The α-attractors construction leads to two flat regions in the scalar potential of the
1313
+ canonical field, as the kinetic poles of the non-caninical field are displaced to infinity. This
1314
+ idea has been employed in the construction of quintessential inflation models in Refs. [54–56],
1315
+ where the low-energy plateau was the quintessential tail, responsible for quintessence and the
1316
+ high-energy plateau was responsible for inflation.
1317
+ However, if we inspect the potential in Eq. (2.1) at the poles ϕ = ±
1318
+
1319
+ 6α mP, we find that
1320
+ the potential for the positive pole is V (ϕ+) = VΛ as expected, while for the negative pole we
1321
+ have V (ϕ−) = VΛ exp
1322
+
1323
+ 2λ sinh
1324
+
1325
+ κ
1326
+
1327
+
1328
+ ��
1329
+ . For the values of the parameters obtained (κ ∼ 102,
1330
+ λ ∼ 10−3 and α ∼ 10−4) it is easy to check that V (ϕ−) is unsuitable for the inflationary
1331
+ plateau. Thus, our model needs to be modified to lead to quintessential inflation.
1332
+ The first modification is a shift in field space such that our new field is
1333
+ ˜ϕ = ϕ + Φ ,
1334
+ (A.1)
1335
+ where Φ is a constant. The α-attractors construction applies now on the new field ˜ϕ for
1336
+ which the Lagrangian density is given by the expression in Eq. (1.4) with the substitution
1337
+ ϕ → ˜ϕ. The poles of our new field lie at ˜ϕ± = ±
1338
+
1339
+ 6˜α mP, where ˜α is the new α-attractors
1340
+ parameter.
1341
+ We want all our results to remain unaffected, which means that, for the positive pole,
1342
+ Eq. (A.1) suggests
1343
+ ϕ+ =
1344
+
1345
+ 6α mP = ˜ϕ+ − Φ =
1346
+
1347
+ 6˜α mP − Φ ⇒ ˜α = 1
1348
+ 6
1349
+ � Φ
1350
+ mP
1351
+ +
1352
+
1353
+
1354
+ �2
1355
+ .
1356
+ (A.2)
1357
+ The above, however, is not enough. It turns out we need to modify the scalar potential
1358
+ as well.
1359
+ This modification must be such that near the positive pole the scalar potential
1360
+ reduces to the one in Eq. (2.1). A simple proposal is
1361
+ V ( ˜ϕ) = VX exp{−2λ sinh[κ( ˜ϕ − Φ)/mP]} ,
1362
+ (A.3)
1363
+ which indeed reduces to Eq. (2.1) when κ( ˜ϕ − Φ) = κϕ > mP Note that κ
1364
+
1365
+ 6α > 1 is implied
1366
+ from the requirement that near the positive pole we have κ
1367
+
1368
+ 6α mP = κϕ+ > mP. The ESP
1369
+ discussed in Sec. 5 is now located at ˜ϕ = Φ, such that Eq. (5.1) is now ∆V = 1
1370
+ 2g2( ˜ϕ − Φ)2χ2.12
1371
+ We are interested in investigating the inflationary plateau. This is generated for the
1372
+ canonical field near the negative pole ˜ϕ− = −
1373
+
1374
+ 6˜α mP, where the scalar potential of the
1375
+ canonical field “flattens out” [40].
1376
+ Assuming that Φ >
1377
+
1378
+ 6α mP, we have that ˜ϕ− − Φ = −2Φ −
1379
+
1380
+ 6α mP ≃ −2Φ, where we
1381
+ used Eq. (A.2). Hence, for the potential energy density of the inflationary plateau we obtain
1382
+ Vinf = V ( ˜ϕ−) ≃ VX exp[−2λ sinh(−2κΦ/mP)]
1383
+ ≃ exp
1384
+
1385
+ λ eκ
1386
+
1387
+ 6α�
1388
+ VΛ exp[λ exp(2κΦ/mP)]
1389
+ = exp
1390
+
1391
+ λ(eκ
1392
+
1393
+ 6α + e2κΦ/mP)
1394
+
1395
+ VΛ ≃ VΛ exp
1396
+
1397
+ λ e2κΦ/mP
1398
+
1399
+ ,
1400
+ (A.4)
1401
+ where we used Eq. (2.1) and that in −2 sinh(−x) ≃ ex, when x ≫ 1.
1402
+ 12Near the ESP the potential does not approximate Eq. (2.1). However, we assume that, after unfreezing,
1403
+ the field rolls away fast from the ESP, such that soon the exp(exp) form of the potential becomes valid and
1404
+ the evolution is the one discussed in the main text of our paper.
1405
+ – 20 –
1406
+
1407
+ With α-attractors, the inflationary predictions are ns = 1 − 2/N and r = 12˜α/N2 [40],
1408
+ where ns is the spectral index of the scalar curvature perturbation and r is the ratio of
1409
+ the spectrum of the tensor curvature perturbation to the spectrum of the scalar curvature
1410
+ perturbation, with N being the number of inflationary efolds remaining after the cosmo-
1411
+ logical scales exit the horizon.
1412
+ Typically, N = 60 − 65 for quintessential inflation, which
1413
+ means that ns = 0.967 − 0.969, in excellent agreement with the observations [68]. For the
1414
+ tensor-to-scalar ratio the observations provide the bound r < 0.036 [69], which suggests
1415
+ ˜α < 0.003 N2 = 10.8 − 12.7.
1416
+ The COBE constraint requires Vinf ∼ 10−10 m4
1417
+ P. Using that VΛ ∼ 10−120 m4
1418
+ P, Eq. (A.4),
1419
+ suggests that κΦ/mP = 1
1420
+ 2 ln(110 ln 10/λ). Hence. the conditions Φ >
1421
+
1422
+ 6α mP and κ
1423
+
1424
+ 6α > 1
1425
+ suggest
1426
+ 1 < κ
1427
+
1428
+ 6α < κΦ/mP = 1
1429
+ 2 ln(110 ln 10/λ) .
1430
+ (A.5)
1431
+ Our findings in Sec. 4 are marginally in agreement with the above requirements.
1432
+ For
1433
+ example, taking α = 0.0006 and κ = 100 we find κ
1434
+
1435
+ 6α = 6 and then Eq. (A.5) suggests
1436
+ λ < 1.556 × 10−3.
1437
+ We also find Φ/mP >
1438
+
1439
+ 6α = 0.06, which is rather reasonable.
1440
+ Then,
1441
+ Eq. (A.2) implies ˜α > 12α = 7.2 × 10−3, which comfortably satisfies the observational con-
1442
+ straint on r. In fact, taking N ≃ 60, we find r = 12˜α/N2 > α/25 = 2.4 × 10−5.
1443
+ The above should be taken with a pinch of salt because the approximations employed
1444
+ are rather crude. However, they seem to suggest that our augmented model in Eq. (A.3)
1445
+ may lead to successful quintessential inflation while also resolving the Hubble tension, with no
1446
+ more fine-tuning than that of ΛCDM. A full numerical investigation is needed to confirm this.
1447
+ References
1448
+ [1] Planck Collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters,
1449
+ Astron. Astrophys. 641 (2020) A6, [arXiv:1807.06209]. [Erratum: Astron.Astrophys. 652, C4
1450
+ (2021)].
1451
+ [2] A. G. Riess et al., A Comprehensive Measurement of the Local Value of the Hubble Constant
1452
+ with 1 km s−1Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team,
1453
+ Astrophys. J. Lett. 934 (2022), no. 1 L7, [arXiv:2112.04510].
1454
+ [3] H. G. Escudero, J.-L. Kuo, R. E. Keeley, and K. N. Abazajian, Early or phantom dark energy,
1455
+ self-interacting, extra, or massive neutrinos, primordial magnetic fields, or a curved universe:
1456
+ An exploration of possible solutions to the H0 and σ8 problems, Phys. Rev. D 106 (2022),
1457
+ no. 10 103517, [arXiv:2208.14435].
1458
+ [4] B. S. Haridasu, H. Khoraminezhad, and M. Viel, Scrutinizing Early Dark Energy models
1459
+ through CMB lensing, arXiv:2212.09136.
1460
+ [5] L. Knox and M. Millea, Hubble constant hunter’s guide, Phys. Rev. D 101 (2020), no. 4
1461
+ 043533, [arXiv:1908.03663].
1462
+ [6] A. G´omez-Valent, Z. Zheng, L. Amendola, C. Wetterich, and V. Pettorino, Coupled and
1463
+ uncoupled early dark energy, massive neutrinos, and the cosmological tensions, Phys. Rev. D
1464
+ 106 (2022), no. 10 103522, [arXiv:2207.14487].
1465
+ [7] T. Karwal and M. Kamionkowski, Dark energy at early times, the Hubble parameter, and the
1466
+ string axiverse, Phys. Rev. D 94 (2016), no. 10 103523, [arXiv:1608.01309].
1467
+ [8] V. Pettorino, L. Amendola, and C. Wetterich, How early is early dark energy?, Phys. Rev. D
1468
+ 87 (2013) 083009, [arXiv:1301.5279].
1469
+ – 21 –
1470
+
1471
+ [9] E. Calabrese, D. Huterer, E. V. Linder, A. Melchiorri, and L. Pagano, Limits on dark radiation,
1472
+ early dark energy, and relativistic degrees of freedom, Physical Review D 83 (2011), no. 12.
1473
+ [10] M. Doran and G. Robbers, Early dark energy cosmologies, Journal of Cosmology and
1474
+ Astroparticle Physics 2006 (2006), no. 06 026–026.
1475
+ [11] V. I. Sabla and R. R. Caldwell, No H0 assistance from assisted quintessence, Phys. Rev. D 103
1476
+ (2021), no. 10 103506, [arXiv:2103.04999].
1477
+ [12] T. L. Smith, V. Poulin, and M. A. Amin, Oscillating scalar fields and the Hubble tension: a
1478
+ resolution with novel signatures, Phys. Rev. D 101 (2020), no. 6 063523, [arXiv:1908.06995].
1479
+ [13] K. Murai, F. Naokawa, T. Namikawa, and E. Komatsu, Isotropic cosmic birefringence from
1480
+ early dark energy, arXiv:2209.07804.
1481
+ [14] L. M. Capparelli, R. R. Caldwell, and A. Melchiorri, Cosmic birefringence test of the Hubble
1482
+ tension, Phys. Rev. D 101 (2020), no. 12 123529, [arXiv:1909.04621].
1483
+ [15] K. V. Berghaus and T. Karwal, Thermal Friction as a Solution to the Hubble and Large-Scale
1484
+ Structure Tensions, arXiv:2204.09133.
1485
+ [16] K. V. Berghaus and T. Karwal, Thermal Friction as a Solution to the Hubble Tension, Phys.
1486
+ Rev. D 101 (2020), no. 8 083537, [arXiv:1911.06281].
1487
+ [17] J. Sakstein and M. Trodden, Early Dark Energy from Massive Neutrinos as a Natural
1488
+ Resolution of the Hubble Tension, Phys. Rev. Lett. 124 (2020), no. 16 161301,
1489
+ [arXiv:1911.11760].
1490
+ [18] T. Karwal, M. Raveri, B. Jain, J. Khoury, and M. Trodden, Chameleon early dark energy and
1491
+ the Hubble tension, Phys. Rev. D 105 (2022), no. 6 063535, [arXiv:2106.13290].
1492
+ [19] V. I. Sabla and R. R. Caldwell, Microphysics of early dark energy, Phys. Rev. D 106 (2022),
1493
+ no. 6 063526, [arXiv:2202.08291].
1494
+ [20] M.-X. Lin, G. Benevento, W. Hu, and M. Raveri, Acoustic Dark Energy: Potential Conversion
1495
+ of the Hubble Tension, Phys. Rev. D 100 (2019), no. 6 063542, [arXiv:1905.12618].
1496
+ [21] E. McDonough and M. Scalisi, Towards Early Dark Energy in String Theory,
1497
+ arXiv:2209.00011.
1498
+ [22] V. Poulin, T. L. Smith, D. Grin, T. Karwal, and M. Kamionkowski, Cosmological implications
1499
+ of ultralight axionlike fields, Phys. Rev. D 98 (2018), no. 8 083525, [arXiv:1806.10608].
1500
+ [23] F. Niedermann and M. S. Sloth, Resolving the Hubble tension with new early dark energy,
1501
+ Phys. Rev. D 102 (2020), no. 6 063527, [arXiv:2006.06686].
1502
+ [24] J. C. Hill, E. McDonough, M. W. Toomey, and S. Alexander, Early dark energy does not
1503
+ restore cosmological concordance, Phys. Rev. D 102 (2020), no. 4 043507, [arXiv:2003.07355].
1504
+ [25] T. L. Smith, V. Poulin, J. L. Bernal, K. K. Boddy, M. Kamionkowski, and R. Murgia, Early
1505
+ dark energy is not excluded by current large-scale structure data, Phys. Rev. D 103 (2021),
1506
+ no. 12 123542, [arXiv:2009.10740].
1507
+ [26] S. Nojiri, S. D. Odintsov, D. Saez-Chillon Gomez, and G. S. Sharov, Modeling and testing the
1508
+ equation of state for (Early) dark energy, Phys. Dark Univ. 32 (2021) 100837,
1509
+ [arXiv:2103.05304].
1510
+ [27] V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski, Early Dark Energy Can Resolve
1511
+ The Hubble Tension, Phys. Rev. Lett. 122 (2019), no. 22 221301, [arXiv:1811.04083].
1512
+ [28] K. Freese and M. W. Winkler, Chain early dark energy: A Proposal for solving the Hubble
1513
+ tension and explaining today’s dark energy, Phys. Rev. D 104 (2021), no. 8 083533,
1514
+ [arXiv:2102.13655].
1515
+ – 22 –
1516
+
1517
+ [29] P. Agrawal, F.-Y. Cyr-Racine, D. Pinner, and L. Randall, Rock ’n’ Roll Solutions to the Hubble
1518
+ Tension, arXiv:1904.01016.
1519
+ [30] M. Braglia, W. T. Emond, F. Finelli, A. E. Gumrukcuoglu, and K. Koyama, Unified framework
1520
+ for early dark energy from α-attractors, Phys. Rev. D 102 (2020), no. 8 083513,
1521
+ [arXiv:2005.14053].
1522
+ [31] H. Moshafi, H. Firouzjahi, and A. Talebian, Multiple Transitions in Vacuum Dark Energy and
1523
+ H 0 Tension, Astrophys. J. 940 (2022), no. 2 121, [arXiv:2208.05583].
1524
+ [32] E. Guendelman, R. Herrera, and D. Benisty, Unifying inflation with early and late dark energy
1525
+ with multiple fields: Spontaneously broken scale invariant two measures theory, Phys. Rev. D
1526
+ 105 (2022), no. 12 124035, [arXiv:2201.06470].
1527
+ [33] BOSS Collaboration, S. Alam et al., The clustering of galaxies in the completed SDSS-III
1528
+ Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample,
1529
+ Mon. Not. Roy. Astron. Soc. 470 (2017), no. 3 2617–2652, [arXiv:1607.03155].
1530
+ [34] Planck Collaboration, P. A. R. Ade et al., Planck 2013 results. XVI. Cosmological parameters,
1531
+ Astron. Astrophys. 571 (2014) A16, [arXiv:1303.5076].
1532
+ [35] R. de S´a, M. Benetti, and L. L. Graef, An empirical investigation into cosmological tensions,
1533
+ Eur. Phys. J. Plus 137 (2022), no. 10 1129, [arXiv:2209.11476].
1534
+ [36] R. Kallosh and A. Linde, Universality Class in Conformal Inflation, JCAP 07 (2013) 002,
1535
+ [arXiv:1306.5220].
1536
+ [37] A. Linde, D.-G. Wang, Y. Welling, Y. Yamada, and A. Ach´ucarro, Hypernatural inflation,
1537
+ JCAP 07 (2018) 035, [arXiv:1803.09911].
1538
+ [38] R. Kallosh and A. Linde, Planck, LHC, and α-attractors, Phys. Rev. D 91 (2015) 083528,
1539
+ [arXiv:1502.07733].
1540
+ [39] S. Cecotti and R. Kallosh, Cosmological Attractor Models and Higher Curvature Supergravity,
1541
+ JHEP 05 (2014) 114, [arXiv:1403.2932].
1542
+ [40] R. Kallosh, A. Linde, and D. Roest, Superconformal Inflationary α-Attractors, JHEP 11 (2013)
1543
+ 198, [arXiv:1311.0472].
1544
+ [41] S. Ferrara, R. Kallosh, A. Linde, and M. Porrati, Minimal Supergravity Models of Inflation,
1545
+ Phys. Rev. D 88 (2013), no. 8 085038, [arXiv:1307.7696].
1546
+ [42] S. Ferrara, P. Fr´e, and A. S. Sorin, On the Topology of the Inflaton Field in Minimal
1547
+ Supergravity Models, JHEP 04 (2014) 095, [arXiv:1311.5059].
1548
+ [43] S. Ferrara, P. Fre, and A. S. Sorin, On the Gauged K¨ahler Isometry in Minimal Supergravity
1549
+ Models of Inflation, Fortsch. Phys. 62 (2014) 277–349, [arXiv:1401.1201].
1550
+ [44] R. Kallosh, A. Linde, and D. Roest, Large field inflation and double α-attractors, JHEP 08
1551
+ (2014) 052, [arXiv:1405.3646].
1552
+ [45] A. Linde, Does the first chaotic inflation model in supergravity provide the best fit to the Planck
1553
+ data?, JCAP 02 (2015) 030, [arXiv:1412.7111].
1554
+ [46] A. A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys.
1555
+ Lett. B 91 (1980) 99–102.
1556
+ [47] F. L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys.
1557
+ Lett. B 659 (2008) 703–706, [arXiv:0710.3755].
1558
+ [48] A. Alho and C. Uggla, Inflationary α-attractor cosmology: A global dynamical systems
1559
+ perspective, Phys. Rev. D 95 (2017), no. 8 083517, [arXiv:1702.00306].
1560
+ [49] S. D. Odintsov and V. K. Oikonomou, Inflationary α-attractors from F(R) gravity, Phys. Rev.
1561
+ D 94 (2016), no. 12 124026, [arXiv:1612.01126].
1562
+ – 23 –
1563
+
1564
+ [50] M. Braglia, A. Linde, R. Kallosh, and F. Finelli, Hybrid α-attractors, primordial black holes
1565
+ and gravitational wave backgrounds, arXiv:2211.14262.
1566
+ [51] R. Kallosh and A. Linde, Hybrid cosmological attractors, Phys. Rev. D 106 (2022), no. 2
1567
+ 023522, [arXiv:2204.02425].
1568
+ [52] A. Ach´ucarro, R. Kallosh, A. Linde, D.-G. Wang, and Y. Welling, Universality of multi-field
1569
+ α-attractors, JCAP 04 (2018) 028, [arXiv:1711.09478].
1570
+ [53] O. Iarygina, E. I. Sfakianakis, D.-G. Wang, and A. Ach´ucarro, Multi-field inflation and
1571
+ preheating in asymmetric α-attractors, arXiv:2005.00528.
1572
+ [54] Y. Akrami, R. Kallosh, A. Linde, and V. Vardanyan, Dark energy, α-attractors, and large-scale
1573
+ structure surveys, JCAP 06 (2018) 041, [arXiv:1712.09693].
1574
+ [55] K. Dimopoulos, L. Donaldson Wood, and C. Owen, Instant preheating in quintessential
1575
+ inflation with α-attractors, Phys. Rev. D 97 (2018), no. 6 063525, [arXiv:1712.01760].
1576
+ [56] K. Dimopoulos and C. Owen, Quintessential Inflation with α-attractors, JCAP 06 (2017) 027,
1577
+ [arXiv:1703.00305].
1578
+ [57] Supernova Search Team Collaboration, A. G. Riess et al., Observational evidence from
1579
+ supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998)
1580
+ 1009–1038, [astro-ph/9805201].
1581
+ [58] R. R. Caldwell, R. Dave, and P. J. Steinhardt, Cosmological imprint of an energy component
1582
+ with general equation of state, Phys. Rev. Lett. 80 (1998) 1582–1585, [astro-ph/9708069].
1583
+ [59] M. Chevallier and D. Polarski, Accelerating universes with scaling dark matter, Int. J. Mod.
1584
+ Phys. D 10 (2001) 213–224, [gr-qc/0009008].
1585
+ [60] E. V. Linder, Exploring the expansion history of the universe, Phys. Rev. Lett. 90 (2003)
1586
+ 091301, [astro-ph/0208512].
1587
+ [61] E. J. Copeland, A. R. Liddle, and D. Wands, Exponential potentials and cosmological scaling
1588
+ solutions, Phys. Rev. D 57 (1998) 4686–4690, [gr-qc/9711068].
1589
+ [62] E. J. Copeland, M. Sami, and S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys. D 15
1590
+ (2006) 1753–1936, [hep-th/0603057].
1591
+ [63] K. Dimopoulos, Introduction to Cosmic Inflation and Dark Energy. CRC Press, 5, 2022.
1592
+ [64] G. B. Gelmini, Cosmology and astroparticles, in AIP Conference Proceedings, AIP, 1996.
1593
+ [65] D. Wands, O. F. Piattella, and L. Casarini, Physics of the cosmic microwave background
1594
+ radiation, in The Cosmic Microwave Background, pp. 3–39. Springer International Publishing,
1595
+ 2016.
1596
+ [66] L. Kofman, A. D. Linde, X. Liu, A. Maloney, L. McAllister, and E. Silverstein, Beauty is
1597
+ attractive: Moduli trapping at enhanced symmetry points, JHEP 05 (2004) 030,
1598
+ [hep-th/0403001].
1599
+ [67] K. Dimopoulos, M. Karˇciauskas, and C. Owen, Quintessential inflation with a trap and axionic
1600
+ dark matter, Phys. Rev. D 100 (2019), no. 8 083530, [arXiv:1907.04676].
1601
+ [68] Planck Collaboration, Y. Akrami et al., Planck 2018 results. X. Constraints on inflation,
1602
+ Astron. Astrophys. 641 (2020) A10, [arXiv:1807.06211].
1603
+ [69] BICEP, Keck Collaboration, P. A. R. Ade et al., Improved Constraints on Primordial
1604
+ Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018
1605
+ Observing Season, Phys. Rev. Lett. 127 (2021), no. 15 151301, [arXiv:2110.00483].
1606
+ – 24 –
1607
+
FdE1T4oBgHgl3EQf-wYy/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
FtAyT4oBgHgl3EQfrPm5/content/tmp_files/2301.00558v1.pdf.txt ADDED
@@ -0,0 +1,922 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ A Submillimeter-Wave FMCW Pulse-Doppler Radar
3
+ to Characterize the Dynamics of Particle Clouds
4
+ Tomas Bryllert, Member, IEEE, Marlene Bonmann, and Jan Stake, Senior Member, IEEE
5
+ Abstract—This work presents a 340-GHz frequency-modulated
6
+ continuous-wave (FMCW) pulse-Doppler radar. The radar sys-
7
+ tem is based on a transceiver module with about one milli-
8
+ Watt output power and more than 30-GHz bandwidth. The
9
+ front-end optics consists of an off-axis parabola fed by a horn
10
+ antenna from the transceiver unit, resulting in a collimated radar
11
+ beam. The digital radar waveform generation allows for coherent
12
+ and arbitrary FMCW pulse waveforms. The performance in
13
+ terms of sensitivity and resolution (range/cross-range/velocity) is
14
+ demonstrated, and the system’s ability to detect and map single
15
+ particles (0.1–10 mm diameter), as well as clouds of particles, at
16
+ a 5-m distance, is presented. A range resolution of ∼1 cm and
17
+ a cross-range resolution of a few centimeters (3-dB beam-width)
18
+ allow for the characterization of the dynamics of particle clouds
19
+ with a measurement voxel size of a few cubic centimeters. The
20
+ monitoring of particle dynamics is of interest in several industrial
21
+ applications, such as in the manufacturing of pharmaceuticals
22
+ and the control/analysis of fluidized bed combustion reactors.
23
+ Index Terms—FMCW, pulse-Doppler, radar, remote sensing,
24
+ sensors, submillimeter waves, terahertz systems, transceivers
25
+ I. INTRODUCTION
26
+ F
27
+ OR many industrial applications, such as in the manu-
28
+ facturing of pharmaceuticals [1], or energy conversion
29
+ using fluidized bed reactors [2], the industrial process involves
30
+ particles or powders dispersed in a process reactor. It is neces-
31
+ sary to monitor the particle dynamics to maintain the process
32
+ quality and to gain insights regarding the process. Therefore,
33
+ measuring the particle concentration and the local particle
34
+ velocities at a high update rate and high spatial resolution
35
+ is desirable. Ideally, these quantities should be measured ex
36
+ vivo without inserting any physical probes into the reactors
37
+ so that the introduction of measurement sensors does not
38
+ alter the processes. In particular, this is required in harsh
39
+ process environments [3]. Frequency-modulated continuous-
40
+ wave (FMCW) range-Doppler radar operating at center fre-
41
+ quencies (fc) within the submillimeter wave range [4] of
42
+ the electromagnetic spectrum offers a realistic opportunity to
43
+ provide the desired information.
44
+ Compared to other contactless measurement methods using
45
+ visible or infrared light [5], [6], the submillimeter wavelength
46
+ range allows more penetration depth into dense particle clouds
47
+ [7] and is less sensitive to contaminations on the reactor
48
+ access windows. The radar technique also allows for Doppler
49
+ Manuscript received January 1st, 2023. This work was supported in part
50
+ by the Swedish Foundation for Strategic Research (SSF) under the contract
51
+ ITM17-0265.
52
+ Tomas Bryllert, Marlene Bonmann, and Jan Stake are with the Tera-
53
+ hertz and Millimetre Wave Laboratory, Chalmers University of Technol-
54
+ ogy, SE-412 96 Gothenburg, Sweden. (e-mail: tomas.bryllert@chalmers.se;
55
+ marbonm@chalmers.se; jan.stake@chalmers.se)
56
+ processing, which reveals information about the velocities
57
+ of the particles [8]. Compared with more traditional radar
58
+ techniques in the microwave and millimeter wave region [9],
59
+ there are a few properties that favor submillimeter waves [10]:
60
+ • Short wavelengths (λ) result in higher sensitivity for
61
+ detecting smaller particles since the radar cross-section
62
+ of particles in the Rayleigh regime scales as λ−4;
63
+ • Wide bandwidth and, thereby, a higher range resolution.
64
+ For example, a 30-GHz bandwidth results in a theoretical
65
+ range resolution of 5 mm;
66
+ • The cross-range resolution for a fixed antenna size,
67
+ typically limited by the access window size in an ac-
68
+ tual application, improves with high frequency since the
69
+ diffraction-limited resolution scales with λ.
70
+ Several FMCW radars for high-resolution, 3D imaging have
71
+ been presented with center frequencies above 300 GHz [11]–
72
+ [14]. These systems use ranging to produce 3D static images
73
+ and are not using pulse-Doppler processing [15]. FMCW
74
+ radars using MMIC-transceivers based on SiGe technology
75
+ have been demonstrated in the millimeter wave region [16],
76
+ including promising performance up to 480 GHz [17]. Still,
77
+ submillimeter-wave transceivers, with a high dynamic range at
78
+ room temperature, require diode technology [18], [19]. Cooper
79
+ et al. [10] reported a FMCW range-Doppler radar system at
80
+ 660 GHz, demonstrating the range-Doppler concept’s feasibil-
81
+ ity at submillimeter wave frequencies, but with few details.
82
+ This work presents the implementation of a FMCW pulse-
83
+ Doppler radar based on a 340-GHz transceiver module with
84
+ 30-GHz bandwidth [20]. A digital waveform generator con-
85
+ trols the system. The transceiver module provides an accept-
86
+ able trade-off between performance and hardware complexity,
87
+ resulting in a relatively compact tripod-mounted radar design,
88
+ as shown in Fig. 1. The form factor allows easy implementa-
89
+ tion in industrial scenarios. The performance of the transceiver
90
+ modules and their application in a 3D imaging radar was pre-
91
+ sented in [13]. Here the implementation of the coherent pulse
92
+ generation and signal processing to realize range-Doppler
93
+ radar operation are explained, together with the resulting radar
94
+ system’s noise- and resolution performance. Furthermore, the
95
+ ability of the radar to detect single particles with diameters
96
+ ranging from 100 µm – 500 µm is demonstrated. The accuracy
97
+ of the velocity measurements is validated by comparing the
98
+ measured range-Doppler profile of a falling metal sphere with
99
+ known weight and diameter to the standard free-fall model.
100
+ The results demonstrate that the performance of the radar
101
+ system is highly suitable for the suggested industrial scenarios.
102
+ arXiv:2301.00558v1 [physics.ins-det] 2 Jan 2023
103
+
104
+ 2
105
+ Fig. 1. Photograph of the radar system. The front-end optics and electronics
106
+ are mounted on a base plate together with analog and digital baseband
107
+ circuitry.
108
+ II. METHOD
109
+ A. Radar electronics and optics
110
+ Fig. 2 shows a schematic block diagram of the 340-GHz
111
+ FMCW range-Doppler radar. The system architecture is a
112
+ frequency up-converted, frequency multiplied FMCW radar.
113
+ A few hardware details deserve to be highlighted: The digital
114
+ waveform generator is an FPGA-controlled arbitrary waveform
115
+ card with 4 Gb of useful memory and a maximum sampling
116
+ rate of >6 Gs/s of which 4 Gs/s is used in the current work.
117
+ The card can write >100 ms of 1-GHz bandwidth waveform
118
+ data directly from memory. This means that, in a coher-
119
+ ent pulse-Doppler processing interval (CPI), typically much
120
+ shorter than 100 ms, an arbitrary pulse train of FMCW pulses
121
+ can be transmitted – and then repeated. Multiple FMCW
122
+ waveforms can therefore be interleaved, addressing different
123
+ parts of the system bandwidth (323 – 357 GHz) within a
124
+ coherent processing interval. This capability can be used to
125
+ extract frequency-resolved (spectroscopic) information from
126
+ the scene in an efficient way. This feature is not used in the
127
+ presented performance demonstrations. The baseband chirp,
128
+ typically 1-GHz bandwidth, generated by the digital hardware,
129
+ is centered at 1 GHz. This signal is up-converted to X-band
130
+ using frequency mixing and a 9.6-GHz local oscillator (LO)
131
+ and is then passed on to the transceiver unit. The transceiver
132
+ unit multiplies the X-band chirp by a factor of 32 for a
133
+ total final bandwidth of 32 GHz and transmits the signal, now
134
+ centered at ∼340 GHz. The radar echoes are received back in
135
+ the transceiver and are mixed on the outgoing signal straight
136
+ down to the baseband using a balanced configuration [21].
137
+ The front-end 340-GHz Schottky diode circuit is designed
138
+ to operate as a frequency multiplier (x2) and sub-harmonic
139
+ mixer - thereby simultaneously operating as a transmitter and
140
+ receiver. The transceiver’s LO chain consists of an InGaAs
141
+ pHEMT active frequency multiplier MMIC (x8) developed by
142
+ Gotmic AB and a 170-GHz Schottky diode frequency doubler.
143
+ The GaAs Schottky barrier diode circuits were fabricated
144
+ in the Nanofabrication Laboratory at Chalmers university of
145
+ technology. Originally, the complete transceiver module was
146
+ developed for a 16-channel, high frame-rate, imaging radar
147
+ [13] by Wasa Millimeter Wave AB, and is described in detail
148
+ in [20].
149
+ At the output of the transceiver unit, a circular horn from
150
+ Custom Microwave Inc is used as a feed antenna for the optical
151
+ system. This feedhorn illuminates a 4” off-axis parabolic
152
+ mirror from Edmund Optics with an effective focal length of
153
+ 6”. The optical system results in a collimated radar beam.
154
+ The digital hardware on the receiver side consists of an
155
+ eight-channel, 250-Ms/s digitizer from National Instruments
156
+ (1 channel is used). The digitizer is controlled by an FPGA
157
+ which gives deterministic timing control. The digitizer card
158
+ (PXIe format) integrates with a PC controller via a PXIe
159
+ bus allowing for real-time signal processing and display. The
160
+ waveform card, the analog-to-digital converter (ADC), and
161
+ the local oscillator run from a common 10-MHz reference
162
+ resulting in a fully coherent system.
163
+ B. Radar signal processing
164
+ Typical radar parameters used in the experiments presented
165
+ in this work are:
166
+ • Pulse bandwidth = 32 GHz;
167
+ • Pulse time = 41 µs;
168
+ • Pulse repetition interval (PRI) = 102.4 µs or 51.2 µs;
169
+ • Number of pulses coherently processed (nP RI) = 128;
170
+ • Target distance 4 – 6 m.
171
+ Fig. 3 shows a block diagram of the signal processing.
172
+ The data matrix format that is coherently processed is of
173
+ the form: (nr of samples per pulse, ns) × (nP RI). After
174
+ down-conversion in the transceiver, the received baseband (IF)
175
+ signal is in the frequency range of 21 – 31 MHz, which is
176
+ digitized. The data is digitally filtered with a finite impulse
177
+ response bandpass filter (FIR BPF), converted to IQ format
178
+ with the help of the Hilbert transform, down-converted to
179
+ complex baseband, and decimated by a factor of 16 to 1.5 ×
180
+ Nyquist limited sampling (15.625 Ms/s IQ), with: n′
181
+ s = 640.
182
+ In reality, several samples at the beginning and the end of
183
+ each waveform are discarded (due to low-frequency ringing),
184
+ leaving 590 samples instead of 640. This also reduces the
185
+ used bandwidth from 32 GHz to 29.5 GHz. Both the pulse
186
+ compression in range and the Doppler processing can be
187
+ done using Fourier transforms in FMCW pulse-Doppler radar,
188
+ which means that the signal processing can be done with a 2D
189
+ fast Fourier transform (FFT) over the coherent data matrix –
190
+ with appropriate windowing functions and digital filters. The
191
+ output displayed for the radar user is the logarithm of the
192
+ squared amplitude of the radar signal in a range-Doppler map.
193
+
194
+ 45 cm
195
+ 30 cm3
196
+ Fig. 2. Schematic block diagram of the 340-GHz FMCW pulse-Doppler radar.
197
+ Fig. 3. Schematic block diagram of the digital signal processing steps.
198
+ C. Radar characterization and evaluation
199
+ To demonstrate the performance of the radar system in
200
+ terms of the noise floor, range and velocity resolution, and
201
+ small particle detection, the following measurements were
202
+ conducted: noise floor measurements, range and Doppler reso-
203
+ lution, detection of small particles, and velocity measurements
204
+ of a free-falling metal sphere. To study the origin of the
205
+ noise floor in zero-Doppler and at finite Doppler frequency,
206
+ the noise floor was measured without a target under four
207
+ different conditions: First, with ADC only; second, with ADC
208
+ together with IF amplifiers; third, ADC with IF amplifiers
209
+ and a 10.1 GHz continuous wave (CW) signal driving the
210
+ transceiver, fourth, ADC with IF amplifier and a chirp signal
211
+ driving the transceivers. Additionally, the noise floor as a
212
+ function of target strength was measured. Different radar cross
213
+ sections (RCSs) were achieved by placing a corner reflection
214
+ at different positions in the radar beam.
215
+ Increasing the number of pulses per CPI, with other radar
216
+ parameters fixed, the S/N for a target should increase linearly
217
+ with the number of pulses (integration time) if the target
218
+ and the radar system remain coherent and if the noise is
219
+ uncorrelated with the radar signal. To verify this, a radar
220
+ measurement on a static, corner reflector target was performed
221
+ with nP RI= 16, 32, 64, 128, 256, and 512 per CPI.
222
+ Three metal beads with a 2-mm diameter were glued onto
223
+ a string and positioned at a 5 m distance to demonstrate the
224
+ radar system’s range resolution. The target with three beads
225
+ on a string was positioned so that all beads were illuminated
226
+ by the radar beam and angled so that the beads were separated
227
+ in range by approximately 3 cm. Another radar measurement
228
+ was performed to display the velocity resolution while gently
229
+ tapping the string to make it vibrate.
230
+ To investigate the radar system’s ability to detect small
231
+ particles, the radar beam is folded with a flat metallic mirror
232
+ to be directed vertically upwards. A transparent plastic box
233
+ was placed directly above the folding mirror to collect the
234
+ particles. This way different test materials could be dropped
235
+ straight into the radar beam. This experiment used 2-mm and
236
+ 10-mm diameter metal beads, 500-µm diameter quartz sand,
237
+ and 100-µm spherical glass beads.
238
+ The velocity measurement of the radar system was validated
239
+ by comparing the measured velocity of a free-falling metal
240
+ sphere of known diameter (1.27 cm) and weight (m = 8.44 g)
241
+ with an analytical free-fall model. Letting the metal bead
242
+ drop towards the radar it moves vertically under gravity and
243
+ quadratic air resistance. Solving Newton’s second law of
244
+ motion, the velocity (v) and position (x) with time (t) are
245
+ then described by
246
+ v = vt tanh (t/τ)
247
+ (1a)
248
+ x = x0 − vtτ ln (cosh (t/τ))
249
+ (1b)
250
+ with the terminal velocity vt =
251
+
252
+ (2mg/(Aρaircd)) and the
253
+ characteristic time τ = vt/g, where g is the gravity of Earth, m
254
+ is the mass of the metal bead, ρair is the air density at normal
255
+ temperature pressure, A is the metal beads cross-section, cd
256
+ is the drag coefficient (here 0.47 for a sphere [22]), and x0 is
257
+ the initial position.
258
+
259
+ Ref.10MHz
260
+ LO
261
+ Mixer
262
+ BPF
263
+ RFAmplifier
264
+ TxRx
265
+ 9.6 GHz
266
+ 10.2-11 GHz
267
+ RF in
268
+ x32
269
+ IF out
270
+ 326.4-352GHz
271
+ Software for frequency
272
+ DAC
273
+ 0.6-1.4 GHz
274
+ >6Gs/swaveform
275
+ LPF
276
+ control
277
+ generator
278
+ Software for data
279
+ IF Amplifier
280
+ BPF
281
+ processinganddata
282
+ ADC
283
+ display
284
+ 250 Ms/s digitizerns
285
+ Hilbert Down conversion
286
+ Range
287
+ Data decimation Windowing
288
+ FIR BPF
289
+ LPF
290
+ n.
291
+ processing
292
+ transform
293
+ n
294
+ _npRI
295
+ FFT
296
+ Coherent
297
+ data matrix
298
+ Doppler
299
+ Windowing
300
+ processing
301
+ Display
302
+ 10log1o(I Ampl. 12)
303
+ npRI
304
+ FFT4
305
+ Fig. 4. Noise floor in the range-Doppler map. (a) General view of the noise
306
+ floor with the cuts that are presented in (b-d) indicated. (b) Constant range
307
+ cut. (c) Constant velocity cut at zero-Doppler. (d) Constant velocity cut at
308
+ finite Doppler.
309
+ III. RESULTS
310
+ A. Noise performance
311
+ Fig. 4 shows the noise floor at different hardware settings
312
+ and at different cuts through the range-Doppler map as indi-
313
+ cated in Fig 4(a). No target is used in these measurements
314
+ which have the purpose of demonstrating the origins of the
315
+ noise floor for the radar.
316
+ Ideally, the noise floor in the whole range-Doppler map
317
+ should be set by thermal noise, deteriorated by the loss and
318
+ noise figure of the front-end electronics, and scaled by the IF
319
+ amplification. The transceiver unit trades noise performance
320
+ for simplicity though. Using the same balanced pair of Schot-
321
+ tky diode circuits for the final stage frequency multiplication
322
+ and subharmonic homodyne down-conversion to baseband
323
+ [20], the transceiver unit can be made quite compact – at
324
+ the cost of excess noise. The excess noise comes in two
325
+ shapes – through a conversion loss in the subharmonic mixing
326
+ that is worse than would be the case in a dedicated mixer
327
+ and through excess amplitude modulated noise from the LO
328
+ (FMCW chirp) that mix into the IF side of the transceiver
329
+ (despite the balanced configuration). In addition, Fig. 4(c)
330
+ shows that excess noise is generated in zero-Doppler from
331
+ driving the RF hardware with short (40 µs) chirps with high
332
+ bandwidth. The cost of the excess noise is acceptable, though,
333
+ since S/N is generally sufficient in the application scenarios
334
+ that are evaluated.
335
+ Fig. 5 shows how the noise floor for zero-Doppler and for
336
+ finite Doppler is affected by the strength (RCS) of a static
337
+ target. The noise floor is calculated as the mean when aver-
338
+ aging over relevant range bins within the IF filter bandwidth
339
+ (excluding the range-bin with the target response). The noise
340
+ floor in zero-Doppler is not random noise but the result of
341
+ sidelobes and amplitude/phase modulation of the waveform,
342
+ as well as multiple reflections in the RF hardware. These
343
+ effects are not seen at a finite Doppler frequency since the
344
+ sidelobe/modulation/reflection pattern is identical from pulse
345
+ Fig. 5. The noise floor in zero-Doppler and at a finite Doppler frequency as
346
+ a function of target strength (RCS).
347
+ Fig. 6.
348
+ S/N as a function of the number of pulses used in the coherent
349
+ processing. The target was a static corner cube.
350
+ to pulse and therefore, only appear in the zero-Doppler bin. At
351
+ strong target returns, the noise floor increases at finite Doppler
352
+ frequencies, but then as a general increase of the noise floor
353
+ in the whole range-Doppler plane - indicating that this noise
354
+ increase originates in the actual noise of the RF carrier.
355
+ Fig. 6 shows the radar signal of a static target and the
356
+ noise floor versus the number of pulses per CPI. The S/N,
357
+ when comparing the target signal with the Doppler noise
358
+ floor increased linearly as expected. Thus verifying that the
359
+ target and the radar system remain coherent and the noise is
360
+ uncorrelated with the radar signal. As discussed above, the
361
+ noise in zero-Doppler (the static noise floor) originates from
362
+ the radar signal, meaning no improvement in S/N in zero-
363
+ Doppler is seen at longer integration times.
364
+ B. Range resolution, small particle detection, and velocity
365
+ measurement
366
+ Fig. 7 shows that the three metal beads with 2-mm diameter
367
+ are clearly separated in the radar measurement with the signal
368
+
369
+ -30
370
+ -40
371
+ (a)
372
+ (b)
373
+ 6
374
+ 60
375
+ -40
376
+ Radar signal (dB)
377
+ 5.5
378
+ (p)
379
+ -80
380
+ (w)
381
+ -50
382
+ Radar signal (
383
+ 5
384
+ -100
385
+ ADCsonly
386
+ 4.5
387
+ (b)
388
+ -60
389
+ -120
390
+ ADCs +IFamps.
391
+ 4
392
+ ADCs + IF amps. + chirp
393
+ -70
394
+ -140
395
+ ADCs + IF amps. + 1GHz cw
396
+ 3.5
397
+ -80
398
+ -160
399
+ -4
400
+ -2
401
+ 0
402
+ 2
403
+ 4
404
+ -4
405
+ -2
406
+ 0
407
+ 2
408
+ 4
409
+ Velocity (m/s)
410
+ Velocity (m/s)
411
+ 40
412
+ -40
413
+ (d)
414
+ 60
415
+ -60
416
+ (dB)
417
+ (dB)
418
+ Radar signal (
419
+ -80
420
+ -80
421
+ signal
422
+ 100
423
+ 100
424
+ ADCs only
425
+ ADCs only
426
+ Radar
427
+ 120
428
+ ADCs+IFampS.
429
+ 120
430
+ -ADCs+IFamps
431
+ ADCs + IF amps. + chirp
432
+ ADCs + IF amps.+ chirp
433
+ -140
434
+ -140
435
+ ADCs +IF amps.+ 1GHz cw
436
+ ADCs +IFamps.+1GHz cw
437
+ -160
438
+ -160
439
+ 3.5
440
+ 4
441
+ 4.5
442
+ 5
443
+ 5.5
444
+ 6
445
+ 3.5
446
+ 4
447
+ 4.5
448
+ 5
449
+ 5.5
450
+ 6
451
+ Range (m)
452
+ Range (m)-30
453
+ Noise level (dB)
454
+ 40
455
+ Static.noise.floor.
456
+ 50
457
+ -60
458
+ Doppler...noise...floor
459
+ -70
460
+ -40
461
+ -20
462
+ 0
463
+ 20
464
+ 40
465
+ Target signal (dB)0
466
+ -10
467
+ Target
468
+ Radar signal (dB)
469
+ 20
470
+ 30
471
+ Static noise floor
472
+ 40
473
+ 50
474
+ Doppler noise floor
475
+ -60
476
+ -70
477
+ 16
478
+ 32
479
+ 64
480
+ 128
481
+ 256
482
+ 512
483
+ Number of PRl5
484
+ Fig. 7. Range and velocity resolution. (a-c) Shows a radar measurement of
485
+ three beads with 2-mm diameter, demonstrating that the beads are resolved
486
+ in range when positioned 3 cm apart in the range direction. The S/N is
487
+ approximately 20 dB. (d) The string is vibrating, moving the beads in different
488
+ directions and resulting in small Doppler shifts.
489
+ peaks measured to be 3 cm and 3.1 cm apart and are visible
490
+ with a S/N of approximately 20 dB. When lightly tapping the
491
+ string, the beads are also separated in Doppler due to the fine
492
+ Doppler resolution of 0.04 m/s per Doppler bin.
493
+ Figures 8(a-b) show photographs of the materials used for
494
+ testing the radar system’s ability to detect small particles. For
495
+ each material, Figures 8(c-f) show the corresponding range-
496
+ Doppler maps integrated over several CPI. This way, one
497
+ can clearly see the acceleration of the 2-mm diameter metal
498
+ bead and the 10-mm diameter metal sphere toward the radar.
499
+ Each detection corresponds to a separate CPI, or “frame”,
500
+ of the radar with a frame rate of 6.2 frames/s. For 500-µm
501
+ diameter sand grains and 100-µm diameter glass spheres, the
502
+ integrated particle stream over several pinches of particles is
503
+ clearly visible. Fig. 8(e) shows clear detection of single sand
504
+ grains. At a 4.3 m distance, the sand grains hit the plastic
505
+ box and bounce to a stop. The deflection from the plastic
506
+ box appears as positive Doppler velocity. In conclusion, all
507
+ tested materials could be detected with significant S/N at a 5-m
508
+ distance, proving the radar instrument’s suitability to monitor
509
+ particle clouds’ dynamics.
510
+ Fig. 8(c) includes the predicted trajectory for the 10-mm
511
+ diameter metal sphere from the free-fall model (1), which
512
+ indicates that the measurement agrees very well with the
513
+ theory, thus supporting the velocity measurement of the radar.
514
+ IV. CONCLUSIONS
515
+ We
516
+ have
517
+ presented
518
+ a
519
+ 340-GHz
520
+ frequency-modulated
521
+ continuous-wave pulse-Doppler radar. The performance of the
522
+ radar is described and shown to follow what is expected
523
+ from theoretical predictions. The instrument’s sensitivity and
524
+ Fig. 8.
525
+ Measurement of falling objects at a 5-m distance. (a-b) Show the
526
+ photographs of the tested materials. The time-integrated range-Doppler image
527
+ of (c) a 10-mm diameter falling metal bead, (d) a 2-mm diameter metal bead,
528
+ (e) a few pinches of 500 µm sand grains, and (f) a few pinches of 100 µm
529
+ glass spheres.(c) Shows the predicted trajectory from the free-fall model (1).
530
+ resolution, both in the spatial domain and in Doppler velocity,
531
+ are adequate to map the dynamics of particle clouds. This
532
+ is demonstrated by performing radar measurements on free-
533
+ falling particles with grain sizes down to 100-µm diameter.
534
+ The mapping of particle clouds is relevant in many industrial
535
+ applications, such as in the manufacturing of pharmaceuticals
536
+ or energy conversion using fluidized bed reactors. Future work
537
+ will demonstrate the radar technique in these applications.
538
+ ACKNOWLEDGMENT
539
+ The authors would like to thank Mats Myremark for ma-
540
+ chining mechanical parts for the measurement setup; Vladimir
541
+ Drakinskiy for his help with the fabrication of the front-
542
+ end terahertz circuits; Divya Jayasankar for valuable feedback
543
+ on the manuscript and help with LATEX. The devices were
544
+ fabricated and measured in the Nanofabrication Laboratory
545
+ and Kollberg Laboratory, respectively, at Chalmers University
546
+ of Technology, Gothenburg, Sweden.
547
+ REFERENCES
548
+ [1] P. Bawuah and J. A. Zeitler, “Advances in terahertz time-domain spec-
549
+ troscopy of pharmaceutical solids: A review,” TrAC Trends in Analytical
550
+ Chemistry, vol. 139, p. 116272, 2021, doi: 10.1016/j.trac.2021.116272.
551
+
552
+ -30
553
+ 5.4
554
+ -30
555
+ (a)
556
+ (b)
557
+ -40
558
+ 5.35
559
+ -40
560
+ 5.5
561
+ Range (m)
562
+ beads
563
+ (m)
564
+ 50
565
+ 5
566
+ 5.3
567
+ -60
568
+ -60
569
+ 4.5
570
+ 5.25
571
+ -70
572
+ -70
573
+ -80
574
+ 5.2
575
+ 0.4-0.2
576
+ 0
577
+ 80
578
+ -2
579
+ 0
580
+ 2
581
+ 0.2
582
+ Velocity (m/s)
583
+ Velocity(m/s)
584
+ 5.4
585
+ -30
586
+ 0
587
+ (c)
588
+ d
589
+ 20
590
+ 5.35
591
+ -40
592
+ 40
593
+ (w)
594
+ 50
595
+ Range
596
+ 50
597
+ 5.2
598
+ 5.35.4
599
+ 5.3
600
+ -60
601
+ 5.25
602
+ -70
603
+ -80
604
+ 4
605
+ 4.5
606
+ 5
607
+ 5.5
608
+ 6
609
+ 5.2
610
+ -0.2
611
+ 0.2
612
+ 80
613
+ -0.4
614
+ Range (m)
615
+ Velocity (m/s)(a)
616
+ (b)
617
+ 10 mm
618
+ ~0.5mm
619
+ ~0.1mm
620
+ 2mm
621
+ 5.8
622
+ -30
623
+ 5.8
624
+ -30
625
+ (c)
626
+ (d)
627
+ 5.4
628
+ -40
629
+ -40
630
+ Radar signal (dB)
631
+ 5.4
632
+ Radar signal (dB)
633
+ Range (m)
634
+ Range (m)
635
+ -50
636
+ 50
637
+ 5
638
+ 5
639
+ free f
640
+ ta
641
+ -60
642
+ 60
643
+ 4.6
644
+ 4.6
645
+ -70
646
+ -70
647
+ 4.2
648
+ -80
649
+ 4.2
650
+ -80
651
+ -4
652
+ -2
653
+ 0
654
+ 2
655
+ -4
656
+ -2
657
+ 0
658
+ 2
659
+ Velocity(m/s)
660
+ Velocity(m/s)
661
+ 5.8
662
+ -30
663
+ 5.8
664
+ -30
665
+ (e)
666
+ (f)
667
+ -40
668
+ -40
669
+ 5.4
670
+ Radar signal (dB)
671
+ 5.4
672
+ Radar signal (dB)
673
+ Range (m)
674
+ ngle
675
+ grains
676
+ Range (m)
677
+ -50
678
+ 50
679
+ 5
680
+ lastic box
681
+ 5
682
+ -60
683
+ -60
684
+ 4.6
685
+ 4.6
686
+ -70
687
+ -70
688
+ 4.2
689
+ -80
690
+ 4.2
691
+ -80
692
+ -4
693
+ -2
694
+ 0
695
+ 2
696
+ -4
697
+ -2
698
+ 0
699
+ 2
700
+ Velocity(m/s)
701
+ Velocity (m/s)6
702
+ TABLE I
703
+ COMPARISON OF SUBMILLIMETER-WAVE RADARS
704
+ Center frequency
705
+ Bandwidth
706
+ Output power
707
+ Comment
708
+ Technology
709
+ Reference
710
+ (GHz)
711
+ (GHz)
712
+ (mW)
713
+ 350
714
+ 19
715
+ 4
716
+ FMCW
717
+ Schottky diode
718
+ [11]
719
+ 675
720
+ 30
721
+ 0.5
722
+ FMCW pulse-Doppler
723
+ Schottky diode
724
+ [10]
725
+ 340
726
+ 29
727
+ 0.6
728
+ FMCW
729
+ Schottky diode
730
+ [23]
731
+ 332
732
+ 16
733
+ 0.2
734
+ FMCW, MIMO
735
+ Schottky diode
736
+ [12]
737
+ 340
738
+ 30
739
+ 1
740
+ FMCW
741
+ Schottky diode
742
+ [13]
743
+ 383
744
+ 80
745
+ 8
746
+ FMCW
747
+ mHEMT
748
+ [24]
749
+ 480
750
+ 55
751
+ 0.06
752
+ FMCW
753
+ SiGe
754
+ [17]
755
+ 340
756
+ 30
757
+ 1
758
+ FMCW pulse-Doppler
759
+ Schottky diode
760
+ This work
761
+ [2] J. Koornneef, M. Junginger, and A. Faaij, “Development of fluidized bed
762
+ combustion—an overview of trends, performance and cost,” Progress
763
+ in Energy and Combustion Science, vol. 33, no. 1, pp. 19–55, 2007,
764
+ doi: 10.1016/j.pecs.2006.07.001.
765
+ [3] D. Zankl, S. Schuster, R. Feger, A. Stelzer, S. Scheiblhofer, C. M.
766
+ Schmid, G. Ossberger, L. Stegfellner, G. Lengauer, C. Feilmayr, B. Lack-
767
+ ner, and T. B¨urgler, “Blastdar—a large radar sensor array system for
768
+ blast furnace burden surface imaging,” IEEE Sensors Journal, vol. 15,
769
+ no. 10, pp. 5893–5909, 2015, doi: 10.1109/JSEN.2015.2445494.
770
+ [4] P. Siegel, “Terahertz technology,” IEEE Transactions on Microwave
771
+ Theory
772
+ and
773
+ Techniques,
774
+ vol.
775
+ 50,
776
+ no.
777
+ 3,
778
+ pp.
779
+ 910–928,
780
+ 2002,
781
+ doi: 10.1109/22.989974.
782
+ [5] J. Werther, “Measurement techniques in fluidized beds,” Powder
783
+ Technology, vol. 102, no. 1, pp. 15–36, 1999, doi: 10.1016/S0032-
784
+ 5910(98)00202-2.
785
+ [6] P. Frake, D. Greenhalgh, S. Grierson, J. Hempenstall, and D. Rudd,
786
+ “Process control and end-point determination of a fluid bed granulation
787
+ by application of near infra-red spectroscopy,” International Journal of
788
+ Pharmaceutics, vol. 151, no. 1, pp. 75–80, 1997, doi: 10.1016/S0378-
789
+ 5173(97)04894-1.
790
+ [7] R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-
791
+ wave imaging for security and surveillance,” Proceedings of the IEEE,
792
+ vol. 95, no. 8, pp. 1683–1690, 2007, doi: 10.1109/JPROC.2007.898832.
793
+ [8] M. Bonmann, D. Carolina Gu´ıo-P´erez, T. Bryllert, D. Pallar`es, M. See-
794
+ mann, F. Johnsson, and J. Stake, “Sub-millimetre wave range-doppler
795
+ radar as a diagnostic tool for gas-solids systems - solids concentration
796
+ measurements,” Advanced Powder Technology, vol. 34, no. 1, p. 103894,
797
+ 2023, doi: 10.1016/j.apt.2022.103894.
798
+ [9] S. Kueppers, T. Jaeschke, N. Pohl, and J. Barowski, “Versatile
799
+ 126–182 ghz uwb d-band fmcw radar for industrial and scientific
800
+ applications,” IEEE Sensors Letters, vol. 6, no. 1, pp. 1–4, 2022,
801
+ doi: 10.1109/LSENS.2021.3130709.
802
+ [10] K. B. Cooper and G. Chattopadhyay, “Submillimeter-wave radar: Solid-
803
+ state system design and applications,” IEEE Microwave Magazine,
804
+ vol. 15, no. 7, pp. 51–67, Nov. 2014, doi: 10.1109/mmm.2014.2356092.
805
+ [11] D. M. Sheen, T. E. Hall, R. H. Severtsen, D. L. McMakin, B. K. Hatchell,
806
+ and P. L. J. Valdez, “Standoff concealed weapon detection using a 350-
807
+ GHz radar imaging system,” in SPIE Proceedings, D. A. Wikner and
808
+ A. R. Luukanen, Eds.
809
+ SPIE, Apr. 2010, doi: 10.1117/12.852788.
810
+ [12] B. Cheng, Z. Cui, B. Lu, Y. Qin, Q. Liu, P. Chen, Y. He, J. Jiang,
811
+ X. He, X. Deng, J. Zhang, and L. Zhu, “340-GHz 3-d imaging
812
+ radar with 4tx-16rx MIMO array,” IEEE Transactions on Terahertz
813
+ Science and Technology, vol. 8, no. 5, pp. 509–519, Sep. 2018,
814
+ doi: 10.1109/tthz.2018.2853551.
815
+ [13] D. A. Robertson, D. G. Macfarlane, R. I. Hunter, S. L. Cassidy,
816
+ N. Llombart, E. Gandini, T. Bryllert, M. Ferndahl, H. Lindstrom,
817
+ J. Tenhunen, H. Vasama, J. Huopana, T. Selkala, and A.-J. Vuotikka,
818
+ “A high frame rate, 340 GHz 3d imaging radar for security,” in
819
+ 2018 IEEE Radar Conference (RadarConf18).
820
+ IEEE, Apr. 2018,
821
+ doi: 10.1109/radar.2018.8378530.
822
+ [14] K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay,
823
+ E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel,
824
+ “Penetrating 3-d imaging at 4- and 25-m range using a submillimeter-
825
+ wave radar,” IEEE Transactions on Microwave Theory and Techniques,
826
+ no. 12, pp. 2771–2778, 2008, doi: 10.1109/TMTT.2008.2007081.
827
+ [15] K. B. Cooper, R. J. Dengler, N. Llombart, B. Thomas, G. Chattopadhyay,
828
+ and P. H. Siegel, “THz imaging radar for standoff personnel screening,”
829
+ IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 1,
830
+ pp. 169–182, Sep. 2011, doi: 10.1109/tthz.2011.2159556.
831
+ [16] S. Thomas, C. Bredendiek, and N. Pohl, “A sige-based 240-ghz fmcw
832
+ radar system for high-resolution measurements,” IEEE Transactions on
833
+ Microwave Theory and Techniques, vol. 67, no. 11, pp. 4599–4609,
834
+ 2019, doi: 10.1109/TMTT.2019.2916851.
835
+ [17] C. Mangiavillano, A. Kaineder, K. Aufinger, and A. Stelzer, “A 1.42-
836
+ mm2 0.45–0.49 thz monostatic fmcw radar transceiver in 90-nm sige
837
+ bicmos,” IEEE Transactions on Terahertz Science and Technology,
838
+ vol. 12, no. 6, pp. 592–602, 2022, doi: 10.1109/TTHZ.2022.3208069.
839
+ [18] I. Mehdi, J. V. Siles, C. Lee, and E. Schlecht, “Thz diode technology:
840
+ Status, prospects, and applications,” Proceedings of the IEEE, vol. 105,
841
+ no. 6, pp. 990–1007, 2017, doi: 10.1109/JPROC.2017.2650235.
842
+ [19] J. Stake, A. Malko, T. Bryllert, and J. Vukusic, “Status and prospects
843
+ of high-power heterostructure barrier varactor frequency multipliers,”
844
+ Proceedings of the IEEE, vol. 105, no. 6, pp. 1008–1019, 2017,
845
+ doi: 10.1109/JPROC.2016.2646761.
846
+ [20] R. Dahlb¨ack, T. Bryllert, G. Granstr¨om, M. Ferndahl, V. Drakinskiy, and
847
+ J. Stake, “Compact 340 ghz homodyne transceiver modules for fmwc
848
+ imaging radar arrays,” in 2016 IEEE MTT-S International Microwave
849
+ Symposium (IMS), 2016, pp. 1–4, doi: 10.1109/MWSYM.2016.7540113.
850
+ [21] T. Bryllert, V. Drakinskiy, K. B. Cooper, and J. Stake, “Integrated
851
+ 200–240-GHz FMCW radar transceiver module,” IEEE Transactions on
852
+ Microwave Theory and Techniques, vol. 61, no. 10, pp. 3808–3815, Oct.
853
+ 2013, doi: 10.1109/tmtt.2013.2279359.
854
+ [22] D. G. Miller and A. B. Bailey, “Sphere drag at mach numbers from 0·3 to
855
+ 2·0 at reynolds numbers approaching 107,” Journal of Fluid Mechanics,
856
+ vol. 93, no. 3, p. 449–464, 1979, doi: 10.1017/S0022112079002597.
857
+ [23] T. Reck, C. Jung-Kubiak, J. V. Siles, C. Lee, R. Lin, G. Chattopad-
858
+ hyay, I. Mehdi, and K. Cooper, “A silicon micromachined eight-pixel
859
+ transceiver array for submillimeter-wave radar,” IEEE Transactions on
860
+ Terahertz Science and Technology, vol. 5, no. 2, pp. 197–206, 2015,
861
+ doi: 10.1109/TTHZ.2015.2397274.
862
+ [24] B. Baumann, B. Gashi, D. Meier, and C. Zech, “High-resolution 400
863
+ ghz submillimeter-wave quasi-optical radar imaging system,” IEEE
864
+ Microwave and Wireless Components Letters, vol. 32, no. 3, pp. 226–
865
+ 229, 2022, doi: 10.1109/LMWC.2022.3142354.
866
+ Tomas Bryllert was born in V¨axj¨o, Sweden, in
867
+ 1974. He received an M.Sc. degree in physics and a
868
+ Ph.D. in semiconductor physics from Lund Univer-
869
+ sity, Lund, Sweden, in 2000 and 2005, respectively.
870
+ In 2006, he joined the Microwave Electronics
871
+ Laboratory, Chalmers University of Technology,
872
+ G¨oteborg, Sweden. From 2007 to 2009, he was
873
+ with the Submillimeter Wave Advanced Technology
874
+ (SWAT) group, Jet Propulsion Laboratory, California
875
+ Institute of Technology, Pasadena, CA, USA. He is
876
+ currently with the Terahertz and Millimetre Wave
877
+ Laboratory at Chalmers University of Technology, G¨oteborg, Sweden. He is
878
+ also the co-founder and Chief Executive Officer of Wasa Millimeter Wave AB,
879
+ a company that develops and fabricates millimeter wave products. Dr. Bryllert
880
+ also works part-time in the new concepts team at Saab AB. His research
881
+ interests include submillimeter wave electronic circuits and their applications
882
+ in imaging and radar systems.
883
+
884
+ 7
885
+ Marlene Bonmann was born in Karlsruhe, Ger-
886
+ many, in 1988. She received an M.Sc. degree in
887
+ physics and astronomy and a Ph.D. in Microtechnol-
888
+ ogy and Nanoscience from the Chalmers University
889
+ of Technology, Gothenburg, Sweden, in 2014 and
890
+ 2020, respectively.
891
+ She is currently with the Terahertz and Millimetre
892
+ Wave Laboratory at the Chalmers University of
893
+ Technology.
894
+ Jan Stake (S’95–M’00–SM’06) was born in Ud-
895
+ devalla, Sweden, in 1971. He received an M.Sc.
896
+ degree in electrical engineering and a Ph.D. in
897
+ microwave electronics from the Chalmers University
898
+ of Technology, Gothenburg, Sweden, in 1994 and
899
+ 1999, respectively.
900
+ In 1997, he was a Research Assistant at the
901
+ University of Virginia, Charlottesville, VA, USA.
902
+ From 1999 to 2001, he was a Research Fellow
903
+ with the Millimetre Wave Group at the Rutherford
904
+ Appleton Laboratory, Didcot, UK. He then joined
905
+ Saab Combitech Systems AB, Link¨oping, Sweden, as a Senior RF/microwave
906
+ Engineer, until 2003. From 2000 to 2006, he held different academic positions
907
+ with the Chalmers University of Technology and from 2003 to 2006, he was
908
+ also the Head of the Nanofabrication Laboratory, Department of Microtech-
909
+ nology and Nanoscience (MC2). In 2007, he was a Visiting Professor with the
910
+ Sub-millimetre Wave Advanced Technology (SWAT) Group at Caltech/JPL,
911
+ Pasadena, CA, USA. In 2020, he was a Visiting Professor at TU Delft.
912
+ He is currently a Professor and the Head of the Terahertz and Millimetre
913
+ Wave Laboratory at the Chalmers University of Technology. He is also
914
+ the co-founder of Wasa Millimeter Wave AB, Gothenburg, Sweden. His
915
+ research interests include graphene electronics, high-frequency semiconductor
916
+ devices, terahertz electronics, submillimeter wave measurement techniques,
917
+ and terahertz systems.
918
+ Prof. Stake served as the Editor-in-Chief for the IEEE Transactions on
919
+ Terahertz Science and Technology between 2016 and 2018 and as Topical
920
+ Editor between 2012 and 2015.
921
+
922
+ HAGLOFS
FtAyT4oBgHgl3EQfrPm5/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
FtE2T4oBgHgl3EQfTAfF/content/2301.03799v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18c94489a3d31f59679fc6db1c39a1df4b582ffadd13545e93ea6bbafdf4573d
3
+ size 112814
FtE2T4oBgHgl3EQfTAfF/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9db4864ca1b31da4fcf5990492aa68e55bba64e4aab0c446cc1f2572c606cbb
3
+ size 720941
FtE2T4oBgHgl3EQfTAfF/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db7e0608fee3afe83c683ffe07894bad4b65bb9db95482b119b9d5484a304d30
3
+ size 38335
GNAyT4oBgHgl3EQffPgF/content/tmp_files/2301.00334v1.pdf.txt ADDED
@@ -0,0 +1,2546 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00334v1 [quant-ph] 1 Jan 2023
2
+ Complete Genuine Multipartite Entanglement Monotone
3
+ Yu Guo∗
4
+ Institute of Quantum Information Science, Shanxi Datong University, Datong, Shanxi 037009, China
5
+ A complete characterization and quantification of entanglement, particularly the multipartite
6
+ entanglement, remains an unfinished long-term goal in quantum information theory. As long as
7
+ the multipartite system is concerned, the relation between the entanglement contained in different
8
+ partitions or different subsystems need to take into account. The complete multipartite entanglement
9
+ measure and the complete monogamy relation is a framework that just deals with such a issue. In this
10
+ paper, we put forward conditions to justify whether the multipartite entanglement monotone (MEM)
11
+ and genuine multipartite entanglement monotone (GMEM) are complete, completely monogamous,
12
+ and tightly complete monogamous according to the feature of the reduced function. Especially,
13
+ we proposed a class of complete MEMs and a class of complete GMEMs via the maximal reduced
14
+ function for the first time.
15
+ By comparison, it is shown that, for the tripartite case, this class
16
+ of GMEMs is better than the one defined from the minimal bipartite entanglement in literature
17
+ under the framework of complete MEM and complete monogamy relation. In addition, the relation
18
+ between monogamy, complete monogamy, and the tightly complete monogamy are revealed in light
19
+ of different kinds of MEMs and GMEMs.
20
+ PACS numbers: 03.67.Mn, 03.65.Db, 03.65.Ud.
21
+ I.
22
+ INTRODUCTION
23
+ Entanglement, as one of the most puzzling features in
24
+ quantum mechanics, has been widely used as an essen-
25
+ tial resource for quantum communication [1–3], quantum
26
+ cryptography [4, 5], and quantum computing [6, 7], etc.
27
+ The utility of an entangled state for these applications
28
+ is often directly related to the degree or type of entan-
29
+ glement contained in it.
30
+ Therefore, efficiently quanti-
31
+ fying and characterizing multipartite entanglement is of
32
+ paramount importance.
33
+ Especially, the genuine multi-
34
+ partite entanglement, as one of the important types of
35
+ entanglement, offers significant advantages in quantum
36
+ tasks compared with bipartite entanglement [8].
37
+ The phenomenon becomes much more complex for
38
+ multipartite entanglement, particularly the genuinely
39
+ multipartite entanglement, entanglement shared between
40
+ all of the particles.
41
+ Over the years, many multipar-
42
+ tite entanglement measures have been proposed, such as
43
+ the “residual tangle” which reports the genuine three-
44
+ qubit entanglement [9], the genuinely multipartite con-
45
+ currence [10], the k-ME concurrence [11], the m con-
46
+ currence [12], the generalization of negativity [13], the
47
+ SL-invariant multipartite measure of entanglement [14–
48
+ 19], and the α-entanglement entropy [20], concurrence
49
+ triangle [21], concentratable entanglement [22], geomet-
50
+ ric mean of bipartite concurrence [23], concurrence tri-
51
+ angle induced genuine multipartite entanglement mea-
52
+ sure [24], and a general way of constructing genuine mul-
53
+ tipartite entanglement monotone is proposed in Ref. [25].
54
+ In Ref. [26], we proposed a framework of complete mul-
55
+ tipartite entanglement monotone from which the entan-
56
+ glement between any partitions or subsystems with the
57
+ coarsening relation could be compared with each other.
58
+ ∗ guoyu3@aliyun.com
59
+ In the context of describing multipartite entanglement,
60
+ another fundamental task is to understand how entan-
61
+ glement is distributed over many parties since it reveals
62
+ fundamental insights into the nature of quantum correla-
63
+ tions [8] and has profound applications in both quantum
64
+ communication [27, 28] and other area of physics [29–
65
+ 33].
66
+ This characteristic trait of distribution is known
67
+ as the monogamy law of entanglement [27, 34], which
68
+ means that the more entangled two parties are, the
69
+ less correlated they can be with other parties.
70
+ Quan-
71
+ titatively, the monogamy of entanglement is described
72
+ by an inequality [9, 29, 34–36] or equality [26, 37, 38],
73
+ involving a bipartite entanglement monotone or multi-
74
+ partite entanglement monotone (MEM). Consequently,
75
+ considerable research has been undertaken in this direc-
76
+ tion [9, 26, 29, 34–39].
77
+ Very recently, we discussed when the genuine multi-
78
+ partite entanglement measure is complete [40] with the
79
+ same spirit as in Ref. [26]. Under such a sense, the hierar-
80
+ chy structure of the entanglement in the system is clear.
81
+ Moreover, whether the multipartite entanglement mea-
82
+ sure is proper or not can be justified together with the
83
+ framework of complete monogamy relation for the mul-
84
+ tipartite system established in Ref. [26]. The framework
85
+ of complete monogamy relation is based on the complete
86
+ multipartite entanglement measure [26, 40, 41].
87
+ With
88
+ this postulates, the distribution of entanglement appears
89
+ more explicitly.
90
+ Multipartite entanglement measure is always defined
91
+ via the bipartite entanglement measure. Let SX be the
92
+ set of all density matrices acting on the state space HX.
93
+ Recall that, a function E : SAB → R+ is called a mea-
94
+ sure of entanglement [42, 43] if (1) E(σAB) = 0 for any
95
+ separable density matrix σAB ∈ SAB, and (2) E be-
96
+ haves monotonically decreasing under local operations
97
+ and classical communication (LOCC). Moreover, convex
98
+ measures of entanglement that do not increase on average
99
+
100
+ 2
101
+ under LOCC are called entanglement monotones [42, 44].
102
+ By replacing SAB with SA1A2···An, it is just the mul-
103
+ tipartite entanglement measure/monotone, and denoted
104
+ by E(n).
105
+ Any bipartite entanglement monotone corre-
106
+ sponds to a concave function on the reduced state when
107
+ it is evaluated for the pure states [44]. For any entangle-
108
+ ment measure E, if
109
+ h
110
+
111
+ ρA�
112
+ = E
113
+
114
+ |ψ⟩⟨ψ|AB�
115
+ (1)
116
+ is concave, i.e.
117
+ h[λρ1 + (1 − λ)ρ2] ≥ λh(ρ1) + (1 −
118
+ λ)h(ρ2) for any states ρ1, ρ2, and any 0 ≤ λ ≤ 1,
119
+ then the convex roof extension of E, i.e., EF
120
+
121
+ ρAB�
122
+
123
+ min �n
124
+ j=1 pjE
125
+
126
+ |ψj⟩⟨ψj|AB�
127
+ , is an entanglement mono-
128
+ tone, where the minimum is taken over all pure state
129
+ decompositions of ρAB = �n
130
+ j=1 pj|ψj⟩⟨ψj|AB. We call h
131
+ the reduced function of E and HA the reduced subsystem
132
+ throughout this paper.
133
+ An n-partite pure state |ψ⟩ ∈ HA1A2···An is called
134
+ biseparable if it can be written as |ψ⟩
135
+ =
136
+ |ψ⟩X ⊗
137
+ |ψ⟩Y
138
+ for some bipartition of A1A2 · · · An (for exam-
139
+ ple, A1A3|A2A4 is a bipartition of A1A2A3A4). An n-
140
+ partite mixed state ρ is biseparable if it can be writ-
141
+ ten as a convex combination of biseparable pure states
142
+ ρ = �
143
+ i pi|ψi⟩⟨ψi|, wherein the contained {|ψi⟩} can be
144
+ biseparable with respect to different bipartitions (i.e., a
145
+ mixed biseparable state does not need to be separable
146
+ with respect to any particular bipartition). If ρ is not
147
+ biseparable, then it is called genuinely entangled. A mul-
148
+ tipartite entanglement measure E(n) is called a genuine
149
+ multipartite entanglement measure if (i) E(n)(σ) = 0 for
150
+ any biseparable state σ, (ii) E(n)(ρ) > 0 for any genuine
151
+ entangled state, and (iii) it is convex [10].
152
+ A genuine
153
+ multipartite entanglement measure is called a genuine
154
+ multipartite entanglement monotone (GMEM) if it does
155
+ not increase on average under LOCC.
156
+ In Refs. [25, 26, 40], we present MEMs and GMEMs
157
+ that are defined by the sum of the reduced function on
158
+ pure states and then extended to mixed states via the
159
+ convex-roof structure. The aim of this paper is to give
160
+ a condition that can justify when the MEMs and the
161
+ GMEMs defined in this way is complete and completely
162
+ monogamous. Moreover, we give another way of defining
163
+ MEMs and the GMEMs from the maximal reduced func-
164
+ tion and then discuss when these quantities are complete
165
+ and completely monogamous.
166
+ The remainder of this paper is organized as follows.
167
+ In Sec.
168
+ II, we introduce some preliminaries.
169
+ Sec.
170
+ III
171
+ discusses the properties of the reduced functions of the
172
+ entanglement monotones so far in literature.
173
+ Sec.
174
+ IV
175
+ is divided into two subsections.
176
+ Subsec.
177
+ A discusses
178
+ the MEM defined by the sum of reduced functions, and
179
+ in Subsec. B, we give the MEMs defined by the max-
180
+ imal reduced function.
181
+ Both of theses two MEMs are
182
+ explored under the framework of the complete measure
183
+ and the complete monogamy relation.
184
+ In Sec.
185
+ V, we
186
+ consider three kinds of GMEMs which are defined by the
187
+ sum of reduced functions, the maximal reduced function,
188
+ and the minimal reduced function, respectively, under
189
+ the framework the complete measure and the complete
190
+ monogamy relation. We present a conclusion in Sec. VI.
191
+ II.
192
+ NOTATIONS AND PRELIMINARIES
193
+ The framework of the complete entanglement mea-
194
+ sure/monotone is closely related to the coarser relation
195
+ of multipartite partition. We first introduce three kinds
196
+ of coarser relation in Subsec. A, from which we then re-
197
+ view the complete MEM, complete GMEM, monogamy
198
+ relation and complete monogamy relation, respectively,
199
+ in the latter three subsections.
200
+ A.
201
+ Coarser relation of multipartite partition
202
+ Let X1|X2| · · · |Xk and Y1|Y2| · · · |Yl be two partitions
203
+ of A1A2 · · · An or subsystem of A1A2 · · · An (for instance,
204
+ partition AB|C|DE is a 3-partition of the 5-particle sys-
205
+ tem ABCDE with X1 = AB, X2 = C and X3 = DE).
206
+ We denote by [40]
207
+ X1|X2| · · · |Xk ≻a Y1|Y2| · · · |Yl,
208
+ (2)
209
+ X1|X2| · · · |Xk ≻b Y1|Y2| · · · |Yl,
210
+ (3)
211
+ X1|X2| · · · |Xk ≻c Y1|Y2| · · · |Yl
212
+ (4)
213
+ if Y1|Y2| · · · |Yl can be obtained from X1|X2| · · · |Xk by
214
+ (a) discarding some subsystem(s) of X1|X2| · · · |Xk,
215
+ (b) combining some subsystems of X1|X2| · · · |Xk,
216
+ (c) discarding some subsystem(s) of some subsystem(s)
217
+ Xk provided that Xk = Ak(1)Ak(2) · · · Ak(f(k)) with
218
+ f(k) ⩾ 2,
219
+ respectively. For example, A|B|C|D ≻a A|B|D ≻a B|D,
220
+ A|B|C|D ≻b AC|B|D ≻b AC|BD, A|BC ≻c A|B.
221
+ Furthermore, if X1|X2| · · · |Xk ≻ Y1|Y2| · · · |Yl, we de-
222
+ note by Ξ(X1|X2| · · · |Xk −Y1|Y2| · · · |Yl) the set of all the
223
+ partitions that are coarser than X1|X2| · · · |Xk and either
224
+ exclude any subsystem of Y1|Y2| · · · |Yl or include some
225
+ but not all subsystems of Y1|Y2| · · · |Yl [40]. For exam-
226
+ ple, Ξ(A|B|CD|E − A|B) = {CD|E, A|CD|E, B|CD|E,
227
+ A|CD, B|CD, B|C|E, B|D|E, A|D|E, A|C|E, A|E,
228
+ B|E, A|C, A|D, B|C, B|D, C|E, D|E}.
229
+ B.
230
+ Complete MEM
231
+ A multipartite entanglement measure E(n) is called a
232
+ unified multipartite entanglement measure if it satisfies
233
+ the unification condition [26]:
234
+ (i) (additivity):
235
+ E(n)(A1A2 · · · Ak ⊗ Ak+1 · · · An)
236
+ = E(k)(A1A2 · · · Ak) + E(n−k)(Ak+1 · · · An),
237
+ (5)
238
+
239
+ 3
240
+ holds for all ρA1A2···An
241
+ ∈ SA1A2···An, hereafter
242
+ E(n)(X) refers to E(n)(ρX);
243
+ (ii) (permutation invariance):
244
+ E(n)(A1A2 · · · An)
245
+ =
246
+ E(n)(Aπ(1)Aπ(2) · · · Aπ(n)),
247
+ for all ρA1A2···An
248
+
249
+ SA1A2···An and any permutation π;
250
+ (iii) (coarsening monotone):
251
+ E(k)(X1|X2| · · · |Xk) ⩾ E(l)(Y1|Y2| · · · |Yl)
252
+ (6)
253
+ holds
254
+ for
255
+ all
256
+ ρA1A2···An
257
+
258
+ SA1A2···An
259
+ when-
260
+ ever
261
+ X1|X2| · · · |Xk
262
+ ≻a
263
+ Y1|Y2| · · · |Yl,
264
+ where
265
+ X1|X2| · · · |Xk and Y1|Y2| · · · |Yl are two partitions
266
+ of A1A2 · · · An or subsystem of A1A2 · · · An, the
267
+ vertical bar indicates the split across which the en-
268
+ tanglement is measured..
269
+ E(n) is called a complete multipartite entanglement mea-
270
+ sure if it satisfies both the conditions above and the hi-
271
+ erarchy condition [26]:
272
+ (iv) (tight coarsening monotone):
273
+ Eq. (6) holds for
274
+ all ρ ∈ SA1A2···An whenever X1|X2| · · · |Xk ≻b
275
+ Y1|Y2| · · · |Yl.
276
+ C.
277
+ Complete GMEM
278
+ Let E(n)
279
+ g
280
+ be a genuine multipartite entanglement mea-
281
+ sure. It is defined to be a unified genuine multipartite
282
+ entanglement measure if it satisfies the unification con-
283
+ dition [40], i.e.,
284
+ (i) (permutation invariance):
285
+ E(n)
286
+ g
287
+ (A1A2 · · · An)
288
+ =
289
+ E(n)
290
+ g
291
+ (Aπ(1)Aπ(2) · · · Aπ(n)),
292
+ for all ρA1A2···An
293
+
294
+ SA1A2···An
295
+ g
296
+ and any permutation π;
297
+ (ii) (coarsening monotone):
298
+ E(k)
299
+ g (X1|X2| · · · |Xk) > E(l)
300
+ g (Y1|Y2| · · · |Yl)
301
+ (7)
302
+ holds for all ρA1A2···An
303
+ ∈ SA1A2···An
304
+ g
305
+ whenever
306
+ X1|X2| · · · |Xk ≻a Y1|Y2| · · · |Yl.
307
+ A unified GMEM E(n)
308
+ g
309
+ is call a complete genuine multi-
310
+ partite entanglement measure if E(n)
311
+ g
312
+ admits the hierar-
313
+ chy condition [40], i.e.,
314
+ (iii) (tight coarsening monotone):
315
+ E(k)
316
+ g (X1|X2| · · · |Xk) ≥ E(l)
317
+ g (Y1|Y2| · · · |Yl)
318
+ (8)
319
+ holds
320
+ for
321
+ all
322
+ ρ
323
+
324
+ SA1A2···An
325
+ g
326
+ whenever
327
+ X1|X2| · · · |Xk ≻b Y1|Y2| · · · |Yl.
328
+ D.
329
+ Monogamy Relation
330
+ For an bipartite entanglement measure E, E is said to
331
+ be monogamous if [9, 39]
332
+ E(A|BC) ⩾ E(AB) + E(AC).
333
+ (9)
334
+ However, Equation (9) is not valid for many entangle-
335
+ ment measures [9, 35, 37] but some power function of
336
+ Q admits the monogamy relation (i.e., Eα(A|BC) ⩾
337
+ Eα(AB) + Eα(AC) for some α > 0). In Ref. [37], we
338
+ improved the definition of monogamy as: A bipartite
339
+ measure of entanglement E is monogamous if for any
340
+ ρ ∈ SABC that satisfies the disentangling condition, i.e.,
341
+ E(ρA|BC) = E(ρAB),
342
+ (10)
343
+ we have that E(ρAC) = 0, where ρAB = TrCρABC.
344
+ With respect to this definition, a continuous measure E
345
+ is monogamous according to this definition if and only if
346
+ there exists 0 < α < ∞ such that
347
+ Eα(ρA|BC) ⩾ Eα(ρAB) + Eα(ρAC)
348
+ (11)
349
+ for all ρ acting on the state space HABC with fixed
350
+ dim HABC = d < ∞ (see Theorem 1 in Ref. [37]).
351
+ In Ref. [26], in order to characterize the distribution
352
+ of entanglement in a “complete” sense, the term “com-
353
+ plete monogamy” of the unified multipartite entangle-
354
+ ment measure is proposed.
355
+ For a unified multipartite
356
+ entanglement measure E(n), it is said to be completely
357
+ monogamous if for any ρ ∈ SA1A2···An that satisfies [26]
358
+ E(k)(X1|X2| · · · |Xk) = E(l)(Y1|Y2| · · · |Yl)
359
+ (12)
360
+ with X1|X2| · · · |Xk ≻a Y1|Y2| · · · |Yl we have that
361
+ E(∗)
362
+ g (Γ) = 0
363
+ (13)
364
+ holds for all Γ ∈ Ξ(X1|X2| · · · |Xk − Y1|Y2| · · · |Yl), here-
365
+ after the superscript (∗) is associated with the partition
366
+ Γ, e.g., if Γ is a n-partite partition, then (∗) = (n). For
367
+ example, E(3) is completely monogamous if for any ρABC
368
+ that admits E(3)(ABC) = E(2)(AB) we get E(2)(AC) =
369
+ E(2)(BC) = 0. Let E(n) be a complete multipartite en-
370
+ tanglement measure. E(n) is defined to be tightly com-
371
+ plete monogamous if for any ρ ∈ SA1A2···An that satis-
372
+ fies [26]
373
+ E(k)(X1|X2| · · · |Xk) = E(l)(Y1|Y2| · · · |Yl)
374
+ (14)
375
+ with X1|X2| · · · |Xk ≻b Y1|Y2| · · · |Yl we have that
376
+ E(∗)
377
+ g (Γ) = 0
378
+ (15)
379
+ holds for all Γ ∈ Ξ(X1|X2| · · · |Xk − Y1|Y2| · · · |Yl). For
380
+ instance, E(3) is tightly complete monogamous if for any
381
+ ρABC that admits E(3)(ABC) = E(2)(A|BC) we have
382
+ E(2)(BC) = 0.
383
+ Let E(n)
384
+ g
385
+ be a genuine multipartite entanglement mea-
386
+ sure. We denote by SA1A2···Am
387
+ g
388
+ the set of all genuine en-
389
+ tangled states in SA1A2···Am. E(n)
390
+ g
391
+ is completely monog-
392
+ amous if it obeys Eq. (7) [40]. A complete genuine mul-
393
+ tipartite entanglement measure E(n)
394
+ g
395
+ is tightly complete
396
+
397
+ 4
398
+ monogamous if it satisfies the genuine disentangling con-
399
+ dition, i.e., either for any ρ ∈ SA1A2···Am
400
+ g
401
+ that satis-
402
+ fies [40]
403
+ E(k)
404
+ g (X1|X2| · �� · |Xk) = E(l)
405
+ g (Y1|Y2| · · · |Yl)
406
+ (16)
407
+ with X1|X2| · · · |Xk ≻b Y1|Y2| · · · |Yl we have that
408
+ E(∗)
409
+ g (Γ) = 0
410
+ (17)
411
+ holds for all Γ ∈ Ξ(X1|X2| · · · |Xk − Y1|Y2| · · · |Yl), or
412
+ E(k)
413
+ g (X1|X2| · · · |Xk) > E(l)
414
+ g (Y1|Y2| · · · |Yl)
415
+ (18)
416
+ holds for any ρ ∈ SA1A2···Am
417
+ g
418
+ .
419
+ In Ref. [26], we showed that the tightly complete
420
+ monogamy is stronger than the complete monogamy for
421
+ the complete MEMs that defined by the convex-roof ex-
422
+ tension. One can easily find that it is also true for any
423
+ complete GMEM defined by the convex-roof extension.
424
+ III.
425
+ STRICT CONCAVITY AND
426
+ SUBADDITIVITY OF THE REDUCED
427
+ FUNCTION
428
+ Any entanglement monotone, when evaluated on pure
429
+ states, is uniquely determined by its reduced function
430
+ and vice versa. Therefore, the feature of the entangle-
431
+ ment monotone defined via the convex-roof extension
432
+ rests with the quality of its reduced function. In Ref. [38],
433
+ we proved that the bipartite entanglement monotone is
434
+ monogamous whenever its reduced function is strictly
435
+ concave. In ths Section, we review all the reduced func-
436
+ tions of the entanglement monotones in literature so far
437
+ and then discuss the subadditivity of theses functions. As
438
+ what we will show in the next two Sections, the subaddi-
439
+ tivity is affinitive with the completeness of the measures
440
+ for some kind of MEM/GMEM.
441
+ A.
442
+ Strict concavity
443
+ The reduced functions of the entanglement of for-
444
+ mation Ef [45, 46], tangle τ [47], concurrence C [48–
445
+ 50], negativity N [51], the Tsallis q-entropy of entangle-
446
+ ment Eq [52], and the R´enyi α-entropy of entanglement
447
+ Eα [44, 53] are
448
+ h(ρ) = S(ρ),
449
+ hτ(ρ) = h2
450
+ C(ρ) = 2(1 − Trρ2),
451
+ hN(ρ) = 1
452
+ 2[(Tr√ρ)2 − 1],
453
+ hq(ρ) = 1 − Trρq
454
+ q − 1
455
+ ,
456
+ q > 0,
457
+ hα(ρ) = (1 − α)−1 ln(Trρα),
458
+ 0 < α < 1,
459
+ respectively, where S is the von Neumann entropy. It has
460
+ been shown that h, hτ, hC, hN, hq, and hα are not only
461
+ concave but also strictly concave [38, 44, 54] (where the
462
+ strict concavity of hN is proved very recently in Ref. [55]).
463
+ The reduced functions of the entanglement monotones
464
+ induced by the fidelity-based distances EF, EF ′, and
465
+ EAF are [56]
466
+ hF(ρ) = 1 − Trρ3,
467
+ hF ′(ρ) = 1 −
468
+
469
+ Trρ2�2 ,
470
+ hAF(ρ) = 1 −
471
+
472
+ Trρ3,
473
+ respectively. They are strictly concave [40].
474
+ In Ref. [55], four kinds of partial norm of entangle-
475
+ ment are investigated: the partial-norm of entanglement
476
+ E2, the minimal partial-norm of entanglement Emin, the
477
+ reinforced minimal partial-norm of entanglement Emin′,
478
+ and the partial negativity ˆN. The reduced functions of
479
+ E2, Emin, E′
480
+ min, and ˆN are
481
+ h2(ρ) = 1 − ∥ρ∥,
482
+ hmin(ρ) = ∥ρ∥min,
483
+ hmin′(ρ) = r(ρ)∥ρ∥min,
484
+ ˆh(ρ) =
485
+
486
+ δ1δ2,
487
+ where r(ρ) denotes the rank of ρ, ∥ · ∥ is the operator
488
+ norm, i.e., ∥X∥ = sup|ψ⟩ ∥A|ψ⟩∥,
489
+ ∥ρ∥min =
490
+
491
+ λ2
492
+ min,
493
+ λmin < 1,
494
+ 0,
495
+ λmin = 1,
496
+ and δ1, δ2 are the two largest eigenvalues of ρ. All of them
497
+ are concave but not strictly concave (ˆh is only strictly
498
+ concave on qubit states), and these entanglement mono-
499
+ tones are not monogamous [55].
500
+ B.
501
+ Subadditivity
502
+ We summarize the subadditivity of the reduced func-
503
+ tions in literature as following:
504
+ (i) S is additive and subadditive [54], i.e.,
505
+ S(ρ ⊗ σ) = S(ρ) + S(σ)
506
+ (19)
507
+ and
508
+ S(ρAB) ≤ S(ρA) + S(ρB),
509
+ (20)
510
+ respectively.
511
+ (ii) Sq is subadditive iff q > 1, but not additive, and
512
+ for 0 < q < 1, Sq is neither subadditive nor super-
513
+ additive [57] (superadditivity refers to Sq(ρAB) ⩾
514
+ Sq(ρA) + Sq(ρB)). In addition,
515
+ Sq(ρA ⊗ ρB) = Sq(ρA) + Sq(ρB)
516
+ (21)
517
+ iff ρA or ρB is pure [57].
518
+
519
+ 5
520
+ TABLE I. Comparing of the properties of the reduced func-
521
+ tions.
522
+ C, SC, SA, and A signify the function is concave,
523
+ strictly concave, subadditive, and additive, respectively.
524
+ E
525
+ h
526
+ C
527
+ SC
528
+ SA
529
+ A
530
+ Ef
531
+ S
532
+
533
+
534
+
535
+
536
+ C
537
+
538
+ 2(1 − Trρ2)
539
+
540
+
541
+
542
+ ×
543
+ τ
544
+ 2(1 − Trρ2)
545
+
546
+
547
+
548
+ ×
549
+ Eq
550
+ 1−Trρq
551
+ q−1
552
+ ✓(q > 0) ✓(q > 1) ✓(q > 1) ×
553
+
554
+ ln(Trρα)
555
+ 1−α
556
+ , α ∈ (0, 1)
557
+
558
+
559
+ ×
560
+
561
+ NF
562
+ (Tr√ρ)2−1
563
+ 2
564
+
565
+
566
+ ×
567
+ ×
568
+ EF
569
+ 1 − Trρ3
570
+
571
+
572
+
573
+ ×
574
+ EF′
575
+ 1 − (Trρ2)2
576
+
577
+
578
+ ✓a
579
+ ×
580
+ EAF
581
+ 1 −
582
+
583
+ Trρ3
584
+
585
+
586
+ ✓a
587
+ ×
588
+ E2
589
+ 1 − ∥ρ∥
590
+
591
+ ×
592
+
593
+ ×
594
+ Emin
595
+ ∥ρ∥min
596
+
597
+ ×
598
+ ×
599
+ ×
600
+ Emin′
601
+ r(ρ)∥ρ∥min
602
+
603
+ ×
604
+ ×
605
+ ×
606
+ ˆ
607
+ N
608
+
609
+ δ1δ2
610
+ ✓b
611
+ ×
612
+ ✓a
613
+ ×
614
+ a We conjecture that they are subadditive.
615
+ b We conjecture that it is concave.
616
+ (iii) hα is additive but not subadditive [58, 59].
617
+ (iv) hτ is subadditive [60], i.e.,
618
+ 1 + Trρ2
619
+ AB ≥ Trρ2
620
+ A + Trρ2
621
+ B.
622
+ (22)
623
+ In particular, the equality holds iff ρA or ρB is
624
+ pure [26].
625
+ (v) hN is neither subadditive nor supperadditive [26].
626
+ Item (iv) implies hC is subadditive and the equality holds
627
+ iff ρA or ρB is pure. hF is subadditive since it coincides
628
+ with Sq/2 (q = 3). We conjecture that hF ′ and hAF are
629
+ subadditive.
630
+ Proposition 1. h2 is subadditive, i.e.,
631
+ 1 + ∥ρAB∥ ⩾ ∥ρA∥ + ∥ρB∥
632
+ (23)
633
+ holds for any ρAB ∈ SAB.
634
+ In particular, the equality
635
+ holds iff ρA or ρB is a pure state.
636
+ Proof. Note that partial trace is a quantum channel and
637
+ any quantum channel can be regarded as a operator on
638
+ the space of the trace-class operators. The norm of quan-
639
+ tum channel in such a sense is 1. Therefore ∥ρAB∥ ⩾
640
+ ∥ρA,B∥. Moreover, if 1 + ∥ρAB∥ = ∥ρA∥ + ∥ρB∥, then
641
+ ∥ρA∥ = 1 or ∥ρB∥ = 1, which completes the proof.
642
+ Let
643
+ ρAB = 1
644
+ 2|ψ⟩⟨ψ| + 1
645
+ 2|φ⟩⟨φ|
646
+ with |ψ⟩ =
647
+
648
+ 4
649
+ 5|00⟩+
650
+
651
+ 1
652
+ 5|11⟩ and |φ⟩ =
653
+
654
+ 4
655
+ 5|22⟩+
656
+
657
+ 1
658
+ 5|33⟩.
659
+ It is clear that ∥ρAB∥min = 1
660
+ 2 > ∥ρA∥min + ∥ρB∥min =
661
+ 1/10 + 1/10 = 1/5.
662
+ That is, ∥ · ∥min is not subaddi-
663
+ tive. Clearly, hmin′ is also not subadditive. According
664
+ to Proposition 1, hmin and hmin′ are subadditive on the
665
+ states that satisfies r(ρAB) = r(ρA) = r(ρB) = 2. One
666
+ can easily verifies that h2, hmin, hmin′, and ˆh are not
667
+ additive.
668
+ We conjecture that ˆh is subadditive, i.e.,
669
+ ˆh(ρAB) ⩽ ˆh(ρA) + ˆh(ρB)
670
+ (24)
671
+ holds for any ρAB ∈ SAB. In what follows, we always
672
+ assume that hF ′, hAF, and ˆh are subadditive, and that
673
+ ˆh is concave.
674
+ The reduced functions of parametrized entanglement
675
+ monotones in Ref. [61] and Ref. [62] are
676
+ hq′(ρ) = 1 − Trρq,
677
+ q > 1,
678
+ and
679
+ hα′(ρ) = Trρα − 1,
680
+ 0 < α < 1,
681
+ respectively. Obviously, the properties of these two func-
682
+ tions above are the same as that of hq, although they are
683
+ different from Eq [61, 62]. We summarize the properties
684
+ of theses reduced functions in Table I for more conve-
685
+ nience.
686
+ IV.
687
+ COMPLETE MEM
688
+ A.
689
+ Complete MEM from sum of the reduced
690
+ functions
691
+ In Ref. [26], we put forward several complete MEMs
692
+ defined by the sum of the reduced functions on all the
693
+ single subsystems. In fact, this scenario is valid for all en-
694
+ tanglement monotones. Let |ψ⟩A1A2···An be a pure state
695
+ in HA1A2···An and h be a non-negative concave function
696
+ on SX. We define
697
+ E(n)(|ψ⟩A1A2···An) = 1
698
+ 2
699
+
700
+ i
701
+ h(ρAi)
702
+ (25)
703
+ and then extend it to mixed states by the convex-roof
704
+ structure.
705
+ We denote E(n) by E(n)
706
+ f
707
+ , C(n), τ (n), E(n)
708
+ q
709
+ ,
710
+ E(n)
711
+ α , N (n)
712
+ F , E(n)
713
+ F , E(n)
714
+ F ′ , E(n)
715
+ AF, E(n)
716
+ 2
717
+ , E(n)
718
+ min, E(n)
719
+ min′, and ˆN (n)
720
+ whenever h = S, hC, hτ, hq, hα, hN, hF, hF ′, hAF, h2,
721
+ hmin, hmin′, and ˆh, respectively. Here, E(n)
722
+ f
723
+ , C(n), τ (n),
724
+ E(n)
725
+ q
726
+ , E(n)
727
+ α , and N (n)
728
+ F
729
+ have been discussed in Ref. [26]
730
+ for the first time. The coefficient “1/2” is fixed by the
731
+ unification condition when E(n) is regarded as a unified
732
+ MEM. One need note here that E(n)
733
+ F , E(n)
734
+ F ′ , and E(n)
735
+ AF are
736
+ different from E(n)
737
+ F,F , E(n)
738
+ F ′,F , and E(n)
739
+ AF,F respectively in
740
+ Ref. [56].
741
+ Theorem 1. Let E(n) be a non-negative function defined
742
+ as in Eq. (25). Then the following statements hold true.
743
+
744
+ 6
745
+ (i) E(n) is a unified MEM and is completely monoga-
746
+ mous;
747
+ (ii) E(n) is a complete MEM iff h is subadditive;
748
+ (iii) E(n) is tightly complete monogamous iff h is sub-
749
+ additive with
750
+ h(ρAB) = h(ρA) + h(ρB) ⇒ ρAB is separable. (26)
751
+ Proof. We only need to discuss the case of n = 3 with no
752
+ loss of generality.
753
+ (i) For any |ψ⟩ABC ∈ HABC, we let E(2)(ρAB) =
754
+
755
+ i piE(2)(|ψi⟩) = 1
756
+ 2
757
+
758
+ i pi[h(ρA
759
+ i ) + h(ρB
760
+ i )]. Then
761
+ E(3)(|ψ⟩ABC) = 1
762
+ 2
763
+
764
+ h(ρA) + h(ρB) + h(ρC)
765
+
766
+ ≥ 1
767
+ 2
768
+
769
+ h(ρA) + h(ρB)
770
+
771
+ ≥ 1
772
+ 2
773
+
774
+ i
775
+ pi[h(ρA
776
+ i ) + h(ρB
777
+ i )]
778
+ = E(2)(ρAB).
779
+ That is, E(3) satisfies Eq. (6) for pure states and it is
780
+ completely monogamous on pure states. For any mixed
781
+ state ρABC, we let E(3)(ρABC) = �
782
+ j qjE(3)(|ψj⟩) and
783
+ E(2)(ρAB
784
+ j
785
+ ) = �
786
+ i pi(j)E(2)(|ψi(j)⟩) = 1
787
+ 2
788
+
789
+ i pi(j)[h(ρA
790
+ i(j)) +
791
+ h(ρB
792
+ i(j))]. Then
793
+ E(3)(ρABC) = 1
794
+ 2
795
+
796
+ j
797
+ qj
798
+
799
+ h(ρA
800
+ j ) + h(ρB
801
+ j ) + h(ρC
802
+ j )
803
+
804
+ ≥ 1
805
+ 2
806
+
807
+ j
808
+ qj
809
+
810
+ hj(ρA) + hj(ρB)
811
+
812
+ ≥ 1
813
+ 2
814
+
815
+ i,j
816
+ qjpi(j)[h(ρA
817
+ i(j)) + h(ρB
818
+ i(j))] ≥ E(2)(ρAB),
819
+ i.e., it is a unified MEM. If E(3)(ρABC) = E(2)(ρAB),
820
+ it yields h(ρC
821
+ j ) = 0 for any j, and thus |ψj⟩ABC =
822
+ |ψj⟩AB|ψj⟩C. Therefore it is completely monogamous.
823
+ (ii) If E(3) is a complete MEM, then E(3)(|ψ⟩ABC) ≥
824
+ E(2)(|ψ⟩A|BC) for any |ψ⟩ABC, which implies h(ρBC) ≤
825
+ h(ρB) + h(ρC). That is, h is subadditive since |ψ⟩ABC
826
+ is arbitrarily given.
827
+ Conversely, if h is subadditive,
828
+ then E(3)(|ψ⟩ABC) ≥ E(2)(|ψ⟩A|BC) for any pure state
829
+ |ψ⟩ABC. For any mixed state ρABC, we let E(3)(ρABC) =
830
+
831
+ j qjE(3)(|ψj⟩). Then
832
+ E(3)(ρABC) = 1
833
+ 2
834
+
835
+ j
836
+ qj
837
+
838
+ h(ρA
839
+ j ) + h(ρB
840
+ j ) + h(ρC
841
+ j )
842
+
843
+ ≥ 1
844
+ 2
845
+
846
+ j
847
+ qj
848
+
849
+ hj(ρA) + hj(ρBC)
850
+
851
+ ≥ E(2)(ρA|BC),
852
+ i.e., it is a complete MEM.
853
+ (iii) It can be easily checked using the argument anal-
854
+ ogous to that of (ii) together with the fact that, if E(n)
855
+ is tightly complete monogamous, it is automatically a
856
+ complete MEM.
857
+ TABLE II. Comparing of E(n) with different different reduced
858
+ functions, and E (n).
859
+ CM and TCM signify the measure is
860
+ completely monogamous and tightly completel monogamous,
861
+ respectively.
862
+ MEM
863
+ Unified
864
+ Complete
865
+ CM
866
+ TCM
867
+ E(n)
868
+ f
869
+
870
+
871
+
872
+
873
+ C(n)
874
+
875
+
876
+
877
+
878
+ �� (n)
879
+
880
+
881
+
882
+
883
+ E(n)
884
+ q
885
+
886
+
887
+
888
+ ✓a
889
+ E(n)
890
+ α
891
+
892
+ ×
893
+
894
+ ×
895
+ N (n)
896
+ F
897
+
898
+ ×
899
+
900
+ ×
901
+ E(n)
902
+ F
903
+
904
+
905
+
906
+ ✓a
907
+ E(n)
908
+ F′
909
+
910
+ ✓b
911
+
912
+ ✓a
913
+ E(n)
914
+ AF
915
+
916
+ ✓b
917
+
918
+ ✓a
919
+ E(n)
920
+ 2
921
+
922
+
923
+
924
+
925
+ E(n)
926
+ min
927
+
928
+ ×
929
+
930
+ ×
931
+ E(n)
932
+ min′
933
+
934
+ ×
935
+
936
+ ×
937
+ ˆ
938
+ N (n)
939
+
940
+ ✓b
941
+
942
+ ✓a
943
+ E (n) (n ≥ 4)
944
+
945
+
946
+
947
+
948
+ a It is tightly complete monogamous under the assumption that
949
+ h is subadditive and Eq. (26) holds.
950
+ b It is complete under the assumption that h is subadditive.
951
+ By Theorem 1, we can conclude: (i) E(n)
952
+ f
953
+ , C(n), τ (n),
954
+ E(n)
955
+ q
956
+ , E(n)
957
+ α , N (n)
958
+ F , E(n)
959
+ F , E(n)
960
+ F ′ , E(n)
961
+ AF, E(n)
962
+ 2
963
+ , E(n)
964
+ min, E(n)
965
+ min′,
966
+ and ˆN (n) are unified MEMs and are completely monog-
967
+ amous; (ii) E(n)
968
+ f
969
+ , C(n), τ (n), E(n)
970
+ q
971
+ , E(n)
972
+ F , E(n)
973
+ F ′ , E(n)
974
+ AF,
975
+ E(n)
976
+ 2
977
+ , and ˆN (n) are complete MEMs; (iii) E(n)
978
+ α , N (n)
979
+ F ,
980
+ E(n)
981
+ min, and E(n)
982
+ min′ are not complete MEMs since the asso-
983
+ ciated reduced functions are not subadditive which vio-
984
+ late the hierarchy condition for some states. (iv) E(n)
985
+ f
986
+ ,
987
+ C(n), τ (n), and E(n)
988
+ 2
989
+ are tightly complete monogamous.
990
+ However E(n)
991
+ 2
992
+ , E(n)
993
+ min, E(n)
994
+ min′, and ˆN (n) are not monoga-
995
+ mous.Together with Theorem in Ref. [38], we obtain that,
996
+ for these MEMs, both monogamy and tightly complete
997
+ monogamy are stronger than the complete monogamy
998
+ under the frame work of the complete MEM, and that
999
+ monogamy is stronger than both complete monogamy
1000
+ and tightly complete monogamy (e.g., E(n)
1001
+ 2
1002
+ ).
1003
+ In particular, if h is subadditive with h(ρAB)
1004
+ =
1005
+ h(ρA) + h(ρB) implies ρAB = ρA ⊗ ρB, then E(n) is
1006
+ tightly complete monogamous. S, hτ, hC, and h2 be-
1007
+ long to such situations. We also conjecture that hq, hF,
1008
+ hF ′, hAF, and ˆh belong to such situations as well. That
1009
+ is, we conjecture that E(n)
1010
+ q
1011
+ , E(n)
1012
+ F , E(n)
1013
+ F ′ , E(n)
1014
+ AF, and ˆN (n)
1015
+ are tightly complete monogamous.
1016
+ In Ref. [25], we put forward several multipartite en-
1017
+ tanglement measures which are defined by the sum of all
1018
+ bipartite entanglement. Let |ψ⟩A1A2···An be a pure state
1019
+ in HA1A2···An and h be a non-negative concave function
1020
+
1021
+ 7
1022
+ on SX. We define [25]
1023
+ E(n)(|ψ⟩A1A2···An)
1024
+ =
1025
+
1026
+
1027
+
1028
+
1029
+
1030
+ 1
1031
+ 2
1032
+
1033
+ i1≤···≤is,s<n/2
1034
+ h(ρAi1Ai2 ···Ais ),
1035
+ if n is odd,
1036
+ 1
1037
+ 2
1038
+
1039
+ i1≤···≤is<n,s≤n/2
1040
+ h(ρAi1Ai2 ···Ais ),
1041
+ if n is even,(27)
1042
+ for pure states and for mixed states by the convex-roof
1043
+ structure.
1044
+ Note that E(n) is just E12···n(2) in Ref. [25]
1045
+ provided that the corresponding bipartite entanglement
1046
+ measure is an entanglement monotone. Clearly,
1047
+ E(n) ≤ E(n),
1048
+ (28)
1049
+ and in general, E(n) < E(n) whenever n ≥ 4. Indeed, we
1050
+ can easily show that E(n)(|ψ⟩) < E(n)(|ψ⟩) iff |ψ⟩ is not
1051
+ fully separable, i.e., |ψ⟩ ̸= |ψ⟩A1|ψ⟩A2 ⊗ · · · ⊗ |ψ⟩An. E(3)
1052
+ coincides with E(3) but E(n) is different from E(n) when-
1053
+ ever n ≥ 4. The following Proposition is straightforward
1054
+ by the definition of E(n).
1055
+ Proposition 2. Let E(n) be a non-negative function de-
1056
+ fined as in Eq. (27), n ≥ 4. Then E(n) is a complete
1057
+ MEM and it is completely monogamous and tightly com-
1058
+ plete monogamous.
1059
+ Then, when n ≥ 4, all these MEMs E(n) with the
1060
+ reduced functions we mentioned above are complete
1061
+ MEMs, and are not only completely monogamous but
1062
+ also tightly complete monogamous. We compare all the-
1063
+ ses MEMs in Table II for convenience.
1064
+ B.
1065
+ Complete MEM from the maximal reduced
1066
+ function
1067
+ Let |ψ⟩A1A2···An be a pure state in HA1A2···An and h
1068
+ be a non-negative concave function. We define
1069
+ E′(n)(|ψ⟩A1A2···An) = max
1070
+ i
1071
+ h(ρAi)
1072
+ (29)
1073
+ and then extend it to mixed states by the convex-roof
1074
+ structure. By definition, E′(n) ≤ E(n) if h is subadditive.
1075
+ Theorem 2. Let E′(n) be a MEM defined as in Eq. (29).
1076
+ Then (i) E′(3) is a complete MEM but not tightly com-
1077
+ plete monogamous, and if h is strictly concave, E′(3) is
1078
+ completely monogamous, and (ii) E′(n) is not complete
1079
+ whenever n ≥ 4.
1080
+ Proof. (i) It is clear that the unification condition and
1081
+ the hierarchy condition are valid for E′(3), thus E′(3) is
1082
+ a complete MEM. Let E′(3)(|ψ⟩ABC) = E′(2)(|ψ⟩A|BC),
1083
+ then ρBC is not necessarily separable. Thus, E′(3) is not
1084
+ tightly complete monogamous. If h is strictly concave
1085
+ and E′(3)(|ψ⟩ABC) = E′(2)(ρAB), then E′(2)(|ψ⟩A|BC) =
1086
+ E′(2)(|ψ⟩B|AC) = E′(2)(ρAB).
1087
+ Therefore, |ψ⟩ABC =
1088
+ |ψ⟩AB|ψ⟩C by Theorem in Ref. [38].
1089
+ That is, E′(3) is
1090
+ completely monogamous.
1091
+ (ii) Let
1092
+ |W4⟩ = 1
1093
+ 2 (|1000⟩ + |0100⟩ + |0010⟩ + |0001⟩), (30)
1094
+ we have E′(4)(|W4⟩) < E′(2)(|W4⟩AB|CD) since
1095
+ ρA = ρB = ρC = ρD =
1096
+
1097
+ 3/4
1098
+ 0
1099
+ 0
1100
+ 1/4
1101
+
1102
+ and the bipartite reduced state is maximal mixed two
1103
+ qubit state. That is, it violates the hierarchy condition.
1104
+ This complete the proof.
1105
+ We denote the corresponding E′(n) in the previous sub-
1106
+ section by E′(n)
1107
+ f , C′(n), τ ′(n), E′(n)
1108
+ q
1109
+ , E′(n)
1110
+ α , N ′(n)
1111
+ F , E′(n)
1112
+ F ,
1113
+ E′(n)
1114
+ F ′ , E′(n)
1115
+ AF, E′(n)
1116
+ 2 , E′(n)
1117
+ min, E′(n)
1118
+ min′, and
1119
+ ˆ
1120
+ N ′(n), respec-
1121
+ tively. Then, by Theorem 2, all of them are complete
1122
+ MEMs but not tightly complete monogamous by The-
1123
+ orem 2 for the case of n = 3, and E′(3)
1124
+ f , C′(3), τ ′(3),
1125
+ E′(3)
1126
+ q , E′(3)
1127
+ α , N ′(3)
1128
+ F , E′(3)
1129
+ F , E′(3)
1130
+ F ′ , and E′(3)
1131
+ AF are completely
1132
+ monogamous, E′(n)
1133
+ f , C′(n), τ ′(n), E′(n)
1134
+ q
1135
+ , E′(n)
1136
+ α , N ′(n)
1137
+ F ,
1138
+ E′(n)
1139
+ F , E′(n)
1140
+ F ′ , E′(n)
1141
+ AF, E′(n)
1142
+ 2 , E′(n)
1143
+ min, E′(n)
1144
+ min′, and ˆ
1145
+ N ′(n) are
1146
+ not complete MEMs whenever n ≥ 4.
1147
+ If h is not strictly concave, then E′(3) is not completely
1148
+ monogamous. For example, we take
1149
+ |ψ⟩ABC = |ψ⟩AB1|ψ⟩B2C,
1150
+ (31)
1151
+ where B1B2 means HB has a subspace isomorphic to
1152
+ HB1 ⊗ HB2 and up to local unitary on system B1B2. We
1153
+ assume
1154
+ E′(3)
1155
+ min(|ψ⟩ABC) = E′(2)
1156
+ min(|ψ⟩A|BC),
1157
+ ˆ
1158
+ N ′(3)(|ψ⟩ABC) = ˆ
1159
+ N ′(2)(|ψ⟩A|BC),
1160
+ then
1161
+ E′(3)
1162
+ min(|ψ⟩ABC) = E′(2)
1163
+ min(|ψ⟩AB1) = E′(2)
1164
+ min(ρAB),
1165
+ ˆ
1166
+ N ′(3)(|ψ⟩ABC) = ˆ
1167
+ N ′(2)(|ψ⟩AB1) = ˆ
1168
+ N ′(2)(ρAB),
1169
+ and ρBC is entangled. In addition, we take
1170
+ |φ⟩ABC =
1171
+ 1
1172
+
1173
+ 3|000⟩ + 1
1174
+
1175
+ 3|101⟩ + 1
1176
+
1177
+ 3|110⟩.
1178
+ (32)
1179
+ It is straightforward that
1180
+ E′(3)
1181
+ 2 (|φ⟩ABC)
1182
+ = E′(2)
1183
+ 2 (|φ⟩A|BC) = E′(2)
1184
+ 2 (|φ⟩AB|C) = E′(2)
1185
+ 2 (|φ⟩B|AC)
1186
+ = E′(2)
1187
+ 2 (ρAB) = E′(2)
1188
+ 2 (ρAC) = E′(2)
1189
+ 2 (ρBC)
1190
+ = 1/3.
1191
+ Namely, E′(3)
1192
+ 2 , E′(3)
1193
+ min, E′(3)
1194
+ min′, and
1195
+ ˆ
1196
+ N ′(3) are not com-
1197
+ pletely monogamous. Namely, for these four complete
1198
+ MEMs, monogamy coincides with complete monogamy,
1199
+ tightly complete monogamy seems stronger than both
1200
+ monogamy and complete monogamy.
1201
+
1202
+ 8
1203
+ TABLE III. Comparing of E′(3) with different reduced func-
1204
+ tions, E′(4) (n ≥ 4), and E ′(4) (n ≥ 4).
1205
+ MEM
1206
+ Unified
1207
+ Complete
1208
+ CM
1209
+ TCM
1210
+ E′(3)
1211
+ f
1212
+
1213
+
1214
+
1215
+ ×
1216
+ C′(3)
1217
+
1218
+
1219
+
1220
+ ×
1221
+ τ ′(3)
1222
+
1223
+
1224
+
1225
+ ×
1226
+ E′(3)
1227
+ q
1228
+
1229
+
1230
+
1231
+ ×
1232
+ E′(3)
1233
+ α
1234
+
1235
+
1236
+
1237
+ ×
1238
+ N ′(3)
1239
+ F
1240
+
1241
+
1242
+
1243
+ ×
1244
+ E′(3)
1245
+ F
1246
+
1247
+
1248
+
1249
+ ×
1250
+ E′(3)
1251
+ F′
1252
+
1253
+
1254
+
1255
+ ×
1256
+ E′(3)
1257
+ AF
1258
+
1259
+
1260
+
1261
+ ×
1262
+ E′(3)
1263
+ 2
1264
+
1265
+
1266
+ ×
1267
+ ×
1268
+ E′(3)
1269
+ min
1270
+
1271
+
1272
+ ×
1273
+ ×
1274
+ E′(3)
1275
+ min′
1276
+
1277
+
1278
+ ×
1279
+ ×
1280
+ ˆ
1281
+ N ′(3)
1282
+
1283
+
1284
+ ×
1285
+ ×
1286
+ E′(4) (n ≥ 4)
1287
+ ?
1288
+ ×
1289
+ ?
1290
+ ×
1291
+ E ′(n) (n ≥ 4)
1292
+ ?
1293
+ ×
1294
+ ?
1295
+ ×
1296
+ It is worthy mentioning here that E′(n) may not
1297
+ a unified MEM if n ≥ 4 since it may occur that
1298
+ E′(k)(X1|X2| · · · |Xk)
1299
+ <
1300
+ E′(l)(Y1|Y2| · · · |Yl) for some
1301
+ state ρ
1302
+
1303
+ SA1A2···An
1304
+ whenever X1|X2| · · · |Xk
1305
+ ≻a
1306
+ Y1|Y2| · · · |Yl.
1307
+ Let |ψ⟩A1A2···An be a pure state in HA1A2···An and h
1308
+ be a non-negative concave function on SX. We define
1309
+ E′(n)(|ψ⟩A1A2···An) =
1310
+ max
1311
+ i1≤···≤is,s≤n/2 h(ρAi1Ai2 ···Ais) (33)
1312
+ for pure states and for mixed states by the convex-roof
1313
+ structure. By definition,
1314
+ E′(n) ≤ E′(n),
1315
+ (34)
1316
+ E′(3) coincides with E′(3), E′(n) satisfies the hierarchy
1317
+ condition, but it may violate the unification condition.
1318
+ We give a comparison for theses MEMs in Table III for
1319
+ more clarity.
1320
+ The case E′(n) < E′(n) occurs whenever n ≥ 4. It is
1321
+ clear that E′(4)(|W4⟩) < E′(4)(|W4⟩) for any E′(4) and
1322
+ E′(4) with the reduced functions we considered in Sec.
1323
+ III. In addition, for the state
1324
+ |ϕ⟩ =
1325
+
1326
+ 5
1327
+ 4 |0000⟩ +
1328
+
1329
+ 5
1330
+ 4 |1111⟩ + 1
1331
+ 4|0100⟩ +
1332
+
1333
+ 5
1334
+ 4 |1010⟩, (35)
1335
+ we have E′(4) < E′(4) for any E′(4) and E′(4) men-
1336
+ tioned above except for h = hmin and h = ˆh since
1337
+ ρA = ρB = ρC = ρD and the eigenvalues of ρA is
1338
+ {5/8, 3/8} and the eigenvalues of the bipartite reduced
1339
+ state is {3/8, 5/16, 5/16}.
1340
+ V.
1341
+ COMPLETE GMEM
1342
+ A.
1343
+ Complete GMEM from sum of the reduced
1344
+ functions
1345
+ In Ref. [40], we discussed the completeness of GMEMs
1346
+ defined by sum of all reduced functions of the single
1347
+ subsystems with the reduced functions corresponding to
1348
+ Ef, C, τ, Eq, and Eα.
1349
+ We consider here the general
1350
+ case for any given bipartite entanglement monotone. Let
1351
+ |ψ⟩A1A2···An be a pure state in HA1A2···An and h be a
1352
+ non-negative concave function on SX. We define
1353
+ E(n)
1354
+ g
1355
+ (|ψ⟩A1A2···An)
1356
+ =
1357
+
1358
+
1359
+
1360
+ 1
1361
+ 2
1362
+
1363
+ i h(ρAi),
1364
+ h(ρAi) > 0 for any i,
1365
+ 0,
1366
+ h(ρAi) = 0 for some i,
1367
+ (36)
1368
+ and then extend it to mixed states by the convex-
1369
+ roof structure. By Proposition 1 and Proposition 4 in
1370
+ Ref. [40], together with Theorem 1, we have the follow-
1371
+ ing statement.
1372
+ Proposition 3. Let E(n)
1373
+ g
1374
+ be a non-negative function de-
1375
+ fined as in Eq. (36). Then the following statements hold
1376
+ true.
1377
+ (i) E(n)
1378
+ g
1379
+ is a unified GMEM and is completely monog-
1380
+ amous;
1381
+ (ii) E(n)
1382
+ g
1383
+ is a complete GMEM iff h is subadditive;
1384
+ (iii) E(n)
1385
+ g
1386
+ is tightly complete monogamous iff h is sub-
1387
+ additive with Eq. (26) holds.
1388
+ We denote E(n)
1389
+ g
1390
+ in the previous Section by E(n)
1391
+ g,f , C(n)
1392
+ g
1393
+ ,
1394
+ τ (n)
1395
+ g
1396
+ , E(n)
1397
+ g,q , E(n)
1398
+ g,α, N (n)
1399
+ g,F , E(n)
1400
+ g,F, E(n)
1401
+ g,F ′, E(n)
1402
+ g,AF, E(n)
1403
+ g,2 , E(n)
1404
+ g,min,
1405
+ E(n)
1406
+ g,min′, and ˆN (n)
1407
+ g
1408
+ , respectively.
1409
+ By Proposition 3, we
1410
+ can conclude: (i) All theses GMEMs are unified GMEMs
1411
+ and are completely monogamous; (ii) E(n)
1412
+ g,f , C(n)
1413
+ g
1414
+ , τ (n)
1415
+ g
1416
+ ,
1417
+ E(n)
1418
+ g,q , E(n)
1419
+ g,F, E(n)
1420
+ g,F ′, E(n)
1421
+ g,AF, E(n)
1422
+ g,2 , and ˆN (n)
1423
+ g
1424
+ are complete
1425
+ GMEMs; (iii) E(n)
1426
+ g,α, N (n)
1427
+ g,F , E(n)
1428
+ g,min, and E(n)
1429
+ g,min′ are not
1430
+ complete GMEMs since the associated reduced functions
1431
+ are not subadditive and thus they violate the hierarchy
1432
+ condition for some states. (iv) E(n)
1433
+ g,f , C(n)
1434
+ g
1435
+ , τ (n)
1436
+ g
1437
+ , and E(n)
1438
+ g,2
1439
+ are tightly complete monogamous. Therefore, for these
1440
+ GMEMs, tightly complete monogamy are stronger than
1441
+ the complete monogamy under the frame work of the
1442
+ complete GMEM.
1443
+ By the assumption, we conjecture that E(n)
1444
+ g,q , E(n)
1445
+ g,F,
1446
+ E(n)
1447
+ g,F ′, E(n)
1448
+ g,AF, and ˆN (n)
1449
+ g
1450
+ are tightly complete monoga-
1451
+ mous.
1452
+ That is, E(n)
1453
+ g
1454
+ is complete, completely monoga-
1455
+ mous, tightly complete monogamous, if and only if E(n)
1456
+ is complete, completely monogamous, tightly complete
1457
+ monogamous, respectively.
1458
+ A similar quantity, εg−12···n(2), is also put forward in
1459
+ Ref. [25]. Let |ψ⟩A1A2···An be a pure state in HA1A2···An
1460
+
1461
+ 9
1462
+ TABLE IV. Comparing of E(n)
1463
+ g
1464
+ with different reduced func-
1465
+ tions and E (n)
1466
+ g
1467
+ (n ≥ 4).
1468
+ GMEM
1469
+ Unified
1470
+ Complete
1471
+ CM
1472
+ TCM
1473
+ E(n)
1474
+ g,f
1475
+
1476
+
1477
+
1478
+
1479
+ C(n)
1480
+ g
1481
+
1482
+
1483
+
1484
+
1485
+ τ (n)
1486
+ g
1487
+
1488
+
1489
+
1490
+
1491
+ E(n)
1492
+ g,q
1493
+
1494
+
1495
+
1496
+ ✓a
1497
+ E(n)
1498
+ g,α
1499
+
1500
+ ×
1501
+
1502
+ ×
1503
+ N (n)
1504
+ g,F
1505
+
1506
+ ×
1507
+
1508
+ ×
1509
+ E(n)
1510
+ g,F
1511
+
1512
+
1513
+
1514
+ ✓a
1515
+ E(n)
1516
+ g,F′
1517
+
1518
+ ✓b
1519
+
1520
+ ✓a
1521
+ E(n)
1522
+ g,AF
1523
+
1524
+ ✓b
1525
+
1526
+ ✓a
1527
+ E(n)
1528
+ g,2
1529
+
1530
+
1531
+
1532
+
1533
+ E(n)
1534
+ g,min
1535
+
1536
+ ×
1537
+
1538
+ ×
1539
+ E(n)
1540
+ g,min′
1541
+
1542
+ ×
1543
+
1544
+ ×
1545
+ ˆ
1546
+ N (n)
1547
+ g
1548
+
1549
+ ✓b
1550
+
1551
+ ✓a
1552
+ E (n)
1553
+ g
1554
+ (n ≥ 4)
1555
+
1556
+
1557
+
1558
+
1559
+ a Assume that h is subadditive and Eq. (26) holds.
1560
+ b Assume that h is subadditive.
1561
+ and h be a non-negative concave function on SX. We
1562
+ define
1563
+ E(n)
1564
+ g
1565
+ (|ψ⟩A1A2···An)
1566
+ =
1567
+
1568
+ E(n)(|ψ⟩A1A2···An),
1569
+ h(ρAi) > 0 for any i,
1570
+ 0,
1571
+ h(ρAi) = 0 for some i, (37)
1572
+ and then extend it to mixed states by the convex-roof
1573
+ structure. Notice here that E(n)
1574
+ g
1575
+ is slightly different than
1576
+ εg−12···n(2) in which the factor “1/2” is ignored.
1577
+ Clearly,
1578
+ E(n)
1579
+ g
1580
+ ≤ E(n)
1581
+ g
1582
+ ,
1583
+ (38)
1584
+ and E(3)
1585
+ g
1586
+ coincides with E(3)
1587
+ g
1588
+ but E(n)
1589
+ g
1590
+ is different from
1591
+ E(n)
1592
+ g
1593
+ whenever n ≥ 4. E(n)
1594
+ g
1595
+ is just Eg−12···n(2) in Ref. [25]
1596
+ if the corresponding bipartite entanglement measure is
1597
+ an entanglement monotone. The following Proposition
1598
+ can be easily checked.
1599
+ Proposition 4. Let E(n) be a non-negative function de-
1600
+ fined as in Eq. (37), n ≥ 4. Then E(n) is a complete
1601
+ MEM and it is completely monogamous and tightly com-
1602
+ plete monogamous.
1603
+ That is, for the case of n ≥ 4, all these MEMs E(n)
1604
+ g
1605
+ with
1606
+ the reduced functions we discussed in Sec. III are com-
1607
+ plete GMEMs, and are not only completely monogamous
1608
+ but also tightly complete monogamous. For convenience,
1609
+ we list all these MEMs in Table IV. In addition, it is ob-
1610
+ vious that E(n)
1611
+ g
1612
+ < E(n)
1613
+ g
1614
+ whenever n ≥ 4 for any E(4)
1615
+ g
1616
+ and
1617
+ E(4)
1618
+ g
1619
+ mentioned above.
1620
+ B.
1621
+ Complete GMEM from the maximal reduced
1622
+ function
1623
+ Let |ψ⟩A1A2···An be a pure state in HA1A2···An and h
1624
+ be a non-negative concave function on the set of density
1625
+ matrices. We define
1626
+ E(n)
1627
+ g′ (|ψ⟩A1A2···An)
1628
+ =
1629
+
1630
+ max
1631
+ i
1632
+ h(ρAi),
1633
+ if h(ρAi) > 0 for any i,
1634
+ 0,
1635
+ if h(ρAi) = 0 for some i,
1636
+ (39)
1637
+ and then extend it to mixed states by the convex-roof
1638
+ structure. From Theorem 2, we have the following Propo-
1639
+ sition.
1640
+ Proposition 5. Let E(n)
1641
+ g′
1642
+ be a GMEM defined as in
1643
+ Eq. (39). Then (i) E(3)
1644
+ g′
1645
+ is a complete GMEM but not
1646
+ tightly complete monogamous, and if h is strictly con-
1647
+ cave, E(3)
1648
+ g′
1649
+ is completely monogamous, and (ii) E(n)
1650
+ g′
1651
+ is
1652
+ not complete whenever n ≥ 4.
1653
+ We denote E(n)
1654
+ g′
1655
+ the corresponding GMEMs men-
1656
+ tioned in the previous Subsection by E(n)
1657
+ g′,f, C(n)
1658
+ g′ , τ (n)
1659
+ g′ ,
1660
+ E(n)
1661
+ g′,q, E(n)
1662
+ g′,α, N (n)
1663
+ g′,F , E(n)
1664
+ g′,F, E(n)
1665
+ g′,F ′, E(n)
1666
+ g′,AF, E(n)
1667
+ g′,2, E(n)
1668
+ g′,min,
1669
+ E(n)
1670
+ g′,min′, and ˆN (n)
1671
+ g′ , respectively. Then all these GMEMS
1672
+ are complete GMEMs but not tightly complete monoga-
1673
+ mous for the case of n = 3, E(3)
1674
+ g′,f, C(3)
1675
+ g′ , τ (3)
1676
+ g′ , E(3)
1677
+ g′,q, E(3)
1678
+ g′,α,
1679
+ N (3)
1680
+ g′,F , E(3)
1681
+ g′,F, E(3)
1682
+ g′,F ′, and E(3)
1683
+ g′,AF, are completely monog-
1684
+ amous, all of these GMEMs are not complete GMEMs
1685
+ whenever n ≥ 4.
1686
+ One need note here that, when h is not strictly con-
1687
+ cave, E(n)
1688
+ g′
1689
+ is not a unified GMEM since it may hap-
1690
+ pen that E(k)
1691
+ g′ (X1|X2| · · · |Xk) = E(l)
1692
+ g′ (Y1|Y2| · · · |Yl) for
1693
+ some ρA1A2···An ∈ SA1A2···An
1694
+ g
1695
+ with X1|X2| · · · |Xk ≻a
1696
+ Y1|Y2| · · · |Yl, namely, it violates Eq. (7).
1697
+ In addition,
1698
+ E(n)
1699
+ g′
1700
+ also violates Eq. (17) or Eq. (18). For example, we
1701
+ take the state in Eq. (31) with both |ψ⟩AB1 and |ψ⟩B2C
1702
+ are entangled. We assume
1703
+ E(3)
1704
+ g′,min(|ψ⟩ABC) = E(2)
1705
+ g′,min(|ψ⟩A|BC),
1706
+ ˆN (3)
1707
+ g′ (|ψ⟩ABC) = ˆN (2)
1708
+ g′ (|ψ⟩A|BC),
1709
+ then
1710
+ E(3)
1711
+ g′,min(|ψ⟩ABC) = E(2)
1712
+ g′,min(|ψ⟩AB1) = E(2)
1713
+ g′,min(ρAB),
1714
+ ˆN (3)
1715
+ g′ (|ψ⟩ABC) = ˆN (2)
1716
+ g′ (|ψ⟩AB1) = ˆN (2)
1717
+ g′ (ρAB),
1718
+ and ρBC is entangled.
1719
+ In addition, for the sate in
1720
+ Eq. (32), we have
1721
+ E(3)
1722
+ g′,2(|φ⟩ABC)
1723
+ = E(2)
1724
+ g′,2(|φ⟩A|BC) = E(2)
1725
+ g′,2(|φ⟩AB|C) = E(2)
1726
+ g′,2(|φ⟩B|AC)
1727
+ = E(2)
1728
+ g′,2(ρAB) = E(2)
1729
+ g′,2(ρAC) = E(2)
1730
+ g′,2(ρBC)
1731
+ = 1
1732
+ 3.
1733
+
1734
+ 10
1735
+ TABLE V. Comparing of E(3)
1736
+ g′
1737
+ with different reduced func-
1738
+ tions, E(4)
1739
+ g′ , and E (n)
1740
+ g′ .
1741
+ GMEM
1742
+ Unified
1743
+ Complete
1744
+ CM
1745
+ TCM
1746
+ E(3)
1747
+ g′,f
1748
+
1749
+
1750
+
1751
+ ×
1752
+ C(3)
1753
+ g′
1754
+
1755
+
1756
+
1757
+ ×
1758
+ τ (3)
1759
+ g′
1760
+
1761
+
1762
+
1763
+ ×
1764
+ E(3)
1765
+ g′,q
1766
+
1767
+
1768
+
1769
+ ×
1770
+ E(3)
1771
+ g′,α
1772
+
1773
+
1774
+
1775
+ ×
1776
+ N (3)
1777
+ g′,F
1778
+
1779
+
1780
+
1781
+ ×
1782
+ E(3)
1783
+ g′,F
1784
+
1785
+
1786
+
1787
+ ×
1788
+ E(3)
1789
+ g′,F′
1790
+
1791
+
1792
+
1793
+ ×
1794
+ E(3)
1795
+ g′,AF
1796
+
1797
+
1798
+
1799
+ ×
1800
+ E(3)
1801
+ g′,2
1802
+ ×
1803
+ ×
1804
+ ×
1805
+ ×
1806
+ E(3)
1807
+ g′,min
1808
+ ×
1809
+ ×
1810
+ ×
1811
+ ×
1812
+ E(3)
1813
+ g′,min′
1814
+ ×
1815
+ ×
1816
+ ×
1817
+ ×
1818
+ ˆ
1819
+ N (3)
1820
+ g′
1821
+ ×
1822
+ ×
1823
+ ×
1824
+ ×
1825
+ E(n)
1826
+ g′
1827
+ (n ≥ 4)
1828
+ ?
1829
+ ×
1830
+ ?
1831
+ ×
1832
+ E (n)
1833
+ g′
1834
+ (n ≥ 4)
1835
+ ?
1836
+ ×
1837
+ ?
1838
+ ×
1839
+ That is, whenever h is strictly concave, E(n)
1840
+ g′
1841
+ is complete,
1842
+ completely monogamous, tightly complete monogamous,
1843
+ if and only if E′(n) is complete, completely monogamous,
1844
+ tightly complete monogamous, respectively.
1845
+ For the states that admit the form
1846
+ |η⟩ABC = |η⟩AB1|η⟩B2C
1847
+ (40)
1848
+ where B1B2 refers to HB has a subspace isomorphic to
1849
+ HB(x)
1850
+ 1
1851
+ ⊗HB(x)
1852
+ 2
1853
+ such that up to local unitary on system B,
1854
+ we have E(3)
1855
+ g′ (|η⟩ABC) = E(2)
1856
+ g′ (|η⟩B|AC) whenever h(ρ ⊗
1857
+ σ) ≥ h(ρ) and h(ρ ⊗ σ) ≥ h(σ) for any ρ and σ, and ρAC
1858
+ is a product state. We therefore have the following fact.
1859
+ Proposition 6. If h is strictly concave and h(ρ ⊗ σ) ≥
1860
+ h(ρ) and h(ρ⊗σ) ≥ h(σ) for any ρ and σ, E(3)
1861
+ g′ defined as
1862
+ in Eq. (39) is tightly complete monogamous on the states
1863
+ that admit the form (40).
1864
+ In fact, we always have h(ρ⊗σ) ≥ h(ρ) and h(ρ⊗σ) ≥
1865
+ h(ρ) if h ∈ {S, hC, hτ, hq, hα, hN, hF, hF ′, hAF}. So
1866
+ E(n)
1867
+ g′,f, C(n)
1868
+ g′ , τ (n)
1869
+ g′ , E(n)
1870
+ g′,q, E(n)
1871
+ g′,α, N (n)
1872
+ g′,F , E(n)
1873
+ g′,F, E(n)
1874
+ g′,F ′, and
1875
+ E(n)
1876
+ g′,AF are tightly complete monogamous on the states
1877
+ with the form as in Eq. (40). Proposition 6 is also valid
1878
+ when we replacing E(3)
1879
+ g′
1880
+ with E′(3).
1881
+ Let |ψ⟩A1A2···An be a pure state in HA1A2···An and h
1882
+ be a non-negative concave function on SX. We define
1883
+ E(n)
1884
+ g′ (|ψ⟩A1A2···An)
1885
+ =
1886
+
1887
+ E′(n)(|ψ⟩A1A2···An),
1888
+ if h(ρAi) > 0 for any i,
1889
+ 0,
1890
+ if h(ρAi) = 0 for some i,(41)
1891
+ for pure states and for mixed states by the convex-roof
1892
+ structure. By definition,
1893
+ E(n)
1894
+ g′
1895
+ ≤ E(n)
1896
+ g′ ,
1897
+ (42)
1898
+ E(3)
1899
+ g′
1900
+ coincides with E′(3)
1901
+ g , and E(n)
1902
+ g′
1903
+ satisfies the hierarchy
1904
+ condition, but it violates the unification condition if n ≥
1905
+ 4. It is easy to see that all these GMEMs E(n)
1906
+ g′
1907
+ with the
1908
+ reduced function we discussed are not complete GMEMs
1909
+ whenever n ≥ 4. We give comparison for these GMEMs
1910
+ in Table V.
1911
+ For the case of n ≥ 4, it is possible that E(n)
1912
+ g′
1913
+ < E(n)
1914
+ g′ .
1915
+ For example, for |W4⟩ and the state in Eq. (35) we have
1916
+ E(4)
1917
+ g′ < E(4)
1918
+ g′ for any E(4)
1919
+ g′ and E(4)
1920
+ g′ mentioned above except
1921
+ for h = hmin and h = ˆh.
1922
+ C.
1923
+ GMEM from the minimal reduced function
1924
+ With h is a non-negative concave function on the set
1925
+ of density matrices, when we define
1926
+ E(n)
1927
+ g′′ (|ψ⟩A1A2···An) = min
1928
+ i
1929
+ h(ρAi),
1930
+ (43)
1931
+ and then extend it to mixed states by the convex-roof
1932
+ structure, it is a GMEM. Moreover, we can define
1933
+ E(n)
1934
+ g′′ (|ψ⟩A1A2···An) =
1935
+ min
1936
+ i1≤···≤is,s≤n/2 h(ρAi1 Ai2···Ais ), (44)
1937
+ and then extend it to mixed states by the convex-roof
1938
+ structure, it is also a GMEM. For example, GMC, de-
1939
+ noted by Cgme [31], is defined as in Eq. (44).
1940
+ Recall
1941
+ that,
1942
+ Cgme(|ψ⟩) := min
1943
+ γi∈γ
1944
+
1945
+ 2
1946
+
1947
+ 1 − Tr(ρAγi )2�
1948
+ for pure state |ψ⟩ ∈ HA1A2···Am, where γ = {γi} repre-
1949
+ sents the set of all possible bipartitions of A1A2 · · · Am,
1950
+ and via the convex-roof extension for mixed states.
1951
+ We denote E(n)
1952
+ g′′ the corresponding GMEMs mentioned
1953
+ in the previous Subsection by E(n)
1954
+ g′′,f, C(n)
1955
+ g′′ , τ (n)
1956
+ g′′ , E(n)
1957
+ g′′,q,
1958
+ E(n)
1959
+ g′′,α, N (n)
1960
+ g′′,F , E(n)
1961
+ g′′,F, E(n)
1962
+ g′′,F ′, E(n)
1963
+ g′′,AF, E(n)
1964
+ g′′,2, E(n)
1965
+ g′′,min,
1966
+ E(n)
1967
+ g′′,min′, and
1968
+ ˆN (n)
1969
+ g′′ , respectively, and denote E(n)
1970
+ g′′
1971
+ by
1972
+ E(n)
1973
+ g′′,f, C(n)
1974
+ g′′
1975
+ (or Cgme), ˆτ (n)
1976
+ g′′ , E(n)
1977
+ g′′,q, E(n)
1978
+ g′′,α, N (n)
1979
+ g′′,F , E(n)
1980
+ g′′,F,
1981
+ E(n)
1982
+ g′′,F ′, E(n)
1983
+ g′′,AF, E(n)
1984
+ g′′,2, E(n)
1985
+ g′′,min, E(n)
1986
+ g′′,min′, and ˆ
1987
+ N (n)
1988
+ g′′ , respec-
1989
+ tively.
1990
+ By definition,
1991
+ E(n)
1992
+ g′′ ≤ E(n)
1993
+ g′′ ≤ E(n)
1994
+ g′
1995
+ ≤ E(n)
1996
+ g
1997
+ (45)
1998
+ for any h, and E(3)
1999
+ g′′ = E(3)
2000
+ g′′ . If n ≥ 4, there does exist
2001
+ state such that E(n)
2002
+ g′′ < E(n)
2003
+ g′′ . For example, we take
2004
+ |ψ⟩ABCD = |ψ⟩AB1|ψ⟩B2C1|ψ⟩C2D,
2005
+
2006
+ 11
2007
+ 0
2008
+ 0.2
2009
+ 0.4
2010
+ 0.6
2011
+ 0.8
2012
+ 1
2013
+ t
2014
+ 0
2015
+ 0.5
2016
+ 1
2017
+ 1.5
2018
+ E
2019
+ (a) Cg
2020
+ 0
2021
+ 0.2
2022
+ 0.4
2023
+ 0.6
2024
+ 0.8
2025
+ 1
2026
+ t
2027
+ 0
2028
+ 0.5
2029
+ 1
2030
+ E
2031
+ (b) Eg,F′
2032
+ 0
2033
+ 0.2
2034
+ 0.4
2035
+ 0.6
2036
+ 0.8
2037
+ 1
2038
+ t
2039
+ 0
2040
+ 0.2
2041
+ 0.4
2042
+ 0.6
2043
+ 0.8
2044
+ E
2045
+ (c) Eg,2
2046
+ FIG. 1. (color online). Comparing (a) C(3)
2047
+ g
2048
+ and C(3)
2049
+ g′
2050
+ for |Ψ⟩.
2051
+ (b) E(3)
2052
+ g,F′ and E(3)
2053
+ g′,F′, and (c) Comparing E(3)
2054
+ g,2 and E(3)
2055
+ g��,2 for
2056
+ |Ψ⟩. E(3)
2057
+ g′ = E(3)
2058
+ g′′ in such a case.
2059
+ where X1X2 refers to HX has a subspace isomorphic
2060
+ to HX(x)
2061
+ 1
2062
+ ⊗ HX(x)
2063
+ 2
2064
+ such that up to local unitary on sys-
2065
+ tem X. If h(ρB2) < h(ρA) and h(ρB2) < h(ρD), then
2066
+ E(4)
2067
+ g′′ (|ψ⟩ABCD) = h(ρB2) < E(4)
2068
+ g′′ (|ψ⟩ABCD). In addition,
2069
+ for the state in Eq. (35),
2070
+ E(4)
2071
+ g′′,min = 5
2072
+ 16 < E(4)
2073
+ g′′,min = 3
2074
+ 8,
2075
+ ˆ
2076
+ N (4)
2077
+ g′′ =
2078
+
2079
+ 15
2080
+ 8
2081
+
2082
+ 2 < ˆN (4)
2083
+ g′′ =
2084
+
2085
+ 15
2086
+ 8 .
2087
+ Cgme is not a complete GMEM since it does not satisfy
2088
+ the hierarchy condition (8) [40]: Let
2089
+ |ξ⟩ =
2090
+
2091
+ 5
2092
+ 4 |0000⟩ + 1
2093
+ 4|1111⟩ +
2094
+
2095
+ 5
2096
+ 4 |0100⟩ +
2097
+
2098
+ 5
2099
+ 4 |1010⟩, (46)
2100
+ then
2101
+ Cgme(|ξ⟩) = C(|ξ⟩ABC|D) =
2102
+
2103
+ 15
2104
+ 8
2105
+ < C(|ξ⟩AB|CD) =
2106
+
2107
+ 65
2108
+ 8 .
2109
+ In general, E(n)
2110
+ g′′ and E(n)
2111
+ g′′ do not obey the unification
2112
+ condition (7) and the hierarchy condition (8).
2113
+ For in-
2114
+ stance, for the state as in Eq. (31), we have
2115
+ E(3)
2116
+ g′′,min(|ψ⟩ABC) = E(2)
2117
+ g′′,min(|ψ⟩B|AC),
2118
+ ˆN (3)
2119
+ g′′ (|ψ⟩ABC) = ˆN (2)
2120
+ g′′ (|ψ⟩B|AC),
2121
+ and
2122
+ E(3)
2123
+ g′′,min(|ψ⟩ABC) < E(2)
2124
+ g′′,min(|ψ⟩A|BC)
2125
+ = E(2)
2126
+ g′′,min(|ψ⟩AB1) = E(2)
2127
+ g′′,min(ρAB),
2128
+ E(3)
2129
+ g′′,min(|ψ⟩ABC) < E(2)
2130
+ g′′,min(|ψ⟩C|AB)
2131
+ = E(2)
2132
+ g′′,min(|ψ⟩B2C) = E(2)
2133
+ g′′,min(ρBC),
2134
+ ˆ
2135
+ N (3)
2136
+ g′′ (|ψ⟩ABC) < ˆN (2)
2137
+ g′′ (|ψ⟩A|BC)
2138
+ = ˆ
2139
+ N (2)
2140
+ g′′ (|ψ⟩AB1) = ˆN (2)
2141
+ g′′ (ρAB),
2142
+ ˆ
2143
+ N (3)
2144
+ g′′ (|ψ⟩ABC) < ˆN (2)
2145
+ g′′ (|ψ⟩AB|C)
2146
+ = ˆ
2147
+ N (2)
2148
+ g′′ (|ψ⟩B2C) = ˆN (2)
2149
+ g′′ (ρBC).
2150
+ In addition,
2151
+ C(ρBD) ≈ 0.839 > Cgme(|ξ⟩)
2152
+ for the pure state |ψ⟩ in Eq. (46). Let
2153
+ |ζ⟩ABC = λ0|000⟩ + λ2|101⟩ + λ3|110⟩
2154
+ (47)
2155
+ with λ0 ≥ λ2 ≥ λ3 > 0. If we take λ0 =
2156
+
2157
+ 5
2158
+
2159
+ 12, λ2 =
2160
+ 1
2161
+
2162
+ 3, and λ3 = 1
2163
+ 2 in Eq. (47), then E(3)
2164
+ g′′,2(|ζ⟩ABC) = 1/4,
2165
+ but E(2)
2166
+ g′′,2(|ζ⟩A|BC) = 5/12, E(2)
2167
+ g′′,2(|ζ⟩AB|C) = 1/3. In
2168
+ general, for the state
2169
+ |ω⟩ABC = λ0|000⟩ + λ2|101⟩ + λ3|110⟩ + λ4|111⟩
2170
+ with λ0λ4 > 0, max{λ2, λ3} > 0 and min{λ2, λ3} = 0,
2171
+ then (i) ρAC and ρBC are separable while ρAB is entan-
2172
+ gled whenever λ3 > 0, and (ii) ρAB and ρBC are separable
2173
+ while ρAC is entangled whenever λ2 > 0. From this we
2174
+ can arrive at (i) if λ4 is small enough, then
2175
+ Cgme(|ω⟩ABC) = C(|ω⟩AB|C) < C(|ω⟩A|BC),
2176
+ C(|ω⟩AB|C) < C(|ω⟩B|AC),
2177
+ Cgme(|ω⟩ABC) < C(ρAB),
2178
+
2179
+ 12
2180
+ and (ii) if λ4 is small enough, then
2181
+ Cgme(|ω⟩ABC) = C(|ω⟩B|AC) < C(|ω⟩C|AB),
2182
+ C(|ω⟩B|AC) < C(|ω⟩A|BC),
2183
+ Cgme(|ω⟩ABC) < C(ρAC).
2184
+ For example, when taking λ2
2185
+ 0 = 7/9, λ3 = λ4 = 1/3, we
2186
+ get
2187
+ Cgme(|ω⟩ABC) ≈ 0.5879,
2188
+ C(|ω⟩A|BC) = C(|ω⟩B|AC) ≈ 0.8315,
2189
+ C(ρAB) ≈ 0.8090;
2190
+ when taking λ2
2191
+ 0 = 7/9, λ2 = λ4 = 1/3, we get
2192
+ Cgme(|ω⟩ABC) ≈ 0.5879,
2193
+ C(|ω⟩A|BC) = C(|ω⟩C|AB) ≈ 0.8315,
2194
+ C(ρAC) ≈ 0.8090.
2195
+ For the generalized GHZ state
2196
+ |GHZ⟩ = λ0|0⟩⊗n + λ1|1⟩⊗n + · · · λd−1|d − 1⟩⊗n, (48)
2197
+ E(n)
2198
+ g′′
2199
+ and E(n)
2200
+ g′′
2201
+ are complete monogamous and tightly
2202
+ complete monogamous. For this state, E(n)
2203
+ g′′
2204
+ = E(n)
2205
+ g′
2206
+ =
2207
+ E(n)
2208
+ g′′ = E(n)
2209
+ g′ , and nE(n)
2210
+ g′′ = nE(n)
2211
+ g′
2212
+ = 2E(n)
2213
+ g
2214
+ . Moreover, for
2215
+ such a state, all the entanglement are shared between all
2216
+ of the particles. We thus regard this state as the maxi-
2217
+ mal genuinely entangled state, and it reaches the maxi-
2218
+ mal value whenever λ0 = λ1 = · · · = λd−1 = 1/
2219
+
2220
+ d for
2221
+ the multi-qudit case.
2222
+ Comparing E(3)
2223
+ g′′ with E(3)
2224
+ g′
2225
+ and E(3)
2226
+ g , E(3)
2227
+ g′
2228
+ seems the
2229
+ best one since (i) it is complete and completely monoga-
2230
+ mous whenever the reduced function is strictly concave,
2231
+ (ii) it can be easily calculated, and (iii) it is monogamous
2232
+ iff it is completely monogamous. For the case of n ≥ 4,
2233
+ E(n), E(n), E(n)
2234
+ g
2235
+ , and E(n)
2236
+ g
2237
+ seems better the other cases as
2238
+ a MEM/GMEM as these measures admit the postulates
2239
+ of a complete MEM/GMEM.
2240
+ At last, we calculate these GMEMs for the following
2241
+ examples,
2242
+ |Ψ⟩ =
2243
+
2244
+ t|000⟩ +
2245
+
2246
+ 1 − t|111⟩,
2247
+ |Φ⟩ = √p|100⟩ + √q|010⟩ +
2248
+
2249
+ 1 − p − q|001⟩.
2250
+ For the GHZ class state |Ψ⟩, Eg′ coincides with Eg′′ and
2251
+ Eg′ is equivalent to Eg (see Fig. 1 for detail). For |Φ⟩,
2252
+ Eg, Eg′ and Eg′′ reflect roughly the same tendency (see
2253
+ Fig. 2 for detail).
2254
+ VI.
2255
+ CONCLUSION
2256
+ We developed a grained scenario of investigating the
2257
+ MEM and GMEM based on its reduced functions and
2258
+ then explored these measures in light of the framework of
2259
+ the complete MEM and complete monogamy relation re-
2260
+ spectively. We provided criteria that can verify whether
2261
+ (a) Cg
2262
+ (b) Eg,F′
2263
+ (c) Eg,2
2264
+ FIG. 2. (color online). Comparing (a) C(3)
2265
+ g , C(3)
2266
+ g′
2267
+ and C(3)
2268
+ g′′ ,
2269
+ (b) E(3)
2270
+ g,F′, E(3)
2271
+ g′,F′ and E(3)
2272
+ g′′,F′, (c) E(3)
2273
+ g,2, E(3)
2274
+ g′,2 and E(3)
2275
+ g′′,2 for |Φ⟩
2276
+ with p ≥ q ≥ 1 − p − q > 0, respectively.
2277
+ a MEM/GMEM is good or not.
2278
+ By comparision, for
2279
+ tripartite case, the MEM and GMEM via the maximal
2280
+ reduced function seems finer than that of the minimal
2281
+ reduced function as it not only can be easily calculated
2282
+ but also is complete and completely monogamous. And
2283
+ for the n-partite case with n ≥ 4, the MEM and GMEM
2284
+ via the sum of the reduced function sound better than
2285
+ the other one in the framework of complete MEM and
2286
+ complete monogamy relation.
2287
+ In addition, our findings show that, whether the re-
2288
+ duced function is strictly concave and whether it is
2289
+ subadditive is of crucial important.
2290
+ We can also con-
2291
+
2292
+ 9,2
2293
+ E
2294
+ q/.2
2295
+ E
2296
+ gll,20.4
2297
+ 0.6
2298
+ p0.5
2299
+ 0
2300
+ 0
2301
+ 0.2
2302
+ q
2303
+ 0.4
2304
+ 0.8
2305
+ 0.6
2306
+ 1a.F
2307
+ E
2308
+ g'.F
2309
+ E
2310
+ gll,F0.4
2311
+ 0.6
2312
+ p0.5
2313
+ 0
2314
+ 0
2315
+ 0.2
2316
+ b
2317
+ 0.4
2318
+ 0.8
2319
+ 0.6
2320
+ 1.9
2321
+ gr0.4
2322
+ 0.6
2323
+ p0.5
2324
+ 0
2325
+ 0
2326
+ 0.2
2327
+ b
2328
+ 0.4
2329
+ 0.8
2330
+ 0.6
2331
+ 113
2332
+ clude that the monogamy is stronger than the complete
2333
+ monogamy in general, they are equivalent to each other
2334
+ for some case such as the MEM and GMEM via the max-
2335
+ imal reduced function for the tripartite case, and the
2336
+ tightly complete monogamy is stronger than the com-
2337
+ plete monogamy in general. We also find that, in the
2338
+ framework of complete MEM, the hierarchy condition is
2339
+ stronger than the unification condition in general but it
2340
+ is not true for some case such as the MEM and GMEM
2341
+ via the maximal bipartite entanglement.
2342
+ ACKNOWLEDGMENTS
2343
+ This work is supported by the National Natural Sci-
2344
+ ence Foundation of China under Grant No. 11971277, the
2345
+ Fund Program for the Scientific Activities of Selected Re-
2346
+ turned Overseas Professionals in Shanxi Province under
2347
+ Grant No. 20220031, and the Scientific Innovation Foun-
2348
+ dation of the Higher Education Institutions of Shanxi
2349
+ Province under Grant No. 2019KJ034.
2350
+ [1] M. A. Nielsen, I. L. Chuang, Quantum Computatation
2351
+ and Quantum Information, (Cambridge University Press,
2352
+ Cambridge, 2000).
2353
+ [2] Q. Zhang, A. Goebel, C. Wagenknecht, Y.-A. Chen, B.
2354
+ Zhao, T. Yang, A. Mair, J. Schmiedmayer, and J.-W.
2355
+ Pan, Experimental quantum teleportation of a two-qubit
2356
+ composite system, Nat. Phys. 2, 678 (2006).
2357
+ [3] C. H. Bennett and S. J. Wiesner, Communication via
2358
+ one-and two-particle operators on Einstein-Podolsky-
2359
+ Rosen states, Phys. Rev. Lett. 69, 2881 (1992).
2360
+ [4] A. K. Ekert, Quantum Cryptography Based on Bell’s
2361
+ Theorem, Phys. Rev. Lett. 67, 661 (1991).
2362
+ [5] G. L. Giorgi, B. Bellomo, F. Galve, et al., Genuine quan-
2363
+ tum and classical correlations in multipartite Systems,
2364
+ Phys. Rev. Lett. 107, 190501 (2011).
2365
+ [6] A.
2366
+ Ekert
2367
+ and
2368
+ R.
2369
+ Jozsa,
2370
+ Quantum
2371
+ algorithms:
2372
+ Entanglement-enhanced information processing,
2373
+ Phil.
2374
+ Trans. R. Soc. A 356, 1769 (1998).
2375
+ [7] A. Datta, S. T. Flammia, and C. M. Caves, Entanglement
2376
+ and the power of one qubit, Phys. Rev. A 72, 042316
2377
+ (2005).
2378
+ [8] R. Horodecki, P. Horodecki, M. Horodecki, and K.
2379
+ Horodecki, Quantum entanglement, Rev. Mod. Phys. 81,
2380
+ 865 (2009).
2381
+ [9] V. Coffman, J. Kundu, and W. K. Wootters, Distributed
2382
+ entanglement, Phys. Rev. A 61, 052306 (2000).
2383
+ [10] Z.-H. Ma, Z.H. Chen, and J.-L. Chen, Measure of gen-
2384
+ uine multipartite entanglement with computable lower
2385
+ bounds, Phys. Rev. A 83, 062325 (2011).
2386
+ [11] Y. Hong, T. Gao, and F. Yan, Measure of multipartite
2387
+ entanglement with computable lower bounds, Phys. Rev.
2388
+ A86, 062323 (2012).
2389
+ [12] B. C. Hiesmayr and M. Huber, Multipartite entangle-
2390
+ ment measure for all discrete systems, Phys. Rev. A78,
2391
+ 012342 (2008).
2392
+ [13] B. Jungnitsch, T. Moroder, and O. G¨uhne, Taming Mul-
2393
+ tiparticle Entanglement, Phys. Rev. Lett. 106, 190502
2394
+ (2011).
2395
+ [14] F. Verstraete, J. Dehaene, and B. D. Moor, Normal
2396
+ forms and entanglement measures for multipartite quan-
2397
+ tum states, Phys. Rev. A 68, 012103 (2003).
2398
+ [15] J.-G. Luque and J.-Y. Thibon, Polynomial invariants of
2399
+ four qubits, Phys. Rev. A 67, 042303 (2003).
2400
+ [16] Andreas Osterloh and Jens Siewert, Constructing N-
2401
+ qubit entanglement monotones from antilinear operators,
2402
+ Phys. Rev. A 72, 012337 (2005).
2403
+ [17] G. Gour, Evolution and symmetry of multipartite entan-
2404
+ glement, Phys. Rev. Lett. 105, 190504 (2010).
2405
+ [18] O. Viehmann, C. Eltschka, and J. Siewert, Polynomial
2406
+ invariants for discrimination and classification of four-
2407
+ qubit entanglement, Phys. Rev. A 83, 052330 (2011).
2408
+ [19] A. Osterloh, On polynomial invariants of several qubits,
2409
+ Journal of Mathematical Physics 50(3), 033509-033509
2410
+ (2009).
2411
+ [20] S. Szalay, Multipartite entanglement measures, Phys.
2412
+ Rev. A92, 042329 (2015).
2413
+ [21] S. Xie and J. H. Eberly, Triangle Measure of Tripartite
2414
+ Entanglement, Phys. Rev. Lett. 127, 040403 (2021).
2415
+ [22] J. L. Beckey, N. Gigena, P. J. Coles, and M. Cerezo,
2416
+ Computable and operationally meaningful multipartite
2417
+ entanglement measures, Phys. Rev. Lett. 127, 140501
2418
+ (2021).
2419
+ [23] Y. Li and J. Shang, Geometric mean of bipartite concur-
2420
+ rences as a genuine multipartite entanglement measure
2421
+ Phys. Rev. Research 4, 023059 (2022).
2422
+ [24] Z.-X. Jin, Y.-H. Tao, Y.-T. Gui, S.-M. Fei, X. Li-Jost,
2423
+ C.-F. Qiao, Concurrence triangle induced genuine mul-
2424
+ tipartite entanglement measure, Results in Physics 44,
2425
+ 106155 (2023).
2426
+ [25] Y. Guo, Y. Jia, X. Li, and L. Huang, Genuine multipar-
2427
+ tite entanglement measure, J. Phys. A: Math. Theor. 55,
2428
+ 145303 (2022).
2429
+ [26] Y. Guo and L. Zhang, Multipartite entanglement mea-
2430
+ sure and complete monogamy relation, Phys. Rev. A 101,
2431
+ 032301 (2020).
2432
+ [27] B. Terhal, Is entanglement monogamous? IBM J. Res.
2433
+ Dev. 48, 71 (2004).
2434
+ [28] M. Paw�lowski, Security proof for cryptographic protocols
2435
+ based only on the monogamy of Bell’s inequality viola-
2436
+ tions, Phys. Rev. A 82, 032313 (2010).
2437
+ [29] A. Streltsov, G. Adesso, M. Piani, D. Bruß, Are general
2438
+ quantum correlations monogamous?
2439
+ Phys. Rev. Lett.
2440
+ 109, 050503 (2012).
2441
+ [30] R. Augusiak, M. Demianowicz, M. Paw�lowski, J. Tura,
2442
+ and A. Ac´ın, Elemental and tight monogamy relations in
2443
+ nonsignaling theories, Phys. Rev. A 90, 052323 (2014).
2444
+ [31] X.-s. Ma,
2445
+ B. Dakic, W. Naylor, A. Zeilinger,
2446
+ and
2447
+ P.Walther, Quantum simulation of the wavefunction to
2448
+ probe frustrated Heisenberg spin systems, Nat. Phys. 7,
2449
+ 399 (2011).
2450
+ [32] A. Garc´ıa-S´aez and J. I. Latorre, Renormalization group
2451
+ contraction of tensor networks in three dimensions, Phys.
2452
+ Rev. B 87, 085130 (2013).
2453
+ [33] S. Lloyd and J. Preskill, Unitarity of black hole evapo-
2454
+ ration in final-state projection models, J. High Energy
2455
+ Phys. 08, 126 (2014).
2456
+
2457
+ 14
2458
+ [34] T. J. Osborne and F. Verstraete, General monogamy
2459
+ inequality for bipartite qubit entanglement, Phys. Rev.
2460
+ Lett. 96, 220503 (2006).
2461
+ [35] H. S. Dhar, A. K. Pal, D. Rakshit, A. S. De, and U
2462
+ Sen, Monogamy of quantum correlations-a review, In
2463
+ Lectures on General Quantum Correlations and their Ap-
2464
+ plications, pp. 23-64. Springer, Cham, 2017.
2465
+ [36] H.
2466
+ He
2467
+ and
2468
+ G.
2469
+ Vidal,
2470
+ Disentangling
2471
+ theorem
2472
+ and
2473
+ monogamy for entanglement negativity, Phys. Rev. A 91,
2474
+ 012339 (2015).
2475
+ [37] G. Gour and Y. Guo, Monogamy of entanglement with-
2476
+ out inequalities, Quantum 2, 81 (2018).
2477
+ [38] Y. Guo and G. Gour, Monogamy of the entanglement of
2478
+ formation, Phys. Rev. A 99, 042305 (2019).
2479
+ [39] M. Koashi and A. Winter, Monogamy of quantum entan-
2480
+ glement and other correlations, Phys. Rev. A 69, 022309
2481
+ (2004).
2482
+ [40] Y. Guo, When is a genuine multipartite entanglement
2483
+ measure monogamous? Entropy 24, 355 (2022).
2484
+ [41] Y. Guo, L. Huang, and Y. Zhang, Monogamy of quantum
2485
+ discord, Quant. Sci. Tech. 6, 045028 (2021).
2486
+ [42] V. Vedral, M. B. Plenio, Entanglement measures and pu-
2487
+ rification procedures, Phys. Rev. A 57, 1619 (1998).
2488
+ [43] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L.
2489
+ Knight, Quantifying entanglement, Phys. Rev. Lett. 78,
2490
+ 2275 (1997).
2491
+ [44] G. Vidal, Entanglement monotone, J. Mod. Opt. 47, 355
2492
+ (2000).
2493
+ [45] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and
2494
+ W. K. Wootters, Mixed-state entanglement and quan-
2495
+ tum error correction, Phys. Rev. A 54, 3824 (1996).
2496
+ [46] M. Horodecki, Entanglement measures, Quantum Inf.
2497
+ Comput. 1, 3 (2001).
2498
+ [47] P. Rungta and C. M. Caves, Concurrence-based entan-
2499
+ glement measures for isotropic states, Phys. Rev. A 67,
2500
+ 012307 (2003).
2501
+ [48] S. Hill and W. K. Wootters, Entanglement of a pair of
2502
+ quantum bits, Phys. Rev. Lett. 78, 5022 (1997).
2503
+ [49] W. K. Wootters,
2504
+ Entanglement of formation of an
2505
+ arbitrary state of two qubits, Phys. Rev. Lett. 80,
2506
+ 2245 (1998).
2507
+ [50] P. Rungta, V. Buˇzek, C. M. Caves, M. Hillery, G. J. Mil-
2508
+ burn, Universal state inversion and concurrence in arbi-
2509
+ trary dimensions, Phys. Rev. A 64, 042315 (2001).
2510
+ [51] S. Lee, D. P. Chi, S. D. Oh, and J. Kim, Convex-roof ex-
2511
+ tended negativity as an entanglement measure for bipar-
2512
+ tite quantum systems, Phys. Rev. A 68, 062304 (2003).
2513
+ [52] J. S. Kim, Tsallis entropy and entanglement constraints
2514
+ in multiqubit systems, Phys. Rev. A 81, 062328 (2010).
2515
+ [53] J. S. Kim and B. C. Sanders, Monogamy of multi-qubit
2516
+ entanglement using R´enyi entropy, J. Phys. A: Math.
2517
+ Theor. 43, 445305 (2010).
2518
+ [54] A. Wehrl, General properties of entropy, Rev. Mod. Phys.
2519
+ 50, 221 (1978).
2520
+ [55] Y. Guo,
2521
+ Partial-Norm of Entanglement:
2522
+ Entangle-
2523
+ ment Monotones That are not Monogamous, arXiv:
2524
+ 2212.06521v5.
2525
+ [56] Y. Guo, L. Zhang, and H. Yuan, Entanglement measures
2526
+ induced by fidelity-based distances, Quant. Inf. Process.
2527
+ 19, 1-17 (2020).
2528
+ [57] G. A. Raggio, Properties of qentropies, J. Math. Phys.
2529
+ 36, 4785 (1995).
2530
+ [58] J. Acz´el and Z. Dar´oczy, On Measures of Information and
2531
+ their Characterization, Academic Press, 1975.
2532
+ [59] C. Beck, F. Schloegl, Thermodynamics of Chaotic Sys-
2533
+ tems, Cambridge University Press, Cambridge, 1993.
2534
+ [60] K. M. R. Audenaerta, Sub additivity of q-entropies for
2535
+ q > 1, J. Math. Phys. 48, 083507 (2007).
2536
+ [61] X. Yang,
2537
+ M.-X. Luo,
2538
+ Y.-H. Yang,
2539
+ and S.-M. Fei,
2540
+ Parametrized entanglement monotone, Phys. Rev. A
2541
+ 103, 052423 (2021).
2542
+ [62] Z.-W. Wei and S.-M. Fei, Parameterized bipartite en-
2543
+ tanglement measure,
2544
+ J. Phys. A: Math. Theor. 55
2545
+ (27),275303 (2022).
2546
+
GNAyT4oBgHgl3EQffPgF/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
HtAzT4oBgHgl3EQfjf0-/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d339e3b42830e4b745e109478193a604510ba221d5e2de68481da3105c45bdb
3
+ size 276783
JdE3T4oBgHgl3EQfXQrW/content/tmp_files/2301.04478v1.pdf.txt ADDED
@@ -0,0 +1,870 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ENVELOPES CREATED BY CIRCLE FAMILIES IN THE PLANE
2
+ YONGQIAO WANG AND TAKASHI NISHIMURA
3
+ Abstract. In this paper, on envelopes created by circle families in the plane, answers to all four basic
4
+ problems (existence problem, representation problem, problem on the number of envelopes, problem on
5
+ relationships of definitions) are given.
6
+ 1. Introduction
7
+ Throughout this paper, I is an open interval and all functions, mappings are of class C∞ unless
8
+ otherwise stated.
9
+ Envelopes of planar regular curve families have fascinated many pioneers since the dawn of differential
10
+ analysis (for instance, see [3]). In most typical cases, straight line families have been studied. In [6], by
11
+ solving four basic problems on envelopes created by straight line families in the plane (existence problem,
12
+ representation problem, uniqueness problem and equivalence problem of definitions), the second author
13
+ constructs a general theory for envelopes created by straight line families in the plane. On the other
14
+ hand, circle families in the plane are non-negligible families because the envelopes of them have already
15
+ had an important application, namely, an application to Seismic Survey. Following 7.14(9) of [1], a brief
16
+ explanation of Seismic Survey is given as follows. In the Eucledian plane R2, consider the “ground level
17
+ curve” C parametrized by γ : I → R2. Suppose that there is a stratum of granite below the top layer of
18
+ sandstone and that the dividing curve, denoted by M, is parametrized by �f : I → R2. Seismic Survey is
19
+ the following method to obtain an approximation of �f as precisely as possible. Take one fixed point A of
20
+ C and consider an explosion at A. Assume that the sound waves travel in straight lines and are reflected
21
+ from M, arriving back at points γ(t) of C where their times of arrival are exactly recorded by sensors
22
+ located along C (see Figure 1). It is known that there exists a curve W parametrized by f : I → R2
23
+ Figure 1. Reflection of sound waves.
24
+ with well-defined normals such that each broken line of a reflected ray starting at A and finishing on C
25
+ 2010 Mathematics Subject Classification. 57R45, 58C25.
26
+ Key words and phrases. Circle family, Envelope, Frontal, Creative, Creator.
27
+ 1
28
+ arXiv:2301.04478v1 [math.DG] 11 Jan 2023
29
+
30
+ A
31
+ (ti)(t2)(t3)(t4)(ts)
32
+ C
33
+ M2
34
+ Y. WANG AND T. NISHIMURA
35
+ can be replaced by a straight line which is normal to W and of the same total length. The curve W is
36
+ called the orthotomic of M relative to A and conversely the curve M is called the anti-orthotomic of W
37
+ relative to A. Then, an envelope created by the circle family
38
+
39
+ (x, y) ∈ R2 �� ||(x, y) − γ(t)|| = ||f(t) − γ(t)||
40
+
41
+ t∈I
42
+ recovers W (see Figure 2). After obtaining the parametrization f of W, the parametrization �f of M
43
+ Figure 2. An envelope created by the circle family.
44
+ can be easily obtained by using the anti-orthotomic technique developed in [5]. Therefore, in order to
45
+ investigate the parametrization of W as precisely as possible, construction of general theory on envelopes
46
+ created by circle families is very important.
47
+ In this paper, we construct a general theory on envelopes created by circle families in the plane. For a
48
+ point P of R2 and a positive number λ, the circle C(P,λ) centered at P with radius λ is naturally defined
49
+ as follows, where the dot in the center stands for the standard scalar product.
50
+ C(P,λ) =
51
+
52
+ (x, y) ∈ R2 �� ((x, y) − P) · ((x, y) − P) = λ2�
53
+ .
54
+ For a curve γ : I → R2 and a positive function λ : I → R+, the circle family C(γ,λ) is naturally defined as
55
+ follows. Here, R+ stands for the set consisting of positive real numbers.
56
+ C(γ,λ) =
57
+
58
+ C(γ(t),λ(t))
59
+
60
+ t∈I .
61
+ It is reasonable to assume that at each point γ(t) the normal vector to the curve γ is well-defined. Thus,
62
+ we easily reach the following definition.
63
+ Definition 1. A curve γ : I → R2 is called a frontal if there exists a mapping ν : I → S1 such that the
64
+ following identity holds for each t ∈ I, where S1 is the unit circle in R2.
65
+
66
+ dt (t) · ν(t) = 0.
67
+ For a frontal γ, the mapping ν : I → S1 given above is called the Gauss mapping of γ.
68
+ By definition, a frontal is a solution of the first order linear differential equation defined by Gauss mapping
69
+ ν. Thus, for a fixed mapping ν : I → S1 the set consisting of frontals with a given Gauss mapping
70
+ ν : I → S1 is a linear space. For frontals, [4] is recommended as an excellent reference. Hereafter in this
71
+ paper, the curve γ : I → R2 for a circle family C(γ,λ) is assumed to be a frontal.
72
+ In this paper, the following is adopted as the definition of an envelope created by a circle family.
73
+ Definition 2. Let C(γ,λ) be a circle family. A mapping f : I → R2 is called an envelope created by C(γ,λ)
74
+ if there exists a mapping �ν : I → S1 such that the following two hold for any t ∈ I.
75
+ (1)
76
+ df
77
+ dt(t) · �ν(t) = 0.
78
+
79
+ A
80
+ (ti) (t2) (t3) (t4) (ts)
81
+ f(ts)
82
+ -f(t4)
83
+ f(t2)f(t3)
84
+ f(ti)ENVELOPES CREATED BY CIRCLE FAMILIES IN THE PLANE
85
+ 3
86
+ (2) f(t) ∈ C(γ(t),λ(t)).
87
+ By definition, as same as an envelope created by a hyperplane family (see [6]), an envelope created by
88
+ a circle family is a solution of a first order linear differential equation with one constraint condition.
89
+ Moreover, again by definition, an envelope created by a circle family is a frontal with Gauss mapping
90
+ �ν : I → S1. On the other hand, since there is one constraint condition, again as same as an envelope
91
+ created by a hyperplane family, the set of envelopes created by a given circle family is in general not a
92
+ linear space.
93
+ Problem 1.
94
+ (1) Given a circle family C(γ,λ), find a necessary and sufficient codition for the family
95
+ to create an envelope in terms of γ, ν and λ.
96
+ (2) Suppose that a circle family C(γ,λ) creates an envelope.
97
+ Then, find a parametrization of the
98
+ envelope in terms of γ, ν and λ.
99
+ (3) Suppose that a circle family C(γ,λ) creates an envelope. Then, find a criterion for the number of
100
+ distinct envelopes created by C(γ,λ) in terms of γ, ν and λ.
101
+ Note 1.
102
+ (1) (1) of Problem 1 is a problem to seek the integrability conditions. There are various cases, for instance
103
+ the concentric circle family {{(x, y) ∈ R2 | x2 + y2 = t2}}t∈R+ does not create an envelope while the
104
+ parallel-translated circle family {{(x, y) ∈ R2 | (x − t)2 + y2 = 1}}t∈R does create two envelopes. Thus,
105
+ (1) of Problem 1 is significant.
106
+ (2) The following Example 1 shows that the apparently well-known method to obtain the envelope seems
107
+ to be useless in this case. Thus, (2) of Problem 1 is important and the positive answer to it is much
108
+ desired.
109
+ (3) The following Example 2 shows that there are at least three cases: the case having a unique envelope,
110
+ the case having exactly two envelopes and the case having uncountably many envelopes. Thus, (3) of
111
+ Problem 1 is meaningful and interesting.
112
+ Example 1. Let γ : R → R2 be the mapping defined by γ(t) =
113
+
114
+ t3, t6�
115
+ . Set ν(t) =
116
+ 1
117
+
118
+ 4t6+1
119
+
120
+ −2t3, 1
121
+
122
+ . It
123
+ is clear that the mapping γ is a frontal with Gauss mapping ν : R → S1. Let λ : R → R+ be the constant
124
+ function defined by λ(t) = 1.
125
+ Then, it seems that the circle family C(γ,λ) creates envelopes.
126
+ Thus,
127
+ we can expect that the created envelopes can be obtained by the well-known method. Set F(x, y, t) =
128
+
129
+ x − t3�2 +
130
+
131
+ y − t6�2 − 1. Then, we have the following.
132
+ D
133
+ =
134
+
135
+ (x, y) ∈ R2
136
+ ���� ∃t such that F(x, y, t) = ∂F
137
+ ∂t (x, y, t) = 0
138
+
139
+ =
140
+
141
+ (x, y) ∈ R2 ��� ∃t such that
142
+
143
+ x − t3�2 +
144
+
145
+ y − t6�2 − 1 = 0, −6t2 �
146
+ x − t3�
147
+ − 12t5 �
148
+ y − t6�
149
+ = 0
150
+
151
+ =
152
+
153
+ (x, y) ∈ R2 ��� ∃t such that
154
+
155
+ x − t3�2 +
156
+
157
+ y − t6�2 − 1 = 0, t2 ��
158
+ x − t3�
159
+ + 2t3 �
160
+ y − t6��
161
+ = 0
162
+
163
+ =
164
+
165
+ (x, y) ∈ R2 �� x2 + y2 = 1
166
+ � � �
167
+ (x, y) ∈ R2 ���
168
+
169
+ x − t3�2 +
170
+
171
+ y − t6�2 − 1 = 0, x = t3 − 2t3 �
172
+ y − t6��
173
+ =
174
+
175
+ (x, y) ∈ R2 �� x2 + y2 = 1
176
+ � � �
177
+ (x, y) ∈ R2 ���
178
+
179
+ −2t3 �
180
+ y − t6��2 +
181
+
182
+ y − t6�2 = 1, x = t3 �
183
+ 1 − 2y + 2t6��
184
+ =
185
+
186
+ (x, y) ∈ R2 �� x2 + y2 = 1
187
+ � � ��
188
+ t3 ∓
189
+ 2t3
190
+
191
+ 4t6 + 1, t6 ±
192
+ 1
193
+
194
+ 4t6 + 1
195
+
196
+ ∈ R2
197
+ ���� t ∈ R
198
+
199
+ .
200
+ In Example 3 of Section 3, it turns out that the set D calculated here is actually larger than the set of
201
+ envelopes created by C(γ,λ), namely the unit circle
202
+
203
+ (x, y) ∈ R2 �� x2 + y2 = 1
204
+
205
+ is redundant. Therefore,
206
+ unfortunately, the apparently well-known method to obtain the envelopes does not work well in this case.
207
+ The circle family C(γ,λ) and the candidate of its envelope are depicted in Figure 3.
208
+ Example 2.
209
+ (1) Let γ : R+ → R2 be the mapping defined by γ(t) = (0, 1 + t). Then, it is clear that
210
+ γ is a frontal. Let λ : R+ → R+ be the positive function defined by λ(t) = 1+t. Then, it is easily
211
+ seen that the origin (0, 0) of the plane R2 itself is a created envelope by the circle family C(γ,λ)
212
+ and that there are no other envelopes created by C(γ,λ). Hence, the number of created envelopes
213
+ is one in this case.
214
+ (2) The parallel-translated circle family {{(x, y) ∈ R2 | (x − t)2 + y2 = 1}}t∈R creates exactly two
215
+ envelopes.
216
+ (3) Let γ : R → R2 be the constant mapping defined by γ(t) = (0, 0). Then, it is clear that γ is a
217
+ frontal. Let λ : R → R+ be the constant function defined by λ(t) = 1. Then, for any function
218
+
219
+ 4
220
+ Y. WANG AND T. NISHIMURA
221
+ Figure 3. The circle family C(γ,λ) and the candidate of its envelope.
222
+ θ : R → R, the mapping f : R → R2 defined by f(t) = (cos θ(t), sin θ(t)) is an envelope created
223
+ by the circle family C(γ,λ). Hence, there are uncountably many created envelopes in this case.
224
+ In order to solve Problem 1, we prepare several terminologies that can be derived from a frontal
225
+ γ : I → R2 with Gauss mapping ν : I → S1 and a positive function λ : I → R+. For a frontal γ : I → R2
226
+ with Gauss mapping ν : I → S1, following [2], we set µ(t) = J(ν(t)), where J is the anti-clockwise
227
+ rotation by π/2. Then we have a moving frame {µ(t), ν(t)}t∈I along the frontal γ. Set
228
+ ℓ(t) = dν
229
+ dt (t) · µ(t),
230
+ β(t) = dγ
231
+ dt (t) · µ(t).
232
+ The pair of functions (ℓ, β) is called the curvature of the frontal γ with Gauss mapping ν. We want to
233
+ focus the ratio of dλ
234
+ dt (t) and β(t). The following definition is the key of this paper.
235
+ Definition 3. Let γ : I → R2, λ : I → R+ be a frontal with Gauss mapping ν : I → S1 and a positive
236
+ function respectively.
237
+ Then, the circle family C(γ,λ) is said to be creative if there exists a mapping
238
+ �ν : I → S1 such that the following identity holds for any t ∈ I.
239
+
240
+ dt (t) = −β(t) (�ν(t) · µ(t)) .
241
+ Set cos θ(t) = −�ν(t) · µ(t). Then, the creative condition is equivalent to say that there exists a function
242
+ θ : I → R satisfying the following identity for any t ∈ I.
243
+
244
+ dt (t) = β(t) cos θ(t).
245
+ By definition, any family of concentric circles with expanding radius is not creative, and it is clear that
246
+ such the circle family does not create an envelope. Under the above preparation, Problem 1 is solved as
247
+ follows.
248
+ Theorem 1. Let γ : I → R2 be a frontal with Gauss mapping ν : I → S1 and let λ : I → R+ be a
249
+ positive function. Then, the following three holds.
250
+ (1) The circle family C(γ,λ) creates an envelope if and only if C(γ,λ) is creative.
251
+ (2) Suppose that the circle family C(γ,λ) creates an envelope f : I → R2. Then, the created envelope
252
+ f is represented as follows.
253
+ f(t) = γ(t) + λ(t)�ν(t).
254
+ where �ν : I → S1 is the mapping defined in Definition 3.
255
+
256
+ ENVELOPES CREATED BY CIRCLE FAMILIES IN THE PLANE
257
+ 5
258
+ (3) Suppose that the circle family C(γ,λ) creates an envelope. Then, the number of envelopes created
259
+ by C(γ,λ) is characterized as follows.
260
+ (3-i) The circle family C(γ,λ) creates a uinique envelope if and only if the set consisting of t ∈ I
261
+ satisfying β(t) ̸= 0 and dλ
262
+ dt (t) = ±β(t) is dense in I.
263
+ (3-ii) There are exactly two distinct envelopes created by C(γ,λ) if and only if the set of t ∈ I
264
+ satisfying β(t) ̸= 0 is dense in I and there exists at least one t0 ∈ I such that the strict
265
+ inequality | dλ
266
+ dt (t0)| < |β(t0)| holds.
267
+ (3-∞) There are uncountably many distinct envelopes created by C(γ,λ) if and only if the set of t ∈ I
268
+ satisfying β(t) ̸= 0 is not dense in I.
269
+ By the assertion (2) of Theorem 1, it is reasonable to call �ν the creator for an envelope f created by
270
+ C(γ,λ).
271
+ This paper is organized as follows. Theorem 1 is proved in Section 2. In Section 3, several examples to
272
+ which Theorem 1 is effectively applicable are given. Finally, in Section 4, relations of several definitions
273
+ of an envelope created by a circle family are investigated.
274
+ 2. Proof of Theorem 1
275
+ 2.1. Proof of the assertion (1) of Theorem 1. Suppose that C(γ,λ) is creative. By definition, there
276
+ exists a mapping �ν : I → S1 such that the equality dλ
277
+ dt (t) = −β(t) (�ν(t) · µ(t)) holds for any t ∈ I. Set
278
+ f(t) = γ(t) + λ(t)�ν(t).
279
+ Then, since (f(t) − γ(t)) · (f(t) − γ(t)) = λ2(t), it follows f(t) ∈ C(γ(t),λ(t)). Morever, since
280
+ df
281
+ dt (t) = dγ
282
+ dt (t) + dλ
283
+ dt (t)�ν(t) + λ(t)d�ν
284
+ dt (t),
285
+ we have the following.
286
+ df
287
+ dt (t) · (f(t) − γ(t))
288
+ =
289
+ �dγ
290
+ dt (t) + dλ
291
+ dt (t)�ν(t) + λ(t)d�ν
292
+ dt (t)
293
+
294
+ · (λ(t)�ν(t))
295
+ =
296
+
297
+ dt (t) · (λ(t)�ν(t)) + dλ
298
+ dt (t)λ(t)
299
+ =
300
+ (β(t)µ(t)) · (λ(t)�ν(t)) + (−β(t) (�ν(t) · µ(t))) λ(t)
301
+ =
302
+ β(t)λ(t) (µ(t) · �ν(t)) − β(t)λ(t) (�ν(t) · µ(t))
303
+ =
304
+ 0.
305
+ Hence, f is an envelope created by the circle family C(γ,λ).
306
+ Conversely, suppose that the circle family C(γ,λ) creates an envelope f : I → R. Then, by definition, it
307
+ follows that f(t) ∈ C(γ(t),λ(t)) and df
308
+ dt(t) · (f(t) − γ(t)) = 0. The condition f(t) ∈ C(γ(t),λ(t)) implies that
309
+ there exists a mapping �ν : I → S1 such that the following equality holds for any t ∈ I.
310
+ f(t) = γ(t) + λ(t)�ν(t).
311
+ Then, since
312
+ df
313
+ dt (t) = dγ
314
+ dt (t) + dλ
315
+ dt (t)�ν(t) + λ(t)d�ν
316
+ dt (t),
317
+ we have the following.
318
+ 0
319
+ =
320
+ df
321
+ dt (t) · (f(t) − γ(t))
322
+ =
323
+ �dγ
324
+ dt (t) + dλ
325
+ dt (t)�ν(t) + λ(t)d�ν
326
+ dt (t)
327
+
328
+ · (λ(t)�ν(t))
329
+ =
330
+ (β(t)µ(t)) · (λ(t)�ν(t)) + dλ
331
+ dt (t)λ(t)
332
+ =
333
+ λ(t)
334
+
335
+ β(t) (µ(t) · �ν(t)) + dλ
336
+ dt (t)
337
+
338
+ .
339
+
340
+ 6
341
+ Y. WANG AND T. NISHIMURA
342
+ Since λ(t) is positive for any t ∈ I, it follows
343
+ β(t) (µ(t) · �ν(t)) + dλ
344
+ dt (t) = 0.
345
+ Therefore, the circle family C(γ,λ) is creative.
346
+ 2
347
+ 2.2. Proof of the assertion (2) of Theorem 1. The proof of the assertion (1) given in Subsection 2.1
348
+ proves the assertion (2) as well.
349
+ 2
350
+ 2.3. Proof of the assertion (3) of Theorem 1.
351
+ 2.3.1. Proof of (3-i). Suppose that the circle family C(γ,λ) creates a unique envelope. Then, for any t ∈ I
352
+ the unit vector �ν(t) satisfying
353
+
354
+ dt (t) = −β(t) (�ν(t) · µ(t))
355
+ must be uniquely determined. Hence, under considering continuity of two functions dλ
356
+ dt and β, it follows
357
+ that the set consisting of t ∈ I satisfying dλ
358
+ dt (t) = ±β(t) ̸= 0 must be dense in I.
359
+ Conversely, suppose that the set consisting of t ∈ I satisfying dλ
360
+ dt (t) = ±β(t) ̸= 0 is dense in I. Then,
361
+ under considering continuity of the function t �→ �ν(t) · µ(t), it follows that �ν(t) · µ(t) = ±1 for any t ∈ I.
362
+ Thus, the created envelope f(t) = γ(t) + λ(t)�ν(t) must be unique.
363
+ 2
364
+ 2.3.2. Proof of (3-ii). Suppose that there are exactly two distinct envelopes created by C(γ,λ). Then, by
365
+ the equality dλ
366
+ dt (t) = −β(t) (�ν(t) · µ(t)) , the set consisting of t ∈ I satisfying β(t) ̸= 0 must be dense in
367
+ I. Suppose moreover that the set of t ∈ I satisfying the equality dλ
368
+ dt (t) = ±β(t) holds for any t ∈ I.
369
+ Then, it follows that the set consisting of t ∈ I satisfying dλ
370
+ dt (t) = ±β(t) ̸= 0 is dense in I. Then, by the
371
+ assertion (3-i), the given circle family must create a unique envelope. This contradicts the assumption
372
+ that there are exactly two distinct envelopes. Hence, there must exist at least one t0 ∈ I such that the
373
+ strict inequality | dλ
374
+ dt (t0)| < |β(t0)| holds.
375
+ Conversely, suppose that the set of t ∈ I satisfying β(t) ̸= 0 is dense in I and there exists at least
376
+ one t0 ∈ I such that the strict inequality | dλ
377
+ dt (t0)| < |β(t0)| holds. Then, it follows that there must exist
378
+ an open interval �I in I such that the absolute value |�ν(t) · µ(t)| = | cos θ(t)| is less than 1 for any t ∈ �I.
379
+ Thus, it follows θ(t) ̸= −θ(t) for any t ∈ �I. Hence, for any t ∈ �I, there exist exactly two distinct unit
380
+ vectors �ν+(t), �ν−(t) corresponding �ν+(t) · µ(t) = − cos θ(t) and �ν−(t) · µ(t) = − cos (−θ(t)) respectively.
381
+ Therefore, the circle family must create exactly two distinct envelopes.
382
+ 2
383
+ 2.3.3. Proof of (3-∞). Suppose that there are uncountably many distinct envelopes created by C(γ,λ).
384
+ Suppose moreover that the set of t ∈ I such that β(t) ̸= 0 is dense in I. Then, from (3-i) and (3-ii),
385
+ it follows that the circle family C(γ,λ) must create a unique envelope or two distinct envelopes. This
386
+ contradicts the assumption that there are uncountably many distinct envelopes created by C(γ,λ). Hence,
387
+ the set of t ∈ I such that β(t) ̸= 0 is never dense in I.
388
+ Conversely, suppose that the set of t ∈ I such that β(t) ̸= 0 is not dense in I. This assumption implies
389
+ that there exists an open interval �I in I such that β(t) = 0 for any t ∈ �I. On the other hand, since C(γ,λ)
390
+ creates an envelope f0, the equality
391
+
392
+ dt (t) = −β(t) (�ν(t) · µ(t))
393
+ holds for any t ∈ I. Thus, there are no restrictions for the value �ν(t) · µ(t) for any t ∈ �I. Take one
394
+ point t0 of �I and denote the �ν for the envelope f0 by �ν0. Then, by using the standard technique on
395
+ bump functions, we may construct uncountably many distinct creators �νa : I → S1 (a ∈ A) such that
396
+ the following (a), (b), (c) and (d) hold, where A is a set consisting uncountably many elements such that
397
+ 0 ̸∈ A.
398
+ (a) The equality dλ
399
+ dt (t) = −β(t) (�νa(t) · µ(t)) holds for any t ∈ I and any a ∈ A.
400
+ (b) For any t ∈ I − �I and any a ∈ A, the equality �νa(t) = �ν0(t) holds.
401
+ (c) For any a ∈ A, the property �νa(t0) ̸= �ν0(t0) holds.
402
+ (d) For any wo distinct a1, a2 ∈ A, the property �νa1(t0) ̸= �νa2(t0) holds.
403
+ Therefore, the circle family C(γ,λ) creates uncountably many distinct envelopes.
404
+ 2
405
+
406
+ ENVELOPES CREATED BY CIRCLE FAMILIES IN THE PLANE
407
+ 7
408
+ 3. Examples
409
+ Example 3. We examine Example 1 by applying Theorem 1. In Example 1, γ : R → R2 is given by
410
+ γ(t) =
411
+
412
+ t3, t6�
413
+ . Thus, we can say that ν : R → S1 and µ : R → S1 are given by ν(t) =
414
+ 1
415
+
416
+ 4t6+1
417
+
418
+ −2t3, 1
419
+
420
+ and µ(t) =
421
+ 1
422
+
423
+ 4t6+1
424
+
425
+ −1, −2t3�
426
+ respectively. Moreover, the radius function λ : R → R is the constant
427
+ function defined by λ(t) = 1. Thus,
428
+
429
+ dt (t) = 0.
430
+ By calculation, we have
431
+ β(t) = dγ
432
+ dt (t) · µ(t) = −3t2(1 + 4t6)
433
+
434
+ 4t6 + 1
435
+ .
436
+ Therefore, the unit vector �ν(t) ∈ S1 satisfying
437
+
438
+ dt (t) = −β(t) (�ν(t) · µ(t))
439
+ exsists and it must have the form
440
+ �ν(t) = ±ν(t) =
441
+ ±1
442
+
443
+ 4t6 + 1
444
+
445
+ −2t3, 1
446
+
447
+ .
448
+ Hence, by (1) of Theorem 1, the circle family C(γ,λ) creates an envelope f : R → R2. By (2) of Theorem
449
+ 1, f is parametrized as follows.
450
+ f(t)
451
+ =
452
+ γ(t) + λ(t)�ν(t)
453
+ =
454
+
455
+ t3, t6�
456
+ ±
457
+ 1
458
+
459
+ 4t6 + 1
460
+
461
+ −2t3, 1
462
+
463
+ =
464
+
465
+ t3 ∓
466
+ 2t3
467
+
468
+ 4t6 + 1
469
+ , t6 ±
470
+ 1
471
+
472
+ 4t6 + 1
473
+
474
+ .
475
+ Finally, by (3-ii) of Theorem 1, the number of distinct envelopes created by the circle family C(γ,λ) is
476
+ exactly two.
477
+ Therefore, Theorem 1 reveals that the set D calculated in Example 1 is certainly the union of the unit
478
+ circle and the set of two envelopes of C(γ,λ).
479
+ Example 4. We examine (1) of Example 2 by applying Theorem 1. In (1) of Example 2, γ : R+ → R2
480
+ is given by γ(t) = (0, 1 + t). Thus, if we define the unit vector ν(t) = (1, 0), ν : R+ → S1 gives the Gauss
481
+ mapping of γ. By definition, µ(t) = (0, 1) and thus we have β(t) = dγ
482
+ dt (t) · µ(t) = 1. On the other hand,
483
+ the radius function λ : R+ → R+ has the form λ(t) = 1 + t in this example. Thus, the created condition
484
+
485
+ dt (t) = −β(t) (�ν(t) · µ(t))
486
+ becomes simply
487
+ (∗)
488
+ 1 = − (�ν(t) · (0, 1))
489
+ in this case. If we take �ν(t) = (0, −1), then the above equality holds for any t ∈ R+. Thus, by (1) of
490
+ Theorem 1, the circle family C(γ,λ) creates an envelope. By (2) of Theorem 1, the parametrization of the
491
+ created envelope is
492
+ f(t) = γ(t) = λ(t)�ν(t) = (0, 1 + t) + (1 + t) (0, −1) = (0, 0) .
493
+ Finally, notice that for any t ∈ R+ the creative condition (*) in this case holds if and only if �ν(t) =
494
+ (0, −1) = −µ(t). Thus, by (3-i) of Theorem 1, the origin (0, 0) is the unique envelope created by C(γ,λ).
495
+ Example 5. Theorem 1 can be applied also to (2) of Example 2 as follows. In this example, γ(t) = (t, 0)
496
+ and λ(t) = 1. Thus, we may take ν(t) = (0, −1), µ(t) = (1, 0). We have β(t) = dγ
497
+ dt (t) · µ(t) = 1. Since the
498
+ radius function λ is a constant function, the created condition
499
+
500
+ dt (t) = −β(t) (�ν(t) · µ(t))
501
+ becomes simply
502
+ 0 = − (�ν(t) · (0, 1))
503
+
504
+ 8
505
+ Y. WANG AND T. NISHIMURA
506
+ in this case. Thus, for any t ∈ R, the created condition is satisfied if and only if �ν(t) = ±(1, 0). Hence, by
507
+ (1) of Theorem 1, the circle family C(γ,λ) creates an envelope. By (2) of Theorem 1, the parametrization
508
+ of the created envelope is
509
+ f(t) = γ(t) = λ(t)�ν(t) = (t, 0) ± (0, −1) = (t, ∓1) .
510
+ Finally, by (3-ii) of Theorem 1, the number of envelope created by C(γ,λ) is exactly two.
511
+ Example 6. Theorem 1 can be applied even to (3) of Example 2 as follows. In this example, γ(t) = (0, 0)
512
+ and λ(t) = 1. Thus, every mapping ν : R → S1 can be taken as Gauss mapping of γ. In particular, γ is
513
+ a frontal. We have β(t) = dγ
514
+ dt (t) · µ(t) = 0. Since the radius function λ is a constant function λ(t) = 1,
515
+ the created condition
516
+
517
+ dt (t) = −β(t) (�ν(t) · µ(t))
518
+ becomes simply
519
+ 0 = 0
520
+ in this case. Thus, for any �ν : R → S1, the created condition is satisfied. Hence, by (1) of Theorem
521
+ 1, the circle family C(γ,λ) creates an envelope. By (2) of Theorem 1, the parametrization of the created
522
+ envelope is
523
+ f(t) = γ(t) = λ(t)�ν(t) = (0, 0) + �ν(t) = �ν(t).
524
+ Finally, by (3-∞) of Theorem 1, there are uncountably many distinct envelope created by C(γ,λ).
525
+ Example 7. Let γ : R+ → R2 be the mapping defined by γ(t) = (t, 0) and let λ : R+ → R+ be the
526
+ positive function defined by λ(t) = t2.
527
+ The circle family C(γ,λ) and the candidate of its envelope is
528
+ depicted in Figure 4. Defining the mapping ν : R+ → S1 by ν(t) = (0, −1) clarifies that the mapping γ
529
+ Figure 4. The circle family C(γ,λ) and the candidate of its envelope.
530
+ is a frontal. Then, µ(t) = J(ν(t)) = (1, 0) and β(t) = dγ
531
+ dt (t) · µ(t) = (1, 0) · (1, 0) = 1. We want to seek a
532
+ mapping �ν : R+ → S1 satisfying
533
+
534
+ dt (t) = −β(t) (�ν(t) · µ(t)) ,
535
+ namely, a mapping �ν : R+ → S1 satisfying
536
+ 2t = −((�ν(t) · (1, 0))).
537
+ Since �ν(t) ∈ S1, from the above expression, it follows that such �ν(t) does not exist if 1
538
+ 2 < t. Thus, the
539
+ circle family C(γ,λ) is not creative and it creates no envelopes by (1) of Theorem 1.
540
+
541
+ 0.5
542
+ 0.5
543
+ 1.0
544
+ 0.5ENVELOPES CREATED BY CIRCLE FAMILIES IN THE PLANE
545
+ 9
546
+ Example 8. This example is almost the same as Example 7. The difference from Example 7 is only the
547
+ parameter space. In Example 8, the parameter space I is
548
+
549
+ 0, 1
550
+ 2
551
+
552
+ . That is to say, in this example, R+ in
553
+ Example 7 is replaced by
554
+
555
+ 0, 1
556
+ 2
557
+
558
+ and all other settings in Example 7 remain without change.
559
+ Then, from calculations in Example 7, it follows that the given circle family C(γ,λ) is creative. Thus,
560
+ by (1) of Theorem 1, C(γ,λ) creates an envelope. It is easily seen that the expression of �ν(t) must be as
561
+ follows.
562
+ �ν(t) =
563
+
564
+ −2t, ±
565
+
566
+ 1 − 4t2
567
+
568
+ .
569
+ Therefore, by (2) of Theorem 1, an envelope f created by C(γ,λ) is parametrized as follows.
570
+ f(t)
571
+ =
572
+ γ(t) + λ(t)�ν(t)
573
+ =
574
+ (t, 0) + t2 �
575
+ −2t, ±
576
+
577
+ 1 − 4t2
578
+
579
+ =
580
+
581
+ t − 2t3, ±t2�
582
+ 1 − 4t2
583
+
584
+ .
585
+ Finally, by (3-ii) of Theorem 1, it follows that the number of distinct envelopes created by the circle
586
+ family C(γ,λ) is exactly two.
587
+ Example 9. Let γ : R → R2 be the mapping defined by γ(t) = (t3, t2) and let λ : R → R+ be the
588
+ constant function defined by λ(t) = 1.
589
+ The circle family C(γ,λ) and the candidate of its envelope is
590
+ depicted in Figure 5. It is easily seen that the mapping ν : R → S1 defined by ν(t) =
591
+ 1
592
+
593
+ 4+9t2 (2, −3t)
594
+ Figure 5. The circle family C(γ,λ) and the candidate of its envelope.
595
+ gives the Gauss mapping for γ. Thus, γ is a frontal. By definition, the mapping µ : R → S1 has the form
596
+ µ(t) =
597
+ 1
598
+
599
+ 4+9t2 (3t, 2). By calculation, we have
600
+ β(t) = dγ
601
+ dt (t) · µ(t) = t
602
+
603
+ 4 + 9t2.
604
+ Since the radius function λ is constant, it follows dλ
605
+ dt (t) = 0. Thus, for any t ∈ R, the unit vector �ν(t)
606
+ satisfying
607
+
608
+ dt (t) = −β(t) (�ν(t) · µ(t)) ,
609
+ always exists. Namely we have
610
+ �ν(t) = ±ν(t) =
611
+ ±1
612
+
613
+ 4 + 9t2 (2, −3t) .
614
+
615
+ 4 F
616
+ .4
617
+ -2
618
+ 2
619
+ 4
620
+ 210
621
+ Y. WANG AND T. NISHIMURA
622
+ Thus, by (1) of Theorem 1, C(γ,λ) creates an envelope, and the created envelope f : R → R2 has the
623
+ following form by (2) of Theorem 1.
624
+ f(t) = γ(t) + λ(t)�ν(t) =
625
+
626
+ t3, t2�
627
+ ±
628
+ 1
629
+
630
+ 4 + 9t2 (2, −3t) =
631
+
632
+ t3 ±
633
+ 2
634
+
635
+ 4 + 9t2 , t2 ∓
636
+ 3t
637
+
638
+ 4 + 9t2
639
+
640
+ .
641
+ Finally, by (3-ii) of Theorem 1, there are no other envelopes created by C(γ,λ).
642
+ 4. Alternative definitions
643
+ In Definition 2 of Section 1, the definition of envelope created by the circle family is given. In [1], the
644
+ set consisting of the images of envelopes defined in Definition 2 is called E2 envelope (denoted by E2)
645
+ and two alternative definitions (called E1 envelope and D envelope) are given as follows.
646
+ Definition 4 (E1 envelope [1]). Let γ : I → R2, λ : I → R+ be a frontal and a positive function
647
+ respectively. Let t0 be a parameter of I and fix it. Assume that
648
+ lim
649
+ ε→0 C(γ(t0),λ(t0)) ∩ C(γ(t0+ε),λ(t0+ε))
650
+ is not the empty set and denote the set by I(t0). Take one point e1(t0) = (x(t0), y(t0)) of I(t0). Then, the
651
+ set consisting of the images of smooth mappings e1 : I → R2, if exists, is called an E1 envelope created
652
+ by the circle family C(γ,λ) and is denoted by E1.
653
+ Definition 5 (D envelope [1]). Let γ : I → R2, λ : I → R+ be a frontal and a positive function
654
+ respectively. Set
655
+ F(x, y, t) = ||(x, y) − γ(t)||2 − (λ(t))2 .
656
+ Then, the following set is called the D envelope created by the circle family C(γ,λ) and is denoted by D.
657
+
658
+ (x, y) ∈ R2 | ∃t ∈ I such that F(x, y, t) = ∂F
659
+ ∂t (x, y, t) = 0
660
+
661
+ .
662
+ Concerning the relationships among E1, E2 and D for a given circle family C(γ,λ), the following is
663
+ known.
664
+ Fact 1 ([1]). E1 ⊂ D and E2 ⊂ D.
665
+ In this section, we study more precise relationships among E1, E2 and D.
666
+ 4.1. The relationship between E1 and E2. We first establish the relationship between E1 and E2 as
667
+ follows.
668
+ Theorem 2. E1 = E2.
669
+ Proof. We first show E1 ⊂ E2. Let t0 be a parameter of I and let {ti}i=1,2,... be a sequence of I conversing
670
+ to t0. Take a point (x(t0), y(t0)) of E1. Then, we may assume that a point (x(ti), y(ti)) is taken from
671
+ the intersection of two circles C(γ(ti), λ(ti)) ∩ C(γ(t0), λ(t0)) and satisfies
672
+ lim
673
+ ti→t0(x(ti), y(ti)) = (x(t0), y(t0)).
674
+ Then, we have the following.
675
+ ||(x(ti), y(ti)) − γ(ti)||2
676
+ =
677
+ (λ(ti))2
678
+ (1)
679
+ ||(x(ti), y(ti)) − γ(t0)||2
680
+ =
681
+ (λ(t0))2 .
682
+ (2)
683
+ For j = 0, 1, 2, . . ., set γ(tj) = (γx(tj), γy(tj)). Subtracting (2) from (1) yields the following.
684
+ −2 (x(ti) (γx(ti) − γx(t0)) + y(ti) (γy(ti) − γy(t0))) + (γx(ti))2 − (γx(t0))2 + (γy(ti))2 − (γy(t0))2
685
+ =
686
+ (λ(ti))2 − (λ(t0))2 .
687
+ Since limi→∞ ti = t0 and limti→t0(x(ti), y(ti)) = (x(t0), y(t0)), this equality implies
688
+ −2
689
+
690
+ x(t0)dγx
691
+ dt (t0) + y(t0)dγy
692
+ dt (t0)
693
+
694
+ + 2
695
+
696
+ γx(t0)dγx
697
+ dt (t0) + γy(t0)dγy
698
+ dt (t0)
699
+
700
+ = 2λ(t0)dλ
701
+ dt (t0).
702
+ Hence we have
703
+
704
+ 1
705
+ λ(t0) (x(t0) − γx(t0), y(t0) − γy(t0)) ·
706
+ �dγx
707
+ dt (t0), dγy
708
+ dt (t0)
709
+
710
+ = dλ
711
+ dt (t0).
712
+
713
+ ENVELOPES CREATED BY CIRCLE FAMILIES IN THE PLANE
714
+ 11
715
+ Notice that the vector
716
+ 1
717
+ λ(t0) (x(t0) − γx(t0), y(t0) − γy(t0)) =
718
+ 1
719
+ λ(t0) ((x(t0), y(t0)) − γ(t0)) is a unit vector
720
+ and
721
+
722
+ dγx
723
+ dt (t0), dγy
724
+ dt (t0)
725
+
726
+ = β(t0)µ(t0). Thus the creative condtion is satisfied at t = t0. Therefore, by the
727
+ proof of (1) of Theorem 1, the point (x(t0), y(t0)) must belong to E2.
728
+ Conversely, suppose that the circle family C(γ,λ) creates an E2 envelope f : I → R2. By (2) of Theorem
729
+ 1, f has the following representation.
730
+ f(t) = γ(t) + λ(t)�ν(t).
731
+ For a point P ∈ R2 and a unit vector v ∈ S1, the straight line L(P, v) is naturally defined as follows.
732
+ L(P,v) =
733
+
734
+ (x, y) ∈ R2 | ((x, y) − P) · v = 0
735
+
736
+ .
737
+ Then, since
738
+ df
739
+ dt (t)·�ν(t) =
740
+ �dγ
741
+ dt (t) + dλ
742
+ dt (t) · �ν(t) + λ(t)d�ν
743
+ dt (t)
744
+
745
+ ·�ν(t) = dγ
746
+ dt (t)·�ν(t)+dλ
747
+ dt (t) = β(t) (µ(t) · �ν(t))+dλ
748
+ dt (t) = 0,
749
+ f is an E2 envelope created by the straight line family
750
+ L(f,�ν) =
751
+
752
+ L(f(t),�ν(t))
753
+
754
+ t∈R .
755
+ Take one parameter t0 ∈ I and let {ti}i=1,2,... ⊂ I be a sequence converging to t0. Since for the straight
756
+ line family L(f,�ν) the image of E2 envelope is the same as E1 emvelope (see (c) of Theorem 1 in [6]), for
757
+ any sufficiently large i ∈ N there exists a point
758
+ (x(ti), y(ti)) ∈ L(f(t0),�ν(t0)) ∩ L(f(ti),�ν(ti))
759
+ such that limi→∞ (x(ti), y(ti)) = f(t0). Hence for any sufficiently large i ∈ N there must exist a point
760
+ (�x(ti), �y(ti)) ∈ C(γ(t0),λ(t0)) ∩ C(γ(ti),λ(ti))
761
+ such that limi→∞ (�x(ti), �y(ti)) = f(t0) (see Figure 6). Therefore, the point f(t0) ∈ R2 belongs to E1.
762
+ Figure
763
+ 6. Existence
764
+ of
765
+ (�x(ti), �y(ti))
766
+
767
+ C(γ(t0),λ(t0)) ∩ C(γ(ti),λ(ti))
768
+ satisfying
769
+ limi→∞ (�x(ti), �y(ti)) = f(t0).
770
+ Since f is an arbitrary envelop created by C(γ,λ) and t0 is an arbitrary parameter in I, it follows that
771
+ E2 ⊂ E1.
772
+
773
+
774
+ L((ti),入ti)
775
+ (α(ti),y(ti))
776
+ f(to)
777
+ L((to),入(to)
778
+ f(ti)
779
+ (α(ti), y(ti))
780
+ C((to),入(to))
781
+ ((ti),入(ti))12
782
+ Y. WANG AND T. NISHIMURA
783
+ 4.2. A relationship between E2 and D. In this subsection, we prove the following theorem which
784
+ asserts that D = E2 if and only if γ : I → R2 is non-singular, and D contains not only E2 but also the
785
+ circle C(γ(t),λ(t)) at a singular point t of γ when γ is singular.
786
+ Theorem 3. Let γ : I → R2, λ : I → R+ be a frontal and a positive function respectively. Suppose that
787
+ the circle family C(γ,λ) is creative. Then, the following hold.
788
+ D = E2 ∪
789
+
790
+ � �
791
+ t∈Σ(γ)
792
+ C(γ(t),λ(t))
793
+
794
+ � .
795
+ Here, Σ(γ) stands for the set consisting of singular points of γ : I → R2.
796
+ Proof. Recall that
797
+ D =
798
+
799
+ (x, y) ∈ R2 | ∃t ∈ I such that F(x, y, t) = ∂F
800
+ ∂t (x, y, t) = 0
801
+
802
+ .
803
+ Let (x0, y0) be a point of D. Since F(x, y, t) = ||(x, y) − γ(t)||2 − |λ(t)|2, it follows the following (a) and
804
+ (b).
805
+ (a) There exists a t ∈ I such that ((x0, y0) − γ(t)) · ((x0, y0) − γ(t)) − (λ(t))2 = 0.
806
+ (b)
807
+ d(((x0,y0)−γ(t))·((x0,y0)−γ(t))−(λ(t))2)
808
+ dt
809
+ = 0.
810
+ The condition (a) implies that there exists a t ∈ I and a unit vector ν1(t) ∈ S1 at the t ∈ I such that
811
+ (x0, y0) = γ(t) − λ(t)ν1(t).
812
+ The condition (b) implies that there exists a t ∈ I such that
813
+
814
+ dt (t) · ((x0, y0) − γ(t)) − dλ
815
+ dt (t)λ(t) = 0.
816
+ Since dγ
817
+ dt (t) = β(t)µ(t), just by substituting, we have that there exists a t ∈ I and a unit vector ν1(t) ∈ S1
818
+ at the t ∈ I satisfying
819
+ λ(t)
820
+
821
+ β(t) (µ(t) · ν1(t)) + dλ
822
+ dt (t)
823
+
824
+ = 0.
825
+ Since λ(t) > 0 for any t ∈ I, it follows that there exists a t ∈ I and a unit vector ν1(t) ∈ S1 at the t ∈ I
826
+ satisfying
827
+
828
+ dt (t) = −β(t) (µ(t) · ν1(t)) .
829
+ On the other hand, since C(γ,λ) is creative, there must exist a smooth unit vector field �ν : I → S1
830
+ along γ : I → R2 such that
831
+
832
+ dt (t) = −β(t) (µ(t) · �ν(t))
833
+ for any t ∈ I. Suppose that the parameter t ∈ I is a regular point of γ. Then, β(t) ̸= 0 at the t ∈ I.
834
+ Thus, at the t ∈ I, the unit vector ν1(t) must be �ν(t). Therefore, by the proof of (1) of Theorem 1, at
835
+ the regular point t ∈ I of γ, it follows
836
+ D = E2.
837
+ Suppose that the parameter t ∈ I is a singular point of γ. Then, β(t) = 0 at the t ∈ I. Thus, for any
838
+ unit vector v ∈ S1, the following holds at the t ∈ I.
839
+
840
+ dt (t) = −β(t) (µ(t) · v) .
841
+ Hence, at the singular point t ∈ I, we may choose any unit vector v ∈ S1 as the unit vector ν1(x).
842
+ Therefore, by the proof of (1) of Theorem 1, at the singular point t ∈ I of γ, it follows
843
+ D = E2 ∪ C(γ(t),λ(t)).
844
+
845
+
846
+ ENVELOPES CREATED BY CIRCLE FAMILIES IN THE PLANE
847
+ 13
848
+ Acknowledgement
849
+ The first author is supported by the National Natural Science Foundation of China (Grant No.
850
+ 12001079), Fundamental Research Funds for the Central Universities (Grant No. 3132023205) and China
851
+ Scholarship Council.
852
+ References
853
+ [1] J. W. Bruce and P. J. Giblin, Curves and Singularities (second edition), Cambridge University Press, Cambridge, 1992.
854
+ https://doi.org/10.1017/CBO9781139172615
855
+ [2] T. Fukunaga and M. Takahashi, Existence and uniqueness for Legendre curves, J. Geom., 104 (2013), 297–307.
856
+ https://doi.org/10.1007/s00022-013-0162-6
857
+ [3] E. Hairer and G. Wanner, Analysis by Its History, Undergraduate Texts in Mathematics, Springer New York, NY,
858
+ 2008. https://doi.org/10.1007/978-0-387-77036-9
859
+ [4] G. Ishikawa, Singularities of frontals, Adv. Stud. Pure Math., 78, 55–106, Math. Soc. Japan, Tokyo, 2018.
860
+ https://doi.org/10.2969/aspm/07810055
861
+ [5] S. Janeczko and T. Nishimura, Anti-orthotomics of frontals and their applications, J. Math. Anal. Appl., 487 (2020),
862
+ 124019. https://doi.org/10.1016/j.jmaa.2020.124019
863
+ [6] T. Nishimura, Hyperplane families creating envelopes, Nonlinearity, 35 (2022), 2588. https://doi.org/10.1088/1361-
864
+ 6544/ac61a0
865
+ School of Science, Dalian Maritime University, Dalian 116026, P.R. China
866
+ Email address: wangyq@dlmu.edu.cn
867
+ Research Institute of Environment and Information Sciences, Yokohama National University, Yokohama
868
+ 240-8501, Japan
869
+ Email address: nishimura-takashi-yx@ynu.ac.jp
870
+
JdE3T4oBgHgl3EQfXQrW/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,466 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf,len=465
2
+ page_content='ENVELOPES CREATED BY CIRCLE FAMILIES IN THE PLANE YONGQIAO WANG AND TAKASHI NISHIMURA Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
3
+ page_content=' In this paper, on envelopes created by circle families in the plane, answers to all four basic problems (existence problem, representation problem, problem on the number of envelopes, problem on relationships of definitions) are given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
4
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
5
+ page_content=' Introduction Throughout this paper, I is an open interval and all functions, mappings are of class C∞ unless otherwise stated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
6
+ page_content=' Envelopes of planar regular curve families have fascinated many pioneers since the dawn of differential analysis (for instance, see [3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
7
+ page_content=' In most typical cases, straight line families have been studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
8
+ page_content=' In [6], by solving four basic problems on envelopes created by straight line families in the plane (existence problem, representation problem, uniqueness problem and equivalence problem of definitions), the second author constructs a general theory for envelopes created by straight line families in the plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
9
+ page_content=' On the other hand, circle families in the plane are non-negligible families because the envelopes of them have already had an important application, namely, an application to Seismic Survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
10
+ page_content=' Following 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
11
+ page_content='14(9) of [1], a brief explanation of Seismic Survey is given as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
12
+ page_content=' In the Eucledian plane R2, consider the “ground level curve” C parametrized by γ : I → R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
13
+ page_content=' Suppose that there is a stratum of granite below the top layer of sandstone and that the dividing curve, denoted by M, is parametrized by �f : I → R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
14
+ page_content=' Seismic Survey is the following method to obtain an approximation of �f as precisely as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
15
+ page_content=' Take one fixed point A of C and consider an explosion at A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
16
+ page_content=' Assume that the sound waves travel in straight lines and are reflected from M, arriving back at points γ(t) of C where their times of arrival are exactly recorded by sensors located along C (see Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
17
+ page_content=' It is known that there exists a curve W parametrized by f : I → R2 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
18
+ page_content=' Reflection of sound waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
19
+ page_content=' with well-defined normals such that each broken line of a reflected ray starting at A and finishing on C 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
20
+ page_content=' 57R45, 58C25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
21
+ page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
22
+ page_content=' Circle family, Envelope, Frontal, Creative, Creator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
23
+ page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
24
+ page_content='04478v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
25
+ page_content='DG] 11 Jan 2023 A (ti)(t2)(t3)(t4)(ts) C M2 Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
26
+ page_content=' WANG AND T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
27
+ page_content=' NISHIMURA can be replaced by a straight line which is normal to W and of the same total length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
28
+ page_content=' The curve W is called the orthotomic of M relative to A and conversely the curve M is called the anti-orthotomic of W relative to A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
29
+ page_content=' Then, an envelope created by the circle family � (x, y) ∈ R2 �� ||(x, y) − γ(t)|| = ||f(t) − γ(t)|| � t∈I recovers W (see Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
30
+ page_content=' After obtaining the parametrization f of W, the parametrization �f of M Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
31
+ page_content=' An envelope created by the circle family.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
32
+ page_content=' can be easily obtained by using the anti-orthotomic technique developed in [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
33
+ page_content=' Therefore, in order to investigate the parametrization of W as precisely as possible, construction of general theory on envelopes created by circle families is very important.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
34
+ page_content=' In this paper, we construct a general theory on envelopes created by circle families in the plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
35
+ page_content=' For a point P of R2 and a positive number λ, the circle C(P,λ) centered at P with radius λ is naturally defined as follows, where the dot in the center stands for the standard scalar product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
36
+ page_content=' C(P,λ) = � (x, y) ∈ R2 �� ((x, y) − P) · ((x, y) − P) = λ2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
37
+ page_content=' For a curve γ : I → R2 and a positive function λ : I → R+, the circle family C(γ,λ) is naturally defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
38
+ page_content=' Here, R+ stands for the set consisting of positive real numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
39
+ page_content=' C(γ,λ) = � C(γ(t),λ(t)) � t∈I .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
40
+ page_content=' It is reasonable to assume that at each point γ(t) the normal vector to the curve γ is well-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
41
+ page_content=' Thus, we easily reach the following definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
42
+ page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
43
+ page_content=' A curve γ : I → R2 is called a frontal if there exists a mapping ν : I → S1 such that the following identity holds for each t ∈ I, where S1 is the unit circle in R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
44
+ page_content=' dγ dt (t) · ν(t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
45
+ page_content=' For a frontal γ, the mapping ν : I → S1 given above is called the Gauss mapping of γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
46
+ page_content=' By definition, a frontal is a solution of the first order linear differential equation defined by Gauss mapping ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
47
+ page_content=' Thus, for a fixed mapping ν : I → S1 the set consisting of frontals with a given Gauss mapping ν : I → S1 is a linear space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
48
+ page_content=' For frontals, [4] is recommended as an excellent reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
49
+ page_content=' Hereafter in this paper, the curve γ : I → R2 for a circle family C(γ,λ) is assumed to be a frontal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
50
+ page_content=' In this paper, the following is adopted as the definition of an envelope created by a circle family.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
51
+ page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
52
+ page_content=' Let C(γ,λ) be a circle family.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
53
+ page_content=' A mapping f : I → R2 is called an envelope created by C(γ,λ) if there exists a mapping �ν : I → S1 such that the following two hold for any t ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
54
+ page_content=' (1) df dt(t) · �ν(t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
55
+ page_content=' A (ti) (t2) (t3) (t4) (ts) f(ts) f(t4) f(t2)f(t3) f(ti)ENVELOPES CREATED BY CIRCLE FAMILIES IN THE PLANE 3 (2) f(t) ∈ C(γ(t),λ(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
56
+ page_content=' By definition, as same as an envelope created by a hyperplane family (see [6]), an envelope created by a circle family is a solution of a first order linear differential equation with one constraint condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
57
+ page_content=' Moreover, again by definition, an envelope created by a circle family is a frontal with Gauss mapping �ν : I → S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
58
+ page_content=' On the other hand, since there is one constraint condition, again as same as an envelope created by a hyperplane family, the set of envelopes created by a given circle family is in general not a linear space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
59
+ page_content=' Problem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
60
+ page_content=' (1) Given a circle family C(γ,λ), find a necessary and sufficient codition for the family to create an envelope in terms of γ, ν and λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
61
+ page_content=' (2) Suppose that a circle family C(γ,λ) creates an envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
62
+ page_content=' Then, find a parametrization of the envelope in terms of γ, ν and λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
63
+ page_content=' (3) Suppose that a circle family C(γ,λ) creates an envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
64
+ page_content=' Then, find a criterion for the number of distinct envelopes created by C(γ,λ) in terms of γ, ν and λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
65
+ page_content=' Note 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
66
+ page_content=' (1) (1) of Problem 1 is a problem to seek the integrability conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
67
+ page_content=' There are various cases, for instance the concentric circle family {{(x, y) ∈ R2 | x2 + y2 = t2}}t∈R+ does not create an envelope while the parallel-translated circle family {{(x, y) ∈ R2 | (x − t)2 + y2 = 1}}t∈R does create two envelopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
68
+ page_content=' Thus, (1) of Problem 1 is significant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
69
+ page_content=' (2) The following Example 1 shows that the apparently well-known method to obtain the envelope seems to be useless in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
70
+ page_content=' Thus, (2) of Problem 1 is important and the positive answer to it is much desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
71
+ page_content=' (3) The following Example 2 shows that there are at least three cases: the case having a unique envelope, the case having exactly two envelopes and the case having uncountably many envelopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
72
+ page_content=' Thus, (3) of Problem 1 is meaningful and interesting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
73
+ page_content=' Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
74
+ page_content=' Let γ : R → R2 be the mapping defined by γ(t) = � t3, t6� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
75
+ page_content=' Set ν(t) = 1 √ 4t6+1 � −2t3, 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
76
+ page_content=' It is clear that the mapping γ is a frontal with Gauss mapping ν : R → S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
77
+ page_content=' Let λ : R → R+ be the constant function defined by λ(t) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
78
+ page_content=' Then, it seems that the circle family C(γ,λ) creates envelopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
79
+ page_content=' Thus, we can expect that the created envelopes can be obtained by the well-known method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
80
+ page_content=' Set F(x, y, t) = � x − t3�2 + � y − t6�2 − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
81
+ page_content=' Then, we have the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
82
+ page_content=' D = � (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
83
+ page_content=' y) ∈ R2 ���� ∃t such that F(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
84
+ page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
85
+ page_content=' t) = ∂F ∂t (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
86
+ page_content=' y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
87
+ page_content=' t) = 0 � = � (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
88
+ page_content=' y) ∈ R2 ��� ∃t such that � x − t3�2 + � y − t6�2 − 1 = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
89
+ page_content=' −6t2 � x − t3� − 12t5 � y − t6� = 0 � = � (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
90
+ page_content=' y) ∈ R2 ��� ∃t such that � x − t3�2 + � y − t6�2 − 1 = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
91
+ page_content=' t2 �� x − t3� + 2t3 � y − t6�� = 0 � = � (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
92
+ page_content=' y) ∈ R2 �� x2 + y2 = 1 � � � (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
93
+ page_content=' y) ∈ R2 ��� � x − t3�2 + � y − t6�2 − 1 = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
94
+ page_content=' x = t3 − 2t3 � y − t6�� = � (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
95
+ page_content=' y) ∈ R2 �� x2 + y2 = 1 � � � (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
96
+ page_content=' y) ∈ R2 ��� � −2t3 � y − t6��2 + � y − t6�2 = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
97
+ page_content=' x = t3 � 1 − 2y + 2t6�� = � (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
98
+ page_content=' y) ∈ R2 �� x2 + y2 = 1 � � �� t3 ∓ 2t3 √ 4t6 + 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
99
+ page_content=' t6 ± 1 √ 4t6 + 1 � ∈ R2 ���� t ∈ R � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
100
+ page_content=' In Example 3 of Section 3, it turns out that the set D calculated here is actually larger than the set of envelopes created by C(γ,λ), namely the unit circle � (x, y) ∈ R2 �� x2 + y2 = 1 � is redundant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
101
+ page_content=' Therefore, unfortunately, the apparently well-known method to obtain the envelopes does not work well in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
102
+ page_content=' The circle family C(γ,λ) and the candidate of its envelope are depicted in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
103
+ page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
104
+ page_content=' (1) Let γ : R+ → R2 be the mapping defined by γ(t) = (0, 1 + t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
105
+ page_content=' Then, it is clear that γ is a frontal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
106
+ page_content=' Let λ : R+ → R+ be the positive function defined by λ(t) = 1+t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
107
+ page_content=' Then, it is easily seen that the origin (0, 0) of the plane R2 itself is a created envelope by the circle family C(γ,λ) and that there are no other envelopes created by C(γ,λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
108
+ page_content=' Hence, the number of created envelopes is one in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
109
+ page_content=' (2) The parallel-translated circle family {{(x, y) ∈ R2 | (x − t)2 + y2 = 1}}t∈R creates exactly two envelopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
110
+ page_content=' (3) Let γ : R → R2 be the constant mapping defined by γ(t) = (0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
111
+ page_content=' Then, it is clear that γ is a frontal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
112
+ page_content=' Let λ : R → R+ be the constant function defined by λ(t) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
113
+ page_content=' Then, for any function 4 Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
114
+ page_content=' WANG AND T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
115
+ page_content=' NISHIMURA Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
116
+ page_content=' The circle family C(γ,λ) and the candidate of its envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
117
+ page_content=' θ : R → R, the mapping f : R → R2 defined by f(t) = (cos θ(t), sin θ(t)) is an envelope created by the circle family C(γ,λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
118
+ page_content=' Hence, there are uncountably many created envelopes in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
119
+ page_content=' In order to solve Problem 1, we prepare several terminologies that can be derived from a frontal γ : I → R2 with Gauss mapping ν : I → S1 and a positive function λ : I → R+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
120
+ page_content=' For a frontal γ : I → R2 with Gauss mapping ν : I → S1, following [2], we set µ(t) = J(ν(t)), where J is the anti-clockwise rotation by π/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
121
+ page_content=' Then we have a moving frame {µ(t), ν(t)}t∈I along the frontal γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
122
+ page_content=' Set ℓ(t) = dν dt (t) · µ(t), β(t) = dγ dt (t) · µ(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
123
+ page_content=' The pair of functions (ℓ, β) is called the curvature of the frontal γ with Gauss mapping ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
124
+ page_content=' We want to focus the ratio of dλ dt (t) and β(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
125
+ page_content=' The following definition is the key of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
126
+ page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
127
+ page_content=' Let γ : I → R2, λ : I → R+ be a frontal with Gauss mapping ν : I → S1 and a positive function respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
128
+ page_content=' Then, the circle family C(γ,λ) is said to be creative if there exists a mapping �ν : I → S1 such that the following identity holds for any t ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
129
+ page_content=' dλ dt (t) = −β(t) (�ν(t) · µ(t)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
130
+ page_content=' Set cos θ(t) = −�ν(t) · µ(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
131
+ page_content=' Then, the creative condition is equivalent to say that there exists a function θ : I → R satisfying the following identity for any t ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
132
+ page_content=' dλ dt (t) = β(t) cos θ(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
133
+ page_content=' By definition, any family of concentric circles with expanding radius is not creative, and it is clear that such the circle family does not create an envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
134
+ page_content=' Under the above preparation, Problem 1 is solved as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
135
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
136
+ page_content=' Let γ : I → R2 be a frontal with Gauss mapping ν : I → S1 and let λ : I → R+ be a positive function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
137
+ page_content=' Then, the following three holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
138
+ page_content=' (1) The circle family C(γ,λ) creates an envelope if and only if C(γ,λ) is creative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
139
+ page_content=' (2) Suppose that the circle family C(γ,λ) creates an envelope f : I → R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
140
+ page_content=' Then, the created envelope f is represented as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
141
+ page_content=' f(t) = γ(t) + λ(t)�ν(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
142
+ page_content=' where �ν : I → S1 is the mapping de���ned in Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
143
+ page_content=' ENVELOPES CREATED BY CIRCLE FAMILIES IN THE PLANE 5 (3) Suppose that the circle family C(γ,λ) creates an envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
144
+ page_content=' Then, the number of envelopes created by C(γ,λ) is characterized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
145
+ page_content=' (3-i) The circle family C(γ,λ) creates a uinique envelope if and only if the set consisting of t ∈ I satisfying β(t) ̸= 0 and dλ dt (t) = ±β(t) is dense in I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
146
+ page_content=' (3-ii) There are exactly two distinct envelopes created by C(γ,λ) if and only if the set of t ∈ I satisfying β(t) ̸= 0 is dense in I and there exists at least one t0 ∈ I such that the strict inequality | dλ dt (t0)| < |β(t0)| holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
147
+ page_content=' (3-∞) There are uncountably many distinct envelopes created by C(γ,λ) if and only if the set of t ∈ I satisfying β(t) ̸= 0 is not dense in I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
148
+ page_content=' By the assertion (2) of Theorem 1, it is reasonable to call �ν the creator for an envelope f created by C(γ,λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
149
+ page_content=' This paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
150
+ page_content=' Theorem 1 is proved in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
151
+ page_content=' In Section 3, several examples to which Theorem 1 is effectively applicable are given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
152
+ page_content=' Finally, in Section 4, relations of several definitions of an envelope created by a circle family are investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
153
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
154
+ page_content=' Proof of Theorem 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
155
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
156
+ page_content=' Proof of the assertion (1) of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
157
+ page_content=' Suppose that C(γ,λ) is creative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
158
+ page_content=' By definition, there exists a mapping �ν : I → S1 such that the equality dλ dt (t) = −β(t) (�ν(t) · µ(t)) holds for any t ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
159
+ page_content=' Set f(t) = γ(t) + λ(t)�ν(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
160
+ page_content=' Then, since (f(t) − γ(t)) · (f(t) − γ(t)) = λ2(t), it follows f(t) ∈ C(γ(t),λ(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
161
+ page_content=' Morever, since df dt (t) = dγ dt (t) + dλ dt (t)�ν(t) + λ(t)d�ν dt (t), we have the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
162
+ page_content=' df dt (t) · (f(t) − γ(t)) = �dγ dt (t) + dλ dt (t)�ν(t) + λ(t)d�ν dt (t) � (λ(t)�ν(t)) = dγ dt (t) · (λ(t)�ν(t)) + dλ dt (t)λ(t) = (β(t)µ(t)) · (λ(t)�ν(t)) + (−β(t) (�ν(t) · µ(t))) λ(t) = β(t)λ(t) (µ(t) · �ν(t)) − β(t)λ(t) (�ν(t) · µ(t)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
163
+ page_content=' Hence, f is an envelope created by the circle family C(γ,λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
164
+ page_content=' Conversely, suppose that the circle family C(γ,λ) creates an envelope f : I → R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
165
+ page_content=' Then, by definition, it follows that f(t) ∈ C(γ(t),λ(t)) and df dt(t) · (f(t) − γ(t)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
166
+ page_content=' The condition f(t) ∈ C(γ(t),λ(t)) implies that there exists a mapping �ν : I → S1 such that the following equality holds for any t ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
167
+ page_content=' f(t) = γ(t) + λ(t)�ν(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
168
+ page_content=' Then, since df dt (t) = dγ dt (t) + dλ dt (t)�ν(t) + λ(t)d�ν dt (t), we have the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
169
+ page_content=' 0 = df dt (t) · (f(t) − γ(t)) = �dγ dt (t) + dλ dt (t)�ν(t) + λ(t)d�ν dt (t) � (λ(t)�ν(t)) = (β(t)µ(t)) · (λ(t)�ν(t)) + dλ dt (t)λ(t) = λ(t) � β(t) (µ(t) · �ν(t)) + dλ dt (t) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
170
+ page_content=' 6 Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
171
+ page_content=' WANG AND T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
172
+ page_content=' NISHIMURA Since λ(t) is positive for any t ∈ I, it follows β(t) (µ(t) · �ν(t)) + dλ dt (t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
173
+ page_content=' Therefore, the circle family C(γ,λ) is creative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
174
+ page_content=' 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
175
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
176
+ page_content=' Proof of the assertion (2) of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
177
+ page_content=' The proof of the assertion (1) given in Subsection 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
178
+ page_content='1 proves the assertion (2) as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
179
+ page_content=' 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
180
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
181
+ page_content=' Proof of the assertion (3) of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
182
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
183
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
184
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
185
+ page_content=' Proof of (3-i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
186
+ page_content=' Suppose that the circle family C(γ,λ) creates a unique envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
187
+ page_content=' Then, for any t ∈ I the unit vector �ν(t) satisfying dλ dt (t) = −β(t) (�ν(t) · µ(t)) must be uniquely determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
188
+ page_content=' Hence, under considering continuity of two functions dλ dt and β, it follows that the set consisting of t ∈ I satisfying dλ dt (t) = ±β(t) ̸= 0 must be dense in I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
189
+ page_content=' Conversely, suppose that the set consisting of t ∈ I satisfying dλ dt (t) = ±β(t) ̸= 0 is dense in I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
190
+ page_content=' Then, under considering continuity of the function t �→ �ν(t) · µ(t), it follows that �ν(t) · µ(t) = ±1 for any t ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
191
+ page_content=' Thus, the created envelope f(t) = γ(t) + λ(t)�ν(t) must be unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
192
+ page_content=' 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
193
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
194
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
195
+ page_content=' Proof of (3-ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
196
+ page_content=' Suppose that there are exactly two distinct envelopes created by C(γ,λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
197
+ page_content=' Then, by the equality dλ dt (t) = −β(t) (�ν(t) · µ(t)) , the set consisting of t ∈ I satisfying β(t) ̸= 0 must be dense in I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
198
+ page_content=' Suppose moreover that the set of t ∈ I satisfying the equality dλ dt (t) = ±β(t) holds for any t ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
199
+ page_content=' Then, it follows that the set consisting of t ∈ I satisfying dλ dt (t) = ±β(t) ̸= 0 is dense in I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
200
+ page_content=' Then, by the assertion (3-i), the given circle family must create a unique envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
201
+ page_content=' This contradicts the assumption that there are exactly two distinct envelopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
202
+ page_content=' Hence, there must exist at least one t0 ∈ I such that the strict inequality | dλ dt (t0)| < |β(t0)| holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
203
+ page_content=' Conversely, suppose that the set of t ∈ I satisfying β(t) ̸= 0 is dense in I and there exists at least one t0 ∈ I such that the strict inequality | dλ dt (t0)| < |β(t0)| holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
204
+ page_content=' Then, it follows that there must exist an open interval �I in I such that the absolute value |�ν(t) · µ(t)| = | cos θ(t)| is less than 1 for any t ∈ �I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
205
+ page_content=' Thus, it follows θ(t) ̸= −θ(t) for any t ∈ �I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
206
+ page_content=' Hence, for any t ∈ �I, there exist exactly two distinct unit vectors �ν+(t), �ν−(t) corresponding �ν+(t) · µ(t) = − cos θ(t) and �ν−(t) · µ(t) = − cos (−θ(t)) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
207
+ page_content=' Therefore, the circle family must create exactly two distinct envelopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
208
+ page_content=' 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
209
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
210
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
211
+ page_content=' Proof of (3-∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
212
+ page_content=' Suppose that there are uncountably many distinct envelopes created by C(γ,λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
213
+ page_content=' Suppose moreover that the set of t ∈ I such that β(t) ̸= 0 is dense in I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
214
+ page_content=' Then, from (3-i) and (3-ii), it follows that the circle family C(γ,λ) must create a unique envelope or two distinct envelopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
215
+ page_content=' This contradicts the assumption that there are uncountably many distinct envelopes created by C(γ,λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
216
+ page_content=' Hence, the set of t ∈ I such that β(t) ̸= 0 is never dense in I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
217
+ page_content=' Conversely, suppose that the set of t ∈ I such that β(t) ̸= 0 is not dense in I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
218
+ page_content=' This assumption implies that there exists an open interval �I in I such that β(t) = 0 for any t ∈ �I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
219
+ page_content=' On the other hand, since C(γ,λ) creates an envelope f0, the equality dλ dt (t) = −β(t) (�ν(t) · µ(t)) holds for any t ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
220
+ page_content=' Thus, there are no restrictions for the value �ν(t) · µ(t) for any t ∈ �I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
221
+ page_content=' Take one point t0 of �I and denote the �ν for the envelope f0 by �ν0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
222
+ page_content=' Then, by using the standard technique on bump functions, we may construct uncountably many distinct creators �νa : I → S1 (a ∈ A) such that the following (a), (b), (c) and (d) hold, where A is a set consisting uncountably many elements such that 0 ̸∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
223
+ page_content=' (a) The equality dλ dt (t) = −β(t) (�νa(t) · µ(t)) holds for any t ∈ I and any a ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
224
+ page_content=' (b) For any t ∈ I − �I and any a ∈ A, the equality �νa(t) = �ν0(t) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
225
+ page_content=' (c) For any a ∈ A, the property �νa(t0) ̸= �ν0(t0) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
226
+ page_content=' (d) For any wo distinct a1, a2 ∈ A, the property �νa1(t0) ̸= �νa2(t0) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
227
+ page_content=' Therefore, the circle family C(γ,λ) creates uncountably many distinct envelopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
228
+ page_content=' 2 ENVELOPES CREATED BY CIRCLE FAMILIES IN THE PLANE 7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
229
+ page_content=' Examples Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
230
+ page_content=' We examine Example 1 by applying Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
231
+ page_content=' In Example 1, γ : R → R2 is given by γ(t) = � t3, t6� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
232
+ page_content=' Thus, we can say that ν : R → S1 and µ : R → S1 are given by ν(t) = 1 √ 4t6+1 � −2t3, 1 � and µ(t) = 1 √ 4t6+1 � −1, −2t3� respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
233
+ page_content=' Moreover, the radius function λ : R → R is the constant function defined by λ(t) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
234
+ page_content=' Thus, dλ dt (t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
235
+ page_content=' By calculation, we have β(t) = dγ dt (t) · µ(t) = −3t2(1 + 4t6) √ 4t6 + 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
236
+ page_content=' Therefore, the unit vector �ν(t) ∈ S1 satisfying dλ dt (t) = −β(t) (�ν(t) · µ(t)) exsists and it must have the form �ν(t) = ±ν(t) = ±1 √ 4t6 + 1 � −2t3, 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
237
+ page_content=' Hence, by (1) of Theorem 1, the circle family C(γ,λ) creates an envelope f : R → R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
238
+ page_content=' By (2) of Theorem 1, f is parametrized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
239
+ page_content=' f(t) = γ(t) + λ(t)�ν(t) = � t3, t6� ± 1 √ 4t6 + 1 � −2t3, 1 � = � t3 ∓ 2t3 √ 4t6 + 1 , t6 ± 1 √ 4t6 + 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
240
+ page_content=' Finally, by (3-ii) of Theorem 1, the number of distinct envelopes created by the circle family C(γ,λ) is exactly two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
241
+ page_content=' Therefore, Theorem 1 reveals that the set D calculated in Example 1 is certainly the union of the unit circle and the set of two envelopes of C(γ,λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
242
+ page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
243
+ page_content=' We examine (1) of Example 2 by applying Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
244
+ page_content=' In (1) of Example 2, γ : R+ → R2 is given by γ(t) = (0, 1 + t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
245
+ page_content=' Thus, if we define the unit vector ν(t) = (1, 0), ν : R+ → S1 gives the Gauss mapping of γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
246
+ page_content=' By definition, µ(t) = (0, 1) and thus we have β(t) = dγ dt (t) · µ(t) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
247
+ page_content=' On the other hand, the radius function λ : R+ → R+ has the form λ(t) = 1 + t in this example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
248
+ page_content=' Thus, the created condition dλ dt (t) = −β(t) (�ν(t) · µ(t)) becomes simply (∗) 1 = − (�ν(t) · (0, 1)) in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
249
+ page_content=' If we take �ν(t) = (0, −1), then the above equality holds for any t ∈ R+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
250
+ page_content=' Thus, by (1) of Theorem 1, the circle family C(γ,λ) creates an envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
251
+ page_content=' By (2) of Theorem 1, the parametrization of the created envelope is f(t) = γ(t) = λ(t)�ν(t) = (0, 1 + t) + (1 + t) (0, −1) = (0, 0) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
252
+ page_content=' Finally, notice that for any t ∈ R+ the creative condition (*) in this case holds if and only if �ν(t) = (0, −1) = −µ(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
253
+ page_content=' Thus, by (3-i) of Theorem 1, the origin (0, 0) is the unique envelope created by C(γ,λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
254
+ page_content=' Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
255
+ page_content=' Theorem 1 can be applied also to (2) of Example 2 as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
256
+ page_content=' In this example, γ(t) = (t, 0) and λ(t) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
257
+ page_content=' Thus, we may take ν(t) = (0, −1), µ(t) = (1, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
258
+ page_content=' We have β(t) = dγ dt (t) · µ(t) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
259
+ page_content=' Since the radius function λ is a constant function, the created condition dλ dt (t) = −β(t) (�ν(t) · µ(t)) becomes simply 0 = − (�ν(t) · (0, 1)) 8 Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
260
+ page_content=' WANG AND T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
261
+ page_content=' NISHIMURA in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
262
+ page_content=' Thus, for any t ∈ R, the created condition is satisfied if and only if �ν(t) = ±(1, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
263
+ page_content=' Hence, by (1) of Theorem 1, the circle family C(γ,λ) creates an envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
264
+ page_content=' By (2) of Theorem 1, the parametrization of the created envelope is f(t) = γ(t) = λ(t)�ν(t) = (t, 0) ± (0, −1) = (t, ∓1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
265
+ page_content=' Finally, by (3-ii) of Theorem 1, the number of envelope created by C(γ,λ) is exactly two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
266
+ page_content=' Example 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
267
+ page_content=' Theorem 1 can be applied even to (3) of Example 2 as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
268
+ page_content=' In this example, γ(t) = (0, 0) and λ(t) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
269
+ page_content=' Thus, every mapping ν : R → S1 can be taken as Gauss mapping of γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
270
+ page_content=' In particular, γ is a frontal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
271
+ page_content=' We have β(t) = dγ dt (t) · µ(t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
272
+ page_content=' Since the radius function λ is a constant function λ(t) = 1, the created condition dλ dt (t) = −β(t) (�ν(t) · µ(t)) becomes simply 0 = 0 in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
273
+ page_content=' Thus, for any �ν : R → S1, the created condition is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
274
+ page_content=' Hence, by (1) of Theorem 1, the circle family C(γ,λ) creates an envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
275
+ page_content=' By (2) of Theorem 1, the parametrization of the created envelope is f(t) = γ(t) = λ(t)�ν(t) = (0, 0) + �ν(t) = �ν(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
276
+ page_content=' Finally, by (3-∞) of Theorem 1, there are uncountably many distinct envelope created by C(γ,λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
277
+ page_content=' Example 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
278
+ page_content=' Let γ : R+ → R2 be the mapping defined by γ(t) = (t, 0) and let λ : R+ → R+ be the positive function defined by λ(t) = t2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
279
+ page_content=' The circle family C(γ,λ) and the candidate of its envelope is depicted in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
280
+ page_content=' Defining the mapping ν : R+ → S1 by ν(t) = (0, −1) clarifies that the mapping γ Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
281
+ page_content=' The circle family C(γ,λ) and the candidate of its envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
282
+ page_content=' is a frontal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
283
+ page_content=' Then, µ(t) = J(ν(t)) = (1, 0) and β(t) = dγ dt (t) · µ(t) = (1, 0) · (1, 0) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
284
+ page_content=' We want to seek a mapping �ν : R+ → S1 satisfying dλ dt (t) = −β(t) (�ν(t) · µ(t)) , namely, a mapping ��ν : R+ → S1 satisfying 2t = −((�ν(t) · (1, 0))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
285
+ page_content=' Since �ν(t) ∈ S1, from the above expression, it follows that such �ν(t) does not exist if 1 2 < t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
286
+ page_content=' Thus, the circle family C(γ,λ) is not creative and it creates no envelopes by (1) of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
287
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
288
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
289
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
290
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
291
+ page_content='5ENVELOPES CREATED BY CIRCLE FAMILIES IN THE PLANE 9 Example 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
292
+ page_content=' This example is almost the same as Example 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
293
+ page_content=' The difference from Example 7 is only the parameter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
294
+ page_content=' In Example 8, the parameter space I is � 0, 1 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
295
+ page_content=' That is to say, in this example, R+ in Example 7 is replaced by � 0, 1 2 � and all other settings in Example 7 remain without change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
296
+ page_content=' Then, from calculations in Example 7, it follows that the given circle family C(γ,λ) is creative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
297
+ page_content=' Thus, by (1) of Theorem 1, C(γ,λ) creates an envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
298
+ page_content=' It is easily seen that the expression of �ν(t) must be as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
299
+ page_content=' �ν(t) = � −2t, ± � 1 − 4t2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
300
+ page_content=' Therefore, by (2) of Theorem 1, an envelope f created by C(γ,λ) is parametrized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
301
+ page_content=' f(t) = γ(t) + λ(t)�ν(t) = (t, 0) + t2 � −2t, ± � 1 − 4t2 � = � t − 2t3, ±t2� 1 − 4t2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
302
+ page_content=' Finally, by (3-ii) of Theorem 1, it follows that the number of distinct envelopes created by the circle family C(γ,λ) is exactly two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
303
+ page_content=' Example 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
304
+ page_content=' Let γ : R → R2 be the mapping defined by γ(t) = (t3, t2) and let λ : R → R+ be the constant function defined by λ(t) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
305
+ page_content=' The circle family C(γ,λ) and the candidate of its envelope is depicted in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
306
+ page_content=' It is easily seen that the mapping ν : R → S1 defined by ν(t) = 1 √ 4+9t2 (2, −3t) Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
307
+ page_content=' The circle family C(γ,λ) and the candidate of its envelope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
308
+ page_content=' gives the Gauss mapping for γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
309
+ page_content=' Thus, γ is a frontal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
310
+ page_content=' By definition, the mapping µ : R → S1 has the form µ(t) = 1 √ 4+9t2 (3t, 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
311
+ page_content=' By calculation, we have β(t) = dγ dt (t) · µ(t) = t � 4 + 9t2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
312
+ page_content=' Since the radius function λ is constant, it follows dλ dt (t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
313
+ page_content=' Thus, for any t ∈ R, the unit vector �ν(t) satisfying dλ dt (t) = −β(t) (�ν(t) · µ(t)) , always exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
314
+ page_content=' Namely we have �ν(t) = ±ν(t) = ±1 √ 4 + 9t2 (2, −3t) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
315
+ page_content=' 4 F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
316
+ page_content='4 2 2 4 210 Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
317
+ page_content=' WANG AND T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
318
+ page_content=' NISHIMURA Thus, by (1) of Theorem 1, C(γ,λ) creates an envelope, and the created envelope f : R → R2 has the following form by (2) of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
319
+ page_content=' f(t) = γ(t) + λ(t)�ν(t) = � t3, t2� ± 1 √ 4 + 9t2 (2, −3t) = � t3 ± 2 √ 4 + 9t2 , t2 ∓ 3t √ 4 + 9t2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
320
+ page_content=' Finally, by (3-ii) of Theorem 1, there are no other envelopes created by C(γ,λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
321
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
322
+ page_content=' Alternative definitions In Definition 2 of Section 1, the definition of envelope created by the circle family is given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
323
+ page_content=' In [1], the set consisting of the images of envelopes defined in Definition 2 is called E2 envelope (denoted by E2) and two alternative definitions (called E1 envelope and D envelope) are given as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
324
+ page_content=' Definition 4 (E1 envelope [1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
325
+ page_content=' Let γ : I → R2, λ : I → R+ be a frontal and a positive function respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
326
+ page_content=' Let t0 be a parameter of I and fix it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
327
+ page_content=' Assume that lim ε→0 C(γ(t0),λ(t0)) ∩ C(γ(t0+ε),λ(t0+ε)) is not the empty set and denote the set by I(t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
328
+ page_content=' Take one point e1(t0) = (x(t0), y(t0)) of I(t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
329
+ page_content=' Then, the set consisting of the images of smooth mappings e1 : I → R2, if exists, is called an E1 envelope created by the circle family C(γ,λ) and is denoted by E1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
330
+ page_content=' Definition 5 (D envelope [1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
331
+ page_content=' Let γ : I → R2, λ : I → R+ be a frontal and a positive function respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
332
+ page_content=' Set F(x, y, t) = ||(x, y) − γ(t)||2 − (λ(t))2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
333
+ page_content=' Then, the following set is called the D envelope created by the circle family C(γ,λ) and is denoted by D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
334
+ page_content=' � (x, y) ∈ R2 | ∃t ∈ I such that F(x, y, t) = ∂F ∂t (x, y, t) = 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
335
+ page_content=' Concerning the relationships among E1, E2 and D for a given circle family C(γ,λ), the following is known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
336
+ page_content=' Fact 1 ([1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
337
+ page_content=' E1 ⊂ D and E2 ⊂ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
338
+ page_content=' In this section, we study more precise relationships among E1, E2 and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
339
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
340
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
341
+ page_content=' The relationship between E1 and E2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
342
+ page_content=' We first establish the relationship between E1 and E2 as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
343
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
344
+ page_content=' E1 = E2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
345
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
346
+ page_content=' We first show E1 ⊂ E2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
347
+ page_content=' Let t0 be a parameter of I and let {ti}i=1,2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
348
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
349
+ page_content=' be a sequence of I conversing to t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
350
+ page_content=' Take a point (x(t0), y(t0)) of E1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
351
+ page_content=' Then, we may assume that a point (x(ti), y(ti)) is taken from the intersection of two circles C(γ(ti), λ(ti)) ∩ C(γ(t0), λ(t0)) and satisfies lim ti→t0(x(ti), y(ti)) = (x(t0), y(t0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
352
+ page_content=' Then, we have the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
353
+ page_content=' ||(x(ti), y(ti)) − γ(ti)||2 = (λ(ti))2 (1) ||(x(ti), y(ti)) − γ(t0)||2 = (λ(t0))2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
354
+ page_content=' (2) For j = 0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
355
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
356
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
357
+ page_content=', set γ(tj) = (γx(tj), γy(tj)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
358
+ page_content=' Subtracting (2) from (1) yields the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
359
+ page_content=' −2 (x(ti) (γx(ti) − γx(t0)) + y(ti) (γy(ti) − γy(t0))) + (γx(ti))2 − (γx(t0))2 + (γy(ti))2 − (γy(t0))2 = (λ(ti))2 − (λ(t0))2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
360
+ page_content=' Since limi→∞ ti = t0 and limti→t0(x(ti), y(ti)) = (x(t0), y(t0)), this equality implies −2 � x(t0)dγx dt (t0) + y(t0)dγy dt (t0) � + 2 � γx(t0)dγx dt (t0) + γy(t0)dγy dt (t0) � = 2λ(t0)dλ dt (t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
361
+ page_content=' Hence we have − 1 λ(t0) (x(t0) − γx(t0), y(t0) − γy(t0)) · �dγx dt (t0), dγy dt (t0) � = dλ dt (t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
362
+ page_content=' ENVELOPES CREATED BY CIRCLE FAMILIES IN THE PLANE 11 Notice that the vector 1 λ(t0) (x(t0) − γx(t0), y(t0) − γy(t0)) = 1 λ(t0) ((x(t0), y(t0)) − γ(t0)) is a unit vector and � dγx dt (t0), dγy dt (t0) � = β(t0)µ(t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
363
+ page_content=' Thus the creative condtion is satisfied at t = t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
364
+ page_content=' Therefore, by the proof of (1) of Theorem 1, the point (x(t0), y(t0)) must belong to E2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
365
+ page_content=' Conversely, suppose that the circle family C(γ,λ) creates an E2 envelope f : I → R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
366
+ page_content=' By (2) of Theorem 1, f has the following representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
367
+ page_content=' f(t) = γ(t) + λ(t)�ν(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
368
+ page_content=' For a point P ∈ R2 and a unit vector v ∈ S1, the straight line L(P, v) is naturally defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
369
+ page_content=' L(P,v) = � (x, y) ∈ R2 | ((x, y) − P) · v = 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
370
+ page_content=' Then, since df dt (t)·�ν(t) = �dγ dt (t) + dλ dt (t) · �ν(t) + λ(t)d�ν dt (t) � �ν(t) = dγ dt (t)·�ν(t)+dλ dt (t) = β(t) (µ(t) · �ν(t))+dλ dt (t) = 0, f is an E2 envelope created by the straight line family L(f,�ν) = � L(f(t),�ν(t)) � t∈R .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
371
+ page_content=' Take one parameter t0 ∈ I and let {ti}i=1,2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
372
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
373
+ page_content=' ⊂ I be a sequence converging to t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
374
+ page_content=' Since for the straight line family L(f,�ν) the image of E2 envelope is the same as E1 emvelope (see (c) of Theorem 1 in [6]), for any sufficiently large i ∈ N there exists a point (x(ti), y(ti)) ∈ L(f(t0),�ν(t0)) ∩ L(f(ti),�ν(ti)) such that limi→∞ (x(ti), y(ti)) = f(t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
375
+ page_content=' Hence for any sufficiently large i ∈ N there must exist a point (�x(ti), �y(ti)) ∈ C(γ(t0),λ(t0)) ∩ C(γ(ti),λ(ti)) such that limi→∞ (�x(ti), �y(ti)) = f(t0) (see Figure 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
376
+ page_content=' Therefore, the point f(t0) ∈ R2 belongs to E1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
377
+ page_content=' Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
378
+ page_content=' Existence of (�x(ti), �y(ti)) ∈ C(γ(t0),λ(t0)) ∩ C(γ(ti),λ(ti)) satisfying limi→∞ (�x(ti), �y(ti)) = f(t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
379
+ page_content=' Since f is an arbitrary envelop created by C(γ,λ) and t0 is an arbitrary parameter in I, it follows that E2 ⊂ E1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
380
+ page_content=' □ L((ti),入ti) (α(ti),y(ti)) f(to) L((to),入(to) f(ti) (α(ti), y(ti)) C((to),入(to)) ((ti),入(ti))12 Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
381
+ page_content=' WANG AND T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
382
+ page_content=' NISHIMURA 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
383
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
384
+ page_content=' A relationship between E2 and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
385
+ page_content=' In this subsection, we prove the following theorem which asserts that D = E2 if and only if γ : I → R2 is non-singular, and D contains not only E2 but also the circle C(γ(t),λ(t)) at a singular point t of γ when γ is singular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
386
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
387
+ page_content=' Let γ : I → R2, λ : I → R+ be a frontal and a positive function respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
388
+ page_content=' Suppose that the circle family C(γ,λ) is creative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
389
+ page_content=' Then, the following hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
390
+ page_content=' D = E2 ∪ � � � t∈Σ(γ) C(γ(t),λ(t)) � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
391
+ page_content=' Here, Σ(γ) stands for the set consisting of singular points of γ : I → R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
392
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
393
+ page_content=' Recall that D = � (x, y) ∈ R2 | ∃t ∈ I such that F(x, y, t) = ∂F ∂t (x, y, t) = 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
394
+ page_content=' Let (x0, y0) be a point of D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
395
+ page_content=' Since F(x, y, t) = ||(x, y) − γ(t)||2 − |λ(t)|2, it follows the following (a) and (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
396
+ page_content=' (a) There exists a t ∈ I such that ((x0, y0) − γ(t)) · ((x0, y0) − γ(t)) − (λ(t))2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
397
+ page_content=' (b) d(((x0,y0)−γ(t))·((x0,y0)−γ(t))−(λ(t))2) dt = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
398
+ page_content=' The condition (a) implies that there exists a t ∈ I and a unit vector ν1(t) ∈ S1 at the t ∈ I such that (x0, y0) = γ(t) − λ(t)ν1(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
399
+ page_content=' The condition (b) implies that there exists a t ∈ I such that dγ dt (t) · ((x0, y0) − γ(t)) − dλ dt (t)λ(t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
400
+ page_content=' Since dγ dt (t) = β(t)µ(t), just by substituting, we have that there exists a t ∈ I and a unit vector ν1(t) ∈ S1 at the t ∈ I satisfying λ(t) � β(t) (µ(t) · ν1(t)) + dλ dt (t) � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
401
+ page_content=' Since λ(t) > 0 for any t ∈ I, it follows that there exists a t ∈ I and a unit vector ν1(t) ∈ S1 at the t ∈ I satisfying dλ dt (t) = −β(t) (µ(t) · ν1(t)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
402
+ page_content=' On the other hand, since C(γ,λ) is creative, there must exist a smooth unit vector field �ν : I → S1 along γ : I → R2 such that dλ dt (t) = −β(t) (µ(t) · �ν(t)) for any t ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
403
+ page_content=' Suppose that the parameter t ∈ I is a regular point of γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
404
+ page_content=' Then, β(t) ̸= 0 at the t ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
405
+ page_content=' Thus, at the t ∈ I, the unit vector ν1(t) must be �ν(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
406
+ page_content=' Therefore, by the proof of (1) of Theorem 1, at the regular point t ∈ I of γ, it follows D = E2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
407
+ page_content=' Suppose that the parameter t ∈ I is a singular point of γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
408
+ page_content=' Then, β(t) = 0 at the t ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
409
+ page_content=' Thus, for any unit vector v ∈ S1, the following holds at the t ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
410
+ page_content=' dλ dt (t) = −β(t) (µ(t) · v) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
411
+ page_content=' Hence, at the singular point t ∈ I, we may choose any unit vector v ∈ S1 as the unit vector ν1(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
412
+ page_content=' Therefore, by the proof of (1) of Theorem 1, at the singular point t ∈ I of γ, it follows D = E2 ∪ C(γ(t),λ(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
413
+ page_content=' □ ENVELOPES CREATED BY CIRCLE FAMILIES IN THE PLANE 13 Acknowledgement The first author is supported by the National Natural Science Foundation of China (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
414
+ page_content=' 12001079), Fundamental Research Funds for the Central Universities (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
415
+ page_content=' 3132023205) and China Scholarship Council.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
416
+ page_content=' References [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
417
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
418
+ page_content=' Bruce and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
419
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
420
+ page_content=' Giblin, Curves and Singularities (second edition), Cambridge University Press, Cambridge, 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
421
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
422
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
423
+ page_content='1017/CBO9781139172615 [2] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
424
+ page_content=' Fukunaga and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
425
+ page_content=' Takahashi, Existence and uniqueness for Legendre curves, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
426
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
427
+ page_content=', 104 (2013), 297–307.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
428
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
429
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
430
+ page_content='1007/s00022-013-0162-6 [3] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
431
+ page_content=' Hairer and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
432
+ page_content=' Wanner, Analysis by Its History, Undergraduate Texts in Mathematics, Springer New York, NY, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
433
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
434
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
435
+ page_content='1007/978-0-387-77036-9 [4] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
436
+ page_content=' Ishikawa, Singularities of frontals, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
437
+ page_content=' Stud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
438
+ page_content=' Pure Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
439
+ page_content=', 78, 55–106, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
440
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
441
+ page_content=' Japan, Tokyo, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
442
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
443
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
444
+ page_content='2969/aspm/07810055 [5] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
445
+ page_content=' Janeczko and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
446
+ page_content=' Nishimura, Anti-orthotomics of frontals and their applications, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
447
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
448
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
449
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
450
+ page_content=', 487 (2020), 124019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
451
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
452
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
453
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
454
+ page_content='jmaa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
455
+ page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
456
+ page_content='124019 [6] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
457
+ page_content=' Nishimura, Hyperplane families creating envelopes, Nonlinearity, 35 (2022), 2588.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
458
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
459
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
460
+ page_content='1088/1361- 6544/ac61a0 School of Science, Dalian Maritime University, Dalian 116026, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
461
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
462
+ page_content=' China Email address: wangyq@dlmu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
463
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
464
+ page_content='cn Research Institute of Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan Email address: nishimura-takashi-yx@ynu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
465
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
466
+ page_content='jp' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdE3T4oBgHgl3EQfXQrW/content/2301.04478v1.pdf'}
KtFOT4oBgHgl3EQfzTRj/content/tmp_files/2301.12931v1.pdf.txt ADDED
@@ -0,0 +1,897 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Human Cognition Surpasses the Nonlocality Tsirelson Bound: Is Mind Outside of
2
+ Spacetime?
3
+ Stuart Kauffman1, Emeritus Professor of Biochemistry and Biophysics, University of
4
+ Pennsylvania, Philadelphia, Pennsylvania 19104, USA
5
+ Sudip Patra2, Associate Professor OP Jindal Global University, Founding member CEASP.
6
+ India.
7
+ Dec 26, 2022
8
+ Abstract
9
+ Recent experimental studies on human cognition, particularly where non-separable or
10
+ entangled cognitive states have been found, show that in many such cases Bell or CHSH
11
+ in-equalities have been maximally violated. The implications are that greater non-local
12
+ correlations than allowed in quantum mechanics (often known as the Tsirelson bound),
13
+ are found in human cognition. We propose in the current paper that a non-local theory
14
+ of mind is needed in order to account for the empirical �indings. This requires a
15
+ foundationally different approach than the extant ‘quantum-like’ approach to human
16
+ mind. Our account is novel, but still founded on a Hilbert space set up with the physical
17
+ constraint of no-signalling. To account for the surpassing of the Tsirelson bound we
18
+ propose abandoning the constraint of no-signalling that depends upon spacetime. Thus
19
+ we ask; ‘Is mind outside spacetime?’ We discuss a candidate theory of quantum gravity
20
+ based on non-locality as fundamental that may accord with our proposal. We are led to
21
+ suggest a new 6 part ontological framework linking Mind, Matter, and Cosmos.
22
+ Key words: non-locality, no-signalling, Bell inequalities, Tsirelson/Cirelson bound, PR
23
+ boxes, Cognition, quantum gravity, six-part framework
24
+ Introduction: Is mind outside physical spacetime?
25
+ Non-locality has baf�led us since the birth of modern science. For example in Newton’s
26
+ gravity framework, we have action at a distance, and Newton himself did not want to
27
+ forward any ‘explanation’ of the same by stating, “hypothesis non-�ingo”. Later with the
28
+ advent of Special Theory of relativity (SR), and then the General Theory of Relativity
29
+ (GR), Einstein nearly singlehandedly challenged the age old concepts of space and time,
30
+ proposing the bold and beautiful concept of spacetime, where continuity of action (COA)
31
+ plays a central role. COA holds that if a spacetime event A has to in�luence another
32
+ spacetime event B then it also has to in�luence any closed 3 surface between them.
33
+ Hence no-signalling, or that there is an ultimate limit of signalling between spacetime
34
+ 1
35
+
36
+ events, which happens to be the speed of light in vacuum, became the foundational
37
+ physical constraint for any sound theory of Physics. The orthodox quantum mechanics
38
+ (QM) which emerged from intense discussions in Solvay conferences (for example, in
39
+ Pylkkanen, 2019), and later known as Copenhagen version, was, however, still based on
40
+ a Newtonian space and time background. Later, with the emergence of quantum �ield
41
+ theory (QFT) there has been an uncomfortable coexistence of SR and QM. The holy grail
42
+ of modern Physics has been to construct uni�ied �ield theories, and particularly quantum
43
+ gravity (QG), as the cherished uni�ication of GR with QM. However, in all of these
44
+ numerous attempts, non-locality has been a recurrent problem. Even different
45
+ interpretations of QM, starting from Collapse of the wave function, to different
46
+ alternative theories like Bohmian mechanics (Walleczek et al. 2019), or spontaneous
47
+ collapse of wave function (for example in Tumulka, 2006), have been riddled with
48
+ different forms of non-localities. Very recently different approaches to QG (Kauffman,
49
+ 2022) would presume to hold non-locality as fundamental, which is radical.
50
+ Spontaneous collapse models or dynamic collapse models have attempted to resolve the
51
+ measurement problem by introducing a collapse operator in the Schrödinger equation,
52
+ for example in GRW (for example in Wallace, 2014) where a probability of such a
53
+ stochastic collapse is small in case of single particles, but grows exponentially in case of
54
+ many body systems. Hence, the attempt has been to resolve the incompleteness or
55
+ inconsistency problems in orthodox QM, for example, how in the same framework both
56
+ deterministic and unitary Schrödinger evolution and random collapse of wave function
57
+ due to ‘measurement’ can be accommodated. However, very recent work, (for example
58
+ see ‘consciousness and quantum mechanics’ edited by Shan Gao, 2022, and Ball 2022),
59
+ now says that any “physically causal” theory for measurement is almost ruled out.
60
+ There are also physically “acausal” accounts of measurement. Here we refer to the
61
+ recent consciousness induced collapse framework of Chalmers and McQueen (2021),
62
+ where phenomenal consciousness plays the role of a superposition resistant, hence
63
+ de�inite consciousness state that result in “collapse”. More recently, Kauffman and Roli
64
+ (2021), and Kauffman and Radin (2022) have utilized Heisenberg’s interpretation of
65
+ quantum mechanics in terms of ontologically real Potentia, Res potentia, and
66
+ ontologically real Actuals, Res extensa, where actualization converts Possible to Actuals.
67
+ This interpretation does not inherit the mind-body problem because Potentia are not
68
+ substances.
69
+ In turn this approach suggests a natural role for “mind” in actualizing
70
+ quantum potentia, hence “collapsing the wave function. At this point, data supporting
71
+ this hypothesis with respect to work using the two slit experiment are strongly
72
+ supportive at 6.49 Sigma, or 4 x 10 ^ -11.
73
+ We shall base our own discussion on
74
+ Heisenberg’s interpretation.
75
+ In addition to Heisenberg’s “potentia” interpretation, workers have studied several
76
+ other non-realist frameworks, where the wave function is not ontological, but rather a
77
+ tool for computing probabilities for epistemological updates of knowledge state of
78
+ observers. Two alternative strongly emerging interpretations of QM are relational QM
79
+ and QBism. Relational QM holds that QM, or reality for that matter, is not described by
80
+ quantum states, but rather by relations among observables. This is a fact ontology (for
81
+ more details about “relative” and “stable” facts, we can refer to seminal literature,
82
+ 2
83
+
84
+ (Pienaar, 2021)). QBism agrees on placing a central role on
85
+ phenomenology or
86
+ subjective experiences, where QM is the navigation tool for any user (rather than
87
+ de�ining who is the user) to make optimal decisions. In QBism relations between the
88
+ elements of the framework are objective, such that every agent would agree. We differ
89
+ from these frameworks in that these frameworks are largely based on the locality of
90
+ physical spacetime, but then they face non-locality problems.
91
+ One approach to surpassing the Tsirelson bound is found in PR box worlds (Popescu,
92
+ 2014, a modern review of Tsirelson bound can be found in Stuckey et al., 2019) that
93
+ allow for greater than QM non-local correlation limit the Tsirelson bound. However, the
94
+ PR box worlds correspond to no physical model of a universe, (Popescu, 2014 op. cit.).
95
+ Hence a related question raised earlier was whether QM is the only theory where there
96
+ is a co-existence of non-locality in the sense of Bell inequalities violation and relativistic
97
+ causality.
98
+ We propose in this paper that if we need to include mind or cognitive aspects in the
99
+ foundational frameworks of nature, then we need to have non-locality as the central
100
+ feature. In this paper then, we explore our framework of non-local mind or cognition,
101
+ and are led to our proposal that “mind” is not in spacetime. By proposing that mind is
102
+ not in spacetime, we can naturally eliminate the requirement for Continuity of Action,
103
+ hence non-signaling, that makes sense only within a framework of spacetime. By
104
+ proposing that mind is not in spacetime, mental events that are in spacetime but
105
+ surpass the Tsirelson bound can be explained.
106
+ In order to begin to make sense of the concept that “mind is not in spacetime, but
107
+ conscious events are in spacetime”, we are led to propose a novel 6 part ontological
108
+ framework linking Mind, Matter, and the Cosmos. The grounds for this novel framework
109
+ are tentative, but we hope worthy of consideration and are testable in part.
110
+ The current paper is organized in sections. Section 1 provide the background of
111
+ cognitive frameworks with experimental work, and its recent reformulations in terms of
112
+ ‘quantum-like’ features, for example entangled cognitive states which
113
+ violates Bell
114
+ inequalities strongly. Section 2 discusses alternative ways to surpass the Tsirelson
115
+ bound. Section 3 presents our novel 6 part framework and the current grounds to
116
+ consider it. Section 4 summarizes our results and suggestions for further experiments
117
+ and work.
118
+ Section 1 Cognition beyond the Tsirelson Bound
119
+ Aerts et. al (2013, 2021) have pioneered the study of non-separable states in individual
120
+ minds or cognition. This includes how different concepts are combined. Such concept
121
+ combinations in individual minds can be re-formulated as non-separable states. In
122
+ technical language these are intra state entanglements, which would mean coupling of
123
+ different degrees of freedoms of a single system. Here these are individual minds, and
124
+ the data can be expressed through inequalities such as CHSH as we explain in section 2.
125
+ The statistical values or values obtained from ensembles of ‘minds’ of participants in
126
+ such cognitive experiments can be inputted as inequalities. The results have
127
+ demonstrated a clean violation of the ‘non-local’ correlation bound which occurs in QM.
128
+ 3
129
+
130
+ Such a tight bound is, as noted, called a Tsirelson bound, that is maximal and
131
+ characteristic for QM. The same authors also provide the statistical signi�icance of their
132
+ results. Aerts and Arguelles (2022) have claimed a statistical signi�icance of p values
133
+ ranging 0.001-0.005, which is strong enough to suggest, but not yet prove, the viability
134
+ of their results.
135
+ Aerts et. al (op. cit.) also adopts a Hilbert space framework, but their strategy is of
136
+ ‘reverse engineering’, i.e. to start with the empirical results, and then describe such
137
+ results by a suitable state space modelling, where the state space can be either Hilbert
138
+ space or a larger Fock space. Thus, the usage of CHSH inequalities is statistical in nature,
139
+ since such inequalities are general. Maximal algebraic violation of such inequalities can
140
+ be beyond the Tsirelson bound, but when Hilbert space is the state space then a tight
141
+ upper bound comes up as a constraint.
142
+ Given the above points, Aerts et al.’s claim of greater than Tsirelson bound violation in
143
+ cognitive experiments raises several questions. For example, can any or all Hilbert space
144
+ formulations account for such super quantum correlations? Aerts et al. have responded
145
+ by suggesting that an entanglement that they consider is of a more complex nature, i.e.
146
+ entanglement both in states as well as measure, might account for super violations. We
147
+ assess this approach below.
148
+ We stress again that any Hilbert space formulation of quantum mechanics implies a
149
+ tight Tsirelson bound. And we stress again that the Hilbert space formulation is stated in
150
+ a background spacetime with “no signaling” and continuity of action, hence “locality”.
151
+ Section 2. Non-locality : Implications for QM
152
+ 2.1 Non-locality in QM
153
+ Here we remind ourselves of the seminal contribution of John Bell (1964, 1966), and
154
+ state the basic requirements for Bell factorization conditions, upon which the celebrated
155
+ Bell inequalities or later CHSH inequalities are based. Based on continuity of action, the
156
+ following three assumptions are required for establishing Bell factorization.
157
+ a.
158
+ Statistical Independence:
159
+ , where
160
+ denotes the local hidden
161
+ ρ 𝑀
162
+ (
163
+ ) = ρ µ
164
+ ( )
165
+ µ
166
+ variable, and M stands for measurement settings of apparatuses for different
167
+ space-like separated agents.
168
+ b. Output independence:
169
+ , subscripts a and
170
+ ρ𝑎𝑏 𝑎, 𝑏, µ
171
+ (
172
+ ) = ρ𝑎(𝑥𝑎|𝑎, 𝑏, µ)ρ𝑏(𝑥𝑏|𝑎, 𝑏, µ)
173
+ b stands for different agents, namely, Alice and Bob, x’s are outcomes at their
174
+ ends and a, and b are inputs at their ends respectively.
175
+ c.
176
+ Parameter independence: ρ𝑎 𝑎, 𝑏, µ
177
+ (
178
+ ) = ρ𝑎 𝑎, µ
179
+ (
180
+ ), 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 ρ𝑏 𝑎, 𝑏, µ
181
+ (
182
+ ) = ρ𝑏 𝑏, µ
183
+ (
184
+ )
185
+ Hence, in conjunction of the three assumptions we have the Bell factorization
186
+ (1)
187
+ ρ𝑎𝑏 𝑎, 𝑏, µ
188
+ (
189
+ ) = ρ𝑎 𝑎, µ
190
+ (
191
+ ). ρ𝑏 𝑏, µ
192
+ (
193
+ )
194
+ Bell factorization is a general condition based on the local realism assumptions (COA to
195
+ be precise), which is violated by different theories in different ways. For example, QM
196
+ violates Bell factorization by violating output independence but keeping statistical
197
+ 4
198
+
199
+ independence and parameter independence. Super Deterministic theory violates the
200
+ same by violating Statistical independence, while keeping the other assumptions. And
201
+ Cavalcanti and Wiseman (2012) have showed how Bell factorization can be derived
202
+ from conjunction of local ‘signalism’ and predictability.
203
+ In the form of CHSH, we have two space-like separated agents, Alice and Bob, where say
204
+ the measurement settings in Alice’s end are {a, a’} and Bob’s end are {b, b’}, and all
205
+ results are dichotomous (say, +/- 1). Here we de�ine the correlation function as
206
+ (2)
207
+ 𝑐 𝑎, 𝑏
208
+ (
209
+ ) = 𝑃𝑎,𝑏 1, 1
210
+ (
211
+ ) + 𝑃𝑎,𝑏 − 1, − 1
212
+ (
213
+ ) − 𝑃𝑎,𝑏 1, − 1
214
+ (
215
+ ) − 𝑃𝑎,𝑏(− 1, 1)
216
+ Hence, we have the CHSH inequality as 𝐶𝐻𝑆𝐻 = 𝑐 𝑎, 𝑏
217
+ (
218
+ ) + 𝑐 𝑎, 𝑏
219
+ '
220
+ (
221
+ ) + 𝑐 𝑎
222
+ ', 𝑏
223
+ (
224
+ ) − 𝑐(𝑎
225
+ ', 𝑏
226
+ ')
227
+ (3).
228
+ Hence CHSH has different upper bounds for different underlying theories. For example
229
+ for a local deterministic theory (COA is the requisite here) we would always have as
230
+ For QM the maximum violation of the above limit would take place when
231
+ 𝐶𝐻𝑆𝐻
232
+ |
233
+ |≤2.
234
+ , hence this gives the Tsirelson (T bound
235
+ 𝑎, 𝑏
236
+ (
237
+ ) = 𝑐 𝑎, 𝑏
238
+ '
239
+ (
240
+ ) = 𝑐 𝑎
241
+ ', 𝑏
242
+ (
243
+ ) =− 𝑐 𝑎
244
+ ', 𝑏
245
+ '
246
+ (
247
+ ) =
248
+ 2/2
249
+ from now) bound of
250
+ . However algebraically it is possible that we have
251
+ |𝐶𝐻𝑆𝐻|≤2√2
252
+ , hence making the maximal upper bound as
253
+ 𝑐 𝑎, 𝑏
254
+ (
255
+ ) = 𝑐 𝑎, 𝑏
256
+ '
257
+ (
258
+ ) = 𝑐 𝑎
259
+ ', 𝑏
260
+ (
261
+ ) =− 𝑐 𝑎
262
+ ', 𝑏
263
+ '
264
+ (
265
+ ) = 1
266
+ 4.
267
+ 2.2. Different forms of non-separable states: QM and beyond
268
+ We mention here that generally composite systems in QM can be represented as tensor
269
+ products of states belonging to different Hilbert spaces, such that the total Hilbert space
270
+ of the composite system is a tensor product of such Hilbert spaces. This context is called
271
+ product states. In addition, we recall that a Tensor product space is strictly larger that
272
+ space of direct sums, hence this context also captures ‘quantum-holism’. Now the typical
273
+ de�inition of an intersystem entanglement is when the composite system state cannot
274
+ be de�ined as simple tensor products of subsystem states. Intersystem entanglement is
275
+ most discussed in QM literature, since that is what generates non-local correlations. In
276
+ an entangled state the whole is always in a pure state, whereas parts are not in pure
277
+ states, this is the classical Schrödinger way of denoting entanglement. Again, as we have
278
+ stated earlier, maximally entangled states (often called as Bell states) can violate CHSH
279
+ maximally until the T bound.
280
+ However, intra-system entanglement, de�ined as coupling between multiple degrees of
281
+ freedom of the same system, is also discussed widely. Particularly in the classical
282
+ electromagnetism literature authors (Ghose and Mukherjee, 2014 for example) have
283
+ observed widely that intra system entanglement, for example coupling between path
284
+ and polarization states of a vortex beam, can produce such non-separable states (at
285
+ times called Shimony-Wolf states) which can generate violations of CHSH inequalities.
286
+ Authors, for example, Khrennikov (2020) has suggested that intra and inter system
287
+ entanglements is the main difference between quantum and so-called ‘classical’
288
+ entanglement.
289
+ 5
290
+
291
+ Multipartite non-locality:
292
+ Traditionally Bell tests or CHSH tests are bi-partite
293
+ non-locality tests, there have been several modi�ications though, for example GHZ states
294
+ or W states, which extends frameworks for many body entanglement. In our previous
295
+ framework (Kauffman and Patra, 2022) we start with a multipartite entanglement state.
296
+ However, its only recently (Bancal et al. in 2013 for example) that a suitable
297
+ mathematical framework is being built. Here we refer to the basic tenets of such a
298
+ framework, since this might be harnessed in the framework we suggest here.
299
+ We mention here that non-locality is a recurrent feature for many-body systems too (see
300
+ for example in Bancal et al. 2013), for example if we consider a tripartite system, with
301
+ say each subsystem possessed by Alice, Bob and Charlie who are spatially separated. Say
302
+ Alice, Bob and Charlie’s experimental set ups are X, Y and Z respectively and outcomes
303
+ of experiments are a, b and c respectively (binary outcomes for simplicity).
304
+ If the joint probability (if de�ined)
305
+ where, q’s are
306
+ 𝑃 𝑋𝑌𝑍
307
+ (
308
+ ) =
309
+ 𝑙
310
+ ∑ 𝑞𝑙𝑃 𝑋
311
+ ( )𝑃 𝑌
312
+ ( )𝑃 𝑍
313
+ ( )(4),
314
+ bounded by 0 and 1, and sum to unity, then the sum represents local correlations, where
315
+ the subscript l is for underlying hidden variables. However, if the above joint
316
+ distribution cannot be written in the above format, then some degree of non-local
317
+ correlations
318
+ exist.
319
+ One
320
+ example
321
+ of
322
+ non-locality
323
+ (technically
324
+ S2
325
+ non-local):
326
+ , where separately q’s
327
+ 𝑃 𝑋𝑌𝑍
328
+ (
329
+ ) =
330
+ 𝑙
331
+ ∑ 𝑞𝑙𝑃 𝑋
332
+ ( )𝑃 𝑌𝑍
333
+ (
334
+ ) +
335
+ 𝑚
336
+ ∑ 𝑞𝑚𝑃 𝑌
337
+ ( )𝑃 𝑋𝑍
338
+ (
339
+ ) +
340
+ 𝑛
341
+ ∑ 𝑞𝑛𝑃 𝑍
342
+ ( )𝑃 𝑌𝑍
343
+ (
344
+ )(5)
345
+ sum up to unity. Here we see that in individual sums full factorization is not achieved. At
346
+ times, such contexts are also called hybrid non-locality. In another related literature
347
+ (Bennet et al., 1999 as one seminal work in this direction) non-locality without
348
+ entanglement is theoretically proposed, and later experimentally veri�ied. We refer to
349
+ these studies to seek further support for our assertion that non-locality is a more
350
+ universal and genuine feature of reality. We also are aware of studies differentiating
351
+ between genuine non-locality and direct in�luences (see for example Atmanspacher et
352
+ al., 2019).
353
+ 2.3. Attempts to �it the evidence for non-locality withing the framework of a background
354
+ spacetime.
355
+ In the last century intense debate on non-locality, or more precisely what non-locality
356
+ should mean given relativistic spacetime, was a major debate, and is still continuing. The
357
+ non-locality debate has also thrown deeper light on the foundational thinking on QM.
358
+ We observe here that the axioms of special theory of relativity (COA) or consequently
359
+ fundamental limit for speed of signalling between spacetime events, and the equivalence
360
+ of inertial reference frames) seems to be elegant and physically based. However, the
361
+ axioms of QM seem to be mathematical with no clear physical basis.
362
+ Aharonov and Bohm (1961), and later Popescu, and Rohrlich (1994), and independently
363
+ Shimony (1993) have proposed that QM has to be compatible with relativistic causality,
364
+ hence with Continuity of Action, COA. The efforts of the authors mentioned showed that
365
+ non-local correlations, for example in an EPR set up, can be compatible with relativistic
366
+ causality if and only uncertainty of outcomes of measurements is fundamental. Or in
367
+ 6
368
+
369
+ other words the effect of a cause here is uncertain. (Thus, counterfactuals are required).
370
+ Aharonov was the �irst to propose ‘modular’ quantum variables, that are non-local in
371
+ spacetime due to non-local relativistic phases, and they have optimal uncertainty for no
372
+ signalling. Shimony amusingly observed the whole affair is ‘passion at a distance’.
373
+ 2.4. Attempts to surpass the Tsirelson bound in formal models.
374
+ Based on the dense PR box literature, there have been many attempts to make super
375
+ quantum correlations (violating T bound) compatible with relativistic causality, or COA
376
+ in general,(for example, Popescu, 2014). Related questions have been whether QM is the
377
+ only possible theory where non-local correlation and no signalling co-exists?, (Popescu
378
+ 2014).
379
+ Or why QM does not exhibit greater non-locality?, (Linden et al. 2007 for
380
+ example). We further observe that there have been efforts in the line of including
381
+ communication complexity, and or, information causality to eradicate super quantum
382
+ correlations, (for example, in Jaeger, 2007). We also note that super correlations or
383
+ greater than T bound violations are possible in con�iguration spaces with very
384
+ particular properties. Overall, there has been an attempt to make violations of Bell
385
+ inequalities (not super correlations) compatible with relativistic causality, but it is far
386
+ from clear what would be the implications for super correlations for a locality criterion.
387
+ As we explore below, how violations of Bell / CHSH or even super correlation results
388
+ have been observed in cognitive experiments.
389
+ We also note that some authors
390
+ (Khrennikov, 2022) have observed that if the observables in a particular theory cannot
391
+ be represented by Hermitian operators, there might not be any T bound constraint.
392
+ Section 3. Is Spacetime Fundamental?
393
+ 3.1. Zeilinger and Information: It is important to stress that several authors are
394
+ exploring the idea that spacetime is not fundamental. In particular, Zeilinger has
395
+ proposed that “information” is fundamental and somehow spacetime emerges from
396
+ “information”(see for example Zeilinger’s seminal works since 1998). We note a central
397
+ issue, “information” itself implies “possibilities” that are not either true or false.
398
+ Consider Shannon information and the source. A given bit string, say (11111) can carry
399
+ no information unless one of the bits can, counterfactually, be 0. That is, it must be
400
+ possible that one of the bits is 0 not 1. Thus the very concept of “information” requires
401
+ more than one simultaneously possible state of the universe.
402
+ 3.2. Res potentia and Res extensa linked by measurement: In the current article, we base
403
+ our approach on Heisenberg’s interpretation of the quantum state as “potentia standing
404
+ ghost – like between an idea and reality”. One of us, ( Kastner et al. 2018) has developed
405
+ Heisenberg’s interpretation as “Res potentia” ontologically real Possibles, and Res
406
+ extensa, ontologically real Actuals. Possibles do not obey Aristotle’s law of the excluded
407
+ middle and law of noncontradiction, so are neither ‘true’ nor ‘false’. This allows
408
+ “Potentia” to explain quantum superpositions: “Schrödinger’s cat simultaneously is
409
+ possibly alive and possibly dead.” This is not a contradiction.
410
+ Potentia are non-spatial in nature but ontologically real. By contrast Actuals do obey
411
+ Aristotle’s two laws, so are either true or false. All of Classical physics is based on such
412
+ true false Boolean variables. Given the concept of Res potentia, one of us, (Kauffman)
413
+ 7
414
+
415
+ has explored a new approach to quantum gravity that takes non-locality to be
416
+ fundamental. Non locality taken as fundamental implies that spacetime is not itself
417
+ fundamental, but must somehow arise from the behaviors of entangled coherent, hence
418
+ non local, quantum variables. Then non-local entangled coherent quantum variables,
419
+ “Res potentia” are not in spacetime. They are Potentia not in spacetime.
420
+ 3.3. Mind and the Quantum Vacuum: One natural interpretation of the line of thought
421
+ above is that the quantum vacuum consists precisely in non-local entangled quantum
422
+ coherent variables. Given the above, a natural proposal is that ‘mind’ – non-spatial, is
423
+ identical or related to the quantum vacuum. We here both propose this identity and
424
+ explore its potential validity.
425
+ A �irst implication of the proposed identity of mind and the quantum vacuum is that
426
+ both are outside of spacetime. This is a possible step to explaining Aert’s results. To do
427
+ so, we need to show that surpassing the Tsirelson bound is straight forward if mind is
428
+ outside of spacetime. In this case we can abandon no signalling and continuity of action.
429
+ We show this next. But there is a further issue, Aerts et. al data concern experiences of
430
+ humans and those experiences are in
431
+ spacetime. Powerful recent arguments now
432
+ strongly suggest that conscious experiences (phenomenal nature) arise upon collapse of
433
+ the wave function, hence, qualia are in spacetime. And further remarkable evidence now
434
+ clearly shows that we can purposefully actualize the wave function. A responsible free
435
+ will is not ruled out. We address all this below. These recent results and claims will be
436
+ part of our proposed 6 part framework introduced below.
437
+ Section 4. Surpassing the Tsirelson Bound if Mind Is Outside of Spacetime
438
+ Aerts et al.(op. cit.) themselves have attempted to justify the super quantum correlation
439
+ values obtained in their ‘concept-combination’ experiments based on complex
440
+ entanglement nature in their experimental settings, given that the con�iguration space
441
+ of mind is a high dimensional Hilbert space. However the standard belief (going back to
442
+ Popescu and Rohrlich) has been that the maximum limit of ‘non-locality’ allowed in a
443
+ Hilbert space is the bound.
444
+ Our perspective is not to justify the super violations based on the complexity of
445
+ entanglement (both in states and in measurements), since there have been critiques of
446
+ this line of argument by suggesting that if the ‘marginal selectivity’ rule is also violated
447
+ along with Bell inequalities (which Aerts et al. observes) then there can be
448
+ contaminations in testing for Bell violations. Hence we propose the six part framework,
449
+ where our de�inition of mind need not be constrained by any physical locality condition.
450
+ Section 5. Mind and Qualia – Collapse of the Wave Function
451
+ Recently Chalmers and McQueen (2022), who have been very sceptical about mind
452
+ collapsing wave function, or a relation between QM and phenomenal consciousness in
453
+ general, have designed a framework in which phenomenal consciousness might collapse
454
+ wave function and thus a de�initive ‘classical’ world emerges. The framework suggested
455
+ is based on IIT (Tononi et al. 2016 for example) or integrated information theory, and
456
+ also where phenomenal consciousness – qualia – is considered as ‘superposition
457
+ resistant’. Here we observe that Chalmers and McQueen (2022) have proposed a partial
458
+ 8
459
+
460
+ quantum Zeno effect for completing their consciousness induced collapse model. Our
461
+ previous framework for the emergence of the classical world naturally includes a partial
462
+ Zeno effect, with trade-offs between Zeno effect and atmospheric de-coherence. We
463
+ didn’t have non-local mind explicitly in the previous framework.
464
+ In addition to Chalmers and McQueen, (op. cit.), Kauffman and Roli (op. cit.) have
465
+ recently proposed that the human mind cannot be algorithmic, and that the capacity to
466
+ �ind novel affordances requires a quantum mind and qualia associated with the collapse
467
+ of the wave function to a single state. The next section presents evidence that humans
468
+ can, in fact, collapse the wave function.
469
+ Section 6. We Can Collapse the Wavefunction
470
+ An old idea in quantum mechanics is that mind might have something to do with
471
+ “collapse of the wave function”.
472
+ Von Neumann proposed this, (1955/1932). Wigner
473
+ suggested the same idea at one point( see for example Wigner, 1995).
474
+ Following Heisenberg, as noted, we propose Res potentia, ontologically real Possibles,
475
+ and Res extensa, ontologically real Actuals. Here “actualization” converts Possibles to
476
+ Actuals. This assertion is fully consistent with recent results, (Gao, op. cit., Bell, op. cit..),
477
+ that seem to rule out physical causes of actualization. A physical cause cannot convert a
478
+ possible to an actual.
479
+ Res potentia and Res extensa plus actualization is the �irst new idea about mind and
480
+ body since Descartes’ substance dualism,
481
+ Spinoza’s neutral monism, Berkeley’s
482
+ Idealism, and pure materialism.
483
+ Res potentia and Res extensa is not a substance
484
+ dualism. Potentia are not substances. Thus this view does not inherit the mind – body
485
+ problem.
486
+ Instead Res potentia and Res extensia suggest a natural role for mind. Mind “actualizes”
487
+ Possibles to Actuals.
488
+ Strong evidence now supports this scienti�ically testable hypothesis. Radin and his
489
+ colleagues (for example see Radin 2019) have tested the capacity of humans paying
490
+ attention to modify the intensities of the adjacent central bands in the famous
491
+ interference pattern of the two slit experiment. The effect is weak, but has been tested in
492
+ 30 independent experiments. At present the positive results are very strongly
493
+ statistically signi�icant at 6.49 Sigma. The probability, “p”, that this arises by chance now
494
+ stands a less that 4 x 100,000,000,000, (Kauffman and Radin, op. cit.).
495
+ This is strong enough to take very seriously as yet further data are sought. If accepted,
496
+ the results alter the foundations of Quantum Mechanics with a fundamental role for
497
+ mind. Indeed, even a responsible free will is not ruled out, (Kauffman Radin, op. cit.).
498
+ For the purposes of this article, we will accept these results as true.
499
+ Section 7. Quantum Gravity if Non locality Is Fundamental
500
+ One of us has recently published a work on quantum gravity (Kauffman op. cit.).The
501
+ starting point is to take nonlocality as fundamental. Nonlocality arises in the presence of
502
+ entangled coherent quantum variables. If one starts with nonlocality it is not necessary
503
+ 9
504
+
505
+ to explain nonlocality, but necessary to explain locality. Somehow locality – spacetime–
506
+ is to emerge from the behaviors of the quantum variables. This immediately �latly
507
+ contradicts General Relativity which is local, and in which there is no emergence of
508
+ spacetime. Further, General Relativity can be formulated in the absence of matter so
509
+ matter cannot be necessary for the very existence of spacetime. But if one starts with
510
+ nonlocality, the emergence of spacetime must depend on the matter – the entangled
511
+ coherent quantum variables. A further note is that there is no apriori reason not to start
512
+ with nonlocality as fundamental.
513
+ The steps in building this new theory of quantum gravity start with N entangled
514
+ variables in Hilbert space, then constructs a metric distance between each entangled
515
+ pair of variables as the sub-additive von Neumann Entropy between that pair.
516
+ Sub-additive von Neumann Entropy, therefore, �its the triangle inequality. The next step
517
+ notes that quantum variables can be in superposition and interpreted as potentia,
518
+ neither true nor false. All the variables of classical physics are true or false. Hence the
519
+ next step in the development of the theory maps distances in Hilbert space to classical
520
+ spacetime distances between a succession of true actualization events. In this mapping
521
+ entangled near-neighbours in Hilbert space construct themselves into nearby points in
522
+ classical spacetime. The hypothesis that actualization events construct spacetime is
523
+ probably testable using the Casimir effect.
524
+ Section 8. Emergence of the Classical World
525
+ Here we refer to the ontological framework developed by Kauffman and Patra (2022),
526
+ which also forms one reference for the current framework, though we didn’t include
527
+ non-local mind in our previous work. We based our previous work on the premise that
528
+ measurement and actualization, which creates the de�initive classical world (this
529
+ coincides with the contextuality-complementarity philosophy of Bohr1) can happen only
530
+ in a speci�ic basis. However we still do not have a comprehensive theory for the
531
+ emergence of a speci�ic basis, except the recent attempts from Quantum Darwinism
532
+ perspectives as proposed by Zurek (2022) in terms of de-coherence theory. We note
533
+ that decoherence does not yield a speci�ic basis.
534
+ We have proposed the following steps for the emergence of classical world, in which
535
+ testable experiments can be performed.
536
+ (i)
537
+ We start with sets of N entangled quantum variables, which need not be
538
+ maximally entangled. Variables can mutually actualize each other, which is
539
+ approximated by the quantum-Zeno effect.
540
+ (ii)
541
+ Such actualization occurs in one of the 2Nbases.
542
+ (iii)
543
+ Mutual actualization breaks symmetry among these 2N bases.
544
+ (iv)
545
+ An amplitude for a speci�ic basis can emerge and increase with further
546
+ measurement in the same particular basis, it can also decay between
547
+ measurements.
548
+ 1 Here one can also refer to recent works of Kastrup (), where if we claim that only actualization creates the
549
+ definitive world, which would mean no pre-existing values, we should also accept that the world as a whole is
550
+ beyond only physical, or the typical physical closure principle would not work.
551
+ 10
552
+
553
+ (v)
554
+ As the number of variables, N, in the system increases, the number of
555
+ Quantum Zeno mediated measurements among the N variables increases.
556
+ (vi)
557
+ Now for experimental purposes, quantum ordered, quantum critical, and
558
+ quantum chaotic peptides that decohere at nanosecond versus femtosecond
559
+ time scales can be used as test objects.
560
+ (vii)
561
+ By varying the number of amino acids, N, and the use of quantum ordered,
562
+ critical, or chaotic peptides, the ratio of decoherence to Quantum Zeno effects
563
+ can be tuned. This enables new means to probe the emergence of one among
564
+ a set of initially entangled bases via weak measurements after preparing the
565
+ system in a mixed basis condition.
566
+ (viii)
567
+ Use of the three stable isotopes of carbon, oxygen, and nitrogen and the �ive
568
+ stable isotopes of sulfur allows any ten atoms in the test peptide or protein to
569
+ be discriminably labelled and the basis of emergence for those labelled atoms
570
+ can be detected by weak measurements. We present an initial mathematical
571
+ framework for this theory, and we propose experiments.
572
+ Section 9. If Mind is Outside of spacetime, What is “My” Mind?
573
+ If we are to make sense of Aerts et. al data (op. cit.), and do so by proposing that mind is
574
+ outside of spacetime but that the cognitive experience is in spacetime, we must claim
575
+ that qualia emerge upon actualization events, as discussed above. But in addition, it
576
+ becomes fundamental to address the issue: What maps the quantum variables in Hilbert
577
+ space and the vacuum to “My Mind”?
578
+ The theory of quantum gravity based on nonlocality as fundamental almost
579
+ automatically affords a possible answer to this issue.
580
+ Compare the relatively simple
581
+ quantum behaviors of a quantum variables in a quartz crystal and the presumably far
582
+ more complex behaviors of the quantum variables in the diverse proteins in a speci�ic
583
+ human brain with its unique genetic background and life experiences. The proposal is
584
+ that when these quantum variables become coherent, they are not in spacetime but part
585
+ of the quantum vacuum. The behaviors of these variables in the vacuum must exhibit
586
+ and re�lect the complexities the quantum behaviors in that speci�ic brain. Because
587
+ entangled neighbors in Hilbert space map to spatial neighbors in classical spacetime and
588
+ the matter in it, actualization events with qualia will typically map to and occur in the
589
+ same brain. Thus, “What is My Mind” seems naturally answered.
590
+ These proposals claim to answer Aerts et. al (op. cit.). My mind is not in spacetime, so
591
+ not bound by continuity of action and nonsignaling. The Tsirelson bound can be
592
+ surpassed. But actualization occurs in my brain so are my qualia.
593
+ Section 10. The Quantum Vacuum and the Matter in the Universe
594
+ Our proposal to start with nonlocality as fundamental drives a different conception of
595
+ the quantum vacuum. This vacuum is normally conceived in the absence of any matter
596
+ and as a coupling of all the fundamental �ields. The same can be considered as coupled
597
+ quantum harmonic oscillators whose zero point energy can be studied. As so conceived,
598
+ the spectrum of the quantum vacuum must be stationary.
599
+ 11
600
+
601
+ By contrast, if nonlocality is taken as fundamental, spacetime is not fundamental and
602
+ can only arise due to the behaviors of the quantum variables when coherent and also
603
+ when not coherent. In the latter case, the Schrödinger equation no longer applies. The
604
+ quantum behaviors of quarks, protons, neutrons, and electrons in complex proteins
605
+ must differ from those in a simple crystal. With this seemingly necessary inference, the
606
+ behaviors of the quantum vacuum – coherent entangled quantum variables, cannot be
607
+ stationary over the history of the universe as more and more complex classical systems,
608
+ stable for long periods, come into existence. We can propose, quantum vacuum must
609
+ also re�lect the history of the behaviours of the ever more complex matter than has
610
+ come to exist and vanished.
611
+ Section 11. The Six Part Ontological Framework: Mind Matter and Cosmos
612
+ The above considerations lead us to propose that: i. The quantum vacuum is composed
613
+ of entangled coherent quantum variables that are ontologically real “Possibles”; ii
614
+ “Mind” is identical to the Possibles of the quantum vacuum. Hence this is the de�inition
615
+ of mind in our framework; iii. The vacuum is outside of spacetime; iv. Mind can mediate
616
+ actualization of potentia ,(Kauffman and Radin, op. cit.); actualization of potentia then
617
+ constructs classical spacetime, where a metric exists in the quantum vacuum Hilbert
618
+ space via non-additive von Neumann Entropies between pairs of entangled variables,
619
+ that is then mapped to events at speci�ic classical spacetime locations, (Kauffman
620
+ quantum gravity); v. We experience such actualized quantum variables as “qualia”,
621
+ (Chalmers and McQueen, Kauffman and Roli, 2021); vi. In the last, sixth, part we
622
+ propose the emergence of classical world, which is based on our previously proposed
623
+ framework (Kauffman and Patra, 2022). We suggest a mutual actualization process of
624
+ quantum variables. Through a trade-off between the quantum Zeno effect and
625
+ atmospheric de-coherence, such de-cohering and re-cohering variables creates the
626
+ observable classical variables. In this framework we suggest veri�iable experiments with
627
+ peptides whose entangled variables decohere exponentially fast versus peptides whose
628
+ entangled variables decohere power law slowly as a possible ground of test.
629
+ We hope to show that the six part proposal above allows us to account for Aert’s et. al
630
+ results that surpass the Tsirelson bound. Far more, this new six part framework may
631
+ help organize our emerging ideas about “Mind, Matter, and Cosmos”.
632
+ Section 12. Discussion and Further Work
633
+ Non-locality has always baf�led us. The non-local and non-deterministic collapse of wave
634
+ function in QM worried Einstein throughout his working life, since the fear was such
635
+ non-locality would mean action at a distance and thus break- down of the causality
636
+ structure of spacetime. The latter is fundamental to any Physical theory. Certainly, a
637
+ huge literature has demonstrated that non-local collapse may not mean any
638
+ superluminal signaling. Later since Bell’s seminal contribution, there have been many
639
+ versions of such frameworks (CHSH being the most popular), which have suggested that
640
+ local hidden variable theories cannot reproduce QM faithfully. Loophole free Bell
641
+ inequality/ CHSH inequality violations have demonstrated that one or more of the basic
642
+ underlying assumptions, of localism, realism or non-contextuality, or statistical
643
+ independence have to be relaxed to describe the empirical results of QM.
644
+ 12
645
+
646
+ Many workers have shown that Bell inequalities violations are considered to be
647
+ evidence of non-local correlations between subsystems. The canonical example is
648
+ entangled pairs of particles (EPR set up for example) with agents measuring on each
649
+ half of the pair who are space like separated.
650
+ In the presence of an assumed background spacetime, the only way a no signaling
651
+ theorem is going to be preserved is by introducing inherent quantum uncertainty in
652
+ outcomes. In the words of Shimony there can be a happy co-existence between Special
653
+ Relativity and quantum fundamental uncertainty. However, the Hilbert space structure,
654
+ assumed to be the state space in such frameworks, inherently does set up an upper
655
+ bound for violations of inequalities, the celebrated Tsirelson (or Cirelson) bound. Thus,
656
+ the question arises what if in any empirical observation exist where such a limit is
657
+ violated?
658
+ Over the last decade there has been strong evidence of violations of CHSH inequalities,
659
+ pertaining to cognitive experiments (Aerts et. al). The data are now con�irmed at p =
660
+ .001 to .005. Further work is needed to con�irm these results more strongly. However,
661
+ they are already strong enough to warrant consideration of the implications.
662
+ Aerts et. al (op. cit.) have tried to preserve a background spacetime and “no signaling”
663
+ by assuming more complex entanglement, i.e. both states and measurements. The same
664
+ authors have also claimed that quantum entities might be conceptual or cognitive
665
+ entities, hence non-spatial.
666
+ We propose here a novel, yet unexplored framework based on non-localism, where
667
+ spacetime need not be fundamental to existence. Non-locality is not mysterious in our
668
+ framework. Our attempt is to start from non-locality, and derive locality from �irst
669
+ principles. Then in such a constructed local spacetime we have standard QM and SR
670
+ operate with restricted non-locality which is no signaling also.
671
+ Our proposal is related to that of Aerts et. al in an unexpected way. As just noted, these
672
+ authors propose quantum entities might be conceptual or cognitive entities, hence
673
+ non-spatial. Almost in parallel, we propose that the quantum vacuum consists in
674
+ ontologically real Possibles, that Possibles are non-spatial, i.e. not in spacetime, that
675
+ Mind is identical to these Possibles, that Mind can actualize these potentia, and we can
676
+ experience these as qualia.
677
+ What should we make of this extensive new six part framework? A �irst point is that
678
+ other attempts such as PR boxes correspond to no know physical reality.
679
+ Our proposal is not too distant from Aharanov’s non local proposal . But as Shimony
680
+ notes, this is “passion at a distance” in spacetime. In our six part framework, the
681
+ correlations are among ontologically real possibles that are not in spacetime, but “mind”
682
+ is/are part of the quantum vacuum of possibles. These possibles then constitute the
683
+ information Zeilinger hopes is the basis, somehow, of spacetime. However Zeilinger
684
+ offers no account of what information is, other than a “bit”, nor any idea of how these
685
+ might be related to spacetime.
686
+ 13
687
+
688
+ In our account, spacetime is constructed by the sequential actualization of quantum
689
+ variables in Hilbert space with a metric via non-additive von Neumann Entropies that
690
+ then map to Actual events whose mutual distance relations re�lect the metric in Hilbert
691
+ space to constitute spacetime, (Kauffman quantum gravity). This claim underlies our
692
+ �irst part, “i”, and “iii”. There are data at 6.49 sigma to support “iv” and “v”
693
+ above,(Kauffman, op. cit.).
694
+ The second part, ii “mind” is identical to the possibles of the quantum vacuum, is an
695
+ entirely new proposal. Oddly, this proposal just might afford a highly speculative answer
696
+ to the point raised in a recent article on Biocosmology, (Cortes et al., 2022), about a link
697
+ between the emergence of life 4 billion years ago and the recent dominance of dark
698
+ energy whose tight temporal coincidence in Cosmology is strange. If living organisms
699
+ actualize quantum variables far more often than the quantum variables of the abiotic
700
+ universe, then life, via mind, can have played a role in the emerging dominance of dark
701
+ energy in the past four billion years.
702
+ Our vi. part concerns the emergence of the classical world from the quantum world. Our
703
+ own proposal, (referring to Kauffman and Patra, 2022), has the virtue of being testable.
704
+ In addition it automatically supplies the incomplete Quantum Zeno Effect desired by
705
+ Chalmers and McQueen, (op. cit.). Our speci�ic proposal for the emergence of the
706
+ classical world is consistent with our general framework i. to vi., and is consistent with
707
+ efforts to study how an increase in the mass of molecules such as the Buckyball may
708
+ increase decoherence .
709
+ The proposal that quantum gravity is a quantum construction of spacetime is not yet
710
+ united with General Relativity, but may be a new pathway to do so . Such a union with
711
+ our proposals in the present article might be fundamentally new. Such a union would
712
+ embrace Mind, Matter and Cosmos.
713
+ The most important lines of further work are: i. Experiments to test and extend the
714
+ Aerts et. al results, (op. cit.). A ‘p’ value of 0.001 is of interest, but hardly persuasive. ii.
715
+ Our six part framework rests heavily on taking non-locality as fundamental.
716
+ Experiments testing the hypothesis that actualization constructs spacetime are needed.
717
+ The Casimir effect may prove useful, (Kauffman et al., 2021 for example). iii. Further
718
+ testing of the capacity of the human mind to ‘collapse the wave function’ are needed.
719
+ The current data at a Sigma of 6.49 are strong. But this is a truly major claim that must
720
+ pass muster with critics. iv. Were it possible to demonstrate that actualization events
721
+ constructed spacetime and with good grounds established that mind can mediate
722
+ actualization, it might become possible someday to test if mind by mediating
723
+ actualization can construct spacetime. v. The current article is at best a conceptual
724
+ framework. A far more formal and integrated mathematical theory must be constructed
725
+ and ultimately tested.
726
+ Section 13. Summary and Conclusion
727
+ The dream of physics since the discoveries of General Relativity and Quantum
728
+ Mechanics nearly a century ago has been their union in Quantum Gravity. Yet since
729
+ Newton, a role for mind in the becoming of the Cosmos has seemed precluded. In 2022
730
+ 14
731
+
732
+ NASA launched a rocket that nudged a distant asteroid in the Solar System into a slightly
733
+ different orbit altering the orbital dynamics of the solar system. Mind has cosmic
734
+ consequences.
735
+ In the current article we take the results of Aerts et. al as if they were �irmly established.
736
+ With a p value of .001 the results are at most grounds for consideration. More
737
+ experiments are needed. However, assuming such �irm results, human cognitive events
738
+ surpass the Tsirelson bound. Attempts to explain such a result within a backgound
739
+ spacetime that demands Continuity of Action and non-signaling have severe dif�iculties.
740
+ Were mind not in spacetime the requirement for Continuity of Action and nonsignaling
741
+ would not arise. The possibility of cognitive events surpassing the Tsirelson bound
742
+ would be arise. But this would require that mind correspond to something “real” that is
743
+ not in spacetime, and also that cognitive events themselves exist in the actual experience
744
+ of humans, hence in spacetime.
745
+ We approach quantum gravity by taking nonlocality as fundamental. If nonlocality is
746
+ fundamental, spacetime is not fundamental. Non locality arises with two or more
747
+ entangled coherent variables. Thus, we are forced to the conclusion that spacetime
748
+ somehow emerges from the behaviors of coherent entangled variables. This �latly
749
+ contradicts General Relativity which is local, spacetime does not emerge in General
750
+ relativity, and GR can be formulated without matter �ields so the very existence of
751
+ spacetime cannot depend upon matter.
752
+ Based on the above it is straightforward to de�ine a metric distance between each pair of
753
+ entangled variables in Hilbert space as the subadditive von Neumann Entropy of that
754
+ entangled pair. But this set of distances is in Hilbert space whose variables can be in
755
+ superposition. Classical events in spacetime cannot be in superposition. Hence it
756
+ becomes natural to �ind a map between the metric in Hilbert space and classical
757
+ spacetime by successive actualization events in which the distance between actual
758
+ events correlates with those of the corresponding variables in Hilbert space. Nearby
759
+ entangled variables in Hilbert space construct themselves into nearby points in classical
760
+ spacetime.
761
+ In the present article we hope to account for evidence that cognitive events do surpass
762
+ the Tsirelson bound by identifying mind with coherent entangled quantum variables
763
+ that constitute the quantum vacuum and are not in spacetime. These are to map to
764
+ cognitive events within spacetime by actualization events that constitute qualia.
765
+ Increasingly strong grounds exist to support the view that conscious events – qualia –
766
+ accord with actualization events. Further, evidence now stands at 6.49 sigma, or 4 in
767
+ 100,000,000,000, in support the claim that mind acausally mediates actualization.
768
+ The union of the above issues then constitute a vision of quantum gravity in which mind
769
+ is identical to the entangled coherent quantum variables of the quantum vacuum and
770
+ mind itself mediates the actualization events that construct classical spacetime.
771
+ 15
772
+
773
+ Such a vision is not yet united with General Relativity. A new union may be possible in
774
+ which quantum gravity constructs the classical spacetime in which General Relativity
775
+ operates.
776
+ General Relativity requires a world of classical objects. Among these, some are very
777
+ simple, some like the evolved proteins in the human brain are very complex. The
778
+ quantum behaviors of very complex molecules and groups of molecules will be far
779
+ richer than those of a simple small quartz crystal. Therefore, the mind of a brain can be
780
+ far more complex that a mind of a crystal. And the quantum behaviors of one brain will
781
+ be partially unique to that brain and its ontogenetic and experiential history. But the
782
+ quantum behaviors of entangled variables in brains, when coherent, are not in
783
+ spacetime and are part of the quantum vacuum. Upon actualization, these entangled
784
+ variables that are neighbors in Hilbert space construct themselves to nearby points in
785
+ the matter in classical spacetime, thus typically to events located in the same brain. “My
786
+ memories and thoughts are mine, not yours.” Yet by entanglement between brains,
787
+ telepathy is possible, and precognition is possible. By entanglement between variables
788
+ in a brain and other physical objects, psychokinesis is possible The data for all these are
789
+ now abundant at high Sigma values.
790
+ The concepts and data we have discussed do not yet warrant such enormous
791
+ conclusions. Far more would be required. Yet, perhaps for the �irst time since Newton,
792
+ they may constitute the start of a conceptual framework uniting Mind, Matter and
793
+ Cosmos.
794
+ References
795
+ Atmanspacher, H. and Filk, T., 2019. Contextuality revisited: Signaling may differ from
796
+ communicating. In Quanta and Mind (pp. 117-127). Springer, Cam.
797
+ Aharonov, Y., & Bohm, D. (1961). Further considerations on electromagnetic potentials
798
+ in the quantum theory. Physical Review, 123(4), 1511.
799
+ Aerts,
800
+ D.,
801
+ Gabora,
802
+ L.
803
+ and
804
+ Sozzo,
805
+ S.,
806
+ 2013.
807
+ Concepts and their dynamics: A
808
+ quantum-theoretic modelling of human thought. Topics in Cognitive science, 5(4),
809
+ pp.737-772.
810
+ Aerts, D., Sassoli de Bianchi, M., Sozzo, S. and Veloz, T., 2021. Modeling human
811
+ decision-making: An overview of the Brussels quantum approach. Foundations of
812
+ Science, 26(1), pp.27-54.
813
+ Aerts, D. and Arguëlles, J.A., 2022. Human Perception as a Phenomenon of Quantization.
814
+ Entropy, 24(9), p.1207.
815
+ Ball, P., 2022, Experiments Spell Doom for Decades-Old Explanation of Quantum
816
+ Weirdness, Quanta Magazine.
817
+ Bancal, J.D., Barrett, J., Gisin, N. and Pironio, S., 2013. De�initions of multipartite
818
+ nonlocality. Physical Review A, 88(1), p.014102.
819
+ 16
820
+
821
+ Bell, J. S., 1966, “On the problem of hidden variables in quantum mechanics,” Revs. Mod.
822
+ Phys. 38, 447-52.
823
+ Bell, J. S., 1964, “On the Einstein-Podolsky-Rosen Paradox,” Physics 1, 195-200.
824
+ Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A. and
825
+ Wootters, W.K., 1999. Quantum nonlocality without entanglement. Physical Review A,
826
+ 59(2), p.1070.
827
+ Chalmers, D.J. and McQueen, K.J., 2021. Consciousness and the collapse of the wave
828
+ function. arXiv preprint arXiv:2105.02314.
829
+ Cavalcanti, E.G. and Wiseman, H.M., 2012. Bell nonlocality, signal locality and
830
+ unpredictability (or what Bohr could have told Einstein at Solvay had he known about
831
+ Bell experiments). Foundations of Physics, 42(10), pp.1329-1338.
832
+ Cortês, M., Kauffman, S.A., Liddle, A.R. and Smolin, L., 2022. Biocosmology: Towards the
833
+ birth of a new science. arXiv preprint arXiv:2204.09378.
834
+ Ghose, P. and Mukherjee, A., 2014. Entanglement in classical optics. Reviews in
835
+ Theoretical Science, 2(4), pp.274-288.
836
+ GAO, Shan, 2022, Consciousness and Quantum Mechanics, Cambridge University Press.
837
+ Jaeger, G., 2007. Quantum Information (pp. 81-89). Springer, New York.
838
+ Kauffman, S.A., 2022. Quantum Gravity If Non-Locality Is Fundamental. Entropy, 24(4),
839
+ p.554.
840
+ Kauffman, S.A. and Radin, D., 2022. Quantum aspects of the brain-mind relationship: A
841
+ hypothesis with supporting evidence. Biosystems, p.104820.
842
+ Kauffman, S.A. and Roli, A., 2021. What is consciousness? Arti�icial intelligence, real
843
+ intelligence, quantum mind, and qualia. arXiv preprint arXiv:2106.15515.
844
+ Kauffman, S., Succi, S., Tiribocchi, A. and Tello, P.G., 2021. Playing with Casimir in the
845
+ vacuum sandbox. The European Physical Journal C, 81(10), pp.1-5.
846
+ Kauffman, Stuart, and Sudip Patra. 2022. "A Testable Theory for the Emergence of the
847
+ Classical World" Entropy 24, no. 6: 844. https://doi.org/10.3390/e24060844
848
+ Kastner, R., Kauffman, S., Epperson, M. (2018).Taking Heisenberg’s Potentia Seriously.
849
+ The Journal of Quantum Foundation, 4:158-172
850
+ Khrennikov, A., 2022. On Applicability of Quantum Formalism to Model Decision
851
+ Making: Can Cognitive Signaling Be Compatible with Quantum Theory? Entropy, 24(11),
852
+ p.1592.
853
+ Khrennikov, A., 2020. Quantum versus classical entanglement: eliminating the issue of
854
+ quantum nonlocality. Foundations of Physics, 50(12), pp.1762-1780.
855
+ Linden N, Popescu S, Short A J and Winter A 2007 Quantum nonlocality and beyond:
856
+ limits from nonlocal computation Phys. Rev. Lett. 99 180502
857
+ 17
858
+
859
+ Pienaar, J., 2021. QBism and relational quantum mechanics compared. Foundations of
860
+ Physics, 51(5), pp.1-18.
861
+ Popescu, S., 2014. Nonlocality beyond quantum mechanics. Nature Physics, 10(4),
862
+ pp.264-270.
863
+ Pryzdia, M. and Radin, D., 2019. The Electromagnetic Brain A Review of EM Theories on
864
+ the Nature of Consciousness by Shelli Joye. Journal of Conscious Evolution, 15(15), p.2.
865
+ Pylkkänen, P., 2019. Henry Stapp Vs. David Bohm on mind, matter, and quantum
866
+ mechanics. Activitas Nervosa Superior, 61(1), pp.48-50.
867
+ Shimony, A., 1993. Conceptual foundations of quantum mechanics. In The new physics.
868
+ Stuckey, W., Silberstein, M., McDevitt, T. and Kohler, I., 2019. Why the Tsirelson bound?
869
+ Bub’s question and Fuchs’ desideratum. Entropy, 21(7), p.692.
870
+ Tumulka, R., 2006. On spontaneous wave function collapse and quantum �ield theory.
871
+ Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
872
+ 462(2070), pp.1897-1908.
873
+ Tononi, G., Boly, M., Massimini, M. and Koch, C., 2016. Integrated information theory:
874
+ from consciousness to its physical substrate. Nature Reviews Neuroscience, 17(7),
875
+ pp.450-461.
876
+ Von Neumann, J. (1955/1932). Mathematical Foundations of Quantum Mechanics.
877
+ Princeton: Princeton University Press. (Translated by Robert T. Beyer from the 1932
878
+ German
879
+ original,
880
+ Mathematische
881
+ Grundlagen
882
+ der
883
+ Quantummechanik.
884
+ Berlin:
885
+ J.
886
+ Springer).
887
+ Wigner, E.P., 1995. Remarks on the mind-body question. In Philosophical re�lections and
888
+ syntheses (pp. 247-260). Springer, Berlin, Heidelberg.
889
+ Walleczek, J., Grössing, G., Pylkkänen, P. and Hiley, B., 2019. Emergent quantum
890
+ mechanics: David Bohm centennial perspectives. Entropy, 21(2), p.113.
891
+ Wallace, D., 2014. Life and death in the tails of the GRW wave function. arXiv preprint
892
+ arXiv:1407.4746.
893
+ Zeilinger, A., 1998. Fundamentals of quantum information. Physics World, 11(3), p.35.
894
+ Zurek, W.H., 2022. Quantum Theory of the Classical: Einselection, Envariance, Quantum
895
+ Darwinism and Extantons. Entropy, 24(11), p.1520.
896
+ 18
897
+
KtFOT4oBgHgl3EQfzTRj/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
MNAzT4oBgHgl3EQfV_xV/content/2301.01293v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fb0865baa923e43f00964e10350ee04e11efbe3b62ece7e55c227e84f23f1b8
3
+ size 689688
N9E0T4oBgHgl3EQfjgF4/content/tmp_files/2301.02460v1.pdf.txt ADDED
@@ -0,0 +1,854 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02460v1 [cond-mat.mes-hall] 6 Jan 2023
2
+ Half-metal and other fractional metal phases in doped AB bilayer graphene
3
+ A.L. Rakhmanov,1 A.V. Rozhkov,1 A.O. Sboychakov,1 and Franco Nori2, 3
4
+ 1Institute for Theoretical and Applied Electrodynamics,
5
+ Russian Academy of Sciences, 125412 Moscow, Russia
6
+ 2Center for Quantum Computing and Cluster for Pioneering Research, RIKEN, Wako-shi, Saitama, 351-0198, Japan
7
+ 3Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA
8
+ (Dated: January 9, 2023)
9
+ We theoretically argue that, in doped AB bilayer graphene, the electron-electron coupling can give
10
+ rise to the spontaneous formation of fractional metal phases. These states, being generalizations of
11
+ a more common half-metal, have a Fermi surface that is perfectly polarized not only in terms of
12
+ a spin-related quantum number, but also in terms of the valley index. The proposed mechanism
13
+ assumes that the ground state of undoped bilayer graphene is a spin density wave insulator, with a
14
+ finite gap in the single-electron spectrum. Upon doping, the insulator is destroyed, and replaced by
15
+ a fractional metal phase. As doping increases, transitions between various types of fractional metal
16
+ (half-metal, quarter-metal, etc.) are triggered. Our findings are consistent with recent experiments
17
+ on doped AB bilayer graphene, in which a cascade of phase transitions between different isospin
18
+ states was observed.
19
+ PACS numbers: 73.22.Pr, 73.22.Gk
20
+ Introduction.— A usual metal demonstrates perfect
21
+ symmetry with regard to the carriers’ spin projection.
22
+ This symmetry manifests itself in the vanishing total
23
+ spin magnetization and the Fermi-surface spin degener-
24
+ acy. Yet the symmetry can be spontaneously destroyed
25
+ by sufficiently strong electron-electron interaction, which
26
+ may result, for example, in the formation of two non-
27
+ identical Fermi surfaces for the two spin projections. In
28
+ the extreme case of the so-called half-metals (HM), one
29
+ of these projections is completely absent from the Fermi
30
+ surface, while all states at the Fermi energy have identi-
31
+ cal spin quantum number [1–3]. Various rather dissim-
32
+ ilar materials with transition-metal atoms are found to
33
+ be half-metals [4–7]. Several papers [8–12] predicted the
34
+ half-metallicity in carbon-based systems as well. The ex-
35
+ istence of spin-polarized currents in such systems makes
36
+ them promising materials for applications in spintron-
37
+ ics [3, 13].
38
+ Graphene-based bilayer and multi-layer systems posses
39
+ additional quantum number,
40
+ the valley index.
41
+ In
42
+ these materials, besides the spin-related polarization, a
43
+ many-body state may demonstrate a valley polarization.
44
+ Therefore, for graphene-based materials, the notion of
45
+ a HM can be generalized to include the possibility of
46
+ a Fermi surface with perfect valley polarization as well.
47
+ Such a proposal was put forward in Ref. 14, where the
48
+ concept of a quarter-metal (QM) was formulated.
49
+ A
50
+ Fermi surface of a QM state is perfectly polarized both in
51
+ valley and in spin-related indices. Furthermore, the lat-
52
+ ter paper explained that both an HM and a QM should
53
+ be viewed as specific instances of a more general notion,
54
+ ‘a fractional metal’ (FraM). This many-body phase may
55
+ be realized in materials with degenerate Fermi surface.
56
+ The higher the degeneracy, the stronger fractionalization
57
+ of the Fermi surface can be achieved.
58
+ Since our publication [14] the experimental observation
59
+ of a QM state in graphene trilayer has been claimed [15].
60
+ The experimental data of Ref. 16 suggest that a QM and
61
+ FraM states can be stabilized in a sample of AB bilayer
62
+ graphene (AB-BLG). Given these experimental successes
63
+ it appears important to develop a microscopic theoretical
64
+ framework that can explain the existence of the FraM
65
+ in the AB-BLG. In this letter, a suitable mechanism is
66
+ proposed and discussed.
67
+ Model.— An elementary unit cell of the AB-BLG con-
68
+ sists of four atoms (sublattices A and B, and layers 1 and
69
+ 2) with the distance between neighboring carbon atoms
70
+ a0 ≈ 0.142 nm and interlayer distance c0 ≈ 0.335 nm.
71
+ The hoping amplitude t connecting the nearest A and B
72
+ sites in the layer is 2.5 eV ≲ t ≲ 3 eV. The hopping be-
73
+ tween the nearest sites in different layers can be estimated
74
+ as 0.3 eV ≲ t0 ≲ 0.4 eV. It is possible to introduce addi-
75
+ tional, longer-range, hopping amplitudes into the model.
76
+ We assume, however, that the effect of these amplitudes
77
+ is weak, and they are neglected.
78
+ The AB-BLG Brillouin zone is a regular hexagon,
79
+ with
80
+ two
81
+ non-equivalent
82
+ Dirac
83
+ points
84
+ at
85
+ K1
86
+ =
87
+ 2π(
88
+
89
+ 3, 1)/3
90
+
91
+ 3a0 and K2 = 2π(
92
+
93
+ 3, −1)/3
94
+
95
+ 3a0.
96
+ It is
97
+ convenient to measure momentum relative to the Dirac
98
+ points. Thus, we introduce q = k − K1,2.
99
+ The energy spectrum of undoped AB-BLG consists of
100
+ four bands, two electron and two hole ones. Since we are
101
+ interested in the low-energy spectrum of AB-BLG, q ≪
102
+ 2t0/3ta0, we restrict our consideration to the effective
103
+ two-band model. It has one electron and one hole band,
104
+ both bands have quadratic dispersion. The bands touch
105
+ at the Fermi energy. In such a model, the Hamiltonian
106
+ for a single-electron wave function reads [17]
107
+ H0 = −ℏ2v2
108
+ F
109
+ t0
110
+
111
+ 0
112
+ (iqx + ξqy)2
113
+ (iqx − ξqy)2
114
+ 0
115
+
116
+ ,
117
+ (1)
118
+ where the graphene Fermi velocity is vF = 3a0t/2ℏ and
119
+
120
+ 2
121
+ ξ is the valley index. The value ξ = 1 corresponds to
122
+ K1 and ξ = −1 corresponds to K2.
123
+ In the second-
124
+ quantization formalism we can write
125
+ H0 =
126
+
127
+ qσξl
128
+ εqlγ†
129
+ qlσξγqlσξ,
130
+ (2)
131
+ where the spin projection is denoted by σ, the index l
132
+ labels the electron (l = 1) or hole (l = 2) band, and γqlσξ
133
+ is the corresponding second quantization operator. The
134
+ eigenenergies εql of the Hamiltonian (1) are
135
+ εql = (−1)l ℏ2v2
136
+ F
137
+ t0
138
+ q2.
139
+ (3)
140
+ Next we include the electron-electron repulsion into the
141
+ model. The latter is a highly non-trivial task. Clearly,
142
+ the low-energy two-band effective model (1) is incom-
143
+ patible with the bare Coulomb repulsion.
144
+ Instead, an
145
+ effective interaction Hamiltonian must be derived. Un-
146
+ fortunately, a compact description of such an effective
147
+ interaction remains an elusive theoretical goal. Indeed,
148
+ due to multiple factors affecting the many-body physics
149
+ in graphene and graphene-based systems, an effective
150
+ interaction term is quite complex, with multiple cou-
151
+ pling constants, whose non-universal values are poorly
152
+ known [18–22].
153
+ In this situation we prefer to adopt a
154
+ semi-phenomenological approach, keeping only the terms
155
+ that directly contribute to the spin-density wave (SDW)
156
+ ordering. It is possible to identify three types of such
157
+ terms. The first term arises due to the forward-scattering
158
+ Hf
159
+ int = VC
160
+ Nc
161
+
162
+ kk′,ll′
163
+ σσ′,ξξ′
164
+ γ†
165
+ klσξγk′lσξγ†
166
+ k′l′σ′ξ′γkl′σ′ξ′,
167
+ (4)
168
+ where Nc is the number of unit cells in the sample, and
169
+ VC is an effective interaction constant whose value can be
170
+ potentially extracted from the low-temperature data [23–
171
+ 32] on spontaneous symmetry breaking in AB-BLG. The
172
+ forward scattering is characterized by a small momentum
173
+ transfer |k − k′| ≪ |K1 − K2|, and preserves the band
174
+ indices l and l′ of the two participating electrons. Next,
175
+ one can define the backscattering term
176
+ Hb
177
+ int = V b
178
+ C
179
+ Nc
180
+
181
+ kk′,ll′
182
+ σσ′,ξ
183
+ γ†
184
+ klσξγk′lσ¯ξγ†
185
+ k′l′σ′ ¯ξγkl′σ′ξ,
186
+ (5)
187
+ where a bar on top of a binary-valued index implies the
188
+ inversion of the index value (for example, if ξ = 1 then
189
+ ¯ξ = −1). For Hb
190
+ int the transferred momentum is large
191
+ |k−k′| ∼ |K1 −K2|, thus we can assume that V b
192
+ C ≪ VC.
193
+ Finally, the umklapp-type interaction
194
+ Hu
195
+ int = V u
196
+ C
197
+ Nc
198
+
199
+ kk′,
200
+ σσ′,ξξ′
201
+ γ†
202
+ k1σξγk′2σξγ†
203
+ k′1σ′ξ′γk2σ′ξ′ + h.c.,
204
+ (6)
205
+ represents scattering events in which both electrons
206
+ change their bands. It accounts for the coupling between
207
+ inter-layer dipole moments, which is also weaker than the
208
+ coupling between charge densities represented by Hf
209
+ int. In
210
+ principle, there is backscattering umklapp, which we do
211
+ not consider due to it being even weaker than Hu
212
+ int.
213
+ Mean-field approximation.—
214
+ We
215
+ consider a
216
+ zero-
217
+ temperature SDW instability of the AB-BLG. This is
218
+ characterized by the spontaneous generation of staggered
219
+ spin magnetization violating the spin-rotation symmetry.
220
+ The direction of this magnetization is not fixed and there
221
+ are several equivalent choices for an SDW order parame-
222
+ ter that differ by the spin-magnetization direction. It is
223
+ convenient to assume that ⟨γ†
224
+ k1σξγk2¯σξ⟩ ̸= 0. This choice
225
+ corresponds to the magnetization in the xy-plane. Note
226
+ also that the introduced order parameter accounts for the
227
+ coupling of single-electron states in the same valley ξ.
228
+ Now, assuming that the backscattering (5) and the
229
+ umklapp (6) are weak, we apply the mean-field approxi-
230
+ mation to Hf
231
+ int
232
+ HMF
233
+ int = −
234
+
235
+ kσξ
236
+ ∆σξγ†
237
+ k2σξγk1¯σξ + h.c. + B,
238
+ (7)
239
+ where the order parameter ∆σξ and c-number B are
240
+ ∆σξ = VC
241
+ Nc
242
+
243
+ q
244
+ ⟨γ†
245
+ q1σξγq2¯σξ⟩Θ(qC − q),
246
+ (8)
247
+ B =
248
+
249
+ qσξ
250
+ ∆σξ⟨γ†
251
+ q2σξγq1¯σξ⟩Θ(qC − q) = Nc
252
+ VC
253
+
254
+ σξ
255
+ |∆σξ|2.
256
+ (9)
257
+ In these expressions, the momentum cutoff for the inter-
258
+ action qC satisfies qC ≪ |K1 − K2|.
259
+ The mean-field Hamiltonian (7) does not conserve spin
260
+ (spin-rotation symmetry is spontaneously broken for non-
261
+ zero ∆σξ). However, quasi-momentum q is conserved. In
262
+ addition to q, one can introduce valley and spin-flavor
263
+ operators
264
+ Sf
265
+ q =
266
+
267
+ σξl
268
+ σ(−1)lγ†
269
+ qlσξγqlσξ,
270
+ Sv
271
+ q =
272
+
273
+ σξl
274
+ ξγ†
275
+ qlσξγqlσξ,
276
+ (10)
277
+ which commute with the Hamiltonian H0 +HMF
278
+ int and are
279
+ good quantum numbers. Thus, in this approximation all
280
+ fermionic degrees of freedom can be grouped into four
281
+ uncoupled sectors, each sector having its own values of
282
+ spin-flavor index (−1)lσ and valley index ξ.
283
+ A sector
284
+ is characterized by its own order parameter ∆σξ, and
285
+ single-particle spectrum
286
+ E1,2
287
+ qσξ = ±
288
+
289
+ ∆2
290
+ σξ +
291
+ �ℏ2v2
292
+ F
293
+ t0
294
+ �2
295
+ q4.
296
+ (11)
297
+ The thermodynamic grand potential Ω can be expressed
298
+ as a sum Ω = �
299
+ σξ Ωσξ + B, where Ωσξ are four partial
300
+ grand potentials corresponding to specific sectors.
301
+ At
302
+
303
+ 3
304
+ zero temperature, these are
305
+ Ωσξ =
306
+
307
+ ql
308
+
309
+ El
310
+ qσξ − µ
311
+
312
+ Θ
313
+
314
+ µ − El
315
+ qσξ
316
+
317
+ ,
318
+ (12)
319
+ where µ is the chemical potential.
320
+ Minimization of Ω over the order parameters allows
321
+ us to derive the following independent self-consistency
322
+ equations for the order parameters in the four sectors
323
+ 1 = VC
324
+ Nc
325
+
326
+ |q|<qC
327
+ Θ(µ + E1
328
+ qσξ) − Θ(µ − E1
329
+ qσξ)
330
+ E1
331
+ qσξ
332
+ .
333
+ (13)
334
+ Since the model is electron-hole symmetric, we can limit
335
+ our discussion to the µ > 0 case only. For positive chem-
336
+ ical potential: Θ(µ + E1
337
+ qσ) − Θ(µ − E1
338
+ qσ) = Θ(E1
339
+ qσ − µ).
340
+ Introducing dimensionless variables
341
+ g = VCt0
342
+
343
+ 3πt2 , m = 4t0µ
344
+ 9t2 , δσξ = 4t0∆σξ
345
+ 9t2
346
+ ,
347
+ (14)
348
+ we obtain from Eq. (13)
349
+ 1 = 2g
350
+ � QC
351
+ Qm
352
+ σξ
353
+ QdQ
354
+
355
+ δ2
356
+ σξ + Q4 ,
357
+ (15)
358
+ where
359
+ QC = a0qC,
360
+ Qm
361
+ σξ = (m2 − δ2
362
+ σξ)1/4.
363
+ (16)
364
+ It is evident that the gap in the spectrum of electrons in
365
+ the sector (σ, ξ) arises only if QC > Qm
366
+ σξ, that is, if the
367
+ number of the doped charge carriers in this sector is not
368
+ too large. One can perform the integration in Eq. (15)
369
+ and obtain that
370
+ 1 = g ln
371
+
372
+
373
+ Q2
374
+ C +
375
+
376
+ δ2
377
+ σξ + Q4
378
+ C
379
+ m +
380
+
381
+ m2 − δ2
382
+ σξ
383
+
384
+  .
385
+ (17)
386
+ In the weak coupling limit, g ≪ 1, we have δσξ ≪ Q2
387
+ C.
388
+ Consequently
389
+ ∆σξ =
390
+
391
+ ∆0(2µ − ∆0),
392
+ (18)
393
+ where
394
+ ∆0 = 9t2
395
+ 4t0
396
+ q2
397
+ Ca2
398
+ 0e−1/g
399
+ (19)
400
+ is the mean-field gap of undoped AB-BLG. Introducing
401
+ δ0 = 4t0∆0/(9t2) we can express Eq. (18) in dimension-
402
+ less form
403
+ δσξ =
404
+
405
+ δ0(2m − δ0).
406
+ (20)
407
+ Since experiments are performed at fixed doping, we need
408
+ to connect the values of ∆σξ with doping. It is conve-
409
+ nient to introduce partial doping, that is, the number of
410
+ electrons with specific values of σ(−1)l and ξ:
411
+ xσξ = −∂Ωσξ
412
+ ∂µ
413
+ = 2π
414
+ VBZ
415
+
416
+ σξ
417
+
418
+ kdkΘ(µ − E1
419
+ kσξ). (21)
420
+ The total doping x is equal to
421
+ x =
422
+
423
+ σξ
424
+ xσξ.
425
+ (22)
426
+ If µ > ∆σξ, we obtain the relation between the partial
427
+ doping and the chemical potential in the form
428
+ xσξ = 3
429
+
430
+ 3
431
+
432
+
433
+ m2 − δ2
434
+ σξ.
435
+ (23)
436
+ Otherwise, xσξ = 0. As a result, we derive in the case of
437
+ non-zero xσξ
438
+ m = δ0 − 8π
439
+ 3
440
+
441
+ 3xσξ = δ0
442
+
443
+ 1 − 2xσξ
444
+ x0
445
+
446
+ ,
447
+ (24)
448
+ δσξ = δ0
449
+
450
+ 1 − 4xσξ
451
+ x0
452
+ ,
453
+ (25)
454
+ where
455
+ x0 = t0∆0
456
+
457
+ 3πt2 .
458
+ (26)
459
+ Equation (25) indicates that for xσξ = x0/4 the order
460
+ parameter in the sector vanishes. That is, for xσξ > x0/4
461
+ one has
462
+ ∆σξ(xσξ) ≡ 0,
463
+ m = 8π
464
+ 3
465
+
466
+ 3xσξ = 2δ0
467
+ x0
468
+ xσξ.
469
+ (27)
470
+ Note that the chemical potential, as given by Eqs. (24)
471
+ and (27), demonstrates non-monotonic behavior as a
472
+ function of xσξ. Of particular importance is the fact that,
473
+ for low doping, µ = µ(xσξ) is a decreasing function. This
474
+ means that the compressibility of the homogeneous phase
475
+ is negative and points to a possibility of the phase sepa-
476
+ ration of the electronic liquid. We will assume below that
477
+ the long-range Coulomb interaction is sufficiently strong
478
+ to arrest the phase separation, restoring the stability of
479
+ homogeneous states.
480
+ Quarter metal state of doped AB-BLG.— Disregarding
481
+ the possibility of the phase separation, we use Eqs. (24)
482
+ and (25) to characterize the thermodynamics of the sys-
483
+ tem. To describe the doped state of the electronic liquid
484
+ for a specific x, one must determine partial dopings in
485
+ all four sectors. To achieve this goal, we should calculate
486
+ the free energy F(x) = F(0) +
487
+
488
+ µ(x)dx. In so doing, we
489
+ obtain
490
+ F(x) = F(0) + ∆0
491
+
492
+ x −
493
+
494
+ σξ
495
+ x2
496
+ σξ
497
+ x0
498
+
499
+  ,
500
+ (28)
501
+ when 0 < xσξ < x0/4, and
502
+ F(x) = F(0) + ∆0
503
+
504
+ x0
505
+ 8 +
506
+
507
+ σξ
508
+ x2
509
+ σξ
510
+ x0
511
+
512
+  ,
513
+ (29)
514
+
515
+ 4
516
+ if xσξ > x0/4. This free energy must be minimized over
517
+ xσξ under the constraint (22). For small x, simple calcu-
518
+ lations demonstrate that F is smallest when all charges
519
+ are placed into a single sector
520
+ xσξ = x,
521
+ xσ′ξ′ = 0, for σ′ ̸= σ or ξ′ ̸= ξ.
522
+ (30)
523
+ The free energy corresponding to distribution (30) equals
524
+ to FQM = ∆0(x−x2/x0). It is smaller, for example, than
525
+ the free energy Feq = ∆0x−∆0x2/(4x0), that represents
526
+ an equal distribution of doping between all four sectors
527
+ (xσξ = x/4 for all σ and ξ).
528
+ The state described by Eq. (30) is metallic, with (al-
529
+ most) circular Fermi surface whose radius kF = kF(x) is
530
+ set by the equation
531
+ a2
532
+ 0k2
533
+ F = 8πx
534
+ 3
535
+
536
+ 3.
537
+ (31)
538
+ This Fermi surface, however, is quite unique: all single-
539
+ electronic states reaching the Fermi energy are perfectly
540
+ polarized in terms of Sf and Sv. In other words, they
541
+ have an identical value of (−1)lσ, and the Fermi surface
542
+ is located within a single valley Kξ. Since among four
543
+ possible Fermi surface sheets of the non-interacting the-
544
+ ory, only one sheet emerges in the system, it is natural
545
+ to designate such a conducting state as a QM.
546
+ Cascade
547
+ of
548
+ phase
549
+ transition
550
+ between
551
+ different
552
+ symmetry-broken phases.— The QM state described
553
+ above remains stable only for sufficiently low x:
554
+ one
555
+ sector cannot accommodate too much doping. Indeed,
556
+ when x = x0/2, Eq. (27) implies that µ = ∆0. Doping
557
+ a single sector beyond this point is impossible: adding
558
+ more charge to this sector increases the chemical po-
559
+ tential beyond ∆0, unavoidably placing charges into
560
+ the remaining sectors as well. As a result, a cascade of
561
+ doping-driven phase transitions emerges.
562
+ The transi-
563
+ tions connect different metallic states, each state being
564
+ characterized by a number of doped sectors: 1, 2, 3, or
565
+ 4 [paramagnetic (PM) state] sectors.
566
+ Let us briefly describe this cascade of transitions. At
567
+ zero doping the system is gapped with the gap equal to
568
+ ∆0 in all sectors. For small x, the system absorbes all ex-
569
+ tra charge carriers into a single sector [say, sector (σ =↑,
570
+ ξ = +1)]. This is a QM state. At x = x0/4, a second
571
+ order phase transition inside the QM state takes place.
572
+ Beyond this doping, ∆↑+1 vanishes. However, the QM
573
+ state remains stable for x < x0/2. At higher doping the
574
+ QM energy becomes higher than the HM energy, and a
575
+ first order phase transition from QM to HM state occurs.
576
+ In the HM state, the gap is zero in two sectors [for defi-
577
+ niteness, we assign these to be (σ =↑, ξ = +1) and (σ =↑,
578
+ ξ = −1); however, other configurations are equiproba-
579
+ bly possible], and extra charge carriers are equally dis-
580
+ tributed between these two sectors.
581
+ As x increases further, one reaches the point where the
582
+ HM energy becomes equal to that of a 3/4 metal ( 3
583
+ 4M)
584
+ state. In such a state, three sectors [say, (σ =↑, ξ = +1),
585
+ x
586
+ 1st
587
+ 1st
588
+ 1st
589
+ 2nd
590
+
591
+ � �
592
+
593
+ � �
594
+ ��
595
+ ��
596
+ ���� � ��
597
+ ���� � ��
598
+ ���� � ��
599
+ ���� � ��
600
+ ���� � �
601
+ ���� � �
602
+ ���� � �
603
+ ���� � ��
604
+ ���� � �
605
+ ���� � �
606
+ ���� � ��
607
+ ���� � ��
608
+ ���� � �
609
+ ���� � ��
610
+ ���� � ��
611
+ ���� � ��
612
+
613
+ � ��
614
+
615
+ � ��
616
+
617
+ � ��
618
+
619
+ � ��
620
+ FIG. 1. Cascade of the doping-driven phase transitions be-
621
+ tween different FraM states with different valley and/or spin-
622
+ flavor (isospin) polarizations. Only the region of electron dop-
623
+ ing is shown. For hole doping the picture is identical up to a
624
+ replacement x → −x. Vertical solid (dashed) lines represent
625
+ first (second) order transitions.
626
+ (σ =↑, ξ = −1), and (σ =↓, ξ = +1)] are doped, and
627
+ the fourth sector, (σ =↓, ξ = −1), is gapped, with the
628
+ extra charge carriers being equally distributed among the
629
+ three doped sectors. For our simple model, the transition
630
+ into the 3
631
+ 4M happens at x =
632
+
633
+ 3/4x0. The transition is
634
+ first-order.
635
+ If doping is continued even further, the
636
+ 3
637
+ 4M state is
638
+ replaced by the PM state. This is yet another first-order
639
+ transition, and the last one in the transition cascade. It
640
+ occurs at x =
641
+
642
+ 3/2x0. The phase diagram of the system
643
+ is shown in Fig. 1. In this figure only the electron doping
644
+ is shown. Due to electron-hole symmetry of our model,
645
+ the phase diagram at hole doping is equivalent to that
646
+ shown in Fig. 1 up to the replacement x → −x.
647
+ Discussion.— We would like to stress here several im-
648
+ portant points. One must remember that the HM state
649
+ realized in our model upon sufficiently strong doping
650
+ is not the conventional HM [1, 2] whose Fermi surface
651
+ demonstrates perfect spin polarization. Instead, we now
652
+ have a spin-flavor HM [33–36], with perfect spin-flavor
653
+ polarization of the Fermi surface. This means that the
654
+ electron (hole) single-particle states reaching the Fermi
655
+ energy have their spin projection being equal to σ (to ¯σ).
656
+ (The related feature of the QM state was already men-
657
+ tioned above.) In a model with electron-hole symmetry
658
+ a spin-flavor-polarized FraM state does not accumulate
659
+ net spin polarization.
660
+ However, a finite spin polariza-
661
+ tion may accompany a finite spin-flavor polarization [33]
662
+ when such a symmetry is absent. The spin polarization
663
+ was indeed observed in Ref. 16.
664
+ We argued above that the relative stability of vari-
665
+ ous metallic states is affected by doping, triggering the
666
+ transitions between them. Doping is not, however, the
667
+ only factor that influence the competition between the
668
+ FraM phases.
669
+ Particular model’s ingredients favoring
670
+ HM states are the umklapp and backscattering interac-
671
+ tion terms. Specifically, the umklapp couples two sectors
672
+
673
+ 5
674
+ with unequal (−1)lσ, the backscattering, on the other
675
+ hand, connect the sectors with non-identical values of the
676
+ ξ index. Thus, in the presence of either strong Hum
677
+ int or
678
+ strong Hb
679
+ int only two (not four) decoupled sectors of the
680
+ mean-field Hamiltonian can be defined, promoting the
681
+ HM phase over other FraM’s. Therefore, in more realistic
682
+ models, the critical doping values are no longer propor-
683
+ tional to x0, with universal proportionality coefficients.
684
+ Instead, they become functions of the backscattering and
685
+ umklapp coupling constants.
686
+ The qualitative agreement between the remarkable re-
687
+ cent experiments reported in Ref. 16 and our formalism
688
+ is very encouraging. The proposed theory can account
689
+ for such experimentally observed features as the cascade
690
+ of phase transitions, magnetization, and valley polariza-
691
+ tions. Yet one must keep in mind that the experiments
692
+ were performed at finite electric field applied transverse
693
+ to a sample. In our formalism, this field is assumed to be
694
+ zero. Further research is needed to understand the role
695
+ of this field.
696
+ To conclude, we proposed a mechanism responsible for
697
+ the formation of the FraM states in doped AB-BLG. We
698
+ argue that, as doping increases, this system demonstrates
699
+ a cascade of phase transitions between various metallic
700
+ phases that differ in terms of spin-flavor and valley po-
701
+ larizations of their Fermi surfaces. Our theoretical find-
702
+ ings compare favorably to very recent experiments [16]
703
+ on AB-BLG.
704
+ [1] R. A. de Groot, F. M. Mueller, P. G. van Engen, and
705
+ K. H. J. Buschow, “New Class of Materials: Half-Metallic
706
+ Ferromagnets,” Phys. Rev. Lett. 50, 2024 (1983).
707
+ [2] M. I. Katsnelson, V. Y. Irkhin, L. Chioncel, A. I. Lichten-
708
+ stein, and R. A. de Groot, “Half-metallic ferromagnets:
709
+ From band structure to many-body effects,” Rev. Mod.
710
+ Phys. 80, 315 (2008).
711
+ [3] X. Hu, “Half-Metallic Antiferromagnet as a Prospective
712
+ Material for Spintronics,” Adv. Mater. 24, 294 (2012).
713
+ [4] K. E. H. M. Hanssen, P. E. Mijnarends, L. P. L. M.
714
+ Rabou, and K. H. J. Buschow, “Positron-annihilation
715
+ study of the half-metallic ferromagnet NiMnSb: Experi-
716
+ ment,” Phys. Rev. B 42, 1533 (1990).
717
+ [5] J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh,
718
+ and T. Venkatesan, “Direct evidence for a half-metallic
719
+ ferromagnet,” Nature 392, 794 (1998).
720
+ [6] Y. Ji, G. J. Strijkers, F. Y. Yang, C. L. Chien, J. M.
721
+ Byers, A. Anguelouch, G. Xiao, and A. Gupta, “Deter-
722
+ mination of the Spin Polarization of Half-Metallic CrO2
723
+ by Point Contact Andreev Reflection,” Phys. Rev. Lett.
724
+ 86, 5585 (2001).
725
+ [7] M. Jourdan,
726
+ J. Min´ar,
727
+ J. Braun,
728
+ A. Kronenberg,
729
+ S.
730
+ Chadov,
731
+ B.
732
+ Balke,
733
+ A.
734
+ Gloskovskii,
735
+ M.
736
+ Kolbe,
737
+ H. Elmers, G. Sch¨onhense, et al., “Direct observation
738
+ of half-metallicity in the Heusler compound Co2MnSi,”
739
+ Nat. Commun. 5, 3974 (2014).
740
+ [8] A. Du, S. Sanvito, and S. C. Smith, “First-Principles
741
+ Prediction of Metal-Free Magnetism and Intrinsic Half-
742
+ Metallicity in Graphitic Carbon Nitride,” Phys. Rev.
743
+ Lett. 108, 197207 (2012).
744
+ [9] A. Hashmi and J. Hong, “Metal free half metallicity in
745
+ 2D system: structural and magnetic properties of g-C4N3
746
+ on BN,” Sci. Rep. 4, 4374 (2014).
747
+ [10] Y.-W. Son, M. L. Cohen, and S. G. Louie, “Half-metallic
748
+ graphene nanoribbons,” Nature 444, 347 (2006).
749
+ [11] E. Kan, W. Hu, C. Xiao, R. Lu, K. Deng, J. Yang, and
750
+ H. Su, “Half-metallicity in organic single porous sheets,”
751
+ J. Am. Chem. Soc. 134, 5718 (2012).
752
+ [12] B. Huang, C. Si, H. Lee, L. Zhao, J. Wu, B.-L. Gu,
753
+ and W. Duan, “Intrinsic half-metallic BN–C nanotubes,”
754
+ Appl. Phys. Lett. 97, 043115 (2010).
755
+ [13] I. ˇZuti´c, J. Fabian, and S. Das Sarma, “Spintronics: Fun-
756
+ damentals and applications,” Rev. Mod. Phys. 76, 323
757
+ (2004).
758
+ [14] A. O. Sboychakov, A. L. Rakhmanov, A. V. Rozhkov,
759
+ and F. Nori, “Bilayer graphene can become a fractional
760
+ metal,” Phys. Rev. B 103, L081106 (2021).
761
+ [15] H. Zhou, T. Xie, A. Ghazaryan, T. Holder, J. R. Ehrets,
762
+ E. M. Spanton, T. Taniguchi, K. Watanabe, E. Berg,
763
+ M. Serbyn, et al., “Half- and quarter-metals in rhombo-
764
+ hedral trilayer graphene,” Nature 598, 429 (2021).
765
+ [16] de la Barrera, C. Sergio, S. Aronson, Z. Zheng, K. Watan-
766
+ abe,
767
+ T. Taniguchi,
768
+ Q. Ma,
769
+ P. Jarillo-Herrero,
770
+ and
771
+ R. Ashoori, “Cascade of isospin phase transitions in
772
+ Bernal-stacked bilayer graphene at zero magnetic field,”
773
+ Nature Physics 18, 771 (2022).
774
+ [17] A. Rozhkov, A. Sboychakov, A. Rakhmanov, and F. Nori,
775
+ “Electronic properties of graphene-based bilayer sys-
776
+ tems,” Phys. Rep. 648, 1 (2016).
777
+ [18] E. H. Hwang and S. Das Sarma, “Screening, Kohn
778
+ Anomaly, Friedel Oscillation, and RKKY Interaction in
779
+ Bilayer Graphene,” Phys. Rev. Lett. 101, 156802 (2008).
780
+ [19] Y. Lemonik, I. Aleiner, and V. I. Fal’ko, “Competing
781
+ nematic, antiferromagnetic, and spin-flux orders in the
782
+ ground state of bilayer graphene,” Phys. Rev. B 85,
783
+ 245451 (2012).
784
+ [20] O. Vafek, “Interacting fermions on the honeycomb bi-
785
+ layer: From weak to strong coupling,” Phys. Rev. B 82,
786
+ 205106 (2010).
787
+ [21] O. Vafek and K. Yang,
788
+ “Many-body instability of
789
+ Coulomb interacting bilayer graphene: Renormalization
790
+ group approach,” Phys. Rev. B 81, 041401 (2010).
791
+ [22] V. Cvetkovic, R. E. Throckmorton, and O. Vafek, “Elec-
792
+ tronic multicriticality in bilayer graphene,” Phys. Rev. B
793
+ 86, 075467 (2012).
794
+ [23] B. E. Feldman, J. Martin, and A. Yacoby, “Broken-
795
+ symmetry states and divergent resistance in suspended
796
+ bilayer graphene,” Nat. Phys. 5, 889 (2009).
797
+ [24] J. Martin, B. E. Feldman, R. T. Weitz, M. T. Allen, and
798
+ A. Yacoby, “Local Compressibility Measurements of Cor-
799
+ related States in Suspended Bilayer Graphene,” Phys.
800
+ Rev. Lett. 105, 256806 (2010).
801
+ [25] R. T. Weitz, M. T. Allen, B. E. Feldman, J. Martin, and
802
+ A. Yacoby, “Broken-Symmetry States in Doubly Gated
803
+ Suspended Bilayer Graphene,” Science 330, 812 (2010).
804
+ [26] A. S. Mayorov, D. C. Elias, M. Mucha-Kruczynski, R. V.
805
+ Gorbachev, T. Tudorovskiy, A. Zhukov, S. V. Moro-
806
+ zov, M. I. Katsnelson, V. I. Fal’ko, A. K. Geim, et al.,
807
+ “Interaction-Driven Spectrum Reconstruction in Bilayer
808
+ Graphene,” Science 333, 860 (2011).
809
+ [27] W. Bao, J. Velasco, F. Zhang, L. Jing, B. Standley,
810
+
811
+ 6
812
+ D. Smirnov, M. Bockrath, A. H. MacDonald, and C. N.
813
+ Lau, “Evidence for a spontaneous gapped state in ultra-
814
+ clean bilayer graphene,” PNAS 109, 10802 (2012).
815
+ [28] F. Freitag, J. Trbovic, M. Weiss, and C. Sch¨onenberger,
816
+ “Spontaneously Gapped Ground State in Suspended Bi-
817
+ layer Graphene,” Phys. Rev. Lett. 108, 076602 (2012).
818
+ [29] F. Freitag, M. Weiss, R. Maurand, J. Trbovic, and
819
+ C. Sch¨onenberger, “Homogeneity of bilayer graphene,”
820
+ Solid State Communications 152, 2053 (2012).
821
+ [30] J. Velasco Jr., L. Jing, W. Bao, Y. Lee, P. Kratz, V. Aji,
822
+ M. Bockrath, C. Lau, C. Varma, R. Stillwell, et al.,
823
+ “Transport spectroscopy of symmetry-broken insulating
824
+ states in bilayer graphene,” Nat. Nanotechnol. 7, 156
825
+ (2012).
826
+ [31] A. Veligura, H. J. van Elferen, N. Tombros, J. C. Maan,
827
+ U. Zeitler, and B. J. van Wees, “Transport gap in sus-
828
+ pended bilayer graphene at zero magnetic field,” Phys.
829
+ Rev. B 85, 155412 (2012).
830
+ [32] F. Freitag, M. Weiss, R. Maurand, J. Trbovic, and
831
+ C.
832
+ Sch¨onenberger,
833
+ “Spin
834
+ symmetry
835
+ of
836
+ the
837
+ bilayer
838
+ graphene ground state,” Phys. Rev. B 87, 161402 (2013).
839
+ [33] A. V. Rozhkov, A. L. Rakhmanov, A. O. Sboychakov,
840
+ K. I. Kugel, and F. Nori, “Spin-Valley Half-Metal as a
841
+ Prospective Material for Spin Valleytronics,” Phys. Rev.
842
+ Lett. 119, 107601 (2017).
843
+ [34] A. L. Rakhmanov, A. O. Sboychakov, K. I. Kugel, A. V.
844
+ Rozhkov, and F. Nori, “Spin-valley half-metal in systems
845
+ with Fermi surface nesting,” Phys. Rev. B 98, 155141
846
+ (2018).
847
+ [35] A. V. Rozhkov, A. O. Sboychakov, D. A. Khokhlov, A. L.
848
+ Rakhmanov, and K. I. Kugel, “New half-metallic states
849
+ in systems with spin and charge density wave,” Pis’ma v
850
+ ZhETF 112, 764 (2020).
851
+ [36] D. A. Khokhlov, A. L. Rakhmanov, A. V. Rozhkov, and
852
+ A. O. Sboychakov, “Dynamical spin susceptibility of a
853
+ spin-valley half-metal,” Phys. Rev. B 101, 235141 (2020).
854
+
N9E0T4oBgHgl3EQfjgF4/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
NNAyT4oBgHgl3EQfgvgA/content/2301.00362v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f4f6ab2809866d163b1e92ee8861a3a1308cd8294d17629af19e2174188ec7c
3
+ size 9086866
NNE3T4oBgHgl3EQfBglT/content/2301.04267v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:060acc0439c48a93e957b2aa43ec3e86fde1c70c37bb16b069cb0b289a4bdd6c
3
+ size 2064874
NNE3T4oBgHgl3EQfBglT/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95591a23ec60bd7391dd7ff4e3783f135fdc64cd7e7b94fc2f0b91c105faddcf
3
+ size 3342381
PNAzT4oBgHgl3EQfWvwu/content/tmp_files/2301.01305v1.pdf.txt ADDED
@@ -0,0 +1,1600 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Mon. Not. R. Astron. Soc. 000, 1–10 (2022)
2
+ Printed 5 January 2023
3
+ (MN LATEX style file v2.2)
4
+ Velocity waves in the Hubble diagram: signature of local galaxy clusters
5
+ Jenny G. Sorce1,2,3,4⋆, Roya Mohayaee5,6, Nabila Aghanim1, Klaus Dolag7,8, Nicola Malavasi7,1
6
+ 1 Universit´e Paris-Saclay, CNRS, Institut d’Astrophysique Spatiale, 91405, Orsay, France
7
+ 2 Univ. Lyon, ENS de Lyon, Univ. Lyon1, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69007, Lyon, France
8
+ 3Leibniz-Institut f¨ur Astrophysik (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany
9
+ 4Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
10
+ 5CNRS, UPMC, Institut d’Astrophysique de Paris, 98 bis Bld Arago, Paris, France
11
+ 6Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
12
+ 7University Observatory Munich, Scheinerstr. 1, 81679 M¨unchen, Germany
13
+ 8Max-Planck Institut f¨ur Astrophysik, Karl-Schwarzschild Str. 1, D-85741 Garching, Germany
14
+ ABSTRACT
15
+ The Universe expansion rate is modulated around local inhomogeneities due to their gravita-
16
+ tional potential. Velocity waves are then observed around galaxy clusters in the Hubble diagram.
17
+ This paper studies them in a ∼738 Mpc wide, with 20483 particles, cosmological simulation of our
18
+ cosmic environment (a.k.a. CLONE: Constrained LOcal & Nesting Environment Simulation). For
19
+ the first time, the simulation shows that velocity waves that arise in the lines-of-sight of the most
20
+ massive dark matter halos agree with those observed in local galaxy velocity catalogs in the lines-of-
21
+ sight of Coma and several other local (Abell) clusters. For the best-constrained clusters such as Virgo
22
+ and Centaurus, i.e. those closest to us, secondary waves caused by galaxy groups, further into the
23
+ non-linear regime, also stand out. This match is not utterly expected given that before being evolved
24
+ into a fully non-linear z=0 state, assuming ΛCDM, CLONE initial conditions are constrained with
25
+ solely linear theory, power spectrum and highly uncertain and sparse local peculiar velocities. Addi-
26
+ tionally, Gaussian fits to velocity wave envelopes show that wave properties are tightly tangled with
27
+ cluster masses. This link is complex though and involves the environment and formation history of
28
+ the clusters. Using machine learning techniques to grasp more thoroughly the complex wave-mass
29
+ relation, velocity waves could in the near future be used to provide additional and independent mass
30
+ estimates from galaxy dynamics within large cluster radii.
31
+ Key words: galaxies: clusters: individual – waves – methods: numerical – methods: analytical –
32
+ techniques: radial velocities – gravitation
33
+ 1
34
+ INTRODUCTION
35
+ As the largest gravitationally bound structures in the Universe, galaxy
36
+ clusters bear imprints of the cosmic growth visible through the
37
+ distribution and motion of galaxies in their surrounding environment
38
+ (see Kravtsov & Borgani 2012, for a review and references therein).
39
+ They constitute therefore powerful complementary probes to super-
40
+ novae and baryon acoustic oscillations in testing theories explaining
41
+ cosmic acceleration origin (see Weinberg et al. 2013, for a review).
42
+ Relations between halo masses and observables (optical galaxy
43
+ richness, Sunyaev-Zel’dovich effect, X-ray luminosity) must however
44
+ be calibrated beforehand to study the evolution of the cluster mass
45
+ function. Our capacity to discriminate among cosmological models is
46
+ thus tightly linked to the accuracy of cluster mass estimates. However,
47
+ most of the cluster matter content is not directly visible making their
48
+ mass estimates a particularly challenging task (see for a review Pratt
49
+ et al. 2019; Planck Collaboration et al. 2016).
50
+ With future imaging surveys to come (LSST, Burke 2006; Euclid,
51
+ ⋆ E-mail: jenny.sorce@universite-paris-saclay.fr / jsorce@aip.de
52
+ Peacock 2008; WFIRST, Green et al. 2012), stacked weak lensing mea-
53
+ surements will certainly provide the best cluster mass estimates, i.e.
54
+ with the 1% accuracy required (Mandelbaum et al. 2006) but limited to
55
+ small radii around clusters. Independent virial mass estimators (Heisler
56
+ et al. 1985), hydrostatic estimators for galaxy population (Carlberg
57
+ et al. 1997) or velocity caustics (boundaries between galaxies bound to
58
+ and escaping from the cluster potential, Diaferio 1999) constitute com-
59
+ plementary tools once calibrated. Their calibration suffers though from
60
+ the influence of baryonic physics and galaxy bias on velocity fields and
61
+ dispersion profiles. Perhaps velocity caustics are less prone to such sys-
62
+ tematics (Diaferio 1999) explaining their recent increased popularity.
63
+ Galaxy clusters can indeed be seen as disrupters of the expansion, thus
64
+ creating a velocity wave first mentioned by Tonry & Davis (1981) as
65
+ a triple-value region1 whose properties (mostly height and width) de-
66
+ pend on the cluster mass. Combined with infall models (Mohayaee &
67
+ Tully 2005), velocities of galaxies in the infall zones constitute thus
68
+ 1 Such an appellation derives directly from the fact that in a disrupted Hubble
69
+ diagram, galaxies at three distinct distances, d, share a similar velocity value
70
+ whereas in an unperturbed diagram, these galaxy velocities would differ pre-
71
+ cisely because of the expansion proportional to H0 × d.
72
+ © 2022 RAS
73
+ arXiv:2301.01305v1 [astro-ph.CO] 3 Jan 2023
74
+
75
+ 2
76
+ Sorce et al.
77
+ good mass proxies for galaxy clusters shown to be in good agreement
78
+ with virial mass estimates (Tully 2015). They have been used in dif-
79
+ ferent studies to retrieve the total amount of dark matter in groups
80
+ and clusters as well as to detect groups (e.g. Karachentsev et al. 2013;
81
+ Karachentsev & Nasonova 2013). Moreover, Zu et al. (2014) showed
82
+ that the wave shape is an excellent complementary probe: for instance,
83
+ f(R) modified gravity models enhance the wave height (infall veloc-
84
+ ity) and broaden its width (velocity dispersions). This translates into
85
+ a higher mass when considering a ΛCDM framework. Subsequently,
86
+ it would lead to cosmological tensions between S 8 values measured
87
+ with the cosmic microwave background and with the galaxy cluster
88
+ counts. Furthermore, velocity waves probe a cluster mass within radii
89
+ larger than those reached with weak lensing. Subsequently, combined
90
+ together, stacked weak lensing and velocity wave mass measurements
91
+ hold tighter constraints on dark energy than each of them separately.
92
+ Indeed, velocity waves are signatures of a tug of war between gravity
93
+ and dark energy. Differences between these two independent mass esti-
94
+ mates, one dynamic and one static, permit measuring the gravitational
95
+ slip between the Newtonian and curvature potentials. This constitutes
96
+ an excellent test of gravity.
97
+ Given future galaxy redshift and large spectroscopic follow-up
98
+ surveys (with Euclid, Peacock 2008; 4MOST, de Jong et al. 2012;
99
+ MOONS, Cirasuolo et al. 2014) of imaging ones, studying galaxy
100
+ infall kinematics to derive better cluster dynamic mass estimates is
101
+ surely the next priority. Cosmological simulations constitute critical
102
+ tools to test, understand and eventually calibrate this mass estimate
103
+ method applied to galaxy cluster observations. Ideally these simula-
104
+ tions must be constrained simulations2 to properly set the zero point
105
+ of the method. Namely, simulations must be designed to ensure that
106
+ the simulated and observed waves match in every aspect but if the
107
+ theoretical model somewhere fails and not because of, for instance,
108
+ different formation histories and/or environments. We are now able
109
+ to produce such simulations valid down to the cluster scale including
110
+ the formation history of the clusters (e.g. Sorce et al. 2016a, 2019,
111
+ 2021; Sorce 2018). These simulations are thus faithful reproduction
112
+ of our local environment including its clusters such as Virgo, Coma,
113
+ Centaurus, Perseus and several Abell clusters.
114
+ This paper thus starts with the first comparison between line-of-
115
+ sight velocity waves due to several observed local clusters and their
116
+ counterparts from a Constrained LOcal & Nesting Environment Sim-
117
+ ulation (CLONE) built within a ΛCDM framework. First, we present
118
+ the numerical CLONE used in this study. Next, we compare the ob-
119
+ served and simulated lines-of-sight that host velocity waves. To facil-
120
+ itate the comparisons, the background expansion is subtracted. Before
121
+ concluding, wave envelopes are fitted to study relations between wave
122
+ properties and cluster masses in a ΛCDM cosmology.
123
+ 2
124
+ THE CLONE SIMULATION
125
+ Constrained simulations are designed to match the local large-scale
126
+ structure around the Local Group. Several techniques have been
127
+ developed to build the initial conditions of such simulations (e.g.
128
+ Gottl¨ober et al. 2010; Kitaura 2013; Jasche & Wandelt 2013) with
129
+ density, velocity or both constraints. Here we use the technique
130
+ whose details (algorithms and steps) are described in Sorce et al.
131
+ (2016a); Sorce (2018). Local observational data used to constrain the
132
+ initial conditions are distances of galaxies and groups (Tully et al.
133
+ 2013; Sorce & Tempel 2017) converted to peculiar velocities (Sorce
134
+ 2 The initial conditions of such simulations stem from observational constraints
135
+ applied to the density and velocity fields.
136
+ -222
137
+ -148
138
+ -74
139
+ 0
140
+ 74
141
+ 148
142
+ 222
143
+ SGX (Mpc)
144
+ -222
145
+ -148
146
+ -74
147
+ 0
148
+ 74
149
+ 148
150
+ 222
151
+ SGY (Mpc)
152
+ Figure 1. ∼40 Mpc thick XY supergalactic slice of the CLONE. Black dots
153
+ stand for the dark matter halos (subhalos are excluded for clarity). Red dots are
154
+ galaxies from the 2MASS Galaxy Redshift Catalog (XSCz) for comparison pur-
155
+ poses only. Indeed, only a small fraction of local galaxy observational redshifts
156
+ have been used to derive peculiar velocities that were used as constraints (about
157
+ ∼2.5% of the XSCz catalog).
158
+ et al. 2016b; Sorce & Tempel 2018) that are bias-minimized (Sorce
159
+ 2015). We showed that constrained simulations obtained from this
160
+ particular technique, a.k.a. the CLONES (Sorce et al. 2021), are
161
+ currently the sole replicas of the local large-scale structure that include
162
+ the largest local clusters using only galaxy peculiar velocities as
163
+ constraints. Namely, the cosmic variance is effectively reduced within
164
+ a 200 Mpc radius centered on the Local Group down to the cluster
165
+ scale, i.e. 3-4 Mpc, (Sorce et al. 2016a). Galaxy clusters (such as
166
+ Virgo, Centaurus, Coma) have masses in agreement with observational
167
+ estimates (Sorce 2018). Several ensuing studies focused in particular
168
+ on the Virgo galaxy cluster. These studies confirmed the necessity of
169
+ using CLONES to get a high-fidelity Virgo-like cluster. Additionally,
170
+ they confirmed observationally-based formation scenarios of the latter
171
+ (Olchanski & Sorce 2018; Sorce et al. 2019, 2021).
172
+ To actually probe a large range of velocities in the infall zones,
173
+ the CLONE for the present study needs to have a sufficient resolution
174
+ to simulate, with a hundred particles at z=0, halos of intermediate mass
175
+ (∼1011-1012 M⊙). Its constrained initial conditions contain thus 20483
176
+ particles in a ∼738 Mpc comoving box (particle mass ∼109 M⊙). It ran
177
+ on more than 10,000 cores from z=120 to z=0 in the Planck cosmology
178
+ framework (Ωm=0.307 ; ΩΛ=0.693 ; H0=67.77 km s−1 Mpc−1 and
179
+ σ8 = 0.829, Planck Collaboration et al. 2014) using the adaptive mesh
180
+ refinement Ramses code (Teyssier 2002). The mesh is dynamically
181
+ (de-)refined from level 11 up to 18 according to a pseudo-Lagrangian
182
+ criterion, namely when the total density in a cell is larger (smaller)
183
+ than the density of a cell containing 8 dark matter particles. The initial
184
+ coarse grid is thus adaptively refined up to a best-achieved spatial
185
+ resolution of ∼2.8 kpc roughly constant in proper length (a new level
186
+ is added at expansion factors a = 0.1, 0.2, 0.4, 0.8 up to level 18 after
187
+ a = 0.8).
188
+ Using the halo finder, described in Aubert et al. (2004) and Tweed
189
+ et al. (2009), modified to work with 20483 (>231) particles, dark matter
190
+ halos and subhalos are detected in real space with the local maxima
191
+ of dark matter particle density field. Their edge is defined as the point
192
+ © 2022 RAS, MNRAS 000, 1–10
193
+
194
+ Velocity waves
195
+ 3
196
+ Figure 2. Schema of the cylinder used to select (sub)halos whose radial pecu-
197
+ liar velocities, derived as a function of the synthetic observer at the simulated
198
+ box center, are used to study the velocity wave arisen from the massive halo in
199
+ its center. While open circles stand for selected halos, dashed circles represent
200
+ excluded ones.
201
+ where the overdensity of dark matter mass drops below 80 times the
202
+ background density. We further apply a lower threshold of a minimum
203
+ of 100 dark matter particles. Fig. 1 shows the ∼40 Mpc thick XY super-
204
+ galactic slice of the CLONE. Black (red) dots stand for the dark matter
205
+ halos (galaxies from the 2MASS Galaxy Redshift Catalog - XSCz3).
206
+ Note that XSCz galaxies are used for sole comparison purposes. XSCz
207
+ is indeed far more complete than the peculiar velocity catalog used to
208
+ constrain the simulation (∼2.5% of the redshift catalog is used to de-
209
+ rive the peculiar velocity). In fact, it shows the constraining power of
210
+ the peculiar velocities that are correlated on large scales. Namely, the
211
+ simulation is constrained also in regions where no peculiar velocity
212
+ measurements were available and thus used as constraints. It confirms
213
+ once more that peculiar velocity catalogs fed to our technique, to re-
214
+ construct/constrain the local density and velocity fields, do not need to
215
+ be complete (Sorce et al. 2017).
216
+ 3
217
+ VELOCITY WAVE
218
+ 3.1
219
+ In simulated data
220
+ Positioning a synthetic observer at the simulation box center, we de-
221
+ rive radial peculiar velocities for all the dark matter halos and subha-
222
+ los in the z=0 catalog. We then draw lines-of-sight in the direction of
223
+ each dark matter halo more massive than 5 1014M⊙. All the (sub)halos
224
+ within 10 Mpc from the line-of-sight and within 74 Mpc along the
225
+ line-of-sight from a given massive dark matter halo (with the center
226
+ and edge of the box as upper limits) are selected to plot the latter cor-
227
+ responding velocity wave. Namely, as shown on Fig. 2, radial peculiar
228
+ velocities, with respect to the synthetic observer, of (sub)halos within
229
+ a cylinder at maximum 148 Mpc long and 20 Mpc wide are used to vi-
230
+ sualize the velocity wave caused by the massive dark matter halo in the
231
+ cylinder center. Note that because the simulation is constrained to re-
232
+ produce the local Universe, we choose not to use the periodic boundary
233
+ conditions to wrap around the box edges. It will indeed not be repre-
234
+ sentative of local structures. A 10 Mpc radius cylinder corresponds to
235
+ about three times the virial radius of the massive clusters under study
236
+ here (M>5 1014M⊙). Since the goal is to study the link between veloc-
237
+ ity wave properties and cluster masses, exact masses cannot be used to
238
+ define the cylinder shape. Finally, such large volumes permit probing
239
+ the infall region around the massive halos. Note that a cylinder shape
240
+ is preferable to a cone shape to get an unbiased wave signal. A cone
241
+ would indeed result in a distorted signal as it would probe a larger and
242
+ larger region around a massive halo with the distance.
243
+ 3.2
244
+ In observational data
245
+ Observational data are taken from the raw second and third catalogs
246
+ of the Cosmicflows project (Tully et al. 2013, 2016). Note that the
247
+ 3 https://wise2.ipac.caltech.edu/staff/jarrett/2mass/XSCz/specz.html
248
+ second catalog containing ∼8000 galaxies, with a mean distance of
249
+ ∼90 Mpc, serves as the basis to build the constraint-catalog of ∼5000
250
+ bias-minimized radial peculiar velocities of galaxies and groups with
251
+ a mean distance of ∼60 Mpc. By contrast, the third catalog contains
252
+ ∼17,000 galaxies with a mean distance of ∼120 Mpc. The third
253
+ catalog is not used to constrained our CLONE initial conditions and
254
+ thus constitute partly an independent dataset for consistency check.
255
+ More precisely, it serves the two-fold goal of extending the number
256
+ of observational datapoints to be compared with the simulation and
257
+ highlighting again the constraining power of peculiar velocities. The
258
+ latter can indeed permit recovering structures that are not directly
259
+ probed and that are at the limit of the non-linear threshold. In the
260
+ sense that there is no direct measurement in a given region but,
261
+ because the latter influences the velocities of other regions (large scale
262
+ correlations), it can still be reconstructed.
263
+ Uncertainties on distances and radial peculiar velocities in these
264
+ catalogs depend on the distance indicator used to derive the distance
265
+ moduli. Error bar sizes need to be limited to see clearly velocity waves.
266
+ Thus, to be able to compare with the simulated data, only galaxies with
267
+ uncertainties on distance moduli smaller than 0.2 dex are retained.
268
+ There remain 338 and 424 galaxies respectively from the second and
269
+ third catalogs with a mean distance of ∼50 Mpc. These galaxies are
270
+ mostly hosts of supernovae, especially those the furthest from us (dis-
271
+ tance indicator with a small uncertainty even as the distance increases).
272
+ To derive the radial peculiar velocities of these galaxies, we use
273
+ both galaxy distance moduli (µ) and observational redshifts (zobs)
274
+ following Davis & Scrimgeour (2014). We add supergalactic longitude
275
+ and latitude coordinates to derive galaxy cartesian supergalactic
276
+ coordinates. A cosmological model is then required to determine
277
+ peculiar velocities. While we use ΛCDM, as cosmicflows catalog zero
278
+ points are calibrated through a long process on WMAP (rather than
279
+ Planck) values (Ωm=0.27, ΩΛ=0.73, H0=74
280
+ km s−1 Mpc−1, Tully
281
+ et al. 2013, 2016), we have to use the same parameter values. We
282
+ indeed showed that when applying the bias minimization technique
283
+ to the peculiar velocity catalog of constraints, we drastically reduce
284
+ the dependence on ΛCDM cosmological parameter values (Sorce
285
+ & Tempel 2017). However, in order to be able to probe the whole
286
+ velocity wave for the comparisons, we have to use the raw catalog i.e.
287
+ with neither galaxy grouping nor bias minimization. Consequently,
288
+ if were to take Planck values to derive galaxy peculiar velocities,
289
+ the WMAP calibration would translate into a residual Hubble flow
290
+ visible in the background-expansion-subtracted Hubble diagram.
291
+ Subsequently, using WMAP values for the observations:
292
+ Luminosity distances, dlum, are derived from distance modulus mea-
293
+ surements, µ, obtained via distance indicators:
294
+ µ = 5log10(dlum (Mpc)) + 25
295
+ (1)
296
+ Cosmological redshifts, zcos, are then obtained through the equation:
297
+ dlum = (1 + zcos)
298
+ � zcos
299
+ 0
300
+ cdz
301
+ H0
302
+
303
+ (1 + z)3Ωm + ΩΛ
304
+ (2)
305
+ Galaxy radial peculiar velocity, vpec, are finally estimated, using the
306
+ observational zobs and cosmological zcos redshifts with the following
307
+ formula:
308
+ vpec = czobs − zcos
309
+ 1 + zcos
310
+ (3)
311
+ where vpec will always refer to the radial peculiar velocity in this paper
312
+ and c is the speed of light.
313
+ © 2022 RAS, MNRAS 000, 1–10
314
+
315
+ 4
316
+ Sorce et al.
317
+ Virgo
318
+ 0
319
+ 20
320
+ 40
321
+ 60
322
+ 80
323
+ d (Mpc)
324
+ 0
325
+ 2000
326
+ 4000
327
+ 6000
328
+ v (km s-1)
329
+ CLONE
330
+ CF2-67
331
+ CF3-67
332
+ CF2-74
333
+ CF3-74
334
+ CLONE
335
+ CF2-67
336
+ CF3-67
337
+ CF2-74
338
+ CF3-74
339
+ CLONE
340
+ CF2-67
341
+ CF3-67
342
+ CF2-74
343
+ CF3-74
344
+ CLONE
345
+ CF2-67
346
+ CF3-67
347
+ CF2-74
348
+ CF3-74
349
+ CLONE
350
+ CF2-67
351
+ CF3-67
352
+ CF2-74
353
+ CF3-74
354
+ Centaurus
355
+ 0
356
+ 20
357
+ 40
358
+ 60
359
+ 80
360
+ 100
361
+ d (Mpc)
362
+ 0
363
+ 2000
364
+ 4000
365
+ 6000
366
+ v (km s-1)
367
+ CLONE
368
+ CF2-67
369
+ CF3-67
370
+ CF2-74
371
+ CF3-74
372
+ Virgo
373
+ 0
374
+ 20
375
+ 40
376
+ 60
377
+ 80
378
+ d (Mpc)
379
+ -2000
380
+ -1000
381
+ 0
382
+ 1000
383
+ 2000
384
+ 3000
385
+ vpec (km s-1)
386
+ CLONE
387
+ CF2-67
388
+ CF3-67
389
+ CF2-74
390
+ CF3-74
391
+ Envelope
392
+ Fit
393
+ CLONE
394
+ CF2-67
395
+ CF3-67
396
+ CF2-74
397
+ CF3-74
398
+ Envelope
399
+ Fit
400
+ CLONE
401
+ CF2-67
402
+ CF3-67
403
+ CF2-74
404
+ CF3-74
405
+ Envelope
406
+ Fit
407
+ CLONE
408
+ CF2-67
409
+ CF3-67
410
+ CF2-74
411
+ CF3-74
412
+ Envelope
413
+ Fit
414
+ CLONE
415
+ CF2-67
416
+ CF3-67
417
+ CF2-74
418
+ CF3-74
419
+ Envelope
420
+ Fit
421
+ Centaurus
422
+ 0
423
+ 20
424
+ 40
425
+ 60
426
+ 80
427
+ 100
428
+ d (Mpc)
429
+ -2000
430
+ -1000
431
+ 0
432
+ 1000
433
+ 2000
434
+ 3000
435
+ vpec (km s-1)
436
+ CLONE
437
+ CF2-67
438
+ CF3-67
439
+ CF2-74
440
+ CF3-74
441
+ Envelope
442
+ Fit
443
+ CLONE
444
+ CF2-67
445
+ CF3-67
446
+ CF2-74
447
+ CF3-74
448
+ Envelope
449
+ Fit
450
+ CLONE
451
+ CF2-67
452
+ CF3-67
453
+ CF2-74
454
+ CF3-74
455
+ Envelope
456
+ Fit
457
+ CLONE
458
+ CF2-67
459
+ CF3-67
460
+ CF2-74
461
+ CF3-74
462
+ Envelope
463
+ Fit
464
+ CLONE
465
+ CF2-67
466
+ CF3-67
467
+ CF2-74
468
+ CF3-74
469
+ Envelope
470
+ Fit
471
+ Figure 3. Radial velocities of simulated dark matter (sub)halos (black and grey scale) and observed galaxies (orange, blue and red) as a function of the distance
472
+ from the synthetic observer and us respectively. Error bars stand for uncertainties on observational distance and velocity estimates. Orange and light blue (red and
473
+ dark blue) filled squares and diamonds show observed galaxies assuming H0=74 (67.77) km s−1 Mpc−1 for scaling positions. CF2 (CF3) corresponds to the second
474
+ (third) catalog of the Cosmicflows project. Larger symbols are used for galaxies, with a peculiar velocity higher than 1000 km s−1, identified as the closest to the
475
+ simulated massive halos assuming the synthetic observer at the box center and the same Supergalactic coordinate system and orientation as the local Universe. The
476
+ arrow indicates the position of the massive dark matter halo in the simulation. Names of corresponding observed clusters are given at the top of each panel. Velocity
477
+ waves stand out in the different lines-of-sight and there is a good agreement with observational datapoints for those two best-constrained clusters the closest to us.
478
+ Top: Hubble diagram. Bottom: Hubble flow subtracted. The solid and dashed yellow lines are respectively the simulated positive-half velocity wave envelope and its
479
+ Gaussian-plus-continuum fit. The color scale filling the black circles stands for their distance from the line-of-sight. From black to light grey, objects are less than
480
+ 2.5, 5, 7.5 and 10 Mpc away from the line-of-sight. The dark matter halo virial masses in the simulation are M=9.8×1014M⊙ and M=9.0×1014M⊙ for the Virgo and
481
+ Centaurus cluster counterparts respectively.
482
+ 3.3
483
+ Simulated vs. observed data
484
+ Assuming the synthetic observer at the box center and the simulated
485
+ volume oriented similarly to the local volume, observed and simulated
486
+ positions and lines-of-sight can be matched. We can only compare
487
+ velocity waves born from local galaxy clusters for which infalling
488
+ galaxy peculiar velocities, with uncertainties on corresponding
489
+ distance moduli smaller than 0.2 dex, are available in the observed
490
+ cluster surroundings. We thus select these clusters. For each simulated
491
+ massive dark matter halo, the quickest way is then to search for the
492
+ closest observed galaxy, in our selected above samples, with a radial
493
+ peculiar velocity greater than 1000 km s−1 (∼2σ above the average).
494
+ This is indeed a signature that it has most probably an observed cluster
495
+ with a mass of at least a few 1014M⊙ as a neighbor. Whenever a
496
+ simulated massive dark matter halo is within the 2σ uncertainty of
497
+ the observed galaxy distance, we select all the observed galaxies in
498
+ the cylinder corresponding to the line-of-sight. For every case, there
499
+ is indeed a massive observed cluster in the vicinity of the galaxies.
500
+ More to the point, given the Supergalactic coordinates of the observed
501
+ clusters and those of the simulated ones in the box, they indeed match.
502
+ Fig. 3 superimposes observed and simulated lines-of-sight with
503
+ the velocity waves born from the two closest most massive local
504
+ clusters. Observational data is of sufficient quality in their respec-
505
+ tive infall region to warrant adequate comparisons. From left to right,
506
+ galaxy clusters (dark matter halos) are at increasing distance from
507
+ us (the synthetic observer). The name of the clusters is indicated at
508
+ the top of each panel. Filled black and grey circles stand for simu-
509
+ lated (sub)halos while filled light blue and orange squares and dia-
510
+ monds represent observed galaxies. Because the simulation was run
511
+ with H0 = 67.77 km s−1 Mpc−1, filled dark blue and red squares and
512
+ diamonds are observed galaxies at positions rescaled with this latter
513
+ value. Position differences are always within about the 1σ uncertainty
514
+ © 2022 RAS, MNRAS 000, 1–10
515
+
516
+ Velocity waves
517
+ 5
518
+ Cluster
519
+ CLONE/CF2
520
+ CLONE/CF2
521
+ CLONE/CF3
522
+ CLONE/CF3
523
+ Cylinder radius
524
+ 10 Mpc
525
+ 2.5 Mpc
526
+ 10 Mpc
527
+ 2.5 Mpc
528
+ Virgo
529
+ 0.0098
530
+ 0.011
531
+ 0.0058
532
+ 0.0071
533
+ Centaurus
534
+ 0.010
535
+ 0.011
536
+ 0.006
537
+ 0.0073
538
+ Abell 569
539
+ 0.25
540
+ 0.25
541
+ 0.084
542
+ 0.085
543
+ Coma
544
+ 0.17
545
+ 0.17
546
+ 0.25
547
+ 0.25
548
+ Abell 85
549
+ 0.25
550
+ 0.25
551
+ 0.25
552
+ 0.25
553
+ Abell 2256
554
+ 0.50
555
+ 0.50
556
+ 0.50
557
+ 0.50
558
+ PGC 765572
559
+ 0.050
560
+ 0.051
561
+ 0.10
562
+ 0.10
563
+ PGC 999654
564
+ 0.50
565
+ 0.50
566
+ 0.50
567
+ 0.50
568
+ PGC 340526
569
+ 0.25
570
+ 0.25
571
+ 0.50
572
+ 0.50
573
+ PGC 46604
574
+ 0.50
575
+ 0.50
576
+ 0.50
577
+ 0.50
578
+ Table 1. Kolmogorov-Smirnov statistic or highest distance between the cumula-
579
+ tive distribution functions of the observed and simulated lines-of-sight including
580
+ the velocity waves.
581
+ on the distance. Arrows indicate the position of the most massive halos
582
+ in the lines-of-sight of interest.
583
+ In the top panels, the Hubble diagrams are clearly distorted by
584
+ the presence of massive halos. Their corresponding velocity wave or
585
+ triple-value region signatures show up. Bottom panels with the Hub-
586
+ ble flow subtracted equally confirms the waves. The simulated velocity
587
+ waves stand out in the peculiar velocity of (sub)halos plotted as a func-
588
+ tion of the distance from the synthetic observer diagrams for the two
589
+ massive dark matter halos. The agreement with the observational data
590
+ points is qualitatively good. All the more since only sparse peculiar ve-
591
+ locities of today field galaxies and groups are used to constrained the
592
+ linear initial density and velocity fields, at the positions of the latter
593
+ progenitors, using solely linear theory and a power spectrum assuming
594
+ a given cosmology. Then the full non-linear theory is used to evolved
595
+ these initial conditions from the initial redshift down to z=0 within a
596
+ ΛCDM framework.
597
+ The signatures of Virgo West and the group around NGC4709
598
+ that are respectively beyond Virgo and Centaurus in the lines-of-sight
599
+ can also be identified as secondary waves. These smaller waves follow
600
+ the highest ones representing the main clusters in both the observations
601
+ and the simulation. Additionally, a void between us and Centaurus
602
+ in the line-of-sight shows equally well in both the simulation and
603
+ the observations. The accuracy with which the CLONE reproduces
604
+ the lines-of-sight dynamical state of Virgo and Centaurus is visually
605
+ excellent.
606
+ To quantify the agreement between simulated and observed
607
+ lines-of-sight, we use a 2D-Kolmogorov-Smirnov statistic test applied
608
+ to the simulated and observed galaxy velocity and position samples
609
+ following Peacock (1983); Fasano & Franceschini (1987). p-values
610
+ obtained for Virgo and Centaurus are above 0.20. They are actually
611
+ close to 1.0 but values above 0.20 have no particular significance. They
612
+ only confirm that the observed and simulated distributions along the
613
+ line-of-sight are not significantly different. Additionally, Table 1 gives
614
+ the 2D-Kolmogorov-Smirnov (KS) statistic or the highest distance
615
+ between the cumulative distribution functions of the observed and
616
+ simulated lines-of-sight including the velocity waves. A single 2D-KS
617
+ statistic value has no particular meaning but several together permit
618
+ ordering the simulated lines-of-sight from those that match the most
619
+ their observational counterpart to those that match it the less (smallest
620
+ to largest values). Virgo and Centaurus lines-of-sight happen to be
621
+ equally well reproduced by the simulation. 2D-KS statistic values are
622
+ barely different when considering all the subhalos/galaxies within
623
+ a 10 Mpc radius or solely those within a 2.5 Mpc radius from the
624
+ line-of-sight. The agreement is slightly better with galaxies from the
625
+ third catalog (CF3) of the Cosmicflows project than with those of the
626
+ Cluster
627
+ CLONE/CF2
628
+ CLONE/CF2
629
+ CLONE/CF3
630
+ CLONE/CF3
631
+ Cylinder radius
632
+ 10 Mpc
633
+ 2.5 Mpc
634
+ 10 Mpc
635
+ 2.5 Mpc
636
+ Virgo
637
+ 6
638
+ 10
639
+ 9
640
+ 12
641
+ Centaurus
642
+ 21
643
+ 37
644
+ 25
645
+ 36
646
+ Abell 569
647
+ 14
648
+ 23
649
+ 11
650
+ 22
651
+ Coma
652
+ 27
653
+ 40
654
+ 205
655
+ 225
656
+ Abell 85
657
+ 184
658
+ 286
659
+ 299
660
+ 400
661
+ Abell 2256
662
+ 152
663
+ 152
664
+ 364
665
+ 364
666
+ PGC 765572
667
+ 39
668
+ 53
669
+ 56
670
+ 70
671
+ PGC 999654
672
+ 687
673
+ 687
674
+ 662
675
+ 662
676
+ PGC 340526
677
+ 92
678
+ 99
679
+ 16
680
+ 41
681
+ PGC 46604
682
+ 544
683
+ 544
684
+ 544
685
+ 544
686
+ Table 2. ζ-metric in km s−1. It measures the difference between the simulated
687
+ and observed lines-of-sight. The higher ζ is the more different the lines-of-sight
688
+ are. See the text for a detailed explanation.
689
+ second one, although the second one is the starting point to build the
690
+ constrained initial conditions. However, given that the third catalog
691
+ has more points and smaller uncertainties, it is encouraging that the
692
+ simulation matches more the third catalog than the second one. The
693
+ 2D-KS statistic test cannot indeed take into account uncertainties.
694
+ Finally, 2D-KS statistic values do not differ when using H0 = 67.77
695
+ rather than 74 km s−1 Mpc−1.
696
+ The 2D-KS statistic test cannot take into account the real distance
697
+ of galaxies. It compares only the cumulative distributions of galaxies
698
+ along the lines-of-sight using four directions (smallest to largest dis-
699
+ tances to the y-axis and vice versa, smallest to largest distances to the
700
+ x-axis - in that case velocities because they are centered on zero - and
701
+ vice versa). Consequently, we also define our own ζ-metric to compare
702
+ simulated and observed lines-of-sight as follows:
703
+ ζ = 1
704
+ n
705
+ n
706
+
707
+ i=1
708
+
709
+ (min[vobs[i] − vsim])2 + [(min[dobs[i] − dsim]) × H0]2
710
+ (4)
711
+ where n is the number of observed galaxies in the line-of-sight. vX are
712
+ the galaxy/subhalo observed and simulated peculiar velocities and dX
713
+ are their distances.
714
+ Table 2 gives the values of ζ for the different lines-of-sight.
715
+ Because ζ-values are only modified by a few percent when changing
716
+ H0 value, their mean is reported in the table. Like for the 2D-KS
717
+ statistic values, ζ-values permit ordering the simulated lines-of-sight
718
+ (including waves) that are the best reproduction of the observed ones
719
+ to those that reproduce them the less. Since our ζ-metric results in
720
+ similar conclusions as the 2D-KS statistic does, it seems appropriate.
721
+ Moreover, contrary to the 2D-KS statistic, it is sensitive to the real
722
+ distance of the cluster, not solely to its position on the fraction of
723
+ the line-of-sight that is studied. It thus includes both differences due
724
+ to a difference in height and to a shift in position along the entire
725
+ line-of-sight. It is easily checked by randomly shuffling observed
726
+ and simulated lines-of-sights and comparing them. The ζ-metric then
727
+ gives values on average between a 100 and up to 1000 km s−1. The
728
+ ζ-metric though, like the 2D-KS statistic, does not take into account
729
+ uncertainties on observational distance and velocity estimates.
730
+ In the rest of the paper, we work solely with the background ex-
731
+ pansion subtracted since it does not affect our conclusion and ease the
732
+ comparisons, studies and analyses.
733
+ Given the above mentioned success, although the simulation
734
+ matches best the local large-scale structure by construction in the inner
735
+ part, where most of the constraints are, Fig. 4 shows an additional four
736
+ massive halos that are more distant. These halos are still matching
737
+ nicely observational clusters that are further away. Tables 1 and 2
738
+ © 2022 RAS, MNRAS 000, 1–10
739
+
740
+ 6
741
+ Sorce et al.
742
+ Abell 569
743
+ 20
744
+ 40
745
+ 60
746
+ 80
747
+ 100
748
+ 120
749
+ 140
750
+ 160
751
+ d (Mpc)
752
+ -2000
753
+ -1000
754
+ 0
755
+ 1000
756
+ 2000
757
+ 3000
758
+ vpec (km s-1)
759
+ CLONE
760
+ CF2-67
761
+ CF3-67
762
+ CF2-74
763
+ CF3-74
764
+ Envelope
765
+ Fit
766
+ CLONE
767
+ CF2-67
768
+ CF3-67
769
+ CF2-74
770
+ CF3-74
771
+ Envelope
772
+ Fit
773
+ CLONE
774
+ CF2-67
775
+ CF3-67
776
+ CF2-74
777
+ CF3-74
778
+ Envelope
779
+ Fit
780
+ CLONE
781
+ CF2-67
782
+ CF3-67
783
+ CF2-74
784
+ CF3-74
785
+ Envelope
786
+ Fit
787
+ CLONE
788
+ CF2-67
789
+ CF3-67
790
+ CF2-74
791
+ CF3-74
792
+ Envelope
793
+ Fit
794
+ Coma
795
+ 60
796
+ 80
797
+ 100
798
+ 120
799
+ 140
800
+ 160
801
+ 180
802
+ d (Mpc)
803
+ -2000
804
+ -1000
805
+ 0
806
+ 1000
807
+ 2000
808
+ 3000
809
+ vpec (km s-1)
810
+ CLONE
811
+ CF2-67
812
+ CF3-67
813
+ CF2-74
814
+ CF3-74
815
+ Envelope
816
+ Fit
817
+ CLONE
818
+ CF2-67
819
+ CF3-67
820
+ CF2-74
821
+ CF3-74
822
+ Envelope
823
+ Fit
824
+ CLONE
825
+ CF2-67
826
+ CF3-67
827
+ CF2-74
828
+ CF3-74
829
+ Envelope
830
+ Fit
831
+ CLONE
832
+ CF2-67
833
+ CF3-67
834
+ CF2-74
835
+ CF3-74
836
+ Envelope
837
+ Fit
838
+ CLONE
839
+ CF2-67
840
+ CF3-67
841
+ CF2-74
842
+ CF3-74
843
+ Envelope
844
+ Fit
845
+ Abell 85
846
+ 160
847
+ 180
848
+ 200
849
+ 220
850
+ 240
851
+ 260
852
+ 280
853
+ 300
854
+ d (Mpc)
855
+ -2000
856
+ -1000
857
+ 0
858
+ 1000
859
+ 2000
860
+ 3000
861
+ vpec (km s-1)
862
+ CLONE
863
+ CF2-67
864
+ CF3-67
865
+ CF2-74
866
+ CF3-74
867
+ Envelope
868
+ Fit
869
+ CLONE
870
+ CF2-67
871
+ CF3-67
872
+ CF2-74
873
+ CF3-74
874
+ Envelope
875
+ Fit
876
+ CLONE
877
+ CF2-67
878
+ CF3-67
879
+ CF2-74
880
+ CF3-74
881
+ Envelope
882
+ Fit
883
+ CLONE
884
+ CF2-67
885
+ CF3-67
886
+ CF2-74
887
+ CF3-74
888
+ Envelope
889
+ Fit
890
+ CLONE
891
+ CF2-67
892
+ CF3-67
893
+ CF2-74
894
+ CF3-74
895
+ Envelope
896
+ Fit
897
+ Abell 2256
898
+ 180
899
+ 200
900
+ 220
901
+ 240
902
+ 260
903
+ 280
904
+ 300
905
+ 320
906
+ d (Mpc)
907
+ -2000
908
+ -1000
909
+ 0
910
+ 1000
911
+ 2000
912
+ 3000
913
+ vpec (km s-1)
914
+ CLONE
915
+ CF2-67
916
+ CF3-67
917
+ CF2-74
918
+ CF3-74
919
+ Envelope
920
+ Fit
921
+ CLONE
922
+ CF2-67
923
+ CF3-67
924
+ CF2-74
925
+ CF3-74
926
+ Envelope
927
+ Fit
928
+ CLONE
929
+ CF2-67
930
+ CF3-67
931
+ CF2-74
932
+ CF3-74
933
+ Envelope
934
+ Fit
935
+ CLONE
936
+ CF2-67
937
+ CF3-67
938
+ CF2-74
939
+ CF3-74
940
+ Envelope
941
+ Fit
942
+ CLONE
943
+ CF2-67
944
+ CF3-67
945
+ CF2-74
946
+ CF3-74
947
+ Envelope
948
+ Fit
949
+ Figure 4. Same as Figure 3 bottom panels for four clusters at increasing distance from us from left to right, top to bottom. Although these clusters are less con-
950
+ strained, the agreement between observed and simulated waves is still visually good especially for the first two. The dark matter halo masses in the simulation are
951
+ M=9.0×1014M⊙, M=12.6×1014M⊙, M=6.6×1014M⊙ and M=11.7×1014M⊙ for Abell 569, Coma, Abell 85 and Abell 2256 cluster counterparts respectively.
952
+ confirm the visual impression. The different values also show the
953
+ limitation of both metrics and confirm their complementarity. On
954
+ the one hand, the ζ-metric is more robust to small samples than the
955
+ 2D-KS statistic: e.g. Abell 569 has a smaller observational sample in
956
+ the second catalog of the Cosmicflows project than in the third one.
957
+ However, the ζ-values when comparing both observational samples to
958
+ the simulated one differ by only a few percent. On the contrary, the
959
+ 2D-KS statistic values grandly differ. One the other hand, the 2D-KS
960
+ statistic is more robust to observational uncertainties: peculiar velocity
961
+ values of galaxies in Coma, Abell 85 and Abell 2256 surroundings are
962
+ compatible, given their uncertainties, between the second and third
963
+ catalogs of the Cosmicflows project. They are higher though in the
964
+ third catalog. Consequently, the ζ-metric gives higher values when
965
+ comparing lines-of-sight from this third catalog to the simulated ones
966
+ rather than lines-of-sight from the second catalog to the simulated one.
967
+ Note though that it is not completely unexpected that the simulated
968
+ lines-of-sight match better those from the second catalog than the
969
+ third one. Indeed, the second catalog is the starting point to build the
970
+ constrained initial conditions.
971
+ Additionally, since observed galaxies with low distance uncertain-
972
+ ties are usually not exactly along the line-of-sight of the massive clus-
973
+ ters, their velocity constitutes a lower limit for the mass estimate of
974
+ the observed clusters. Indeed, galaxies perfectly aligned with the ob-
975
+ server and the cluster would have the highest possible velocity but such
976
+ galaxies are difficult to distinguish from those belonging to the cluster.
977
+ Consequently, for Virgo, Centaurus and Abell 569, the maximum pe-
978
+ culiar velocity in the simulation is slightly higher than that in the ob-
979
+ servations: it confirms that the simulated cluster have reached the low
980
+ mass limit set by the observations. Moreover, the difference between
981
+ the observed and simulated wave maxima is small enough that masses
982
+ are within the same mass range according to the Least Action modeling
983
+ (see for instance Mohayaee & Tully 2005; Tully & Mohayaee 2004).
984
+ This agreement is confirmed by observational data that follow the wave
985
+ shape so as to reproduce its width. The next section expands on the link
986
+ between wave properties and cluster masses. Note that the adequacy
987
+ between simulated and observed velocity wave shapes is really good
988
+ for Abell 569 given that even small uncertainty peculiar velocities, not
989
+ used to constrain this wave progenitor in the initial conditions’ linear
990
+ regime, follow also the simulated wave contour. There are indeed two
991
+ orange/red datapoints from the third catalog that have no blue counter-
992
+ part in the second catalog. The 2D-KS statistic small value confirms
993
+ the adequacy.
994
+ For Coma, Abell 85 and Abell 2256, given their hosted galaxy
995
+ peculiar velocity uncertainties, masses are also in good agreement and
996
+ the lower mass limit is reached. This is not fully expected given that
997
+ these clusters are at the edge of the constrained region (50%, 90% and
998
+ 99% of the constraints are in ∼75-80, 150-160 and 275-290 Mpc).
999
+ Additional precise observational data are however required to probe
1000
+ the wave slopes and check their width to tighten the constraint on the
1001
+ masses.
1002
+ Fig. 5 shows four additional velocity waves born from massive
1003
+ dark matter halos to which we can associate observed galaxies. The
1004
+ © 2022 RAS, MNRAS 000, 1–10
1005
+
1006
+ Velocity waves
1007
+ 7
1008
+ PGC765572
1009
+ 100
1010
+ 120
1011
+ 140
1012
+ 160
1013
+ 180
1014
+ 200
1015
+ 220
1016
+ 240
1017
+ d (Mpc)
1018
+ -2000
1019
+ -1000
1020
+ 0
1021
+ 1000
1022
+ 2000
1023
+ 3000
1024
+ vpec (km s-1)
1025
+ CLONE
1026
+ CF2-67
1027
+ CF3-67
1028
+ CF2-74
1029
+ CF3-74
1030
+ Envelope
1031
+ Fit
1032
+ CLONE
1033
+ CF2-67
1034
+ CF3-67
1035
+ CF2-74
1036
+ CF3-74
1037
+ Envelope
1038
+ Fit
1039
+ CLONE
1040
+ CF2-67
1041
+ CF3-67
1042
+ CF2-74
1043
+ CF3-74
1044
+ Envelope
1045
+ Fit
1046
+ CLONE
1047
+ CF2-67
1048
+ CF3-67
1049
+ CF2-74
1050
+ CF3-74
1051
+ Envelope
1052
+ Fit
1053
+ CLONE
1054
+ CF2-67
1055
+ CF3-67
1056
+ CF2-74
1057
+ CF3-74
1058
+ Envelope
1059
+ Fit
1060
+ PGC999654
1061
+ 120
1062
+ 140
1063
+ 160
1064
+ 180
1065
+ 200
1066
+ 220
1067
+ 240
1068
+ 260
1069
+ d (Mpc)
1070
+ -2000
1071
+ -1000
1072
+ 0
1073
+ 1000
1074
+ 2000
1075
+ 3000
1076
+ vpec (km s-1)
1077
+ CLONE
1078
+ CF2-67
1079
+ CF3-67
1080
+ CF2-74
1081
+ CF3-74
1082
+ Envelope
1083
+ Fit
1084
+ CLONE
1085
+ CF2-67
1086
+ CF3-67
1087
+ CF2-74
1088
+ CF3-74
1089
+ Envelope
1090
+ Fit
1091
+ CLONE
1092
+ CF2-67
1093
+ CF3-67
1094
+ CF2-74
1095
+ CF3-74
1096
+ Envelope
1097
+ Fit
1098
+ CLONE
1099
+ CF2-67
1100
+ CF3-67
1101
+ CF2-74
1102
+ CF3-74
1103
+ Envelope
1104
+ Fit
1105
+ CLONE
1106
+ CF2-67
1107
+ CF3-67
1108
+ CF2-74
1109
+ CF3-74
1110
+ Envelope
1111
+ Fit
1112
+ PGC340526
1113
+ 160
1114
+ 180
1115
+ 200
1116
+ 220
1117
+ 240
1118
+ 260
1119
+ 280
1120
+ d (Mpc)
1121
+ -2000
1122
+ -1000
1123
+ 0
1124
+ 1000
1125
+ 2000
1126
+ 3000
1127
+ vpec (km s-1)
1128
+ CLONE
1129
+ CF2-67
1130
+ CF3-67
1131
+ CF2-74
1132
+ CF3-74
1133
+ Envelope
1134
+ Fit
1135
+ CLONE
1136
+ CF2-67
1137
+ CF3-67
1138
+ CF2-74
1139
+ CF3-74
1140
+ Envelope
1141
+ Fit
1142
+ CLONE
1143
+ CF2-67
1144
+ CF3-67
1145
+ CF2-74
1146
+ CF3-74
1147
+ Envelope
1148
+ Fit
1149
+ CLONE
1150
+ CF2-67
1151
+ CF3-67
1152
+ CF2-74
1153
+ CF3-74
1154
+ Envelope
1155
+ Fit
1156
+ CLONE
1157
+ CF2-67
1158
+ CF3-67
1159
+ CF2-74
1160
+ CF3-74
1161
+ Envelope
1162
+ Fit
1163
+ PGC46604
1164
+ 160
1165
+ 180
1166
+ 200
1167
+ 220
1168
+ 240
1169
+ 260
1170
+ 280
1171
+ d (Mpc)
1172
+ -2000
1173
+ -1000
1174
+ 0
1175
+ 1000
1176
+ 2000
1177
+ 3000
1178
+ vpec (km s-1)
1179
+ CLONE
1180
+ CF2-67
1181
+ CF3-67
1182
+ CF2-74
1183
+ CF3-74
1184
+ Envelope
1185
+ Fit
1186
+ CLONE
1187
+ CF2-67
1188
+ CF3-67
1189
+ CF2-74
1190
+ CF3-74
1191
+ Envelope
1192
+ Fit
1193
+ CLONE
1194
+ CF2-67
1195
+ CF3-67
1196
+ CF2-74
1197
+ CF3-74
1198
+ Envelope
1199
+ Fit
1200
+ CLONE
1201
+ CF2-67
1202
+ CF3-67
1203
+ CF2-74
1204
+ CF3-74
1205
+ Envelope
1206
+ Fit
1207
+ CLONE
1208
+ CF2-67
1209
+ CF3-67
1210
+ CF2-74
1211
+ CF3-74
1212
+ Envelope
1213
+ Fit
1214
+ Figure 5. Same as Figure 3 bottom panels for four additional clusters. Names at the top of each panel are PGC (Principal Galaxy Catalog) numbers of the galaxies
1215
+ with the highest velocity in the observational catalog at the given locations.
1216
+ galaxies with the largest peculiar velocities are identified by their PGC
1217
+ (Principal Galaxy Catalog) number at the top of each panel. Here again,
1218
+ given the distance of these clusters and the sparsity and limit of our
1219
+ constraint-catalog, the agreement is quite good. Tables 1 and 2 confirm
1220
+ again the visual impression. They also highlight again the limitations of
1221
+ both metrics. Both values must be given together to conclude on how
1222
+ much the observed and simulated lines-of-sight match. Note that we
1223
+ identify other simulated velocity waves corresponding to local clusters
1224
+ (e.g. in the Perseus-Pisces region) but observational data is not of suf-
1225
+ ficient quality or absent in the infall region for comparisons. Nonethe-
1226
+ less, all the halos and associated waves are used for the next section
1227
+ studies. The mass range is actually extended down to 2 1014M⊙.
1228
+ 4
1229
+ WAVE PROPERTIES VS. CLUSTER MASSES
1230
+ 4.1
1231
+ The amplitude
1232
+ The wave amplitude is the first obvious property to check against halo
1233
+ mass. Indeed, the deeper the gravitational potential well, the faster
1234
+ should galaxies fall onto it. The amplitude is thus defined as the dif-
1235
+ ference between the maximum and minimum peculiar velocities of
1236
+ galaxies falling onto the cluster either from the front or from behind
1237
+ with respect to the synthetic observer. Fig. 6 thus shows the amplitude
1238
+ of the simulated velocity waves as a function of the dark matter halo
1239
+ masses. Each black and red filled circle corresponds to a halo. Red
1240
+ ones stand for clusters identified in Fig. 3 to 5. While it is immediate to
1241
+ notice that there is a clear correlation between the wave amplitude and
1242
+ the halo mass, one can also point out that the amplitude is extremely
1243
+ difficult to measure in observational data and that there is a residual
1244
+ scatter. Indeed, measuring the amplitude in observational data implies
1245
+ getting exquisite distance (peculiar velocity) estimates of galaxies ex-
1246
+ actly in the line-of-sight of the cluster with respect to us. It supposes
1247
+ first that there are actually galaxies exactly aligned. Then, identifying
1248
+ these galaxies and measuring their distances with great accuracy, while
1249
+ they fall onto the cluster from the front is already quite a challenge, let
1250
+ alone when they fall from behind.
1251
+ In any case, the residual scatter suggests that the amplitude, be it
1252
+ measurable, alone cannot be used as a precise proxy for cluster mass
1253
+ estimates. Part of this scatter is probably due to the fact the galaxies are
1254
+ not perfectly aligned with us and the cluster. The gravitational potential
1255
+ well shape might also be responsible for another part of this scatter. To
1256
+ a lesser extent, the large-scale structure environment might also play a
1257
+ role.
1258
+ 4.2
1259
+ The height
1260
+ While the wave height is not expected to be a better proxy than the
1261
+ wave amplitude, it is interesting to check whether there still is a tight
1262
+ Figure 6. Amplitude of the simulated velocity waves as a function of the dark
1263
+ matter halo masses. Halos shown in Fig. 3 to 5 are identified in red.
1264
+ enough correlation. Indeed, while it is challenging to have precise dis-
1265
+ tance measurements for both galaxies falling from the front and from
1266
+ behind a cluster in the line-of-sight with respect to us, it might be fea-
1267
+ sible especially for galaxies falling from the front. The height is thus
1268
+ defined as the maximum (minimum) peculiar velocities of galaxies
1269
+ falling onto the cluster from the front (behind) with respect to the syn-
1270
+ thetic observer. In Fig. 7, each black and red (blue and orange) filled
1271
+ circles stand for the height of a dark matter halo positive-(negative-
1272
+ )half wave as a function of its mass. Red and orange are used for dark
1273
+ matter halos from Fig. 3 to 5.
1274
+ A similar correlation as with the amplitude is found although
1275
+ with a somewhat larger scatter. Interestingly it also shows that velocity
1276
+ waves are not symmetric: their maximum differs from their minimum.
1277
+ Both the potential well shape and the non-perfect alignement observer-
1278
+ galaxy-halo or observer-halo-galaxy might be the reason for this asym-
1279
+ metry. Nonetheless because there still is a correlation and because in
1280
+ observational data it is easier to get accurate datapoints at the wave
1281
+ front than in its wake, it is legitimate to focus on the positive-half ve-
1282
+ locity wave shape to study more thoroughly the relation with the halo
1283
+ mass.
1284
+ © 2022 RAS, MNRAS 000, 1–10
1285
+
1286
+ 8
1287
+ Sorce et al.
1288
+ Figure
1289
+ 7.
1290
+ Dark
1291
+ (blue)
1292
+ filled
1293
+ circles
1294
+ are
1295
+ heights
1296
+ of
1297
+ the
1298
+ simulated
1299
+ positive(negative)-half velocity waves as a function of the dark matter halo
1300
+ masses. Halos shown in Fig. 3 to 5 are identified in red (orange).
1301
+ 4.3
1302
+ Height, width and continuum
1303
+ After deriving the positive-half wave envelope of every dark matter
1304
+ halo, we choose to fit the simplest model possible, a Gaussian-plus-
1305
+ continuum model, to each one of them as follows:
1306
+ vpec = Afit × e
1307
+ −(d−d0)2
1308
+ 2σ2
1309
+ fit
1310
+ + C fit
1311
+ (5)
1312
+ where Afit, σ fit and C fit are respectively the Gaussian amplitude,
1313
+ its standard deviation and a continuum. d0 depends on the halo
1314
+ distance and has no other purpose than centering the Gaussian on
1315
+ zero. Its sole physical meaning is to be the actual distance of the
1316
+ halo. The amplitude is related to the positive-half wave envelope
1317
+ height while the standard deviation is linked to its width. Finally, the
1318
+ continuum gives the positive-half wave offset from a zero average
1319
+ velocity. For visualization, envelopes and their fits for halos presented
1320
+ in Fig. 3 to 5 are shown as solid and dashed lines on these same figures.
1321
+ Fig. 8 gathers the three parameters of the fits and halo masses
1322
+ for a concomitant study to highlight an eventual multi-parameter
1323
+ correlation. The Gaussian amplitude is represented as a function of
1324
+ the Gaussian standard deviation while the color scale stands for the
1325
+ continuum. From black-violet to red, the continuum decreases from
1326
+ positive values to negative ones. The model uncertainty is shown as
1327
+ error bars for the amplitude and standard deviation. The color scale
1328
+ smoothness includes the continuum uncertainty. The Gaussian-plus-
1329
+ continuum model choice proves to be robust given the tiny error bars
1330
+ that it results in. The filled circle sizes are proportional to the dark
1331
+ matter halo masses. Finally, an additional small red filled circle is used
1332
+ to identify each halo analyzed in Fig. 3 to 5.
1333
+ The previous subsection (4.2) showed that there is a correlation
1334
+ between the wave height and the halo mass. It is thus not surprising to
1335
+ find back that the more massive the halo is (larger circle), the larger
1336
+ 500
1337
+ 1000
1338
+ 1500
1339
+ 2000
1340
+ Afit (km s-1)
1341
+ 2
1342
+ 4
1343
+ 6
1344
+ 8
1345
+ 10
1346
+ 12
1347
+ 14
1348
+ σfit (Mpc)
1349
+ 574
1350
+ 407
1351
+ 239
1352
+ 71
1353
+ -96
1354
+ -264 -432
1355
+ Cfit (km s-1)
1356
+ Virgo
1357
+ Centaurus
1358
+ Abell 569
1359
+ Coma
1360
+ Abell 85
1361
+ Abell 2256
1362
+ PGC765572
1363
+ PGC999654
1364
+ PGC340526
1365
+ PGC46604
1366
+ Figure 8. Parameters of the Gaussian-plus-continuum fit to the simulated
1367
+ positive-half velocity waves. σfit stands for the Gaussian standard deviation,
1368
+ Afit for its amplitude and C fit for the continuum. The filled circle sizes are pro-
1369
+ portional to dark matter halo masses. Tiny error bars on the standard deviation
1370
+ and amplitude resulting from fitting the envelopes highlight the adequacy of the
1371
+ model choice. Halos shown in Fig. 3 to 5 are identified with red nametags and
1372
+ additional small red filled circles.
1373
+ the Gaussian amplitude is (larger value). As stated above, the Gaussian
1374
+ amplitude is indeed the counterpart of the positive-half wave height.
1375
+ In addition, there is a small correlation between the amplitude
1376
+ and standard deviation thus halo mass. More massive halos seem to
1377
+ give birth to wider waves. The scatter is however quite large. It cer-
1378
+ tainly depends greatly on the halo triaxiality and thus on its orientation
1379
+ with respect to us. A similar conclusion is valid for the continuum, the
1380
+ smaller the continuum but for extreme values is, the more massive the
1381
+ halo is on average. Anyhow, the scatter is quite large in that case. A
1382
+ strong dependence on the global environment of the dark matter halo
1383
+ in addition to the halo mass might be in cause here.
1384
+ Interestingly a general pattern emerges quite clearly though:
1385
+ • the most massive halos (≳ 6 1014 M⊙) tend to give birth to positive-
1386
+ half waves that have a continuum compatible with zero or slightly
1387
+ negative/positive in addition to high amplitude and standard deviation
1388
+ values.
1389
+ • the less massive halos ( 2 1014 M⊙≲M≲ 4 1014 M⊙) tend to give birth
1390
+ to positive-half waves that have a continuum compatible with zero or
1391
+ slightly negative/positive in addition to low amplitude and standard
1392
+ deviation values.
1393
+ • intermediate mass halos (4 1014 M⊙≲M≲ 6 1014 M⊙) give rise to
1394
+ positive-half waves that have high continuum absolute values. Such
1395
+ values permit distinguishing them from the most massive halos with
1396
+ which they share high amplitude and possibly standard deviation
1397
+ values, especially in the negative continuum case.
1398
+ It is highly probable that the global environment or cosmic web is
1399
+ responsible for such a finding. We will investigate this link in more
1400
+ details in future studies.
1401
+ The halo segregation in different continuum value classes is an-
1402
+ other quite inspiring source. There seems to be a different correlation
1403
+ for each continuum value class:
1404
+ • Halos with fits resulting in a high (close to zero) continuum value
1405
+ © 2022 RAS, MNRAS 000, 1–10
1406
+
1407
+ Velocity waves
1408
+ 9
1409
+ seems to have masses correlated with the Gaussian amplitudes but not
1410
+ so much with the Gaussian standard deviations that appear to have low
1411
+ values (present a large scatter).
1412
+ • Halos with fits resulting in a very low continuum value have both
1413
+ amplitudes and standard deviations correlated together as well as with
1414
+ the masses.
1415
+ • Halos with fits resulting in either positive or negative intermediate
1416
+ continuum values present masses correlated with amplitudes and up
1417
+ to a certain point with standard deviations. Consequently, although to
1418
+ a lesser extent than for halos whose continuum values are quite low,
1419
+ amplitudes and standard deviations are slightly correlated.
1420
+ To summarize, since the fit parameters are interdependent, a
1421
+ global fit to the velocity wave seems the best approach to obtain clus-
1422
+ ter rough mass estimates rather than single and independent measure-
1423
+ ments of amplitude, height and width. Because different categories
1424
+ appear among halos, in future studies, a machine learning approach
1425
+ might become handy to actually get accurate enough mass estimates
1426
+ from sparse observations. In a first approach, the simple Gaussian-plus-
1427
+ continuum fit presented here could be used as a model reduction.
1428
+ 5
1429
+ CONCLUSIONS
1430
+ Galaxy clusters are excellent cosmological probes provided their
1431
+ mass estimates are accurately determined. Fueled with large imaging
1432
+ surveys, stacked weak lensing is the most promising mass estimate
1433
+ method though it provides estimates within relatively small radii.
1434
+ Given the large amount of accompanying redshift and spectroscopic
1435
+ data overlapping the imaging surveys, we must take the opportunity to
1436
+ calibrate also with a reasonable accuracy a method based on galaxy
1437
+ dynamics. Two independent measures hold indeed better constraints
1438
+ on the cosmological model. Infall zones of galaxy clusters are proba-
1439
+ bly the less sensitive to baryonic physics, thus mostly shielded from
1440
+ challenging systematics, and probe large radii. These manifestations
1441
+ of a tug of war between gravity and dark energy provide a unique
1442
+ avenue to test modified gravity theories when comparing resulting
1443
+ mass estimates to those from stacked weak lensing measurements.
1444
+ Combined with stacked weak lensing results, they might even yield
1445
+ evidence that departure from General Relativity on cosmological
1446
+ scales is responsible for the expansion acceleration.
1447
+ The accurate calibration of the relation between infall zones
1448
+ properties and cluster masses starts with careful comparisons between
1449
+ cosmological simulations and observations. In this paper, we thus
1450
+ present our largest and highest resolution Constrained Local &
1451
+ Nesting Environment Simulation (CLONE) built so far to reproduce
1452
+ numerically our cosmic environment. This simulation stems from
1453
+ initial conditions constrained by peculiar velocities of local galax-
1454
+ ies. By introducing this cosmological dark matter CLONE of the
1455
+ local large-scale structure with a particle mass of ∼109M⊙ within a
1456
+ ∼738 Mpc box, we have sufficient resolution to study the effect of
1457
+ the gravitational potential of massive local halos onto the velocity
1458
+ of (sub)halos. We can also compare with that of their observational
1459
+ cluster counterparts.
1460
+ Velocity waves stand out in radial peculiar velocity - distance to
1461
+ a box-centered synthetic observer diagram. The agreement between
1462
+ lines-of-sight including velocity waves, caused by the most massive
1463
+ dark matter halos of the CLONE and those born from their observa-
1464
+ tional local cluster counterparts, is visually good especially for the
1465
+ clusters the closest to us that are the best constrained (e.g. Virgo,
1466
+ Centaurus). Secondary waves due to smaller groups in (quasi) the
1467
+ same line-of-sight as the most massive clusters stand out equally even
1468
+ though they are further into the non-linear regime. Indeed, prior to
1469
+ full non-linear evolution to the z=0 state, assuming ΛCDM, CLONE
1470
+ initial conditions are constrained with solely the linear theory, a power
1471
+ spectrum and highly uncertain and sparse local peculiar velocities. The
1472
+ visual matching between the simulated and observed lines-of-sight
1473
+ is confirmed with 2D-Kolmogorov Smirnov (KS) statistic values and
1474
+ tests as well as with our own ζ-metric. Contrary to the 2D-KS statistic,
1475
+ the ζ-metric takes into account the real distance of galaxies along the
1476
+ entire lines-of-sight (not only the studied fractions). The ζ-metric is
1477
+ however more sensitive to the fact that observational uncertainties are
1478
+ not taken into account in these metrics. The two metrics appear to
1479
+ be complementary. They show that the closest clusters have the best
1480
+ reproduced lines-of-sight. The lines-of-sight of clusters at the edges of
1481
+ the constrained region and even slightly beyond are also reproduced
1482
+ by the simulation although to a smaller extent.
1483
+ Additionally, a Gaussian-plus-continuum fit to the envelope of
1484
+ the positive-half of all the velocity waves born from dark matter
1485
+ halos more massive than 2 1014M⊙ in the simulation reveals both the
1486
+ variety and complexity of the potential wells as well as the correlation
1487
+ of the fit parameters with the halo masses. Overall, the Gaussian
1488
+ amplitude is mostly linked to the halo mass, but for a few exceptions,
1489
+ with a residual scatter. Although the Gaussian standard deviation
1490
+ is not always correlated with the mass, it can be slightly correlated
1491
+ with the Gaussian amplitude thus with the mass. The continuum is
1492
+ certainly an interesting parameter to consider as it permits splitting
1493
+ the halos into different classes. Each continuum value seems to drive a
1494
+ given correlation between the Gaussian amplitude and the halo mass
1495
+ and, to a smaller extent, with the Gaussian standard deviation. To
1496
+ summarize, parameter fits are completely interdependent, a global fit
1497
+ to the velocity wave is then the best approach to obtain a first rough
1498
+ cluster mass estimate.
1499
+ First and foremost, this work confirms the potential of the
1500
+ velocity wave technique to get massive cluster mass estimates and
1501
+ test gravity and cosmological models. Our CLONES, with the first
1502
+ shown reproduction of observed lines-of-sight including velocity
1503
+ waves, could in the near future provide the zero point of galaxy
1504
+ infall kinematic technique calibrations (Zu & Weinberg 2013). A
1505
+ bayesian inference model or/and a machine learning technique built
1506
+ and trained on random simulated galaxy surveys that is then applied to
1507
+ both constrained simulated and observed galaxy surveys must recover
1508
+ the same local velocity waves and corresponding mass estimates to
1509
+ be validated. Our CLONES will moreover allow minimizing obser-
1510
+ vational biases as any real environmental and cluster property will
1511
+ be reproduced for perfect one-to-one comparisons. Local kinematic
1512
+ mass estimates can then become accurate. Once compared with other
1513
+ techniques of local galaxy cluster mass estimates, they will permit
1514
+ calibrating the zero-point of these other techniques to be applied to
1515
+ further-and-further away clusters.
1516
+ DATA AVAILABILITY
1517
+ Synthetic catalogs are available upon reasonable request to the authors.
1518
+ ACKNOWLEDGEMENTS
1519
+ The authors acknowledge the Gauss Centre for Supercomputing e.V.
1520
+ (www.gauss-centre.eu) and GENCI (https://www.genci.fr/) for funding
1521
+ this project by providing computing time on the GCS Supercomputer
1522
+ SuperMUC-NG at Leibniz Supercomputing Centre (www.lrz.de) and
1523
+ Joliot-Curie at TGCC (http://www-hpc.cea.fr), grants ID: 22307/22736
1524
+ © 2022 RAS, MNRAS 000, 1–10
1525
+
1526
+ 10
1527
+ Sorce et al.
1528
+ and A0080411510 respectively. This work was supported by the grant
1529
+ agreements ANR-21-CE31-0019 / 490702358 from the French Agence
1530
+ Nationale de la Recherche / DFG for the LOCALIZATION project and
1531
+ ERC-2015-AdG 695561 from the European Research Council (ERC)
1532
+ under the European Union’s Horizon 2020 research and innovation
1533
+ program for the ByoPiC project (https://byopic.eu). KD acknowledges
1534
+ support by the COMPLEX project from the ERC under the European
1535
+ Union’s Horizon 2020 research and innovation program grant agree-
1536
+ ment ERC-2019-AdG 882679. The authors thank the referee for their
1537
+ comments. JS thanks Marian Douspis for useful comments, the By-
1538
+ oPiC team and her CLUES collaborators for continuous discussions.
1539
+ REFERENCES
1540
+ Aubert D., Pichon C., Colombi S., 2004, MNRAS, 352, 376
1541
+ Burke D., 2006, in APS April Meeting Abstracts
1542
+ Carlberg R. G. et al., 1997, ApJ, 485, L13
1543
+ Cirasuolo M. et al., 2014, in Society of Photo-Optical Instrumentation
1544
+ Engineers (SPIE) Conference Series, Vol. 9147, Ground-based and
1545
+ Airborne Instrumentation for Astronomy V, Ramsay S. K., McLean
1546
+ I. S., Takami H., eds., p. 91470N
1547
+ Davis T. M., Scrimgeour M. I., 2014, MNRAS, 442, 1117
1548
+ de Jong R. S. et al., 2012, in Society of Photo-Optical Instrumentation
1549
+ Engineers (SPIE) Conference Series, Vol. 8446, Ground-based and
1550
+ Airborne Instrumentation for Astronomy IV, McLean I. S., Ramsay
1551
+ S. K., Takami H., eds., p. 84460T
1552
+ Diaferio A., 1999, MNRAS, 309, 610
1553
+ Fasano G., Franceschini A., 1987, MNRAS, 225, 155
1554
+ Gottl¨ober S., Hoffman Y., Yepes G., 2010, ArXiv e-prints: 1005.2687
1555
+ Green J. et al., 2012, arXiv e-prints, arXiv:1208.4012
1556
+ Heisler J., Tremaine S., Bahcall J. N., 1985, ApJ, 298, 8
1557
+ Jasche J., Wandelt B. D., 2013, MNRAS, 432, 894
1558
+ Karachentsev I. D., Nasonova O. G., 2013, MNRAS, 429, 2677
1559
+ Karachentsev I. D., Nasonova O. G., Courtois H. M., 2013, MNRAS,
1560
+ 429, 2264
1561
+ Kitaura F.-S., 2013, MNRAS, 429, L84
1562
+ Kravtsov A. V., Borgani S., 2012, ARA&A, 50, 353
1563
+ Mandelbaum R., Seljak U., Cool R. J., Blanton M., Hirata C. M.,
1564
+ Brinkmann J., 2006, MNRAS, 372, 758
1565
+ Mohayaee R., Tully R. B., 2005, ApJ, 635, L113
1566
+ Olchanski M., Sorce J. G., 2018, A&A, 614, A102
1567
+ Peacock J., 2008, in A Decade of Dark Energy
1568
+ Peacock J. A., 1983, MNRAS, 202, 615
1569
+ Planck Collaboration et al., 2014, A&A, 571, A16
1570
+ Planck Collaboration et al., 2016, A&A, 594, A24
1571
+ Pratt G. W., Arnaud M., Biviano A., Eckert D., Ettori S., Nagai D.,
1572
+ Okabe N., Reiprich T. H., 2019, Space Sci. Rev., 215, 25
1573
+ Sorce J. G., 2015, MNRAS, 450, 2644
1574
+ Sorce J. G., 2018, MNRAS, 478, 5199
1575
+ Sorce J. G., Blaizot J., Dubois Y., 2019, MNRAS, 486, 3951
1576
+ Sorce J. G., Dubois Y., Blaizot J., McGee S. L., Yepes G., Knebe A.,
1577
+ 2021, MNRAS, 504, 2998
1578
+ Sorce J. G., Gottl¨ober S., Hoffman Y., Yepes G., 2016a, MNRAS,
1579
+ 460, 2015
1580
+ Sorce J. G. et al., 2016b, MNRAS, 455, 2078
1581
+ Sorce J. G., Hoffman Y., Gottl¨ober S., 2017, MNRAS, 468, 1812
1582
+ Sorce J. G., Tempel E., 2017, MNRAS, 469, 2859
1583
+ Sorce J. G., Tempel E., 2018, MNRAS, 476, 4362
1584
+ Teyssier R., 2002, A&A, 385, 337
1585
+ Tonry J. L., Davis M., 1981, ApJ, 246, 680
1586
+ Tully R. B., 2015, AJ, 149, 54
1587
+ Tully R. B. et al., 2013, AJ, 146, 86
1588
+ Tully R. B., Courtois H. M., Sorce J. G., 2016, AJ, 152, 50
1589
+ Tully R. B., Mohayaee R., 2004, in IAU Colloq. 195: Outskirts of
1590
+ Galaxy Clusters: Intense Life in the Suburbs, Diaferio A., ed., pp.
1591
+ 205–211
1592
+ Tweed D., Devriendt J., Blaizot J., Colombi S., Slyz A., 2009, A&A,
1593
+ 506, 647
1594
+ Weinberg D. H., Mortonson M. J., Eisenstein D. J., Hirata C., Riess
1595
+ A. G., Rozo E., 2013, Phys. Rep., 530, 87
1596
+ Zu Y., Weinberg D. H., 2013, MNRAS, 431, 3319
1597
+ Zu Y., Weinberg D. H., Jennings E., Li B., Wyman M., 2014, MN-
1598
+ RAS, 445, 1885
1599
+ © 2022 RAS, MNRAS 000, 1–10
1600
+
PNAzT4oBgHgl3EQfWvwu/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
PdAyT4oBgHgl3EQf7fpb/content/tmp_files/2301.00839v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
PdAyT4oBgHgl3EQf7fpb/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
T9E4T4oBgHgl3EQfLwz0/content/tmp_files/2301.04942v1.pdf.txt ADDED
@@ -0,0 +1,3949 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+
3
+ Hydrogen storage in C14 type Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 high entropy alloy
4
+
5
+ Abhishek Kumar1
6
+ , T. P. Yadav1,2*, M.A. Shaz1and N.K. Mukhopadhyay3
7
+ 1Hydrogen Energy Centre, Department of Physics, Institute of Science
8
+ Banaras Hindu University, Varanasi, Uttar Pradesh, India
9
+ 2Department of Physics, Faculty of Science, University of Allahabad, Prayagraj-211002, India
10
+ 3Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University),
11
+ Varanasi-221 005, India
12
+
13
+ Abstract
14
+ In this present investigation, we discussed the synthesis, microstructure, and hydrogen storage behavior in C14 type
15
+ intermetallic Laves phase in a hexanary Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 high entropy alloy (HEA). In this HEA,
16
+ three elements are hydride-forming elements (Ti, V, Zr), whereas other three are non-hydride-forming elements (Fe,
17
+ Mn, Co). The thermodynamic parameter like enthalpy of mixing was calculated using the Meidma’s model. The
18
+ mixing enthalpy (∆Hmix) of Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA system was evaluated to be- 23.3472 kJ/mole, and
19
+ atomic radius mismatch turned out to be = 7.441%. This alloy was synthesized using 35 kW radio frequency
20
+ induction furnace under argon atmosphere. X-ray diffraction technique (XRD) revealed that this system belongs to
21
+ the C14 type Laves phase with unit cell parameters a= b =5.0158 Å, c=8.1790 Å, α = β = 90˚, γ = 120˚ under Space
22
+ group P63/mmc. Microstructural analysis was carried out with the help of a transmission electron microscope
23
+ (TEM). The SEM- EDX data confirms the elemental composition. Hydrogen absorption and desorption of this high
24
+ entropy intermetallic was carried out using the PCI apparatus. The total hydrogen storage of this system was
25
+ observed around ~0.53 wt%. However, it exhibited better hydrogen and ab/de-sorption kinetics. With the help of the
26
+ Van’t Hoff plot, calculated experimental change in enthalpy of Ti0.24-V0.17-Zr0.17-Co0.17-Fe0.08-Mn0.17 HEA for
27
+ hydrogen absorption and desorption was found out to be ~ -19.06 ± 1.12 kJ/mol and -34.10 ± 1.32 kJ /mol
28
+ respectively. The possibility of developing high entropy Laves phase-based hydrogen storage materials was
29
+ advocated.
30
+ Corresponding authors: yadavtp@gmail.com
31
+
32
+
33
+
34
+ Co
35
+ Mn
36
+ Zr
37
+ Ti
38
+ Melting in R.F.induction Furnace
39
+ HEA
40
+ (ascastalloy)Hydraulic
41
+ Press
42
+ 3 × 105 N/m²
43
+ RF-
44
+ Induction
45
+ Melting
46
+ Melting in R.F. induction Furnace
47
+ (Melted under dynamic Argon atmosphere)
48
+ 35-KW
49
+ (as cast alloy)
50
+ RF-Induction
51
+ Furnace2900
52
+ 3000
53
+ (b)
54
+ IYobserved
55
+ (a)
56
+ 1500
57
+ C14LavesPhase
58
+ Yealculated
59
+ 2500
60
+ 2100
61
+ IBraggPositions
62
+ 1700
63
+ 2000
64
+ (210)
65
+ 13)
66
+ 1300
67
+ 1500
68
+ 5
69
+ 2
70
+ -
71
+ 202)
72
+ 3
73
+ -
74
+ 5
75
+ (31
76
+ 5
77
+ -
78
+ 1000
79
+ 500
80
+ 10
81
+ 20
82
+ 30
83
+ 40
84
+ 50
85
+ 60
86
+ 70
87
+ 80
88
+ 90
89
+ 10
90
+ 20
91
+ 30
92
+ 40
93
+ 50
94
+ 60
95
+ 70
96
+ 80
97
+ 90
98
+ Angle (20)
99
+ Angle 20(a)
100
+ (b)
101
+ 0111
102
+ 1101
103
+ 100.1/mm
104
+ 10 1/nm
105
+ [1213]a
106
+ Mn
107
+ Fe
108
+ b
109
+ ZrLa
110
+ Ti Ka
111
+ B1
112
+ (d)
113
+ ElementWeight%
114
+ 720
115
+ WYA
116
+ ZrL
117
+ 17.15
118
+ 638
119
+ TiK
120
+ 22.92
121
+ 54C
122
+ VK
123
+ 17.46
124
+ MnK
125
+ 16.93
126
+ MaKa
127
+ FeK
128
+ 8.46
129
+ 36
130
+ CoK
131
+ 17.08
132
+ 27
133
+ 18
134
+ EMT-20.00AV
135
+ XX00SE 6es
136
+ De 1 Feo 2922
137
+ WD+ t0.0 mm
138
+ Tome.t:20.15
139
+ ZEIS
140
+ Le300.8
141
+ Hydrogenationof Tio.24Vo.17Zro.17Coo.17Feo.0aMno.17
142
+ 0.5
143
+ DehydrogenationofhydrogenatedTia.24Va.Zra.Coa.17Feo.oMna.17at
144
+ 0.7
145
+ at410cunder60atmH2pressure
146
+ Hydrogen absorbed (wt%)
147
+ desorbed (wt%)
148
+ 410Cunder1atmH2pressure
149
+ 0.6
150
+ 0.4 -
151
+ 0.5
152
+ (b)
153
+ (a)
154
+ 0.3
155
+ 0.4
156
+ 0.3.
157
+ 0.2
158
+ 0.2
159
+ 0.1
160
+ 0.0
161
+ 0.0
162
+ 0
163
+ 20
164
+ 40
165
+ 60
166
+ 80
167
+ 100
168
+ 120
169
+ 140
170
+ 16(
171
+ 0
172
+ 20
173
+ 40
174
+ 60
175
+ 80
176
+ 100
177
+ 120
178
+ 140
179
+ 160
180
+ Time (Min.)
181
+ Time (Min.).6
182
+ PClabs.at410°C
183
+ Van'tHoffplotforPclabsorption
184
+ 60
185
+ (a)
186
+ .5
187
+ (b)
188
+ PCI abs. at 425 °C
189
+ Van'tHoffplotforPcldesorption
190
+ Linear fit
191
+ 50
192
+ PClabs.at395°C
193
+ .4
194
+ PCldes.at410°C
195
+ .3
196
+ PCldes.at425°C
197
+ 40
198
+ (atm)
199
+ PCI des. at 395 °C
200
+ .2
201
+ 30
202
+ Equation
203
+ y=a+bx
204
+ ressure
205
+ .1-
206
+ Adj.R-Square
207
+ 0.99317
208
+ 0.997
209
+ Value
210
+ Standard Error
211
+ PClabs
212
+ Intercept
213
+ 4.15133
214
+ 0.19668
215
+ 20
216
+ .0
217
+ PClabs
218
+ Slope
219
+ -2.29308
220
+ 0.1342
221
+ PCIdes
222
+ Intercept
223
+ 7.2496
224
+ 0.23282
225
+ PCIdes
226
+ Slope
227
+ -4.10198
228
+ 0.159
229
+ 6'
230
+ P
231
+ 10
232
+ .8
233
+ 0
234
+ .7
235
+ 0.1
236
+ 0.2
237
+ 0.3
238
+ 0.4
239
+ 0.5
240
+ 0.6
241
+ 0.7
242
+ 1.43
243
+ 1.44
244
+ 1.45
245
+ 1.46
246
+ 1.47
247
+ 1.48
248
+ 0.0
249
+ 1.49
250
+ 1.5
251
+ Hydrogenstoragecapacity (wt%)
252
+ 1000/T(K)2
253
+
254
+ Introduction
255
+ Recent years have seen a lot of interest in a new class of materials called ‘High Entropy Alloys’ (HEAs) (Marques et
256
+ al. 2021, Yadav el al. 2017, Mishra et al. 2019, Mishra et al. 2020). In general, HEAs contain five or more elements,
257
+ each with a concentration of five to thirty-five atomic percentages (at.%) or more, in contrast to conventional alloys
258
+ based on a single primary element. To improve phase stability, HEAs are understood to exhibit large mixing
259
+ entropies of solid solution phases (Murty et al. 2019). The research publication by Yeh et al. (2004a 2004b), Cantor
260
+ et al. (2004), and Ranganathan (2003) was published for the first time for launching the field of HEAs. Yeh
261
+ independently proposed the single-phase multi-principal element alloy in 1995, making this idea a ground-breaking
262
+ success in researching HEAs (Murty et al. 2019). It' is interesting to note that the high mixing entropy in multi-
263
+ principal element alloys can dramatically lower the number of phases in high-order alloys, leading to a single phase
264
+ solid solution (Tsai et al. 2014). HEA has many functional properties like magnetic,, thermoelectric, catalytic,
265
+ hydrogen storage etc. In these functional properties, hydrogen storage is considered to be one of the interesting
266
+ areas to explore the HEA as an effective hydrogen storage material. Nowadays, in order to counteract climate
267
+ change and the rise in global warming brought on by conventional fossil fuels; people demand innovative, flexible,
268
+ clean, and green energy sources. Among many fuels that are readily available worldwide, hydrogen is accepted as
269
+ one of the best candidates due to its high energy range per unit mass. Three essential elements that are needed to use
270
+ hydrogen as a fuel in the future are (i) hydrogen production, (ii) its storage, and (iii) applications. Hydrogen storage
271
+ is one of the most crucial components of using hydrogen as a fuel. One of the safest and most efficient ways to store
272
+ hydrogen is in solid-state metal hydrides. Due to the infinite combination of alloy forming possibilities, the HEAs
273
+ are novel and promising materials for hydrogen storage (Yadav et al. 2022). In 2010, the first investigation was done
274
+ in HEAs to study the hydrogen storage kinetics. This study claimed 0.03-1.80 wt% hydrogen storage in multi-
275
+ principal component CoFeMnTixVyZrz (Kao et al. 2010) alloys; after that, in TiZrHfNbV HEA, 2.7wt% hydrogen
276
+ storage was reported in 2016 (Sahlberg et al. 2016). There is only one BCC phase in this alloy composition. One
277
+ more point common in this system is that this alloy system is designed with all the hydride forming elements,
278
+ because of which it has a good hydrogen storage capacity. In recent years hydrogen storage is reported as high as
279
+ 3.51 wt% in V35Ti30Cr25Fe5Mn5 HEA belonging to a single BCC phase (Liu et al. 2021). On the contrary, the
280
+ maximum hydrogen storage in Laves phases is known to be 1.91 wt% (Sarc et al. 2020). It can stated from the
281
+ reported data that the Laves phase has less storage properties and better absorption and desorption kinetics
282
+
283
+ Co
284
+ Mn
285
+ Zr
286
+ Ti
287
+ Melting in R.F.induction Furnace
288
+ HEA
289
+ (ascastalloy)Hydraulic
290
+ Press
291
+ 3 × 105 N/m²
292
+ RF-
293
+ Induction
294
+ Melting
295
+ Melting in R.F. induction Furnace
296
+ (Melted under dynamic Argon atmosphere)
297
+ 35-KW
298
+ (as cast alloy)
299
+ RF-Induction
300
+ Furnace2900
301
+ 3000
302
+ (b)
303
+ IYobserved
304
+ (a)
305
+ 1500
306
+ C14LavesPhase
307
+ Yealculated
308
+ 2500
309
+ 2100
310
+ IBraggPositions
311
+ 1700
312
+ 2000
313
+ (210)
314
+ 13)
315
+ 1300
316
+ 1500
317
+ 5
318
+ 2
319
+ -
320
+ 202)
321
+ 3
322
+ -
323
+ 5
324
+ (31
325
+ 5
326
+ -
327
+ 1000
328
+ 500
329
+ 10
330
+ 20
331
+ 30
332
+ 40
333
+ 50
334
+ 60
335
+ 70
336
+ 80
337
+ 90
338
+ 10
339
+ 20
340
+ 30
341
+ 40
342
+ 50
343
+ 60
344
+ 70
345
+ 80
346
+ 90
347
+ Angle (20)
348
+ Angle 20(a)
349
+ (b)
350
+ 0111
351
+ 1101
352
+ 100.1/mm
353
+ 10 1/nm
354
+ [1213]a
355
+ Mn
356
+ Fe
357
+ b
358
+ ZrLa
359
+ Ti Ka
360
+ B1
361
+ (d)
362
+ ElementWeight%
363
+ 720
364
+ WYA
365
+ ZrL
366
+ 17.15
367
+ 638
368
+ TiK
369
+ 22.92
370
+ 54C
371
+ VK
372
+ 17.46
373
+ MnK
374
+ 16.93
375
+ MaKa
376
+ FeK
377
+ 8.46
378
+ 36
379
+ CoK
380
+ 17.08
381
+ 27
382
+ 18
383
+ EMT-20.00AV
384
+ XX00SE 6es
385
+ De 1 Feo 2922
386
+ WD+ t0.0 mm
387
+ Tome.t:20.15
388
+ ZEIS
389
+ Le300.8
390
+ Hydrogenationof Tio.24Vo.17Zro.17Coo.17Feo.0aMno.17
391
+ 0.5
392
+ DehydrogenationofhydrogenatedTia.24Va.Zra.Coa.17Feo.oMna.17at
393
+ 0.7
394
+ at410cunder60atmH2pressure
395
+ Hydrogen absorbed (wt%)
396
+ desorbed (wt%)
397
+ 410Cunder1atmH2pressure
398
+ 0.6
399
+ 0.4 -
400
+ 0.5
401
+ (b)
402
+ (a)
403
+ 0.3
404
+ 0.4
405
+ 0.3.
406
+ 0.2
407
+ 0.2
408
+ 0.1
409
+ 0.0
410
+ 0.0
411
+ 0
412
+ 20
413
+ 40
414
+ 60
415
+ 80
416
+ 100
417
+ 120
418
+ 140
419
+ 16(
420
+ 0
421
+ 20
422
+ 40
423
+ 60
424
+ 80
425
+ 100
426
+ 120
427
+ 140
428
+ 160
429
+ Time (Min.)
430
+ Time (Min.).6
431
+ PClabs.at410°C
432
+ Van'tHoffplotforPclabsorption
433
+ 60
434
+ (a)
435
+ .5
436
+ (b)
437
+ PCI abs. at 425 °C
438
+ Van'tHoffplotforPcldesorption
439
+ Linear fit
440
+ 50
441
+ PClabs.at395°C
442
+ .4
443
+ PCldes.at410°C
444
+ .3
445
+ PCldes.at425°C
446
+ 40
447
+ (atm)
448
+ PCI des. at 395 °C
449
+ .2
450
+ 30
451
+ Equation
452
+ y=a+bx
453
+ ressure
454
+ .1-
455
+ Adj.R-Square
456
+ 0.99317
457
+ 0.997
458
+ Value
459
+ Standard Error
460
+ PClabs
461
+ Intercept
462
+ 4.15133
463
+ 0.19668
464
+ 20
465
+ .0
466
+ PClabs
467
+ Slope
468
+ -2.29308
469
+ 0.1342
470
+ PCIdes
471
+ Intercept
472
+ 7.2496
473
+ 0.23282
474
+ PCIdes
475
+ Slope
476
+ -4.10198
477
+ 0.159
478
+ 6'
479
+ P
480
+ 10
481
+ .8
482
+ 0
483
+ .7
484
+ 0.1
485
+ 0.2
486
+ 0.3
487
+ 0.4
488
+ 0.5
489
+ 0.6
490
+ 0.7
491
+ 1.43
492
+ 1.44
493
+ 1.45
494
+ 1.46
495
+ 1.47
496
+ 1.48
497
+ 0.0
498
+ 1.49
499
+ 1.5
500
+ Hydrogenstoragecapacity (wt%)
501
+ 1000/T(K)3
502
+
503
+ compared to BCC phase. The investigation on low-vanadium TiZrMnCrV-based alloys for high-density hydrogen
504
+ storage (Zhou et al. 2021) was reported. Due to its maximal interstitial sites available for absorbing hydrogen in
505
+ their voids, C14 Laves phase has been explored as hydrogen storage phase tested in recent study. People have
506
+ recently been concentrating on the research of phase stability during hydrogen absorption and desorption of HEAs.
507
+ In multi-component HEA for TiZrFeMnCrV (Chen et al. 2022), C14 type Laves phase-based HEA was fabricated
508
+ and followed by hydrogen storage testing after mechanical milling. The maximal hydrogen absorption for this alloy
509
+ was reported to be 1.80 wt% for the first cycle and 1.76 wt% for the second cycle. According to their findings, the
510
+ hydrogen storage capacity varied marginally between each cycle's i.e., 1.76 and 1.73 wt%. In another study,
511
+ TiZrCrMnFeNi HEA of C14 Laves phase has exhibited hydrogen absorption as 1.7 weight percent (Edalati et al.
512
+ 2020). Kumar et al (2022) has shown that TiZrVCrNi Laves phase with 1-52 weight percent hydrogen remains
513
+ stable even after 10 cycles of hydrogenation from the perspective of phase stability. The TiZrNbCrFe HEA
514
+ consisting of C14 Laves phase as maor and BCC phase as minor was reported by Floriano et al. 2021 to have 1.9
515
+ wt% hydrogen storage capacity.In view of the potential of HEAs for hydrogen storage capability, it was felt worth
516
+ pursuing the study of other high entropy based alloys for exploring their structure and hydrogen storage
517
+ performance. Accordingly, in the present study, we selected TiZrVMnFeCo nonequiatomic HEAs and investigated
518
+ the structure, microstructure, and hydrogen storage kinetics. We chose a HEA system with three hydride forming
519
+ elements (TiZrV) and the remaining three non-hydride-forming elements (Mn, Fe, Co).The thermodynamic
520
+ calculation for evaluating enthalpy of mixing of this HEA was done using Meidma model. This HEA was
521
+ synthesized with the help of a 35 KW Radio Frequency Induction furnace in the argon atmosphere and characterized
522
+ by XRD, SEM and TEM techniques Hydrogen storage performance was evaluated using pressure composition
523
+ isotherm (PCI) equipment supplied by Advanced Material Corporation (Pittsburgh, USA).
524
+
525
+ Material synthesis and characterization methods
526
+ The high purity materials powder for the synthesis of the Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA system was procured
527
+ from Alfa Aesar with a purity of more than 99.50%. The constituent elements were taken as per their stoichiometry
528
+ for making a palette using a cylindrical steel mold equipped with the hydraulic press of acting pressure ~3x105
529
+ N/m2. The palette (~10 g by weight) then used for the as-cast synthesis of multicomponent HEA using the RF
530
+ induction melting process under argon atmosphere (purity of more than 99.90%). The ingots are melted four times to
531
+
532
+ Co
533
+ Mn
534
+ Zr
535
+ Ti
536
+ Melting in R.F.induction Furnace
537
+ HEA
538
+ (ascastalloy)Hydraulic
539
+ Press
540
+ 3 × 105 N/m²
541
+ RF-
542
+ Induction
543
+ Melting
544
+ Melting in R.F. induction Furnace
545
+ (Melted under dynamic Argon atmosphere)
546
+ 35-KW
547
+ (as cast alloy)
548
+ RF-Induction
549
+ Furnace2900
550
+ 3000
551
+ (b)
552
+ IYobserved
553
+ (a)
554
+ 1500
555
+ C14LavesPhase
556
+ Yealculated
557
+ 2500
558
+ 2100
559
+ IBraggPositions
560
+ 1700
561
+ 2000
562
+ (210)
563
+ 13)
564
+ 1300
565
+ 1500
566
+ 5
567
+ 2
568
+ -
569
+ 202)
570
+ 3
571
+ -
572
+ 5
573
+ (31
574
+ 5
575
+ -
576
+ 1000
577
+ 500
578
+ 10
579
+ 20
580
+ 30
581
+ 40
582
+ 50
583
+ 60
584
+ 70
585
+ 80
586
+ 90
587
+ 10
588
+ 20
589
+ 30
590
+ 40
591
+ 50
592
+ 60
593
+ 70
594
+ 80
595
+ 90
596
+ Angle (20)
597
+ Angle 20(a)
598
+ (b)
599
+ 0111
600
+ 1101
601
+ 100.1/mm
602
+ 10 1/nm
603
+ [1213]a
604
+ Mn
605
+ Fe
606
+ b
607
+ ZrLa
608
+ Ti Ka
609
+ B1
610
+ (d)
611
+ ElementWeight%
612
+ 720
613
+ WYA
614
+ ZrL
615
+ 17.15
616
+ 638
617
+ TiK
618
+ 22.92
619
+ 54C
620
+ VK
621
+ 17.46
622
+ MnK
623
+ 16.93
624
+ MaKa
625
+ FeK
626
+ 8.46
627
+ 36
628
+ CoK
629
+ 17.08
630
+ 27
631
+ 18
632
+ EMT-20.00AV
633
+ XX00SE 6es
634
+ De 1 Feo 2922
635
+ WD+ t0.0 mm
636
+ Tome.t:20.15
637
+ ZEIS
638
+ Le300.8
639
+ Hydrogenationof Tio.24Vo.17Zro.17Coo.17Feo.0aMno.17
640
+ 0.5
641
+ DehydrogenationofhydrogenatedTia.24Va.Zra.Coa.17Feo.oMna.17at
642
+ 0.7
643
+ at410cunder60atmH2pressure
644
+ Hydrogen absorbed (wt%)
645
+ desorbed (wt%)
646
+ 410Cunder1atmH2pressure
647
+ 0.6
648
+ 0.4 -
649
+ 0.5
650
+ (b)
651
+ (a)
652
+ 0.3
653
+ 0.4
654
+ 0.3.
655
+ 0.2
656
+ 0.2
657
+ 0.1
658
+ 0.0
659
+ 0.0
660
+ 0
661
+ 20
662
+ 40
663
+ 60
664
+ 80
665
+ 100
666
+ 120
667
+ 140
668
+ 16(
669
+ 0
670
+ 20
671
+ 40
672
+ 60
673
+ 80
674
+ 100
675
+ 120
676
+ 140
677
+ 160
678
+ Time (Min.)
679
+ Time (Min.).6
680
+ PClabs.at410°C
681
+ Van'tHoffplotforPclabsorption
682
+ 60
683
+ (a)
684
+ .5
685
+ (b)
686
+ PCI abs. at 425 °C
687
+ Van'tHoffplotforPcldesorption
688
+ Linear fit
689
+ 50
690
+ PClabs.at395°C
691
+ .4
692
+ PCldes.at410°C
693
+ .3
694
+ PCldes.at425°C
695
+ 40
696
+ (atm)
697
+ PCI des. at 395 °C
698
+ .2
699
+ 30
700
+ Equation
701
+ y=a+bx
702
+ ressure
703
+ .1-
704
+ Adj.R-Square
705
+ 0.99317
706
+ 0.997
707
+ Value
708
+ Standard Error
709
+ PClabs
710
+ Intercept
711
+ 4.15133
712
+ 0.19668
713
+ 20
714
+ .0
715
+ PClabs
716
+ Slope
717
+ -2.29308
718
+ 0.1342
719
+ PCIdes
720
+ Intercept
721
+ 7.2496
722
+ 0.23282
723
+ PCIdes
724
+ Slope
725
+ -4.10198
726
+ 0.159
727
+ 6'
728
+ P
729
+ 10
730
+ .8
731
+ 0
732
+ .7
733
+ 0.1
734
+ 0.2
735
+ 0.3
736
+ 0.4
737
+ 0.5
738
+ 0.6
739
+ 0.7
740
+ 1.43
741
+ 1.44
742
+ 1.45
743
+ 1.46
744
+ 1.47
745
+ 1.48
746
+ 0.0
747
+ 1.49
748
+ 1.5
749
+ Hydrogenstoragecapacity (wt%)
750
+ 1000/T(K)4
751
+
752
+ ensure uniformity of chemical composition. The as-cast induction melted ingots of HEA crushed and converted into
753
+ powder form to perform further characterization. The first cutting-edge characterization technique used for phase
754
+ analysis is the Empyrean x-ray diffraction (XRD) system (Malvern Panalytical) equipped with an area detector
755
+ (256x256 pixels) equipped with a graphite monochromator and Cu radiation source (CuKa; = 1.5406, operating at
756
+ 45 kV and 40 mA) in Bragg-Brentano geometry. The transmission electron microscope (TEM), TECNAI 20 G2, was
757
+ used to acquire the microstructures and selected area electron diffraction (SAED) pattern of the samples operating at
758
+ 200 kV of accelerating voltage.EVO 18 scanning electron microscope at operating voltage of 25 kV (vacuum 10-5
759
+ torr) was used to investigate surface morphology and perform energy dispersive X-ray analysis (EDX) as well as
760
+ colour mapping of elements in the as-prepared samples. All de/re-hydrogenation measurements were carried out
761
+ with the aid of an automated two-channel volumetric sieverts apparatus (supplied by Advanced Materials
762
+ Corporation Pittsburgh, USA). For hydrogen storage testing, we took the 500 mg sample of HEA and placed the
763
+ sample in the reactor seized by quartz wool. Before performing hydrogen cycle testing, the powder HEA sample was
764
+ activated at 400℃ under a hydrogen pressure of 1/0.1 MPa for hydrogenation/dehydrogenation. After activation,
765
+ testing of the hydrogen absorption kinetics at 410 °C under 60 atm H2 pressure was carried out.
766
+
767
+ Results and Discussion
768
+ The experimental XRD diffraction patterns of the as-cast Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA are shown in figure
769
+ 2(a). The diffraction profile has been recorded for the gross structural analysis of the as-cast alloy sample by using
770
+ the Empyrean x-ray diffraction (XRD; Malvern Panalytical) system. All the diffraction peaks (shown in the figure.
771
+ 2(a)) are well fitted with the hexagonal C14 Laves phase structure parameters.The XRD pattern was well refined
772
+ through Le Bail profile fitting using JANA 2006 software shown in the figure. 2(b). The refinement data validated
773
+ the Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA system with unit cell parameters of a=b= 5.0141 Å, c= 8.1756 Å, and the
774
+ unit cell volume 178.0 Å3 under the space group of P63/mmc. All the refine parameters are given below in Table 1
775
+ To validate the structure analysis of this XRD, we used another characterization technique by transmission electron
776
+ microscopy (TEM) for analyzing the phase and microstructure of this Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA. The
777
+ bright field TEM micrograph of as-synthesized HEA shown in figure 3(a) identifies no other phases other than
778
+ Laves phase. The corresponding SAD pattern of this as cast HEA shown in figure 3(b) validates that this HEA
779
+ system belongs to a C14 type hexagonal structure with a corresponding space group is P63/mmc.
780
+
781
+ Co
782
+ Mn
783
+ Zr
784
+ Ti
785
+ Melting in R.F.induction Furnace
786
+ HEA
787
+ (ascastalloy)Hydraulic
788
+ Press
789
+ 3 × 105 N/m²
790
+ RF-
791
+ Induction
792
+ Melting
793
+ Melting in R.F. induction Furnace
794
+ (Melted under dynamic Argon atmosphere)
795
+ 35-KW
796
+ (as cast alloy)
797
+ RF-Induction
798
+ Furnace2900
799
+ 3000
800
+ (b)
801
+ IYobserved
802
+ (a)
803
+ 1500
804
+ C14LavesPhase
805
+ Yealculated
806
+ 2500
807
+ 2100
808
+ IBraggPositions
809
+ 1700
810
+ 2000
811
+ (210)
812
+ 13)
813
+ 1300
814
+ 1500
815
+ 5
816
+ 2
817
+ -
818
+ 202)
819
+ 3
820
+ -
821
+ 5
822
+ (31
823
+ 5
824
+ -
825
+ 1000
826
+ 500
827
+ 10
828
+ 20
829
+ 30
830
+ 40
831
+ 50
832
+ 60
833
+ 70
834
+ 80
835
+ 90
836
+ 10
837
+ 20
838
+ 30
839
+ 40
840
+ 50
841
+ 60
842
+ 70
843
+ 80
844
+ 90
845
+ Angle (20)
846
+ Angle 20(a)
847
+ (b)
848
+ 0111
849
+ 1101
850
+ 100.1/mm
851
+ 10 1/nm
852
+ [1213]a
853
+ Mn
854
+ Fe
855
+ b
856
+ ZrLa
857
+ Ti Ka
858
+ B1
859
+ (d)
860
+ ElementWeight%
861
+ 720
862
+ WYA
863
+ ZrL
864
+ 17.15
865
+ 638
866
+ TiK
867
+ 22.92
868
+ 54C
869
+ VK
870
+ 17.46
871
+ MnK
872
+ 16.93
873
+ MaKa
874
+ FeK
875
+ 8.46
876
+ 36
877
+ CoK
878
+ 17.08
879
+ 27
880
+ 18
881
+ EMT-20.00AV
882
+ XX00SE 6es
883
+ De 1 Feo 2922
884
+ WD+ t0.0 mm
885
+ Tome.t:20.15
886
+ ZEIS
887
+ Le300.8
888
+ Hydrogenationof Tio.24Vo.17Zro.17Coo.17Feo.0aMno.17
889
+ 0.5
890
+ DehydrogenationofhydrogenatedTia.24Va.Zra.Coa.17Feo.oMna.17at
891
+ 0.7
892
+ at410cunder60atmH2pressure
893
+ Hydrogen absorbed (wt%)
894
+ desorbed (wt%)
895
+ 410Cunder1atmH2pressure
896
+ 0.6
897
+ 0.4 -
898
+ 0.5
899
+ (b)
900
+ (a)
901
+ 0.3
902
+ 0.4
903
+ 0.3.
904
+ 0.2
905
+ 0.2
906
+ 0.1
907
+ 0.0
908
+ 0.0
909
+ 0
910
+ 20
911
+ 40
912
+ 60
913
+ 80
914
+ 100
915
+ 120
916
+ 140
917
+ 16(
918
+ 0
919
+ 20
920
+ 40
921
+ 60
922
+ 80
923
+ 100
924
+ 120
925
+ 140
926
+ 160
927
+ Time (Min.)
928
+ Time (Min.).6
929
+ PClabs.at410°C
930
+ Van'tHoffplotforPclabsorption
931
+ 60
932
+ (a)
933
+ .5
934
+ (b)
935
+ PCI abs. at 425 °C
936
+ Van'tHoffplotforPcldesorption
937
+ Linear fit
938
+ 50
939
+ PClabs.at395°C
940
+ .4
941
+ PCldes.at410°C
942
+ .3
943
+ PCldes.at425°C
944
+ 40
945
+ (atm)
946
+ PCI des. at 395 °C
947
+ .2
948
+ 30
949
+ Equation
950
+ y=a+bx
951
+ ressure
952
+ .1-
953
+ Adj.R-Square
954
+ 0.99317
955
+ 0.997
956
+ Value
957
+ Standard Error
958
+ PClabs
959
+ Intercept
960
+ 4.15133
961
+ 0.19668
962
+ 20
963
+ .0
964
+ PClabs
965
+ Slope
966
+ -2.29308
967
+ 0.1342
968
+ PCIdes
969
+ Intercept
970
+ 7.2496
971
+ 0.23282
972
+ PCIdes
973
+ Slope
974
+ -4.10198
975
+ 0.159
976
+ 6'
977
+ P
978
+ 10
979
+ .8
980
+ 0
981
+ .7
982
+ 0.1
983
+ 0.2
984
+ 0.3
985
+ 0.4
986
+ 0.5
987
+ 0.6
988
+ 0.7
989
+ 1.43
990
+ 1.44
991
+ 1.45
992
+ 1.46
993
+ 1.47
994
+ 1.48
995
+ 0.0
996
+ 1.49
997
+ 1.5
998
+ Hydrogenstoragecapacity (wt%)
999
+ 1000/T(K)5
1000
+
1001
+ Surface morphology and elemental composition analysis
1002
+ Scanning electron microscopy (SEM) has been done for surface microstructure and confirming homogeneous
1003
+ element distribution. Figure4 (a) shows the SEM –BSE, and Energy dispersive X-ray analyses (EDX) mapping
1004
+ images of as cast Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA with the corresponding region which is located in square
1005
+ box in figure 4(a). The SEM-BSE image reveals the microstructure of this HEA without any cracks or defects in
1006
+ this as-cast HEA. Figure 4(b) overlays all the constituent elements present in this HEA. EDAX mapping image
1007
+ establishes that all the constituent elements are distributed as per atomic percent in this as-cast Ti0.24-V0.17-Zr0.17-
1008
+ Co0.17-Fe0.08-Mn0.17 HEA. Figure 4(c) shows the SEM-BSE image from another region for the HEA sample, where
1009
+ no crack is observed, and also no other contrast corresponding another phase. Figure 4(d) shows the EDX elemental
1010
+ spectra to confirm the stoichiometry of the elements present in this as-cast HEA. All the data indicate that this HEA
1011
+ has forms a single Laves phase with uniform elemental distribution.
1012
+
1013
+ Hydrogen ab/de-sorption analysis
1014
+ Hydrogen ab/de-sorption performance in as-cast Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA is studied in this section. The
1015
+ measurements of hydrogen sorption were carried out with automated two-channel volumetric sieverts instrument.
1016
+ The results of the absorption kinetic curve of the as-cast Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA are shown in figure
1017
+ 5(a). Before introducing hydrogen into as-cast HEA, we firstly activate the as-cast HEA under 400 ˚C under 10-3
1018
+ atm evacuation. We perform hydrogenation at 410˚C under 60 atm hydrogen pressures. The hydrogen desorption
1019
+ kinetic curve of the as-cast Ti0.24-HEAis shown in figure 5(b). The hydrogen desorption kinetic curve of this as-
1020
+ cast HEA shows that this as-cast HEA absorbed 0.53 wt% of hydrogen within 15 seconds this curve. In contrast, the
1021
+ maximum storage capacity is evaluated to be about 0.72 wt% in 150 minutes. This fastest kinetics gives interesting
1022
+ results to understand the hydrogen storage performance In the case of desorption, we can see that the
1023
+ dehydrogenated curve shown in figure 5(b) the as cast Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA perform desorption at
1024
+ 410 ˚C under 1 atm hydrogen pressure. According to the hydrogenation desorption curve we can say that this HEA
1025
+ released 0.28 wt% hydrogen within one minute at 410 ˚C under 1 atm hydrogen pressure. The results suggests that
1026
+ this HEA shows faster hydrogen ab/desorption kinetics than some other Laves phase based HEAs.
1027
+
1028
+ Co
1029
+ Mn
1030
+ Zr
1031
+ Ti
1032
+ Melting in R.F.induction Furnace
1033
+ HEA
1034
+ (ascastalloy)Hydraulic
1035
+ Press
1036
+ 3 × 105 N/m²
1037
+ RF-
1038
+ Induction
1039
+ Melting
1040
+ Melting in R.F. induction Furnace
1041
+ (Melted under dynamic Argon atmosphere)
1042
+ 35-KW
1043
+ (as cast alloy)
1044
+ RF-Induction
1045
+ Furnace2900
1046
+ 3000
1047
+ (b)
1048
+ IYobserved
1049
+ (a)
1050
+ 1500
1051
+ C14LavesPhase
1052
+ Yealculated
1053
+ 2500
1054
+ 2100
1055
+ IBraggPositions
1056
+ 1700
1057
+ 2000
1058
+ (210)
1059
+ 13)
1060
+ 1300
1061
+ 1500
1062
+ 5
1063
+ 2
1064
+ -
1065
+ 202)
1066
+ 3
1067
+ -
1068
+ 5
1069
+ (31
1070
+ 5
1071
+ -
1072
+ 1000
1073
+ 500
1074
+ 10
1075
+ 20
1076
+ 30
1077
+ 40
1078
+ 50
1079
+ 60
1080
+ 70
1081
+ 80
1082
+ 90
1083
+ 10
1084
+ 20
1085
+ 30
1086
+ 40
1087
+ 50
1088
+ 60
1089
+ 70
1090
+ 80
1091
+ 90
1092
+ Angle (20)
1093
+ Angle 20(a)
1094
+ (b)
1095
+ 0111
1096
+ 1101
1097
+ 100.1/mm
1098
+ 10 1/nm
1099
+ [1213]a
1100
+ Mn
1101
+ Fe
1102
+ b
1103
+ ZrLa
1104
+ Ti Ka
1105
+ B1
1106
+ (d)
1107
+ ElementWeight%
1108
+ 720
1109
+ WYA
1110
+ ZrL
1111
+ 17.15
1112
+ 638
1113
+ TiK
1114
+ 22.92
1115
+ 54C
1116
+ VK
1117
+ 17.46
1118
+ MnK
1119
+ 16.93
1120
+ MaKa
1121
+ FeK
1122
+ 8.46
1123
+ 36
1124
+ CoK
1125
+ 17.08
1126
+ 27
1127
+ 18
1128
+ EMT-20.00AV
1129
+ XX00SE 6es
1130
+ De 1 Feo 2922
1131
+ WD+ t0.0 mm
1132
+ Tome.t:20.15
1133
+ ZEIS
1134
+ Le300.8
1135
+ Hydrogenationof Tio.24Vo.17Zro.17Coo.17Feo.0aMno.17
1136
+ 0.5
1137
+ DehydrogenationofhydrogenatedTia.24Va.Zra.Coa.17Feo.oMna.17at
1138
+ 0.7
1139
+ at410cunder60atmH2pressure
1140
+ Hydrogen absorbed (wt%)
1141
+ desorbed (wt%)
1142
+ 410Cunder1atmH2pressure
1143
+ 0.6
1144
+ 0.4 -
1145
+ 0.5
1146
+ (b)
1147
+ (a)
1148
+ 0.3
1149
+ 0.4
1150
+ 0.3.
1151
+ 0.2
1152
+ 0.2
1153
+ 0.1
1154
+ 0.0
1155
+ 0.0
1156
+ 0
1157
+ 20
1158
+ 40
1159
+ 60
1160
+ 80
1161
+ 100
1162
+ 120
1163
+ 140
1164
+ 16(
1165
+ 0
1166
+ 20
1167
+ 40
1168
+ 60
1169
+ 80
1170
+ 100
1171
+ 120
1172
+ 140
1173
+ 160
1174
+ Time (Min.)
1175
+ Time (Min.).6
1176
+ PClabs.at410°C
1177
+ Van'tHoffplotforPclabsorption
1178
+ 60
1179
+ (a)
1180
+ .5
1181
+ (b)
1182
+ PCI abs. at 425 °C
1183
+ Van'tHoffplotforPcldesorption
1184
+ Linear fit
1185
+ 50
1186
+ PClabs.at395°C
1187
+ .4
1188
+ PCldes.at410°C
1189
+ .3
1190
+ PCldes.at425°C
1191
+ 40
1192
+ (atm)
1193
+ PCI des. at 395 °C
1194
+ .2
1195
+ 30
1196
+ Equation
1197
+ y=a+bx
1198
+ ressure
1199
+ .1-
1200
+ Adj.R-Square
1201
+ 0.99317
1202
+ 0.997
1203
+ Value
1204
+ Standard Error
1205
+ PClabs
1206
+ Intercept
1207
+ 4.15133
1208
+ 0.19668
1209
+ 20
1210
+ .0
1211
+ PClabs
1212
+ Slope
1213
+ -2.29308
1214
+ 0.1342
1215
+ PCIdes
1216
+ Intercept
1217
+ 7.2496
1218
+ 0.23282
1219
+ PCIdes
1220
+ Slope
1221
+ -4.10198
1222
+ 0.159
1223
+ 6'
1224
+ P
1225
+ 10
1226
+ .8
1227
+ 0
1228
+ .7
1229
+ 0.1
1230
+ 0.2
1231
+ 0.3
1232
+ 0.4
1233
+ 0.5
1234
+ 0.6
1235
+ 0.7
1236
+ 1.43
1237
+ 1.44
1238
+ 1.45
1239
+ 1.46
1240
+ 1.47
1241
+ 1.48
1242
+ 0.0
1243
+ 1.49
1244
+ 1.5
1245
+ Hydrogenstoragecapacity (wt%)
1246
+ 1000/T(K)6
1247
+
1248
+ The representative PCI ab/de-sorption of Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA has been shown in figure 6(a) the
1249
+ corresponding represents active Van’t Hoff plots (shown in figure 6(b)). PCI was performed at 395˚C, 410˚Cand
1250
+ 425˚C temperatures under 60 atm hydrogen pressures. With the help of the three different temperatures, we get the
1251
+ plot corresponding to temperature v/s pressure. Calculations of the entropy and enthalpy changes that occur
1252
+ throughout the hydrogen ab/de-sorption process typically employ the pressure values of the hydrogen ab/de-sorption
1253
+ platform at various temperatures. The change in enthalpy (∆H) of hydride formation is given by the well-known
1254
+ Van’t Hoff equation (Dornheim et al. 2010)
1255
+ ln 𝑃 =
1256
+ Δ𝐻
1257
+ RT −
1258
+ Δ𝑆
1259
+ R …………(i)
1260
+ Where P is the previously specified plateau pressure, T is the corresponding temperature, R is the gas constant, and
1261
+ H and S are the reaction enthalpy and entropy changes, respectively. The alloys' Van't Hoff plots are computed using
1262
+ the P, as shown in figure 6. (b). The relationship between ln(P) and 1000/T is clearly linear, as can be seen in the
1263
+ image. The slope of the fitted curves for ln(P) and 1000/T as well as the intercept on the vertical coordinate allow
1264
+ for the quick calculation of the H and S. The results of the calculations demonstrate that the enthalpy of hydrogen
1265
+ desorption changes. The change in enthalpy of Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA for hydrogen absorption and
1266
+ desorption has been calculated to be ΔHabs~ -19.06 ± 1.12 kJ/mol and ΔHdes -34.10 ± 1.32 kJ /mol respectively. The
1267
+ smaller negative enthalpy of mixing in HEA suggests that they are more likely to form stable metal hydrides. The
1268
+ formation of the metal hydride's absorption and desorption enthalpies are not equal in the current experiment.
1269
+ Therefore, this system has fewer tendencies to create metal hydride and aids in improving the ab/desorption kinetics.
1270
+ This suggests that they have a decreased tendency to form a stable metal hydride.
1271
+ Conclusions
1272
+ In this study, we have successfully synthesized the hexanary Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA with the help of
1273
+ an RF induction furnace for the study of hydrogen storage kinetics. The evolution of a single phase of hexagonal
1274
+ C14 high entropy Laves phase with lattice parameters a = 5.01Å and c =8.17Åwas established following Rietveld
1275
+ refinement in this multicomponent alloy. On the basis of the kinetics study, Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 shows
1276
+ good ab/de-desorption kinetics (absorb ~ 0.53 wt.% of H2 within 15 seconds) but poor in hydrogen storage capacity.
1277
+ The change in enthalpy of Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA for hydrogen absorption and desorption has been
1278
+
1279
+ Co
1280
+ Mn
1281
+ Zr
1282
+ Ti
1283
+ Melting in R.F.induction Furnace
1284
+ HEA
1285
+ (ascastalloy)Hydraulic
1286
+ Press
1287
+ 3 × 105 N/m²
1288
+ RF-
1289
+ Induction
1290
+ Melting
1291
+ Melting in R.F. induction Furnace
1292
+ (Melted under dynamic Argon atmosphere)
1293
+ 35-KW
1294
+ (as cast alloy)
1295
+ RF-Induction
1296
+ Furnace2900
1297
+ 3000
1298
+ (b)
1299
+ IYobserved
1300
+ (a)
1301
+ 1500
1302
+ C14LavesPhase
1303
+ Yealculated
1304
+ 2500
1305
+ 2100
1306
+ IBraggPositions
1307
+ 1700
1308
+ 2000
1309
+ (210)
1310
+ 13)
1311
+ 1300
1312
+ 1500
1313
+ 5
1314
+ 2
1315
+ -
1316
+ 202)
1317
+ 3
1318
+ -
1319
+ 5
1320
+ (31
1321
+ 5
1322
+ -
1323
+ 1000
1324
+ 500
1325
+ 10
1326
+ 20
1327
+ 30
1328
+ 40
1329
+ 50
1330
+ 60
1331
+ 70
1332
+ 80
1333
+ 90
1334
+ 10
1335
+ 20
1336
+ 30
1337
+ 40
1338
+ 50
1339
+ 60
1340
+ 70
1341
+ 80
1342
+ 90
1343
+ Angle (20)
1344
+ Angle 20(a)
1345
+ (b)
1346
+ 0111
1347
+ 1101
1348
+ 100.1/mm
1349
+ 10 1/nm
1350
+ [1213]a
1351
+ Mn
1352
+ Fe
1353
+ b
1354
+ ZrLa
1355
+ Ti Ka
1356
+ B1
1357
+ (d)
1358
+ ElementWeight%
1359
+ 720
1360
+ WYA
1361
+ ZrL
1362
+ 17.15
1363
+ 638
1364
+ TiK
1365
+ 22.92
1366
+ 54C
1367
+ VK
1368
+ 17.46
1369
+ MnK
1370
+ 16.93
1371
+ MaKa
1372
+ FeK
1373
+ 8.46
1374
+ 36
1375
+ CoK
1376
+ 17.08
1377
+ 27
1378
+ 18
1379
+ EMT-20.00AV
1380
+ XX00SE 6es
1381
+ De 1 Feo 2922
1382
+ WD+ t0.0 mm
1383
+ Tome.t:20.15
1384
+ ZEIS
1385
+ Le300.8
1386
+ Hydrogenationof Tio.24Vo.17Zro.17Coo.17Feo.0aMno.17
1387
+ 0.5
1388
+ DehydrogenationofhydrogenatedTia.24Va.Zra.Coa.17Feo.oMna.17at
1389
+ 0.7
1390
+ at410cunder60atmH2pressure
1391
+ Hydrogen absorbed (wt%)
1392
+ desorbed (wt%)
1393
+ 410Cunder1atmH2pressure
1394
+ 0.6
1395
+ 0.4 -
1396
+ 0.5
1397
+ (b)
1398
+ (a)
1399
+ 0.3
1400
+ 0.4
1401
+ 0.3.
1402
+ 0.2
1403
+ 0.2
1404
+ 0.1
1405
+ 0.0
1406
+ 0.0
1407
+ 0
1408
+ 20
1409
+ 40
1410
+ 60
1411
+ 80
1412
+ 100
1413
+ 120
1414
+ 140
1415
+ 16(
1416
+ 0
1417
+ 20
1418
+ 40
1419
+ 60
1420
+ 80
1421
+ 100
1422
+ 120
1423
+ 140
1424
+ 160
1425
+ Time (Min.)
1426
+ Time (Min.).6
1427
+ PClabs.at410°C
1428
+ Van'tHoffplotforPclabsorption
1429
+ 60
1430
+ (a)
1431
+ .5
1432
+ (b)
1433
+ PCI abs. at 425 °C
1434
+ Van'tHoffplotforPcldesorption
1435
+ Linear fit
1436
+ 50
1437
+ PClabs.at395°C
1438
+ .4
1439
+ PCldes.at410°C
1440
+ .3
1441
+ PCldes.at425°C
1442
+ 40
1443
+ (atm)
1444
+ PCI des. at 395 °C
1445
+ .2
1446
+ 30
1447
+ Equation
1448
+ y=a+bx
1449
+ ressure
1450
+ .1-
1451
+ Adj.R-Square
1452
+ 0.99317
1453
+ 0.997
1454
+ Value
1455
+ Standard Error
1456
+ PClabs
1457
+ Intercept
1458
+ 4.15133
1459
+ 0.19668
1460
+ 20
1461
+ .0
1462
+ PClabs
1463
+ Slope
1464
+ -2.29308
1465
+ 0.1342
1466
+ PCIdes
1467
+ Intercept
1468
+ 7.2496
1469
+ 0.23282
1470
+ PCIdes
1471
+ Slope
1472
+ -4.10198
1473
+ 0.159
1474
+ 6'
1475
+ P
1476
+ 10
1477
+ .8
1478
+ 0
1479
+ .7
1480
+ 0.1
1481
+ 0.2
1482
+ 0.3
1483
+ 0.4
1484
+ 0.5
1485
+ 0.6
1486
+ 0.7
1487
+ 1.43
1488
+ 1.44
1489
+ 1.45
1490
+ 1.46
1491
+ 1.47
1492
+ 1.48
1493
+ 0.0
1494
+ 1.49
1495
+ 1.5
1496
+ Hydrogenstoragecapacity (wt%)
1497
+ 1000/T(K)7
1498
+
1499
+ calculated to be ~ -19.06 ± 1.12 kJ/mol and -34.10 ± 1.32 kJ /mol respectively. The present investigation suggests
1500
+ the scope for further study on the hydrogenation kinetics at various temperatures for exploring the potential for
1501
+ developing Laves phase high entropy alloy for hydrogen storage.
1502
+
1503
+ Acknowledgment
1504
+ The author (AK) wishes to thank the Council of Scientific and Industrial Research (CSIR) in New Delhi, India, for
1505
+ financial support for a senior research fellowship (Award No. 09/013(0952)/2020-EMR-I).
1506
+
1507
+ Author contributions
1508
+ A.K. synthesized the materials and made the characterizations; T.P.Y. conceived, designed the experiments,
1509
+ organized the data and supervision. M.A.S. advised on the discussion of results; N.K.M. advised on the discussion
1510
+ of results and editing the manuscript. The manuscript was written through contributions of all authors. All authors
1511
+ have given approval to the final version of the manuscript.
1512
+
1513
+ Notes
1514
+ The authors declare no competing financial interests.
1515
+
1516
+
1517
+
1518
+
1519
+
1520
+
1521
+
1522
+
1523
+
1524
+ Co
1525
+ Mn
1526
+ Zr
1527
+ Ti
1528
+ Melting in R.F.induction Furnace
1529
+ HEA
1530
+ (ascastalloy)Hydraulic
1531
+ Press
1532
+ 3 × 105 N/m²
1533
+ RF-
1534
+ Induction
1535
+ Melting
1536
+ Melting in R.F. induction Furnace
1537
+ (Melted under dynamic Argon atmosphere)
1538
+ 35-KW
1539
+ (as cast alloy)
1540
+ RF-Induction
1541
+ Furnace2900
1542
+ 3000
1543
+ (b)
1544
+ IYobserved
1545
+ (a)
1546
+ 1500
1547
+ C14LavesPhase
1548
+ Yealculated
1549
+ 2500
1550
+ 2100
1551
+ IBraggPositions
1552
+ 1700
1553
+ 2000
1554
+ (210)
1555
+ 13)
1556
+ 1300
1557
+ 1500
1558
+ 5
1559
+ 2
1560
+ -
1561
+ 202)
1562
+ 3
1563
+ -
1564
+ 5
1565
+ (31
1566
+ 5
1567
+ -
1568
+ 1000
1569
+ 500
1570
+ 10
1571
+ 20
1572
+ 30
1573
+ 40
1574
+ 50
1575
+ 60
1576
+ 70
1577
+ 80
1578
+ 90
1579
+ 10
1580
+ 20
1581
+ 30
1582
+ 40
1583
+ 50
1584
+ 60
1585
+ 70
1586
+ 80
1587
+ 90
1588
+ Angle (20)
1589
+ Angle 20(a)
1590
+ (b)
1591
+ 0111
1592
+ 1101
1593
+ 100.1/mm
1594
+ 10 1/nm
1595
+ [1213]a
1596
+ Mn
1597
+ Fe
1598
+ b
1599
+ ZrLa
1600
+ Ti Ka
1601
+ B1
1602
+ (d)
1603
+ ElementWeight%
1604
+ 720
1605
+ WYA
1606
+ ZrL
1607
+ 17.15
1608
+ 638
1609
+ TiK
1610
+ 22.92
1611
+ 54C
1612
+ VK
1613
+ 17.46
1614
+ MnK
1615
+ 16.93
1616
+ MaKa
1617
+ FeK
1618
+ 8.46
1619
+ 36
1620
+ CoK
1621
+ 17.08
1622
+ 27
1623
+ 18
1624
+ EMT-20.00AV
1625
+ XX00SE 6es
1626
+ De 1 Feo 2922
1627
+ WD+ t0.0 mm
1628
+ Tome.t:20.15
1629
+ ZEIS
1630
+ Le300.8
1631
+ Hydrogenationof Tio.24Vo.17Zro.17Coo.17Feo.0aMno.17
1632
+ 0.5
1633
+ DehydrogenationofhydrogenatedTia.24Va.Zra.Coa.17Feo.oMna.17at
1634
+ 0.7
1635
+ at410cunder60atmH2pressure
1636
+ Hydrogen absorbed (wt%)
1637
+ desorbed (wt%)
1638
+ 410Cunder1atmH2pressure
1639
+ 0.6
1640
+ 0.4 -
1641
+ 0.5
1642
+ (b)
1643
+ (a)
1644
+ 0.3
1645
+ 0.4
1646
+ 0.3.
1647
+ 0.2
1648
+ 0.2
1649
+ 0.1
1650
+ 0.0
1651
+ 0.0
1652
+ 0
1653
+ 20
1654
+ 40
1655
+ 60
1656
+ 80
1657
+ 100
1658
+ 120
1659
+ 140
1660
+ 16(
1661
+ 0
1662
+ 20
1663
+ 40
1664
+ 60
1665
+ 80
1666
+ 100
1667
+ 120
1668
+ 140
1669
+ 160
1670
+ Time (Min.)
1671
+ Time (Min.).6
1672
+ PClabs.at410°C
1673
+ Van'tHoffplotforPclabsorption
1674
+ 60
1675
+ (a)
1676
+ .5
1677
+ (b)
1678
+ PCI abs. at 425 °C
1679
+ Van'tHoffplotforPcldesorption
1680
+ Linear fit
1681
+ 50
1682
+ PClabs.at395°C
1683
+ .4
1684
+ PCldes.at410°C
1685
+ .3
1686
+ PCldes.at425°C
1687
+ 40
1688
+ (atm)
1689
+ PCI des. at 395 °C
1690
+ .2
1691
+ 30
1692
+ Equation
1693
+ y=a+bx
1694
+ ressure
1695
+ .1-
1696
+ Adj.R-Square
1697
+ 0.99317
1698
+ 0.997
1699
+ Value
1700
+ Standard Error
1701
+ PClabs
1702
+ Intercept
1703
+ 4.15133
1704
+ 0.19668
1705
+ 20
1706
+ .0
1707
+ PClabs
1708
+ Slope
1709
+ -2.29308
1710
+ 0.1342
1711
+ PCIdes
1712
+ Intercept
1713
+ 7.2496
1714
+ 0.23282
1715
+ PCIdes
1716
+ Slope
1717
+ -4.10198
1718
+ 0.159
1719
+ 6'
1720
+ P
1721
+ 10
1722
+ .8
1723
+ 0
1724
+ .7
1725
+ 0.1
1726
+ 0.2
1727
+ 0.3
1728
+ 0.4
1729
+ 0.5
1730
+ 0.6
1731
+ 0.7
1732
+ 1.43
1733
+ 1.44
1734
+ 1.45
1735
+ 1.46
1736
+ 1.47
1737
+ 1.48
1738
+ 0.0
1739
+ 1.49
1740
+ 1.5
1741
+ Hydrogenstoragecapacity (wt%)
1742
+ 1000/T(K)8
1743
+
1744
+ References
1745
+ Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent
1746
+ alloys. Materials Science and Engineering: A 375-377: 213-218. https://doi.org/10.1016/j.msea.2003.10.257
1747
+
1748
+ Chen J, Li Z, Huang H, Lv Y, Liu B, Li Y, Wu Y, Yuan J, Wang Y, (2022) Superior cycle life of TiZrFeMnCrV
1749
+ high
1750
+ entropy
1751
+ alloy
1752
+ for
1753
+ hydrogen
1754
+ storage.
1755
+ Scripta
1756
+ Materialia
1757
+ 212:
1758
+ 114548.
1759
+ https://doi.org/10.1016/j.scriptamat.2022.114548
1760
+
1761
+ Dornheim M (2011) Thermodynamics of Metal Hydrides: Tailoring Reaction Enthalpies of Hydrogen Storage
1762
+ Materials. Thermodynamics - Interaction Studies - Solids, Liquids and Gases. https://doi.org/10.5772/21662
1763
+
1764
+ Edalati P, Floriano R, Mohammadi A, Li Y, Zepon G, Li HW, Edalati K (2020) Reversible room temperature
1765
+ hydrogen
1766
+ storage
1767
+ in
1768
+ high-entropy
1769
+ alloy
1770
+ TiZrCrMnFeNi.
1771
+ Scripta
1772
+ Materialia
1773
+ 178:
1774
+ 387–390
1775
+ https://doi.org/10.1016/j.scriptamat.2019.12.009
1776
+
1777
+ Floriano R, Zepon G, Edalati K, Fontana GLBG, Mohammadi A, Ma Z, Li HW, Contieri RJ (2021) Hydrogen
1778
+ storage properties of new A3B2-type TiZrNbCrFe high-entropy alloy. International Journal of Hydrogen Energy,
1779
+ 46(46) 23757-23766. https://doi.org/10.1016/j.ijhydene.2021.04.181
1780
+
1781
+ Kao YF, Chen SK, Sheu JH, Lin JT, Lin WE, Yeh JW, Lin SJ, Liou TH, Wang CW (2010) Hydrogen storage
1782
+ properties of multi-principal-componentCoFeMnTixVyZrz alloys. International Journal of Hydrogen Energy 35:
1783
+ 9046–9059. https://doi.org/10.1016/j.ijhydene.2010.06.012
1784
+
1785
+ Kumar A, Yadav TP, Mukhopadhyay NK (2022) Notable hydrogen storage in Ti–Zr–V–Cr–Ni high entropy alloy.
1786
+ International Journal of Hydrogen Energy 47: 22893-22900. https://doi.org/10.1016/j.ijhydene.2022.05.107
1787
+
1788
+ Liu J, Xu J, Sleiman S, Chen X, Zhu S, Cheng H, Huot J (2021) Microstructure and hydrogen storage properties of
1789
+ Ti-V-Cr based BCC-type high entropy alloys. International Journal of Hydrogen Energy 46: 28709-28718.
1790
+ https://doi.org/10.1016/j.ijhydene.2021.06.137
1791
+
1792
+ Marques F, Balcerzak M, Winkelmann F, Zepon G, Felderhoff M (2021) Review and outlook on high-entropy
1793
+ alloys for hydrogen storage. Royal Society of Chemistry 14, 5191-5227. https://doi.org/10.1039/D1EE01543E
1794
+
1795
+ Mishra SS, Mukhopadhyay S, Yadav TP, Mukhopadhyay NK, Srivastava ON (2019) Synthesis and characterization
1796
+ of hexanary Ti–Zr–V–Cr–Ni–Fe high-entropy Laves phase. Journal of Materials Research 34 (5): 807-818.
1797
+ https://doi.org/10.1557/jmr.2018.502
1798
+
1799
+ Mishra SS, Yadav TP, Srivastava ON, Mukhopadhyay NK, Biswas K (2020) Formation and stability of C14 type
1800
+ Laves phase in multi component high-entropy alloys. Journal of Alloys and Compounds 832:153764.
1801
+ https://doi.org/10.1016/j.jallcom.2020.153764
1802
+
1803
+ Murty BS, Yeh JW, Ranganathan S, Bhattacharjee PP (2019) High-Entropy Alloys 2nd Edition Elsevier ISBN:
1804
+ 9780128160671. pp 1-388.
1805
+
1806
+ Ranganathan S (2003) Alloyed pleasures: Multimetallic cocktails. Current Science 85: 1404-1406.
1807
+
1808
+ Sahlberg M, Karlsson D, Zlotea C, Jansson U (2016) Superior hydrogen storage in high entropy alloys, Scientific
1809
+ Reports: 36770. https://doi.org/10.1038/srep36770
1810
+ Sarac B, Zadorozhnyy V, Berdonosova E, Lvanov YP, Klyamkin S, Gumrukcu S, Sarac AS, Korol A, Semenov D,
1811
+ Zadorozhnyy M, Sharma A, Greer AL, Eckert J (2020) Hydrogen storage performance of the multi-principal-
1812
+ component CoFeMnTiVZr alloy in electrochemical and gas-solid reactions, RSC Advances 10: 24613–24623.
1813
+ https://doi.org/10.1039/D0RA04089D
1814
+
1815
+ Co
1816
+ Mn
1817
+ Zr
1818
+ Ti
1819
+ Melting in R.F.induction Furnace
1820
+ HEA
1821
+ (ascastalloy)Hydraulic
1822
+ Press
1823
+ 3 × 105 N/m²
1824
+ RF-
1825
+ Induction
1826
+ Melting
1827
+ Melting in R.F. induction Furnace
1828
+ (Melted under dynamic Argon atmosphere)
1829
+ 35-KW
1830
+ (as cast alloy)
1831
+ RF-Induction
1832
+ Furnace2900
1833
+ 3000
1834
+ (b)
1835
+ IYobserved
1836
+ (a)
1837
+ 1500
1838
+ C14LavesPhase
1839
+ Yealculated
1840
+ 2500
1841
+ 2100
1842
+ IBraggPositions
1843
+ 1700
1844
+ 2000
1845
+ (210)
1846
+ 13)
1847
+ 1300
1848
+ 1500
1849
+ 5
1850
+ 2
1851
+ -
1852
+ 202)
1853
+ 3
1854
+ -
1855
+ 5
1856
+ (31
1857
+ 5
1858
+ -
1859
+ 1000
1860
+ 500
1861
+ 10
1862
+ 20
1863
+ 30
1864
+ 40
1865
+ 50
1866
+ 60
1867
+ 70
1868
+ 80
1869
+ 90
1870
+ 10
1871
+ 20
1872
+ 30
1873
+ 40
1874
+ 50
1875
+ 60
1876
+ 70
1877
+ 80
1878
+ 90
1879
+ Angle (20)
1880
+ Angle 20(a)
1881
+ (b)
1882
+ 0111
1883
+ 1101
1884
+ 100.1/mm
1885
+ 10 1/nm
1886
+ [1213]a
1887
+ Mn
1888
+ Fe
1889
+ b
1890
+ ZrLa
1891
+ Ti Ka
1892
+ B1
1893
+ (d)
1894
+ ElementWeight%
1895
+ 720
1896
+ WYA
1897
+ ZrL
1898
+ 17.15
1899
+ 638
1900
+ TiK
1901
+ 22.92
1902
+ 54C
1903
+ VK
1904
+ 17.46
1905
+ MnK
1906
+ 16.93
1907
+ MaKa
1908
+ FeK
1909
+ 8.46
1910
+ 36
1911
+ CoK
1912
+ 17.08
1913
+ 27
1914
+ 18
1915
+ EMT-20.00AV
1916
+ XX00SE 6es
1917
+ De 1 Feo 2922
1918
+ WD+ t0.0 mm
1919
+ Tome.t:20.15
1920
+ ZEIS
1921
+ Le300.8
1922
+ Hydrogenationof Tio.24Vo.17Zro.17Coo.17Feo.0aMno.17
1923
+ 0.5
1924
+ DehydrogenationofhydrogenatedTia.24Va.Zra.Coa.17Feo.oMna.17at
1925
+ 0.7
1926
+ at410cunder60atmH2pressure
1927
+ Hydrogen absorbed (wt%)
1928
+ desorbed (wt%)
1929
+ 410Cunder1atmH2pressure
1930
+ 0.6
1931
+ 0.4 -
1932
+ 0.5
1933
+ (b)
1934
+ (a)
1935
+ 0.3
1936
+ 0.4
1937
+ 0.3.
1938
+ 0.2
1939
+ 0.2
1940
+ 0.1
1941
+ 0.0
1942
+ 0.0
1943
+ 0
1944
+ 20
1945
+ 40
1946
+ 60
1947
+ 80
1948
+ 100
1949
+ 120
1950
+ 140
1951
+ 16(
1952
+ 0
1953
+ 20
1954
+ 40
1955
+ 60
1956
+ 80
1957
+ 100
1958
+ 120
1959
+ 140
1960
+ 160
1961
+ Time (Min.)
1962
+ Time (Min.).6
1963
+ PClabs.at410°C
1964
+ Van'tHoffplotforPclabsorption
1965
+ 60
1966
+ (a)
1967
+ .5
1968
+ (b)
1969
+ PCI abs. at 425 °C
1970
+ Van'tHoffplotforPcldesorption
1971
+ Linear fit
1972
+ 50
1973
+ PClabs.at395°C
1974
+ .4
1975
+ PCldes.at410°C
1976
+ .3
1977
+ PCldes.at425°C
1978
+ 40
1979
+ (atm)
1980
+ PCI des. at 395 °C
1981
+ .2
1982
+ 30
1983
+ Equation
1984
+ y=a+bx
1985
+ ressure
1986
+ .1-
1987
+ Adj.R-Square
1988
+ 0.99317
1989
+ 0.997
1990
+ Value
1991
+ Standard Error
1992
+ PClabs
1993
+ Intercept
1994
+ 4.15133
1995
+ 0.19668
1996
+ 20
1997
+ .0
1998
+ PClabs
1999
+ Slope
2000
+ -2.29308
2001
+ 0.1342
2002
+ PCIdes
2003
+ Intercept
2004
+ 7.2496
2005
+ 0.23282
2006
+ PCIdes
2007
+ Slope
2008
+ -4.10198
2009
+ 0.159
2010
+ 6'
2011
+ P
2012
+ 10
2013
+ .8
2014
+ 0
2015
+ .7
2016
+ 0.1
2017
+ 0.2
2018
+ 0.3
2019
+ 0.4
2020
+ 0.5
2021
+ 0.6
2022
+ 0.7
2023
+ 1.43
2024
+ 1.44
2025
+ 1.45
2026
+ 1.46
2027
+ 1.47
2028
+ 1.48
2029
+ 0.0
2030
+ 1.49
2031
+ 1.5
2032
+ Hydrogenstoragecapacity (wt%)
2033
+ 1000/T(K)9
2034
+
2035
+ Tsai MH, Yeh JW (2014) High-Entropy Alloys: A Critical Review. Materials Research Letters 2 (3): 107–123.
2036
+ https://doi.org/10.1080/21663831.2014.912690
2037
+
2038
+ Yadav TP, Kumar A, Verma SK, Mukhopadhyay NK (2022) High-Entropy Alloys for Solid Hydrogen Storage:
2039
+ Potentials and Prospects. Transactions of the Indian National Academy of Engineering 7: 147-156.
2040
+ https://doi.org/10.1007/s41403-021-00316-w
2041
+
2042
+ Yadav TP, Mukhopadhyay S, Mishra SS, Mukhopadhyay NK, Srivastava ON (2017) Synthesis of a single phase of
2043
+ high-entropy Laves intermetallics in the Ti–Zr–V–Cr–Ni equiatomic alloy. Philosophical Magazine Letters 97 (12):
2044
+ 494-503. https://doi.org/10.1080/09500839.2017.1418539
2045
+
2046
+ Yeh JW, Chen SK, Gan JY, Lin SJ, Chin TS, Shun TT, Tsau CH, Chou SY (2004a) Formation of simple crystal
2047
+ structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metallurgical and Materials
2048
+ Transactions A 35:2533-2536. https://doi.org/10.1007/s11661-006-0234-4
2049
+
2050
+ Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004b) Nanostructured high-entropy
2051
+ alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials
2052
+ 6:299303. Zeitschrift für Physikalische Chemie 117: 89-112. https://doi.org/10.1002/adem.200300567
2053
+
2054
+ Zhou P, Cao Z, Xiao X, Jiang Z, Zhan L, Li Z, Jiang L, Chen L (2022) Study on low-vanadium TiZrMnCrV based
2055
+ alloys for high-density hydrogen storage. International Journal of Hydrogen Energy 47: 710-1722.
2056
+ https://doi.org/10.1016/j.ijhydene.2021.10.106
2057
+
2058
+
2059
+ Figure captions
2060
+
2061
+ Figure 1: (a) Schematic diagramof the synthesis protocol for Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA
2062
+
2063
+ Figure 2:(a) XRD pattern of Ti0.24-V0.17-Zr0.17-Co0.17-Fe0.08-Mn0.17 HEA system and (b) Rietveld refinement profile
2064
+ pattern of all the peaks well fitted with C14 type hexagonal parameters with unit cell parameters a= b =5.0158 Å,
2065
+ c=8.1790 Å, α = β = 90˚, γ = 120˚ under space group P63/mmc
2066
+ Figure 3 : (a) TEM bright field micrograph of as-cast HEA synthesized by RF induction melting (b) Corresponding
2067
+ SAD patterns are shown indexed with hexagonal structure parameter under the space group of P63/mmc
2068
+ Figure 4: (a) SEM–BSE and energy dispersive X-ray analyses (EDX) mapping images of as
2069
+ Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA (b) overlays all the constituent elements present in this HEA. (c SEM-BSE
2070
+ image from another region for the HEA. (d) EDX elemental spectra to validate the atomic percentage of the
2071
+ elements in this HEA.
2072
+ Figure 5: (a) Hydrogenation curve of Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA at 410 ˚C under 60 atm H2 pressure and
2073
+ (b) Dehydrogenation curve of hydrogenated Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA at 410 ˚C under 60 atm H2
2074
+ pressure
2075
+ Figure 6: (a) Fig: (a) PCI ab/de-sorption curves of Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA and (b) Corresponding
2076
+ Van’t Hoff plots for PCI ab/de-sorption curves.
2077
+
2078
+
2079
+
2080
+
2081
+
2082
+ Co
2083
+ Mn
2084
+ Zr
2085
+ Ti
2086
+ Melting in R.F.induction Furnace
2087
+ HEA
2088
+ (ascastalloy)Hydraulic
2089
+ Press
2090
+ 3 × 105 N/m²
2091
+ RF-
2092
+ Induction
2093
+ Melting
2094
+ Melting in R.F. induction Furnace
2095
+ (Melted under dynamic Argon atmosphere)
2096
+ 35-KW
2097
+ (as cast alloy)
2098
+ RF-Induction
2099
+ Furnace2900
2100
+ 3000
2101
+ (b)
2102
+ IYobserved
2103
+ (a)
2104
+ 1500
2105
+ C14LavesPhase
2106
+ Yealculated
2107
+ 2500
2108
+ 2100
2109
+ IBraggPositions
2110
+ 1700
2111
+ 2000
2112
+ (210)
2113
+ 13)
2114
+ 1300
2115
+ 1500
2116
+ 5
2117
+ 2
2118
+ -
2119
+ 202)
2120
+ 3
2121
+ -
2122
+ 5
2123
+ (31
2124
+ 5
2125
+ -
2126
+ 1000
2127
+ 500
2128
+ 10
2129
+ 20
2130
+ 30
2131
+ 40
2132
+ 50
2133
+ 60
2134
+ 70
2135
+ 80
2136
+ 90
2137
+ 10
2138
+ 20
2139
+ 30
2140
+ 40
2141
+ 50
2142
+ 60
2143
+ 70
2144
+ 80
2145
+ 90
2146
+ Angle (20)
2147
+ Angle 20(a)
2148
+ (b)
2149
+ 0111
2150
+ 1101
2151
+ 100.1/mm
2152
+ 10 1/nm
2153
+ [1213]a
2154
+ Mn
2155
+ Fe
2156
+ b
2157
+ ZrLa
2158
+ Ti Ka
2159
+ B1
2160
+ (d)
2161
+ ElementWeight%
2162
+ 720
2163
+ WYA
2164
+ ZrL
2165
+ 17.15
2166
+ 638
2167
+ TiK
2168
+ 22.92
2169
+ 54C
2170
+ VK
2171
+ 17.46
2172
+ MnK
2173
+ 16.93
2174
+ MaKa
2175
+ FeK
2176
+ 8.46
2177
+ 36
2178
+ CoK
2179
+ 17.08
2180
+ 27
2181
+ 18
2182
+ EMT-20.00AV
2183
+ XX00SE 6es
2184
+ De 1 Feo 2922
2185
+ WD+ t0.0 mm
2186
+ Tome.t:20.15
2187
+ ZEIS
2188
+ Le300.8
2189
+ Hydrogenationof Tio.24Vo.17Zro.17Coo.17Feo.0aMno.17
2190
+ 0.5
2191
+ DehydrogenationofhydrogenatedTia.24Va.Zra.Coa.17Feo.oMna.17at
2192
+ 0.7
2193
+ at410cunder60atmH2pressure
2194
+ Hydrogen absorbed (wt%)
2195
+ desorbed (wt%)
2196
+ 410Cunder1atmH2pressure
2197
+ 0.6
2198
+ 0.4 -
2199
+ 0.5
2200
+ (b)
2201
+ (a)
2202
+ 0.3
2203
+ 0.4
2204
+ 0.3.
2205
+ 0.2
2206
+ 0.2
2207
+ 0.1
2208
+ 0.0
2209
+ 0.0
2210
+ 0
2211
+ 20
2212
+ 40
2213
+ 60
2214
+ 80
2215
+ 100
2216
+ 120
2217
+ 140
2218
+ 16(
2219
+ 0
2220
+ 20
2221
+ 40
2222
+ 60
2223
+ 80
2224
+ 100
2225
+ 120
2226
+ 140
2227
+ 160
2228
+ Time (Min.)
2229
+ Time (Min.).6
2230
+ PClabs.at410°C
2231
+ Van'tHoffplotforPclabsorption
2232
+ 60
2233
+ (a)
2234
+ .5
2235
+ (b)
2236
+ PCI abs. at 425 °C
2237
+ Van'tHoffplotforPcldesorption
2238
+ Linear fit
2239
+ 50
2240
+ PClabs.at395°C
2241
+ .4
2242
+ PCldes.at410°C
2243
+ .3
2244
+ PCldes.at425°C
2245
+ 40
2246
+ (atm)
2247
+ PCI des. at 395 °C
2248
+ .2
2249
+ 30
2250
+ Equation
2251
+ y=a+bx
2252
+ ressure
2253
+ .1-
2254
+ Adj.R-Square
2255
+ 0.99317
2256
+ 0.997
2257
+ Value
2258
+ Standard Error
2259
+ PClabs
2260
+ Intercept
2261
+ 4.15133
2262
+ 0.19668
2263
+ 20
2264
+ .0
2265
+ PClabs
2266
+ Slope
2267
+ -2.29308
2268
+ 0.1342
2269
+ PCIdes
2270
+ Intercept
2271
+ 7.2496
2272
+ 0.23282
2273
+ PCIdes
2274
+ Slope
2275
+ -4.10198
2276
+ 0.159
2277
+ 6'
2278
+ P
2279
+ 10
2280
+ .8
2281
+ 0
2282
+ .7
2283
+ 0.1
2284
+ 0.2
2285
+ 0.3
2286
+ 0.4
2287
+ 0.5
2288
+ 0.6
2289
+ 0.7
2290
+ 1.43
2291
+ 1.44
2292
+ 1.45
2293
+ 1.46
2294
+ 1.47
2295
+ 1.48
2296
+ 0.0
2297
+ 1.49
2298
+ 1.5
2299
+ Hydrogenstoragecapacity (wt%)
2300
+ 1000/T(K)10
2301
+
2302
+ Table 1:
2303
+ Lattice Parameters and refinement parameters obtained from powder x-ray diffraction data of the
2304
+ as-cast HEA.
2305
+ Refined Parameter and phase data
2306
+ Unit-Cell Parameters a= b =5.0158 Å, c=8.1790 Å, α = β = 90˚, γ = 120˚
2307
+ Space Group P63/mmc (Space Group = 194)
2308
+ R- Factor Rp = 3.23%, wRp = 4.45%, GOF = 1.26%,
2309
+ Volume V = 178.20Å3
2310
+
2311
+
2312
+
2313
+
2314
+
2315
+
2316
+
2317
+
2318
+
2319
+
2320
+
2321
+
2322
+
2323
+
2324
+
2325
+
2326
+
2327
+
2328
+
2329
+
2330
+ Co
2331
+ Mn
2332
+ Zr
2333
+ Ti
2334
+ Melting in R.F.induction Furnace
2335
+ HEA
2336
+ (ascastalloy)Hydraulic
2337
+ Press
2338
+ 3 × 105 N/m²
2339
+ RF-
2340
+ Induction
2341
+ Melting
2342
+ Melting in R.F. induction Furnace
2343
+ (Melted under dynamic Argon atmosphere)
2344
+ 35-KW
2345
+ (as cast alloy)
2346
+ RF-Induction
2347
+ Furnace2900
2348
+ 3000
2349
+ (b)
2350
+ IYobserved
2351
+ (a)
2352
+ 1500
2353
+ C14LavesPhase
2354
+ Yealculated
2355
+ 2500
2356
+ 2100
2357
+ IBraggPositions
2358
+ 1700
2359
+ 2000
2360
+ (210)
2361
+ 13)
2362
+ 1300
2363
+ 1500
2364
+ 5
2365
+ 2
2366
+ -
2367
+ 202)
2368
+ 3
2369
+ -
2370
+ 5
2371
+ (31
2372
+ 5
2373
+ -
2374
+ 1000
2375
+ 500
2376
+ 10
2377
+ 20
2378
+ 30
2379
+ 40
2380
+ 50
2381
+ 60
2382
+ 70
2383
+ 80
2384
+ 90
2385
+ 10
2386
+ 20
2387
+ 30
2388
+ 40
2389
+ 50
2390
+ 60
2391
+ 70
2392
+ 80
2393
+ 90
2394
+ Angle (20)
2395
+ Angle 20(a)
2396
+ (b)
2397
+ 0111
2398
+ 1101
2399
+ 100.1/mm
2400
+ 10 1/nm
2401
+ [1213]a
2402
+ Mn
2403
+ Fe
2404
+ b
2405
+ ZrLa
2406
+ Ti Ka
2407
+ B1
2408
+ (d)
2409
+ ElementWeight%
2410
+ 720
2411
+ WYA
2412
+ ZrL
2413
+ 17.15
2414
+ 638
2415
+ TiK
2416
+ 22.92
2417
+ 54C
2418
+ VK
2419
+ 17.46
2420
+ MnK
2421
+ 16.93
2422
+ MaKa
2423
+ FeK
2424
+ 8.46
2425
+ 36
2426
+ CoK
2427
+ 17.08
2428
+ 27
2429
+ 18
2430
+ EMT-20.00AV
2431
+ XX00SE 6es
2432
+ De 1 Feo 2922
2433
+ WD+ t0.0 mm
2434
+ Tome.t:20.15
2435
+ ZEIS
2436
+ Le300.8
2437
+ Hydrogenationof Tio.24Vo.17Zro.17Coo.17Feo.0aMno.17
2438
+ 0.5
2439
+ DehydrogenationofhydrogenatedTia.24Va.Zra.Coa.17Feo.oMna.17at
2440
+ 0.7
2441
+ at410cunder60atmH2pressure
2442
+ Hydrogen absorbed (wt%)
2443
+ desorbed (wt%)
2444
+ 410Cunder1atmH2pressure
2445
+ 0.6
2446
+ 0.4 -
2447
+ 0.5
2448
+ (b)
2449
+ (a)
2450
+ 0.3
2451
+ 0.4
2452
+ 0.3.
2453
+ 0.2
2454
+ 0.2
2455
+ 0.1
2456
+ 0.0
2457
+ 0.0
2458
+ 0
2459
+ 20
2460
+ 40
2461
+ 60
2462
+ 80
2463
+ 100
2464
+ 120
2465
+ 140
2466
+ 16(
2467
+ 0
2468
+ 20
2469
+ 40
2470
+ 60
2471
+ 80
2472
+ 100
2473
+ 120
2474
+ 140
2475
+ 160
2476
+ Time (Min.)
2477
+ Time (Min.).6
2478
+ PClabs.at410°C
2479
+ Van'tHoffplotforPclabsorption
2480
+ 60
2481
+ (a)
2482
+ .5
2483
+ (b)
2484
+ PCI abs. at 425 °C
2485
+ Van'tHoffplotforPcldesorption
2486
+ Linear fit
2487
+ 50
2488
+ PClabs.at395°C
2489
+ .4
2490
+ PCldes.at410°C
2491
+ .3
2492
+ PCldes.at425°C
2493
+ 40
2494
+ (atm)
2495
+ PCI des. at 395 °C
2496
+ .2
2497
+ 30
2498
+ Equation
2499
+ y=a+bx
2500
+ ressure
2501
+ .1-
2502
+ Adj.R-Square
2503
+ 0.99317
2504
+ 0.997
2505
+ Value
2506
+ Standard Error
2507
+ PClabs
2508
+ Intercept
2509
+ 4.15133
2510
+ 0.19668
2511
+ 20
2512
+ .0
2513
+ PClabs
2514
+ Slope
2515
+ -2.29308
2516
+ 0.1342
2517
+ PCIdes
2518
+ Intercept
2519
+ 7.2496
2520
+ 0.23282
2521
+ PCIdes
2522
+ Slope
2523
+ -4.10198
2524
+ 0.159
2525
+ 6'
2526
+ P
2527
+ 10
2528
+ .8
2529
+ 0
2530
+ .7
2531
+ 0.1
2532
+ 0.2
2533
+ 0.3
2534
+ 0.4
2535
+ 0.5
2536
+ 0.6
2537
+ 0.7
2538
+ 1.43
2539
+ 1.44
2540
+ 1.45
2541
+ 1.46
2542
+ 1.47
2543
+ 1.48
2544
+ 0.0
2545
+ 1.49
2546
+ 1.5
2547
+ Hydrogenstoragecapacity (wt%)
2548
+ 1000/T(K)11
2549
+
2550
+
2551
+
2552
+
2553
+
2554
+ Figure 1: (a) Schematic diagram of the synthesis protocol for Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA
2555
+
2556
+
2557
+
2558
+
2559
+
2560
+
2561
+
2562
+
2563
+
2564
+
2565
+
2566
+
2567
+
2568
+
2569
+
2570
+
2571
+
2572
+
2573
+
2574
+ Co
2575
+ Mn
2576
+ Zr
2577
+ Ti
2578
+ Melting in R.F.induction Furnace
2579
+ HEA
2580
+ (ascastalloy)Hydraulic
2581
+ Press
2582
+ 3 × 105 N/m²
2583
+ RF-
2584
+ Induction
2585
+ Melting
2586
+ Melting in R.F. induction Furnace
2587
+ (Melted under dynamic Argon atmosphere)
2588
+ 35-KW
2589
+ (as cast alloy)
2590
+ RF-Induction
2591
+ Furnace2900
2592
+ 3000
2593
+ (b)
2594
+ IYobserved
2595
+ (a)
2596
+ 1500
2597
+ C14LavesPhase
2598
+ Yealculated
2599
+ 2500
2600
+ 2100
2601
+ IBraggPositions
2602
+ 1700
2603
+ 2000
2604
+ (210)
2605
+ 13)
2606
+ 1300
2607
+ 1500
2608
+ 5
2609
+ 2
2610
+ -
2611
+ 202)
2612
+ 3
2613
+ -
2614
+ 5
2615
+ (31
2616
+ 5
2617
+ -
2618
+ 1000
2619
+ 500
2620
+ 10
2621
+ 20
2622
+ 30
2623
+ 40
2624
+ 50
2625
+ 60
2626
+ 70
2627
+ 80
2628
+ 90
2629
+ 10
2630
+ 20
2631
+ 30
2632
+ 40
2633
+ 50
2634
+ 60
2635
+ 70
2636
+ 80
2637
+ 90
2638
+ Angle (20)
2639
+ Angle 20(a)
2640
+ (b)
2641
+ 0111
2642
+ 1101
2643
+ 100.1/mm
2644
+ 10 1/nm
2645
+ [1213]a
2646
+ Mn
2647
+ Fe
2648
+ b
2649
+ ZrLa
2650
+ Ti Ka
2651
+ B1
2652
+ (d)
2653
+ ElementWeight%
2654
+ 720
2655
+ WYA
2656
+ ZrL
2657
+ 17.15
2658
+ 638
2659
+ TiK
2660
+ 22.92
2661
+ 54C
2662
+ VK
2663
+ 17.46
2664
+ MnK
2665
+ 16.93
2666
+ MaKa
2667
+ FeK
2668
+ 8.46
2669
+ 36
2670
+ CoK
2671
+ 17.08
2672
+ 27
2673
+ 18
2674
+ EMT-20.00AV
2675
+ XX00SE 6es
2676
+ De 1 Feo 2922
2677
+ WD+ t0.0 mm
2678
+ Tome.t:20.15
2679
+ ZEIS
2680
+ Le300.8
2681
+ Hydrogenationof Tio.24Vo.17Zro.17Coo.17Feo.0aMno.17
2682
+ 0.5
2683
+ DehydrogenationofhydrogenatedTia.24Va.Zra.Coa.17Feo.oMna.17at
2684
+ 0.7
2685
+ at410cunder60atmH2pressure
2686
+ Hydrogen absorbed (wt%)
2687
+ desorbed (wt%)
2688
+ 410Cunder1atmH2pressure
2689
+ 0.6
2690
+ 0.4 -
2691
+ 0.5
2692
+ (b)
2693
+ (a)
2694
+ 0.3
2695
+ 0.4
2696
+ 0.3.
2697
+ 0.2
2698
+ 0.2
2699
+ 0.1
2700
+ 0.0
2701
+ 0.0
2702
+ 0
2703
+ 20
2704
+ 40
2705
+ 60
2706
+ 80
2707
+ 100
2708
+ 120
2709
+ 140
2710
+ 16(
2711
+ 0
2712
+ 20
2713
+ 40
2714
+ 60
2715
+ 80
2716
+ 100
2717
+ 120
2718
+ 140
2719
+ 160
2720
+ Time (Min.)
2721
+ Time (Min.).6
2722
+ PClabs.at410°C
2723
+ Van'tHoffplotforPclabsorption
2724
+ 60
2725
+ (a)
2726
+ .5
2727
+ (b)
2728
+ PCI abs. at 425 °C
2729
+ Van'tHoffplotforPcldesorption
2730
+ Linear fit
2731
+ 50
2732
+ PClabs.at395°C
2733
+ .4
2734
+ PCldes.at410°C
2735
+ .3
2736
+ PCldes.at425°C
2737
+ 40
2738
+ (atm)
2739
+ PCI des. at 395 °C
2740
+ .2
2741
+ 30
2742
+ Equation
2743
+ y=a+bx
2744
+ ressure
2745
+ .1-
2746
+ Adj.R-Square
2747
+ 0.99317
2748
+ 0.997
2749
+ Value
2750
+ Standard Error
2751
+ PClabs
2752
+ Intercept
2753
+ 4.15133
2754
+ 0.19668
2755
+ 20
2756
+ .0
2757
+ PClabs
2758
+ Slope
2759
+ -2.29308
2760
+ 0.1342
2761
+ PCIdes
2762
+ Intercept
2763
+ 7.2496
2764
+ 0.23282
2765
+ PCIdes
2766
+ Slope
2767
+ -4.10198
2768
+ 0.159
2769
+ 6'
2770
+ P
2771
+ 10
2772
+ .8
2773
+ 0
2774
+ .7
2775
+ 0.1
2776
+ 0.2
2777
+ 0.3
2778
+ 0.4
2779
+ 0.5
2780
+ 0.6
2781
+ 0.7
2782
+ 1.43
2783
+ 1.44
2784
+ 1.45
2785
+ 1.46
2786
+ 1.47
2787
+ 1.48
2788
+ 0.0
2789
+ 1.49
2790
+ 1.5
2791
+ Hydrogenstoragecapacity (wt%)
2792
+ 1000/T(K)12
2793
+
2794
+
2795
+ Figure 2:(a) XRD pattern of Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA system and (b) Rietveld refinement profile
2796
+ pattern of all the peaks well fitted with C14 type hexagonal parameters with unit cell parameters a= b =5.0158 Å,
2797
+ c=8.1790 Å, α = β = 90˚, γ = 120˚ under Space group P63/mmc.
2798
+
2799
+
2800
+
2801
+
2802
+
2803
+
2804
+
2805
+
2806
+
2807
+
2808
+
2809
+
2810
+
2811
+
2812
+
2813
+
2814
+ Co
2815
+ Mn
2816
+ Zr
2817
+ Ti
2818
+ Melting in R.F.induction Furnace
2819
+ HEA
2820
+ (ascastalloy)Hydraulic
2821
+ Press
2822
+ 3 × 105 N/m²
2823
+ RF-
2824
+ Induction
2825
+ Melting
2826
+ Melting in R.F. induction Furnace
2827
+ (Melted under dynamic Argon atmosphere)
2828
+ 35-KW
2829
+ (as cast alloy)
2830
+ RF-Induction
2831
+ Furnace2900
2832
+ 3000
2833
+ (b)
2834
+ IYobserved
2835
+ (a)
2836
+ 1500
2837
+ C14LavesPhase
2838
+ Yealculated
2839
+ 2500
2840
+ 2100
2841
+ IBraggPositions
2842
+ 1700
2843
+ 2000
2844
+ (210)
2845
+ 13)
2846
+ 1300
2847
+ 1500
2848
+ 5
2849
+ 2
2850
+ -
2851
+ 202)
2852
+ 3
2853
+ -
2854
+ 5
2855
+ (31
2856
+ 5
2857
+ -
2858
+ 1000
2859
+ 500
2860
+ 10
2861
+ 20
2862
+ 30
2863
+ 40
2864
+ 50
2865
+ 60
2866
+ 70
2867
+ 80
2868
+ 90
2869
+ 10
2870
+ 20
2871
+ 30
2872
+ 40
2873
+ 50
2874
+ 60
2875
+ 70
2876
+ 80
2877
+ 90
2878
+ Angle (20)
2879
+ Angle 20(a)
2880
+ (b)
2881
+ 0111
2882
+ 1101
2883
+ 100.1/mm
2884
+ 10 1/nm
2885
+ [1213]a
2886
+ Mn
2887
+ Fe
2888
+ b
2889
+ ZrLa
2890
+ Ti Ka
2891
+ B1
2892
+ (d)
2893
+ ElementWeight%
2894
+ 720
2895
+ WYA
2896
+ ZrL
2897
+ 17.15
2898
+ 638
2899
+ TiK
2900
+ 22.92
2901
+ 54C
2902
+ VK
2903
+ 17.46
2904
+ MnK
2905
+ 16.93
2906
+ MaKa
2907
+ FeK
2908
+ 8.46
2909
+ 36
2910
+ CoK
2911
+ 17.08
2912
+ 27
2913
+ 18
2914
+ EMT-20.00AV
2915
+ XX00SE 6es
2916
+ De 1 Feo 2922
2917
+ WD+ t0.0 mm
2918
+ Tome.t:20.15
2919
+ ZEIS
2920
+ Le300.8
2921
+ Hydrogenationof Tio.24Vo.17Zro.17Coo.17Feo.0aMno.17
2922
+ 0.5
2923
+ DehydrogenationofhydrogenatedTia.24Va.Zra.Coa.17Feo.oMna.17at
2924
+ 0.7
2925
+ at410cunder60atmH2pressure
2926
+ Hydrogen absorbed (wt%)
2927
+ desorbed (wt%)
2928
+ 410Cunder1atmH2pressure
2929
+ 0.6
2930
+ 0.4 -
2931
+ 0.5
2932
+ (b)
2933
+ (a)
2934
+ 0.3
2935
+ 0.4
2936
+ 0.3.
2937
+ 0.2
2938
+ 0.2
2939
+ 0.1
2940
+ 0.0
2941
+ 0.0
2942
+ 0
2943
+ 20
2944
+ 40
2945
+ 60
2946
+ 80
2947
+ 100
2948
+ 120
2949
+ 140
2950
+ 16(
2951
+ 0
2952
+ 20
2953
+ 40
2954
+ 60
2955
+ 80
2956
+ 100
2957
+ 120
2958
+ 140
2959
+ 160
2960
+ Time (Min.)
2961
+ Time (Min.).6
2962
+ PClabs.at410°C
2963
+ Van'tHoffplotforPclabsorption
2964
+ 60
2965
+ (a)
2966
+ .5
2967
+ (b)
2968
+ PCI abs. at 425 °C
2969
+ Van'tHoffplotforPcldesorption
2970
+ Linear fit
2971
+ 50
2972
+ PClabs.at395°C
2973
+ .4
2974
+ PCldes.at410°C
2975
+ .3
2976
+ PCldes.at425°C
2977
+ 40
2978
+ (atm)
2979
+ PCI des. at 395 °C
2980
+ .2
2981
+ 30
2982
+ Equation
2983
+ y=a+bx
2984
+ ressure
2985
+ .1-
2986
+ Adj.R-Square
2987
+ 0.99317
2988
+ 0.997
2989
+ Value
2990
+ Standard Error
2991
+ PClabs
2992
+ Intercept
2993
+ 4.15133
2994
+ 0.19668
2995
+ 20
2996
+ .0
2997
+ PClabs
2998
+ Slope
2999
+ -2.29308
3000
+ 0.1342
3001
+ PCIdes
3002
+ Intercept
3003
+ 7.2496
3004
+ 0.23282
3005
+ PCIdes
3006
+ Slope
3007
+ -4.10198
3008
+ 0.159
3009
+ 6'
3010
+ P
3011
+ 10
3012
+ .8
3013
+ 0
3014
+ .7
3015
+ 0.1
3016
+ 0.2
3017
+ 0.3
3018
+ 0.4
3019
+ 0.5
3020
+ 0.6
3021
+ 0.7
3022
+ 1.43
3023
+ 1.44
3024
+ 1.45
3025
+ 1.46
3026
+ 1.47
3027
+ 1.48
3028
+ 0.0
3029
+ 1.49
3030
+ 1.5
3031
+ Hydrogenstoragecapacity (wt%)
3032
+ 1000/T(K)13
3033
+
3034
+
3035
+
3036
+ Figure 3: (a) TEM bright field micrograph of as-cast HEA synthesized by RF induction melting (b) Corresponding
3037
+ SAD pattern are shown indexed with hexagonal structure parameter under the space group of P63/mmc.
3038
+
3039
+
3040
+
3041
+
3042
+
3043
+
3044
+ Co
3045
+ Mn
3046
+ Zr
3047
+ Ti
3048
+ Melting in R.F.induction Furnace
3049
+ HEA
3050
+ (ascastalloy)Hydraulic
3051
+ Press
3052
+ 3 × 105 N/m²
3053
+ RF-
3054
+ Induction
3055
+ Melting
3056
+ Melting in R.F. induction Furnace
3057
+ (Melted under dynamic Argon atmosphere)
3058
+ 35-KW
3059
+ (as cast alloy)
3060
+ RF-Induction
3061
+ Furnace2900
3062
+ 3000
3063
+ (b)
3064
+ IYobserved
3065
+ (a)
3066
+ 1500
3067
+ C14LavesPhase
3068
+ Yealculated
3069
+ 2500
3070
+ 2100
3071
+ IBraggPositions
3072
+ 1700
3073
+ 2000
3074
+ (210)
3075
+ 13)
3076
+ 1300
3077
+ 1500
3078
+ 5
3079
+ 2
3080
+ -
3081
+ 202)
3082
+ 3
3083
+ -
3084
+ 5
3085
+ (31
3086
+ 5
3087
+ -
3088
+ 1000
3089
+ 500
3090
+ 10
3091
+ 20
3092
+ 30
3093
+ 40
3094
+ 50
3095
+ 60
3096
+ 70
3097
+ 80
3098
+ 90
3099
+ 10
3100
+ 20
3101
+ 30
3102
+ 40
3103
+ 50
3104
+ 60
3105
+ 70
3106
+ 80
3107
+ 90
3108
+ Angle (20)
3109
+ Angle 20(a)
3110
+ (b)
3111
+ 0111
3112
+ 1101
3113
+ 100.1/mm
3114
+ 10 1/nm
3115
+ [1213]a
3116
+ Mn
3117
+ Fe
3118
+ b
3119
+ ZrLa
3120
+ Ti Ka
3121
+ B1
3122
+ (d)
3123
+ ElementWeight%
3124
+ 720
3125
+ WYA
3126
+ ZrL
3127
+ 17.15
3128
+ 638
3129
+ TiK
3130
+ 22.92
3131
+ 54C
3132
+ VK
3133
+ 17.46
3134
+ MnK
3135
+ 16.93
3136
+ MaKa
3137
+ FeK
3138
+ 8.46
3139
+ 36
3140
+ CoK
3141
+ 17.08
3142
+ 27
3143
+ 18
3144
+ EMT-20.00AV
3145
+ XX00SE 6es
3146
+ De 1 Feo 2922
3147
+ WD+ t0.0 mm
3148
+ Tome.t:20.15
3149
+ ZEIS
3150
+ Le300.8
3151
+ Hydrogenationof Tio.24Vo.17Zro.17Coo.17Feo.0aMno.17
3152
+ 0.5
3153
+ DehydrogenationofhydrogenatedTia.24Va.Zra.Coa.17Feo.oMna.17at
3154
+ 0.7
3155
+ at410cunder60atmH2pressure
3156
+ Hydrogen absorbed (wt%)
3157
+ desorbed (wt%)
3158
+ 410Cunder1atmH2pressure
3159
+ 0.6
3160
+ 0.4 -
3161
+ 0.5
3162
+ (b)
3163
+ (a)
3164
+ 0.3
3165
+ 0.4
3166
+ 0.3.
3167
+ 0.2
3168
+ 0.2
3169
+ 0.1
3170
+ 0.0
3171
+ 0.0
3172
+ 0
3173
+ 20
3174
+ 40
3175
+ 60
3176
+ 80
3177
+ 100
3178
+ 120
3179
+ 140
3180
+ 16(
3181
+ 0
3182
+ 20
3183
+ 40
3184
+ 60
3185
+ 80
3186
+ 100
3187
+ 120
3188
+ 140
3189
+ 160
3190
+ Time (Min.)
3191
+ Time (Min.).6
3192
+ PClabs.at410°C
3193
+ Van'tHoffplotforPclabsorption
3194
+ 60
3195
+ (a)
3196
+ .5
3197
+ (b)
3198
+ PCI abs. at 425 °C
3199
+ Van'tHoffplotforPcldesorption
3200
+ Linear fit
3201
+ 50
3202
+ PClabs.at395°C
3203
+ .4
3204
+ PCldes.at410°C
3205
+ .3
3206
+ PCldes.at425°C
3207
+ 40
3208
+ (atm)
3209
+ PCI des. at 395 °C
3210
+ .2
3211
+ 30
3212
+ Equation
3213
+ y=a+bx
3214
+ ressure
3215
+ .1-
3216
+ Adj.R-Square
3217
+ 0.99317
3218
+ 0.997
3219
+ Value
3220
+ Standard Error
3221
+ PClabs
3222
+ Intercept
3223
+ 4.15133
3224
+ 0.19668
3225
+ 20
3226
+ .0
3227
+ PClabs
3228
+ Slope
3229
+ -2.29308
3230
+ 0.1342
3231
+ PCIdes
3232
+ Intercept
3233
+ 7.2496
3234
+ 0.23282
3235
+ PCIdes
3236
+ Slope
3237
+ -4.10198
3238
+ 0.159
3239
+ 6'
3240
+ P
3241
+ 10
3242
+ .8
3243
+ 0
3244
+ .7
3245
+ 0.1
3246
+ 0.2
3247
+ 0.3
3248
+ 0.4
3249
+ 0.5
3250
+ 0.6
3251
+ 0.7
3252
+ 1.43
3253
+ 1.44
3254
+ 1.45
3255
+ 1.46
3256
+ 1.47
3257
+ 1.48
3258
+ 0.0
3259
+ 1.49
3260
+ 1.5
3261
+ Hydrogenstoragecapacity (wt%)
3262
+ 1000/T(K)14
3263
+
3264
+
3265
+ Figure 4 : (a) shows the SEM–BSE and energy dispersive X-ray (EDX) analysis mapping images of as cast
3266
+ Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA (b) overlays all the constituent elements present in this HEA. (c) Shows the
3267
+ SEM-BSE image from another region for the HEA. (d) Shows the EDX elemental spectra to validate the atomic
3268
+ presence of the elements in this HEA.
3269
+
3270
+ Co
3271
+ Mn
3272
+ Zr
3273
+ Ti
3274
+ Melting in R.F.induction Furnace
3275
+ HEA
3276
+ (ascastalloy)Hydraulic
3277
+ Press
3278
+ 3 × 105 N/m²
3279
+ RF-
3280
+ Induction
3281
+ Melting
3282
+ Melting in R.F. induction Furnace
3283
+ (Melted under dynamic Argon atmosphere)
3284
+ 35-KW
3285
+ (as cast alloy)
3286
+ RF-Induction
3287
+ Furnace2900
3288
+ 3000
3289
+ (b)
3290
+ IYobserved
3291
+ (a)
3292
+ 1500
3293
+ C14LavesPhase
3294
+ Yealculated
3295
+ 2500
3296
+ 2100
3297
+ IBraggPositions
3298
+ 1700
3299
+ 2000
3300
+ (210)
3301
+ 13)
3302
+ 1300
3303
+ 1500
3304
+ 5
3305
+ 2
3306
+ -
3307
+ 202)
3308
+ 3
3309
+ -
3310
+ 5
3311
+ (31
3312
+ 5
3313
+ -
3314
+ 1000
3315
+ 500
3316
+ 10
3317
+ 20
3318
+ 30
3319
+ 40
3320
+ 50
3321
+ 60
3322
+ 70
3323
+ 80
3324
+ 90
3325
+ 10
3326
+ 20
3327
+ 30
3328
+ 40
3329
+ 50
3330
+ 60
3331
+ 70
3332
+ 80
3333
+ 90
3334
+ Angle (20)
3335
+ Angle 20(a)
3336
+ (b)
3337
+ 0111
3338
+ 1101
3339
+ 100.1/mm
3340
+ 10 1/nm
3341
+ [1213]a
3342
+ Mn
3343
+ Fe
3344
+ b
3345
+ ZrLa
3346
+ Ti Ka
3347
+ B1
3348
+ (d)
3349
+ ElementWeight%
3350
+ 720
3351
+ WYA
3352
+ ZrL
3353
+ 17.15
3354
+ 638
3355
+ TiK
3356
+ 22.92
3357
+ 54C
3358
+ VK
3359
+ 17.46
3360
+ MnK
3361
+ 16.93
3362
+ MaKa
3363
+ FeK
3364
+ 8.46
3365
+ 36
3366
+ CoK
3367
+ 17.08
3368
+ 27
3369
+ 18
3370
+ EMT-20.00AV
3371
+ XX00SE 6es
3372
+ De 1 Feo 2922
3373
+ WD+ t0.0 mm
3374
+ Tome.t:20.15
3375
+ ZEIS
3376
+ Le300.8
3377
+ Hydrogenationof Tio.24Vo.17Zro.17Coo.17Feo.0aMno.17
3378
+ 0.5
3379
+ DehydrogenationofhydrogenatedTia.24Va.Zra.Coa.17Feo.oMna.17at
3380
+ 0.7
3381
+ at410cunder60atmH2pressure
3382
+ Hydrogen absorbed (wt%)
3383
+ desorbed (wt%)
3384
+ 410Cunder1atmH2pressure
3385
+ 0.6
3386
+ 0.4 -
3387
+ 0.5
3388
+ (b)
3389
+ (a)
3390
+ 0.3
3391
+ 0.4
3392
+ 0.3.
3393
+ 0.2
3394
+ 0.2
3395
+ 0.1
3396
+ 0.0
3397
+ 0.0
3398
+ 0
3399
+ 20
3400
+ 40
3401
+ 60
3402
+ 80
3403
+ 100
3404
+ 120
3405
+ 140
3406
+ 16(
3407
+ 0
3408
+ 20
3409
+ 40
3410
+ 60
3411
+ 80
3412
+ 100
3413
+ 120
3414
+ 140
3415
+ 160
3416
+ Time (Min.)
3417
+ Time (Min.).6
3418
+ PClabs.at410°C
3419
+ Van'tHoffplotforPclabsorption
3420
+ 60
3421
+ (a)
3422
+ .5
3423
+ (b)
3424
+ PCI abs. at 425 °C
3425
+ Van'tHoffplotforPcldesorption
3426
+ Linear fit
3427
+ 50
3428
+ PClabs.at395°C
3429
+ .4
3430
+ PCldes.at410°C
3431
+ .3
3432
+ PCldes.at425°C
3433
+ 40
3434
+ (atm)
3435
+ PCI des. at 395 °C
3436
+ .2
3437
+ 30
3438
+ Equation
3439
+ y=a+bx
3440
+ ressure
3441
+ .1-
3442
+ Adj.R-Square
3443
+ 0.99317
3444
+ 0.997
3445
+ Value
3446
+ Standard Error
3447
+ PClabs
3448
+ Intercept
3449
+ 4.15133
3450
+ 0.19668
3451
+ 20
3452
+ .0
3453
+ PClabs
3454
+ Slope
3455
+ -2.29308
3456
+ 0.1342
3457
+ PCIdes
3458
+ Intercept
3459
+ 7.2496
3460
+ 0.23282
3461
+ PCIdes
3462
+ Slope
3463
+ -4.10198
3464
+ 0.159
3465
+ 6'
3466
+ P
3467
+ 10
3468
+ .8
3469
+ 0
3470
+ .7
3471
+ 0.1
3472
+ 0.2
3473
+ 0.3
3474
+ 0.4
3475
+ 0.5
3476
+ 0.6
3477
+ 0.7
3478
+ 1.43
3479
+ 1.44
3480
+ 1.45
3481
+ 1.46
3482
+ 1.47
3483
+ 1.48
3484
+ 0.0
3485
+ 1.49
3486
+ 1.5
3487
+ Hydrogenstoragecapacity (wt%)
3488
+ 1000/T(K)15
3489
+
3490
+
3491
+ Figure 5 : (a) Hydrogenation curve of Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA at 410 ˚C under 60 atm H2 pressure
3492
+ and (b) Dehydrogenation curve of hydrogenated Ti0.24-V0.17-Zr0.17-Co0.17-Fe0.08-Mn0.17 HEA at 410 ˚C under 60 atm
3493
+ H2 pressure.
3494
+
3495
+
3496
+
3497
+
3498
+
3499
+
3500
+
3501
+
3502
+
3503
+
3504
+
3505
+ Co
3506
+ Mn
3507
+ Zr
3508
+ Ti
3509
+ Melting in R.F.induction Furnace
3510
+ HEA
3511
+ (ascastalloy)Hydraulic
3512
+ Press
3513
+ 3 × 105 N/m²
3514
+ RF-
3515
+ Induction
3516
+ Melting
3517
+ Melting in R.F. induction Furnace
3518
+ (Melted under dynamic Argon atmosphere)
3519
+ 35-KW
3520
+ (as cast alloy)
3521
+ RF-Induction
3522
+ Furnace2900
3523
+ 3000
3524
+ (b)
3525
+ IYobserved
3526
+ (a)
3527
+ 1500
3528
+ C14LavesPhase
3529
+ Yealculated
3530
+ 2500
3531
+ 2100
3532
+ IBraggPositions
3533
+ 1700
3534
+ 2000
3535
+ (210)
3536
+ 13)
3537
+ 1300
3538
+ 1500
3539
+ 5
3540
+ 2
3541
+ -
3542
+ 202)
3543
+ 3
3544
+ -
3545
+ 5
3546
+ (31
3547
+ 5
3548
+ -
3549
+ 1000
3550
+ 500
3551
+ 10
3552
+ 20
3553
+ 30
3554
+ 40
3555
+ 50
3556
+ 60
3557
+ 70
3558
+ 80
3559
+ 90
3560
+ 10
3561
+ 20
3562
+ 30
3563
+ 40
3564
+ 50
3565
+ 60
3566
+ 70
3567
+ 80
3568
+ 90
3569
+ Angle (20)
3570
+ Angle 20(a)
3571
+ (b)
3572
+ 0111
3573
+ 1101
3574
+ 100.1/mm
3575
+ 10 1/nm
3576
+ [1213]a
3577
+ Mn
3578
+ Fe
3579
+ b
3580
+ ZrLa
3581
+ Ti Ka
3582
+ B1
3583
+ (d)
3584
+ ElementWeight%
3585
+ 720
3586
+ WYA
3587
+ ZrL
3588
+ 17.15
3589
+ 638
3590
+ TiK
3591
+ 22.92
3592
+ 54C
3593
+ VK
3594
+ 17.46
3595
+ MnK
3596
+ 16.93
3597
+ MaKa
3598
+ FeK
3599
+ 8.46
3600
+ 36
3601
+ CoK
3602
+ 17.08
3603
+ 27
3604
+ 18
3605
+ EMT-20.00AV
3606
+ XX00SE 6es
3607
+ De 1 Feo 2922
3608
+ WD+ t0.0 mm
3609
+ Tome.t:20.15
3610
+ ZEIS
3611
+ Le300.8
3612
+ Hydrogenationof Tio.24Vo.17Zro.17Coo.17Feo.0aMno.17
3613
+ 0.5
3614
+ DehydrogenationofhydrogenatedTia.24Va.Zra.Coa.17Feo.oMna.17at
3615
+ 0.7
3616
+ at410cunder60atmH2pressure
3617
+ Hydrogen absorbed (wt%)
3618
+ desorbed (wt%)
3619
+ 410Cunder1atmH2pressure
3620
+ 0.6
3621
+ 0.4 -
3622
+ 0.5
3623
+ (b)
3624
+ (a)
3625
+ 0.3
3626
+ 0.4
3627
+ 0.3.
3628
+ 0.2
3629
+ 0.2
3630
+ 0.1
3631
+ 0.0
3632
+ 0.0
3633
+ 0
3634
+ 20
3635
+ 40
3636
+ 60
3637
+ 80
3638
+ 100
3639
+ 120
3640
+ 140
3641
+ 16(
3642
+ 0
3643
+ 20
3644
+ 40
3645
+ 60
3646
+ 80
3647
+ 100
3648
+ 120
3649
+ 140
3650
+ 160
3651
+ Time (Min.)
3652
+ Time (Min.).6
3653
+ PClabs.at410°C
3654
+ Van'tHoffplotforPclabsorption
3655
+ 60
3656
+ (a)
3657
+ .5
3658
+ (b)
3659
+ PCI abs. at 425 °C
3660
+ Van'tHoffplotforPcldesorption
3661
+ Linear fit
3662
+ 50
3663
+ PClabs.at395°C
3664
+ .4
3665
+ PCldes.at410°C
3666
+ .3
3667
+ PCldes.at425°C
3668
+ 40
3669
+ (atm)
3670
+ PCI des. at 395 °C
3671
+ .2
3672
+ 30
3673
+ Equation
3674
+ y=a+bx
3675
+ ressure
3676
+ .1-
3677
+ Adj.R-Square
3678
+ 0.99317
3679
+ 0.997
3680
+ Value
3681
+ Standard Error
3682
+ PClabs
3683
+ Intercept
3684
+ 4.15133
3685
+ 0.19668
3686
+ 20
3687
+ .0
3688
+ PClabs
3689
+ Slope
3690
+ -2.29308
3691
+ 0.1342
3692
+ PCIdes
3693
+ Intercept
3694
+ 7.2496
3695
+ 0.23282
3696
+ PCIdes
3697
+ Slope
3698
+ -4.10198
3699
+ 0.159
3700
+ 6'
3701
+ P
3702
+ 10
3703
+ .8
3704
+ 0
3705
+ .7
3706
+ 0.1
3707
+ 0.2
3708
+ 0.3
3709
+ 0.4
3710
+ 0.5
3711
+ 0.6
3712
+ 0.7
3713
+ 1.43
3714
+ 1.44
3715
+ 1.45
3716
+ 1.46
3717
+ 1.47
3718
+ 1.48
3719
+ 0.0
3720
+ 1.49
3721
+ 1.5
3722
+ Hydrogenstoragecapacity (wt%)
3723
+ 1000/T(K)16
3724
+
3725
+
3726
+
3727
+ Figure 6:(a) Fig: (a) PCI ab/de-sorption curves of Ti0.24V0.17Zr0.17Mn0.17Co0.17Fe0.08 HEA and (b) Corresponding
3728
+ Van’t Hoff plots for PCI ab/de-sorption curves.
3729
+
3730
+
3731
+ Co
3732
+ Mn
3733
+ Zr
3734
+ Ti
3735
+ Melting in R.F.induction Furnace
3736
+ HEA
3737
+ (ascastalloy)Hydraulic
3738
+ Press
3739
+ 3 × 105 N/m²
3740
+ RF-
3741
+ Induction
3742
+ Melting
3743
+ Melting in R.F. induction Furnace
3744
+ (Melted under dynamic Argon atmosphere)
3745
+ 35-KW
3746
+ (as cast alloy)
3747
+ RF-Induction
3748
+ Furnace2900
3749
+ 3000
3750
+ (b)
3751
+ IYobserved
3752
+ (a)
3753
+ 1500
3754
+ C14LavesPhase
3755
+ Yealculated
3756
+ 2500
3757
+ 2100
3758
+ IBraggPositions
3759
+ 1700
3760
+ 2000
3761
+ (210)
3762
+ 13)
3763
+ 1300
3764
+ 1500
3765
+ 5
3766
+ 2
3767
+ -
3768
+ 202)
3769
+ 3
3770
+ -
3771
+ 5
3772
+ (31
3773
+ 5
3774
+ -
3775
+ 1000
3776
+ 500
3777
+ 10
3778
+ 20
3779
+ 30
3780
+ 40
3781
+ 50
3782
+ 60
3783
+ 70
3784
+ 80
3785
+ 90
3786
+ 10
3787
+ 20
3788
+ 30
3789
+ 40
3790
+ 50
3791
+ 60
3792
+ 70
3793
+ 80
3794
+ 90
3795
+ Angle (20)
3796
+ Angle 20(a)
3797
+ (b)
3798
+ 0111
3799
+ 1101
3800
+ 100.1/mm
3801
+ 10 1/nm
3802
+ [1213]a
3803
+ Mn
3804
+ Fe
3805
+ b
3806
+ ZrLa
3807
+ Ti Ka
3808
+ B1
3809
+ (d)
3810
+ ElementWeight%
3811
+ 720
3812
+ WYA
3813
+ ZrL
3814
+ 17.15
3815
+ 638
3816
+ TiK
3817
+ 22.92
3818
+ 54C
3819
+ VK
3820
+ 17.46
3821
+ MnK
3822
+ 16.93
3823
+ MaKa
3824
+ FeK
3825
+ 8.46
3826
+ 36
3827
+ CoK
3828
+ 17.08
3829
+ 27
3830
+ 18
3831
+ EMT-20.00AV
3832
+ XX00SE 6es
3833
+ De 1 Feo 2922
3834
+ WD+ t0.0 mm
3835
+ Tome.t:20.15
3836
+ ZEIS
3837
+ Le300.8
3838
+ Hydrogenationof Tio.24Vo.17Zro.17Coo.17Feo.0aMno.17
3839
+ 0.5
3840
+ DehydrogenationofhydrogenatedTia.24Va.Zra.Coa.17Feo.oMna.17at
3841
+ 0.7
3842
+ at410cunder60atmH2pressure
3843
+ Hydrogen absorbed (wt%)
3844
+ desorbed (wt%)
3845
+ 410Cunder1atmH2pressure
3846
+ 0.6
3847
+ 0.4 -
3848
+ 0.5
3849
+ (b)
3850
+ (a)
3851
+ 0.3
3852
+ 0.4
3853
+ 0.3.
3854
+ 0.2
3855
+ 0.2
3856
+ 0.1
3857
+ 0.0
3858
+ 0.0
3859
+ 0
3860
+ 20
3861
+ 40
3862
+ 60
3863
+ 80
3864
+ 100
3865
+ 120
3866
+ 140
3867
+ 16(
3868
+ 0
3869
+ 20
3870
+ 40
3871
+ 60
3872
+ 80
3873
+ 100
3874
+ 120
3875
+ 140
3876
+ 160
3877
+ Time (Min.)
3878
+ Time (Min.).6
3879
+ PClabs.at410°C
3880
+ Van'tHoffplotforPclabsorption
3881
+ 60
3882
+ (a)
3883
+ .5
3884
+ (b)
3885
+ PCI abs. at 425 °C
3886
+ Van'tHoffplotforPcldesorption
3887
+ Linear fit
3888
+ 50
3889
+ PClabs.at395°C
3890
+ .4
3891
+ PCldes.at410°C
3892
+ .3
3893
+ PCldes.at425°C
3894
+ 40
3895
+ (atm)
3896
+ PCI des. at 395 °C
3897
+ .2
3898
+ 30
3899
+ Equation
3900
+ y=a+bx
3901
+ ressure
3902
+ .1-
3903
+ Adj.R-Square
3904
+ 0.99317
3905
+ 0.997
3906
+ Value
3907
+ Standard Error
3908
+ PClabs
3909
+ Intercept
3910
+ 4.15133
3911
+ 0.19668
3912
+ 20
3913
+ .0
3914
+ PClabs
3915
+ Slope
3916
+ -2.29308
3917
+ 0.1342
3918
+ PCIdes
3919
+ Intercept
3920
+ 7.2496
3921
+ 0.23282
3922
+ PCIdes
3923
+ Slope
3924
+ -4.10198
3925
+ 0.159
3926
+ 6'
3927
+ P
3928
+ 10
3929
+ .8
3930
+ 0
3931
+ .7
3932
+ 0.1
3933
+ 0.2
3934
+ 0.3
3935
+ 0.4
3936
+ 0.5
3937
+ 0.6
3938
+ 0.7
3939
+ 1.43
3940
+ 1.44
3941
+ 1.45
3942
+ 1.46
3943
+ 1.47
3944
+ 1.48
3945
+ 0.0
3946
+ 1.49
3947
+ 1.5
3948
+ Hydrogenstoragecapacity (wt%)
3949
+ 1000/T(K)
T9E4T4oBgHgl3EQfLwz0/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
VtFKT4oBgHgl3EQfmy5j/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8d3c8b8fae3618a73a265a1813afd001054cc2c8e69e5fe7cc3f35536b141e5
3
+ size 247812
YNE1T4oBgHgl3EQfwAWP/content/tmp_files/2301.03406v1.pdf.txt ADDED
@@ -0,0 +1,790 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Astronomy & Astrophysics manuscript no. output
2
+ ©ESO 2023
3
+ January 10, 2023
4
+ Cosmic rate of type IIn supernovae
5
+ and its evolution with redshift
6
+ C. Cold1 and J. Hjorth1
7
+ DARK, Niels Bohr Institute, University of Copenhagen, Jagtvej 128, 2200 Copenhagen N, Denmark
8
+ Received month day, year; accepted month day, year
9
+ ABSTRACT
10
+ Context. Type IIn supernovae potentially constitute a large fraction of the gravitationally lensed supernovae predicted to be found
11
+ with upcoming facilities. However, the local rate is used for these estimates, which is assumed to be independent of properties such
12
+ as the host galaxy mass. Some studies hint that a host galaxy mass bias may exist for IIn supernovae.
13
+ Aims. This paper aims to provide an updated local IIn supernova-to-core-collapse ratio based on data from the Palomar Transient
14
+ Factory (PTF) and the Zwicky Transient Facility (ZTF) Bright Transient Survey (BTS). Furthermore, the goal is to investigate the
15
+ dependency of the IIn supernova peak magnitude on the host galaxy mass and the consequences of a possible host galaxy mass
16
+ preference on the volumetric rate of type IIn supernovae.
17
+ Methods. We constructed approximately volume-limited subsamples to determine the local IIn supernova-to-core-collapse ratio. We
18
+ investigated the absolute peak magnitude of a subsample of type IIn and superluminous II or IIn supernovae exploring how this relates
19
+ to the i-band magnitude of the host galaxies (as a proxy for stellar mass). We presented a method to quantify the effect of a potential
20
+ preference for low-mass host galaxies utilizing the UniverseMachine algorithm.
21
+ Results. The IIn supernova-to-core-collapse ratios for PTF and BTS are 0.046 ± 0.013 and 0.048 ± 0.011, respectively, which results
22
+ in a ratio of 0.047±0.009, which is consistent with the ratio of 0.05 currently used to estimate the number of gravitationally lensed IIn
23
+ supernovae. We report fainter host galaxy median absolute magnitudes for type IIn brighter than −20.5 mag with a 3 σ significance.
24
+ If the IIn supernova-to-core-collapse ratio were described by the power law model IIn/CC = 0.15 · log(M/M⊙)−0.05, we would expect
25
+ a slightly elevated volumetric rate for redshifts beyond 3.2.
26
+ Conclusions.
27
+ Key words. supernovae: general.
28
+ 1. Introduction
29
+ Type IIn supernovae (SNe IIn) exhibit narrow hydrogen emis-
30
+ sion lines in their spectra (Schlegel 1990). The distinct features
31
+ of this SN class arise from the slow-moving and dense circum-
32
+ stellar material (CSM) ejected by the star prior to explosion. This
33
+ means that the SN IIn subtype is very diverse, as these SNe can
34
+ emerge whenever CSM indications are present in their spectra,
35
+ whether it is early or late in the lifespan of the SN, or whatever
36
+ lies beneath the veil of the CSM (Smith 2017). Narrow hydrogen
37
+ features may also arise from flash ionization of local CSM fol-
38
+ lowing shock breakout. However, such emission lines disappear
39
+ shortly after peak magnitude to reveal the underlying SN type
40
+ (Yaron et al. 2017; Bruch et al. 2021; Jacobson-Galán et al. 2022;
41
+ Terreran et al. 2022). Nevertheless, flash ionization in combina-
42
+ tion with the complexity of the CSM structure can complicate
43
+ the classification of SNe IIn (Ransome et al. 2021).
44
+ Luminous blue variables, extreme red super giants, and yel-
45
+ low hyper giants have all been proposed as progenitors due to
46
+ their recurring violent mass-loss episodes. The intervals of mass
47
+ loss can range from a period of months to thousands of years,
48
+ which is necessary to produce the amount of CSM required to
49
+ make SNe IIn (Smith 2017).
50
+ Brighter and more long-lived than other SN types, super-
51
+ luminous supernovae (SLSNe) are recognized as their own class
52
+ of SNe (Moriya et al. 2018; Gal-Yam 2012). These very lu-
53
+ minous objects differ from other SNe by their optical absolute
54
+ magnitudes of around −21 or less, although SLSNe have been
55
+ classified at around −19 mag at peak for the faintest objects
56
+ (Moriya et al. 2018; Angus et al. 2019). SLSNe, as the classic
57
+ SN classes, are also further categorized into subtypes. The super-
58
+ luminous counterpart to the SNe IIn, SLSNe-IIn, also feature
59
+ narrow emission lines of the hydrogen Balmer series similar to
60
+ the regular SNe IIn, and these constitute a significant percentage
61
+ of all hydrogen-rich SLSNe (Gal-Yam 2019). This is indicative
62
+ of CSM interaction partly powering very bright transients. It is
63
+ not yet clear whether SLSNe-IIn and SNe IIn are two distinctive
64
+ populations or if they form a continuum in luminosity. However,
65
+ in this work, we considered the SLSNe-IIn as the brightest SNe
66
+ IIn.
67
+ Models indicate that SNe IIn along with SNe Ia will dom-
68
+ inate the observed rates of lensed supernovae. Estimates from
69
+ the upcoming Legacy Survey of Time and Space (LSST) with
70
+ the Vera C. Rubin Observatory (Wojtak et al. 2019; Goldstein
71
+ et al. 2019) predict on the order of 100 SNe IIn per year to be
72
+ gravitationally lensed. For the Roman Space Telescope, the grav-
73
+ itationally lensed SNe predictions are comparable (Pierel et al.
74
+ 2021).
75
+ The lensed SNe IIn predictions are based on the observed lo-
76
+ cal rate of SNe IIn. Data from the Lick Observatory Supernova
77
+ Search (LOSS) yielded an SNe-IIn-to-CC ratio of 8.8%+3.3%
78
+ −2.9%
79
+ SNe IIn out of all CC SNe (Li et al. 2011; Smith et al. 2011).
80
+ Article number, page 1 of 8
81
+ arXiv:2301.03406v1 [astro-ph.HE] 9 Jan 2023
82
+
83
+ A&A proofs: manuscript no. output
84
+ Fig. 1. Overview of redshift and host galaxy mass distributions. Left panel: Redshift distribution of the SNe IIn in Nyholm et al. (2020) and
85
+ SLSN-IIn from PTF. Both are subsamples of the full PTF SNe IIn and SLSNe-IIn samples. The redshifts can be found in Schulze et al. (2021).
86
+ Right panel: Distribution of the host galaxy masses corresponding to the same SNe IIn from Nyholm et al. (2020) and a subsample of SLSNe-IIn
87
+ from the PTF. These subsample distributions are consistent with the full sample distributions of SNe IIn and SLSNe-IIn from Schulze et al. (2021).
88
+ Fig. 2. Overview of redshift and host galaxy magnitude distributions. Left panel: Redshift distribution of the SNe IIn and SLSN-II from BTS. Right
89
+ panel: Distribution of the host galaxy i-band absolute magnitudes. For two SNe IIn and 1 SLSN-II, the i-band magnitudes were not available. The
90
+ i-band magnitude is used as a proxy for the host stellar mass.
91
+ Several of these SNe IIn were subsequently identified as SN
92
+ Impostors such that the IIn rate from LOSS is now considered
93
+ to be around 5% (Graur et al. 2017). Other examples of local
94
+ rate measurements include studies by Smartt et al. (2009), who
95
+ present a volume-limited (28 Mpc) sample compiled from all lo-
96
+ cal SNe with a named host galaxy discovered over a ten-year
97
+ period. This sample includes 3.8% SNe IIn out of all CC SNe
98
+ in the sample. Eldridge et al. (2013) updated the study done by
99
+ Smartt et al. (2009), searching for SNe discovered over a 14-year
100
+ period, yielding 2.4 ± 1.4%.
101
+ The existing rate estimates of SNe IIn assume that the local
102
+ fraction of IIn to all other CC SNe does not evolve with redshift
103
+ and so is not affected by large-scale changes in compositions
104
+ or characteristics of galaxies and stellar populations over time.
105
+ Several studies show a bias toward less massive host galaxies for
106
+ SLSNe in general (e.g., Leloudas et al. 2015; Angus et al. 2016;
107
+ Schulze et al. 2018; Taggart & Perley 2021), and this dearth of
108
+ Article number, page 2 of 8
109
+
110
+ 8
111
+ 42lln(Nyholmetal.2020)
112
+ 14
113
+ 9 SLSN-lln from PTE
114
+ 7
115
+ 12
116
+ 5
117
+ 8
118
+ Numberof
119
+ 4
120
+ Number
121
+ 6
122
+ 3
123
+ 4
124
+ 2
125
+ 1
126
+ 2
127
+ 0
128
+ 0
129
+ 0.000.05
130
+ 0.100.150.200.25
131
+ 0.300.35
132
+ 5
133
+ 9
134
+ 101112
135
+ 13
136
+ z
137
+ Host Galaxy Stellar Mass [log(M)]92lnfromBTS
138
+ 90linfromBTS
139
+ 12
140
+ 18 SLSN-11from BTS
141
+ 17 SLSN-Lfrom BTS
142
+ 20
143
+ 10
144
+ Numberof Galaxies
145
+ 15
146
+ 8
147
+ 6
148
+ 10
149
+ 4
150
+ 5
151
+ 2
152
+ 0
153
+ 0.00
154
+ 00.05
155
+ 0.10
156
+ 0.15
157
+ 0.20
158
+ 0.25
159
+ 0.30
160
+ 0.35
161
+ -14
162
+ -16
163
+ -18
164
+ -20
165
+ -22
166
+ Host Galaxy Magnitude [M;]C. Cold and J. Hjorth: Cosmic rate of type IIn supernovae and its evolution with redshift
167
+ massive hosts suggests some dependence on the characteristics
168
+ of the environment. In a study by Graur et al. (2017), based on
169
+ data from LOSS, SNe IIn seem to be more common in less mas-
170
+ sive galaxies. However, other studies do not come to the same
171
+ conclusion (e.g., Kelly & Kirshner 2012). The Palomar Tran-
172
+ sient Factory (PTF) CC SN sample presented in Schulze et al.
173
+ (2021) also does not reveal a bias for SNe IIn toward low-mass
174
+ host galaxies, and is inconclusive regarding the host galaxy mass
175
+ preference of SLSNe-IIn.
176
+ The Zwicky Transient Facility (ZTF) Bright Transient Sur-
177
+ vey (BTS) (Fremling et al. 2020; Perley et al. 2020) will be part
178
+ of the analysis in this paper in addition to the PTF CC sample
179
+ (Schulze et al. 2021). The paper is structured as follows. In Sec-
180
+ tion 2, we briefly introduced the data used for the analysis. In
181
+ Section 3, we created an approximately volume-limited sample
182
+ from the PTF and BTS data, followed by a presentation of an
183
+ updated SNe-IIn-to-CC ratio (SNe IIn fraction) for both sam-
184
+ ples. In Section 4, we compare the absolute magnitude and the
185
+ i-band magnitude of the host galaxies of a subsample of SNe IIn,
186
+ SLSNe-IIn, and SLSN-II from PTF and BTS. In Section 5, we
187
+ presented a generic method for inferring the rate and its evolu-
188
+ tion with redshift and studying the consequences of a possible
189
+ mass-biased SNe IIn rate, before the discussion in Section 6 and
190
+ conclusions in Section 7.
191
+ 2. Data
192
+ The PTF CC SN sample from Schulze et al. (2021) and the ZTF
193
+ Bright Transient Survey (Fremling et al. 2020; Perley et al. 2020)
194
+ constitute the basis of the analysis presented in this paper. The
195
+ PTF was a deep, wide-field survey followed by the intermediate
196
+ PTF (iPTF) survey. The PTF CC sample contains 888 objects,
197
+ of which 111 are SNe IIn and 16 SLSNe-IIn. Redshifts and host
198
+ galaxy stellar masses are available for all objects in the sample.
199
+ For later analysis, we will use the host galaxy i-band (either Pan-
200
+ STARRS1 (PS1) or Sloan Digital Sky Survey (SDSS) i-band)
201
+ absolute magnitude. However, two SNe IIn and one SLSN-IIn
202
+ have no reported host i-band magnitude. The sample contains
203
+ only host photometry, and so we used a subsample of IIn and
204
+ SLSNe-IIn where the peak absolute magnitude is available. The
205
+ subsample of 42 SNe IIn with available peak magnitudes is de-
206
+ scribed in Nyholm et al. (2020). These SNe were chosen based
207
+ on the amount of available light-curve data to allow an analy-
208
+ sis of both the rise times and decline rates of the SNe IIn, all
209
+ with at least one available low-resolution spectrum. The red-
210
+ shifts in Nyholm et al. (2020) differ slightly from the redshifts
211
+ in Schulze et al. (2021), which are the galaxy redshifts estimated
212
+ by one of four possible methods: taken from SDSS, taken from
213
+ the NASA Extragalactic Database, estimated from galaxy lines
214
+ in the spectra or estimated from SN-template matching (Schulze
215
+ et al. 2021). In Nyholm et al. (2020), the redshifts are estimated
216
+ from the Hα emission lines in the SNe spectra. In this work,
217
+ we used the data published in Schulze et al. (2021) as well as
218
+ SLSNe-IIn peak magnitudes (Leloudas, priv. comm.). The red-
219
+ shift and host galaxy stellar mass distributions of the SNe IIn
220
+ from Nyholm et al. (2020) along with the SLSN-IIn sample from
221
+ the PTF are shown in Fig. 1.
222
+ The BTS is currently the largest spectroscopic survey of
223
+ SNe. The survey is magnitude-limited in the g and r (<19 mag-
224
+ nitude) bands. The sample is 97% spectroscopically complete at
225
+ <18 mag, 93% at <18.5 mag, and 75% at <19 mag (Perley et al.
226
+ 2020). The survey is updated daily as new observations come
227
+ in. For this paper, we chose to use all available CC SNe and IIn
228
+ from BTS regardless of magnitude as of May 16, 2022. The to-
229
+ tal number of CC SNe adds up to 949, of which 92 are IIn. We
230
+ also included the SLSN-II in our analysis, of which there are 18.
231
+ In BTS, the SLSNe-II are not further divided into subclasses.
232
+ However, as most SLSNe-II exhibit IIn-like features, we chose
233
+ to include all of the SLSN-II in our analysis. The parameters
234
+ we used in our analysis in this paper are redshift, peak magni-
235
+ tude and host i-band absolute magnitude. Redshifts are available
236
+ for all but six CC SNe, none of which are SNe IIn or SLSN-
237
+ II. Since the host galaxy stellar masses are not available in this
238
+ sample, we instead utilized the absolute i-band magnitude of the
239
+ hosts where available as these magnitudes are a good proxy for
240
+ the stellar masses, as is seen in Fig. 3. Distributions of redshift
241
+ and host galaxy i-band magnitude are shown in Fig. 2.
242
+ Fig. 3. PTF CC SNe host galaxy absolute i-band magnitudes are plotted
243
+ against host galaxy stellar masses. Due to the standard deviation of the
244
+ residuals being 0.4, which is comparable to the uncertainty on the stellar
245
+ mass, the i-band magnitude can be used as a proxy for the stellar mass
246
+ in our analysis.
247
+ 3. Inferred IIn fractions
248
+ In Frohmaier et al. (2021), the CC SN rate for the PTF is de-
249
+ termined while taking all the survey limitations into account
250
+ through extensive modeling. This method yields a total of 86 CC
251
+ SNe and three SNe IIn. Unfortunately, inferring relative rates
252
+ of SNe IIn with only three sources will be dominated by low-
253
+ number statistics. For the purpose of estimating the SNe IIn
254
+ fraction, we will alternatively create an approximately volume-
255
+ limited sample for the recent PTF data released in Schulze et al.
256
+ (2021) and also from BTS (Fremling et al. 2020; Perley et al.
257
+ 2020) under the assumption of fair spectroscopic classification.
258
+ A simple way to estimate the distance, or redshift, at which
259
+ the PTF CC sample is approximately complete is to compare
260
+ with a known complete sample. The LOSS sample is com-
261
+ plete out to 60 Mpc for CC SNe (Li et al. 2011; Graur et al.
262
+ 2017). With the limiting magnitude of LOSS having a median
263
+ of 18.8 ± 0.5 mag (Leaman et al. 2011), 60 Mpc is also the dis-
264
+ tance to the furthest SNe LOSS could theoretically observe as-
265
+ suming the faintest SNe to have an absolute magnitude of around
266
+ −15.1. The PTF has a limiting magnitude of 20.5 mag in the R
267
+ band, which implies a distance of up to 131.8 Mpc for creating a
268
+ volume-limited sample, assuming the same −15.1 mag for faint
269
+ SNe. This corresponds to a redshift cut-off of 0.031 when adopt-
270
+ ing a Hubble constant of H0 = 73 kms−1Mpc−1 as in LOSS. This
271
+ Article number, page 3 of 8
272
+
273
+ 24
274
+ [M;]
275
+ 22
276
+ Magnitude
277
+ 20
278
+ /Absolute
279
+ -18
280
+ -16
281
+ Host Galaxy
282
+ -14
283
+ -12
284
+ PTF CC SNe Host Galaxies
285
+ -10
286
+ 4
287
+ 5
288
+ 6
289
+ 1
290
+ 8
291
+ 9
292
+ 10
293
+ 11
294
+ 12
295
+ HostGalaxyStellarMass[log(M*/M)]A&A proofs: manuscript no. output
296
+ Fig. 4. Redshift evolution of SNe-IIn-to-CC ratio. The gray data points represent the cumulative SNe-IIn-to-CC ratio from PTF, indicated on the
297
+ left y-axis, as a function of redshift limits out to maximum redshift of the sample. SLSNe-IIn are not included in the IIn-to-CC ratio. The vertical
298
+ gray dashed line represents the chosen redshift cut. The number of CC SNe, SNe IIn, and SLSNe-IIn as a function of redshift are represented by
299
+ the colored curves indicated on the right y-axis. The inset shows a zoomed-in image of a plot of the cumulative SNe-IIn-to-CC ratio up to redshift
300
+ 0.06 as well as the chosen redshift cut.
301
+ Fig. 5. Redshift evolution of SNe-IIn-to-CC ratio. The gray data points represent the cumulative SNe-IIn-to-CC ratio from BTS, indicated on the
302
+ left y-axis, as a function of redshift limits. The vertical gray dashed line represents the chosen redshift cut. The number of CC SNe and SNe IIn
303
+ are also depicted as the colored curves, which are indicated on the right y-axis. The inset shows a zoomed-in image of a plot of the cumulative
304
+ SNe-IIn-to-CC ratio up to redshift 0.06 as well as the chosen redshift cut.
305
+ estimate can be tested visually, as is done in Fig. 4, where we
306
+ plot the SNe-IIn-to-CC ratio as a function of redshift limit. The
307
+ estimated cut of 0.031 is indicated in the plot by a dashed line.
308
+ The SNe IIn fraction for lower redshift cut-offs is dominated by
309
+ noise due to the small number of supernovae found at these red-
310
+ shifts, whereas the ratio increases above 0.031 as more SNe IIn
311
+ are observed at this range. This indicates that the estimated red-
312
+ shift cut is located where the noise from few observations has
313
+ started to diminish, but we do not yet see the effect of a larger
314
+ volume wherein to observe SNe IIn and CC SNe in general. As
315
+ such, imposing a redshift cut-off of 0.031 on the PTF CC sample
316
+ Article number, page 4 of 8
317
+
318
+ 0.14
319
+ Z=0.031
320
+ PTF
321
+ 800
322
+ 0.12
323
+ 0.10
324
+ Supemova
325
+ 0.075
326
+ IIn/CC
327
+ 0.08
328
+ IIn/CC
329
+ 0.050
330
+ 4006
331
+ 0.06
332
+ Z=0.031
333
+ Number
334
+ 0.025
335
+ PTF
336
+ 0.04
337
+ 0.000
338
+ 0.00
339
+ 0.01
340
+ 0.02
341
+ 0.03
342
+ 0.04
343
+ 0.05
344
+ 0.06
345
+ 200
346
+ z limit
347
+ 0.02
348
+ SLSN IIn
349
+ IIn
350
+ 0.00
351
+ CC
352
+ 0
353
+ 0.00
354
+ 0.05
355
+ 0.10
356
+ 0.15
357
+ 0.20
358
+ 0.25
359
+ 0.30
360
+ z limitZ=0.033
361
+ BTS
362
+ 0.10
363
+ 800
364
+ 0.08
365
+ Number of Supemovae
366
+ 0.100
367
+ 600
368
+ 0.075
369
+ IIn/CC
370
+ 0.050
371
+ 400
372
+ 0.04
373
+ 0.025
374
+ Z=0.033
375
+ PTF
376
+ 0.000
377
+ 0.00
378
+ 0.01
379
+ 0.02
380
+ 0.03
381
+ 0.04
382
+ 0.05
383
+ 0.06
384
+ 200
385
+ 0.02
386
+ z limit
387
+ IIn
388
+ 0.00
389
+ CC
390
+ 0
391
+ 0.00
392
+ 0.05
393
+ 0.10
394
+ 0.15
395
+ 0.20
396
+ 0.25
397
+ 0.30
398
+ z lirmitC. Cold and J. Hjorth: Cosmic rate of type IIn supernovae and its evolution with redshift
399
+ is a reasonable approach for creating an approximately volume-
400
+ limited sample to use for estimating the SNe IIn fraction.
401
+ Fig. 6. Distributions of host galaxy stellar mass of the complete PTF CC
402
+ sample using z < 0.031. No SLSNe-IIn in the PTF sample are found
403
+ within this redshift. Results from a KS test show no significant SNe
404
+ IIn host galaxy mass preference for the volume-limited sample with a p
405
+ value of 0.002.
406
+ We employ the same method for the BTS sample. Using
407
+ −15.1 mag for the faintest CC SNe is consistent with the mean of
408
+ the 20 faintest CC SNe in the BTS sample. According to Bellm
409
+ et al. (2019), the limiting magnitudes for ZTF are 20.8 mag in
410
+ the g band, 20.6 mag in the r band, and 19.9 in the i band. We
411
+ will use the r-band value to be consistent with LOSS. From the
412
+ distance modulus, this yields a distance of 138 Mpc, correspond-
413
+ ing to a redshift cut-off of about 0.033, as illustrated in Fig. 5.
414
+ The volume effect is less obvious in the BTS data, and as such
415
+ the resulting IIn fraction from BTS is more robust toward any
416
+ uncertainties in the redshift cut compared to the result from PTF.
417
+ However, as the redshift cut of 0.033 occurs before a slow rise in
418
+ the SNe-IIn-to-CC value and after the inital large uncertainties,
419
+ we deem 0.033 to be a good estimate for creating an approxi-
420
+ mately volume-limited sample.
421
+ For the PTF, a redshift cut of 0.031 leaves us with an ap-
422
+ proximately complete CC sample of 263 CC SNe in total. This
423
+ includes 12 SNe IIn, but none of the SLSNe-IIn are observed
424
+ within this redshift. Therefore, we find that the ratio of SNe IIn to
425
+ CC SNe for our subsample of PTF data to be 0.046 ± 0.013. The
426
+ uncertainty on the resulting SNe-IIn ratio is propagated from the
427
+ Poisson error on the individual number of CC and SNe IIn. The
428
+ resulting histogram of the host galaxy stellar masses of this vol-
429
+ ume limited sample of PTF data, as illustrated in Fig. 6, reveals
430
+ no obvious SNe IIn preference for less massive host galaxies,
431
+ which is in agreement with the analysis done by Schulze et al.
432
+ (2021) on the full PTF sample.
433
+ We can compare this value to the BTS data. A redshift cut-
434
+ off of 0.033 yields a sample of 440 CC SNe, of which 21 are
435
+ SNe IIn. This results in an SNe-IIn-to-CC ratio of 0.048±0.011.
436
+ The uncertainty on this number is similarly determined using er-
437
+ ror propagation. As host galaxy masses are not available in BTS,
438
+ and a significant amount of CC hosts do not have i-band magni-
439
+ tudes either, we will not compare the host galaxy distributions of
440
+ the SNe IIn and CC SNe from BTS. As these resulting fractions
441
+ are independent, we combine them and get a SNe IIn relative
442
+ fraction of 0.047 ± 0.009.
443
+ 4. Brightness of SNe IIn
444
+ In this section, we investigate whether the peak brightness of the
445
+ IIn is influenced by the host galaxy stellar mass when consider-
446
+ ing the SLSN-IIn as the brighest members of the IIn class. We
447
+ know from several studies that SLSNe prefer lower mass host
448
+ galaxies. According to Schulze et al. (2021), this phenomenon is
449
+ not significant when only studying the SLSNe-IIn, as the objects
450
+ are still too few. We note that for redshifts on the order of 0.03
451
+ the influence of peculiar velocities on calculating peak absolute
452
+ magnitudes of the SNe is decreasing compared to SN samples,
453
+ which are mostly comprised of local sources.
454
+ The distributions of redshift and host galaxy mass of the sub-
455
+ sample of IIn and SLSN-IIn from PTF are displayed in Fig. 1.
456
+ In Fig. 2, we show the distributions of redshift and host galaxy
457
+ i-band magnitude from BTS. For the comparison between these
458
+ two data sets, we use the i-band magnitude of the host galaxies
459
+ as a proxy for the stellar mass. Only three sources from either
460
+ data set do not have available host i-band magnitudes.
461
+ In Fig. 7, we compare the absolute magnitude at peak and the
462
+ i-band magnitude of the host galaxies of the SNe IIn and SLSNe-
463
+ IIn or SLSN-II from the PTF as well as BTS. As these objects are
464
+ chosen based on data availability, the subsamples seen in Fig. 7
465
+ are not complete. However, Nyholm et al. (2020) state that the
466
+ host galaxy mass distribution of their subsample is in agreement
467
+ with the distribution of the full PTF SNe IIn sample, such that
468
+ the distribution of the i-band magnitudes should follow a similar
469
+ distribution. The data in Fig. 7 show no clear trend regarding the
470
+ effect of the host galaxy magnitude on the peak absolute mags
471
+ of the SNe IIn. To further investigate, we divide the combined
472
+ PTF and BTS subsamples shown in Fig. 7 in two, namely a faint
473
+ sample and a bright sample, and subsequently calculate the me-
474
+ dian and uncertainty on the median as 1.48·MAD/
475
+
476
+ N − 1 of the
477
+ i-band magnitudes for the host galaxies, where MAD is the me-
478
+ dian absolute deviation. This division of the subsample is done
479
+ for several different SN IIn peak magnitudes. We employ Mpeak
480
+ values from −17.5 to −21 as the dividing lines between the faint
481
+ and the bright sub-samples and compare the medians, as can be
482
+ seen in Fig. 8. We find that the median i-band magnitude (and
483
+ thus the stellar mass) of the host galaxies becomes fainter with
484
+ a 3σ significance when choosing a sample of SNe IIn brighter
485
+ than −20.5 mag.
486
+ Fig. 7. Absolute peak magnitude versus host galaxy i-band magnitude
487
+ for SNe IIn and SLSNe-IIn/SLSNe-II from PTF and BTS.
488
+ Article number, page 5 of 8
489
+
490
+ 102
491
+ 263 CC
492
+ 12 IIn
493
+ Supernovae
494
+ Numberof
495
+ 101
496
+ 100
497
+ 5
498
+ 6
499
+ 7
500
+ 8
501
+ 9
502
+ 10
503
+ 011
504
+ 12
505
+ 13
506
+ HostGalaxyStellarMass[log(M)]-23
507
+ 22
508
+ -21
509
+ 20
510
+ Peak
511
+ 19
512
+ Absolute
513
+ -18
514
+ -17
515
+ BTS IIn
516
+ BTS SLSN-II
517
+ -16
518
+ PTF IIn
519
+ PTF SLSN-IIn
520
+ -15
521
+ 10
522
+ -12
523
+ -14
524
+ -16
525
+ -18
526
+ -20
527
+ -22
528
+ Host Galaxy Absolute Mag [Mi]A&A proofs: manuscript no. output
529
+ Fig. 8. Median host Mi as a function of different cuts on the supernova
530
+ peak magnitude for combined BTS and PTF samples. The median i-
531
+ band magnitude of the host galaxies becomes fainter for the brighter
532
+ SNe in the combined sample.
533
+ 5. Consequences of a host-mass-dependent IIn
534
+ fraction
535
+ While the evidence for a host-mass-dependent IIn fraction is not
536
+ strong, we next explore the consequences of a hypothetical pref-
537
+ erence for low-mass host galaxies. We parametrize the IIn frac-
538
+ tion as a power-law function of the stellar mass of the host galaxy
539
+ and investigate the impact on the volumetric rate as a function of
540
+ redshift. This will be affected since more low-mass galaxies are
541
+ present in the earlier Universe.
542
+ In general, the volumetric SNe IIn rate can be expressed as
543
+ IInrate = IIn
544
+ CC · kCC · S FR.
545
+ (1)
546
+ The CC constant, kCC, is set to 0.0091M−1
547
+
548
+ following Strol-
549
+ ger et al. (2015). This model is consistent with observational
550
+ constraints from Dahlen et al. (2012) and Madau & Dickinson
551
+ (2014) as demonstrated in Strolger et al. (2015). Here, a model
552
+ for the star-formation rate (SFR) is taken from the UniverseMa-
553
+ chine algorithm by Behroozi et al. (2019). The results of this
554
+ code are best-fitting models of stellar-mass functions (SMFs),
555
+ cosmic star formation rates (CSFRs), specific star formation
556
+ rates (sSFRs), and UV luminosity functions (UVLFs) to obser-
557
+ vations. One can determine the SFR from the output of the Uni-
558
+ verseMachine algorithm:
559
+ S FR =
560
+ � Mmax
561
+ Mmin
562
+ S MF · M · sS FR dM.
563
+ (2)
564
+ When computing the SFR this way, it is possible to split it into
565
+ different mass bins in order to infer the contribution to the total
566
+ SFR from galaxies of different masses and how this changes with
567
+ redshift, as is shown in the top panel of Fig. 9. The UniverseMa-
568
+ chine resulting models have mass ranges of 107M⊙ to 1013M⊙,
569
+ and we choose to split these into five different bins, as indicated
570
+ in Fig. 9. The bin containing the 1011M⊙ to 1013M⊙ galaxies is
571
+ chosen to be wider than the other bins, as the contribution from
572
+ the 1012M⊙ to 1013M⊙ galaxies is negligible. We parametrize the
573
+ IIn-to-CC ratio as a power law:
574
+ IIn
575
+ CC (log(M/M⊙)) = 0.15 · log(M/M⊙)−0.05.
576
+ (3)
577
+ This power-law model is chosen to have a higher SNe-IIn-to-
578
+ CC ratio than 0.047 for host galaxies below 1010M⊙ and a lower
579
+ ratio for more massive galaxies. For this specific example, the
580
+ ratio will be 0.057 for galaxies with stellar masses of 107M⊙, and
581
+ 0.043 for 1012M⊙. The motivation for this kind of model comes
582
+ from the LOSS data in Graur et al. (2017), showing a preference
583
+ for low-mass hosts for SNe IIn, which can be modeled with a
584
+ power law with different sets of parameters (Hede 2021).
585
+ To calculate the volumetric rate, we use the central value of
586
+ the IIn/CC model for every mass bin in log as the IIn/CC factor
587
+ in Eq. (1), and thus compute a separate SN IIn rate for each mass
588
+ bin as well as the combined rate. Since the power-law model and
589
+ the constant model do not predict the same number of SNe given
590
+ a different area under the curve, we normalize the resulting rate
591
+ from the power law model to 4.77 · 10−6 yr−1Mpc−3, which is
592
+ the SNe IIn rate at redshift zero for a constant SNe IIn fraction of
593
+ 0.047 calculated from Eq. (1), where the UniverseMachine is the
594
+ source of the SFR. We do this to be consistent with the constant
595
+ model. The resulting SNe IIn rate is plotted in the bottom panel
596
+ of Fig. 9 for both the example power-law model and the constant
597
+ model of IIn/CC = 0.047. The overall IIn rate is slightly lower
598
+ for a redshift below four, and slightly higher for one above four.
599
+ This plot also shows how the contribution from the different host
600
+ mass bins differs for the constant ratio to the power-law model. It
601
+ is evident that the overall rate from low-mass galaxies is higher,
602
+ and since these contribute a larger fraction of the total rate at
603
+ higher redshift, we also see an increase in the rate in this high-
604
+ redshift domain as expected.
605
+ 6. Discussion
606
+ In this section, we discuss and reflect on some of the shortcom-
607
+ ings and consequences of the methods and results of this paper
608
+ as well as some widely used assumptions. First, we note that the
609
+ SNe-IIn fractions from the PTF and BTS are based on approxi-
610
+ mate volume-limited samples. The identification of a sweet spot
611
+ in the IIn fraction in the PTF sample (Fig. 4) supports this ap-
612
+ proach, although we note that, ultimately, IIn fractions will have
613
+ to be based on carefully defined volume-limited samples of a
614
+ large number of core-collapse supernovae.
615
+ From Fig. 8, we see a statistically significant connection be-
616
+ tween the brightness of the SNe IIn and the host galaxy stellar
617
+ mass when choosing a sample of SNe IIn brighter than −20.5
618
+ mag. For the faint SNe IIn sample at the −18 mag cut-off, the
619
+ median i-band magnitude of the host galaxies drops below the
620
+ bright IIn sample median host i-band magnitude. However, the
621
+ subsamples employed in this part of our analysis could be sub-
622
+ ject to different selection effects. Observing faint SNe in bright
623
+ galaxies is challenging as the light from the galaxy can hide the
624
+ SNe and so we could expect that some were missed in this area.
625
+ This effect will influence the median i-band host magnitude for
626
+ the faintest SNe IIn and could explain the slight shift in median
627
+ host i-band magnitude for the faintest SNe in Fig. 8. However,
628
+ the drop in median i-band host-galaxy magnitude is not as sig-
629
+ nificant as the drop for the brightest supernovae.
630
+ Using the UniverseMachine algorithm DR1 as the input for
631
+ the SFR gives insight into the contributions from host galaxies
632
+ of different stellar masses to the resulting SNe IIn rate whether a
633
+ preference for low-mass hosts exists or not. One limitation, how-
634
+ ever, is the lower mass boundary on these galaxies. As is evident
635
+ from both Figs. 6 and 1, several SNe IIn have host galaxies less
636
+ massive than 107M⊙, but using UniverseMachine it is not pos-
637
+ sible to see the contribution from these galaxies. Another limi-
638
+ tation is the mass resolution of UniverseMachine. In this case,
639
+ Article number, page 6 of 8
640
+
641
+ 21.0
642
+ Bright SNe
643
+ 20.5
644
+ Faint SNe
645
+ -20.0
646
+ M
647
+ -19.5
648
+ Median Host I
649
+ 19.0
650
+ -18.5
651
+ 18.0
652
+ 17.5
653
+ 17.0.
654
+ 17.0-17.5-18.0-18.5-19.0-19.5-20.0-20.5-21.0-21.5
655
+ Mpeak CutC. Cold and J. Hjorth: Cosmic rate of type IIn supernovae and its evolution with redshift
656
+ Fig. 9. Overview of the cosmic SFR, volumetric SNe IIn rate and rel-
657
+ ative SNe IIn rate. Top panel: SFR calculated from UniverseMachine
658
+ DR1 (Behroozi et al. 2019). Middle panel: Resulting SNe-IIn rate de-
659
+ termined using Eq. (1). The solid lines denote rates from the power-law
660
+ IIn-to-CC ratio, and the dashed lines represent the rate for a constant
661
+ ratio of 0.047. The contribution from each mass bin is plotted for com-
662
+ parison. Bottom panel: Total relative volumetric SNe IIn rate. The gray
663
+ line represents a line of agreement between the two models.
664
+ we have four or five data points per mass bin, which prevents us
665
+ from further dividing the host galaxies into smaller bins to obtain
666
+ a more detailed overview.
667
+ In Fig. 9, we show the resulting SNe-IIn volumetric rates. For
668
+ illustration, the volumetric rate is computed for a uniform fixed
669
+ SNe-IIn fraction of 0.047 next to a model in which the SNe IIn
670
+ prefer lower mass host galaxies, here represented by a power law
671
+ model. The two models agree at z = 0 and the normalization of
672
+ the curves is uncertain by 20 %. The middle and bottom panels
673
+ show that the relative volumetric rate of SNe IIn increases over
674
+ the default constant model for redshifts beyond 3.2.
675
+ Introducing the example power-law model to describe the
676
+ SNe-IIn-to-CC ratio produces a minimal effect on the volumet-
677
+ ric rate compared to the constant ratio as seen in Fig. 9: A lower
678
+ rate for redshifts below 3.2 and higher for redshifts beyond. The
679
+ LSST or Roman Space Telescope are not expected to be able to
680
+ observe lensed SNe beyond redshifts of three and four, respec-
681
+ tively (Wojtak et al. 2019; Goldstein et al. 2019; Pierel et al.
682
+ 2021), and so the possibility of testing such a model is currently
683
+ limited. On the other hand, we show that a limited mass depen-
684
+ dence of the IIn rate should not affect predicted volumetric rates
685
+ of SNe IIn significantly.
686
+ 7. Conclusions
687
+ We studied the PTF and BTS SNe IIn and SLSNe-IIn/SLSNe-
688
+ II populations throughout this work and now present our main
689
+ conclusions.
690
+ Creating a complete sample of CC SNe from PTF and
691
+ BTS, we find the SNe IIn to CC ratios of 0.046 ± 0.013 and
692
+ 0.048 ± 0.011 for the PTF and BTS, respectively. The combined
693
+ resulting SNe-IIn fraction is 0.047 ± 0.009. We see a marginally
694
+ significant (3 σ) bias towards low-mass host galaxies for SNe IIn
695
+ brighter than −20.5 mag. We present a general method to evalu-
696
+ ate the consequences of a SNe IIn to CC ratio that is nonconstant
697
+ and is instead described by a power-law model on the resulting
698
+ volumetric rate. The example model chosen here can be freely
699
+ replaced by another model as required. We find that the example
700
+ power law model of IIn/CC = 0.15 · M−0.05 results in a slightly
701
+ lower volumetric rate below a redshift of four and a higher rate
702
+ beyond a redshift of 3.2 when comparing to a constant ratio of
703
+ 0.047. Neither the LSST nor the Roman Space Telescope are pre-
704
+ dicted to find lensed SNe beyond redshifts of three or four. We
705
+ emphasize that our method is generic and can be applied to other
706
+ CC subtypes if needed.
707
+ Acknowledgements. We gratefully acknowledge Giorgios Leloudas for sharing
708
+ peak absolute magnitudes for a subsample of PTF SLSNe-IIn, without which a
709
+ large part of the analysis in this paper would not have been possible, as well as
710
+ invaluable comments on the paper draft. We also gratefully acknowledge Steve
711
+ Schulze and Radek Wojtak for helpful conversations about type IIn and statis-
712
+ tical conundrums, respectively, and Wynn Jacobson-Galán and Doogesh Kodi
713
+ Ramanah for reading and commenting on the paper before submission. We also
714
+ thank the referee for their useful and thorough comments and suggestions. This
715
+ work was supported by a VILLUM FONDEN Investigator grant to JH (project
716
+ number 16599).
717
+ References
718
+ Angus, C. R., Levan, A. J., Perley, D. A., et al. 2016, MNRAS, 458, 84
719
+ Angus, C. R., Smith, M., Sullivan, M., et al. 2019, MNRAS, 487, 2215
720
+ Behroozi, P., Wechsler, R. H., Hearin, A. P., & Conroy, C. 2019, MNRAS, 488,
721
+ 3143
722
+ Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2019, PASP, 131, 018002
723
+ Bruch, R. J., Gal-Yam, A., Schulze, S., et al. 2021, ApJ, 912, 46
724
+ Dahlen, T., Strolger, L.-G., Riess, A. G., et al. 2012, ApJ, 757, 70
725
+ Eldridge, J. J., Fraser, M., Smartt, S. J., Maund, J. R., & Crockett, R. M. 2013,
726
+ MNRAS, 436, 774
727
+ Fremling, C., Miller, A. A., Sharma, Y., et al. 2020, ApJ, 895, 32
728
+ Frohmaier, C., Angus, C. R., Vincenzi, M., et al. 2021, MNRAS, 500, 5142
729
+ Gal-Yam, A. 2012, Science, 337, 927
730
+ Gal-Yam, A. 2019, ARA&A, 57, 305
731
+ Goldstein, D. A., Nugent, P. E., & Goobar, A. 2019, ApJS, 243, 6
732
+ Graur, O., Bianco, F. B., Modjaz, M., et al. 2017, ApJ, 837, 121
733
+ Hede, C. 2021, Evolution of the Rate of SNe IIn with Redshift [Master
734
+ Thesis, University of Copenhagen], Niels Bohr Institute Thesis Database.
735
+ https://nbi.ku.dk/english/theses/masters-theses/cecilie-cold_copy/
736
+ Jacobson-Galán, W. V., Dessart, L., Jones, D. O., et al. 2022, ApJ, 924, 15
737
+ Kelly, P. L. & Kirshner, R. P. 2012, ApJ, 759, 107
738
+ Leaman, J., Li, W., Chornock, R., & Filippenko, A. V. 2011, MNRAS, 412, 1419
739
+ Leloudas, G., Schulze, S., Krühler, T., et al. 2015, MNRAS, 449, 917
740
+ Li, W., Leaman, J., Chornock, R., et al. 2011, MNRAS, 412, 1441
741
+ Madau, P. & Dickinson, M. 2014, ARA&A, 52, 415
742
+ Moriya, T. J., Sorokina, E. I., & Chevalier, R. A. 2018, Space Sci. Rev., 214, 59
743
+ Nyholm, A., Sollerman, J., Tartaglia, L., et al. 2020, A&A, 637, A73
744
+ Perley, D. A., Fremling, C., Sollerman, J., et al. 2020, ApJ, 904, 35
745
+ Pierel, J. D. R., Rodney, S., Vernardos, G., et al. 2021, ApJ, 908, 190
746
+ Article number, page 7 of 8
747
+
748
+ 10-1
749
+ SFR [Meyr-1Mpc-3]
750
+ 10
751
+ 10
752
+ 6
753
+ IIn/CC = 0.047
754
+ 7 ≤log(M)<8
755
+ 5
756
+ 6>(W)60|≤8
757
+ 0T>(W)601≤6
758
+ 4
759
+ 10 ≤log(M)<11
760
+ 11 ≤log(M)<13
761
+ m
762
+ Total
763
+ 1
764
+ Relative Rate
765
+ 1.1
766
+ 1.0
767
+ 0
768
+ 1
769
+ 2
770
+ E
771
+ 4
772
+ 5
773
+ 6
774
+ ZA&A proofs: manuscript no. output
775
+ Ransome, C. L., Habergham-Mawson, S. M., Darnley, M. J., et al. 2021, MN-
776
+ RAS, 506, 4715
777
+ Schlegel, E. M. 1990, MNRAS, 244, 269
778
+ Schulze, S., Krühler, T., Leloudas, G., et al. 2018, MNRAS, 473, 1258
779
+ Schulze, S., Yaron, O., Sollerman, J., et al. 2021, ApJS, 255, 29
780
+ Smartt, S. J., Eldridge, J. J., Crockett, R. M., & Maund, J. R. 2009, MNRAS,
781
+ 395, 1409
782
+ Smith, N. 2017, in Handbook of Supernovae, ed. A. W. Alsabti & P. Murdin, 403
783
+ Smith, N., Li, W., Filippenko, A. V., & Chornock, R. 2011, MNRAS, 412, 1522
784
+ Strolger, L.-G., Dahlen, T., Rodney, S. A., et al. 2015, ApJ, 813, 93
785
+ Taggart, K. & Perley, D. A. 2021, MNRAS, 503, 3931
786
+ Terreran, G., Jacobson-Galán, W. V., Groh, J. H., et al. 2022, ApJ, 926, 20
787
+ Wojtak, R., Hjorth, J., & Gall, C. 2019, MNRAS, 487, 3342
788
+ Yaron, O., Perley, D. A., Gal-Yam, A., et al. 2017, Nature Physics, 13, 510
789
+ Article number, page 8 of 8
790
+
YNE1T4oBgHgl3EQfwAWP/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
YNE5T4oBgHgl3EQfdQ-k/content/tmp_files/2301.05610v1.pdf.txt ADDED
@@ -0,0 +1,1327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Accelerating greedy algorithm for model reduction of complex
2
+ systems by multi-fidelity error estimation
3
+ Lihong Feng ∗, Luigi Lombardi†, Giulio Antonini‡, and Peter Benner§
4
+ January 16, 2023
5
+ Abstract
6
+ Model order reduction usually consists of two stages: the offline stage and the online stage. The
7
+ offline stage is the expensive part that sometimes takes hours till the final reduced-order model is
8
+ derived, especially when the original model is very large or complex. Once the reduced-order model
9
+ is obtained, the online stage of querying the reduced-order model for simulation is very fast and
10
+ often real-time capable. This work concerns a strategy to significantly speed up the offline stage of
11
+ model order reduction for large and complex systems. In particular, it is successful in accelerating
12
+ the greedy algorithm that is often used in the offline stage for reduced-order model construction.
13
+ We propose multi-fidelity error estimators and replace the high-fidelity error estimator in the greedy
14
+ algorithm. Consequently, the computational complexity at each iteration of the greedy algorithm is
15
+ reduced and the algorithm converges more than 3 times faster without incurring noticeable accuracy
16
+ loss.
17
+ 1
18
+ Introduction
19
+ Model order reduction (MOR) has achieved much success in many areas of computational science with
20
+ its capability of realizing real-time simulation and providing accurate results. Different MOR methods,
21
+ their applications and the promising results they produce can be found in the survey papers [2, 4, 12]
22
+ and books [27, 3, 8, 9, 10, 11].
23
+ MOR needs an offline stage for constructing the ROM. For many intrusive MOR methods that are
24
+ based on projection, the offline stage is usually realized via a greedy algorithm. The greedy algorithm
25
+ is used to properly select important parameter samples that contribute most to the solution space. The
26
+ offline computational time is basically the runtime of the greedy algorithm. For large-scale systems,
27
+ the offline computation is expensive and the runtime is often longer than several hours even when
28
+ run on a high-performance server. Sometimes, the system is not very large, for example, the number
29
+ of degrees of freedom is only O(105), but the system structure is complicated, so that the greedy
30
+ algorithm still takes long time to converge.
31
+ It is known that an efficient error estimator makes the greedy algorithm successful in producing
32
+ an accurate ROM without running many iterations.
33
+ Therefore, many efforts have been made in
34
+ this direction to develop computable error estimators for different problems [15, 16, 18, 19, 20, 21,
35
+ 22, 23, 24, 25, 28, 34, 33, 35].
36
+ However, more attention has been paid to improve the effectivity
37
+ ∗Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Ger-
38
+ many feng@mpi-magdeburg.mpg.de
39
+ †Luigi Lombardi is with Micron Semiconductor, 67051 Avezzano, Italy. luigilombardi89@gmail.com
40
+ ‡Giulio Antonini is with the UAq EMC Laboratory, Department of Industrial and Information Engineering and
41
+ Economics, University of L’Aquila, I-67100 L’Aquila, Italy. giulio.antonini@univaq.it
42
+ §Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany and Fakult¨at f¨ur Mathe-
43
+ matik, Otto-von-Guericke-Universit¨at Magdeburg, Germany. benner@mpi-magdeburg.mpg.de
44
+ 1
45
+ arXiv:2301.05610v1 [math.NA] 13 Jan 2023
46
+
47
+ or accuracy of the error estimator than to develop more efficient strategies to accelerate the greedy
48
+ process [36, 13, 34, 25, 33]. Recently, some techniques are proposed to improve the adaptivity of the
49
+ greedy algorithm [7, 13, 6, 26].
50
+ In [13, 14], we proposed a surrogate model for error estimation, and proposed an adaptive greedy
51
+ algorithm by alternatively using this surrogate error estimator and the original error estimator during
52
+ the greedy algorithm. The focus in [13, 14] was to make the greedy process adaptive by starting from a
53
+ coarse training set of a small number of parameter samples, and adaptively update the coarse training
54
+ set with the aid of a surrogate error estimator. The original error estimator is computed only over
55
+ the coarse training set, while the surrogate error estimator helps to pick out candidates of important
56
+ parameter samples from a fine training set, which are then collected in the coarse training set.
57
+ In this work, we emphasize the role of the surrogate error estimator and propose the concept of
58
+ bi-fidelity error estimation and multi-fidelity error estimation. In fact, a bi-fidelity error estimation has
59
+ been used in the adaptive greedy algorithm proposed in [13, 14] without being formally defined, i.e.,
60
+ the original (high-fidelity) error estimator, and the surrogate (low-fidelity) error estimator. To further
61
+ improve the convergence speed of the greedy algorithm, we propose multi-fidelity error estimation
62
+ built upon the bi-fidelity error estimation. Here, we use a more efficient high-fidelity error estimator
63
+ than the two different high-fidelity error estimators used in [13, 14]. Although the proposed multi-
64
+ fidelity error estimation is dependent on the original high-fidelity error estimator, the idea of using
65
+ multi-fidelity error estimation is general and can be extended to develop multi-fidelity error estimation
66
+ associated with other high-fidelity error estimators.
67
+ Unlike the problems considered in [13, 14], whose ROMs can be constructed by standard greedy
68
+ algorithms within seconds to minutes, we consider in this work much more complicated problems.
69
+ On the same computer, the standard greedy algorithm takes more than half a day to converge for
70
+ such problems. By using the proposed multi-fidelity error estimator, the greedy algorithm achieves
71
+ 4x speed-up and produces ROMs with little loss of accuracy. The speed-up is also higher than those
72
+ reported in [13, 14] by using the bi-fidelity error estimation, which is usually 2x.
73
+ In the next section, we present the greedy algorithm in the standard form.
74
+ Then we analyze
75
+ some ingredients of the algorithm, which contribute most to the computational cost. Starting from
76
+ those computationally expensive parts, we develop possible strategies to reduce the computational
77
+ complexity in Section 3. As a consequence, it becomes clear that the resulting strategy develops a
78
+ greedy algorithm with multi-fidelity error estimation. The proposed algorithm is then applied to large
79
+ time-delay systems with many delays. The numerical tests on three large time-delay systems with
80
+ more than 100 delays are demonstrated in Section 4. Conclusions are given in the end.
81
+ 2
82
+ Standard greedy algorithm
83
+ The standard greedy algorithm was first proposed for steady systems without time evolution. Then
84
+ it was extended to POD-greedy for dynamical systems, which is used to construct the ROM using
85
+ snapshots in the time domain. Later the greedy algorithm found its capability in adaptively choosing
86
+ interpolation points for frequency-domain MOR methods [15, 16]. The greedy algorithm for steady
87
+ systems and frequency-domain MOR has the same formulation, whereas POD-greedy for time-domain
88
+ MOR of time-dependent systems needs an SVD step at each greedy iteration. In this work, we focus
89
+ on the greedy algorithm, though the proposed scheme can be easily extended to POD-greedy. We
90
+ consider constructing a ROM for the following full-order model (FOM) using the greedy algorithm,
91
+ F(x(µ), µ) = B(µ).
92
+ (1)
93
+ Here, F(x(µ), µ) ∈ Cn×nI, x(µ) ∈ Cn×nI, and B(µ) ∈ Cn×nI. µ ∈ P is a parameter in the parameter
94
+ domain P. The variable n is the order of the FOM, which can be the number of degrees of freedom
95
+ 2
96
+
97
+ Algorithm 1 Standard greedy algorithm
98
+ Input: the FOM, a training set Ξ composed of parameter samples taken from the parameter domain
99
+ P, error tolerance tol< 1, ∆(µ) to estimate the error.
100
+ Output: Projection matrix V .
101
+ 1: Choose initial parameter µ∗ ∈ Ξ.
102
+ 2: V ← ∅, ε = 1.
103
+ 3: while ε >tol do
104
+ 4:
105
+ Compute the snapshot(s) x(µ∗) by solving the FOM at µ = µ∗.
106
+ 5:
107
+ Update V by V = orth{V, x(µ∗)}, (e.g., using the modified Gram-Schmidt process with defla-
108
+ tion.)
109
+ 6:
110
+ Compute µ∗ such that µ∗ = arg max
111
+ µ∈Ξ ∆(µ).
112
+ 7:
113
+ ε = ∆(µ∗).
114
+ 8: end while
115
+ after numerical discretization of PDEs describing a physical phenomenon. The proposed algorithms
116
+ are also applicable to problems with nI > 1.
117
+ The ROM can be obtained via Galerkin projection using a projection matrix V ∈ Rn×r, r ≪ n,
118
+ as below,
119
+ ˆF(V z(µ), µ) = ˆb(µ),
120
+ (2)
121
+ where ˆF(V z(µ), µ) = V T f(V z(µ), µ) ∈ Cr×nI, z(µ) ∈ Cr×nI, and ˆB(µ) = V T b(µ) ∈ Cr×nI.
122
+ The standard greedy process used to compute the projection matrix V is described in Algorithm 1.
123
+ Step 4 in Algorithm 1 solves the FOM at µ∗, and Step 6 computes an error estimator ∆(µ) at all µ in Ξ.
124
+ These two steps constitute the most computational expensive part of the greedy algorithm. However,
125
+ Step 4 is unavoidable, since x(µ∗) is needed for the reduced basis construction.The computational
126
+ complexity of Step 6 could be reduced, if the cardinality of Ξ, i.e., |Ξ| is kept small, so that ∆(µ)
127
+ needs not be evaluated at many parameter samples. This is the motivation of the surrogate error
128
+ estimator proposed in [13, 14].
129
+ We call the surrogate error estimator ∆l(µ) the low-fidelity error
130
+ estimator as compared to the original error estimator ∆(µ), since ∆l(µ) is only an approximation to
131
+ ∆(µ), but is much cheaper to compute.
132
+ In the next section, we present a greedy algorithm using bi-fidelity error estimation, where the low-
133
+ fidelity error estimator is computed following the method in [13, 14]. Based on this, a greedy algorithm
134
+ using multi-fidelity error estimation associated with a particular high-fidelity error estimator for MOR
135
+ of linear parametric systems, is proposed.
136
+ 3
137
+ Greedy algorithm with bi-fidelity and multi-fidelity error estima-
138
+ tion
139
+ This section presents greedy algorithms with bi-fidelity and multi-fidelity error estimation, respectively.
140
+ 3.1
141
+ Greedy algorithm with bi-fidelity error estimation
142
+ Algorithm 2 is the greedy algorithm with bi-fidelity error estimation.
143
+ Its original version using a
144
+ different high-fidelity error estimator was firstly proposed in [13]. The key step of Algorithm 2 is Step
145
+ 8, where the low-fidelity error estimator ∆l(µ) is computed using values of ∆(µ) at the samples of
146
+ µ in the small parameter set Ξc. Basically, ∆l(µ) is represented by a weighted sum of radial basis
147
+ 3
148
+
149
+ Algorithm 2 Greedy algorithm with bi-fidelity error estimation
150
+ Input: the FOM, a training set Ξc composed of a small number of parameter samples taken from the
151
+ parameter domain P, a set Ξf composed a large number of parameter samples of µ from P, error
152
+ tolerance tol< 1, ∆(µ) to estimate the error.
153
+ Output: Projection matrix V .
154
+ 1: Choose initial parameter µ∗ ∈ Ξc.
155
+ 2: V ← ∅, ε = 1.
156
+ 3: while ε >tol do
157
+ 4:
158
+ Compute the snapshot(s) x(µ∗) by solving the FOM at µ = µ∗.
159
+ 5:
160
+ Update V by V = orth{V, x(µ∗)}, (e.g., using the modified Gram-Schmidt process with defla-
161
+ tion.)
162
+ 6:
163
+ Compute µ∗ such that µ∗ = arg max
164
+ µ∈Ξc ∆(µ).
165
+ 7:
166
+ Compute µo such that µo = arg min
167
+ µ∈Ξc ∆(µ).
168
+ 8:
169
+ Compute the low-fidelity error estimator ∆l(µ) using values of ∆(µ) corresponding to the sam-
170
+ ples of µ in Ξc via (3) and (4).
171
+ 9:
172
+ Evaluate ∆l(µ) over Ξf and pick out a parameter µc from the large parameter set Ξf corre-
173
+ sponding to the largest value of ∆l(µ), i.e., µc = arg max
174
+ µ∈Ξf from Ξf.
175
+ 10:
176
+ Update the small parameter set Ξc: if ∆l(µc) >tol, enrich Ξc with µc, i.e., Ξc = {Ξc, µc}, if
177
+ ∆(µo) <tol, remove µo from Ξc: Ξc = Ξc\µo.
178
+ 11:
179
+ ε = ∆(µ∗).
180
+ 12: end while
181
+ functions (RBFs), i.e.,
182
+ ∆l(µ) =
183
+ m
184
+
185
+ i=1
186
+ wiΦ(µ − µi),
187
+ (3)
188
+ where Φ(µ) are RBFs, µi are the samples in Ξc, and m is the cardinality of Ξc, which is small. Once wi
189
+ are known, the low-fidelity error estimator ∆l(µ) is known. The weights wi are computed via enforcing
190
+ ∆l(µ) to interpolate ∆(µ) at µj, ∀µj ∈ Ξc, i.e., ∆l(µj) = ∆(µj). Inserting µ = µj ∈ Ξc into (3), the
191
+ weights wi can be computed by solving the linear system as below,
192
+
193
+ ��
194
+ Φ(µ1 − µ1)
195
+ . . .
196
+ Φ(µ1 − µm)
197
+ ...
198
+ ...
199
+ ...
200
+ Φ(µm − µ1)
201
+ . . .
202
+ Φ(µm − µm)
203
+
204
+ ��
205
+
206
+ ��
207
+ w1
208
+ ...
209
+ wm
210
+
211
+ ��
212
+ =
213
+
214
+ ��
215
+ ∆(µ1)
216
+ ...
217
+ ∆(µm)
218
+
219
+ �� .
220
+ (4)
221
+ Since values of ∆(µ) at µ ∈ Ξc are available, the weights can be easily computed by solving the above
222
+ small linear system with m × m being the dimension of the coefficient matrix. As this is a rather
223
+ small system, we usually do not observe ill conditioning. Otherwise, we can use a regularized version
224
+ of (4) [13, 14].
225
+ At each iteration of the bi-fidelity greedy algorithm, the linear system is solved for once (Step
226
+ 8), then the low-fidelity error estimator ∆l(µ) is evaluated over a larger parameter set Ξf using
227
+ the weighted sum in (3) (Step 9). This process of computing the weights and evaluating ∆l(µ) is
228
+ much faster than evaluating the high-fidelity error estimator over a training set Ξ whose cardinality
229
+ |Ξ| is much larger than |Ξc|.
230
+ This is usually the case for the standard greedy algorithm, where
231
+ |Ξ| > |Ξc|.
232
+ Finally, at each iteration of the bi-fidelity algorithm, the total computational cost of
233
+ Steps 6-8: computing the high-fidelity error estimator ∆(µ) over Ξc, solving the linear system (4) and
234
+ evaluating the low-fidelity erorr estimator ∆l(µ) over Ξf is still much cheaper than computing the
235
+ 4
236
+
237
+ high-fidelity error estimator ∆(µ) over a training set Ξ, whose cardinality is, e.g., twice that of |Ξc|,
238
+ as shown in the numerical tests.
239
+ Besides computing µ∗ corresponding to the maximal value of the error estimator ∆(µ) over Ξc,
240
+ the minimal value of ∆(µ) is also computed in Step 7. The corresponding parameter µo could be
241
+ deleted from Ξc if ∆(µo) is already below the tolerance tol, see Step 10. In this way, the cardinality
242
+ of the training set Ξc remains almost constant, and can further save computations as compared with
243
+ enriching Ξc only. We will show in the numerical results that adding and removing samples to and
244
+ from Ξc gets ROMs with similar accuracy (even smaller) as only adding samples to Ξc, but leads to
245
+ even faster convergence of the greedy algorithm.
246
+ Remark 3.1 In Step 9, it is also possible to choose more than one parameter from Ξf by modifying
247
+ Step 9 as: choose nadd samples from Ξf corresponding to nadd largest values of ∆l(µ). Similarly,
248
+ In Step 7, one can also choose ndel > 1 parameter samples corresponding to ndel smallest values of
249
+ ∆(µ) from Ξc. However, this will more or less increase the computational time at each iteration,
250
+ since more computations are needed to choose those samples. Furthermore, to make sure that only
251
+ samples at which ∆l(µ) is larger than the tolerance tol are added to Ξc, and only samples at which
252
+ ∆(µ) is smaller than tol are removed, additional calculations are necessary to check if all the selected
253
+ samples meet the above criteria and should be finally selected or removed (see Step 10). Therefore,
254
+ adding/removing at most one parameter sample each time should be more efficient. In the numerical
255
+ tests, we also show results when nadd = ndel = 2 and nadd = ndel = 5 at each iteration of Algorithm 2.
256
+ The bi-fidelity error estimation is general and can be applied to any high-fidelity error estimators.
257
+ For example, the high-fidelity error estimator in [13] estimates the error of the ROM for nonlinear
258
+ time-dependent parametric systems in the time domain, while the high-fidelity error estimator in [14]
259
+ estimates the error of the ROM in the frequency-domain for linear parametric systems.
260
+ 3.2
261
+ Greedy algorithm with multi-fidelity error estimation
262
+ The multi-fidelity error estimation we are going to introduce depends on the formulation of the high-
263
+ fidelity error estimator ∆(µ). To illustrate the basic concept, we use an error estimator proposed
264
+ in [16] as the high-fidelity error estimator and discuss how to further reduce the computational load
265
+ by using multi-fidelity error estimation.
266
+ 3.2.1
267
+ An error estimator for linear parametric systems
268
+ The error estimator is applicable to estimating the output error of the ROM for FOMs in the following
269
+ linear parametric form,
270
+ M(µ)x(µ)
271
+ =
272
+ B(µ),
273
+ y(µ)
274
+ =
275
+ C(µ)x(µ).
276
+ (5)
277
+ Here, M(µ) ∈ Rn×n, B(µ) ∈ Rn×nI, C(µ) ∈ RnO×n , x(µ) ∈ Rn, y(µ) ∈ RnO×nI. We consider the
278
+ general case that both B(µ) and C(µ) are matrices, i.e. systems with multiple inputs and multiple
279
+ outputs. The ROM of the above linear parametric system can be derived via Galerkin projection
280
+ using a projection matrix V composed of the reduced basis. That is,
281
+ ˆ
282
+ M(µ)z(µ)
283
+ =
284
+ ˆB(µ),
285
+ ˆy(µ)
286
+ =
287
+ ˆC(µ)z(µ),
288
+ (6)
289
+ where ˆ
290
+ M(µ) = V T M(µ)V , ˆB(µ) = V T B(µ), ˆC(µ) = C(µ)V .
291
+ 5
292
+
293
+ For the general situation when both B(µ) and C(µ) are matrices, the error of the i, j-th entry of
294
+ the output matrix ˆy(µ) is
295
+ |yij(µ) − ˆyij(µ)|
296
+ = |Ci(µ)(M−1(µ)B(µ) − V ˆ
297
+ M−1(µ) ˆBj(µ))|
298
+ = |Ci(µ)M−1(µ)(Bj(µ) − M(µ) V ˆ
299
+ M−1(µ) ˆBj(µ))
300
+
301
+ ��
302
+
303
+ ˆxj(µ):=V zj(µ)|
304
+ = |Ci(µ)M−1(µ)rj(µ)|,
305
+ (7)
306
+ where Ci(µ) is the i-th row of C(µ) and Bj(µ) is the j-th column of B(µ). Here, we have defined:
307
+ zj(µ) = ˆ
308
+ M−1(µ) ˆBj(µ), i.e., ˆ
309
+ M(µ)zj(µ) = ˆBj(µ), ˆxj(µ) := V zj(µ) and rj(µ) := Bj(µ) − M(µ)ˆxj(µ).
310
+ It is clear that
311
+ ˆ
312
+ M(µ)zj(µ) = ˆBj(µ)
313
+ is a reduced-order model of
314
+ M(µ)xj(µ) = Bj(µ),
315
+ (8)
316
+ and ˆxj(µ) ≈ xj(µ), the j-th column of x(µ). Finally, rj(µ) is the residual induced by ˆxj(µ).
317
+ From the last equation in (7), it is clear that to compute the absolute error of ˆyij, we need to solve
318
+ a residual system:
319
+ M(µ)xrj(µ) = rj(µ).
320
+ (9)
321
+ Instead, we construct a ROM of it:
322
+ V T
323
+ r M(µ)Vrzrj(µ) = V T
324
+ r rj(µ),
325
+ (10)
326
+ so that xrj(µ) ≈ ˆxrj(µ) = Vrzrj(µ) . Finally,
327
+ |yij(µ) − ˆyij(µ)| ≈ |Ci(µ)ˆxrj(µ)|.
328
+ Note that ˆxrj(µ) depends on Bj(µ), since rj(µ) depends on Bj(µ). Each column Bj(µ) is associated
329
+ with a ˆxrj(µ). The overall error of ˆy(µ) as a matrix can be estimated as:
330
+ ∥y(µ) − ˆy(µ)∥max := max
331
+ i,j |yij(µ) − ˆyij(µ)| ≈ max
332
+ i,j |Ci(µ)ˆxrj(µ)| =: ˜∆(µ).
333
+ (11)
334
+ ˜∆(µ) defined in (11) is one of the error estimators proposed in [16], where the proposed error
335
+ estimators were shown to outperform other existing error estimators in the literature [34, 15] in terms
336
+ of both accuracy and computational efficiency. Furthermore, it has been discussed in [16] that ˜∆(µ) is
337
+ even more accurate but has less computational complexity than other proposed estimators, including
338
+ the one used in [14]. Even with this error estimator, the greedy algorithm could take several hours
339
+ to converge for some complex systems, for example, the time-delay systems we consider in this work.
340
+ For such systems, although the standard greedy algorithm can already be accelerated by the bi-
341
+ fidelity greedy algorithm, we suggest a possibility to further improve the bi-fidelity greedy algorithm
342
+ by introducing multi-fidelity error estimation.
343
+ We notice that in order to compute ˜∆(µ), an extra projection matrix Vr has to be constructed
344
+ for ˆxrj(µ). Although ˆxrj(µ) is dependent on the individual column of B(µ), the matrix Vr can be
345
+ uniformly constructed based on the whole matrix B(µ). Then Vr is valid for any column of B(µ). It
346
+ is proved in [16] that taking Vr = V leads to ˜∆(µ) identically zero for all µ. Therefore, Vr should be
347
+ additionally computed.
348
+ 6
349
+
350
+ 3.2.2
351
+ Standard greedy algorithm using ˜∆(µ)
352
+ For easy understanding of the multi-fidelity error estimation, we first present Algorithm 3, the standard
353
+ greedy algorithm using ˜∆(µ) in (11) as the error estimator. There, some additional steps are added
354
+ to compute Vr, see Step 5, Steps 7-8. In Step 7 of Algorithm 3, Vr is not only updated by x(µr), but
355
+ also by V . This is due to the fact that the solution xrj(µ) to the residual system in (9) can be written
356
+ as
357
+ xrj(µ)
358
+ =
359
+ M(µ)−1rj(µ)
360
+ =
361
+ M(µ)−1(Bj(µ) − M(µ)ˆxj(µ))
362
+ =
363
+ M(µ)−1Bj(µ) − V zj(µ)
364
+
365
+ ˜Vrzrj − V zj(µ).
366
+ (12)
367
+ It is clear that xrj(µ) is a linear combination of (M(µ))−1Bj(µ) and the columns of V . Therefore,
368
+ V contributes to the subspace approximating the solution space of xrj(µ) and cannot be neglected.
369
+ It is also noticed that (M(µ))−1Bj(µ) is in fact the solution xj(µ) in (8), while V zj(µ) is ˆxj(µ)
370
+ that approximates xj(µ). This means xrj(µ) is the difference between xj(µ) and ˆxj(µ), which is a
371
+ nonzero vector.
372
+ Therefore, we should compute another matrix ˜Vr, so that xj(µ) ≈ ˜Vrzrj(µ), but
373
+ ˜Vrzrj(µ) ̸= ˆxj(µ) = V zj(µ). Finally, xrj is approximated by the difference between ˜Vrzrj(µ) and
374
+ V zj(µ). In other words, it is approximately represented as the linear combination of the columns of
375
+ both Vr and V . This approximation also explains Step 5 and Step 7 of Algorithm 3: Step 5 computes
376
+ the reduced basis vectors contributing to ˜Vr, Step 7 computes the complete reduced basis vectors
377
+ contributing to Vr. New reduced basis vectors for both V and Vr are computed at each iteration of
378
+ the greedy algorithm. Step 8 and Step 9 compute the new important parameter samples for Vr and V ,
379
+ respectively. In general, µr should be different from µ∗, since ˜∆(µ) ̸=
380
+ max
381
+ j=1,...,nI ∥rj(µ) − M(µ)ˆxrj(µ)∥.
382
+ Here, rj(µ) − M(µ)ˆxrj(µ) is nothing but the residual induced by the approximate solution (ˆxrj(µ)) to
383
+ the residual system (9).
384
+ Algorithm 3 Standard greedy algorithm using ˜∆(µ) for linear parametric systems.
385
+ Input: the FOM, a training set Ξ composed of parameter samples taken from the parameter domain
386
+ µ ∈ P, error tolerance tol< 1.
387
+ Output: Projection matrix V .
388
+ 1: Choose initial parameter µ∗ ∈ Ξ for V , and initial parameter µr ̸= µ∗ ∈ Ξ for Vr.
389
+ 2: V ← ∅, Vr ← ∅, ε = 1.
390
+ 3: while ε >tol do
391
+ 4:
392
+ Compute the snapshot(s) x(µ∗) by solving the FOM, i.e. x(µ∗) = (M(µ∗))−1B(µ∗).
393
+ 5:
394
+ Compute the snapshot(s) x(µr) by solving the FOM, i.e. x(µr) = (M(µr))−1B(µr).
395
+ 6:
396
+ Update V by V = orth{V, x(µ∗)}, (e.g., using the modified Gram-Schmidt process with defla-
397
+ tion.)
398
+ 7:
399
+ Update Vr by Vr = orth{V, Vr, x(µr)}.
400
+ 8:
401
+ Compute µr such that µr = arg max
402
+ µ∈Ξ
403
+ max
404
+ j=1,...,nI ∥rj(µ) − M(µ)ˆxrj(µ)∥, (nI is the total number of
405
+ columns of B(µ)).
406
+ 9:
407
+ Compute µ∗ such that µ∗ = arg max
408
+ µ∈Ξ
409
+ ˜∆(µ).
410
+ 10:
411
+ ε = ˜∆(µ∗).
412
+ 11: end while
413
+ 7
414
+
415
+ 3.2.3
416
+ Greedy algorithm with multi-fidelity error estimation
417
+ The computational complexity of Algorithm 3 using the error estimator ˜∆(µ) comes from Steps 4-9.
418
+ Efficiency of Step 9 can be improved by using the bi-fidelity error estimation as shown in Algorithm 2.
419
+ The computations in Step 4, 6 are unavoidable, since V is used to compute the ROM of the original
420
+ FOM and should be updated till acceptable error tolerance is satisfied. In contrast, Vr in Step 7 needs
421
+ not be updated at every iteration. This implies that the ROM of the residual system does not have to
422
+ be very accurate, since it is not the ROM that we seek, but an auxiliary ROM aiding the computation
423
+ of ˜∆(µ).
424
+ An immediate consequence of Theorem 4.2 in [16] for single-input and single-output systems is the
425
+ following Lemma for systems with multiple inputs and multiple outputs:
426
+ Lemma 3.1 The error of the output ˆy(µ) of the ROM (6) can be bounded as
427
+ ˜∆(µ) − δ(µ) ≤ ∥y(µ) − ˆy(µ)∥max ≤ ˜∆(µ) + δ(µ),
428
+ (13)
429
+ where δ(µ) := max
430
+ i,j |Ci(µ)(xrj(µ) − ˆxrj(µ))| ≥ 0.
431
+ Proof From (7), we know
432
+ |yij(µ) − ˆyij(µ)| = |Ci(µ)xrj(µ)| ≈ |Ci(µ)ˆxrj(µ)|.
433
+ Then
434
+ |yij(µ) − ˆyij(µ)|
435
+ =
436
+ |Ci(µ)xrj(µ)| + |Ci(µ)ˆxrj(µ)| − |Ci(µ)ˆxrj(µ)|
437
+
438
+ |Ci(µ)ˆxrj(µ)| + |Ci(µ)xrj(µ) − Ci(µ)ˆxrj(µ)|
439
+
440
+ ��
441
+
442
+ δij(µ)
443
+ .
444
+ (14)
445
+ On the other hand,
446
+ |Ci(µ)ˆxrj(µ)|
447
+ =
448
+ |Ci(µ)ˆxrj(µ)| + |Ci(µ)xrj(µ)| − |Ci(µ)xrj(µ)|
449
+
450
+ |Ci(µ)xrj(µ)| + δij(µ).
451
+ (15)
452
+ From (11), (15) and the definition of δ(µ), we have
453
+ ˜∆(µ) = max
454
+ i,j |Ci(µ)ˆxrj(µ)| ≤ ∥y(µ) − ˆy(µ)∥max + δ(µ).
455
+ Similarly, from (14), we get
456
+ ∥y(µ) − ˆy(µ)∥max ≤ ˜∆(µ) + δ(µ).
457
+ This completes the proof.
458
+ From the definition of δ(µ), it is seen that the more accurate the ROM of the residual system, the
459
+ smaller δ(µ) is. As a result, ˜∆(µ) should measure the true error more accurately so that the important
460
+ parameters it selects are closer to those selected by the true error, given the same training set Ξ.
461
+ On the contrary, if the ROM of the residual system is less accurate, ˜∆(µ) will be less accurate, too.
462
+ However, at a certain stage, when ˜∆(µ) is already small, the right-hand side of the residual system
463
+ rj(µ) will also be small, so that it can be expected that both xrj(µ) and ˆxrj(˜µ) are close to zero. This
464
+ leads to a small δ(µ). Variation of a small δ(µ) will not cause big variation of the difference between
465
+ ˜∆(µ) and the true error ∥y(µ) − ˆy(µ)∥max. The trend, though not the exact route, of error decay
466
+ could still be anticipated so that important parameters corresponding to the error peaks can also be
467
+ detected. The above analyses are also justified by the numerical results in the next section, see, e.g.,
468
+ Figure 3 and Figure 5.
469
+ 8
470
+
471
+ This motivates the multi-fidelity error estimation. We set a second tolerance ϵ >tol, and when
472
+ ˜∆(µ) < ϵ < 1, we stop updating the ROM of the residual system, i.e., stop implementing Step 5, Step
473
+ 7 and Step 8 of Algorithm 3. The error estimator ˜∆(µ) after this stage may not be as accurate as it
474
+ would be when keep updating the ROM of the residual system. However, the difference should be small
475
+ as ˜∆(µ) is already below a small value ϵ. Without implementing Step 5, we have saved computations
476
+ of simulating the FOM. For large and complex systems, solving the FOM even once is not fast. The
477
+ computation in Step 7 is relatively cheap if the system is not very large. The computational cost in
478
+ Step 8 is not low for certain complex problems, though some µ-independent parts of rj(µ) and M(µ)
479
+ can be pre-computed. For example, this is the case for the time-delay systems in the next section.
480
+ Stop updating the ROM of the residual system gives rise to a low-fidelity error estimator at later
481
+ iteration steps of the greedy algorithm.
482
+ When this low-fidelity error estimator is combined with
483
+ ∆l(µ) in Algorithm 2, we obtain the multi-fidelity error estimation. This is detailed in Algorithm 4.
484
+ Compared with the standard greedy algorithm, the overall saving in computational costs is noticeable,
485
+ which can be seen from the numerical results in the next section.
486
+ The concept of multi-fidelity error estimation could also be applied to other high-fidelity error
487
+ estimators. For example, Step 15 could be modified as “Stop updating partial information of ∆(µ)”,
488
+ if some parts of the high-fidelity error estimator ∆(µ) are not “essential” for computing ∆(µ).
489
+ Algorithm 4 Greedy algorithm with multi-fidelity error estimation
490
+ Input: the FOM, a training set Ξc composed of a small number of parameter samples taken from the
491
+ parameter domain µ ∈ P, a set Ξf composed of a large number of parameter samples of µ from
492
+ P, error tolerance tol< 1.
493
+ Output: Projection matrix V .
494
+ 1: Choose initial parameter µ∗ ∈ Ξc for V , and initial parameter µr ̸= µ∗ ∈ Ξc for Vr.
495
+ 2: V ← ∅, Vr ← ∅, ε = 1.
496
+ 3: while ε >tol do
497
+ 4:
498
+ Compute the snapshot(s) x(µ∗) by solving the FOM, i.e. x(µ∗) = (M(µ∗))−1B(µ∗).
499
+ 5:
500
+ Compute the snapshot(s) x(µr) by solving the FOM, i.e. x(µr) = (M(µr))−1B(µr).
501
+ 6:
502
+ Update V by V = orth{V, x(µ∗)} (e.g., using the modified Gram-Schmidt process with defla-
503
+ tion).
504
+ 7:
505
+ Update Vr by Vr = orth{V, Vr, x(µr)}.
506
+ 8:
507
+ Compute µ∗ such that µ∗ = arg max
508
+ µ∈Ξc
509
+ ˜∆(µ).
510
+ 9:
511
+ Compute µo such that µo = arg min
512
+ µ∈Ξc
513
+ ˜∆(µ).
514
+ 10:
515
+ Compute µr such that µr = arg max
516
+ µ∈Ξc
517
+ max
518
+ j=1,...,nI ∥rj(µ) − M(µ)ˆxrj(µ)∥,
519
+ % nI is the total number
520
+ of columns of B(µ).
521
+ 11:
522
+ Compute the low-fidelity error estimator ˜∆l(µ) using values of ˜∆(µ) corresponding to the sam-
523
+ ples of µ in Ξc via (3) and (4).
524
+ 12:
525
+ Evaluate ˜∆l(µ) over Ξf and pick out a parameter µc from the large parameter set Ξf corre-
526
+ sponding to the largest value of ˜∆l(µ), i.e., µc = arg max
527
+ µ∈Ξf from Ξf.
528
+ 13:
529
+ Update the small parameter set Ξc: if ∆l(µc) >tol, enrich Ξc with µc, i.e., Ξc = {Ξc, µc}, if
530
+ ∆(µo) <tol, remove µo from Ξc: Ξc = Ξc\µo.
531
+ 14:
532
+ ε = ˜∆(µ∗).
533
+ 15:
534
+ if ε < ϵ then
535
+ 16:
536
+ Stop performing Step 5, Step 7 and Step 10.
537
+ % stop updating the ROM of the residual
538
+ system.
539
+ 17:
540
+ end if
541
+ 18: end while
542
+ 9
543
+
544
+ 3.3
545
+ Application to MOR for time-delay systems
546
+ In this section, we consider applying Algorithm 2, the greedy algorithm with bi-fidelity error esti-
547
+ mation, Algorithm 3, the standard greedy algorithm and Algorithm 4, the greedy algorithm with
548
+ multi-fidelity error estimation to large-scale time-delay systems with many delays. The time-delay
549
+ systems are defined as:
550
+ d
551
+
552
+ j=0
553
+ Ej ˙x(t − τj) =
554
+ d
555
+
556
+ j=0
557
+ Ajx(t − τj) + Bu(t),
558
+ y(t) = Cx(t),
559
+ ∀ t ≥ 0
560
+ (16)
561
+ with an initial condition x(t) = Φ(t) ∈ Cn, ∀ t ∈ [−τd, 0]. Here, E0, . . . , Ed, A0, . . . , Ad ∈ Cn×n, B ∈
562
+ Cn×nI, C ∈ CnO×n, 0 = τ0 < τ1 < . . . < τd and n is called the order of the delay system. The transfer
563
+ function of the delay system is defined as:
564
+ H(s) = CK−1(s)B,
565
+ (17)
566
+ where K(s) = s �d
567
+ j=0 Eje−sτj − �d
568
+ j=0 Aje−sτj, s = 2πȷ is the variable in the frequency domain, f is
569
+ the ordinary frequency with unit Hz and ȷ is the imaginary unit.
570
+ A ROM of the delay system, which has the same delays as the original system, can be obtained
571
+ via Galerkin projection using a projection matrix V ∈ Rn×r, r ≪ n, i.e.,
572
+ d
573
+
574
+ j=0
575
+ ˆEj ˙z(t − τj) =
576
+ d
577
+
578
+ j=0
579
+ ˆAjz(t − τj) + ˆBu(t),
580
+ ˆy(t) = ˆCz(t),
581
+ ∀ t ≥ 0,
582
+ (18)
583
+ where ˆEj = V T EjV ∈ Rr×r, ˆAj = V T AjV ∈ Rr×r, ˆB = V T B ∈ Rr×nI, ˆC = CV ∈ RnO×r, with
584
+ r ≪ n being the order of the ROM. The original state vector x(t) in (16) can be recovered by the
585
+ approximation: x(t) ≈ V z(t). The transfer function of the ROM is
586
+ ˆH(s) = ˆC ˆK−1(s) ˆB,
587
+ where ˆK(s) = s �d
588
+ j=0 ˆEje−sτj − �d
589
+ j=0 ˆAje−sτj.
590
+ The projection matrix V can be constructed via
591
+ approximating H(s) [5] as follows.
592
+ Note that H(s) is nothing but the output y(µ) of the linear
593
+ parametric system in (5), with M(µ) = K(s), B(µ) = B and µ = s, i.e.,
594
+ K(s)x(s)
595
+ =
596
+ B,
597
+ H(s)
598
+ =
599
+ C(s)x(s).
600
+ (19)
601
+ The reduced transfer function ˆH(s) is the output ˆy(µ) of the ROM in (6) with ˆ
602
+ M(µ) = ˆK(s) and
603
+ ˆB(µ) = ˆB.
604
+ It is easy to see that the projection matrix V that is used to construct the ROM (18) in the time
605
+ domain is exactly the same matrix to obtain the reduced transfer function ˆH(s). Therefore, V can
606
+ be obtained by constructing a ROM of system (19) in the frequency domain, i.e., by approximating
607
+ the transfer function H(s). This can be done by the standard greedy Algorithm 3 with the error
608
+ estimator ˜∆(s), where V is iteratively computed by choosing proper samples of s [5, 1]. In fact, the
609
+ reduced transfer function ˆH(s) interpolates the original transfer function H(s) at the selected samples
610
+ of s [1]. The matrix M(µ) in Steps 4-5 of Algorithm 3 is now replaced by K(s). The difference of the
611
+ coefficient matrix K(s) from a single matrix M(µ) in the usual case is its high complexity. To solve the
612
+ system in (19) is much more expensive than solving the system in (5) where M(µ) is a single matrix.
613
+ 10
614
+
615
+ On the one hand, the matrices constituting K(s) must be assembled to get K(s). On the other hand,
616
+ the finally assembled matrix has some dense blocks, though each single matrix contributing to K(s)
617
+ is sparse.
618
+ To further improve the efficiency of the standard greedy algorithm, we propose to apply Algorithm 2
619
+ and Algorithm 4 to time-delay systems. The application is straightforward by simply replacing the
620
+ FOM in (5) in both algorithms with the system in (19), i.e., the matrix M(µ) is replaced by K(s), the
621
+ input matrix B(µ) and the output matrix C(µ) are replaced by B and C in (19), respectively.
622
+ 4
623
+ Numerical tests
624
+ We consider three time-delay systems obtained from partial element equivalent circuit (PEEC) mod-
625
+ elling and simulation, which transfer problems from the electromagnetic domain to the circuit do-
626
+ main [29, 32, 30, 31]. When the propagation delays are explicitly kept for both partial inductances
627
+ and coefficients of potential, time-delay systems can be derived [17]. Numerical tests are done with
628
+ MATLAB R2016b on a computer server with 4 Intel Xeon E7-8837 CPUs running at 2.67 GHz, 1TB
629
+ main memory, split into four 256 GB partitions.
630
+ We test the standard greedy Algorithm 3, the bi-fidelity greedy Algorithm 2 and the multi-fidelity
631
+ Algorithm 4 on three time-delay systems. To run the algorithms, we need to initialize the algorithms
632
+ by doing the following:
633
+ • The samples in the training set Ξ, the small set Ξc and the large set Ξf are taken from
634
+ the prescribed frequency domain and are generated using the MATLAB function linspace:
635
+ linspace(fl, fh, cardi). Here, fl is the lowest frequency, fh is the highest frequency used in
636
+ linspace, cardi is the corresponding cardinality of each set. The samples of s are then com-
637
+ puted using the relation: s = 2πȷf.
638
+ • For the multi-fidelity error estimation, we set ϵ = 0.1 in Step 15 of Algorithm 4.
639
+ • To compute the low-fidelity error estimator, we choose the inverse multiquadratic RBF (IMQ)
640
+ Φ =
641
+ 1
642
+ 1+(a∥µ−µi∥)2 with the shape parameter a = 30.
643
+ We also need to define some variables uniformly used in all the tables and figures:
644
+ • The error ∥H(s) − ˆH(s)∥max of the transfer function ˆH(s) of the ROM is finally computed over
645
+ 1000 samples of s drawn independently of the training sets, resulting in the validated error:
646
+ Valid.err in Tables 1-8.
647
+ • Runtime, the walltime of each algorithm till convergence.
648
+ • Iter., the total number of iterations of each algorithm.
649
+ • r, the order of the ROM.
650
+ • The high-fidelity error estimator at each iteration of Algorithm 3 is defined as max
651
+ µ∈Ξ
652
+ ˜∆(µ).
653
+ • The bi-fidelity error estimator at each iteration of Algorithm 2 is defined as max
654
+ µ∈Ξc
655
+ ˜∆(µ).
656
+ • The multi-fidelity error estimator at each iteration of Algorithm 4 is defined as max
657
+ µ∈Ξc
658
+ ˜∆(µ). Here
659
+ ˜∆(µ) will be different from the bi-fidelity error estimator once Step 15 of the algorithm takes
660
+ action.
661
+ 11
662
+
663
+ w
664
+ P1
665
+ P3
666
+ P2
667
+ lX,1
668
+ lY,1
669
+ lY,3
670
+ lY
671
+ lX
672
+ Figure 1: The three-port microstrip power-divider circuit.
673
+ • The true error at each iteration of Algorithm 3 is defined as max
674
+ µ∈Ξ ∥H(s) − ˆH(s)∥max.
675
+ • The true error at each iteration of Algorithm 2 or Algorithm 4 is defined as max
676
+ µ∈Ξc ∥H(s) −
677
+ ˆH(s)∥max.
678
+ Note that Ξc could be enriched only by adding samples from Ξf to Ξc. As the high-fidelity error
679
+ estimator ˜∆(µ) needs to be computed at every sample in Ξc at each iteration, samples in Ξc whose
680
+ corresponding error is already smaller than tol can also be removed from Ξc to keep the cardinality of
681
+ Ξc constant, so that more computations can be saved. We consider both cases separately and compare
682
+ their efficiency with respect to both runtime and accuracy.
683
+ 4.1
684
+ Test 1: results for a model of three-port divider
685
+ The model structure of a three-port microstrip power-divider circuit is shown in Fig. 1 (P1, P2 and
686
+ P3 denote the ports). The dimensions of the circuit are [20, 20, 0.5] mm in the [x, y, z] directions and
687
+ the width of the microstrips is set as 0.8 mm. Furthermore, the dimensions lX1, lY 1, and lY 3 are 9,
688
+ 7.2 and 7.2 mm, respectively. The relative dielectric constant is εr = 2.2. All the ports are terminated
689
+ on 50 Ω resistances. The order of the FOM is n = 10, 626, and it has d = 93 delays. The interesting
690
+ frequency band is [0, 20]GHz.
691
+ For this model, we use fl = 1 × 106, fh = 2 × 1010 in the function linspace. |Ξ| = 30 or |Ξ| = 40
692
+ for the standard greedy Algorithm 3. For Algorithm 2 and Algorithm 4, |Ξc| = 15 or |Ξc| = 20 and
693
+ |Ξf| = 100.
694
+ The set Ξc is then updated during the iteration of the greedy algorithm.
695
+ The 1000
696
+ samples for validating the ROM accuracy are created using the MATLAB function logspace, i.e.,
697
+ logspace(log10(fl1), log10(fh), 1000). fl1 = 1 × 104.
698
+ In Table 1, we list the results of the three algorithms. The standard greedy algorithm is the slowest.
699
+ The other algorithms are all much faster and take at least 2 hours less than the standard algorithm.
700
+ The bi-fidelity greedy algorithm by enriching Ξc only is slower than other bi-(multi-)fidelity algorithms,
701
+ this is in agreement with our theoretical analysis in Section 3. The multi-fidelity algorithm by adding
702
+ and removing samples to and from Ξc performs the best in terms of runtime and accuracy. Compared
703
+ to the standard algorithm, it has reduced the offline runtime from 5.6 hours to 1.8 hours, and almost 4
704
+ hours have been saved. Finally, a speed-up factor 3.1 is achieved. Except for the bi-fidelity algorithm
705
+ by adding and removing samples, the other algorithms have produced ROMs with validated errors
706
+ below the tolerance. The bi-fidelity algorithms perform similarly as the standard algorithm. All three
707
+ algorithms converge in 14 iterations, and produce ROMs smaller than the others.
708
+ It is worth pointing out that if using fewer samples in Ξ for the standard greedy algorithm, the
709
+ ROM has a validated error that is slightly larger than the tolerance, as shown in Table 2, where
710
+ |Ξ| = 30. Also, the bi-fidelity greedy algorithms are less accurate if using fewer samples in Ξc, as
711
+ shown in Table 2. There, the same Ξc used for the multi-fidelity greedy algorithms are used, but less
712
+ accurate ROMs are obtained.
713
+ In Table 3, we show the results of the bi-fidelity greedy algorithm and the multi-fidelity greedy
714
+ algorithm when nadd = ndel > 1 samples are added or removed from the small training set Ξc at each
715
+ 12
716
+
717
+ Table 1: Three-port divider: n = 10, 626, d = 93 delays, tol=0.001, adding/removing a single sample
718
+ at each iteration.
719
+ Method
720
+ Iter.
721
+ Runtime (h)
722
+ r
723
+ Valid.err
724
+ Alg. 3 (standard, |Ξ| = 40)
725
+ 14
726
+ 5.6
727
+ 84
728
+ 9.2 × 10−4
729
+ Alg. 2 (bi-fidelity, add only, |Ξc| = 20)
730
+ 14
731
+ 3.6
732
+ 84
733
+ 6 × 10−4
734
+ Alg. 2 (bi-fidelity, add-remove, |Ξc| = 20)
735
+ 14
736
+ 2.7
737
+ 84
738
+ 0.0022
739
+ Alg. 4 (multi-fidelity, add only, |Ξc| = 15)
740
+ 15
741
+ 2.4
742
+ 90
743
+ 6.2 × 10−4
744
+ Alg. 4 (multi-fidelity, add-remove, |Ξc| = 15)
745
+ 15
746
+ 1.8
747
+ 90
748
+ 6.2 × 10−4
749
+ Table 2:
750
+ Three-port divider:
751
+ n = 10, 626, d = 93 delays, tol=0.001, smaller |Ξ| and |Ξc|,
752
+ adding/removing a single sample at each iteration.
753
+ Method
754
+ Iter.
755
+ Runtime (h)
756
+ r
757
+ Valid.err
758
+ Alg. 3 (standard, |Ξ| = 30)
759
+ 14
760
+ 4.2
761
+ 84
762
+ 0.0017
763
+ Alg. 2 (bi-fidelity, add only,|Ξc| = 15)
764
+ 13
765
+ 2.5
766
+ 78
767
+ 0.0026
768
+ Alg. 2 (bi-fidelity, add-remove, |Ξc| = 15)
769
+ 13
770
+ 1.9
771
+ 78
772
+ 0.0088
773
+ Table 3: Three-port divider: n = 10, 626, d = 93 delays, tol=0.001, adding/removing nadd = ndel > 1
774
+ samples at each iteration.
775
+ Method
776
+ Iter.
777
+ Runtime (h)
778
+ r
779
+ Valid.err
780
+ Alg. 2 (bi-fidelity, add-remove, |Ξc| = 15, nadd = 2)
781
+ 14
782
+ 2.0
783
+ 84
784
+ 0.0022
785
+ Alg. 2 (bi-fidelity, add-remove, |Ξc| = 20, nadd = 2)
786
+ 14
787
+ 2.7
788
+ 84
789
+ 0.0022
790
+ Alg. 2 (bi-fidelity, add-remove, |Ξc| = 20, nadd = 5)
791
+ 14
792
+ 2.7
793
+ 84
794
+ 0.0022
795
+ Alg. 4 (multi-fidelity, add-remove, |Ξc| = 15, nadd = 2)
796
+ 14
797
+ 1.7
798
+ 84
799
+ 0.0039
800
+ Alg. 4 (multi-fidelity, add-remove, |Ξc| = 15, nadd = 5)
801
+ 14
802
+ 1.7
803
+ 84
804
+ 0.0039
805
+ iteration of the algorithm. In general, they produce similar results as those in Table 1 and Table 2
806
+ given the same Ξc. For |Ξc| = 15, the bi-fidelity greedy algorithm with nadd = ndel = 2 converges in 14
807
+ iterations, running one more iteration than with nadd = ndel = 1 as shown in Table 2, and generates
808
+ a ROM with slightly higher accuracy. On the contrary, given |Ξc| = 15, the multi-fidelity greedy
809
+ algorithm with either nadd = ndel = 2 or nadd = ndel = 5 runs one iteration less than in the case
810
+ of adding/removing a single sample as shown in Table 1, and constructs ROMs with lower accuracy.
811
+ Furthermore, it is seen that increasing nadd = ndel from 2 to 5 did not change the results for both
812
+ algorithms. In general, adding/removing a single sample keeps the algorithms simple but efficient.
813
+ To illustrate the behavior of the error estimators further, we plot the decay of error estimators and
814
+ their corresponding true errors during the greedy iterations. Since different µ∗ are chosen according
815
+ to different error estimators, the projection matrix V is updated with different snapshots, leading to
816
+ ROMs with different accuracy. Consequently, the true errors of the ROMs are expected to be different.
817
+ Figures 2-3 are the results of the algorithms in Table 1. The left part of Figure 2 shows the error
818
+ of the high-fidelity error estimator at each iteration of Algorithm 3 and the decay of the corresponding
819
+ true error. The error estimator almost exactly matches the true error at all the iterations. The right
820
+ part of Figure 2 plots the decay of the bi-fidelity error estimator with respect to the true error. The
821
+ bi-fidelity error estimator in both of the two cases: only adding (add-only) samples to Ξc, adding
822
+ and removing (add-remove) samples to and from Ξc, can accurately catch the true error. Both cases
823
+ converge in 14 iterations, but the case “add-only” is more accurate as can be seen from Table 1.
824
+ Figure 3 plots the decay of the multi-fidelity error estimator and the corresponding true error
825
+ decay. For clarity, the two cases “add-only” and “add-remove” are plotted in two separate figures.
826
+ 13
827
+
828
+ The multi-fidelity error estimator is not as accurate as the bi-fidelity error estimator. This is indicated
829
+ by the error decay from the 10-th iteration to the end in both figures. From the 10-th iteration, the
830
+ error estimator is below ϵ = 0.1, the multi-fidelity error estimation at Step 15 of Algorithm 4 begins
831
+ to be implemented. For this example, the multi-fidelity error estimator overestimates the true error
832
+ more often than the bi-fidelity error estimator, it did not choose the interpolation points that lead to
833
+ error decay as fast as those chosen by the bi-fidelity error estimator. Finally, it uses more iteration
834
+ steps to converge. Whereas, they still produce ROMs with best accuracy.
835
+ Figure 2: Error decay. Left: true error vs high-fidelity error estimator. Right: true error vs bi-fidelity
836
+ error estimators.
837
+ Figure 3: Error decay. Left: true error vs multi-fidelity error estimator by only adding samples to Ξc.
838
+ Right: true error vs multi-fidelity error estimator by adding and deleting samples to and from Ξc.
839
+ 4.2
840
+ Test 2: results for a model of coplanar microstrips
841
+ The second example is a model of a three coplanar microstrips structure shown in Fig. 4. The width
842
+ of the metal strips is mw = 0.178 mm, the thickness of metal strips and ground plane is mt = 0.035
843
+ mm while the left and right wing of the microstrips are wd = 3 mm. Finally, the length of each
844
+ strip is ℓ = 5 cm, the thickness of the dielectric is dt = 0.8 mm, and the spacing between 2 strips is
845
+ s = 0.3 mm. The relative dielectric constant is set to be εr = 4 and the conductivity of the metal is
846
+ assumed to be σ = 5.87 S/m. The six ports, located between the ends of each strip and the ground
847
+ 14
848
+
849
+ 10
850
+ .... High.-fidelity estimator
851
+ @.... True error
852
+ 10
853
+ 10
854
+ 2
855
+ 4
856
+ 6
857
+ 8
858
+ 10
859
+ 12
860
+ Number of iterations102
861
+ 10
862
+ 10
863
+ -G - True error
864
+ ... Bi-fidelity estimator (add only)
865
+ -- - True error
866
+ +... Bi-fidelity estimator (add-remove)
867
+ 2
868
+ 4
869
+ 8
870
+ 10
871
+ 12
872
+ 14
873
+ 6
874
+ i-th iteration102
875
+ -G - True error
876
+ .... Multi-fidelity estimator (add only)
877
+ 10-4
878
+ 2
879
+ 4
880
+ 6
881
+ 8
882
+ 10
883
+ 12
884
+ 14
885
+ i-th iteration10°
886
+ G- True error
887
+ ...... Multi-fidelity estimator (add-remove)
888
+ 2
889
+ 4
890
+ 6
891
+ 8
892
+ 10
893
+ 12
894
+ 14
895
+ i-th iterationwd
896
+ mw
897
+ s
898
+ mw
899
+ s
900
+ mw
901
+ wd
902
+ mt
903
+ dt
904
+ mt
905
+
906
+ P1
907
+ Figure 4: Three coplanar microstrips
908
+ plane below, are terminated on load resistors Rload = 50 Ω. The order of the FOM is n = 16, 644, and
909
+ there are d = 168 delays. The frequency band of interest is [0, 10]GHz.
910
+ For this model, we take fl = 1×106, fh = 1×1010. We set 30 samples for Ξ in the standard greedy
911
+ Algorithm 3, i.e., |Ξ| = 30. For Algorithm 2 and Algorithm 4, |Ξc| = 10 or |Ξc| = 15, and |Ξf| = 100.
912
+ The 1000 samples used for validating the ROM accuracy are generated using the MATLAB function
913
+ linspace, with fl = 100 and the given fh.
914
+ The results of the three algorithms are listed in Table 4. The standard greedy Algorithm 3 takes
915
+ 19 hours, resulting in a ROM of order r = 132 with validated error below the tolerance tol. During the
916
+ greedy iteration, if the small parameter set Ξc is enriched only (add only), the greedy algorithm with
917
+ bi-fidelity error estimation and that with multi-fidelity error estimation converge within the same
918
+ number of iterations, producing ROMs with the same sizes and validated errors.
919
+ But the greedy
920
+ algorithm with multi-fidelity error estimation is almost one hour faster. Similar phenomenon happens
921
+ to the case “add-remove”. The greedy algorithm with bi-fidelity error estimation and that with multi-
922
+ fidelity error estimation also converge within the same number of iterations and construct ROMs with
923
+ the same sizes and accuracy. The runtimes of both algorithms are much less as compared to their
924
+ “add only” versions.
925
+ Finally, the greedy algorithm with multi-fidelity error estimation by adding
926
+ and deleting samples to and from Ξc (“add-remove”) is most efficient in terms of both runtime and
927
+ accuracy. It is more than 3 times faster than the standard greedy algorithm resulting in a speed-up
928
+ of 4.2x, and produces a ROM with even the smallest validated error.
929
+ We note that using |Ξc| = 10, the ROMs constructed by the bi-fidelity greedy algorithm and the
930
+ multi-fidelity greedy algorithm with adding the samples only have validated errors larger than the
931
+ tolerance. If we increase |Ξc| from 10 to 15, both algorithms generate ROMs with improved accuracy.
932
+ The results are presented in Tabel 5. However, the computational time also increases a lot. Again,
933
+ the multi-fidelity greedy algorithm outperforms the bi-fidelity one w.r.t. both accuracy and runtime.
934
+ In contrast to the results in Tables 1-2 for the divider model, the results for the coplanar microstrips
935
+ model in both Tables 4-5 show that the bi-fidelity greedy algorithm (“add-remove”) is more accurate
936
+ than its “add-only” version.
937
+ Table 6 shows the results of the bi-fidelity greedy algorithm and the multi-fidelity greedy algorithm
938
+ based on adding/removing multiple samples at each iteration. For both cases, i.e., nadd = ndel = 2
939
+ and nadd = ndel = 5, the algorithms using |Ξc| = 10, converge in 10 iterations, one less iteration
940
+ than they did with nadd = ndel = 1 in Table 4, resulting in ROMs with smaller order r but with
941
+ larger validated errors. If we increase |Ξc| to 15, then the multi-fidelity greedy algorithm generates a
942
+ ROM with reduced error, but takes longer time to converge. The bi-fidelity greedy algorithm behaves
943
+ similarly and its results for |Ξc| = 15 is not presented to avoid repetition. This example again shows
944
+ that adding/removing a single parameter at each iteration outperforms the cases with nadd = ndel > 1,
945
+ and produces ROMs with desired accuracy.
946
+ 15
947
+
948
+ Table 4: Three coplanar microstrips: n = 16, 644, d = 168 delays, tol=0.001, adding/removing a single
949
+ sample at each iteration.
950
+ Method
951
+ Iter.
952
+ Runtime (h)
953
+ r
954
+ Valid.err
955
+ Alg. 3 (standard, |Ξ| = 30)
956
+ 11
957
+ 15
958
+ 132
959
+ 8.5 × 10−4
960
+ Alg. 2 (bi-fidelity, add only, |Ξc| = 10)
961
+ 11
962
+ 6.2
963
+ 132
964
+ 0.0033
965
+ Alg. 2 (bi-fidelity, add-remove, |Ξc| = 10)
966
+ 11
967
+ 5.3
968
+ 132
969
+ 8.2 × 10−4
970
+ Alg. 4 (multi-fidelity, add only, |Ξc| = 10)
971
+ 11
972
+ 5.3
973
+ 132
974
+ 0.0033
975
+ Alg. 4 (multi-fidelity, add-remove, |Ξc| = 10)
976
+ 11
977
+ 4.5
978
+ 132
979
+ 8.2 × 10−4
980
+ Table 5:
981
+ Three coplanar microstrips:
982
+ n = 16, 644, d = 168 delays, tol=0.001, larger |Ξc|,
983
+ adding/removing a single sample at each iteration.
984
+ Method
985
+ Iter.
986
+ Runtime (h)
987
+ r
988
+ Valid.err
989
+ Alg. 2 (bi-fidelity, add only, |Ξc| = 15)
990
+ 11
991
+ 10
992
+ 132
993
+ 0.0011
994
+ Alg. 4 (multi-fidelity, add only, |Ξc| = 15)
995
+ 12
996
+ 9.3
997
+ 144
998
+ 4.4 × 10−4
999
+ Table 6: Three coplanar microstrips: n = 16, 644, d = 168 delays, tol=0.001, adding/removing
1000
+ nadd = ndel > 1 samples at each iteration.
1001
+ Method
1002
+ Iter.
1003
+ Runtime (h)
1004
+ r
1005
+ Valid.err
1006
+ Alg. 2 (bi-fidelity, add-remove, |Ξc| = 10, nadd = 2)
1007
+ 10
1008
+ 4.7
1009
+ 120
1010
+ 0.019
1011
+ Alg. 2 (bi-fidelity, add-remove, |Ξc| = 10, nadd = 5)
1012
+ 10
1013
+ 4.7
1014
+ 120
1015
+ 0.019
1016
+ Alg. 4 (multi-fidelity, add-remove, |Ξc| = 10, nadd = 2)
1017
+ 10
1018
+ 4.2
1019
+ 120
1020
+ 0.019
1021
+ Alg. 4 (multi-fidelity, add-remove, |Ξc| = 10, nadd = 5)
1022
+ 10
1023
+ 4.3
1024
+ 120
1025
+ 0.019
1026
+ Alg. 4 (multi-fidelity, add-remove, |Ξc| = 15, nadd = 2)
1027
+ 13
1028
+ 7.6
1029
+ 156
1030
+ 0.0027
1031
+ In Figure 5, we show the important frequency samples of f selected by the greedy algorithms in
1032
+ Table 4. For the case “add-remove”, we find that the greedy algorithm with bi-fidelity error estimation
1033
+ and the one with multi-fidelity error estimation select the same important frequency samples. Therefore
1034
+ we only plot one group of samples for both algorithms, see the plot “bi-(multi-) add-remove” in the
1035
+ figure. For the case “add-only”, both algorithms also select the same important frequency samples,
1036
+ see the plot “bi-(multi-) add-only” in the figure.
1037
+ This is in agreement with the results given in
1038
+ Table 4 where both algorithms for either case produce the same results. The important frequency
1039
+ samples selected by the high-fidelity error estimator are mostly different from those selected by the
1040
+ other algorithms. It is seen that the important frequency samples selected by the (bi-)multi-fidelity
1041
+ estimator could be different from those selected by the high-fidelity estimator. However, both can
1042
+ derive ROMs with good accuracy.
1043
+ The left part of Figure 6 gives the error-peak frequencies detected by the multi-fidelity error
1044
+ estimator and the true error, respectively, at each iteration of the greedy algorithm. Those frequencies
1045
+ correspond to the largest values of the error estimator/true error. The error-peak frequency detected
1046
+ by the error estimator at the i-th iteration is then selected as the important frequency sample at the
1047
+ next iteration to update the reduced basis space. From iteration 5, the error-peak frequencies detected
1048
+ by the error estimator are exactly the same as those selected by the true error. This can be explained
1049
+ by the error decay in the right part of the figure. From the 5-th iteration, the error estimator tightly
1050
+ catches the true error. Although it is less tight at the first 4 iterations, it still follows the overall trend
1051
+ of the error decay and therefore, can still detect reasonable error-peak frequencies. This example,
1052
+ once again, supports our theoretical analysis and demonstrates the efficacy of the proposed greedy
1053
+ algorithms with bi-(multi-) fidelity error estimation.
1054
+ 16
1055
+
1056
+ Figure 5: Important parameters selected by the greedy algorithms.
1057
+ Figure 6: Left: Frequencies causing error/estimator peaks. Right: true error vs multi-fidelity error
1058
+ estimator.
1059
+ 4.3
1060
+ Test 3: results for a model of microstrip filter
1061
+ The third example is a model of a microstrip filter. The 3D structure of a microstrip filter is depicted in
1062
+ Fig. 7. The physical dimensions for the geometry of the 3D structure are: wzl = 0.5 mm, wz0 = 1.125
1063
+ mm, wzC = 4 mm, ℓzl = 18.3 mm, ℓz0 = 1 mm, ℓzC = 14.1 mm, w = 2.4 cm, ℓ = 2ℓzl + 2ℓz0 + ℓzC,
1064
+ tm = 100 µm, ts = 100 µm, td = 508 µm. The two ends of the microstrip are terminated on 50 Ω
1065
+ resistors.
1066
+ The order of the FOM is n = 12, 132, and there are d = 190 delays.
1067
+ The interesting
1068
+ frequency band is [0, 5]GHz.
1069
+ We take fl = 1 × 105, fh = 5 × 109 to generate frequency samples in Ξc and Ξ. We use |Ξ| = 30
1070
+ for the standard greedy Algorithm 3. For Algorithm 2 and Algorithm 4, |Ξc| = 10, and |Ξf| = 100.
1071
+ The 1000 samples used for computing the validated error are generated using the MATLAB function
1072
+ logspace, with fl = 10 and the given fh.
1073
+ The results of the high-fidelity greedy algorithm, and the bi-(multi-)fidelity greedy algorithms by
1074
+ adding/removing a single sample at each iteration, are listed in Table 7. All the bi-(multi-)fidelity
1075
+ greedy algorithms produce similar results. The runtime of each is around 1 hour, 3 hours faster than
1076
+ the high-fidelity greedy algorithm. All the ROMs have similar accuracy, with validated errors below
1077
+ the tolerance.
1078
+ Table 8 further shows the performance of the bi-(multi-)fidelity greedy algorithms by adding and
1079
+ removing multiple samples at each iteration. For this model, all these algorithms behave similarly as
1080
+ 17
1081
+
1082
+ X109
1083
+ 10
1084
+ 8
1085
+ Frequency (Hz)
1086
+ 6
1087
+ 4
1088
+ 2
1089
+ --- hi-fidelity
1090
+ ..bi-(.multi)..add-remove
1091
+ .. bi-(.multi), add-only.
1092
+ 0
1093
+ 2
1094
+ 4
1095
+ 6
1096
+ 8
1097
+ 10
1098
+ 12
1099
+ 0
1100
+ Number of iterations10
1101
+ +
1102
+ 9.5
1103
+ Frequency (GHz)
1104
+ 9
1105
+ 8.5
1106
+ Estimator-peak frequency
1107
+ True-error-peak frequency
1108
+ 8
1109
+ 2
1110
+ 4
1111
+ 6
1112
+ 8
1113
+ 10
1114
+ 0
1115
+ i-th iteration40
1116
+ 35
1117
+ 30
1118
+ 25
1119
+ .....Multi-fidelity estimator ("add-remove"
1120
+ --O- - . True errror
1121
+ 20
1122
+ 15
1123
+ 10
1124
+ 5
1125
+ 0
1126
+
1127
+ 0
1128
+ 2
1129
+ 4
1130
+ 6
1131
+ 8
1132
+ 10
1133
+ 12
1134
+ i-th iterationwz0
1135
+ wzl
1136
+ wzC
1137
+ ℓzC
1138
+ ℓzl
1139
+ ℓz0
1140
+
1141
+ w
1142
+ tm td ts
1143
+ Figure 7: Microstrip filter.
1144
+ they did by adding/removing a single sample at each iteration. The multi-fidelity greedy algorithm
1145
+ produces ROMs with slightly larger sizes. The ROMs also have larger validated errors, but still fulfill
1146
+ the accuracy requirement. All algorithms converge within 8 iterations, much faster than for the first
1147
+ two examples. This may be due to the much smaller frequency band of interest [0, 5]GHz making the
1148
+ problem much easier to solve and leading to the most efficient performance of all algorithms.
1149
+ In summary, for all the tested examples, the multi-fidelity algorithm by adding/removing a single
1150
+ sample at each iteration behaves the best w.r.t. both runtime and accuracy.
1151
+ Table 7: Microstrip filter: n = 12, 132, d = 190 delays, tol=0.001, adding/removing a single sample
1152
+ at each iteration.
1153
+ Method
1154
+ Iter.
1155
+ Runtime (h)
1156
+ r
1157
+ Valid.err
1158
+ Alg. 3 (standard, |Ξ| = 30)
1159
+ 8
1160
+ 2.5
1161
+ 32
1162
+ 5.6 × 10−4
1163
+ Alg. 2 (bi-fidelity, add only, |Ξc| = 10)
1164
+ 7
1165
+ 1.1
1166
+ 28
1167
+ 4.6 × 10−4
1168
+ Alg. 2 (bi-fidelity, add-remove, |Ξc| = 10)
1169
+ 7
1170
+ 1.1
1171
+ 28
1172
+ 4.6 × 10−4
1173
+ Alg. 4 (multi-fidelity, add only, |Ξc| = 10)
1174
+ 7
1175
+ 1.0
1176
+ 28
1177
+ 4.6 × 10−4
1178
+ Alg. 4 (multi-fidelity, add-remove, |Ξc| = 10)
1179
+ 8
1180
+ 1.1
1181
+ 32
1182
+ 5.7 × 10−4
1183
+ Table 8: Microstrip filter: n = 12, 132, d = 190 delays, tol=0.001, adding/removing nadd = ndel > 1
1184
+ samples at each iteration.
1185
+ Method
1186
+ Iter.
1187
+ Runtime (h)
1188
+ r
1189
+ Valid.err
1190
+ Alg. 2 (bi-fidelity, add-remove, |Ξc| = 10, nadd = 2)
1191
+ 7
1192
+ 1.1
1193
+ 28
1194
+ 4.6 × 10−4
1195
+ Alg. 2 (bi-fidelity, add-remove, |Ξc| = 10, nadd = 5)
1196
+ 7
1197
+ 1.1
1198
+ 28
1199
+ 4.6 × 10−4
1200
+ Alg. 4 (multi-fidelity, add-remove, |Ξc| = 10, nadd = 2)
1201
+ 8
1202
+ 1.1
1203
+ 32
1204
+ 9.1 × 10−4
1205
+ Alg. 4 (multi-fidelity, add-remove, |Ξc| = 10, nadd = 5)
1206
+ 8
1207
+ 1.1
1208
+ 32
1209
+ 9.1 × 10−4
1210
+ 18
1211
+
1212
+ 5
1213
+ Conclusions
1214
+ Concepts of bi-fidelity error estimation and multi-fidelity error estimation are proposed in this work.
1215
+ The concept of bi-fidelity error estimation is general and can be applied to any high-fidelity estima-
1216
+ tor. Although the multi-fidelity error estimation is dependent on the high-fidelity error estimation in
1217
+ consideration, the framework is general to a certain extend and could also be combined with other
1218
+ high-fidelity error estimators. The robustness of the proposed greedy algorithms with bi-fidelity and
1219
+ multi-fidelity error estimation is tested on three large time-delay systems with many delays. Although
1220
+ the standard greedy algorithm converges in a few iterations, the computational complexity in each
1221
+ iteration is high. As a consequence, the runtime is long for such systems. The proposed (bi-)multi-
1222
+ fidelity greedy processes have significantly accelerated the standard greedy algorithm with no loss of
1223
+ accuracy in most cases.
1224
+ References
1225
+ [1] D. Alfke, L. Feng, L. Lombardi, G. Antonini, and P. Benner. Model order reduction for delay
1226
+ systems by iterative interpolation. Internat. J. Numer. Methods Engrg., 122(3):684–706, 2021.
1227
+ [2] A. C. Antoulas. Approximation of Large-Scale Dynamical Systems, volume 6 of Adv. Des. Control.
1228
+ SIAM Publications, Philadelphia, PA, 2005.
1229
+ [3] A. C. Antoulas, C. A. Beattie, and S. Gugercin. Interpolatory Methods for Model Reduction. Com-
1230
+ putational Science & Engineering. Society for Industrial and Applied Mathematics, Philadelphia,
1231
+ PA, 2020.
1232
+ [4] U. Baur, P. Benner, and L. Feng. Model order reduction for linear and nonlinear systems: A
1233
+ system-theoretic perspective. Arch. Comput. Methods Eng., 21(4):331–358, 2014.
1234
+ [5] C. A. Beattie and S. Gugercin. Interpolatory projection methods for structure-preserving model
1235
+ reduction. Systems Control Lett., 58(3):225–232, 2009.
1236
+ [6] A. Benaceur, V. Ehrlacher, A. Ern, and S. Meunier. Simultaneous empirical interpolation and
1237
+ reduced basis method for non-linear problems. C. R. Acad. Sci. Paris, 353(12):1105–1109, 2015.
1238
+ [7] A. Benaceur, V. Ehrlacher, A. Ern, and S. Meunier.
1239
+ A progressive reduced basis/empirical
1240
+ interpolation method for nonlinear parabolic problems. SIAM J. Sci. Comput., 40(5):A2930–
1241
+ A2955, 2018.
1242
+ [8] P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, editors. Model Reduction and Approximation:
1243
+ Theory and Algorithms. Computational Science & Engineering. SIAM Publications, Philadelphia,
1244
+ PA, 2017.
1245
+ [9] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders, and L. M. Silveira, edi-
1246
+ tors. Model Order Reduction, Volume 1: System- and Data-Driven Methods and Algorithms. De
1247
+ Gruyter, 2021.
1248
+ [10] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders, and L. M. Silveira, editors.
1249
+ Model Order Reduction, Volume 2: Snapshot-Based Methods and Algorithms. De Gruyter, 2021.
1250
+ [11] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders, and L. M. Silveira, editors.
1251
+ Model Order Reduction, Volume 3: Applications. De Gruyter, 2021.
1252
+ 19
1253
+
1254
+ [12] P. Benner, S. Gugercin, and K. Willcox. A survey of projection-based model reduction methods
1255
+ for parametric dynamical systems. SIAM Rev., 57(4):483–531, 2015.
1256
+ [13] S. Chellappa, L. Feng, and P. Benner. An adaptive sampling approach for the reduced basis
1257
+ method. In Realization and Model Reduction of Dynamical Systems - A Festschrift in Honor of
1258
+ the 70th Birthday of Thanos Antoulas, pages 137–155. Springer, Cham, 2022.
1259
+ [14] S. Chellappa, L. Feng, V. de la Rubia, and P. Benner. Adaptive interpolatory MOR by learning
1260
+ the error estimator in the parameter domain. In Model Reduction of Complex Dynamical Systems,
1261
+ volume 171 of International Series of Numerical Mathematics, pages 97–117. Birkh¨auser, Cham,
1262
+ 2021.
1263
+ [15] L. Feng, A. C. Antoulas, and P. Benner.
1264
+ Some a posteriori error bounds for reduced order
1265
+ modelling of (non-)parametrized linear systems. ESAIM: M2AN, 51(6):2127–2158, 2017.
1266
+ [16] L. Feng and P. Benner. On error estimation for reduced-order modeling of linear non-parametric
1267
+ and parametric systems. ESAIM: Math. Model. Numer. Anal., 55(2):561–594, 2021.
1268
+ [17] C. Gianfagna, L. Lombardi, and G. Antonini. Marching-on-in-time solution of delayed PEEC
1269
+ models of conductive and dielectric objects. IET Microwaves, Antennas Propagation, 13(1):42–
1270
+ 47, 2019.
1271
+ [18] M. Grepl. Reduced-basis approximation a posteriori error estimation for parabolic partial differ-
1272
+ ential equations. PhD thesis, Massachussetts Institute of Technology (MIT), Cambridge, USA,
1273
+ 2005.
1274
+ [19] M. A. Grepl. Certified reduced basis methods for nonaffine linear time-varying and nonlinear
1275
+ parabolic partial differential equations. Math. Models Methods Appl. Sci., 22(3), 2012.
1276
+ [20] M. A. Grepl, Y. Maday, N. C. Nguyen, and A. T. Patera.
1277
+ Efficient reduced-basis treatment
1278
+ of nonaffine and nonlinear partial differential equations. ESAIM: Math. Model. Numer. Anal.,
1279
+ 41(3):575–605, 2007.
1280
+ [21] M. A. Grepl and A. T. Patera. A posteriori error bounds for reduced-basis approximations of
1281
+ parametrized parabolic partial differential equations. M2AN Math. Model. Numer. Anal., 39:157–
1282
+ 181, 2005.
1283
+ [22] D. Grunert, J. Fehr, and B. Haasdonk. Well-scaled, a-posteriori error estimation for model order
1284
+ reduction of large second-order mechanical systems. Z. Angew. Math. Mech., 100(8):1–43, 2019.
1285
+ [23] B. Haasdonk and M. Ohlberger.
1286
+ Reduced basis method for finite volume approximations of
1287
+ parametrized linear evolution equations. ESAIM: Math. Model. Numer. Anal., 42(2):277–302,
1288
+ 2008.
1289
+ [24] B. Haasdonk and M. Ohlberger. Efficient reduced models and a-posteriori error estimation for
1290
+ parametrized dynamical systems by offline/online decomposition. Math. Comput. Model. Dyn.
1291
+ Syst., 17(2):145–161, 2011.
1292
+ [25] S. Hain, M. Ohlberger, M. Radic, and K. Urban. A hierarchical a-posteriori error estimator for
1293
+ the reduced basis method. Advances in Computational Mathematics, 45(2):2191–221, 2019.
1294
+ [26] A. Paul-Dubois-Taine and D. Amsallem.
1295
+ An adaptive and efficient greedy procedure for the
1296
+ optimal training of parametric reduced-order models.
1297
+ Internat. J. Numer. Methods Engrg.,
1298
+ 102(12):1262–1292, 2015.
1299
+ 20
1300
+
1301
+ [27] A. Quarteroni, A. Manzoni, and F. Negri. Reduced Basis Methods for Partial Differential Equa-
1302
+ tions, volume 92 of La Matematica per il 3+2. Springer International Publishing, 2016. ISBN:
1303
+ 978-3-319-15430-5.
1304
+ [28] D. V. Rovas. Reduced-Basis Output Bound Methods for Parametrized Partial Differential Equa-
1305
+ tions. PhD thesis, Massachussetts Institute of Technology (MIT), Cambridge, USA, 2003.
1306
+ [29] A. E. Ruehli. Inductance calculations in a complex integrated circuit environment. IBM Journal
1307
+ of Research and Development, 16(5):470–481, Sept. 1972.
1308
+ [30] A. E. Ruehli. Equivalent circuit models for three dimensional multiconductor systems. IEEE
1309
+ Transactions on Microwave Theory and Techniques, MTT-22(3):216–221, Mar. 1974.
1310
+ [31] A. E. Ruehli, G. Antonini, and L. Jiang. Circuit Oriented Electromagnetic Modeling Using the
1311
+ PEEC Techniques. Wiley-IEEE Press, 2017.
1312
+ [32] A. E. Ruehli and P. A. Brennan. Efficient capacitance calculations for three-dimensional mul-
1313
+ ticonductor systems.
1314
+ IEEE Transactions on Microwave Theory and Techniques, 21(2):76–82,
1315
+ 1973.
1316
+ [33] A. Schmidt and B. Wittwar, D. Haasdonk. Rigorous and effective a-posteriori error bounds for
1317
+ nonlinear problems—application to RB methods. Adv. Comput. Math., 46(32):30 pages, 2020.
1318
+ [34] K. Smetana, O. Zahm, and A. T. Patera.
1319
+ Randomized residual-based error estimators for
1320
+ parametrized equations. SIAM J. Sci. Comput., 41(2):A900–A926, 2019.
1321
+ [35] K. Veroy, C. Prud’Homme, D. V. Rovas, and A. T. Patera. A posteriori error bounds for reduced-
1322
+ basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equa-
1323
+ tions. In 16th AIAA Computational Fluid Dynamics Conference, Orlando, United States, 2003.
1324
+ [36] Y. Zhang, L. Feng, S. Li, and P. Benner. An efficient output error estimation for model order
1325
+ reduction of parametrized evolution equations. SIAM J. Sci. Comput., 37(6):B910–B936, 2015.
1326
+ 21
1327
+
YNE5T4oBgHgl3EQfdQ-k/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
YtFRT4oBgHgl3EQf_ziQ/content/tmp_files/2301.13696v1.pdf.txt ADDED
@@ -0,0 +1,1887 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13696v1 [hep-th] 31 Jan 2023
2
+ W-representations of two-matrix models with infinite set of
3
+ variables
4
+ Lu-Yao Wanga,∗ Yu-Sen Zhua,† Ying Chenb,‡ Bei Kangc§
5
+ a School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
6
+ bSchool of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
7
+ c School of Mathematics and Statistics, North China University of Water Resources and Electric Power,
8
+ Zhengzhou 450046, Henan, China
9
+ Abstract
10
+ The Hermitian, complex and fermionic two-matrix models with infinite set of variables are
11
+ constructed. We show that these two-matrix models can be realized by the W-representations.
12
+ In terms of the W-representations, we derive the compact expressions of correlators for these
13
+ two-matrix models.
14
+ Keywords: Two-matrix models, Conformal and W Symmetry
15
+ 1
16
+ Introduction
17
+ Matrix models have been developed to solve non-perturbative two-dimensional gravity and pro-
18
+ vide a rich set of approaches to physical systems. For two-matrix model, there is the interaction
19
+ between the two matrices. Hence it possesses a richer mathematical structure than single ma-
20
+ trix models, and thus produces more applications in physics and mathematics. The two-matrix
21
+ models have been studied as an important solvable example of statistical mechanical systems,
22
+ i.e., Ising spins [1–3]. For fermionic two-matrix model, the complete sets of loop equations can
23
+ be derived [4]. The Ward identities in Kontsevich-like one-matrix models are used to relate the
24
+ degree of potential in Kontsevich-like two-matrix model to the W-constraints [5]. The spec-
25
+ tral curves, loop equations and topological expansion for Hermitian two-matrix models were
26
+ presented in Refs.[6–8].
27
+ For W-representation of matrix model, it realizes partition function by acting on elemen-
28
+ tary functions with exponents of the given W-operator [9]. Since W-representation plays an
29
+ important role in understanding the structures of matrix models, much interest has been at-
30
+ tributed to this direction. A variety of matrix models have been realized by W-representations
31
+ and their correlators can be exactly calculated. Recently the (super) partition function hier-
32
+ archies with W-representations were constructed [10, 11].
33
+ Some well known superintegrable
34
+ matrix models were contained in these superintegrable hierarchies. In addition, the progress of
35
+ W-representation has been made on tensor models [12–15] and super-eigenvalue models [16, 17].
36
+ Recently, the two-matrix models with multi-set of variables were proposed [18–21], which
37
+ are the superintegrable matrix models. Their W-representations and character expansions were
38
+ well investigated. In this paper, we’ll construct the new two-matrix models with infinite set of
39
+ variables and derive their W-representations.
40
+ ∗wangly100@outlook.com
41
+ †zhuyusen@cnu.edu.cn
42
+ ‡chenying math@jsnu.edu.cn
43
+ §Corresponding author:kangbei@ncwu.edu.cn
44
+ 1
45
+
46
+ 2
47
+ W-representation of new Hermitian two-matrix model
48
+ Let us construct the Hermitian two-matrix model
49
+ Z2H
50
+ =
51
+
52
+ dAdB exp(−1
53
+ 2trA2 − 1
54
+ 2trB2 +
55
+
56
+
57
+ k=0
58
+ tktrAk +
59
+
60
+
61
+ k=0
62
+ gktrBk
63
+ +
64
+
65
+
66
+ l=1
67
+
68
+
69
+ k1,···k2l=1
70
+ tk1,··· ,2ltrAk1Bk2Ak3Bk4 · · · Ak2l−1Bk2l),
71
+ (1)
72
+ where A and B are N × N matrices. When B = 0 in (1), it reduces to the well known Gaussian
73
+ Hermitian matrix model.
74
+ By requiring the invariance of the integral (1) under the infinitesimal transformation A →
75
+ A + ǫAn (n ≥ 0) or B → B + ǫBn (n ≥ 0), we obtain the Virasoro constraints
76
+ Ln−1Z2H = 0,
77
+ (2)
78
+ where the constraint operators are given by
79
+ Ln−1
80
+ =
81
+
82
+
83
+ n=0
84
+ 2N
85
+
86
+ ∂tn−1
87
+ +
88
+
89
+
90
+ n=0
91
+ n−1
92
+
93
+ s=1
94
+ ∂2
95
+ ∂ts∂tn−1−s
96
+ + δn,1N 2 +
97
+
98
+
99
+ n=0
100
+
101
+
102
+ k=0
103
+ ktk
104
+
105
+ ∂tn+k−1
106
+ +
107
+
108
+
109
+ k2=1
110
+ t1,k2
111
+
112
+ ∂gk2
113
+ +
114
+
115
+
116
+ l=1
117
+
118
+
119
+ k1,··· ,k2l=1
120
+ tk1,··· ,2l[
121
+ l
122
+
123
+ a=1
124
+
125
+
126
+ n=0
127
+ k2a−1
128
+
129
+ ∂tk1,··· ,n+k2a−1,k2a,··· ,k2l
130
+ + δk1,1
131
+
132
+ ∂tk3,··· ,k2l−1,k2l+k2
133
+ +
134
+ l
135
+
136
+ a=2
137
+ δk2a−1,1
138
+
139
+ ∂tk1,··· ,k2a−2+k2a,k2a+1,··· ,k2l
140
+ ],
141
+ (3)
142
+ which obey the Virasoro algebra
143
+ [Ln−1, Lm−1] = (n − m)Ln+m−2.
144
+ (4)
145
+ Let us now consider the following five infinitesimal transformations, respectively,
146
+ (i) A −→ A + ǫ
147
+
148
+
149
+ n=0
150
+ (n + 1)tn+1An, (ii) A −→ A + ǫ
151
+
152
+
153
+ n=1
154
+ (n + 1)t1,nBn,
155
+ (iii) A −→ A + ǫ
156
+
157
+
158
+ r=1
159
+
160
+
161
+ n1,···n2r=1
162
+ N1tn1+1,n2,··· ,n2rAn1Bn2 · · · An2r−1Bn2r,
163
+ (iv) A −→ A + ǫ
164
+
165
+
166
+ r=1
167
+
168
+
169
+ n1,···n2r=1
170
+ N2t1,n2,··· ,n2rBn2An3 · · · An2r−1Bn2r,
171
+ (v) B −→ B + ǫ
172
+
173
+
174
+ n=0
175
+ (n + 1)gn+1Bn,
176
+ where N1 = n1 + 1 + n2 + · · · + n2r and N2 = 1 + n2 + · · · + n2r.
177
+ From the invariance of the integral (1), it gives
178
+ ˆDiZ2H = ˆWiZ2H, i = 1, 2, · · · 5,
179
+ (5)
180
+ 2
181
+
182
+ where the operators ˆWi are listed in (A.1) and ˆDi are
183
+ ˆD1 =
184
+
185
+
186
+ i=1
187
+ iti
188
+
189
+ ∂ti
190
+ ,
191
+ ˆD2 =
192
+
193
+
194
+ n=1
195
+ (n + 1)t1,n
196
+
197
+ ∂t1,n
198
+ ,
199
+ ˆD3 =
200
+
201
+
202
+ r=1
203
+
204
+
205
+ n1,···n2r=1
206
+ N1tn1+1,n2,··· ,n2r
207
+
208
+ ∂tn1+1,n2,··· ,n2r
209
+ ,
210
+ ˆD4 =
211
+
212
+
213
+ r=1
214
+
215
+
216
+ n1,···n2r=1
217
+ N2t1,n2,··· ,n2r
218
+
219
+ ∂t1,n2,··· ,n2r
220
+ ,
221
+ ˆD5 =
222
+
223
+
224
+ i=1
225
+ igi
226
+
227
+ ∂gi
228
+ .
229
+ (6)
230
+ In the following, we’ll focus on the sum of (5)
231
+ ˆDZ2H = ˆWZ2H,
232
+ (7)
233
+ where ˆD = �5
234
+ i=1 Di and ˆW = �5
235
+ i=1 Wi.
236
+ Let us write the partition function (1) as the grading form Z2H = �∞
237
+ d=0 Z(d)
238
+ 2H and
239
+ Z(d)
240
+ 2H
241
+ =
242
+ eN(t0+g0)
243
+
244
+
245
+ l=0
246
+ 1
247
+ l!
248
+
249
+ l1+l2+l3=l
250
+ ρ1+ρ2+ρ3=d
251
+
252
+ l1
253
+
254
+ i=1
255
+ trAki
256
+ l2
257
+
258
+ j=1
259
+ trBrj
260
+ l3
261
+
262
+ n=1
263
+ trASn,1BSn,2 · · · ASn,2pn−1BSn,2pn⟩
264
+ ·
265
+ l1
266
+
267
+ i=1
268
+ tki
269
+ l2
270
+
271
+ j=1
272
+ grj
273
+ l3
274
+
275
+ n=1
276
+ tSn,1,··· ,Sn,2pn ·
277
+
278
+ dAdB exp(−1
279
+ 2trA2 − 1
280
+ 2trB2),
281
+ (8)
282
+ where ρ1 = �l1
283
+ i=1 ki, ρ2 = �l2
284
+ i=1 ri, ρ3 = �l3
285
+ i=1(Si,1 + · · · + Si,2pi) correlators ⟨· · · ⟩ are defined as
286
+ ⟨· · · ⟩ =
287
+
288
+ dAdB · · · exp(− 1
289
+ 2trA2 − 1
290
+ 2trB2)
291
+
292
+ dAdB exp(− 1
293
+ 2trA2 − 1
294
+ 2trB2) .
295
+ (9)
296
+ We denote the degrees of operators as deg(tk) = deg(gk) = k, deg( ∂
297
+ ∂tk ) = deg( ∂
298
+ ∂gk ) = −k,
299
+ deg(
300
+
301
+ ∂tk1,k2,··· ,k2l−1,k2l ) = −(k1+· · ·+k2l). Then it is easy to see that deg( ˆD) = 0 and deg( ˆ
302
+ W ) = 2.
303
+ Due to the operators ˆD and ˆD − ˆW being invertible and ˆDeN(t0+g0) = 0, from (7), we have
304
+
305
+
306
+ s=1
307
+ Z(s)
308
+ 2H = ( ˆD − ˆW)−1 ˆWeN(t0+g0) =
309
+
310
+
311
+ k=1
312
+ ( ˆD−1 ˆW)keN(t0+g0).
313
+ (10)
314
+ Note that ˆW is an homogeneous operator with degree 2, and ˆDf = deg(f)·f for any homogeneous
315
+ function f. We may give the W-representation of the Hermitian two-matrix model (1)
316
+ Z2H = e
317
+ 1
318
+ 2 ˆ
319
+ W eN(t0+g0).
320
+ (11)
321
+ Let us formally write the (m + 1)-th power of the operator ˆW as
322
+ ˆW (m+1)
323
+ =
324
+ 2(m+1)
325
+
326
+ l1+l2+l3=1
327
+
328
+ ρ1+ρ2+ρ3=2(m+1)
329
+ P
330
+ (S1,1,··· ,S1,2p1;··· ;Sl3,1,··· ,Sl3,2pl3 )
331
+ (k1,··· ,kl1);(r1,··· ,rl2)
332
+ tk1 · · · tkl1gr1 · · · grl2
333
+ ·tS1,1,··· ,S1,2p1 · · · tSl3,1,··· ,Sl3,2pl3 + · · · .
334
+ (12)
335
+ 3
336
+
337
+ By means of the W-representation of (1), we derive the compact expression of correlators
338
+
339
+ l1
340
+
341
+ i=1
342
+ trAki
343
+ l2
344
+
345
+ j=1
346
+ trBrj
347
+ l3
348
+
349
+ n=1
350
+ trASn,1BSn,2 · · · ASn,2pn−1BSn,2pn⟩
351
+ =
352
+ l1!l2!l3!
353
+ 2(m+1)
354
+
355
+ ρ1+ρ2+ρ3=1
356
+
357
+ σ
358
+ P
359
+ (σ(S1,1),··· ,σ(S1,2p1);··· ;σ(Sl3,1),··· ,σ(Sl3,2pl3 ))
360
+ (σ(k1),··· ,σ(kl1));(σ(r1),··· ,σ(rl2))
361
+ 2m+1(m + 1)!λ(k1,··· ,kl1)λ(r1,··· ,rl2)λ(S1,1,··· ,S1,2p1;··· ;Sl3,1,··· ,Sl3,2pl3 )
362
+ ,
363
+ (13)
364
+ where (σ(k1), · · · , σ(kl1)) denotes all distinct permutations of (kl1, · · · , kl1), and λ(k1,··· ,kl1) is the
365
+ number of distinct permutations (k1, · · · , kl1).
366
+ For example, let us consider the cases
367
+ ˆW
368
+ =
369
+ t2
370
+ 1N + 2t2N 2 + g2
371
+ 1N + 2g2N 2 + · · · ,
372
+ ˆW 2
373
+ =
374
+ 8t2
375
+ 1t2N + 24t1t3N 2 + 12t4N 3 + 8t2
376
+ 2N 2 + 8t1t1,2N 2 + 8t1g1t1,1N + 8g1t2,1N 2
377
+ +4t2
378
+ 1,1N 2 + 8t2,2N 3 + 8g2
379
+ 1g2N + 24g1g3N 2 + 12g4N 3 + 8g2
380
+ 2N 2 + · · · .
381
+ (14)
382
+ We may give some correlators in (13) as follows
383
+ ⟨trAtrA⟩ = ⟨trBtrB⟩ = N,
384
+ ⟨trA2⟩ = ⟨trB2⟩ = N 2,
385
+ ⟨trAtrBtrA2⟩ = 2N + N 3,
386
+ ⟨trAtrA3⟩ = ⟨trBtrB3⟩ = 3N 2,
387
+ ⟨trA4⟩ = ⟨trB4⟩ = 3N 2,
388
+ ⟨trA2B2⟩ = N 2,
389
+ ⟨trABtrAB⟩ = N 2,
390
+ ⟨trAtrBtrAB⟩ = N,
391
+ ⟨trAtrAB2⟩ = ⟨trAtrA2B⟩ = N 2,
392
+ ⟨trA2trA2⟩ = ⟨trB2trB2⟩ = 2N 2 + N 4.
393
+ (15)
394
+ 3
395
+ W-representation of complex two-matrix model
396
+ Let us construct the complex two-matrix model
397
+ Z2C
398
+ =
399
+
400
+ d2M1d2M2 exp[−µtrM1M†
401
+ 1 − µtrM2M†
402
+ 2 +
403
+
404
+
405
+ k=0
406
+ tktr(M1M†
407
+ 1)k +
408
+
409
+
410
+ k=0
411
+ gktr(M2M†
412
+ 2)k
413
+ +
414
+
415
+
416
+ l=1
417
+
418
+
419
+ k1,···k2l=1
420
+ tk1,···k2ltr(M1M†
421
+ 1)k1(M2M†
422
+ 2)k2 · · · (M1M†
423
+ 1)k2l−1(M2M†
424
+ 2)k2l],
425
+ (16)
426
+ where M1 and M2 are N × N complex matrices.
427
+ By requiring the invariance of the integral (16) under the infinitesimal transformation M1 −→
428
+ M1 + ǫ(M1M†
429
+ 1)nM1 (n ≥ 0) or M2 −→ M2 + ǫ(M2M†
430
+ 2)nM2 (n ≥ 0), it gives the Virasoro
431
+ constraints
432
+ ¯LnZ2C = 0,
433
+ (17)
434
+ where
435
+ ¯Ln
436
+ =
437
+
438
+
439
+ n=0
440
+ 2N ∂
441
+ ∂tn
442
+ +
443
+
444
+
445
+ n=0
446
+ n−1
447
+
448
+ s=1
449
+ ∂2
450
+ ∂ts∂tn−s
451
+ + δn,0N 2 − µ
452
+
453
+
454
+ n=0
455
+
456
+ ∂tn+1
457
+ +
458
+
459
+
460
+ n=0
461
+
462
+
463
+ k=0
464
+ ktk
465
+
466
+ ∂tn+k
467
+ +
468
+
469
+
470
+ n=0
471
+
472
+
473
+ l=1
474
+
475
+
476
+ k1,··· ,k2l=1
477
+ l
478
+
479
+ a=1
480
+ k2a−1tk1,··· ,k2l
481
+
482
+ ∂tk1,k2,··· ,n+k2a−1,k2a,··· ,k2l
483
+ .
484
+ (18)
485
+ 4
486
+
487
+ Similarly, the four constraints of (16) can be derived from the invariance of the integral under
488
+ the following four infinitesimal transformations, respectively,
489
+ (i) M1 −→ M1 + ǫ
490
+
491
+
492
+ n=0
493
+ (n + 1)tn+1(M1M†
494
+ 1)nM1,
495
+ (ii) M1 −→ M1 + ǫ
496
+
497
+
498
+ n,m=0
499
+ [(n + 1) + (m + 1)]tn+1,m+1(M2M†
500
+ 2)m+1(M1M†
501
+ 1)nM1,
502
+ (iii) M1 −→ M1 + ǫ
503
+
504
+
505
+ r=1
506
+
507
+
508
+ n1,··· ,n2r+1=0
509
+ ¯
510
+ Ntn2r+1,n2+1,··· ,n2r+1(M2M†
511
+ 2)n2+1(M1M†
512
+ 1)n3+1 · · ·
513
+ · · · (M2M†
514
+ 2)n2r+1(M1M†
515
+ 1)n2r+1M1,
516
+ (iv) M2 −→ M2 + ǫ
517
+
518
+
519
+ m=0
520
+ (m + 1)gm+1(M2M†
521
+ 2)mM2,
522
+ where ¯
523
+ N = (n2 + 1) + (n3 + 1) + · · · + (n2r+1 + 1). The sum of these constraints are
524
+ µ ¯DZ2C = ¯WZ2C,
525
+ (19)
526
+ where ¯D = �4
527
+ i=1 ¯Di, ¯W = �4
528
+ i=1 ¯Wi, the operators ¯Di are
529
+ ¯D1 =
530
+
531
+
532
+ n=0
533
+ (n + 1)tn+1
534
+
535
+ ∂tn+1
536
+ ,
537
+ ¯D2 =
538
+
539
+
540
+ n,m=0
541
+ ¯T1
542
+
543
+ ∂tn+1,m+1
544
+ ,
545
+ ¯D2 =
546
+
547
+
548
+ n1,··· ,n2r+1=0
549
+ ¯T2
550
+
551
+ ∂tn1+1,··· ,n2r+1+1
552
+ ,
553
+ ¯D4 =
554
+
555
+
556
+ m=0
557
+ (m + 1)gm+1
558
+
559
+ ∂gm+1
560
+ ,
561
+ (20)
562
+ and the operators ¯Wi are
563
+ ¯W1
564
+ =
565
+
566
+
567
+ n=0
568
+ (n + 1)tn+1[2N ∂
569
+ ∂tn
570
+ (1 − δn,0) +
571
+ n−1
572
+
573
+ a=1
574
+
575
+ ∂ta
576
+
577
+ ∂tn−a
578
+ +
579
+
580
+
581
+ k=0
582
+ ktk
583
+
584
+ ∂tn+k
585
+ ] + N 2t1
586
+ +
587
+
588
+
589
+ n=0
590
+
591
+
592
+ l=1
593
+ l
594
+
595
+ a=1
596
+
597
+
598
+ k1,··· ,k2l=1
599
+ (n + 1)tn+1k2a−1tk1,··· ,k2l
600
+
601
+ ∂tk1,··· ,k2a−1+n,k2a,··· ,k2l
602
+ ,
603
+ ¯W2
604
+ =
605
+
606
+
607
+ n,m=0
608
+ ¯T1{(N
609
+
610
+ ∂tn,m+1
611
+ +
612
+ ∂2
613
+ ∂gm+1∂tn
614
+ )(1 − δn,0) +
615
+ n−1
616
+
617
+ a=1
618
+ ∂2
619
+ ∂ta,m+1∂tn−a
620
+ + Nδn,0
621
+
622
+ ∂gm+1
623
+ +
624
+
625
+
626
+ k=0
627
+ ktk
628
+
629
+ ∂tn+k,m+1
630
+ +
631
+
632
+
633
+ l=1
634
+
635
+
636
+ k1,··· ,k2l=1
637
+ tk1,··· ,k2l[k1
638
+
639
+ ∂tn+k1,··· ,k2l−1,k2l+m+1
640
+ +k2l−1
641
+ l
642
+
643
+ a=2
644
+
645
+ ∂tk1,··· ,k2a−1+n,k2a,··· ,k2l
646
+ +
647
+ l
648
+
649
+ a=1
650
+ k2a−1−1
651
+
652
+ s=1
653
+
654
+ ∂tk1,··· ,s,m+1,n+k2a−1−s,k2a,··· ,k2l
655
+ ]}
656
+ ¯W3
657
+ =
658
+
659
+
660
+ n1,··· ,n2r+1=0
661
+ ¯T2{[N
662
+
663
+ ∂gn2+1
664
+
665
+ ∂tn3+n2r+1+1,n4+1,··· ,n2r+1
666
+ + N
667
+
668
+ ∂tn3+1,··· ,n2r+n2+2
669
+
670
+ ∂tn2r+1
671
+ +N
672
+ r−1
673
+
674
+ b=2
675
+
676
+ ∂tn3+1,··· ,n2b+n2+2
677
+
678
+ ∂tn2b+1+1,··· ,n2r+1
679
+ +
680
+ n2r+1−1
681
+
682
+ s=1
683
+
684
+ ∂ts,n2+1,··· ,n2r+1
685
+
686
+ ∂tn2r+1−s
687
+ +
688
+ r−1
689
+
690
+ b=1
691
+ n2b+1
692
+
693
+ s=1
694
+
695
+ ∂ts,n2+1,··· ,n2b+1
696
+
697
+ ∂t¯ξ1,n2b+2+1,··· ,n2r+1
698
+ + N
699
+
700
+ ∂tn2r+1,n2+1,··· ,n2r+1
701
+ ] ·
702
+ ·(1 − δn2r+1,0) + δn2r+1,0
703
+
704
+ ∂tn3+1,··· ,n2r−1+1,n2r+n2+2
705
+ +
706
+
707
+
708
+ k=0
709
+ ktk
710
+
711
+ ∂tn2r+1+k,n2+1,··· ,n2r+1
712
+ 5
713
+
714
+ +
715
+
716
+
717
+ l=1
718
+
719
+
720
+ k1,··· ,k2l=1
721
+ tk1,··· ,k2l[k1
722
+
723
+ ∂tn3+1,··· ,¯ξ2,k2,··· ,¯ξ3
724
+ +
725
+ l
726
+
727
+ a=2
728
+ (k2a−1
729
+
730
+ ∂tk1,··· ,¯ξ4,k2a,··· ,k2l
731
+ +
732
+ k2a−1−1
733
+
734
+ s=1
735
+
736
+ ∂tk1,··· ,k2a−2,s,n2+1,··· ,¯ξ5,k2a,··· ,k2l
737
+ )]},
738
+ ¯W4
739
+ =
740
+ N 2g1 +
741
+
742
+
743
+ m=0
744
+ (m + 1)gm+1[2N
745
+
746
+ ∂gm
747
+ (1 − δm,0) +
748
+ m−1
749
+
750
+ a=1
751
+
752
+ ∂ga
753
+
754
+ ∂gm−a
755
+ +
756
+
757
+
758
+ k=0
759
+ kgk
760
+
761
+ ∂gm+k
762
+ ]
763
+ +
764
+
765
+
766
+ m=0
767
+
768
+
769
+ l=1
770
+ l
771
+
772
+ a=1
773
+
774
+
775
+ k1,··· ,k2l=1
776
+ (m + 1)gm+1k2atk1,··· ,k2l
777
+
778
+ ∂tk1,··· ,k2a+m,k2a+1,··· ,k2l
779
+ ,
780
+ (21)
781
+ where ¯T1 = (n + m + 2)tn+1,m+1, ¯T2 = ¯
782
+ Ntn2r+1+1,n2+1,··· ,n2r+1 and ¯ξ1 = n2r+1 + n2b+1 + 1 − s,
783
+ ¯ξ2 = n2r+1 + k1,
784
+ ¯ξ3 = k2l + n2 + 1,
785
+ ¯ξ4 = (k2a−2 + n2 + 1, n3 + 1, · · · , n2r + 1, n2r+1 + k2a−1),
786
+ ¯ξ5 = n2r+1 + k2a−1 − s.
787
+ Similar to the case of the Hermitian two-matrix model (11), the complex two-matrix model
788
+ (16) can be realized by the W-representation
789
+ Z2C = e
790
+ 1
791
+ µ ¯
792
+ WeN(t0+g0).
793
+ (22)
794
+ There is also the compact expression of correlators
795
+
796
+ l1
797
+
798
+ i=1
799
+ tr(M1M†
800
+ 1)ki
801
+ l2
802
+
803
+ j=1
804
+ tr(M2M†
805
+ 2)rj
806
+ l3
807
+
808
+ n=1
809
+ tr(M1M†
810
+ 1)Sn,1(M2M†
811
+ 2)Sn,2 · · · (M2M†
812
+ 2)Sn,2pn ⟩
813
+ =
814
+ l1!l2!l3!
815
+ m+1
816
+
817
+ ρ1+ρ2+ρ3=1
818
+
819
+ σ
820
+ ¯P
821
+ (σ(S1,1),··· ,σ(S1,2p1 );··· ;σ(Sl3,1),··· ,σ(Sl3,2pl3 ))
822
+ (σ(k1),··· ,σ(kl1));(σ(r1),··· ,σ(rl2))
823
+ µm+1(m + 1)!λ(k1,··· ,kl1)λ(r1,··· ,rl2)λ(S1,1,··· ,S1,2p1;··· ;Sl3,1,··· ,Sl3,2pl3 )
824
+ ,
825
+ (23)
826
+ where ρ1 =
827
+ l1
828
+
829
+ i=1
830
+ ki, ρ2 =
831
+ l2
832
+
833
+ i=1
834
+ ri, ρ3 =
835
+ l3
836
+
837
+ i=1
838
+ (Si,1 + · · · + Si,2pi), and ¯P
839
+ (σ(S1,1),··· ;··· ;··· ,σ(Sl3,2pl3 ))
840
+ (σ(k1),··· ,σ(kl1));(σ(r1),··· ,σ(rl2)) is
841
+ the coefficient of tk1 · · · tkl1gr1 · · · grl2tS1,1,··· ,S1,2p1 · · · tSl3,1,··· ,Sl3,2p3 in ¯W m+1.
842
+ For example, we list some correlators
843
+ ⟨trM1M†
844
+ 1⟩ = ⟨trM2M†
845
+ 2⟩ = 1
846
+ µN 2,
847
+ ⟨trM1M†
848
+ 1trM2M†
849
+ 2⟩ =
850
+ 2
851
+ µ2 N 4,
852
+ ⟨trM1M†
853
+ 1trM1M†
854
+ 1⟩ = ⟨trM2M†
855
+ 2trM2M†
856
+ 2⟩ =
857
+ 1
858
+ µ2 (N 2 + 1)N 2,
859
+ ⟨trM1M†
860
+ 1M2M†
861
+ 2⟩ =
862
+ 2
863
+ µ2 N 3,
864
+ ⟨tr(M1M†
865
+ 1)3⟩ = ⟨tr(M2M†
866
+ 2)3⟩ =
867
+ 6
868
+ µ3 (N 2 + N 4),
869
+ ⟨trM1M†
870
+ 1trM1M†
871
+ 1trM1M†
872
+ 1⟩ = ⟨trM2M†
873
+ 2trM2M†
874
+ 2trM2M†
875
+ 2⟩ =
876
+ 1
877
+ µ3 (N 2 + 2)(N 2 + 1)N 2,
878
+ ⟨trM1M†
879
+ 1trM1M†
880
+ 1trM2M†
881
+ 2⟩ = ⟨trM1M†
882
+ 1trM2M†
883
+ 2trM2M†
884
+ 2⟩ =
885
+ 3
886
+ µ3 (N 4 + N 6),
887
+ ⟨trM1M†
888
+ 1trM1M†
889
+ 1M2M†
890
+ 2⟩ = ⟨trM2M†
891
+ 2trM1M†
892
+ 1M2M†
893
+ 2⟩ =
894
+ 6
895
+ µ3 (N 3 + N 5),
896
+ ⟨trM1M†
897
+ 1tr(M2M†
898
+ 2)2⟩ = ⟨tr(M1M†
899
+ 1)2trM2M†
900
+ 2⟩ =
901
+ 8
902
+ µ3 N 5,
903
+ ⟨trM1M†
904
+ 1tr(M1M†
905
+ 1)2⟩ = ⟨trM2M†
906
+ 2tr(M2M†
907
+ 2)2⟩ =
908
+ 8
909
+ µ3 (N 3 + N 5).
910
+ (24)
911
+ 4
912
+ W-representation of fermionic two-matrix model
913
+ The fermionic matrix model ZF with the super integrability is given by [14]
914
+ ZF
915
+ =
916
+
917
+ dψd ¯ψ exp[N �
918
+ k>0
919
+ pk
920
+ k tr( ¯ψψ)k + N 2tr( ¯ψψ)]
921
+
922
+ dψd ¯ψ exp(N 2tr ¯ψψ)
923
+ 6
924
+
925
+ =
926
+
927
+ R
928
+ (−1
929
+ N )|R| DR(N)DR(−N)
930
+ dR
931
+ SR,
932
+ (25)
933
+ where ψ and ¯ψ are independent complex Grassmann-valued N × N matrices, and DR(N) =
934
+ SR{pk = N}, dR = SR{pk = δk,1} are respectively the dimension of representation R for the
935
+ linear group GL(N).
936
+ Let us extend (25) to the fermionic two-matrix model,
937
+ Z2F
938
+ =
939
+
940
+ dψd ¯ψdχd¯χ exp[−µtr ¯ψψ − µtr¯χχ +
941
+
942
+
943
+ k=0
944
+ tktr( ¯ψψ)k +
945
+
946
+
947
+ k=0
948
+ gktr(¯χχ)k
949
+ +
950
+
951
+
952
+ l=1
953
+
954
+
955
+ k1,···k2l=1
956
+ tk1,···k2ltr( ¯ψψ)k1(¯χχ)k2( ¯ψψ)k3 · · · ( ¯ψψ)k2l−1(¯χχ)k2l],
957
+ (26)
958
+ where χ and ¯χ are independent complex Grassmann-valued N × N matrices.
959
+ There are the Virasoro constraints
960
+ ˇLnZ2F = 0,
961
+ (27)
962
+ where
963
+ ˇLn
964
+ =
965
+
966
+
967
+ n=0
968
+ n−1
969
+
970
+ s=1
971
+ ∂2
972
+ ∂ts∂tn−s
973
+ − δn,0N 2 − µ
974
+
975
+
976
+ n=0
977
+
978
+ ∂tn+1
979
+ +
980
+
981
+
982
+ n=0
983
+
984
+
985
+ k=0
986
+ ktk
987
+
988
+ ∂tn+k
989
+ +
990
+
991
+
992
+ n=0
993
+
994
+
995
+ l=1
996
+
997
+
998
+ k1,··· ,k2l=1
999
+ l
1000
+
1001
+ a=1
1002
+ k2a−1tk1,···k2l
1003
+
1004
+ ∂tk1,··· ,n+k2a−1,k2a,··· ,k2l
1005
+ .
1006
+ (28)
1007
+ Similar to the complex two-matrix case, by considering the following infinitesimal transfor-
1008
+ mations in the integral (26), respectively,
1009
+ (i) ψ −→ ψ + ǫ
1010
+
1011
+
1012
+ n=0
1013
+ (n + 1)tn+1ψ( ¯ψψ)n,
1014
+ (ii) ψ −→ ψ + ǫ
1015
+
1016
+
1017
+ n,m=0
1018
+ [(n + 1) + (m + 1)]tn+1,m+1ψ(¯χχ)m+1( ¯ψψ)n,
1019
+ (iii) ψ −→ ψ + ǫ
1020
+
1021
+
1022
+ r=1
1023
+
1024
+
1025
+ n1,··· ,n2r+1=0
1026
+ ˇ
1027
+ N ˇTψ(¯χχ)n2+1( ¯ψψ)n3+1 · · · (¯χχ)n2r+1( ¯ψψ)n2r+1,
1028
+ (iv) χ −→ χ + ǫ
1029
+
1030
+
1031
+ m=0
1032
+ (m + 1)gm+1χ(¯χχ)m,
1033
+ where ˇ
1034
+ N ˇT = (n2 + 1) + (n3 + 1) + · · · + (n2r+1 + 1)tn2r+1,n2+1,··· ,n2r+1, we finally obtain
1035
+ µ ˇDZ2F = ˇWZ2F ,
1036
+ (29)
1037
+ where ˇD = �4
1038
+ i=1 ˇDi, ˇW = �4
1039
+ i=1 ˇWi, the operators ˇDi and ˇWi are
1040
+ ˇ
1041
+ D1 =
1042
+
1043
+
1044
+ n=0
1045
+ (n + 1)tn+1
1046
+
1047
+ ∂tn+1
1048
+ ,
1049
+ ˇ
1050
+ D2 =
1051
+
1052
+
1053
+ n,m=0
1054
+ ˇT1
1055
+
1056
+ ∂tn+1,m+1
1057
+ ,
1058
+ ˇ
1059
+ D3 =
1060
+
1061
+
1062
+ n1,··· ,n2r+1=0
1063
+ ˇT2
1064
+
1065
+ ∂tn1+1,··· ,n2r+1+1
1066
+ ,
1067
+ ˇ
1068
+ D4 =
1069
+
1070
+
1071
+ m=0
1072
+ (m + 1)gm+1
1073
+
1074
+ ∂gm+1
1075
+ ,
1076
+ (30)
1077
+ 7
1078
+
1079
+ ˇ
1080
+ W1
1081
+ =
1082
+
1083
+
1084
+ n=0
1085
+ (n + 1)tn+1[
1086
+
1087
+
1088
+ k=0
1089
+ ktk
1090
+
1091
+ ∂tn+k
1092
+ +
1093
+ n−1
1094
+
1095
+ a=1
1096
+
1097
+ ∂ta
1098
+
1099
+ ∂tn−a
1100
+ +
1101
+
1102
+
1103
+ l=1
1104
+ l
1105
+
1106
+ a=1
1107
+
1108
+
1109
+ k1,··· ,k2l=1
1110
+ k2a−1 ˇT0
1111
+ ·
1112
+
1113
+ ∂tk1,··· ,k2a−1+n,k2a,··· ,k2l
1114
+ ] − N 2t1,
1115
+ ˇ
1116
+ W2
1117
+ =
1118
+
1119
+
1120
+ n,m=0
1121
+ n−1
1122
+
1123
+ a=1
1124
+ ˇT1{
1125
+
1126
+
1127
+ l=1
1128
+
1129
+
1130
+ k1,··· ,k2l=1
1131
+ ˇT0[
1132
+ l
1133
+
1134
+ a=2
1135
+ k2a−1
1136
+
1137
+ s=0
1138
+
1139
+ ∂tk1,··· ,k2a−2,ˇξ0,k2a,··· ,k2l
1140
+ +
1141
+ k1
1142
+
1143
+ s=0
1144
+
1145
+ ∂tˇξ1,k2,··· ,k2l
1146
+ ]
1147
+ +
1148
+
1149
+ ∂ta,m+1
1150
+
1151
+ ∂tn−a
1152
+ − Nδn,0
1153
+
1154
+ ∂gm+1
1155
+ +
1156
+
1157
+
1158
+ k=0
1159
+ ktk
1160
+
1161
+ ∂tn+k,m+1
1162
+ },
1163
+ ˇ
1164
+ W3
1165
+ =
1166
+
1167
+
1168
+ n1,··· ,n2r+1=0
1169
+ ˇT2{[
1170
+ n2r+1−1
1171
+
1172
+ s=1
1173
+
1174
+ ∂ts,n2+1,··· ,n2r+1
1175
+
1176
+ ∂tn2r+1−s
1177
+ +
1178
+ r−1
1179
+
1180
+ b=1
1181
+ n2b+1
1182
+
1183
+ s=1
1184
+
1185
+ ∂ts,n2+1,··· ,n2b+1
1186
+ ·
1187
+
1188
+ ∂tˇξ2,n2b+2+1,··· ,n2r+1
1189
+ ] − Nδn2r+1,0
1190
+
1191
+ ∂tn3+1,··· ,n2r−1+1,ˇξ3
1192
+ +
1193
+
1194
+
1195
+ k=0
1196
+ ktk
1197
+
1198
+ ∂tn2r+1+k,n2+1,··· ,n2r+1
1199
+ +
1200
+
1201
+
1202
+ l=1
1203
+
1204
+
1205
+ k1,··· ,k2l=1
1206
+ ˇT0[
1207
+ k1
1208
+
1209
+ s=0
1210
+
1211
+ ∂ts+1,n2+1,··· ,ˇξ4,k2,··· ,k2l
1212
+ +
1213
+ l
1214
+
1215
+ a=2
1216
+ k2a−1
1217
+
1218
+ s=0
1219
+
1220
+ ∂tk1,··· ,k2a−2,s+1,ˇξ5,k2a,··· ,k2l
1221
+ ]},
1222
+ ˇ
1223
+ W4
1224
+ =
1225
+
1226
+
1227
+ m=0
1228
+ (m + 1)gm+1[
1229
+ m−1
1230
+
1231
+ a=1
1232
+
1233
+ ∂ga
1234
+
1235
+ ∂gm−a
1236
+ +
1237
+
1238
+
1239
+ k=0
1240
+ kgk
1241
+
1242
+ ∂gm+k
1243
+ +
1244
+
1245
+
1246
+ l=1
1247
+ l
1248
+
1249
+ a=1
1250
+
1251
+
1252
+ k1,··· ,k2l=1
1253
+ k2a ˇT0
1254
+ ·
1255
+
1256
+ ∂tk1,··· ,k2a+m,k2a+1,··· ,k2l
1257
+ ] − N 2g1,
1258
+ (31)
1259
+ where ˇT0 = tk1,··· ,k2l, ˇT1 = (n + m + 2)tn+1,m+1, ˇT2 = ¯
1260
+ Ntn2r+1+1,n2+1,··· ,n2r+1 and ˇξ0 = (a +
1261
+ 1, m + 1, n + k2a−1 − k − 1),
1262
+ ˇξ1 = (s + 1, m + 1, n + k1 − s − 1),
1263
+ ˇξ2 = n2r+1 + n2b+1 + 1 − s,
1264
+ ˇξ3 = n2r + n2 + 2, ˇξ4 = n2r+1 + k1 − 1 − s, ˇξ5 = (n2 + 1, · · · , n2r + 1, n2r+1 + k2a−1 − s − 1).
1265
+ We find that the fermionic two-matrix model (26) can be realized by the W-representation
1266
+ Z2F = e
1267
+ 1
1268
+ µ ˇ
1269
+ W eN(t0+g0).
1270
+ (32)
1271
+ The compact expression of correlators is
1272
+
1273
+ l1
1274
+
1275
+ i=1
1276
+ tr( ¯ψψ)ki
1277
+ l2
1278
+
1279
+ j=1
1280
+ tr(¯χχ)rj
1281
+ l3
1282
+
1283
+ n=1
1284
+ tr( ¯ψψ)Sn,1(¯χχ)Sn,2 · · · ( ¯ψψ)Sn,2pn−1 (¯χχ)Sn,2pn ⟩
1285
+ =
1286
+ l1!l2!l3!
1287
+ m+1
1288
+
1289
+ ρ1+ρ2+ρ3=1
1290
+
1291
+ σ
1292
+ ˇP
1293
+ (σ(S1,1),··· ,σ(S1,2p1);··· ;σ(Sl3,1),··· ,σ(Sl3,2pl3 ))
1294
+ (σ(k1),··· ,σ(kl1));(σ(r1),··· ,σ(rl2))
1295
+ µm+1(m + 1)!λ(k1,··· ,kl1)λ(r1,··· ,rl2)λ(S1,1,··· ,S1,2p1;··· ;Sl3,1,··· ,Sl3,2pl3 )
1296
+ ,
1297
+ (33)
1298
+ where ρ1 =
1299
+ l1
1300
+
1301
+ i=1
1302
+ ki, ρ2 =
1303
+ l2
1304
+
1305
+ i=1
1306
+ ri, ρ3 =
1307
+ l3
1308
+
1309
+ i=1
1310
+ (Si,1 + · · · + Si,2pi), and ˇP
1311
+ (σ(S1,1),··· ;··· ;··· ,σ(Sl3,2pl3 ))
1312
+ (σ(k1),··· ,σ(kl1));(σ(r1),··· ,σ(rl2)) is
1313
+ the coefficient of tk1 · · · tkl1gr1 · · · grl2tS1,1,··· ,S1,2p1 · · · tSl3,1,··· ,Sl3,2p3 in ˇW m+1.
1314
+ 8
1315
+
1316
+ Here we list some correlators
1317
+ ⟨tr ¯ψψ⟩ = ⟨tr¯χχ⟩ = − 1
1318
+ µN 2,
1319
+ ⟨tr ¯ψψtr¯χχ⟩ =
1320
+ 2
1321
+ µ2 N 4,
1322
+ ⟨tr ¯ψψtr ¯ψψ⟩ = ⟨tr¯χχtr¯χχ⟩ =
1323
+ 1
1324
+ µ2 (N 2 − 1)N 2,
1325
+ ⟨tr ¯ψψ ¯χχ⟩ = − 2
1326
+ µ2 N 3,
1327
+ ⟨tr( ¯ψψ)3⟩ = ⟨tr(¯χχ)3⟩ =
1328
+ 6
1329
+ µ3 (−N 2 + N 4),
1330
+ ⟨tr ¯ψψtr ¯ψψtr ¯ψψ⟩ = ⟨tr¯χχtr¯χχtr¯χχ⟩ =
1331
+ 1
1332
+ µ3 (N 2 + 2)(N 2 − 1)N 2,
1333
+ ⟨tr ¯ψψtr ¯ψψtr¯χχ⟩ = ⟨tr¯χχtr ¯ψψtr¯χχ⟩ =
1334
+ 3
1335
+ µ3 (N 4 − N 6),
1336
+ ⟨tr ¯ψψtr ¯ψψ ¯χχ⟩ = ⟨tr¯χχtr ¯ψψ ¯χχ⟩ = − 1
1337
+ µ3(6N 3 + 2N 5).
1338
+ (34)
1339
+ 5
1340
+ Conclusion
1341
+ We have constructed the Hermitian, complex and fermionic two-matrix models with infinite
1342
+ set of variables and presented their Virasoro constraints.
1343
+ W-representation is important for
1344
+ understanding matrix model, since it provides a dual formula for partition function through dif-
1345
+ ferentiation. By considering the particular infinitesimal transformations of integration variables
1346
+ in the partition functions, we finally derived the desired operators preserving and increasing the
1347
+ grading. Thus it can be shown that the two-matrix models constructed in this paper can be
1348
+ realized by the W-representations. Moreover, by means of the W-representations, we derived
1349
+ the compact expressions of correlators for these two-matrix models. It should be noted that
1350
+ there are the infinite set of variables in these two-matrix models. It leads to that we can not
1351
+ give their character expansions. For further research, it would be interesting to study the case
1352
+ of β-deformed two-matrix models.
1353
+ Appendix A
1354
+ The operators ˆWi in (5)
1355
+ ˆ
1356
+ W1 =
1357
+
1358
+
1359
+ l=1
1360
+
1361
+
1362
+ k1,··· ,k2l=1
1363
+ {t1T1[δk1,1
1364
+
1365
+ ∂tk3,··· ,k2l−1,k2l+k2
1366
+ +
1367
+ l
1368
+
1369
+ a=2
1370
+ δk2a−1,1
1371
+
1372
+ ∂tk1,··· ,k2a−2+k2a,··· ,k2l
1373
+ ]
1374
+ +
1375
+
1376
+
1377
+ n=0
1378
+ l
1379
+
1380
+ a=1
1381
+ k2a−1(n + 1)tn+1
1382
+
1383
+ ∂tk1,··· ,n+k2a−1−1,··· ,k2l
1384
+ } +
1385
+
1386
+
1387
+ k2=1
1388
+ t1t1,k2
1389
+
1390
+ ∂gk2
1391
+ + t2
1392
+ 1N + 2t2N 2
1393
+ +
1394
+
1395
+
1396
+ n=0
1397
+ (n + 1)tn+1[
1398
+ n−2
1399
+
1400
+ b=1
1401
+ ∂2
1402
+ ∂tb∂tn−1−b
1403
+ +
1404
+
1405
+
1406
+ k=0
1407
+ ktk
1408
+
1409
+ ∂tn+k−1
1410
+ ] +
1411
+
1412
+
1413
+ n=2
1414
+ 2N(n + 1)tn+1
1415
+
1416
+ ∂tn−1
1417
+ ,
1418
+ ˆ
1419
+ W2 =
1420
+
1421
+
1422
+ l,n=1
1423
+
1424
+
1425
+ k1,··· ,k2l=1
1426
+ T2{(1 − δk1,1)(
1427
+
1428
+ ∂tk1−1,k2,··· ,k2l+n
1429
+ +
1430
+
1431
+ ∂tk1−1,k2+n,··· ,k2l
1432
+ )
1433
+ +δk1,1
1434
+
1435
+ ∂tk3,··· ,k2l+n+k2
1436
+ +
1437
+ l
1438
+
1439
+ a=2
1440
+ (1 − δk2a−1,1)
1441
+
1442
+ ∂tk1,··· ,k2a−2+n,k2a−1−1,k2a,··· ,k2l
1443
+ +
1444
+ l−1
1445
+
1446
+ a=2
1447
+ δk2a−1,1
1448
+
1449
+ ∂tk1,··· ,k2a−2+k2a+n,··· ,k2l
1450
+ } +
1451
+
1452
+
1453
+ l=2,
1454
+ n=1
1455
+
1456
+
1457
+ k1,··· ,k2l=1
1458
+ T2δk2l−1,1
1459
+
1460
+ ∂tk1,··· ,k2l−2+n+k2l
1461
+ +
1462
+
1463
+
1464
+ l,n=1
1465
+ l
1466
+
1467
+ a=1
1468
+
1469
+
1470
+ k2a−1=3
1471
+ k2a−1−2
1472
+
1473
+ b=1
1474
+
1475
+
1476
+ k1,··· ,k2a−2,
1477
+ k2a,··· ,k2l=1
1478
+ T2[(1 − δa,1)
1479
+
1480
+ ∂tk1,··· ,k2a−2,b,n,k2a−1−1−b,··· ,k2l
1481
+ +δa,1
1482
+
1483
+ ∂tb,n,k1−1−b,··· ,k2l
1484
+ ] +
1485
+
1486
+
1487
+ n=1
1488
+ (n + 1)t1,n[
1489
+
1490
+
1491
+ k=2
1492
+ ktk
1493
+
1494
+ ∂tk−1,n
1495
+ +
1496
+
1497
+
1498
+ k2=1
1499
+ t1,k2
1500
+
1501
+ ∂gk2+n
1502
+ + t1
1503
+
1504
+ ∂gn
1505
+ ],
1506
+ 9
1507
+
1508
+ ˆ
1509
+ W3 =
1510
+
1511
+
1512
+ r=1
1513
+
1514
+
1515
+ n1,··· ,n2r=1
1516
+ T3{Nδn1,1
1517
+
1518
+ ∂tn3,··· ,n2r+n2
1519
+ + (1 − δn1,1)(
1520
+ n1−2
1521
+
1522
+ a=1
1523
+
1524
+ ∂ta
1525
+
1526
+ ∂tn1−1−a,··· ,n2r
1527
+ +N
1528
+
1529
+ ∂tn1−1,n2,··· ,n2r
1530
+ +
1531
+
1532
+ ∂tn1−1
1533
+
1534
+ ∂tn3,··· ,n2r
1535
+ ) +
1536
+ r
1537
+
1538
+ s=2
1539
+ n2s−1−2
1540
+
1541
+ a=0
1542
+ (1 − δn2s−1,1)
1543
+
1544
+ ∂tn1+a,n2,··· ,n2s−2
1545
+ ·
1546
+
1547
+ ∂tn2s−1−1−a,··· ,n2r
1548
+ +
1549
+ r−1
1550
+
1551
+ s=2
1552
+ [δn2s−1,1
1553
+
1554
+ ∂tn1,··· ,n2s−2
1555
+ + (1 − δn1,1)
1556
+
1557
+ ∂tn1+n2s−1−1,n2,··· ,n2s−2
1558
+ ·
1559
+
1560
+ ∂tn2s+1,··· ,n2r+n2s
1561
+ ] + (1 − δn2r−1,1)
1562
+
1563
+ ∂tn1+n2r−1−1,··· ,n2r−2
1564
+
1565
+ ∂gn2r
1566
+ +
1567
+
1568
+
1569
+ k=0
1570
+ ktk
1571
+
1572
+ ∂tn1+k−1,··· ,n2r
1573
+ +δn2r−1,1
1574
+ ∂2
1575
+ ∂tn1,··· ,n2r−2∂gn2r
1576
+ +
1577
+
1578
+
1579
+ k1,··· ,k2l=1
1580
+ T1[
1581
+ l
1582
+
1583
+ i=1
1584
+ k2i−1−2
1585
+
1586
+ s=0
1587
+
1588
+ ∂tk1,··· ,k2i−2,s+n1,··· ,n2r,ξ1,··· ,k2l
1589
+ +
1590
+
1591
+ ∂tn1+k1−1,n2··· ,n2r+k2,··· ,k2l
1592
+ +
1593
+
1594
+ ∂tk1,··· ,n1+k2i−1−1,··· ,n2r+k2i,··· ,k2l
1595
+ }
1596
+ +
1597
+
1598
+
1599
+ n1=2
1600
+
1601
+
1602
+ n2=1
1603
+ (n1 + 1 + n2)tn1+1,n2
1604
+ ∂2
1605
+ ∂tn1−1∂gn2
1606
+ ,
1607
+ ˆ
1608
+ W4 =
1609
+
1610
+
1611
+ r=1
1612
+
1613
+
1614
+ n2,··· ,n2r=1
1615
+ T4{
1616
+ n3−2
1617
+
1618
+ b=1
1619
+ ∂2
1620
+ ∂tb,n2∂tn3−1−b,··· ,n2r
1621
+ + (1 − δn3,1)(
1622
+ ∂2
1623
+ ∂gn2∂tn3−1,··· ,n2r
1624
+ +
1625
+ ∂2
1626
+ ∂tn3−1,n2,∂tn5,··· ,n2r+n4
1627
+ ) + δn3,1
1628
+ ∂2
1629
+ ∂gn2∂tn5,··· ,n2r+n4
1630
+ +
1631
+ r−1
1632
+
1633
+ a=3
1634
+ [δn2a−1,1
1635
+
1636
+ ∂tn3,··· ,n2a−2+n2
1637
+ ·
1638
+
1639
+ ∂tn2a+1,··· ,n2r
1640
+ + (1 − δn2a−1,1)(
1641
+
1642
+ ∂tn3,··· ,n2a−1−1,n2a
1643
+
1644
+ ∂tn2a+1,··· ,n2r+n2a
1645
+ +
1646
+
1647
+ ∂tn3,··· ,n2a−2+n2
1648
+ ·
1649
+
1650
+ ∂tn2a−1−1,n2a··· ,n2r
1651
+ )] + [δn2r−1,1
1652
+
1653
+ ∂tn3,··· ,n2r−2+n2
1654
+ + (1 − δn2r−1,1)
1655
+
1656
+ ∂tn3,··· ,n2r−1−1,n2
1657
+ ]
1658
+
1659
+ ∂gn2r
1660
+ +
1661
+ r
1662
+
1663
+ a=3
1664
+ n2a−1−2
1665
+
1666
+ b=1
1667
+
1668
+ ∂tn3,··· ,n2a−2,b,n2
1669
+
1670
+ ∂tn2a−1−1−b,··· ,n2r
1671
+ + t1
1672
+
1673
+ ∂tn3,··· ,n2r+n2
1674
+ +
1675
+
1676
+
1677
+ k=2
1678
+ ktk
1679
+
1680
+ ∂tk−1,n2,··· ,n2r
1681
+ +
1682
+
1683
+
1684
+ l=1
1685
+
1686
+
1687
+ k1,··· ,k2l=1
1688
+ T1[δk1,1
1689
+
1690
+ ∂tn3,··· ,n2r+k2,··· ,k2l+n2
1691
+ + (1 − δk1,1)(
1692
+
1693
+ ∂tk1−1,n2,··· ,n2r+k2,··· ,k2l
1694
+ +
1695
+
1696
+ ∂tn3,··· ,n2r,k1−1,··· ,k2l+n2
1697
+ ) +
1698
+ l
1699
+
1700
+ b=2
1701
+ (1 − δk2b−1,1)(
1702
+
1703
+ ∂tk1,··· ,k2b−3,ξ2,··· ,k2l
1704
+ +
1705
+
1706
+ ∂tk1,··· ,ξ3,··· ,n2r+k2l
1707
+ )
1708
+ +
1709
+ l
1710
+
1711
+ b=2
1712
+ δk2b−1,1
1713
+
1714
+ ∂tk1,··· ,k2b−1+n2,ξ4,··· ,k2l
1715
+ ] +
1716
+
1717
+
1718
+ l=1
1719
+ l
1720
+
1721
+ a=1
1722
+
1723
+
1724
+ k2a−1=3
1725
+
1726
+
1727
+ k1,··· ,k2a−2,
1728
+ k2a,··· ,k2l=1
1729
+ k2a−1−2
1730
+
1731
+ s=1
1732
+ T1
1733
+
1734
+ ∂tk1,··· ,k2a−2,s,ξ5,··· ,k2l
1735
+ },
1736
+ ˆ
1737
+ W5 = g2
1738
+ 1N +
1739
+
1740
+
1741
+ n,k=0
1742
+ (n + 1)gn+1kgk
1743
+
1744
+ ∂gn+k−1
1745
+ +
1746
+
1747
+
1748
+ kl,k2,k3=1
1749
+ g1tk1,k2,k3,1
1750
+
1751
+ ∂tk1+k3,k2
1752
+ +
1753
+
1754
+
1755
+ k1=1
1756
+ tk1,1g1
1757
+
1758
+ ∂tk1
1759
+ +
1760
+
1761
+
1762
+ l=1
1763
+
1764
+
1765
+ n=0
1766
+
1767
+
1768
+ k1,··· ,k2l=1
1769
+ T5[δk2l,1
1770
+ l−1
1771
+
1772
+ a=1
1773
+
1774
+ ∂tk1+k2l−1,··· ,k2l−2
1775
+ k2a
1776
+
1777
+ ∂tk1,··· ,ξ6,··· ,k2l
1778
+ +
1779
+
1780
+ ∂tk1+k2l−1,··· ,k2l−2
1781
+ ·
1782
+ ·
1783
+
1784
+ ∂tk1,··· ,k2l−1,ξ7
1785
+ + δn,0(1 − δk2a,1)
1786
+
1787
+ ∂tk1,k2−1,··· ,k2l
1788
+ + δn,0
1789
+ l−1
1790
+
1791
+ a=1
1792
+ δk2a,1
1793
+
1794
+ ∂tk1,··· ,k2a−1+k2a+1,··· ,k2l
1795
+ ]
1796
+ 10
1797
+
1798
+ +
1799
+
1800
+
1801
+ n=1
1802
+ n−2
1803
+
1804
+ s=1
1805
+ (n + 1)gn+1
1806
+
1807
+ ∂gs
1808
+
1809
+ ∂gn−1−s
1810
+ +
1811
+
1812
+
1813
+ n=2
1814
+ 2N(n + 1)gn+1
1815
+
1816
+ ∂gn−1
1817
+ + 2g2N 2,
1818
+ (A.1)
1819
+ where T1 = tk1,··· ,k2l,
1820
+ T2 = (n + 1)t1,ntk1,··· ,k2l,
1821
+ T3 = N1tn1+1,n2,··· ,n2r,
1822
+ T4 = N2t1,n2,··· ,n2r,
1823
+ T5 = (n + 1)gn+1tk1,···k2l and ξ1 = k2i−1 − 1 − s, ξ2 = (k2b−2 + n2, · · · , n2r, k2b−1 − 1), ξ3 =
1824
+ (k2b−1 − 1, n2), ξ4 = (n3, · · · , n2r + k2b), ξ5 = (n2, · · · , n2r, k2a−1 − 1 − s), ξ6 = k2a + n − 1,
1825
+ ξ7 = k2l + n − 1.
1826
+ Acknowledgment
1827
+ This work is supported by the National Natural Science Foundation of China (No. 11875194).
1828
+ References
1829
+ [1] F. David, Planar diagrams, two-dimensional lattice gravity and surface models, Nucl. Phys.
1830
+ B 45 (1985) 257.
1831
+ [2] S. Chadha, G. Mahoux and M.L. Mehta, A method of integration over matrix variables, J.
1832
+ Phys. A: Math. Gen. 14 (1981) 579.
1833
+ [3] V.A. Kazakov, Ising model on dynamical planar random lattice: exact solution, Phys. Lett.
1834
+ A 119 (1986) 140.
1835
+ [4] G.W. Semenoff and R.J. Szabo, Fermionic matrix models, Int. J. Mod. Phys. A 12 (1997)
1836
+ 2135 [arXiv:9605140].
1837
+ [5] A. Marshakov, A. Mironov and A. Morozov, From Virasoro constraints in Kontse-
1838
+ vich’s model to W-constraints in two-matrix models, Mod. Phys. A 07 (1992) 1345-1359
1839
+ [arXiv:9201010].
1840
+ [6] V.A. Kazakov and A. Marshakov, Complex curve of the two matrix model and its tau-
1841
+ function, J. Phys. A: Math. Gen. 36 (2003) 3107 [arXiv:0211236].
1842
+ [7] B. Eynard and N. Orantin, Topological expansion of the 2-matrix model correlation func-
1843
+ tions: diagrammatic rules for a residue formula, J. High Energy Phys. 12 (2005) 034
1844
+ [arXiv:math-ph/0504058].
1845
+ [8] M. Berg`ere, B. Eynard, O. Marchal and A. Prats-Ferrer, Loop equations and topologi-
1846
+ cal recursion for the arbitrary-β two-matrix model, J. High Energy Phys. 03 (2012) 098
1847
+ [arXiv:1106.0332].
1848
+ [9] A. Morozov and Sh. Shakirov, Generation of matrix models by ˆW-operators, J. High Energy
1849
+ Phys. 04 (2009) 064 [arXiv:0902.2627].
1850
+ [10] R. Wang, F. Liu, C.H. Zhang and W.Z. Zhao, Superintegrability for (β-deformed)
1851
+ partition function hierarchies with W-representations, Eur. Phys. J. C 82 (2022) 902
1852
+ [arXiv:2206.13038].
1853
+ [11] R. Wang, F. Liu, M.L. Li and W.Z. Zhao, Superintegrability for super partition function
1854
+ hierarchies with W-representations, arXiv:2208.03671.
1855
+ 11
1856
+
1857
+ [12] H. Itoyama, A. Mironov and A. Morozov, Complete solution to Gaussian tensor model and
1858
+ its integrable properties, Phys. Lett. B 802 (2020) 135237 [arXiv:1910.03261].
1859
+ [13] B. Kang, L.Y. Wang, K. Wu, J. Yang and W.Z. Zhao, W-representation of rainbow tensor
1860
+ model, J. High Energy Phys. 05 (2021) 228 [arXiv:2104.01332].
1861
+ [14] L.Y. Wang, R. Wang, K. Wu and W.Z. Zhao, W-representations of the fermionic matrix
1862
+ and Aristotelian tensor models, Nucl. Phys. B 973 (2021) 115612 [arXiv:2110.14269].
1863
+ [15] B. Kang, L.Y. Wang, K. Wu and W.Z. Zhao, Rainbow tensor model with two tensors of
1864
+ rank three, arXiv:2301.06046.
1865
+ [16] Y. Chen, R. Wang, K. Wu and W.Z. Zhao, Correlators in the supereigenvalue model in the
1866
+ Ramond sector, Phys. Lett. B 807 (2020) 135563 [arXiv:2006.11013].
1867
+ [17] R. Wang, S.K. Wang, K. Wu and W.Z. Zhao, Correlators in the Gaussian and chiral su-
1868
+ pereigenvalue models in the Neveu-Schwarz sector, J. High Energy Phys. 11 (2020) 119
1869
+ [arXiv:2009.02929].
1870
+ [18] A.
1871
+ Alexandrov,
1872
+ On
1873
+ W-operators
1874
+ and
1875
+ superintegrability
1876
+ for
1877
+ dessins
1878
+ d’enfant,
1879
+ arXiv:2212.10952.
1880
+ [19] A. Mironov, V. Mishnyakov, A. Morozov, A. Popolitov, R. Wang and W.Z. Zhao, Interpo-
1881
+ lating matrix models for WLZZ series, arXiv:2301.04107.
1882
+ [20] A. Mironov, V. Mishnyakov, A. Morozov, A. Popolitov and W.Z. Zhao, On KP-integrable
1883
+ skew Hurwitz τ-functions and their β-deformations, arXiv:2301.11877.
1884
+ [21] L.Y. Wang, V. Mishnyakov, A. Popolitov, F. Liu and R. Wang, W-representations for
1885
+ multi-character partition functions and their β-deformations, arXiv:2301.12763.
1886
+ 12
1887
+