jackkuo commited on
Commit
189f96f
·
verified ·
1 Parent(s): a693e60

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +62 -0
  2. 09E5T4oBgHgl3EQfOw41/content/tmp_files/2301.05499v1.pdf.txt +1208 -0
  3. 09E5T4oBgHgl3EQfOw41/content/tmp_files/load_file.txt +0 -0
  4. 29AzT4oBgHgl3EQffPxu/content/2301.01449v1.pdf +3 -0
  5. 29AzT4oBgHgl3EQffPxu/vector_store/index.faiss +3 -0
  6. 29AzT4oBgHgl3EQffPxu/vector_store/index.pkl +3 -0
  7. 29E1T4oBgHgl3EQfSAP8/content/tmp_files/2301.03062v1.pdf.txt +1972 -0
  8. 29E1T4oBgHgl3EQfSAP8/content/tmp_files/load_file.txt +0 -0
  9. 2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf +3 -0
  10. 3NAyT4oBgHgl3EQf1vm8/content/tmp_files/2301.00741v1.pdf.txt +597 -0
  11. 3NAyT4oBgHgl3EQf1vm8/content/tmp_files/load_file.txt +0 -0
  12. 4NE0T4oBgHgl3EQfeQCD/vector_store/index.faiss +3 -0
  13. 4NE0T4oBgHgl3EQfeQCD/vector_store/index.pkl +3 -0
  14. 5NFAT4oBgHgl3EQfmh0R/content/2301.08623v1.pdf +3 -0
  15. 5NFAT4oBgHgl3EQfmh0R/vector_store/index.faiss +3 -0
  16. 9tE1T4oBgHgl3EQfCQLF/content/tmp_files/2301.02863v1.pdf.txt +1952 -0
  17. 9tE1T4oBgHgl3EQfCQLF/content/tmp_files/load_file.txt +0 -0
  18. 9tE4T4oBgHgl3EQfdwyk/content/tmp_files/2301.05094v1.pdf.txt +701 -0
  19. 9tE4T4oBgHgl3EQfdwyk/content/tmp_files/load_file.txt +0 -0
  20. ANFRT4oBgHgl3EQftjjG/content/tmp_files/2301.13628v1.pdf.txt +714 -0
  21. ANFRT4oBgHgl3EQftjjG/content/tmp_files/load_file.txt +504 -0
  22. AdE1T4oBgHgl3EQf9Aai/content/2301.03552v1.pdf +3 -0
  23. AdE1T4oBgHgl3EQf9Aai/vector_store/index.pkl +3 -0
  24. AdE1T4oBgHgl3EQfDQNp/content/2301.02874v1.pdf +3 -0
  25. AdE1T4oBgHgl3EQfDQNp/vector_store/index.faiss +3 -0
  26. AdE1T4oBgHgl3EQfDQNp/vector_store/index.pkl +3 -0
  27. BNAyT4oBgHgl3EQfd_jC/content/2301.00314v1.pdf +3 -0
  28. DtFJT4oBgHgl3EQfBiw4/content/tmp_files/2301.11425v1.pdf.txt +694 -0
  29. DtFJT4oBgHgl3EQfBiw4/content/tmp_files/load_file.txt +0 -0
  30. E9AyT4oBgHgl3EQfrPkW/content/2301.00555v1.pdf +3 -0
  31. E9AyT4oBgHgl3EQfrPkW/vector_store/index.faiss +3 -0
  32. E9AyT4oBgHgl3EQfrPkW/vector_store/index.pkl +3 -0
  33. FNE0T4oBgHgl3EQfQwDu/content/2301.02199v1.pdf +3 -0
  34. FNE0T4oBgHgl3EQfQwDu/vector_store/index.faiss +3 -0
  35. FNE0T4oBgHgl3EQfQwDu/vector_store/index.pkl +3 -0
  36. FtE1T4oBgHgl3EQfqwWe/content/2301.03347v1.pdf +3 -0
  37. G9E0T4oBgHgl3EQfRQDg/content/tmp_files/2301.02206v1.pdf.txt +0 -0
  38. G9E0T4oBgHgl3EQfRQDg/content/tmp_files/load_file.txt +0 -0
  39. GdE2T4oBgHgl3EQf-gnI/vector_store/index.faiss +3 -0
  40. H9FIT4oBgHgl3EQfYCsV/content/tmp_files/2301.11246v1.pdf.txt +1374 -0
  41. H9FIT4oBgHgl3EQfYCsV/content/tmp_files/load_file.txt +0 -0
  42. HtE3T4oBgHgl3EQfWwou/content/tmp_files/2301.04471v1.pdf.txt +488 -0
  43. HtE3T4oBgHgl3EQfWwou/content/tmp_files/load_file.txt +242 -0
  44. INE0T4oBgHgl3EQfRwA9/content/2301.02211v1.pdf +3 -0
  45. INE0T4oBgHgl3EQfRwA9/vector_store/index.faiss +3 -0
  46. INE0T4oBgHgl3EQfRwA9/vector_store/index.pkl +3 -0
  47. INFIT4oBgHgl3EQfYSsB/content/tmp_files/2301.11247v1.pdf.txt +1072 -0
  48. INFIT4oBgHgl3EQfYSsB/content/tmp_files/load_file.txt +0 -0
  49. K9AyT4oBgHgl3EQf6foW/content/tmp_files/2301.00821v1.pdf.txt +0 -0
  50. K9AyT4oBgHgl3EQf6foW/content/tmp_files/load_file.txt +0 -0
.gitattributes CHANGED
@@ -1431,3 +1431,65 @@ nNE0T4oBgHgl3EQf8gIt/content/2301.02788v1.pdf filter=lfs diff=lfs merge=lfs -tex
1431
  ztE0T4oBgHgl3EQfdABS/content/2301.02370v1.pdf filter=lfs diff=lfs merge=lfs -text
1432
  59AzT4oBgHgl3EQfEfpg/content/2301.00994v1.pdf filter=lfs diff=lfs merge=lfs -text
1433
  BNAyT4oBgHgl3EQfd_jC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431
  ztE0T4oBgHgl3EQfdABS/content/2301.02370v1.pdf filter=lfs diff=lfs merge=lfs -text
1432
  59AzT4oBgHgl3EQfEfpg/content/2301.00994v1.pdf filter=lfs diff=lfs merge=lfs -text
1433
  BNAyT4oBgHgl3EQfd_jC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1434
+ TNAzT4oBgHgl3EQfXfzv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1435
+ dNAzT4oBgHgl3EQfnv3m/content/2301.01587v1.pdf filter=lfs diff=lfs merge=lfs -text
1436
+ 5NFAT4oBgHgl3EQfmh0R/content/2301.08623v1.pdf filter=lfs diff=lfs merge=lfs -text
1437
+ Z9E0T4oBgHgl3EQfnQEE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1438
+ Z9E0T4oBgHgl3EQfnQEE/content/2301.02508v1.pdf filter=lfs diff=lfs merge=lfs -text
1439
+ ddFAT4oBgHgl3EQfYx31/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1440
+ kNAyT4oBgHgl3EQfYPc7/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1441
+ BNAyT4oBgHgl3EQfd_jC/content/2301.00314v1.pdf filter=lfs diff=lfs merge=lfs -text
1442
+ AdE1T4oBgHgl3EQfDQNp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1443
+ AdE1T4oBgHgl3EQfDQNp/content/2301.02874v1.pdf filter=lfs diff=lfs merge=lfs -text
1444
+ adE1T4oBgHgl3EQfKQPQ/content/2301.02963v1.pdf filter=lfs diff=lfs merge=lfs -text
1445
+ INE0T4oBgHgl3EQfRwA9/content/2301.02211v1.pdf filter=lfs diff=lfs merge=lfs -text
1446
+ adE1T4oBgHgl3EQfKQPQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1447
+ L9E0T4oBgHgl3EQf0AI4/content/2301.02679v1.pdf filter=lfs diff=lfs merge=lfs -text
1448
+ ztE0T4oBgHgl3EQfdABS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1449
+ INE0T4oBgHgl3EQfRwA9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1450
+ FtE1T4oBgHgl3EQfqwWe/content/2301.03347v1.pdf filter=lfs diff=lfs merge=lfs -text
1451
+ nNFQT4oBgHgl3EQfpjaf/content/2301.13377v1.pdf filter=lfs diff=lfs merge=lfs -text
1452
+ 5NFAT4oBgHgl3EQfmh0R/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1453
+ otE2T4oBgHgl3EQfKAaO/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1454
+ otE2T4oBgHgl3EQfKAaO/content/2301.03698v1.pdf filter=lfs diff=lfs merge=lfs -text
1455
+ nNFQT4oBgHgl3EQfpjaf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1456
+ xNFAT4oBgHgl3EQfABwC/content/2301.08395v1.pdf filter=lfs diff=lfs merge=lfs -text
1457
+ UNFAT4oBgHgl3EQf2x7k/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1458
+ qtAyT4oBgHgl3EQfmPgj/content/2301.00465v1.pdf filter=lfs diff=lfs merge=lfs -text
1459
+ L9E0T4oBgHgl3EQf0AI4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1460
+ ttAzT4oBgHgl3EQfPfvn/content/2301.01186v1.pdf filter=lfs diff=lfs merge=lfs -text
1461
+ qtAyT4oBgHgl3EQfmPgj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1462
+ dtE2T4oBgHgl3EQfxAiv/content/2301.04107v1.pdf filter=lfs diff=lfs merge=lfs -text
1463
+ dNAzT4oBgHgl3EQfnv3m/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1464
+ GdE2T4oBgHgl3EQf-gnI/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1465
+ Y9E5T4oBgHgl3EQfDA5Y/content/2301.05401v1.pdf filter=lfs diff=lfs merge=lfs -text
1466
+ dtE2T4oBgHgl3EQfxAiv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1467
+ 2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf filter=lfs diff=lfs merge=lfs -text
1468
+ cNE_T4oBgHgl3EQf0Bwx/content/2301.08326v1.pdf filter=lfs diff=lfs merge=lfs -text
1469
+ ttAzT4oBgHgl3EQf6v5W/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1470
+ E9AyT4oBgHgl3EQfrPkW/content/2301.00555v1.pdf filter=lfs diff=lfs merge=lfs -text
1471
+ 29AzT4oBgHgl3EQffPxu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1472
+ ldFKT4oBgHgl3EQfDS1x/content/2301.11711v1.pdf filter=lfs diff=lfs merge=lfs -text
1473
+ cNE_T4oBgHgl3EQf0Bwx/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1474
+ xNFAT4oBgHgl3EQfABwC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1475
+ 29AzT4oBgHgl3EQffPxu/content/2301.01449v1.pdf filter=lfs diff=lfs merge=lfs -text
1476
+ VdAzT4oBgHgl3EQfJ_tt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1477
+ FNE0T4oBgHgl3EQfQwDu/content/2301.02199v1.pdf filter=lfs diff=lfs merge=lfs -text
1478
+ stE1T4oBgHgl3EQf3QW2/content/2301.03488v1.pdf filter=lfs diff=lfs merge=lfs -text
1479
+ ttAzT4oBgHgl3EQf6v5W/content/2301.01879v1.pdf filter=lfs diff=lfs merge=lfs -text
1480
+ ltE2T4oBgHgl3EQfJAY7/content/2301.03686v1.pdf filter=lfs diff=lfs merge=lfs -text
1481
+ OdAyT4oBgHgl3EQf7PpY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1482
+ YNA0T4oBgHgl3EQfFf_E/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1483
+ ndAzT4oBgHgl3EQfOPsk/content/2301.01161v1.pdf filter=lfs diff=lfs merge=lfs -text
1484
+ E9AyT4oBgHgl3EQfrPkW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1485
+ 4NE0T4oBgHgl3EQfeQCD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1486
+ zdE1T4oBgHgl3EQf4QX8/content/2301.03500v1.pdf filter=lfs diff=lfs merge=lfs -text
1487
+ wdE0T4oBgHgl3EQf-ALu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1488
+ TdE4T4oBgHgl3EQfLwwK/content/2301.04940v1.pdf filter=lfs diff=lfs merge=lfs -text
1489
+ TdE4T4oBgHgl3EQfLwwK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1490
+ Y9E5T4oBgHgl3EQfDA5Y/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1491
+ FNE0T4oBgHgl3EQfQwDu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1492
+ wdE0T4oBgHgl3EQf-ALu/content/2301.02810v1.pdf filter=lfs diff=lfs merge=lfs -text
1493
+ AdE1T4oBgHgl3EQf9Aai/content/2301.03552v1.pdf filter=lfs diff=lfs merge=lfs -text
1494
+ xdE3T4oBgHgl3EQflgqp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1495
+ kNE1T4oBgHgl3EQfgQS0/content/2301.03228v1.pdf filter=lfs diff=lfs merge=lfs -text
09E5T4oBgHgl3EQfOw41/content/tmp_files/2301.05499v1.pdf.txt ADDED
@@ -0,0 +1,1208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CLIP the Gap: A Single Domain Generalization Approach for Object Detection
2
+ Vidit Vidit1 Martin Engilberge1 Mathieu Salzmann1,2
3
+ CVLab, EPFL1, ClearSpace SA2
4
+ firstname.lastname@epfl.ch
5
+ Abstract
6
+ Single Domain Generalization (SDG) tackles the prob-
7
+ lem of training a model on a single source domain so that
8
+ it generalizes to any unseen target domain. While this has
9
+ been well studied for image classification, the literature on
10
+ SDG object detection remains almost non-existent. To ad-
11
+ dress the challenges of simultaneously learning robust ob-
12
+ ject localization and representation, we propose to leverage
13
+ a pre-trained vision-language model to introduce semantic
14
+ domain concepts via textual prompts. We achieve this via
15
+ a semantic augmentation strategy acting on the features ex-
16
+ tracted by the detector backbone, as well as a text-based
17
+ classification loss. Our experiments evidence the benefits of
18
+ our approach, outperforming by 10% the only existing SDG
19
+ object detection method, Single-DGOD [49], on their own
20
+ diverse weather-driving benchmark.
21
+ 1. Introduction
22
+ As for most machine learning models, the performance
23
+ of object detectors degrades when the test data distribu-
24
+ tion deviates from the training data one.
25
+ Domain adap-
26
+ tation techniques [3, 5, 8, 30, 41, 43] try to alleviate this
27
+ problem by learning domain invariant features between a
28
+ source and a known target domain. In practice, however,
29
+ it is not always possible to obtain target data, even un-
30
+ labeled, precluding the use of such techniques.
31
+ Domain
32
+ generalization tackles this by seeking to learn representa-
33
+ tions that generalize to any target domain.
34
+ While early
35
+ approaches [1, 10, 25, 26, 28, 47, 57] focused on the sce-
36
+ nario where multiple source domains are available during
37
+ training, many recent methods tackle the more challenging,
38
+ yet more realistic, case of Single Domain Generalization
39
+ (SDG), aiming to learn to generalize from a single source
40
+ dataset. While this has been well studied for image clas-
41
+ sification [13, 35, 45, 48, 56], it remains a nascent topic in
42
+ object detection. To the best of our knowledge, a single ex-
43
+ isting approach, Single-DGOD [49], uses disentanglement
44
+ and self-distillation [22] to learn domain-invariant features.
45
+ In this paper, we introduce a fundamentally different ap-
46
+ Figure 1. Semantic Augmentation: We compare the PCA pro-
47
+ jections of CLIP [36] image embeddings obtained in two different
48
+ manners: (Top) The embeddings were directly obtained from the
49
+ real images from 5 domains corresponding to different weather
50
+ conditions. (Bottom) The embeddings were obtained from the day
51
+ images only and modified with our semantic augmentation strat-
52
+ egy based on text prompts to reflect the other 4 domains. Note that
53
+ the relative positions of the clusters in the bottom plot resembles
54
+ that of the top one, showing that our augmentations let us gener-
55
+ alize to different target domains. The principal components used
56
+ are the same for both the figures.
57
+ proach to SDG for object detection. To this end, we build
58
+ on two observations: (i) Unsupervised/self-supervised pre-
59
+ training facilitates the transfer of a model to new tasks [2,
60
+ 1
61
+ arXiv:2301.05499v1 [cs.CV] 13 Jan 2023
62
+
63
+ Imageday
64
+ Imagenight
65
+ Imagefoggy
66
+ Image rainyday
67
+ Image rainy night
68
+ Imageday
69
+ Semanticaugmentationnight
70
+ Semantic augmentation foggy
71
+ Semanticaugmentationrainy day
72
+ Semantic augmentation rainy night4, 18]; (ii) Exploiting language supervision to train vision
73
+ models allows them to generalize more easily to new cat-
74
+ egories and concepts [9, 36]. Inspired by this, we there-
75
+ fore propose to leverage a self-supervised vision-language
76
+ model, CLIP [36], to guide the training of an object detec-
77
+ tor so that it generalizes to unseen target domains. Since the
78
+ visual CLIP representation has been jointly learned with the
79
+ textual one, we transfer text-based domain variations to the
80
+ image representation during training, thus increasing the di-
81
+ versity of the source data.
82
+ Specifically, we define textual prompts describing po-
83
+ tential target domain concepts, such as weather and day-
84
+ time variations for road scene understanding, and use these
85
+ prompts to perform semantic augmentations of the images.
86
+ These augmentations, however, are done in feature space,
87
+ not in image space, which is facilitated by the joint image-
88
+ text CLIP latent space. This is illustrated in Fig. 1, which
89
+ shows that, even though we did not use any target data
90
+ for semantic augmentation, the resulting augmented embed-
91
+ dings reflect the distributions of the true image embeddings
92
+ from different target domains.
93
+ We show the effectiveness of our method on the SDG
94
+ driving dataset of [49], which reflects a practical scenario
95
+ where the training (source) images were captured on a
96
+ clear day whereas the test (target) ones were acquired in
97
+ rainy, foggy, night, and dusk conditions. Our experiments
98
+ demonstrate the benefits of our approach over the Single-
99
+ DGOD [49] one.
100
+ To summarize our contributions, we employ a vision-
101
+ language model to improve the generalizability of an object
102
+ detector; during training, we introduce domain concepts via
103
+ text-prompts to augment the diversity of the learned image
104
+ features and make them more robust to an unseen target do-
105
+ main. This enables us to achieve state-of-the-art results on
106
+ the diverse weather SDG driving benchmark of [49].
107
+ 2. Related Work
108
+ Domain Adaptation for Object Detection.
109
+ Domain
110
+ adaptation methods seek to align the source domain distri-
111
+ bution to a particular target domain. To bridge the global
112
+ and instance-level domain gaps, [3, 5, 41, 43] learn feature
113
+ alignment via [15] adversarial training; [58] and [46] utilize
114
+ category-level centroids and attention maps, respectively, to
115
+ better align instances in the two domains; [8, 30] generate
116
+ pseudo-labels in the target domain and use them for target-
117
+ aware training. Domain adaptation, however, assumes that
118
+ images from the target domain are available during training.
119
+ In contrast, domain generalization aims to learn models that
120
+ generalize to domains that were not seen at all during train-
121
+ ing. Below, we focus on the domain generalization methods
122
+ that, as us, use a single source domain to do so.
123
+ Single Domain Generalization (SDG).
124
+ Several image
125
+ classification works [13,35,45,48,56] have proposed strate-
126
+ gies to improve the performance on unseen domains while
127
+ training on a single source domain. In particular, [35,45,48]
128
+ introduce data augmentation strategies where diverse input
129
+ images are generated via adversarial training; [13, 56] pro-
130
+ pose normalization techniques to adapt the feature distri-
131
+ bution to unseen domains. While SDG has been reason-
132
+ ably well studied for image classification, the case of ob-
133
+ ject detection remains largely unexplored, and poses addi-
134
+ tional challenges related to the need to further localize the
135
+ objects of interest. This was recently tackled by Single-
136
+ DGOD [49] with an approach relying on learning domain-
137
+ specific and domain-invariant features.
138
+ Specifically, this
139
+ was achieved by exploiting contrastive learning to disentan-
140
+ gle the features and self-distillation [22] to further improve
141
+ the network’s generalizability. Here, we introduce a fun-
142
+ damentally different approach that leverages the CLIP [36]
143
+ pre-trained model and semantically augments the data us-
144
+ ing textual prompts. As will be shown by our results, our
145
+ method outperforms the state-of-the-art Single-DGOD [49].
146
+ Vision-Language Models.
147
+ Jointly learning a representa-
148
+ tion of images and text has been studied in many works [9,
149
+ 11,12,14,24,27,36,55]. They use image-text pairs to train
150
+ visual-semantic embeddings which can be used not only
151
+ for image classification, captioning or retrieval but also for
152
+ zero-shot prediction on unseen labels. VirTex [9] relies on
153
+ image-caption-based pre-training to learn a rich visual em-
154
+ bedding from a small amount of data. CLIP [36] proposes a
155
+ scalable contrastive pre-training method for joint text and
156
+ image feature learning. CLIP leverages a corpus of 400
157
+ million image-text pairs and a large language model [37] to
158
+ learn a joint embedding space, which was shown to have su-
159
+ perior zero-shot learning ability on classification tasks. The
160
+ image-text-based training is also useful for Open Vocabu-
161
+ lary Detection (OVD) [53], where the objects are detected
162
+ using arbitrary textual descriptions. To address this task,
163
+ [53] train their own visual-semantic representation, whereas
164
+ [16, 39] employ CLIP embeddings. Recently, [29, 54] in-
165
+ troduced a phrase-grounding-based pre-training for better
166
+ OVD and zero-shot object detection. In contrast to these
167
+ works, whose objective is to generalize to novel categories
168
+ or objects, we seek to generalize to new domains depicting
169
+ the same object categories as the source one.
170
+ 3. Method
171
+ Let us now introduce our approach to exploiting a vision-
172
+ language model for single-domain generalization in object
173
+ detection. Below, we first present our semantic augmenta-
174
+ tion strategy aiming to facilitate generalization to new do-
175
+ mains. We then describe the architecture and training strat-
176
+ egy for our object detector.
177
+ 2
178
+
179
+ Figure 2. Our Approach: (Left) We first estimate a set of semantic augmentations A using a set of textual domain prompts {Pt, ps}
180
+ and source domain images. The goal of these semantic augmentations is to translate source domain image embeddings to the domain
181
+ specified by the prompts. We can do this because of the CLIP’s joint embedding space and its ability to encode semantic relationships via
182
+ algebraic operations. Lopt is minimized w.r.t A over random image crops of the same size as CLIP [36]. (Right) The optimized semantic
183
+ augmentations are used to train our modified detector which minimizes a text-based classification loss Lclip�t. Here, we train with the full
184
+ image and add a randomly sampled Aj after average pooling. This pooling operation allows us to use A on extracted feature maps of the
185
+ arbitrary-sized image. We initialize the detector with the pre-trained CLIP [36] V and T encoders to leverage their general representations.
186
+ 3.1. Semantic Augmentation
187
+ In SDG, we have access to images from only a single
188
+ domain. To enable generalization, we seek to learn object
189
+ representations that are robust to domain shifts. Here, we
190
+ do so by introducing such shifts while training the model
191
+ on the source data. Specifically, we exploit CLIP’s joint
192
+ representation to estimate shifts in the visual domain using
193
+ textual prompts, as illustrated in Fig. 1. This corresponds to
194
+ the optimization step shown in the left portion of Fig. 2.
195
+ Formally, let T denote CLIP’s text encoder and V its im-
196
+ age one. For reasons that will become clear later, we further
197
+ split V into a feature extractor Va and a projector to the em-
198
+ bedding space Vb. The CLIP [36] model is trained to bring
199
+ image features closer to their textual captions. In essence,
200
+ this means that, for an image I and a corresponding prompt
201
+ p, it seeks to minimize the distance between Vb(Va(I)) and
202
+ T (p).
203
+ A useful property of the text embedding space is that
204
+ algebraic operations can be used to estimate semantically
205
+ related concepts. Word2Vec [31] had demonstrated such a
206
+ learned relationship (e.g. king-man+woman approaches the
207
+ word representation of queen). Such a relationship exists
208
+ with CLIP embeddings as well [38].
209
+ To exploit this for SDG, we define a generic textual
210
+ prompt ps related to the source domain, such as An image
211
+ taken during the day, and a set of prompts Pt =
212
+ {pt
213
+ j}M
214
+ 1
215
+ encompassing variations that can be expected to
216
+ occur in different target domains, e.g, describing different
217
+ weather conditions or times of the day. Our objective then
218
+ is to define augmentations {Aj} of the features extracted
219
+ from a source image such that the shift incurred by Aj cor-
220
+ responds to the semantic difference between ps and pt
221
+ j.
222
+ To achieve this, we first compute the embeddings qs =
223
+ T (ps) and qt
224
+ j = T (pt
225
+ j) of the textual prompt. We then take
226
+ multiple random crops from a source image. For each such
227
+ crop Icrop, we create a target image embedding
228
+ z∗
229
+ j = z +
230
+ qt
231
+ j − qs
232
+ ∥qt
233
+ j − qs∥2
234
+ ,
235
+ (1)
236
+ where z = V(Icrop). We then search for an augmentation
237
+ Aj ∈ RH×W ×C such that
238
+ ¯zj = Vb(Va(Icrop) + Aj)
239
+ (2)
240
+ is as similar as possible to z∗
241
+ j , which we measure with the
242
+ cosine similarity. Ultimately, we estimate the augmenta-
243
+ tions {Aj}M
244
+ 1
245
+ through an optimization process using only
246
+ source domain images. Specifically, we minimize the loss
247
+ function
248
+ Lopt =
249
+
250
+ Icrop
251
+
252
+ j
253
+ D(z∗
254
+ j , ¯zj) + ∥¯zj − z∥1 ,
255
+ (3)
256
+ where
257
+ D(a, b) = 1 −
258
+ a − b
259
+ ∥a − b∥2
260
+ (4)
261
+ is the cosine distance. The loss also includes an l1 regu-
262
+ larizer that prevents the embeddings from deviating too far
263
+ from their initial values, so as to preserve the image content.
264
+ As the objective is to estimate the meaningful fea-
265
+ ture augmentation while preserving the original CLIP pre-
266
+ training, we keep the image crop size the same as the orig-
267
+ inal CLIP training. Note that the optimization of the aug-
268
+ mentations is done once in an offline stage, and we then use
269
+ the resulting augmentations to train our detector.
270
+ 3
271
+
272
+ Semantic Augmentations
273
+ A = [A1,A2, .., AM]
274
+ RPN
275
+ va
276
+ +)
277
+ ROI
278
+ ROI
279
+ +
280
+ vb
281
+ Align
282
+ head
283
+ Avgpool
284
+ 2
285
+ zj
286
+ Random Crops
287
+ A; = Sample(A)
288
+ Lclip-t
289
+ q
290
+ qf
291
+ K classes
292
+ CLIP Init.
293
+ Car
294
+ Source Domain prompt
295
+ Bus
296
+ CLIP Frozen
297
+ a photo of
298
+ Person
299
+ Domain prompts
300
+ pt
301
+ pt =- (pi, p2,...PM]
302
+ Random Init.
303
+ Truck
304
+ CLIP Frozen
305
+ Optimization Step
306
+ Training StepFigure 3. Diverse Weather Dataset [49]: Day-Clear acts as our source domain while the other weather condition are our target domains.
307
+ In these domains, the objects’ appearance drastically changes from the Day-Clear scenario. As we do not utilize any target domain images,
308
+ learning generalizable features on source images is crucial for the SDG task.
309
+ 3.2. Architecture
310
+ Let us now describe our detector architecture. As shown
311
+ in the right portion of Fig. 2, it follows a standard Faster-
312
+ RCNN [40] structure but departs from it in two ways. First,
313
+ to exploit the augmentations optimized as discussed in the
314
+ previous section, we initialize the blocks before and af-
315
+ ter the ROI align one with the corresponding Va and Vb
316
+ modules of the ResNet-based trained CLIP model. Second,
317
+ to further leverage the vision-language model, we incorpo-
318
+ rate a text-based classifier in our model’s head. Note that,
319
+ in contrast to OVD [16, 39] where a text-based classifier
320
+ is used to handle novel categories, we employ it to keep
321
+ the image features close to the pre-trained joint embedding
322
+ space.
323
+ Specifically, we define textual prompts that represent the
324
+ individual categories we seek to detect, and extract corre-
325
+ sponding embeddings Q ∈ R(K+1)×Dclip, for K categories
326
+ and the background class, using the text encoder T . For
327
+ a candidate image region r proposed by the Region Pro-
328
+ posal Network(RPN) [40], we then compute the cosine sim-
329
+ ilarities between the text embeddings Q and the features
330
+ Fr ∈ RDclip obtained by projection to the embedding space
331
+ using Vb after ROI-Align [19] and the text embeddings Q.
332
+ These cosine similarities, sim(Fr, Q) ∈ RK+1, act as log-
333
+ its to the softmax based cross-entropy loss
334
+ Lclip�t =
335
+
336
+ r
337
+ LCE
338
+
339
+ esim(Fr,Qk)
340
+ �K
341
+ k=0 esim(Fr,Qk)
342
+
343
+ .
344
+ (5)
345
+ Similarly to [36], we formulate prompts of the form a
346
+ photo of a {category name} to obtain our text
347
+ embeddings.
348
+ 3.3. Training with Augmentation
349
+ Following the standard detector training [40], we use the
350
+ full image as our input. This subsequently increases the
351
+ output feature map size of Va, hence we use average pool-
352
+ ing operation and obtain channel-wise augmentations which
353
+ can work for arbitrary-sized feature maps. The training of
354
+ our modified object detector with the semantic augmenta-
355
+ tions is as follows, first, we randomly sample an augmenta-
356
+ tion Aj from the full set and collapse its spatial dimension
357
+ using average pooling. We then add the resulting vector to
358
+ every element in the feature map extracted by Va. In prac-
359
+ tice, we apply augmentations to a batch with a probability
360
+ θ.
361
+ The detector is then trained with the loss
362
+ Ldet = Lrpn + Lreg + Lclip�t ,
363
+ (6)
364
+ which combines the Lclip�t loss of Eq. (5) with the standard
365
+ RPN and regression losses [40]. During inference, we use
366
+ the detector without any augmentation of the feature maps.
367
+ 4. Experiments
368
+ 4.1. Experimental setup
369
+ Datasets.
370
+ To evaluate our model, we use the same
371
+ datasets as [49]. They include five sets, each containing
372
+ images with different weather conditions: daytime sunny,
373
+ night clear, dusk rainy, night rainy, and daytime foggy.
374
+ The images have been selected from three primary datasets,
375
+ Berkeley Deep Drive 100K (BBD-100K) [52], Cityscapes
376
+ [7] and Adverse-Weather [17]. Additionally, rainy images
377
+ are rendered by [50], and some of the foggy images are syn-
378
+ thetically generated from [42]. Our model is trained on the
379
+ daytime sunny scenes, consisting of 19,395 training images,
380
+ the remaining 8,313 daytime sunny images are used for val-
381
+ idation and model selection. The four other weather condi-
382
+ tions are only used during testing. They consist of 26,158
383
+ images of clear night scenes, 3501 images of rainy scenes
384
+ at dusk, 2494 images of rainy scenes at night, and 3775 im-
385
+ ages of foggy scenes during daytime. All the datasets con-
386
+ tain bounding box annotations for the objects bus, bike, car,
387
+ motorbike, person, rider and truck. Fig. 3 shows examples
388
+ from this dataset.
389
+ Metric.
390
+ In all our experiments, we use the Mean Average
391
+ Precision (mAP) as our metric. Specifically, following [49],
392
+ we report the mAP@0.5, which considers a prediction as a
393
+ true positive if it matches the ground-truth label and has an
394
+ intersection over union (IOU) score of more than 0.5 with
395
+ the ground-truth bounding box.
396
+ 4
397
+
398
+ Day - Clear
399
+ Day - Foggy
400
+ Dusk-Rainy
401
+ Night - Clear
402
+ Night - RainyFigure 4. Qualitative Results. We visualize the predictions of the detectors trained only with day-clear images. (Top) FasterRCNN [40]
403
+ predictions. (Bottom) The predictions with our approach. Night-Clear and Night-Rainy contain scenes that are taken under low light
404
+ conditions. Due to this, the appearance of the object is obscure and deviates from the daytime case. FasterRCNN fails to detect most of
405
+ the objects. As shown in the Night-Clear, it misclassifies a car to bus. By contrast, we can still detect car under such a big shift. For
406
+ Dusk-Rainy scenes, the rain pattern on the windscreen and the wet ground causes an appearance shift. As shown FasterRCNN fails to
407
+ detect several cars and misclassifies person on the bottom-left.
408
+ Figure 5. Qualitative Results. In the foggy scenes, the objects
409
+ further away w.r.t the camera are more obscure than the near ones.
410
+ Due to this FasterRCNN (Top) struggles to detect them. car and
411
+ person missed by FasterRCNN are successfully recovered by our
412
+ approach (Bottom).
413
+ 4.2. Implementation Details
414
+ We use the Detectron2 [51] implementation of Faster-
415
+ RCNN with a ResNet101 [20] backbone. We initialize the
416
+ detector with CLIP [36] pre-trained weights, where ResNet
417
+ convolution blocks 1-3 act as Va, and block-4 along with
418
+ the CLIP attention pooling act as Vb. This follows from the
419
+ standard FasterRCNN implementation with ResNet back-
420
+ bone.
421
+ Optimization Step.
422
+ As the benchmark dataset evalu-
423
+ ates the method on different weather conditions, we cu-
424
+ rated a list of domain prompts Pt matching the concept
425
+ weather.
426
+ To this end, we take all the hyponyms of the
427
+ term weather from WordNet [44] and generate their text
428
+ embeddings using the CLIP text encoder T .
429
+ We prune
430
+ away the words whose cosine similarity with the term
431
+ weather is lower than 0.5. Additionally, we filter out the
432
+ words that are not in the top 10k frequent words in GloVe
433
+ wordlist [34]. After combining the synonyms, we get to
434
+ a list of six words: snow, fog, cloudy, rain, stormy, sun-
435
+ shine. We remove sunshine as it corresponds to our source
436
+ domain concept.
437
+ Furthermore, we consider three times
438
+ of the day: day, night, evening.
439
+ This lets us generate
440
+ M = 15 prompts using the template an image taken
441
+ on a {weather} {time of the day}. We use an
442
+ image taken during the day as the source do-
443
+ main prompt ps. We provide more details in our supple-
444
+ mentary material.
445
+ To optimize the augmentations with these prompts, we
446
+ generated random crops from the source images and re-
447
+ sized them to 224 × 224 pixels. The resulting output fea-
448
+ ture map of Va and Aj are in R14×14×1024. We initial-
449
+ ize Aj ∀ 1 ≥ j ≥ M with zeros and train it using the
450
+ Adam [23] optimizer while keeping the CLIP encoder, V
451
+ and T , frozen. Optimization was done for 1000 iterations
452
+ with a learning rate of 0.01.
453
+ Detector Training with Augmentation.
454
+ When training
455
+ the detector, the input image is resized to 600 × 1067 and V
456
+ and T are initialized with CLIP pre-trained weights. While
457
+ T is kept frozen during the training, the ResNet blocks 3-
458
+ 4 and attention pooling of V, along with the other Faster-
459
+ RCNN learnable blocks, are trained with Stochastic Gra-
460
+ dient Descent (SGD) for 100k iterations. We train with a
461
+ learning rate of 1e−3, scaled down by a factor of 0.1 after
462
+ 40k iterations. We use a batch size of 4 and apply Aj to
463
+ the features with probability θ = 0.5. We also use random
464
+ 5
465
+
466
+ Night-Clear
467
+ Dusk-RainyDay-Foggy
468
+ Day-FoggymAP
469
+ Method
470
+ Day
471
+ Clear
472
+ Night
473
+ Clear
474
+ Dusk
475
+ Rainy
476
+ Night
477
+ Rainy
478
+ Day
479
+ Foggy
480
+ FR [40]
481
+ 48.1
482
+ 34.4
483
+ 26.0
484
+ 12.4
485
+ 32.0
486
+ SW [33]
487
+ 50.6
488
+ 33.4
489
+ 26.3
490
+ 13.7
491
+ 30.8
492
+ IBN-Net [32]
493
+ 49.7
494
+ 32.1
495
+ 26.1
496
+ 14.3
497
+ 29.6
498
+ IterNorm [21]
499
+ 43.9
500
+ 29.6
501
+ 22.8
502
+ 12.6
503
+ 28.4
504
+ ISW [6]
505
+ 51.3
506
+ 33.2
507
+ 25.9
508
+ 14.1
509
+ 31.8
510
+ S-DGOD [49]
511
+ 56.1
512
+ 36.6
513
+ 28.2
514
+ 16.6
515
+ 33.5
516
+ Ours
517
+ 51.3
518
+ 36.9
519
+ 32.3
520
+ 18.7
521
+ 38.5
522
+ Table 1. Single domain generalization results. We show consis-
523
+ tent improvements across all the target domains. S-DGOD boosts
524
+ the source domain results, but at the cost of reduced generalization
525
+ ability. By contrast, our approach is robust to domain changes.
526
+ The numbers for S-DGOD, SW, IBN-Net, IterNorm, ISW are
527
+ taken from [49].
528
+ horizontal flipping augmentation as in Single-DGOD [49].
529
+ Dclip is set to 512 as in [36] and background class is initial-
530
+ ized by zeros in Q. All of our training was done on a single
531
+ NVIDIA A100 GPU. Our code will be made public upon
532
+ acceptance.
533
+ 4.3. Comparison with the State of the Art
534
+ We compare our method trained with semantic augmen-
535
+ tations against the state-of-the-art Single-DGOD [49]. Sim-
536
+ ilar to them, we also show comparisons with feature nor-
537
+ malization methods, SW [33], IBN-Net [32], IterNorm [21],
538
+ and ISW [6]. These methods improve network generaliza-
539
+ tion by using better feature normalization. We addition-
540
+ ally report the performance of FasterRCNN (FR) initialized
541
+ with ImageNet pre-trained weights. For the SDG task, we
542
+ evaluate the generalization performance on unseen target
543
+ domains, hence we compare the mAP scores on the out-
544
+ of-domain datasets: day-foggy, night-rainy, dusk-rainy, and
545
+ night-clear.
546
+ Our approach of combining CLIP pre-training and se-
547
+ mantic augmentation outperforms the baselines on all of the
548
+ target domains. Tab. 1 shows a consistent improvement in
549
+ all domains with close to 15% improvement on day-foggy
550
+ and dusk-rainy compared to Single-DGOD. In the challeng-
551
+ ing scenario with Night conditions, we improve by 12.6%
552
+ on night-rainy while being comparable with Single-DGOD
553
+ on night-clear. On the source domain, both our method and
554
+ Single-DGOD are better than the FR baseline. However,
555
+ while Single-DGOD gains improvement at the cost of los-
556
+ AP
557
+ mAP
558
+ Method
559
+ Bus Bike Car Motor Person Rider Truck
560
+ All
561
+ FR [40] 28.1 29.7 49.7
562
+ 26.3
563
+ 33.2
564
+ 35.5
565
+ 21.5
566
+ 32.0
567
+ S-DGOD [49] 32.9 28.0 48.8
568
+ 29.8
569
+ 32.5
570
+ 38.2
571
+ 24.1
572
+ 33.5
573
+ Ours 36.1 34.3 58.0
574
+ 33.1
575
+ 39.0
576
+ 43.9
577
+ 25.1
578
+ 38.5
579
+ Table 2. Per-class results on Daytime Clear to Day Foggy. Our
580
+ method consistently performs better on all categories for the dif-
581
+ ficult foggy domain. This shows that CLIP initialization and our
582
+ semantic augmentations improve the detector’s generalizability.
583
+ AP
584
+ mAP
585
+ Method
586
+ Bus Bike Car Motor Person Rider Truck
587
+ All
588
+ FR [40] 28.5 20.3 58.2
589
+ 6.5
590
+ 23.4
591
+ 11.3
592
+ 33.9
593
+ 26.0
594
+ S-DGOD [49] 37.1 19.6 50.9
595
+ 13.4
596
+ 19.7
597
+ 16.3
598
+ 40.7
599
+ 28.2
600
+ Ours 37.8 22.8 60.7
601
+ 16.8
602
+ 26.8
603
+ 18.7
604
+ 42.4
605
+ 32.3
606
+ Table 3. Per-class results on Daytime Clear to Dusk Rainy.
607
+ Our approach generalizes to rainy road conditions along with the
608
+ low light conditions of the dusk hours. The car category sees the
609
+ biggest improvement, but we nonetheless also boost the perfor-
610
+ mance of all the other classes.
611
+ ing out for domain generalization, we improve on both the
612
+ source and target domains. The failure of feature normal-
613
+ ization baselines suggests a large domain gap between the
614
+ source and target domains. Fig. 4 and Fig. 5 provide a qual-
615
+ itative results on different weather-datasets.
616
+ In the remainder of this section, we discuss the per-class
617
+ results on the individual target domains.
618
+ Daytime Clear to Day Foggy.
619
+ The object appearance
620
+ drastically changes in the foggy images compared to the
621
+ day-clear scenario. As shown in Tab. 2, our method brings
622
+ in a large improvement for the car, person, and bike cat-
623
+ egories, while still being consistently better than Single-
624
+ DGOD and FR on the others.
625
+ Daytime Clear to Dusk Rainy.
626
+ Dusk Rainy scenes re-
627
+ flect a low light condition and along with the rainy pat-
628
+ tern.
629
+ The image distribution is thus further away from
630
+ the daytime clear images.
631
+ As shown in Tab. 3, our
632
+ method improves the AP of each class, with the biggest
633
+ improvement in the car and person categories. Since we
634
+ leverage CLIP pre-training and bring in concepts such as
635
+ rain/cloudy/stormy and evening/night hours through our se-
636
+ mantic augmentation, the learnt detector generalizes better.
637
+ 6
638
+
639
+ AP
640
+ mAP
641
+ Method
642
+ Bus Bike Car Motor Person Rider Truck
643
+ All
644
+ FR [40] 34.7 32.0 56.6
645
+ 13.6
646
+ 37.4
647
+ 27.6
648
+ 38.6
649
+ 34.4
650
+ S-DGOD [49] 40.6 35.1 50.7
651
+ 19.7
652
+ 34.7
653
+ 32.1
654
+ 43.4
655
+ 36.6
656
+ Ours 37.7 34.3 58.0
657
+ 19.2
658
+ 37.6
659
+ 28.5
660
+ 42.9
661
+ 36.9
662
+ Table 4. Per-class results on Daytime Clear to Night Clear.
663
+ While being comparable to S-DGOD on most of the categories,
664
+ we improve on car and person.
665
+ AP
666
+ mAP
667
+ Method
668
+ Bus Bike Car Motor Person Rider Truck
669
+ All
670
+ FR [40] 16.8
671
+ 6.9
672
+ 26.3
673
+ 0.6
674
+ 11.6
675
+ 9.4
676
+ 15.4
677
+ 12.4
678
+ S-DGOD [49] 24.4 11.6 29.5
679
+ 9.8
680
+ 10.5
681
+ 11.4
682
+ 19.2
683
+ 16.6
684
+ Ours 28.6 12.1 36.1
685
+ 9.2
686
+ 12.3
687
+ 9.6
688
+ 22.9
689
+ 18.7
690
+ Table 5. Per-class results on Daytime Clear to Night Rainy.
691
+ This dataset presents the most challenging scenario, where the low
692
+ light and rainy conditions obscure the objects. We still perform
693
+ better than the baseline on most of the categories.
694
+ Daytime Clear to Night Clear.
695
+ The Night Clear dataset
696
+ shows a challenging night driving scene under severe low-
697
+ light conditions. In Tab. 4, we show that while being com-
698
+ parable to Single-DGOD, we bring in a larger improvement
699
+ in the car and person categories. Night scenes are partic-
700
+ ularly challenging as the low light condition leads to more
701
+ confusion among visually closer categories such as bus and
702
+ truck.
703
+ Daytime Clear to Night Rainy.
704
+ This is the most chal-
705
+ lenging scenario where dark night conditions are exacer-
706
+ bated by patterns occurring due to rain. Tab. 5 shows consis-
707
+ tent improvement by our approach for most of the classes.
708
+ The car class sees the biggest improvement with an increase
709
+ in AP of more than 22% compared to Single-DGOD. The
710
+ lower performance of the class rider can be attributed to an
711
+ increase in the confusion between the visually similar per-
712
+ son and rider classes under adverse conditions.
713
+ 4.4. Ablation Study
714
+ To understand how each element of the proposed method
715
+ contributes to the overall performance, we conduct an ab-
716
+ lation study.
717
+ We test five individual components of our
718
+ model. Specifically, we remove semantic augmentation, re-
719
+ place CLIP attention pooling in Vb with average pooling,
720
+ replace Lclip�t with the FasterRCNN classification loss, and
721
+ change the weight initialization from the CLIP model to
722
+ an ImageNet classification model.
723
+ Removing those five
724
+ components turns our model back into the standard Faster-
725
+ RCNN. The ablation study results are provided in Tab. 6
726
+ and discussed below.
727
+ CLIP initialization.
728
+ When the FasterRCNN backbone
729
+ V is initialized with CLIP pre-trained weights, the model
730
+ performance consistently increases both in the in-domain
731
+ and out-of-domain scenarios, as shown in the second row
732
+ of Tab. 6. This setting itself already outperforms Single-
733
+ DGOD (penultimate row of Tab. 1). This goes to show that,
734
+ for the generalization task, model weight initialization plays
735
+ a crucial role. We further improve this performance with se-
736
+ mantic augmentations.
737
+ Attention pooling and Lclip�t.
738
+ Next we test the impact
739
+ of the text-embedding-based loss Lclip�t for classification.
740
+ As visible in the third row of Tab. 6, when combined with
741
+ CLIP initialization, it improves the generalization perfor-
742
+ mance for the rainy scenarios, but degrades it for the other
743
+ ones. Replacing average pooling in Vb with CLIP attention
744
+ pooling helps to mitigate the detrimental effect of Lclip�t
745
+ and exhibits consistent improvement on all datasets.
746
+ Semantic augmentation.
747
+ Finally, adding semantic aug-
748
+ mentation gives us the best results, as shown in the last row
749
+ of Tab. 6. Exposing the visual encoder V to targeted seman-
750
+ tic augmentations helps the overall model to better gener-
751
+ alize when exposed to new domains sharing similarity with
752
+ the augmentations.
753
+ 4.5. Additional Analyses
754
+ Study of semantic augmentation.
755
+ Our proposed method
756
+ involves translating feature maps by semantic augmenta-
757
+ tions learned using plausible domain prompts. To further
758
+ study the utility of our approach, we replace the augmen-
759
+ tation strategy in our training pipeline with (a) no-aug: no
760
+ augmentation; (b) random: A is initialized with a normal
761
+ distribution; (c) clip-random: we define Pt with concepts
762
+ that are not specific to weather. We generate prompts with
763
+ a template an image of {word}, where the words are
764
+ desert, ocean, forest, and mountain. Tab. 7 illustrates the
765
+ importance of the semantics in our augmentation strategy.
766
+ The random augmentation performs worse than the no-aug
767
+ strategy. clip-random is comparable to no-aug and doesn’t
768
+ show any consistent trend but is mostly better than random.
769
+ Our semantic augmentation strategy provides a consistent
770
+ improvement over no-aug because the translations are per-
771
+ formed with prompts from the relevant weather concept.
772
+ 7
773
+
774
+ Model Component
775
+ mAP
776
+ Source
777
+ Target
778
+ CLIP init
779
+ Lclip�t
780
+ Attn. Pool
781
+ Sem. Aug
782
+ Day
783
+ Clear
784
+ Night
785
+ Clear
786
+ Dusk
787
+ Rainy
788
+ Night
789
+ Rainy
790
+ Day
791
+ Foggy
792
+ 48.1
793
+ 34.4
794
+ 26.0
795
+ 12.4
796
+ 32.0
797
+
798
+ 51.2
799
+ 37.0
800
+ 31.0
801
+ 15.7
802
+ 37.5
803
+
804
+
805
+ 50.7
806
+ 36.0
807
+ 31.3
808
+ 16.3
809
+ 36.9
810
+
811
+
812
+
813
+ 51.0
814
+ 35.9
815
+ 31.3
816
+ 16.7
817
+ 37.7
818
+
819
+
820
+
821
+
822
+ 51.3
823
+ 36.9
824
+ 32.3
825
+ 18.7
826
+ 38.5
827
+ Table 6. Ablation study. We study the influence of five different components of our approach: the backbone weight initialization strategy,
828
+ the classification loss, the attention pooling, and the semantic augmentation. When those five components are removed (first row of the
829
+ table) the model is equivalent to the standard FasterRCNN. Initializing the detector with CLIP weights (second row) largely improves the
830
+ generalization performance; on its own it already outperforms Single-DGOD (penultimate row of Tab. 1) on most of the datasets, hence
831
+ suggesting that CLIP has better generalizability than ImageNet pre-trained weights. Combining this with the text embedding-based loss
832
+ Lclip�t (third row) improves the results on the challenging scenarios of dusk rainy and night rainy, but has a detrimental effect for the other
833
+ weather conditions. Adding attention pooling to the architecture (fourth row) helps to mitigate these detrimental effects as it brings the
834
+ visual features closer to the joint embedding space. Finally, the best results are obtained when the semantic augmentation is added (last
835
+ row), greatly helping with adverse weather, rainy and foggy, scenarios.
836
+ mAP
837
+ Aug. Type
838
+ Day
839
+ Clear
840
+ Night
841
+ Clear
842
+ Dusk
843
+ Rainy
844
+ Night
845
+ Rainy
846
+ Day
847
+ Foggy
848
+ no-aug.
849
+ 51.0
850
+ 35.9
851
+ 31.3
852
+ 16.7
853
+ 37.7
854
+ random
855
+ 51.2
856
+ 36.0
857
+ 30.4
858
+ 15.3
859
+ 37.3
860
+ clip-random
861
+ 51.5
862
+ 36.4
863
+ 30.2
864
+ 15.9
865
+ 37.9
866
+ Ours w/ seg.aug
867
+ 51.3
868
+ 36.9
869
+ 32.3
870
+ 18.7
871
+ 38.5
872
+ Table 7. Semantic Augmentation. Our semantic augmentation
873
+ consistently outperforms other augmentation strategies.
874
+ While
875
+ random augmentations are worse than no-aug., clip-random is
876
+ comparable to no-aug.. Only when we give relevant prompts, there
877
+ is a consistent improvement across datasets.
878
+ 5. Limitations
879
+ Our method augments visual features using textual
880
+ prompts. To generate these prompts, it is assumed that some
881
+ information about the domain gap is known. In our experi-
882
+ ments, we assumed that the domain gap was due to changes
883
+ in weather and daytime conditions. In practice, we only
884
+ used the word weather and time of the day to derive all the
885
+ prompts used in our augmentation; nonetheless, some extra
886
+ information was used. In most applications, however, the
887
+ domain gap can be known in advance, and providing a few
888
+ keywords characterizing it shouldn’t be an issue. In the rare
889
+ cases where no information can be known, our approach
890
+ still has the potential to be used by using multiple broad
891
+ concept keywords such as weather, ambiance, or location.
892
+ 6. Conclusion
893
+ We have proposed an approach to improving the gener-
894
+ alization of object detectors on unseen target domains. Our
895
+ approach fundamentally departs from existing method by
896
+ leveraging a pre-trained vision-language model, CLIP, to
897
+ help the detector to generalize. Specifically, we have ex-
898
+ ploited textual prompts to develop a semantic augmentation
899
+ strategy that alters image embeddings so that they reflect
900
+ potential target domains, and to design a text-based image
901
+ classifier. We have shown that our approach outperforms
902
+ the state of the art on four adverse-weather target datasets.
903
+ In future work, we plan to extend our approach to learning
904
+ the prompts to further improve generalization.
905
+ 8
906
+
907
+ References
908
+ [1] Yogesh Balaji, Swami Sankaranarayanan, and Rama Chel-
909
+ lappa. Metareg: Towards domain generalization using meta-
910
+ regularization. Advances in neural information processing
911
+ systems, 31, 2018. 1
912
+ [2] Mathilde Caron, Hugo Touvron, Ishan Misra, Herv´e J´egou,
913
+ Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
914
+ ing properties in self-supervised vision transformers.
915
+ In
916
+ Proceedings of the IEEE/CVF International Conference on
917
+ Computer Vision, pages 9650–9660, 2021. 1
918
+ [3] Chaoqi Chen, Zebiao Zheng, Xinghao Ding, Yue Huang, and
919
+ Qi Dou. Harmonizing transferability and discriminability for
920
+ adapting object detectors. In Proceedings of the IEEE/CVF
921
+ Conference on Computer Vision and Pattern Recognition,
922
+ pages 8869–8878, 2020. 1, 2
923
+ [4] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
924
+ resentation learning. In Proceedings of the IEEE/CVF Con-
925
+ ference on Computer Vision and Pattern Recognition, pages
926
+ 15750–15758, 2021. 1
927
+ [5] Yuhua Chen, Wen Li, Christos Sakaridis, Dengxin Dai, and
928
+ Luc Van Gool. Domain adaptive faster r-cnn for object de-
929
+ tection in the wild. In Proceedings of the IEEE conference on
930
+ computer vision and pattern recognition, pages 3339–3348,
931
+ 2018. 1, 2
932
+ [6] Sungha Choi, Sanghun Jung, Huiwon Yun, Joanne T Kim,
933
+ Seungryong Kim, and Jaegul Choo. Robustnet: Improving
934
+ domain generalization in urban-scene segmentation via in-
935
+ stance selective whitening. In Proceedings of the IEEE/CVF
936
+ Conference on Computer Vision and Pattern Recognition,
937
+ pages 11580–11590, 2021. 6
938
+ [7] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
939
+ Rehfeld,
940
+ Markus Enzweiler,
941
+ Rodrigo Benenson,
942
+ Uwe
943
+ Franke, Stefan Roth, and Bernt Schiele.
944
+ The cityscapes
945
+ dataset for semantic urban scene understanding. In Proceed-
946
+ ings of the IEEE conference on computer vision and pattern
947
+ recognition, pages 3213–3223, 2016. 4
948
+ [8] Jinhong Deng, Wen Li, Yuhua Chen, and Lixin Duan. Un-
949
+ biased mean teacher for cross-domain object detection. In
950
+ Proceedings of the IEEE/CVF Conference on Computer Vi-
951
+ sion and Pattern Recognition, pages 4091–4101, 2021. 1,
952
+ 2
953
+ [9] Karan Desai and Justin Johnson.
954
+ Virtex: Learning visual
955
+ representations from textual annotations. In Proceedings of
956
+ the IEEE/CVF conference on computer vision and pattern
957
+ recognition, pages 11162–11173, 2021. 2
958
+ [10] Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas,
959
+ and Ben Glocker. Domain generalization via model-agnostic
960
+ learning of semantic features. Advances in Neural Informa-
961
+ tion Processing Systems, 32, 2019. 1
962
+ [11] Martin Engilberge, Louis Chevallier, Patrick P´erez, and
963
+ Matthieu Cord. Finding beans in burgers: Deep semantic-
964
+ visual embedding with localization. In Proceedings of the
965
+ IEEE Conference on Computer Vision and Pattern Recogni-
966
+ tion, pages 3984–3993, 2018. 2
967
+ [12] Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja
968
+ Fidler. Vse++: Improving visual-semantic embeddings with
969
+ hard negatives. arXiv preprint arXiv:1707.05612, 2017. 2
970
+ [13] Xinjie Fan, Qifei Wang, Junjie Ke, Feng Yang, Boqing
971
+ Gong, and Mingyuan Zhou. Adversarially adaptive normal-
972
+ ization for single domain generalization. In Proceedings of
973
+ the IEEE/CVF Conference on Computer Vision and Pattern
974
+ Recognition, pages 8208–8217, 2021. 1, 2
975
+ [14] Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio,
976
+ Jeff Dean, Marc’Aurelio Ranzato, and Tomas Mikolov. De-
977
+ vise: A deep visual-semantic embedding model. Advances
978
+ in neural information processing systems, 26, 2013. 2
979
+ [15] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
980
+ cal Germain, Hugo Larochelle, Franc¸ois Laviolette, Mario
981
+ Marchand, and Victor Lempitsky. Domain-adversarial train-
982
+ ing of neural networks.
983
+ The journal of machine learning
984
+ research, 17(1):2096–2030, 2016. 2
985
+ [16] Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui.
986
+ Open-vocabulary object detection via vision and language
987
+ knowledge distillation.
988
+ arXiv preprint arXiv:2104.13921,
989
+ 2021. 2, 4
990
+ [17] Mahmoud Hassaballah, Mourad A Kenk, Khan Muhammad,
991
+ and Shervin Minaee. Vehicle detection and tracking in ad-
992
+ verse weather using a deep learning framework. IEEE trans-
993
+ actions on intelligent transportation systems, 22(7):4230–
994
+ 4242, 2020. 4
995
+ [18] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
996
+ Girshick. Momentum contrast for unsupervised visual rep-
997
+ resentation learning. In Proceedings of the IEEE/CVF con-
998
+ ference on computer vision and pattern recognition, pages
999
+ 9729–9738, 2020. 1
1000
+ [19] Kaiming He, Georgia Gkioxari, Piotr Doll´ar, and Ross Gir-
1001
+ shick. Mask r-cnn. In Proceedings of the IEEE international
1002
+ conference on computer vision, pages 2961–2969, 2017. 4
1003
+ [20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
1004
+ Deep residual learning for image recognition. In Proceed-
1005
+ ings of the IEEE conference on computer vision and pattern
1006
+ recognition, pages 770–778, 2016. 5
1007
+ [21] Lei Huang, Yi Zhou, Fan Zhu, Li Liu, and Ling Shao. It-
1008
+ erative normalization: Beyond standardization towards ef-
1009
+ ficient whitening.
1010
+ In Proceedings of the IEEE/CVF Con-
1011
+ ference on Computer Vision and Pattern Recognition, pages
1012
+ 4874–4883, 2019. 6
1013
+ [22] Kyungyul Kim, ByeongMoon Ji, Doyoung Yoon, and
1014
+ Sangheum
1015
+ Hwang.
1016
+ Self-knowledge
1017
+ distillation:
1018
+ A
1019
+ simple way for better generalization.
1020
+ arXiv preprint
1021
+ arXiv:2006.12000, 3, 2020. 1, 2
1022
+ [23] Diederik P Kingma and Jimmy Ba. Adam: A method for
1023
+ stochastic optimization.
1024
+ arXiv preprint arXiv:1412.6980,
1025
+ 2014. 5
1026
+ [24] Ryan Kiros, Ruslan Salakhutdinov, and Richard S Zemel.
1027
+ Unifying visual-semantic embeddings with multimodal neu-
1028
+ ral language models. arXiv preprint arXiv:1411.2539, 2014.
1029
+ 2
1030
+ [25] Da
1031
+ Li,
1032
+ Yongxin
1033
+ Yang,
1034
+ Yi-Zhe
1035
+ Song,
1036
+ and
1037
+ Timothy
1038
+ Hospedales. Learning to generalize: Meta-learning for do-
1039
+ main generalization. In Proceedings of the AAAI conference
1040
+ on artificial intelligence, volume 32, 2018. 1
1041
+ [26] Da Li, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe
1042
+ Song, and Timothy M Hospedales. Episodic training for do-
1043
+ 9
1044
+
1045
+ main generalization. In Proceedings of the IEEE/CVF Inter-
1046
+ national Conference on Computer Vision, pages 1446–1455,
1047
+ 2019. 1
1048
+ [27] Gen Li, Nan Duan, Yuejian Fang, Ming Gong, Daxin Jiang,
1049
+ and Ming Zhou. Unicoder-vl: A universal encoder for vision
1050
+ and language by cross-modal pre-training. arxiv e-prints,
1051
+ page. arXiv preprint arXiv:1908.06066, 2019. 2
1052
+ [28] Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot.
1053
+ Domain generalization with adversarial feature learning. In
1054
+ Proceedings of the IEEE conference on computer vision and
1055
+ pattern recognition, pages 5400–5409, 2018. 1
1056
+ [29] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jian-
1057
+ wei Yang, Chunyuan Li, Yiwu Zhong, Lijuan Wang, Lu
1058
+ Yuan, Lei Zhang, Jenq-Neng Hwang, et al.
1059
+ Grounded
1060
+ language-image pre-training.
1061
+ In Proceedings of the
1062
+ IEEE/CVF Conference on Computer Vision and Pattern
1063
+ Recognition, pages 10965–10975, 2022. 2
1064
+ [30] Yu-Jhe Li, Xiaoliang Dai, Chih-Yao Ma, Yen-Cheng Liu,
1065
+ Kan Chen, Bichen Wu, Zijian He, Kris Kitani, and Peter Va-
1066
+ jda. Cross-domain adaptive teacher for object detection. In
1067
+ IEEE Conference on Computer Vision and Pattern Recogni-
1068
+ tion (CVPR), 2022. 1, 2
1069
+ [31] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
1070
+ Efficient estimation of word representations in vector space.
1071
+ arXiv preprint arXiv:1301.3781, 2013. 3
1072
+ [32] Xingang Pan, Ping Luo, Jianping Shi, and Xiaoou Tang. Two
1073
+ at once: Enhancing learning and generalization capacities
1074
+ via ibn-net. In Proceedings of the European Conference on
1075
+ Computer Vision (ECCV), pages 464–479, 2018. 6
1076
+ [33] Xingang Pan, Xiaohang Zhan, Jianping Shi, Xiaoou Tang,
1077
+ and Ping Luo. Switchable whitening for deep representa-
1078
+ tion learning. In Proceedings of the IEEE/CVF International
1079
+ Conference on Computer Vision, pages 1863–1871, 2019. 6
1080
+ [34] Jeffrey Pennington, Richard Socher, and Christopher D Man-
1081
+ ning.
1082
+ Glove: Global vectors for word representation.
1083
+ In
1084
+ Proceedings of the 2014 conference on empirical methods in
1085
+ natural language processing (EMNLP), pages 1532–1543,
1086
+ 2014. 5
1087
+ [35] Fengchun Qiao, Long Zhao, and Xi Peng.
1088
+ Learning to
1089
+ learn single domain generalization. In Proceedings of the
1090
+ IEEE/CVF Conference on Computer Vision and Pattern
1091
+ Recognition, pages 12556–12565, 2020. 1, 2
1092
+ [36] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
1093
+ Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
1094
+ Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
1095
+ ing transferable visual models from natural language super-
1096
+ vision. In International Conference on Machine Learning,
1097
+ pages 8748–8763. PMLR, 2021. 1, 2, 3, 4, 5, 6
1098
+ [37] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
1099
+ Amodei, Ilya Sutskever, et al. Language models are unsu-
1100
+ pervised multitask learners. OpenAI blog, 1(8):9, 2019. 2
1101
+ [38] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
1102
+ and Mark Chen. Hierarchical text-conditional image gen-
1103
+ eration with clip latents. arXiv preprint arXiv:2204.06125,
1104
+ 2022. 3
1105
+ [39] Hanoona Rasheed, Muhammad Maaz, Muhammad Uzair
1106
+ Khattak, Salman Khan, and Fahad Shahbaz Khan. Bridg-
1107
+ ing the gap between object and image-level represen-
1108
+ tations for open-vocabulary detection.
1109
+ arXiv preprint
1110
+ arXiv:2207.03482, 2022. 2, 4
1111
+ [40] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
1112
+ Faster r-cnn: towards real-time object detection with region
1113
+ proposal networks. IEEE transactions on pattern analysis
1114
+ and machine intelligence, 39(6):1137–1149, 2016. 4, 5, 6, 7
1115
+ [41] Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, and Kate
1116
+ Saenko. Strong-weak distribution alignment for adaptive ob-
1117
+ ject detection. In Proceedings of the IEEE/CVF Conference
1118
+ on Computer Vision and Pattern Recognition, pages 6956–
1119
+ 6965, 2019. 1, 2
1120
+ [42] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Seman-
1121
+ tic foggy scene understanding with synthetic data. Interna-
1122
+ tional Journal of Computer Vision, 126(9):973–992, 2018.
1123
+ 4
1124
+ [43] Zhiqiang Shen, Harsh Maheshwari, Weichen Yao, and Mar-
1125
+ ios Savvides. Scl: Towards accurate domain adaptive object
1126
+ detection via gradient detach based stacked complementary
1127
+ losses. arXiv preprint arXiv:1911.02559, 2019. 1, 2
1128
+ [44] Princeton University.
1129
+ About wordnet.
1130
+ https : / /
1131
+ wordnet.princeton.edu, 2010. 5
1132
+ [45] Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C
1133
+ Duchi, Vittorio Murino, and Silvio Savarese. Generalizing
1134
+ to unseen domains via adversarial data augmentation. Ad-
1135
+ vances in neural information processing systems, 31, 2018.
1136
+ 1, 2
1137
+ [46] Vibashan VS, Vikram Gupta, Poojan Oza, Vishwanath A
1138
+ Sindagi, and Vishal M Patel. Mega-cda: Memory guided
1139
+ attention for category-aware unsupervised domain adaptive
1140
+ object detection. In Proceedings of the IEEE/CVF Confer-
1141
+ ence on Computer Vision and Pattern Recognition, pages
1142
+ 4516–4526, 2021. 2
1143
+ [47] Xudong Wang, Zhaowei Cai, Dashan Gao, and Nuno Vas-
1144
+ concelos.
1145
+ Towards universal object detection by domain
1146
+ attention. In Proceedings of the IEEE/CVF conference on
1147
+ computer vision and pattern recognition, pages 7289–7298,
1148
+ 2019. 1
1149
+ [48] Zijian Wang, Yadan Luo, Ruihong Qiu, Zi Huang, and
1150
+ Mahsa Baktashmotlagh. Learning to diversify for single do-
1151
+ main generalization. In Proceedings of the IEEE/CVF In-
1152
+ ternational Conference on Computer Vision, pages 834–843,
1153
+ 2021. 1, 2
1154
+ [49] Aming Wu and Cheng Deng.
1155
+ Single-domain generalized
1156
+ object detection in urban scene via cyclic-disentangled self-
1157
+ distillation. In Proceedings of the IEEE/CVF Conference on
1158
+ Computer Vision and Pattern Recognition, pages 847–856,
1159
+ 2022. 1, 2, 4, 6, 7
1160
+ [50] Aming Wu, Rui Liu, Yahong Han, Linchao Zhu, and Yi
1161
+ Yang.
1162
+ Vector-decomposed disentanglement for domain-
1163
+ invariant object detection. In Proceedings of the IEEE/CVF
1164
+ International Conference on Computer Vision, pages 9342–
1165
+ 9351, 2021. 4
1166
+ [51] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
1167
+ Lo, and Ross Girshick. Detectron2. https://github.
1168
+ com/facebookresearch/detectron2, 2019. 5
1169
+ 10
1170
+
1171
+ [52] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying
1172
+ Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-
1173
+ rell. Bdd100k: A diverse driving dataset for heterogeneous
1174
+ multitask learning. In Proceedings of the IEEE/CVF con-
1175
+ ference on computer vision and pattern recognition, pages
1176
+ 2636–2645, 2020. 4
1177
+ [53] Alireza Zareian, Kevin Dela Rosa, Derek Hao Hu, and Shih-
1178
+ Fu Chang. Open-vocabulary object detection using captions.
1179
+ In Proceedings of the IEEE/CVF Conference on Computer
1180
+ Vision and Pattern Recognition, pages 14393–14402, 2021.
1181
+ 2
1182
+ [54] Haotian Zhang, Pengchuan Zhang, Xiaowei Hu, Yen-Chun
1183
+ Chen, Liunian Harold Li, Xiyang Dai, Lijuan Wang, Lu
1184
+ Yuan, Jenq-Neng Hwang, and Jianfeng Gao. Glipv2: Uni-
1185
+ fying localization and vision-language understanding. arXiv
1186
+ preprint arXiv:2206.05836, 2022. 2
1187
+ [55] Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D
1188
+ Manning, and Curtis P Langlotz.
1189
+ Contrastive learning of
1190
+ medical visual representations from paired images and text.
1191
+ arXiv preprint arXiv:2010.00747, 2020. 2
1192
+ [56] Yabin Zhang, Minghan Li, Ruihuang Li, Kui Jia, and Lei
1193
+ Zhang.
1194
+ Exact feature distribution matching for arbitrary
1195
+ style transfer and domain generalization. In Proceedings of
1196
+ the IEEE/CVF Conference on Computer Vision and Pattern
1197
+ Recognition, pages 8035–8045, 2022. 1, 2
1198
+ [57] Shanshan Zhao, Mingming Gong, Tongliang Liu, Huan Fu,
1199
+ and Dacheng Tao. Domain generalization via entropy regu-
1200
+ larization. Advances in Neural Information Processing Sys-
1201
+ tems, 33:16096–16107, 2020. 1
1202
+ [58] Xinge Zhu, Jiangmiao Pang, Ceyuan Yang, Jianping Shi, and
1203
+ Dahua Lin. Adapting object detectors via selective cross-
1204
+ domain alignment. In Proceedings of the IEEE/CVF Con-
1205
+ ference on Computer Vision and Pattern Recognition, pages
1206
+ 687–696, 2019. 2
1207
+ 11
1208
+
09E5T4oBgHgl3EQfOw41/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
29AzT4oBgHgl3EQffPxu/content/2301.01449v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67b980be8fe6a513c2352eb382ca41e4715ca477be7dbab5b6ea8cdbae065818
3
+ size 2808309
29AzT4oBgHgl3EQffPxu/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b4dfe1b4836c74554c4033ba6da86a83ee6e5e271339cd920d84b381a3300d1
3
+ size 2752557
29AzT4oBgHgl3EQffPxu/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f189a15435f8086af22933ca14e8421a53d3083336350e9c560a8c4cf91ceede
3
+ size 100753
29E1T4oBgHgl3EQfSAP8/content/tmp_files/2301.03062v1.pdf.txt ADDED
@@ -0,0 +1,1972 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03062v1 [cs.LG] 8 Jan 2023
2
+ AnycostFL: Efficient On-Demand Federated
3
+ Learning over Heterogeneous Edge Devices
4
+ Peichun Li∗,†, Guoliang Cheng∗, Xumin Huang∗,†, Jiawen Kang∗, Rong Yu∗, Yuan Wu†, and Miao Pan‡
5
+ ∗School of Automation, Guangdong University of Technology, Guangzhou, China
6
+ †State Key Laboratory of Internet of Things for Smart City, University of Macau, Macau, China
7
+ ‡Department of Electrical and Computer Engineering, University of Houston, Houston, USA
8
+ Email: peichun@mail2.gdut.edu.cn, guoliang cheng@126.com, huangxu min@163.com,
9
+ {kavinkang, yurong}@gdut.edu.cn, yuanwu@um.edu.mo, mpan2@uh.edu
10
+ Abstract—In this work, we investigate the challenging prob-
11
+ lem of on-demand federated learning (FL) over heterogeneous
12
+ edge devices with diverse resource constraints. We propose a
13
+ cost-adjustable FL framework, named AnycostFL, that enables
14
+ diverse edge devices to efficiently perform local updates under
15
+ a wide range of efficiency constraints. To this end, we design
16
+ the model shrinking to support local model training with elastic
17
+ computation cost, and the gradient compression to allow param-
18
+ eter transmission with dynamic communication overhead. An
19
+ enhanced parameter aggregation is conducted in an element-wise
20
+ manner to improve the model performance. Focusing on Any-
21
+ costFL, we further propose an optimization design to minimize
22
+ the global training loss with personalized latency and energy
23
+ constraints. By revealing the theoretical insights of the conver-
24
+ gence analysis, personalized training strategies are deduced for
25
+ different devices to match their locally available resources. Ex-
26
+ periment results indicate that, when compared to the state-of-the-
27
+ art efficient FL algorithms, our learning framework can reduce
28
+ up to 1.9 times of the training latency and energy consumption
29
+ for realizing a reasonable global testing accuracy. Moreover,
30
+ the results also demonstrate that, our approach significantly
31
+ improves the converged global accuracy.
32
+ Index Terms—Federated learning, edge intelligence, mobile
33
+ computing, resource management.
34
+ I. INTRODUCTION
35
+ Federated learning (FL) is an emerging distributed learning
36
+ paradigm that enables multiple edge devices to train a common
37
+ global model without sharing individual data [1]. This privacy-
38
+ friendly data analytics technique over massive devices is envi-
39
+ sioned as a promising solution to realize pervasive intelligence
40
+ [2]. However, in many real-world application areas, mobile de-
41
+ vices are often equipped with different local resources, which
42
+ raises the emerging challenges for locally on-demand training
43
+ [3]. Given different local resources status (e.g., computing
44
+ capability and communication channel state) and personalized
45
+ efficiency constraints (e.g., latency and energy), it is crucial to
46
+ customize training strategies for heterogeneous edge devices.
47
+ We perform an in-depth analysis on the time delay and the
48
+ energy consumption for performing the local model updates at
49
+ edge devices. Specifically, we evaluate and record the cost of
50
+ local training on three different NVIDIA Jetson family plat-
51
+ forms (i.e., Nano, NX AGX, and Xavier AGX) under different
52
+ channel states (i.e., good, medium, and poor). On the one hand,
53
+ we observe that the learning efficiency differs significantly
54
+ Xavier-Good
55
+ NX-Medium
56
+ Nano-Poor
57
+ 0
58
+ 1
59
+ 2
60
+ 3
61
+ 4
62
+ 5
63
+ 6
64
+ 7
65
+ 8
66
+ time delay (in second) of single-round local update
67
+ local model training
68
+ parameter transmission
69
+ 4.0 times
70
+ 0.7 times
71
+ Xavier-Good
72
+ NX-Medium
73
+ Nano-Poor
74
+ 0
75
+ 2
76
+ 4
77
+ 6
78
+ 8
79
+ 10
80
+ energy consumption (in joule) of single-round local update
81
+ local model training
82
+ parameter transmission
83
+ Fig. 1.
84
+ The time delay (top) and energy consumption (bottom) of single-
85
+ round local update on different hardware platforms with varying communica-
86
+ tion conditions.
87
+ with diverse learning scenarios. As shown in Fig. 1, the single-
88
+ epoch training on Nano with poor communication condition
89
+ consumes about 4.0 times training latency than that of Xavier
90
+ AGX with good communication condition, while its energy
91
+ consumption is about 0.7 times less than the latter one’s. On
92
+ the other hand, we observe that the bottlenecks of latency and
93
+ energy are induced by parameter transmission and local model
94
+ training, respectively.
95
+ The above observations provide insights for a proper design
96
+ of the on-demand FL system. To handle the resource hetero-
97
+ geneity, it is suggested to alleviate the energy and the latency
98
+ cost of the local device. More importantly, the computation
99
+ and communication costs should be jointly reduced to achieve
100
+ efficient local training. In the literature, most existing studies
101
+ either employ resource allocation and device scheduling to
102
+ mitigate the system cost [4]–[10], or design gradient com-
103
+ pression to accelerate the parameter transmission procedure
104
+ [11]–[17]. The former method inherits the ideas of traditional
105
+ design for mobile edge systems and takes no account of the
106
+ optimization for neural networks, while the latter overlooks
107
+ the computation cost of local model training.
108
+ In this paper, we propose “anycost” FL, named AnycostFL,
109
+ to break the latency and energy bottlenecks for on-demand
110
+ distributed training over heterogeneous edge devices. Our goal
111
+ is to develop a cost-adjustable FL framework that enables
112
+ edge devices to perform local updates under diverse learning
113
+ scenarios. To this end, we first design the model shrinking and
114
+
115
+ gradient compression to enable adaptive local updates with
116
+ different computation and communication costs. Meanwhile,
117
+ an enhanced parameter aggregation scheme is proposed to
118
+ fuse the knowledge of the local updates. Following that,
119
+ we investigate the on-demand learning of AnycostFL by
120
+ regulating the local model structure, gradient compression
121
+ policy and computing frequency under personalized latency
122
+ and energy constraints. However, customizing training strategy
123
+ for different learning scenarios is a non-trivial task, since how
124
+ the global accuracy is affected by the local model structure and
125
+ compression rate is still unknown. To address this issue, we
126
+ theoretically reveal the convergence insights of our framework,
127
+ which are further leveraged to guide optimization analysis.
128
+ Finally, the optimal training strategy is derived for each device
129
+ according to its locally available resource.
130
+ Our main contributions are summarized as follows.
131
+ • We propose a novel FL framework, named AnycostFL,
132
+ that enables the local updates with elastic computation
133
+ cost and communication overhead.
134
+ • We theoretically present the optimal aggregation scheme
135
+ and convergence analysis for AnycostFL.
136
+ • We investigate the on-demand training problem of Any-
137
+ costFL, and the optimal training strategy is devised to
138
+ adapt the locally available resource.
139
+ • Extensive experiments indicate that the proposed Any-
140
+ costFL outperforms the state-of-the-art efficient FL meth-
141
+ ods in terms of resource utilization and learning accuracy.
142
+ The remainder of this paper is organized as follows. Section
143
+ II describes related studies. In Section III, we detail the main
144
+ operations of AnycostFL to fulfill the single-round training.
145
+ The problem formulation, theoretical analysis and the corre-
146
+ sponding solution are provided in Section IV. The experiment
147
+ evaluations are presented in Section V, and we finally conclude
148
+ the paper in Section VI and discuss the future directions.
149
+ II. RELATED WORK
150
+ Resource Management Methods. Resource management
151
+ methods aim to reduce the FL system cost by arranging
152
+ the local and system resources. Resource allocation methods
153
+ employ frequency scheduling [18], transmission power control
154
+ [19], and bandwidth allocation [20] to balance the cost of local
155
+ training. Recent device selection methods directly exclude
156
+ those weak devices with poor computation or communication
157
+ capabilities to accelerate the convergence time [21]–[23].
158
+ Besides, topology-aware management is another very effective
159
+ method to mitigate the network throughput [18], [24], [25].
160
+ However, these methods inherit the ideas of the efficient design
161
+ for traditional mobile systems and overlook the optimization
162
+ of neural networks.
163
+ Neuron-aware Techniques. Neuron-aware techniques focus
164
+ on revealing the black box of neural networks to improve the
165
+ training efficiency of the FL system. Early gradient compres-
166
+ sion utilizes sparsification [11], [26], and quantization [14],
167
+ [27], [28] to reduce the transmission cost of FL system. In
168
+ addition, feature maps fusion and knowledge distillation can be
169
+ carried out to improve the information aggregation [29], [30].
170
+ Besides, FedMask proposes to train a personalized mask for
171
+ each device to improve the test accuracy on the local dataset
172
+ [31]. Recently, model structure pruning enables multiple de-
173
+ vices with different model architectures to train a shared global
174
+ model [32], [33]. Such methods can reduce the cost of local
175
+ training, but how to customize optimal training strategies (e.g.,
176
+ gradient compression and model pruning policy) for different
177
+ learning scenarios is still unknown.
178
+ III. TRAINING WITH ANYCOSTFL
179
+ In this section, we first outline the overall design of Any-
180
+ costFL. Next, we detail the key techniques of our framework,
181
+ including elastic model shrinking (EMS), flexible gradient
182
+ compression (FGC), and all-in-one aggregation (AIO).
183
+ A. Outline of AnycostFL
184
+ We consider a generic application scenario of FL with a set
185
+ of I edge devices I = {1, 2, · · · , I}. We use Di to denote the
186
+ local training data of the device i, and D = ∪I
187
+ i=1Di indicates
188
+ the global data. Let Fi(w) = ℓ(w, Di) represent the local
189
+ training loss of device i with respect to model weight w, where
190
+ ℓ(·, ·) is the predetermined loss function. The objective of the
191
+ FL system is to minimize the following global loss function
192
+ F(w)
193
+ ∆=
194
+ I
195
+
196
+ i=1
197
+ |Di|
198
+ |D| Fi(w),
199
+ (1)
200
+ where |Di| is the size of Di. Given the specified learning task,
201
+ the original training workload of single sample W and the data
202
+ size of uncompressed gradient S can be empirically measured.
203
+ As shown in Fig. 2(a), to reduce the computational com-
204
+ plexity of the local model training and the communication cost
205
+ of gradient update transmission, we propose AnycostFL with
206
+ two device-side techniques, i.e., model shrinking and gradient
207
+ compression. At the t-th global iteration of AnycostFL, the
208
+ device i is enabled to adjust its training workload and gradient
209
+ size as Wt,i = αt,iW and St,i = βt,iS, respectively. Here,
210
+ αt,i ∈ (0, 1] and βt,i ∈ (0, 1] are defined as the model shrink-
211
+ ing factor and the gradient compression rate, respectively. The
212
+ training procedure of AnycostFL is summarized as follows.
213
+ 1) Elastic local training: At the t-th global round, the
214
+ device i downloads the latest global model wt from the pa-
215
+ rameter server. With the pre-calculated model shrinking factor
216
+ αt,i, the specialized sub-model wα
217
+ t,i = shrink(wt, αt,i) can
218
+ be efficiently derived, where function shrink(·, ·) indicates
219
+ the operations for model shrinking. Then, the local training
220
+ is conducted with sub-model wα
221
+ t,i and local data Di, and the
222
+ updated local sub-model wα
223
+ t+1,i is obtained. Furthermore, the
224
+ local gradient update can be acquired as ut,i = wα
225
+ t,i −wα
226
+ t+1,i.
227
+ 2) Flexible gradient upload: To further reduce the uplink
228
+ traffic, the local device i is motivated to compress the gradient
229
+ update ut,i before the parameter transmission. With the given
230
+ compression rate βt,i, the compressed gradient update ˜ut,i =
231
+ cmprs(ut,i, βt,i) is uploaded to the server, where cmprs(·, ·)
232
+ is the function for gradient compression.
233
+
234
+ computation capacity
235
+ communication capacity
236
+ device C
237
+ device A
238
+ device B
239
+ local data
240
+ compressed update
241
+ comp. capacity
242
+ comm. capacity
243
+ the neural structure becomes larger
244
+ the data size of local update becomes larger
245
+ C
246
+ A
247
+ B
248
+ param. server
249
+ global model
250
+ aggregation
251
+ model distribution
252
+ param. upload
253
+ power
254
+ the size of each hidden layer is reduced by half, and
255
+ the training complexity is reduced by ¼ approximately.
256
+ . . .
257
+ 1 0 0 0 0 0 1 0
258
+ 0 0 0 1 0 1 0 0
259
+ 0 0 1 1 0 0 0 0
260
+ … … … … … … … …
261
+ . . .
262
+ sparsification
263
+ binary mask
264
+ quantization
265
+ entropy
266
+ encoding
267
+ Golomb
268
+ encoding
269
+ compressed
270
+ update
271
+ an example of gradient compression (single layer)
272
+ (b) optimization for the training strategy
273
+ (c) model shrinking & gradient compression
274
+ (a) outline of AnycostFL
275
+
276
+
277
+ global model
278
+ sub-model
279
+ 16
280
+ 32
281
+ 64
282
+ 8
283
+ 16
284
+ 32
285
+ size: 16x8x3x3
286
+ encoding
287
+ an example of model shrinking
288
+ Fig. 2. left: AnycostFL over heterogeneous edge devices. middle: the neural structure and gradient compression strategies are customized for diverse devices
289
+ according to their locally available resources; the darker color indicates the higher computing complexity for training and the larger marker size denotes the
290
+ larger data size of the local update. right: illustrations of the model shrinking for the local model and the gradient compression for the local update.
291
+ 3) Parameter aggregation: The server collects the com-
292
+ pressed local updates {˜ut,i}∀i with different shrinking factors
293
+ {αt,i}∀i and compression rates {βt,i}∀i. After that, the global
294
+ update is calculated by ˜ut
295
+ = aioagg({˜ut,i}∀i), where
296
+ aioagg(·) is the server-side all-in-one aggregation. Then, the
297
+ updated global model is computed as wt+1 = wt − ˜ut.
298
+ After the T -round training of the above three-step iterations,
299
+ the final global model wT is obtained. Before introducing how
300
+ to customize the values of {αt,i}∀i and {βt,i}∀i in Section
301
+ IV, we illustrate the details of model shrinking, gradient
302
+ compression and update aggregation in the rest of this section.
303
+ B. Elastic Model Shrinking
304
+ We aim to derive the sub-model wα
305
+ t,i with training complex-
306
+ ity of αt,iW from global model wt by reducing the width of
307
+ the global model. The shrinking operations work as follows.
308
+ 1) Server-side channel sorting: To avoid incurring extra
309
+ memory cost for the edge devices, the server first sorts
310
+ the channels of the latest global model before the model
311
+ distribution. Given one layer of the weight of the global
312
+ model, the server sorts the output channels in the current
313
+ layer in descending order according to their values of L2
314
+ norm, and meanwhile, the input channels of the next layer
315
+ should be sorted accordingly in the same order to maintain
316
+ the permutation invariance of the whole model [34].
317
+ 2) Layer-wise uniform shrinking: Next, the server broad-
318
+ casts the weight of each layer of the global model in a channel-
319
+ by-channel manner. Instead of downloading the full global
320
+ model, each device only receives those important parameters
321
+ from the global model to assemble the local sub-model. Here,
322
+ we utilize the fixed shrinking ratio for each layer in the same
323
+ sub-model. Empirically, given model shrinking factor αt,i, we
324
+ can reduce the size of the hidden layer by √αt,i to acquire
325
+ the sub-model. For example, as shown in Fig. 2(c), when
326
+ shrinking a global model with hidden sizes of {16, 32, 64}
327
+ under αt,i =
328
+ 1
329
+ 4, we approximately reduce the size of each
330
+ hidden layer by half as {8, 16, 32} to form the sub-model.
331
+ At the beginning of the t-th global round, all device ini-
332
+ tialize their local sub-models {wα
333
+ t,i}∀i by choosing the most
334
+ important channels from the global model wt. In this way, the
335
+ training complexity is significantly reduced while maintaining
336
+ the performance of local sub-models. After that, the local
337
+ training of device k is conducted with sub-model wα
338
+ t,i, which
339
+ produces the local gradient ut,i with data size of αt,iS.
340
+ C. Flexible Gradient Compression
341
+ Given the local update ut,i with the desired compression
342
+ rate βt,i, we aim to obtain the compressed update ˜ut,i with
343
+ data size of αt,iβt,iS. Let ρt,i and Lt,i denote the sparsity
344
+ rate and the number of quantization levels, respectively. The
345
+ gradient compression scheme works as follows.
346
+ 1) Kernel-wise sparsification: Without loss of generality,
347
+ we take the convolution neural network (CNN) as an example
348
+ to illustrate the sparsification procedure. We aim to acquire the
349
+ sparse update ˆut,i from ut,i. Let ut,i[k] denote the k-th kernel
350
+ of ut,i, and ut,i = {ut,i[k]}∀k. We measure the importance
351
+ of each kernel and obtain N = {∥ut,i[k]∥2}∀k, where ∥ · ∥2
352
+ denotes the L2 norm operation. Next, by selecting the ⌈ρt,iK⌉-
353
+ th largest value in N as the threshold Π, the kernel-wise
354
+ sparsification is expressed as
355
+ ˆut,i[k] =
356
+
357
+ 0
358
+ if ∥ut,i[k]∥2 < Π,
359
+ ut,i[k]
360
+ otherwise.
361
+ (2)
362
+ Meanwhile, the binary mask of ˆut,i is denoted as mt,i.
363
+ 2) Probabilistic quantization: Motivated by the studies
364
+ in [35], [36], we aim to obtain the quantized update ˜ut,i
365
+ with the given sparse ˆut,i and the quantization level Lt,i.
366
+ Let u ∈ ˆut,i be a scalar value. To begin with, we first
367
+ calculate the magnitude range of the non-zero elements of
368
+ ˆut,i, denoted as [umin, umax], where umin = min{|u|}∀u̸=0,
369
+ and umax = max{|u|}∀u̸=0. Next, let Q = {Ql}Lt,i
370
+ l=1 denote
371
+ the set of quantization points, where Ql is computed by
372
+ Ql = l (umax − umin)
373
+ Lt,i
374
+ + umin.
375
+ (3)
376
+
377
+ 1
378
+ 1
379
+ 1
380
+ 2
381
+ 2
382
+ 3
383
+ 2 1
384
+ 1
385
+ 1
386
+ 3
387
+ 1
388
+ 2
389
+ 3
390
+ 1
391
+ 1
392
+ 2
393
+ 1
394
+ 1
395
+ 1
396
+ 2
397
+ 2
398
+ 3
399
+ 1
400
+ 2
401
+ 1
402
+ 2
403
+ model structure
404
+ update of each layer
405
+ 2 2
406
+ 2
407
+ 2
408
+ 2 2
409
+ 2
410
+ 2
411
+ 2
412
+ 2
413
+ 2 2 2
414
+ 2 2
415
+ 3 3
416
+ 3
417
+ 3 3
418
+ 3
419
+ 3 3
420
+ 3 3
421
+ 1 1 1
422
+ 1 1
423
+ 1 1
424
+ 1 1
425
+ 1
426
+ 1
427
+ 1
428
+ 1
429
+ 1
430
+ 1 1
431
+ 1 1
432
+ 1
433
+ 1
434
+ local compressed updates
435
+ global update
436
+ legend
437
+ normal update
438
+ zero update
439
+ 1
440
+ 2
441
+ 3
442
+ 1
443
+ 2
444
+ 1
445
+ 3
446
+ 2
447
+ 3
448
+ not existing
449
+ zero update
450
+ update by device 1
451
+ update by all devices
452
+ update by devices 1&2
453
+ update by device 3
454
+ update by devices 1&3
455
+ update by devices 2&3
456
+ update by device 2
457
+ �ut,1
458
+ �ut,2
459
+ �ut,3
460
+ �ut
461
+ Fig. 3. An illustration of the all-in-one aggregation.
462
+ For any u ∈ ˆut,i and u ̸= 0, we can always find a quantization
463
+ interval [Ql, Ql+1] such that Ql ≤ |u| ≤ Ql+1, and its
464
+ corresponding quantized value ˜u is further computed by
465
+ ˜u =
466
+
467
+ sgn(u) · Ql
468
+ with probability Ql+1−|u|
469
+ Ql+1−Ql ,
470
+ sgn(u) · Ql+1
471
+ otherwise,
472
+ (4)
473
+ where sgn(·) calculates the sign of the given scalar. Fur-
474
+ thermore, the set of the quantization indices of all ˜u ∈ ˜ut,i
475
+ is denoted as Lt,i = {l, Ql = ˜u}∀˜u̸=0. Now, ˜ut,i can be
476
+ represented by a tuple of {umin, umax, Lt,i, mt,i, Lt,i}.
477
+ 3) Lossless encoding: Due to the distribution characteristics
478
+ of Lt,i that smaller indices may occur more frequently, we
479
+ apply entropy coding to reduce the data size [14], [37].
480
+ Besides, the sparse binary matrix mt,i can be compressed by
481
+ Golomb encoding [11], [38].
482
+ After determining the compression scheme, we can vary
483
+ the combinations of {ρt,i, Lt,i} and record the corresponding
484
+ compression rates. Based on the results, we can build a
485
+ piecewise linear function to predict the compression strategy
486
+ {ρt,i, Lt,i} with the given βt,i. Notably, this function can be
487
+ efficiently fitted by the server with a rather small amount of
488
+ public training data (e.g., 16 samples) in an offline manner.
489
+ D. All-in-One Aggregation
490
+ After all the devices upload their encoded updates, the
491
+ server receives, decodes and then reconstructs the compressed
492
+ local updates {˜ut,i}∀i. Our goal is to obtain the global
493
+ update ˜ut by aggregating {˜ut,i}∀i. However, the aggregation
494
+ of local updates in our framework cannot be supported by
495
+ conventional FedAvg [1], since the local updates are produced
496
+ by different model structures with different levels of precision
497
+ (i.e., different quantization levels and sparsity).
498
+ To tackle the above challenge, we propose an all-in-one
499
+ aggregation scheme that fuses the local updates in an element-
500
+ wise manner. Let the set {1, 2, · · · , J} index elements of the
501
+ global update ˜ut, and ˜u[j]
502
+ t
503
+ denote the j-th element of ˜ut. To
504
+ accomplish the aggregation for ˜u[j]
505
+ t , we first determine the
506
+ subset of devices Ij ⊆ I whose local model structure also
507
+ contains the j-th element. Then, we have
508
+ ˜u[j]
509
+ t
510
+ =
511
+
512
+
513
+
514
+
515
+
516
+
517
+
518
+ 0
519
+ if �
520
+ i∈Ij
521
+ m[j]
522
+ t,i = 0,
523
+ 1
524
+
525
+ i∈Ij
526
+ pt,im[j]
527
+ t,i
528
+
529
+ i∈Ij
530
+ pt,im[j]
531
+ t,iu[j]
532
+ t,i
533
+ otherwise,
534
+ (5)
535
+ where pt,i is the aggregation coefficient for the j-th device at
536
+ the t-th global round. The optimal values of {pt,i}∀i will be
537
+ further analyzed in Section IV. Fig. 3 gives an example to illus-
538
+ trate the aggregation details. Specifically, different elements in
539
+ the global update are updated by different subsets of devices,
540
+ and more important elements will “absorb” knowledge from
541
+ more devices. When the j-th element is zeroed out by all the
542
+ devices in Ij, we have ˜u[j]
543
+ t
544
+ = 0.
545
+ IV. THEORETICAL ANALYSIS AND OPTIMIZATION
546
+ In this section, we focus on the optimization of our frame-
547
+ work by customizing the training strategies for diverse devices.
548
+ We first formulate the on-demand training problem of Any-
549
+ costFL. Then, we derive the upper bound of the convergence
550
+ rate and reveal the key insights to improve the performance of
551
+ AnycostFL. Based on the analysis, the optimization problem is
552
+ transformed into a tractable form, and the closed-form solution
553
+ is derived.
554
+ A. AnycostFL over Wireless Networks
555
+ In this subsection, we formulate the computation and com-
556
+ munication models for our framework. After that, we build
557
+ up an on-demand learning problem that minimizes the global
558
+ training loss with given delay and energy constraints.
559
+ 1) Computation model: For the device i at the t-th global
560
+ round, given the model shrinking factor αt,i and computing
561
+ frequency ft,i, the time consumption of local model training
562
+ can be measured by
563
+ T cmp
564
+ t,i
565
+ = τ|Di|αt,iW
566
+ ft,i
567
+ ,
568
+ (6)
569
+ where τ denotes the number of local epochs. Meanwhile, the
570
+ corresponding energy consumption can be given by
571
+ Ecmp
572
+ t,i = ǫif 2
573
+ t,iτ|Di|αt,iW,
574
+ (7)
575
+ where ǫi is the hardware energy coefficient of the device i.
576
+ 2) Communication model: We consider the frequency divi-
577
+ sion multiple access (FDMA) scheme for the transmission of
578
+ the local gradient update. For the device i at the t-th global
579
+ round, the achievable transmitting rate can be estimated by
580
+ rt,i = bilog2
581
+
582
+ 1 + |ht,i|P com
583
+ t,i
584
+ N0bi
585
+
586
+ ,
587
+ (8)
588
+ where P com
589
+ t,i
590
+ is the transmitting power; bi is the achievable
591
+ bandwidth; |ht,i| denotes the path loss of wireless channel; N0
592
+ is the power spectral density of the additive white Gaussian
593
+ noise. For the device i at t-th global round, given the update
594
+ ˜ut,i generated by the local model with a shrinking factor
595
+ of αt,i and compression rate of βt,i, the required time T com
596
+ t,i
597
+ and energy consumption Ecom
598
+ t,i
599
+ of uplink transmission can be
600
+ respectively measured by
601
+ T com
602
+ t,i
603
+ = αt,iβt,iS
604
+ rt,i
605
+ , and Ecom
606
+ t,i
607
+ = T com
608
+ t,i P com
609
+ t,i .
610
+ (9)
611
+ With the above computation and communication models,
612
+ we next focus on the optimization problem of AnycostFL.
613
+
614
+ 3) Problem formulation: To optimize AnycostFL, we study
615
+ an on-demand training problem. Specifically, the shared max-
616
+ imal latency for each round T max is determined by the server.
617
+ The local energy consumption budget for each round Emax
618
+ t,i
619
+ is
620
+ customized by the device itself. Given multiple devices with
621
+ diverse local resources (e.g., computation, communication and
622
+ data), our goal is to customize the training strategy for each
623
+ device to minimize the global training loss with personalized
624
+ constraints (e.g., latency and energy). To sum up, at the t-th
625
+ global round, we aim to optimize the following problem.
626
+ (P1)
627
+ min F
628
+
629
+ wt; {αt,i}∀i, {βt,i}∀i
630
+
631
+ (10)
632
+ subject to:
633
+ T cmp
634
+ t,i + T com
635
+ t,i
636
+ ≤ T max, ∀i,
637
+ (10a)
638
+ Ecmp
639
+ t,i + Ecom
640
+ t,i ≤ Emax
641
+ t,i , ∀i,
642
+ (10b)
643
+ αmin ≤ αt,i ≤ 1, ∀i,
644
+ (10c)
645
+ 0 ≤ βt,i ≤ βmax, ∀i,
646
+ (10d)
647
+ f min
648
+ i
649
+ ≤ ft,i ≤ f max
650
+ i
651
+ , ∀i,
652
+ (10e)
653
+ variables:
654
+ {αt,i, βt,i, ft,i}∀i,
655
+ where F
656
+
657
+ wt; {αt,i}∀i, {βt,i}∀i
658
+
659
+ denotes the global loss of the
660
+ t-th round with given the global model weight wt under the
661
+ training strategies of {αt,i}∀i and {βt,i}∀i. In the rest of this
662
+ section, we analyze the relationship between training loss and
663
+ training strategies. After that, Problem (P1) is further solved
664
+ based on the theoretical insights.
665
+ B. Assumptions and Key Lemmas
666
+ Being in line with the studies in [5], [39], we make the
667
+ following assumptions for the local loss function Fi, ∀i.
668
+ Assumption 1. Fi is λ-Lipschitz: ∥Fi(w) − Fi(w′)∥
669
+
670
+ λ ∥w − w′∥, where λ > 0.
671
+ Assumption 2. Fi is ν-strongly convex: Fi(w) ≥ Fi(w′) +
672
+ (w − w′)⊤∇Fi(w′) + ν
673
+ 2 ∥w − w′∥2.
674
+ Assumption 3. Fi is twice-continuously differentiable. Based
675
+ on Assumptions 1 and 2, we have νI ⪯ ∇2Fi(w) ⪯ λI.
676
+ Assumption 4. The ratios between the norms of ∇Fi(w) and
677
+ ∇F(w) are bounded: ∥∇Fi(w)∥2 ≤ ε ∥∇F(w)∥2, where ε ≥
678
+ 0 is a positive constant.
679
+ Assumption 5. For the moderate shrinking factor α ≥ αmin,
680
+ the first-shrinking-then-training can be approximated as first-
681
+ training-then-shrinking: ∇Fi(wα) = [∇Fi(w)]α. Here, we
682
+ use [∇Fi(w)]α to denote the shrinking operation for ∇Fi(w).
683
+ Next, we give the following two definitions.
684
+ Definition 1 (Local gradient divergence). The local gradient
685
+ divergence δt,i is defined as the difference between ut,i and
686
+ ˜ut,i, which is given by δt,i = ∥ut,i − ˜ut,i∥.
687
+ Definition 2 (Global gradient divergence). The global gra-
688
+ dient divergence ∆t is defined as the difference between
689
+ ut and ˜ut, which is measured by ∆t = ∥ut − ˜ut∥ =
690
+ ���
691
+ I�
692
+ i=1
693
+ pt,iut,i −
694
+ I�
695
+ i=1
696
+ pt,i˜ut,i
697
+ ���.
698
+ Notably, in Definition 1, ut,i and ˜ut,i may have different
699
+ dimensions. We pad the missing elements in ˜ut,i with zeros
700
+ before the arithmetic operation. Next, we are interested in how
701
+ the training strategies {αt,i, βt,i}∀i affect {δt,i}∀i and ∆t. We
702
+ derive the following two lemmas.
703
+ Lemma 1. For the local training with the model shrinking
704
+ factor αt,i and compression rate βt,i. The square of the local
705
+ gradient divergence is bounded by
706
+ E∥δt,i∥2 ≤
707
+
708
+ 1 − αt,i(2 − αt,i)
709
+
710
+ βt,i
711
+ �2E∥ut,i∥2.
712
+ (11)
713
+ Proof. See Appendix A.
714
+ Lemma 2. For the local update {˜ut,i, ∀i} with the corre-
715
+ sponding training strategies {αt,i, βt,i}∀i and aggregation co-
716
+ efficients {pt,i}∀i, the square of the global gradient divergence
717
+ is bounded by
718
+ E∥∆t∥2 ≤ Iεη2
719
+ I
720
+
721
+ i=1
722
+ p2
723
+ t,i
724
+
725
+ 1 − αt,i(2 − αt,i)
726
+
727
+ βt,i
728
+ �2E∥∇F(wt)∥2.
729
+ (12)
730
+ Proof. See Appendix B.
731
+ C. Optimal Aggregation Scheme and Convergence Analysis
732
+ Intuitively, the local update ut,i generated with larger
733
+ {αt,i, βt,i} may carry more accurate information, and thus a
734
+ larger pt,i should be assigned during the aggregation. Based
735
+ on Lemma 2, we deduce the following theorem.
736
+ Theorem 1 (Optimal aggregation scheme). Given the lo-
737
+ cal updates {˜ut,i}∀i with corresponding training strategies
738
+ {αt,i, βt,i}∀i, the optimal aggregation coefficients are
739
+ p∗
740
+ t,i =
741
+ 1
742
+
743
+ 1−αt,i(2−αt,i)√
744
+ βt,i
745
+ �2
746
+
747
+ i
748
+ 1
749
+
750
+ 1−αt,i(2−αt,i)√
751
+ βt,i
752
+ �2
753
+ , ∀i.
754
+ (13)
755
+ Proof. Based on Lemma 2, we study the following optimiza-
756
+ tion problem to minimize the global gradient divergence.
757
+ (P2)
758
+ min
759
+ {pt,i}∀i
760
+ I
761
+
762
+ i=1
763
+ p2
764
+ t,i
765
+
766
+ 1 − αt,i(2 − αt,i)
767
+
768
+ βt,i
769
+ �2
770
+ (14)
771
+ subject to:
772
+ pt,i ≥0, ∀i,
773
+ (14a)
774
+ I
775
+
776
+ i=1
777
+ pt,i = 1.
778
+ (14b)
779
+ It can be verified that Problem (P2) is a convex op-
780
+ timization problem. We further solve the problem by the
781
+ Karush–Kuhn–Tucker (KKT) conditions. Let {̟}∀i and θ
782
+ be the Lagrange multipliers for Constraints (14a) and (14b),
783
+ respectively. Then, we obtain
784
+ ̟i ≥ 0, ̟ipt,i = 0, pt,i ≥ 0,
785
+ I
786
+
787
+ i=1
788
+ pt,i = 1,
789
+ 2pt,i
790
+
791
+ 1 − αt,i(2 − αt,i)
792
+
793
+ βt,i
794
+ �2 − ̟i + θ = 0, ∀i.
795
+ (15)
796
+ Being in line with the study in [40], we can obtain
797
+ pt,i = −
798
+ θ
799
+ 2
800
+
801
+ 1 − αt,i(2 − αt,i)
802
+
803
+ βt,i
804
+ �2 .
805
+ (16)
806
+ By putting Eqn. (16) into Eqn. (14b), we obtain
807
+ θ = −
808
+ 2
809
+
810
+ k
811
+ 1
812
+
813
+ 1−αt,i(2−αt,i)√
814
+ βt,i
815
+ �2
816
+ .
817
+ (17)
818
+ Putting Eqn. (17) into Eqn. (16) completes the proof.
819
+
820
+ With the optimal aggregation scheme, we investigate the
821
+ upper bound of the convergence rate of AnycostFL.
822
+ Definition 3 (Local and global learning gains). The local
823
+ and global learning gains are defined as gt,i = α4
824
+ t,iβt,i and
825
+ gt = �
826
+ i gt,i/I, respectively. Specifically, the local and global
827
+ learning gains (i.e., gt,i ∈ [0, 1] and gt ∈ [0, 1]) measure the
828
+ amount of effective information carried in the local and global
829
+ updates, respectively.
830
+ Theorem 2 (Convergence rate of AnycostFL). Let gmin =
831
+ min{gt}∀t be the minimal global learning gain over the T -
832
+ round training. The upper bound of the convergence rate of
833
+ AnycostFL satisfies
834
+ E
835
+
836
+ F(wT ) − F(w∗)
837
+
838
+ ≤ ZT −1E
839
+
840
+ F(w0) − F(w∗)
841
+
842
+ ,
843
+ (18)
844
+ where Z = 1 − ν
845
+ λ
846
+
847
+ 1 − ε(1 − gmin)
848
+
849
+ . Recall that parameters
850
+ ν, λ and ǫ are defined in Assumptions 1 to 4 before.
851
+ Proof. See Appendix C.
852
+ Based on Definition 3 and Theorem 2, we derive the
853
+ following proposition.
854
+ Proposition 1. The key to minimizing the training loss of
855
+ AnycostFL is to maximize the learning gain gt for each global
856
+ round. If gt = 1 ∀t, AnycostFL degrades to conventional FL
857
+ without model shrinking and gradient compression.
858
+ D. Solution for Problem (P1)
859
+ Based on Theorem 2 and Proposition 1, Problem (P1) can
860
+ be transformed into the following problem.
861
+ (P3)
862
+ max 1
863
+ I
864
+ I
865
+
866
+ t=1
867
+ α4
868
+ t,iβt,i
869
+ (19)
870
+ subject to:
871
+ Constrains (10a) to (10e),
872
+ variables:
873
+ {αt,i, βt,i, ft,i}∀i.
874
+ Based on Constraints (10a) and (10b) for the training latency
875
+ and energy, we obtain the following lemma.
876
+ Lemma 3. The equality will always hold for Constraints
877
+ (10a) and (10b) when confirming the optimal training strategy
878
+ {α∗
879
+ t,i, β∗
880
+ t,i, f ∗
881
+ t,i}∀i, and thus T ∗
882
+ t,i = T max and Et,i = E∗
883
+ t,i ∀i.
884
+ Proof. The lemma can be proved by showing the contradic-
885
+ tion. Suppose that there exists i0 such that T ∗
886
+ t,i0 < T max.
887
+ We can find a new solution {α′
888
+ t,i0, β∗
889
+ t,i0, f ′
890
+ t,i0} for device i0
891
+ and α′
892
+ t,i0 > α∗
893
+ t,i0, f ′
894
+ t,i0 < f ∗
895
+ t,i0, such that T ′
896
+ t,i0 = T max
897
+ and E′
898
+ t,t0 = Emax
899
+ t,i . Since the global learning gain increases
900
+ with the increase of αt,i0, we have g′
901
+ t > g∗
902
+ t . Likewise, the
903
+ contradiction also appears when E∗
904
+ t,i0 < Emax
905
+ t,i0 , and thus we
906
+ complete the proof.
907
+ Based on Lemma 3, we employ two intermediate variables
908
+ (i.e., φt,i and ϕt,i) for each device to reparameterize Problem
909
+ (P3). Specifically, φt,i ∈ [0, 1] and ϕt,i ∈ [0, 1] are the splitting
910
+ factors for latency and energy, respectively, such that
911
+ T cmp
912
+ t,i = φt,iT max, T com
913
+ t,i = (1 − φt,i)T max,
914
+ Ecmp
915
+ t,i = ϕt,iEmax
916
+ t,i , Ecom
917
+ t,i = (1 − ϕt,i)Emax
918
+ t,i , ∀i.
919
+ (20)
920
+ By combining Eqns (6) and (20), the local learning gain of
921
+ the device i at the t-th round can be rewritten as
922
+ gt,i(φt,i) = κt,i
923
+
924
+ Emax
925
+ t,i
926
+ − (1 − φt,i)T maxP com
927
+ t,i
928
+
929
+ (φ2
930
+ t,i − φ3
931
+ t,i), (21)
932
+ where κt,i = rt,i
933
+ Sǫi
934
+ � T max
935
+ τ|Di|W
936
+ �3.
937
+ Note that Problem (P3) can be transformed into I sub-
938
+ problems because the decision-making procedure of each
939
+ device is independent. Based on Eqn. (21), the i-th sub-
940
+ problem can be expressed as a single-variable optimization
941
+ problem with respect to φt,i as follows.
942
+ (P4)
943
+ max
944
+ φt,i
945
+ gt,i
946
+
947
+ φt,i
948
+
949
+ (22)
950
+ subject to:
951
+ φmin
952
+ t,i
953
+ ≤ φt,i ≤φmax
954
+ t,i ,
955
+ where the lower and upper limits of φt,i can be acquired by
956
+ φmin
957
+ t,i
958
+ = max
959
+ �αminτ |Di| W
960
+ f max
961
+ i
962
+ T max
963
+ , 1 − βmaxS
964
+ rt,iT max
965
+
966
+ ,
967
+ φmax
968
+ t,i
969
+ = min
970
+ � τ |Di| W
971
+ f min
972
+ i
973
+ T max , 1 − αminβminS
974
+ rt,iT max
975
+
976
+ .
977
+ (23)
978
+ Based on the first-order optimality condition ∂gt,i/φt,i = 0,
979
+ we obtain the stationary points as
980
+ φs1
981
+ t,i =
982
+
983
+ ψt,i − 3Emax
984
+ t,i
985
+ 8P com
986
+ t,i T max
987
+ + 3
988
+ 4, φs2
989
+ t,i = −
990
+
991
+ ψt,i + 3Emax
992
+ t,i
993
+ 8P com
994
+ t,i T max
995
+ − 3
996
+ 4, (24)
997
+ where ψt,i = 4(P com
998
+ t,i T max)2 − 4Emax
999
+ t,i P com
1000
+ t,i T max + 9(Emax
1001
+ t,i )2.
1002
+ Let St,i = {φmin
1003
+ t,i , φmax
1004
+ t,i , φs1
1005
+ t,i, φs2
1006
+ t,i} denote the union of the
1007
+ stationary points and the boundary points for Problem (P4).
1008
+ Then, S′
1009
+ t,i = {φt,i|φt,i ∈ [φmin
1010
+ t,i , φmax
1011
+ t,i ], φt,i ∈ St,i} is the set
1012
+ of the feasible solutions of St,i. The optimal solution for
1013
+ Problem (P4) can be acquired by
1014
+ φ∗
1015
+ t,i = arg max
1016
+ φt,i∈S′
1017
+ t,i
1018
+ gt,i(φt,i).
1019
+ (25)
1020
+ Furthermore, we obtain the optimal solution for device i at the
1021
+ t-th global round by putting φ∗
1022
+ t,i into the following equations.
1023
+ ϕ∗
1024
+ t,i = 1 − (1 − φ∗
1025
+ t,i)T maxP com
1026
+ t,i
1027
+ Emax
1028
+ t,i
1029
+ , α∗
1030
+ t,i =
1031
+ 3
1032
+
1033
+ (φ∗
1034
+ t,iT max)2ϕ∗
1035
+ t,iEmax
1036
+ t,i
1037
+ ǫi(τ |Di| W )3
1038
+ ,
1039
+ β∗
1040
+ t,i = rt,i(1 − φ∗
1041
+ t,i)T max
1042
+ α∗
1043
+ t,iS
1044
+ , f ∗
1045
+ t,i = α∗
1046
+ t,iτ |Di| W
1047
+ φ∗
1048
+ t,iT max
1049
+ .
1050
+ (26)
1051
+ Notably, the decision-making process of each device does
1052
+ not involve the auxiliary information of the resource status
1053
+ from other devices. At the beginning of each global round,
1054
+ each device can determine its training strategy locally.
1055
+ V. EXPERIMENT EVALUATIONS
1056
+ A. Experiment Settings
1057
+ 1) Setup for FL training: We consider the FL application
1058
+ with image classification on Fashion-MNIST and CIFAR-
1059
+ 10 datasets [41], [42]. For Fashion-MNIST, we use a small
1060
+ convolutional neural network (CNN) with data size of model
1061
+ update as 53.22Mb [1]. For the CIFAR-10 dataset, we employ
1062
+ VGG-9 with data size of model update as 111.7Mb [43].
1063
+ For IID and non-IID data settings, we follow the dataset
1064
+ partition strategy in [34]. For the learning hyper-parameters,
1065
+ the learning rate, batch size and local epoch are set as {0.01,
1066
+ 32, 1} for Fashion-MNIST and {0.08, 64, 1} for CIFAR-10
1067
+ dataset. The maximal latency is set as T max = 10 seconds
1068
+
1069
+ 0
1070
+ 5
1071
+ 10
1072
+ 15
1073
+ 20
1074
+ 25
1075
+ 30
1076
+ 80
1077
+ 82
1078
+ 84
1079
+ 86
1080
+ 88
1081
+ 90
1082
+ 92
1083
+ 0
1084
+ 5
1085
+ 10
1086
+ 15
1087
+ 20
1088
+ 25
1089
+ 30
1090
+ 80
1091
+ 82
1092
+ 84
1093
+ 86
1094
+ 88
1095
+ 90
1096
+ 0
1097
+ 10
1098
+ 20
1099
+ 30
1100
+ 40
1101
+ 50
1102
+ 60
1103
+ 30
1104
+ 40
1105
+ 50
1106
+ 60
1107
+ 70
1108
+ 80
1109
+ 90
1110
+ 0
1111
+ 10
1112
+ 20
1113
+ 30
1114
+ 40
1115
+ 50
1116
+ 60
1117
+ 30
1118
+ 40
1119
+ 50
1120
+ 60
1121
+ 70
1122
+ 80
1123
+ 14
1124
+ 16
1125
+ 89
1126
+ 90
1127
+ 16
1128
+ 18
1129
+ 20
1130
+ 88
1131
+ 89
1132
+ Test accuracy (%)
1133
+ Time consumption (min)
1134
+ Time consumption (min)
1135
+ STC
1136
+ QSGD
1137
+ UVeQFed
1138
+ HeteroFL
1139
+ FedHQ
1140
+ AnycostFL
1141
+ (a) FMNIST IID
1142
+ (b) FMNIST non-IID
1143
+ (c) CIFAR-10 IID
1144
+ (d) CIFAR-10 non-IID
1145
+ Energy consumption (KJ)
1146
+ Energy consumption (KJ)
1147
+ Fig. 4. Performance on various network architectures and datasets. ((a-b): global accuracy vs. time consumption with Fashion MNIST on 2-layer CNN; (c-d):
1148
+ global accuracy vs. energy consumption with CIFAR-10 on VGG-9.)
1149
+ TABLE I
1150
+ PERFORMANCE COMPARISON BETWEEN ANYCOSTFL AND OTHER METHODS ON FASHION-MNIST AND CIFAR-10 DATASETS.
1151
+ IID
1152
+ non-IID
1153
+ Dataset
1154
+ Method
1155
+ #Round
1156
+ Energy
1157
+ (KJ)
1158
+ Latency
1159
+ (min)
1160
+ Comp.
1161
+ (TFLOPs)
1162
+ Comm.
1163
+ (GB)
1164
+ Best Acc.
1165
+ (%)
1166
+ #Round
1167
+ Energy
1168
+ (KJ)
1169
+ Latency
1170
+ (min)
1171
+ Comp.
1172
+ (TFLOPs)
1173
+ Comm.
1174
+ (GB)
1175
+ Best Acc.
1176
+ (%)
1177
+ FMNIST
1178
+ {90%, 89%}∗
1179
+ STC
1180
+ 305 (1.7×) 10.94 (1.4×) 25.42 (1.7×)
1181
+ 152.71
1182
+ 0.71
1183
+ 90.28±0.18 283 (1.3×) 10.17 (1.1×) 23.56 (1.3×)
1184
+ 141.53
1185
+ 0.66
1186
+ 89.47±0.16
1187
+ QSGD
1188
+ 283 (1.6×) 11.40 (1.4×) 23.56 (1.6×)
1189
+ 141.53
1190
+ 0.80
1191
+ 90.39±0.04 279 (1.3×) 11.27 (1.2×) 23.28 (1.3×)
1192
+ 139.86
1193
+ 0.79
1194
+ 89.49±0.07
1195
+ UVeQFed
1196
+ 247 (1.4×) 11.36 (1.4×) 20.58 (1.4×)
1197
+ 123.67
1198
+ 0.72
1199
+ 90.44±0.10 266 (1.2×) 12.21 (1.3×) 22.14 (1.2×)
1200
+ 133.01
1201
+ 0.77
1202
+ 89.64±0.16
1203
+ HeteroFL
1204
+ 233 (1.3×) 12.03 (1.5×) 21.78 (1.5×)
1205
+ 92.21
1206
+ 0.57
1207
+ 90.43±0.13 242 (1.1×) 12.51 (1.3×) 22.62 (1.3×)
1208
+ 95.77
1209
+ 0.59
1210
+ 89.42±0.10
1211
+ FedHQ
1212
+ 288 (1.6×) 13.89 (1.7×) 24.03 (1.6×)
1213
+ 144.36
1214
+ 0.86
1215
+ 90.21±0.07 313 (1.5×) 14.96 (1.6×) 26.06 (1.5×)
1216
+ 156.55
1217
+ 0.93
1218
+ 89.27±0.19
1219
+ AnycostFL 179 (1.0×) 8.07 (1.0×) 14.94 (1.0×)
1220
+ 67.49
1221
+ 0.35
1222
+ 91.20±0.09 214 (1.0×) 9.63 (1.0×) 17.83 (1.0×)
1223
+ 80.51
1224
+ 0.42
1225
+ 90.32��0.14
1226
+ CIFAR-10
1227
+ {82%, 80%}∗
1228
+ STC
1229
+ 341 (1.2×) 35.39 (1.3×) 56.83 (1.2×)
1230
+ 4160.56
1231
+ 1.78
1232
+ 85.38±0.29 412 (1.1×) 42.39 (1.3×) 68.67 (1.1×)
1233
+ 5026.84
1234
+ 2.15
1235
+ 83.09±0.53
1236
+ QSGD
1237
+ 337 (1.2×) 39.82 (1.5×) 56.17 (1.1×)
1238
+ 4111.76
1239
+ 2.14
1240
+ 84.83±0.54 430 (1.2×) 50.29 (1.5×) 71.61 (1.2×)
1241
+ 5242.39
1242
+ 2.73
1243
+ 81.94±0.13
1244
+ UVeQFed
1245
+ 296 (1.0×) 40.77 (1.5×) 49.28 (1.0×)
1246
+ 3607.45
1247
+ 2.12
1248
+ 85.09±0.16 377 (1.0×) 51.59 (1.5×) 62.89 (1.0×)
1249
+ 4603.87
1250
+ 2.71
1251
+ 82.30±0.28
1252
+ HeteroFL
1253
+ 332 (1.1×) 50.07 (1.9×) 69.14 (1.4×)
1254
+ 3222.26
1255
+ 1.65
1256
+ 83.75±0.55 413 (1.1×) 62.88 (1.9×) 85.78 (1.4×)
1257
+ 3990.49
1258
+ 2.05
1259
+ 80.68±0.45
1260
+ FedHQ
1261
+ 340 (1.2×) 48.95 (1.9×) 56.67 (1.2×)
1262
+ 4148.36
1263
+ 2.32
1264
+ 84.02±0.22 435 (1.2×) 61.99 (1.9×) 72.44 (1.2×)
1265
+ 5303.40
1266
+ 2.96
1267
+ 81.00±0.41
1268
+ AnycostFL 294 (1.0×) 26.43 (1.0×) 48.94 (1.0×)
1269
+ 2459.92
1270
+ 1.56
1271
+ 87.72±0.23 372 (1.0×) 33.51 (1.0×) 62.06 (1.0×)
1272
+ 3118.60
1273
+ 1.98
1274
+ 84.91±0.51
1275
+ *{x, y}: x and y denote the target global model accuracy under IID and non-IID data settings, respectively.
1276
+ and the energy budget is set as Emax
1277
+ t,i
1278
+ ∼ U[3, 9] joules for the
1279
+ CIFAR-10 dataset, and the corresponding hyper-parameters for
1280
+ the FMNIST dataset are halved by default. Additionally, we
1281
+ set αmin = 1/4 and βmax = 1/15.
1282
+ 2) Setup for mobile system: We investigate a mobile system
1283
+ with I = 60 devices located within a circle cell with a
1284
+ radius of 550 meters, and a base station is situated at the
1285
+ center. To simulate the mobility, the position of each device
1286
+ is refreshed randomly at the beginning of each round [44].
1287
+ For the computation, the energy coefficient is set as ǫi ∼
1288
+ U[5 × 10−27, 1 × 1−26]. For communication, the bandwidth
1289
+ is set as 1MHz equally for each device, and the path loss
1290
+ exponent is 3.76. The transmission power is set as 0.1W, and
1291
+ N0 is set as −114dBm/MHz.
1292
+ B. Performance Comparisons
1293
+ We compare the proposed AnycostFL with the following
1294
+ efficient FL algorithms with three different random seeds.
1295
+ • STC. The sparse ternary compression (STC) is adapted
1296
+ to reduce the cost of uplink parameter transmission [11].
1297
+ • QSGD. The TopK sparsification and probabilistic quanti-
1298
+ zation are combined to compress the local gradient [36].
1299
+ • UVeQFed. The TopK sparsification and universal vector
1300
+ quantization are used to compress the local gradient [14].
1301
+ • HeteroFL. Each device trains the local sub-model in
1302
+ different widths to match its computation capacity [32].
1303
+ • FedHQ. Each device uses different quantization levels to
1304
+ compress the gradient according to its channel state [40].
1305
+ Fig. 4 shows the performance of the global model over
1306
+ time consumption and energy consumption under the IID and
1307
+ the non-IID data setting. With the same training efficiency
1308
+ (i.e., time and energy consumption), the proposed AnycostFL
1309
+ consistently outperforms the baseline schemes to improve the
1310
+ test accuracy of the global model. Meanwhile, Table I provides
1311
+ the best accuracy and required system cost for achieving
1312
+ the specified test accuracy. Particularly, when compared with
1313
+ HeterFL and FedHQ, AnycostFL can reduce up to 1.9 times
1314
+ the energy consumption to reach the test accuracy of 82%
1315
+ on CIFAR-10 dataset under the IID setting. When compared
1316
+ with STC, AnycostFL can reduce up to 1.7 times the time
1317
+ consumption to reach the test accuracy of 90% on FMNIST
1318
+ dataset under the IID setting. Moreover, our framework can
1319
+ significantly improve the best accuracy of the global model
1320
+ by 2.33% and 1.82% on CIFAR-10 dataset under the IID and
1321
+ the non-IID settings, respectively.
1322
+ C. Impact of Key Mechanisms and Hyper-parameters
1323
+ Fig. 5(a) verifies the advantages of the main techniques of
1324
+ AnycostFL. We gradually remove the elastic model shrinking
1325
+ (w/o EMS), the flexible gradient compression (w/o FGC) and
1326
+ the all-in-one aggregation (w/o AIO), and record the required
1327
+ system cost to achieve 80% test accuracy with CIFAR-10
1328
+ dataset under the IID setting. We observe that the proposed
1329
+ EMS and FGC can significantly save the energy consumption
1330
+ and training time, respectively. Besides, AIO contributes to
1331
+ saving both energy and time.
1332
+
1333
+ AnycostFL w/o EMS w/o FGC
1334
+ w/o AIO
1335
+ 20
1336
+ 30
1337
+ 40
1338
+ 50
1339
+ 60
1340
+ Energy consumption
1341
+ Required time
1342
+ Energy consumption (KJ)
1343
+ 2.4x
1344
+ 1.3x
1345
+ 1.5x
1346
+ 1.3x
1347
+ 35
1348
+ 40
1349
+ 45
1350
+ 50
1351
+ 55
1352
+ 60
1353
+ 65
1354
+ 70
1355
+ 75
1356
+ Required time (min)
1357
+ 0
1358
+ 2
1359
+ 4
1360
+ 6
1361
+ 8
1362
+ 10
1363
+ 45
1364
+ 60
1365
+ 75
1366
+ 90
1367
+ 105
1368
+ 120
1369
+ 6
1370
+ 7
1371
+ 8
1372
+ 9
1373
+ 70
1374
+ 80
1375
+ Average time consumption (min)
1376
+ Level of communication heterogeneity
1377
+ STC
1378
+ QSGD
1379
+ UVeQFed
1380
+ HeteroFL
1381
+ FedHQ
1382
+ AnycostFL
1383
+ 0
1384
+ 2
1385
+ 4
1386
+ 6
1387
+ 8
1388
+ 10
1389
+ 12
1390
+ 24
1391
+ 32
1392
+ 40
1393
+ 48
1394
+ 56
1395
+ Average energy consumption (KJ)
1396
+ Level of computation heterogeneity
1397
+ STC
1398
+ QSGD
1399
+ UVeQFed
1400
+ HeteroFL
1401
+ FedHQ
1402
+ AnycostFL
1403
+ 0.06
1404
+ 0.09
1405
+ 0.12
1406
+ 78
1407
+ 81
1408
+ 84
1409
+ 87
1410
+ 90
1411
+ STC
1412
+ HeteroFL
1413
+ AnycostFL
1414
+ Global test accuracy (%)
1415
+ Computational complexity (GFLOPs)
1416
+ (a) Impact of key mechanisms
1417
+ (b) Impact of comm. heterogeneity
1418
+ (c) Impact of comp. heterogeneity
1419
+ (d) Performance of sub-models
1420
+ Fig. 5. The main advantages of AnycostFL. ((a): the impact of key mechanisms; (b-c): the impact of system heterogeneity; (d): the performance of sub-models.)
1421
+ We next evaluate the impact of resource heterogeneity on
1422
+ the training efficiency in Fig. 5(b-c). We set the average energy
1423
+ coefficient ǫi as 7.5×10−27 and the average distance between
1424
+ the base station and edge devices as 400 meters, and then
1425
+ change their variances to simulate the computation and com-
1426
+ munication heterogeneity, respectively. The larger variance
1427
+ indicates a higher level of system heterogeneity. As we expect,
1428
+ the proposed AnycostFL shows more resilience than other
1429
+ baselines to tackle the high level of system heterogeneity.
1430
+ We also evaluate the performance of sub-models in different
1431
+ widths in Fig. 5(d). Specifically, We compare AnycostFL with
1432
+ HeteroFL (i.e., local training with different widths) and STC
1433
+ (i.e., the best-performing compression-only method). The sub-
1434
+ models are derived from the well-trained global model without
1435
+ further re-training. Surprisingly, the sub-models of the global
1436
+ model trained by AnycostFL can still maintain satisfactory test
1437
+ accuracy, which provides dynamic inference for diverse edge
1438
+ devices after the training time.
1439
+ VI. CONCLUSION
1440
+ In this paper, we proposed AnycostFL, a joint computation
1441
+ and communication efficient framework for FL, that enables
1442
+ edge devices with diverse resources to train a shared global
1443
+ model. We aimed to minimize the global training loss under
1444
+ given personalized latency and energy constraints. By leverag-
1445
+ ing the theoretical insight of AnycostFL, we decomposed the
1446
+ optimization problem into multiple sub-problems. Following
1447
+ that, the optimal training strategy is derived for each de-
1448
+ vice according to its locally available resource. Experiments
1449
+ demonstrate the advantage of our framework in improving the
1450
+ system efficiency and model performance compared to the
1451
+ state-of-the-art methods.
1452
+ ACKNOWLEDGMENT
1453
+ Rong Yu and Yuan Wu are the corresponding authors. This
1454
+ work was supported in part by National Key R&D Program
1455
+ of China under Grant 2020YFB1807802, in part by National
1456
+ Natural Science Foundation of China under Grants 61971148,
1457
+ 62102099, U22A2054 and 62001125, in part by Science and
1458
+ Technology Development Fund of Macau SAR under Grant
1459
+ 0162/2019/A3, in part by FDCT-MOST Joint Project under
1460
+ Grant 0066/2019/AMJ, in part by the Guangdong Basic and
1461
+ Applied Basic Research Foundation (2022A1515011287), and
1462
+ in part by US National Science Foundation under grant CNS-
1463
+ 2107057.
1464
+ APPENDIX A
1465
+ PROOF OF LEMMA 1
1466
+ Proof. For the given local gradient ˜ut,i with shrinking factor
1467
+ αt,i and gradient compression rate βt,i, we aim to capture the
1468
+ divergence between ˜ut,i and ut,i. Suppose that the absolute
1469
+ value of the element in ut,i follows uniform distribution |u| ∼
1470
+ U(0, umax), and umax = max{|u|}∀u∈ut,i.
1471
+ For clear notation, we sort the element-wise absolute
1472
+ value of ut,i in ascending order. Then, we obtain ut,i =
1473
+ [u[1]
1474
+ t,i, . . . , u[j]
1475
+ t,i, . . . , u[J]
1476
+ t,i ]⊤ and |u[j]
1477
+ t,i| ≤ |u[j+1]
1478
+ t,i
1479
+ |. Thus, we have
1480
+ E∥ut,i∥2 = E
1481
+ J
1482
+
1483
+ j=1
1484
+ |u[j]
1485
+ t,i|2 = JE|u[j]
1486
+ t,i|2 = Ju2
1487
+ max
1488
+ 3
1489
+ .
1490
+ (27)
1491
+ Based on Assumption 5, the update generated from lo-
1492
+ cal training with wα
1493
+ t,i is equal to shrink(ut,i, αt,i). The
1494
+ operation of model shrinking on ut,i with αt,i can be
1495
+ viewed as removing (1 − αt,i)J elements with the least
1496
+ value from ut,i. Then, we obtain shrink(ut,i, αt,i)
1497
+ =
1498
+ [0, . . . , 0, u[(1−αt,i)J+1]
1499
+ t,i
1500
+ , . . . , u[J]
1501
+ t,i ]⊤. Thus, we have
1502
+ E∥ut,i − shrink(ut,i, αt,i)∥2 = E
1503
+ (1−αt,i)J
1504
+
1505
+ j=1
1506
+ |u[j]
1507
+ t,i|2
1508
+ = J(1 − αt,i)3u2
1509
+ max/3 = (1 − αt,i)3E∥ut,i∥2.
1510
+ (28)
1511
+ We next focus on the gradient compression. The operation
1512
+ of gradient sparsification on ut,i with sparsity of ρt,i can
1513
+ be viewed as removing ρt,iJ elements with the least value
1514
+ from ut,i. Then, the quantization is conducted on the non-
1515
+ zero elements of ˆut,i, and we obtain cmprs(ut,i, βt,i) =
1516
+ [0, . . . , 0, ˜u[ρt,iJ+1]
1517
+ t,i
1518
+ , . . . , ˜u[J]
1519
+ t,i ]⊤. Furthermore, we have
1520
+ E∥ut,i − cmprs(ut,i, βt,i)∥2
1521
+ = E
1522
+ ρt,iJ
1523
+
1524
+ j=1
1525
+ |u[j]
1526
+ t,i|2
1527
+
1528
+ ��
1529
+
1530
+ (A)
1531
+ + E
1532
+ J
1533
+
1534
+ j=ρt,iJ+1
1535
+ |u[j]
1536
+ t,i − ˜u[j]
1537
+ t,i|2
1538
+
1539
+ ��
1540
+
1541
+ (B)
1542
+ .
1543
+ (29)
1544
+ Likewise to Eqn. (28), we have (A) = ρ3
1545
+ t,iE∥ut,i∥2. Based on
1546
+ Eqn. (4) and the statistical feature of ut,i, we obtain (B) =
1547
+ (1 − ρt,i)3E∥ut,i∥2/(2L2
1548
+ t,i).
1549
+ Given plain update ut,i in 32-bit floating point and the
1550
+ desired compression rate βt,i, we can set ρt,i = 1−
1551
+
1552
+ βt,i and
1553
+ Lt,i = 232√
1554
+ βt,i for the analysis. In this way, the operations
1555
+
1556
+ of sparsification and quantization contribute equally to the
1557
+ gradient compression. Furthermore, we have
1558
+ E∥ut,i − cmprs(ut,i, βt,i)∥2 ≤ (1 − βt,i)2E∥ut,i∥2.
1559
+ (30)
1560
+ Next, we focus on the local divergence δt,i with respect to
1561
+ αt,i and βt,i. According to the Definition 1, we have
1562
+ E∥δt,i∥2 = E∥ut,i − cmprs([ut,i]α, βt,i)∥2
1563
+ = E∥ut,i − [ut,i]α∥2 + E∥[ut,i]α − cmprs([ut,i]α, βt,i)∥2
1564
+ + 2 < ut,i − [ut,i]α, [ut,i]α − cmprs([ut,i]α, βt,i) >
1565
+
1566
+ ��
1567
+
1568
+ (C)
1569
+ . (31)
1570
+ It can be verified that the two vectors in term (C) are
1571
+ orthogonal, and we obtain (C) = 0. According to Eqns (28)
1572
+ and (30), we further obtain
1573
+ E∥δt,i∥2 ≤ (1 − αt,i)3E∥ut,i∥2 + (1 −
1574
+
1575
+ βt,i)2E∥[ut,i]α∥2
1576
+ (a)
1577
+ ≤ (1 − αt,i)3E∥ut,i∥2
1578
+ + (1 −
1579
+
1580
+ βt,i)2αt,i(α2
1581
+ t,i − 3αt,i + 3)E∥ut,i∥2
1582
+ (b)
1583
+
1584
+
1585
+ 1 − αt,i(2 − αt,i)
1586
+
1587
+ βt,i
1588
+ �2E∥ut,i∥2.
1589
+ (32)
1590
+ Likewise to Eqn. (28), inequality (a) stems from the fact that
1591
+ E∥[ut,i]α∥2 = αt,i(α2
1592
+ t,i−3αt,i+3)E∥ut,i∥2. Besides, inequal-
1593
+ ity (b) holds for all αt,i ∈ [αmin, 1] and βt,i ∈ [0, βmax]. Thus,
1594
+ we complete the proof.
1595
+ APPENDIX B
1596
+ PROOF OF LEMMA 2
1597
+ Proof. Based on Definition 2 and Lemma 1, we have
1598
+ E∥∆t∥2 = E
1599
+ ���
1600
+ I
1601
+
1602
+ i=1
1603
+ pt,iut,i −
1604
+ I
1605
+
1606
+ i=1
1607
+ pt,i˜ut,i
1608
+ ���
1609
+ 2
1610
+ ≤ E
1611
+ � I
1612
+
1613
+ i=1
1614
+ pt,i
1615
+
1616
+ 1 − αt,i(2 − αt,i)
1617
+
1618
+ βt,i
1619
+
1620
+ ∥ut,i∥
1621
+ �2
1622
+ .
1623
+ (33)
1624
+ We use η to denote the learning rate, and ut,i = η∇Fi(wt).
1625
+ Based on Assumption 4, we obtain
1626
+ E∥∆t∥2 ≤ εη2�
1627
+ I
1628
+
1629
+ i=1
1630
+ pt,i
1631
+
1632
+ 1 − αt,i(2 − αt,i)
1633
+
1634
+ βt,i
1635
+ ��2
1636
+ E∥∇F(wt)∥2.
1637
+ (34)
1638
+ According to Cauchy–Schwarz inequality, we obtain
1639
+ E∥∆t∥2 ≤ Iεη2
1640
+ I
1641
+
1642
+ i=1
1643
+ p2
1644
+ t,i
1645
+
1646
+ 1 − αt,i(2 − αt,i)
1647
+
1648
+ βt,i
1649
+ �2E∥∇F(wt)∥2.
1650
+ (35)
1651
+ Thus, we complete the proof.
1652
+ APPENDIX C
1653
+ ON THE CONVERGENCE OF ANYCOSTFL
1654
+ Proof. Inspired by the studies in [5], [39], we deduce the
1655
+ convergence analysis of AnycostFL. According to Taylor
1656
+ expansion and Assumption 3, we have
1657
+ F(wt+1) ≤ F(wt) + (wt+1 − wt)⊤∇F(wt) + λ
1658
+ 2 ∥wt+1 − wt∥2
1659
+ = F(wt) − ˜u⊤
1660
+ t ∇F(wt) + λ
1661
+ 2
1662
+ ��˜ut
1663
+ ��2.
1664
+ (36)
1665
+ By using learning rate η = 1
1666
+ λ, we obtain
1667
+ E
1668
+
1669
+ F(wt+1)
1670
+
1671
+ ≤ E
1672
+
1673
+ F(wt) − λ (ut − ∆t)⊤ut + λ
1674
+ 2 ∥ut − ∆t∥2�
1675
+ = E
1676
+
1677
+ F(wt) − 1
1678
+ 2λ∥∇F(wt)∥2 + λ
1679
+ 2 ∥∆t∥2�
1680
+ .
1681
+ (37)
1682
+ We now pay attention to the upper bound of ∥∆t∥2. Based on
1683
+ Jensen’s inequality and Eqn. (34), we obtain
1684
+ E∥∆t∥2 ≤ εη2
1685
+ I
1686
+
1687
+ i=1
1688
+ pt,i
1689
+
1690
+ 1 − αt,i(2 − αt,i)
1691
+
1692
+ βt,i
1693
+ �2
1694
+
1695
+ ��
1696
+
1697
+ (D)
1698
+ E∥∇F(wt)∥2.
1699
+ (38)
1700
+ By putting Eqn. (13) into (A), we have
1701
+ E∥D∥ ≤ E
1702
+ ��������
1703
+ I
1704
+ I�
1705
+ i=1
1706
+ 1
1707
+ (1−αt,i(2−αt,i)√
1708
+ βt,i)
1709
+ 2
1710
+ ��������
1711
+ (c)
1712
+ ≤E
1713
+ ��������
1714
+ I
1715
+ I�
1716
+ i=1
1717
+ 1
1718
+ 1−α4
1719
+ t,iβt,i
1720
+ ��������
1721
+ ,
1722
+ (39)
1723
+ where (c) always holds for αt,i ∈ [0, 1] and βt,i ∈ [0, 1].
1724
+ According to Definition 3, we have gt,i = α4
1725
+ t,iβt,i and gt =
1726
+
1727
+ i gt,i/I. Since 1/
1728
+ ��
1729
+ i
1730
+ 1
1731
+ 1−gt,i
1732
+
1733
+ is a concave function with
1734
+ respect to gt,i, based on Jensen’s inequality, we obtain
1735
+ E∥A∥ ≤
1736
+ I
1737
+
1738
+ i
1739
+ 1
1740
+ 1−E(α4
1741
+ t,iβt,i)
1742
+ = 1 − gt.
1743
+ (40)
1744
+ Since the training strategies of each device and the norm of
1745
+ the gradient of global data ∥∇F(wt)∥ are independent, by
1746
+ putting Eqn. (40) back to Eqn. (38), we obtain
1747
+ E∥∆t∥2 ≤ E
1748
+
1749
+ εη2�
1750
+ 1 − gt
1751
+
1752
+ ∥∇F(wt)∥2�
1753
+ .
1754
+ (41)
1755
+ Next, by putting Eqn. (41) back to Eqn. (37), we have
1756
+ E
1757
+
1758
+ F(wt+1)
1759
+
1760
+ ≤ E
1761
+
1762
+ F(wt) − 1 + ε
1763
+
1764
+ gt − 1
1765
+
1766
+
1767
+ ∥∇F(wt)∥2�
1768
+ . (42)
1769
+ Subtracting F(w∗) in both sides of Eqn. (42) yields
1770
+ E
1771
+
1772
+ F(wt+1 − F(w∗)
1773
+
1774
+ ≤ E
1775
+
1776
+ F(wt) − 1 + ε(gt − 1)
1777
+
1778
+ ∥∇F(wt)∥2 − F(w∗)
1779
+
1780
+ .
1781
+ (43)
1782
+ Based on Assumptions 2 and 3, we have [5], [45]
1783
+ ∥∇F(wt)∥2 ≥ 2ν
1784
+
1785
+ F(wt) − F(w∗)
1786
+
1787
+ .
1788
+ (44)
1789
+ Plugging Eqn. (44) into Eqn. (43), we have
1790
+ E
1791
+
1792
+ F(wt+1) − F(w∗)
1793
+
1794
+ ≤ ZtE
1795
+
1796
+ F(wt) − F(w∗)
1797
+
1798
+ ,
1799
+ (45)
1800
+ where Zt = 1 − ν
1801
+ λ (1 − ε(1 − gt)).
1802
+ Let gmin = min{gt}∀t be the minimal global learning
1803
+ gain over T global rounds. By recursively applying the above
1804
+ inequality from iteration round 0 to T , we can obtain
1805
+ E
1806
+
1807
+ F(wT ) − F(w∗)
1808
+
1809
+ ≤ ZT −1E
1810
+
1811
+ F(w0) − F(w∗)
1812
+
1813
+ ,
1814
+ (46)
1815
+ where Z = 1 − ν
1816
+ λ
1817
+
1818
+ 1 − ε(1 − gmin)
1819
+
1820
+ . Thus, we complete the
1821
+ proof.
1822
+
1823
+ REFERENCES
1824
+ [1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas,
1825
+ “Communication-efficient learning of deep networks from decentralized
1826
+ data,” in Proc. of AISTATS 2017, 20–22 Apr. 2017, pp. 1273–1282.
1827
+ [2] Y. Qu, C. Dong, J. Zheng, H. Dai, F. Wu, S. Guo, and A. Anpala-
1828
+ gan, “Empowering edge intelligence by air-ground integrated federated
1829
+ learning,” IEEE Network, vol. 35, no. 5, pp. 34–41, 2021.
1830
+ [3] R. Yu and P. Li, “Toward resource-efficient federated learning in mobile
1831
+ edge computing,” IEEE Network, vol. 35, no. 1, pp. 148–155, 2021.
1832
+ [4] T. Nishio and R. Yonetani, “Client selection for federated learning with
1833
+ heterogeneous resources in mobile edge,” in ICC. IEEE, 2019, pp. 1–7.
1834
+ [5] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
1835
+ learning and communications framework for federated learning over
1836
+ wireless networks,” IEEE Transactions on Wireless Communications,
1837
+ vol. 20, no. 1, pp. 269–283, 2020.
1838
+ [6] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy
1839
+ efficient federated learning over wireless communication networks,”
1840
+ IEEE Transactions on Wireless Communications, vol. 20, no. 3, pp.
1841
+ 1935–1949, 2020.
1842
+ [7] C. T. Dinh, N. H. Tran, M. N. Nguyen, C. S. Hong, W. Bao, A. Y.
1843
+ Zomaya, and V. Gramoli, “Federated learning over wireless networks:
1844
+ Convergence analysis and resource allocation,” IEEE/ACM Transactions
1845
+ on Networking, vol. 29, no. 1, pp. 398–409, 2020.
1846
+ [8] J. Yao and N. Ansari, “Enhancing federated learning in fog-aided iot
1847
+ by cpu frequency and wireless power control,” IEEE Internet of Things
1848
+ Journal, vol. 8, no. 5, pp. 3438–3445, 2020.
1849
+ [9] N. H. Tran, W. Bao, A. Zomaya, M. N. Nguyen, and C. S. Hong,
1850
+ “Federated learning over wireless networks: Optimization model design
1851
+ and analysis,” in INFOCOM.
1852
+ IEEE, 2019, pp. 1387–1395.
1853
+ [10] Y. Wu, Y. Song, T. Wang, L. Qian, and T. Q. Quek, “Non-orthogonal
1854
+ multiple access assisted federated learning via wireless power transfer: A
1855
+ cost-efficient approach,” IEEE Transactions on Communications, vol. 70,
1856
+ no. 4, pp. 2853–2869, 2022.
1857
+ [11] F. Sattler, S. Wiedemann, K.-R. M¨uller, and W. Samek, “Robust and
1858
+ communication-efficient federated learning from non-iid data,” IEEE
1859
+ Transactions on Neural Networks and Learning Systems, vol. 31, no. 9,
1860
+ pp. 3400–3413, 2019.
1861
+ [12] L. Li, D. Shi, R. Hou, H. Li, M. Pan, and Z. Han, “To talk or to
1862
+ work: Flexible communication compression for energy efficient feder-
1863
+ ated learning over heterogeneous mobile edge devices,” in INFOCOM.
1864
+ IEEE, 2021, pp. 1–10.
1865
+ [13] P. Li, X. Huang, M. Pan, and R. Yu, “Fedgreen: Federated learning with
1866
+ fine-grained gradient compression for green mobile edge computing,” in
1867
+ GLOBECOM, 2021, pp. 1–6.
1868
+ [14] N. Shlezinger, M. Chen, Y. C. Eldar, H. V. Poor, and S. Cui, “Uveqfed:
1869
+ Universal vector quantization for federated learning,” IEEE Transactions
1870
+ on Signal Processing, vol. 69, pp. 500–514, 2021.
1871
+ [15] L. Cui, X. Su, Y. Zhou, and J. Liu, “Optimal rate adaption in federated
1872
+ learning with compressed communications,” in INFOCOM.
1873
+ IEEE,
1874
+ 2022, pp. 1459–1468.
1875
+ [16] J. Kang, X. Li, J. Nie, Y. Liu, M. Xu, Z. Xiong, D. Niyato, and
1876
+ Q. Yan, “Communication-efficient and cross-chain empowered federated
1877
+ learning for artificial intelligence of things,” IEEE Transactions on
1878
+ Network Science and Engineering, 2022.
1879
+ [17] P. Prakash, J. Ding, M. Shu, J. Wang, W. Xu, and M. Pan, “Squafl:
1880
+ Sketch-quantization inspired communication efficient federated learn-
1881
+ ing,” in 2021 IEEE/ACM Symposium on Edge Computing (SEC). IEEE,
1882
+ 2021, pp. 350–354.
1883
+ [18] P. Li, Y. Zhong, C. Zhang, Y. Wu, and R. Yu, “Fedrelay: Federated
1884
+ relay learning for 6g mobile edge intelligence,” IEEE Transactions on
1885
+ Vehicular Technology, pp. 1–14, 2022.
1886
+ [19] D. Liu and O. Simeone, “Privacy for free: Wireless federated learning
1887
+ via uncoded transmission with adaptive power control,” IEEE Journal
1888
+ on Selected Areas in Communications, vol. 39, no. 1, pp. 170–185, 2020.
1889
+ [20] J. Xu, H. Wang, and L. Chen, “Bandwidth allocation for multiple fed-
1890
+ erated learning services in wireless edge networks,” IEEE Transactions
1891
+ on Wireless Communications, vol. 21, no. 4, pp. 2534–2546, 2021.
1892
+ [21] S. Wang, M. Lee, S. Hosseinalipour, R. Morabito, M. Chiang, and C. G.
1893
+ Brinton, “Device sampling for heterogeneous federated learning: Theory,
1894
+ algorithms, and implementation,” in INFOCOM. IEEE, 2021, pp. 1–10.
1895
+ [22] W. Shi, S. Zhou, Z. Niu, M. Jiang, and L. Geng, “Joint device scheduling
1896
+ and resource allocation for latency constrained wireless federated learn-
1897
+ ing,” IEEE Transactions on Wireless Communications, vol. 20, no. 1,
1898
+ pp. 453–467, 2020.
1899
+ [23] Y. Deng, F. Lyu, J. Ren, H. Wu, Y. Zhou, Y. Zhang, and X. Shen,
1900
+ “Auction: Automated and quality-aware client selection framework for
1901
+ efficient federated learning,” IEEE Transactions on Parallel and Dis-
1902
+ tributed Systems, vol. 33, no. 8, pp. 1996–2009, 2021.
1903
+ [24] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
1904
+ hierarchical federated learning,” in ICC.
1905
+ IEEE, 2020, pp. 1–6.
1906
+ [25] Z. Wang, H. Xu, J. Liu, H. Huang, C. Qiao, and Y. Zhao, “Resource-
1907
+ efficient federated learning with hierarchical aggregation in edge com-
1908
+ puting,” in INFOCOM.
1909
+ IEEE, 2021, pp. 1–10.
1910
+ [26] P. Han, S. Wang, and K. K. Leung, “Adaptive gradient sparsification for
1911
+ efficient federated learning: An online learning approach,” in ICDCS.
1912
+ IEEE, 2020, pp. 300–310.
1913
+ [27] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani,
1914
+ “Fedpaq: A communication-efficient federated learning method with
1915
+ periodic averaging and quantization,” in International Conference on
1916
+ Artificial Intelligence and Statistics.
1917
+ PMLR, 2020, pp. 2021–2031.
1918
+ [28] N. Shlezinger, M. Chen, Y. C. Eldar, H. V. Poor, and S. Cui, “Federated
1919
+ learning with quantization constraints,” in ICASSP.
1920
+ IEEE, 2020, pp.
1921
+ 8851–8855.
1922
+ [29] T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation for
1923
+ robust model fusion in federated learning,” in NeurIPS, vol. 33, 2020,
1924
+ pp. 2351–2363.
1925
+ [30] Z. Zhu, J. Hong, and J. Zhou, “Data-free knowledge distillation for
1926
+ heterogeneous federated learning,” in ICML. PMLR, 2021, pp. 12 878–
1927
+ 12 889.
1928
+ [31] A. Li, J. Sun, X. Zeng, M. Zhang, H. Li, and Y. Chen, “Fedmask:
1929
+ Joint computation and communication-efficient personalized federated
1930
+ learning via heterogeneous masking,” in Proceedings of the 19th ACM
1931
+ Conference on Embedded Networked Sensor Systems, 2021, pp. 42–55.
1932
+ [32] E. Diao, J. Ding, and V. Tarokh, “Heterofl: Computation and communi-
1933
+ cation efficient federated learning for heterogeneous clients,” in ICLR,
1934
+ 2021.
1935
+ [33] H. Baek, W. J. Yun, Y. Kwak, S. Jung, M. Ji, M. Bennis, J. Park, and
1936
+ J. Kim, “Joint superposition coding and training for federated learning
1937
+ over multi-width neural networks,” in INFOCOM.
1938
+ IEEE, 2022, pp.
1939
+ 1729–1738.
1940
+ [34] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni,
1941
+ “Federated learning with matched averaging,” in ICLR, 2020.
1942
+ [35] J. Koneˇcn`y, H. B. McMahan, F. X. Yu, P. Richt´arik, A. T. Suresh, and
1943
+ D. Bacon, “Federated learning: Strategies for improving communication
1944
+ efficiency,” arXiv preprint arXiv:1610.05492, 2016.
1945
+ [36] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
1946
+ Communication-efficient sgd via gradient quantization and encoding,”
1947
+ in NeurIPS, 2017.
1948
+ [37] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
1949
+ deep neural networks with pruning, trained quantization and huffman
1950
+ coding,” in ICLR, 2016.
1951
+ [38] S. Golomb, “Run-length encodings (corresp.),” IEEE Transactions on
1952
+ Information Theory, vol. 12, no. 3, pp. 399–401, 1966.
1953
+ [39] M. Chen, H. V. Poor, W. Saad, and S. Cui, “Convergence time optimiza-
1954
+ tion for federated learning over wireless networks,” IEEE Transactions
1955
+ on Wireless Communications, vol. 20, no. 4, pp. 2457–2471, 2020.
1956
+ [40] S. Chen, C. Shen, L. Zhang, and Y. Tang, “Dynamic aggregation for
1957
+ heterogeneous quantization in federated learning,” IEEE Transactions
1958
+ on Wireless Communications, vol. 20, no. 10, pp. 6804–6819, 2021.
1959
+ [41] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
1960
+ dataset for benchmarking machine learning algorithms,” arXiv preprint
1961
+ arXiv:1708.07747, 2017.
1962
+ [42] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
1963
+ from tiny images,” 2009.
1964
+ [43] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
1965
+ large-scale image recognition,” in ICLR, 2015.
1966
+ [44] W. Shi, S. Zhou, Z. Niu, M. Jiang, and L. Geng, “Joint device scheduling
1967
+ and resource allocation for latency constrained wireless federated learn-
1968
+ ing,” IEEE Transactions on Wireless Communications, vol. 20, no. 1,
1969
+ pp. 453–467, 2021.
1970
+ [45] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
1971
+ Cambridge university press, 2004.
1972
+
29E1T4oBgHgl3EQfSAP8/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2dFAT4oBgHgl3EQfkh3i/content/2301.08612v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae926b2786f1c0908dbe584c205f3fd27ecf3526958a29449dc5f21c1488d6be
3
+ size 13089278
3NAyT4oBgHgl3EQf1vm8/content/tmp_files/2301.00741v1.pdf.txt ADDED
@@ -0,0 +1,597 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Astronomy & Astrophysics manuscript no. 45358arxaa
2
+ ©ESO 2023
3
+ January 3, 2023
4
+ Letter to the Editor
5
+ Analysis of the first infrared spectrum of quasi-bound
6
+ H2 line emission in Herbig-Haro 7
7
+ E. Roueff1, M. G. Burton2, T. R. Geballe3, and H. Abgrall1
8
+ 1 Sorbonne Université, Observatoire de Paris, PSL University, CNRS, LERMA, F-92190, Meudon, France
9
+ e-mail: evelyne.roueff@obspm.fr
10
+ 2 Armagh Observatory and Planetarium, College Hill, Armagh, BT61 9DB, Northern Ireland
11
+ e-mail: Michael.Burton@Armagh.ac.uk
12
+ 3 Gemini Obsevatory/NSF’s NOIRLab, 670 N. A’ohoku Place, Hilo, HI 96720, USA
13
+ e-mail: tom.geballe@noirlab.edu
14
+ Accepted in Astronomy Astrophysics Letters on december 22, 2022
15
+ ABSTRACT
16
+ Context. Highly excited molecular hydrogen (H2) has been observed in many regions of shocked molecular gas. A recently published
17
+ K-band spectrum of Herbig-Haro 7 (HH7) contains several vibration-rotation lines of H2 from highly excited energy levels that
18
+ have not been detected elsewhere, including a line at 2.179 µm identified as arising from the v=2 J=29 level, which lies above the
19
+ dissociation limit of H2. One emission line at 2.104 µm in this spectrum was unidentified.
20
+ Aims. We aim to complete the analysis of the spectrum of HH7 by including previously missing molecular data that have been recently
21
+ computed.
22
+ Methods. We re-analysed the K-band spectrum, emphasising the physics of quasi-bound upper levels that can produce infrared
23
+ emission lines in the K band.
24
+ Results. We confirm the identification of the 2 − 1 S (27) line at 2.1785 µm and identify the line at 2.1042 µm as due to the 1-0 S (29)
25
+ transition of H2, whose upper level energy is also higher than the dissociation limit. This latter identification, its column density, and
26
+ the energy of its upper level further substantiate the existence of a hot thermal component at 5000 K in the HH7 environment.
27
+ Conclusions. The presence of the newly identified 1 − 0 S (29) line, whose quasi-bound upper level (v=1, J=31) has a significant
28
+ spontaneous dissociation probability, shows that dissociation of H2 is occurring. The mechanism by which virtually all of the H2 in
29
+ levels with energies from 20,000 K to 53,000 K is maintained in local thermodynamic equilibrium at a single temperature of ∼5,000
30
+ K remains to be understood.
31
+ Key words. molecular hydrogen – interstellar medium – shocks
32
+ 1. Introduction
33
+ The interaction of the collimated outflow from the protostar
34
+ SSV13 (Strom et al. 1976) and the molecular cloud out of which
35
+ it formed has produced a collection of Herbig-Haro (HH) ob-
36
+ jects, HH7-HH11, in a more or less linear arrangement on the
37
+ sky. The most distant of these from SSV13, HH7, has a classic
38
+ bow shock shape. It is bright in line emission from shock-excited
39
+ vibrational states of molecular hydrogen (H2), first observed in
40
+ the v = 1 − 0 S (1) transition by Zealey et al. (1984), Harti-
41
+ gan et al. (1989), and Garden et al. (1990) and subsequently in
42
+ vibrational levels 0 − 4 and rotational levels 1 − 15 by Burton
43
+ et al. (1989) and Fernandes & Brand (1995). HH7 also emits
44
+ strongly in pure rotational lines of H2 and CO (Neufeld et al.
45
+ 2006; Yuan & Neufeld 2011; Neufeld et al. 2019; Molinari et al.
46
+ 2000) as well as in [OI]63µ (Sperling et al. 2020), Hα, [OI]λ6300,
47
+ and [SII]λ6716 (Hartigan et al. 2019). The vibrationally excited
48
+ H2 lines, observed mainly in the 2.0 − 2.5 µm interval, are emit-
49
+ ted predominantly in the hottest shock-heated gas, while the pure
50
+ rotational low-J transitions of H2 and the pure rotational transi-
51
+ tions of CO, observed in the mid- and far-infrared, arise in a
52
+ somewhat cooler gas downstream.
53
+ Much more highly vibrationally and rotationally excited
54
+ molecular hydrogen was found by Pike et al. (2016, hereafter
55
+ P16) in a 3′′× 3′′region near the tip of the HH7 bow shock, in
56
+ K-band spectra they obtained at a resolving power, R, of 5000.
57
+ Figure 6 of their paper shows the 2.01 − 2.45 µm spectrum of a
58
+ 0′′.6×0′′.9 area in that region. Their paper demonstrated the ex-
59
+ istence in HH7 of a small percentage (1.5%) of the emitting
60
+ H2 at a temperature of ∼5,000 K. Subsequently, Geballe et al.
61
+ (2017) discovered the presence of small percentages of 5,000 K
62
+ H2 in shocked gas at several locations in the Orion Molecular
63
+ Cloud. Giannini et al. (2015) detected a similar phenomenon in
64
+ another bright HH object, HH1, at a somewhat higher tempera-
65
+ ture, ∼6300 K.
66
+ P16 identified a weak emission line at 2.179 µm in the HH7
67
+ spectrum as the 2 − 1 S (27) transition of H2, which arises from
68
+ the upper level, v = 2, J = 29, whose energy is above the
69
+ dissociation limit of the ground state of H2; this corresponds
70
+ to 51,965.84 K, using the latest measurements (Hölsch et al.
71
+ 2019) and the Committee on Data for Science and Technology
72
+ (CODATA) definition of fundamental constants (Tiesinga et al.
73
+ 2021). The column density of H2 in the upper level could only be
74
+ crudely estimated by P16, as the Einstein A coefficient for that
75
+ transition was not known. P16 also reported the detection of a
76
+ faint line near 2.104 µm, which they were unable to identify.
77
+ Roueff & Abgrall (2022) have recently proposed a simple
78
+ and efficient method for computing the emission spectrum pro-
79
+ Article number, page 1 of 5
80
+ arXiv:2301.00741v1 [astro-ph.GA] 2 Jan 2023
81
+
82
+ A&A proofs: manuscript no. 45358arxaa
83
+ duced by quasi-bound levels, providing accurate wavenumbers
84
+ and Einstein emission coefficients. The application to H2 al-
85
+ lowed them to calculate the Einstein coefficient of the 2-1 S (27)
86
+ transition and suggested that the line at 2.104 µm in HH7 is the
87
+ 1 − 0 S (29) transition of H2, whose upper-state energy also lies
88
+ above the dissociation limit.
89
+ The present paper analyses these two high excitation lines in
90
+ the light of the new theoretical developments. Section 2 revisits
91
+ the observations of HH7, Sect. 3 summarises the recent theoret-
92
+ ical achievements, and Sect. 4 contains the resulting extended
93
+ observational analysis of the H2 line emission in HH7. We pro-
94
+ vide a discussion of our results in Sect. 5.
95
+ 2. Observations
96
+ A detailed description of the observations of HH7 and a re-
97
+ duction of the spectral data have been given by P16. In brief,
98
+ the Gemini facility integral field spectrometer, the Near Infrared
99
+ Field Spectrometer (NIFS; McGregor et al. 2003), was used at
100
+ the Frederick C. Gillett Gemini North Telescope on Maunakea,
101
+ Hawai’i, to obtain spectra of a 3′′× 3′′region near the tip of the
102
+ HH7 bow shock, for program GN-2007B-Q-47. The angular res-
103
+ olution of the spectra was 0′′.35. Within this 3′′× 3′′region, the
104
+ spectra showed H2 ro-vibrational line emission from upper-state
105
+ levels covering a wide range of energies, including a dozen in
106
+ the range 40, 000 − 50, 000 K. Because some rotational energies
107
+ and associated rotational quantum numbers of the upper levels of
108
+ these lines are high (J ≳ 15), collisions rather than the absorp-
109
+ tion of ultraviolet (UV) photons are probably the main producer
110
+ of the populations in those rotational levels. Somewhat lower
111
+ values of J associated with high vibrational quantum numbers
112
+ are commonly found in dense photon-dominated regions (PDRs)
113
+ such as NGC 2023, the Orion Bar, S140, and IC63. (Burton et al.
114
+ 1992; McCartney et al. 1999; Kaplan et al. 2021). H2 is excited
115
+ in PDRs by UV pumping, which is followed by electronic fluo-
116
+ rescence, but the ∆J = ±1 selection rule for electronic transitions
117
+ maintains J at values below ∼ 13.1
118
+ P16 concentrated their analysis on the spectrum of the 0′′.6
119
+ × 0′′.9 area shown in their Fig. 2; the spectrum is plotted in their
120
+ Fig. 6. The upper two panels of our Fig. 1 show in more de-
121
+ tail two 0.01 µm wide portions of that spectrum, each contain-
122
+ ing one of the two highly shock-excited H2 lines discussed in
123
+ the Introduction. Wavelength calibration employed the spectrum
124
+ of an argon lamp and is accurate to ∼ 0.00002 µm. The hor-
125
+ izontal scales are vacuum laboratory wavelengths and as such
126
+ can be directly compared with the theoretically calculated wave-
127
+ lengths (see Sect. 3).The uppermost panel contains the previ-
128
+ ously unidentified line at 2.1042 µm along with the nearby 4 − 3
129
+ S (7) line. Similarly, the middle panel contains the previously
130
+ identified 2−1 S (27) line and the adjacent 5−4 S (15) line. Spec-
131
+ tral images of the four lines, extracted from the NIFS data cube,
132
+ are shown in the bottom panel of the figure and demonstrate
133
+ that, to within the limits imposed by the noise levels, the four
134
+ emission lines have identical morphologies, which also match
135
+ the morphology of the strong 1 − 0 S (1) line shown in Fig. 2 of
136
+ P16. Based on the fluctuations in the baseline, we estimate the
137
+ confidence of the detection of the 1 − 0 S (29) line to be 3.5σ.
138
+ The wavelengths of these two weak lines are slightly different
139
+ than those reported by P16 and are more accurate.
140
+ 1 We contacted K. Kaplan to check if the two transitions at 2.1785 µm
141
+ and 2.1042 µm were present in his PDR spectra obtained with the Im-
142
+ mersion Grating INfrared Spectrometer (IGRINS), and they were not.
143
+ Fig. 1. Observational data showing highly excited H2 lines in HH7. Top
144
+ two panels: Spectra of a 0′′.6 × 0′′.9 area of HH7 in two narrow wave-
145
+ length intervals, each containing a line of H2 from a quasi-bound energy
146
+ level and one adjacent line, from Fig. 6 of P16. Vertical dashed lines are
147
+ the line wavelengths calculated as described in Sect. 3. Bottom: Spec-
148
+ tral images of the four lines shown above, extracted from the NIFS data
149
+ cube. The field of view is 2′′.5 × 2′′.5 and corresponds to the left part of
150
+ Fig. 2 of P16; the field centre corresponds to RA = 3:29:08.42, Dec =
151
+ +31:15:27:45 (J2000), with an estimated uncertainty of 0′′.25.
152
+ Article number, page 2 of 5
153
+
154
+ 2HH
155
+ 1
156
+ Density
157
+ Flux
158
+ 0.5
159
+ Rel.
160
+ res.
161
+ 4-3 S(7)
162
+ -0S(29)
163
+ 2.098
164
+ 2.1
165
+ 2.102
166
+ 2.104
167
+ 2.106
168
+ LabVacuumWavelength(um)
169
+ 2HH
170
+ res.
171
+ Rel.
172
+ 4 S(15)
173
+ 2.176
174
+ 2.178
175
+ 2.18
176
+ 2.182
177
+ 2.184
178
+ Lab Vacuum Wavelength (um)
179
+ S(15)E. Roueff et al.: Analysis of the first infrared spectrum of quasi-bound H2 line emission in Herbig-Haro 7
180
+ 3. Theoretical aspects
181
+ Molecular quasi-bound levels correspond to states whose ener-
182
+ gies lie above the dissociation limit of the ground state of the
183
+ molecule but well below the dissociation energy of the electron-
184
+ ically excited molecule. For H2, the Schrödinger equation rele-
185
+ vant to excited rotational levels is
186
+ − ℏ2
187
+ 2µ · d2 fv,J(R)
188
+ dR2
189
+ + Vmod
190
+ e f f (R, J) fv,J(R) = Ev,J fv,J(R),
191
+ (1)
192
+ where Vef f (R, J) = V(R) + ℏ2J (J+1)
193
+ 2µR2
194
+ , with V(R) the ground state
195
+ electronic molecular potential of H2 and µ = Mp/2 the nuclear
196
+ reduced mass of H2.
197
+ Fig. 2. H2 molecular potentials in eV as a function of the interatomic
198
+ distance, R, expressed in atomic units. The zero value corresponds to
199
+ photo-dissociated H2. The black curve is the electronic potential of the
200
+ X 1Σ+
201
+ g ground state from Czachorowski et al. (2018) expressed in eV.
202
+ The blue and red curves denote the effective potentials with J= 29 and
203
+ J= 31, respectively. The quasi-bound levels v = 2, J = 29 and v =
204
+ 1, J = 31 are also displayed in blue and red, respectively, in the allowed
205
+ ranges of interatomic distances.
206
+ Figure 2 displays the electronic molecular potential of the
207
+ X1Σ+
208
+ g ground state of H2 as well as the effective potentials cor-
209
+ responding to J = 29 and J = 31, the two quasi-bound lev-
210
+ els (sometimes referred to as shape resonances) previously men-
211
+ tioned. The presence of the centrifugal potential, ℏ2J (J+1)
212
+ 2µR2
213
+ , signif-
214
+ icantly modifies the shape of the electronic contribution, V(R),
215
+ by reducing the potential well, shifting the minima to larger in-
216
+ teratomic distances and exhibiting broad bump maxima above
217
+ the dissociation limit, peaking near 4.5 atomic units.
218
+ Figure 2 also displays the resonant quasi-bound eigenval-
219
+ ues, Er, which are located above the dissociation limit and are
220
+ trapped inside the centrifugal barrier. The associated wave func-
221
+ tion for each level has a non-vanishing probability in the inter-
222
+ atomic range displayed, becomes vanishingly small after the sec-
223
+ ond turning point when Er ≤ Vef f (R), and has an oscillatory be-
224
+ haviour for large R when Er becomes larger than Vef f (R). The
225
+ associated quasi-discrete stationary states have complex energy
226
+ eigenvalues, E = Er − (i Γ/2), where Er is the energy at reso-
227
+ nance and Γ characterises the width of the level and determines
228
+ its lifetime against dissociation, τ = ℏ/Γ, due to tunnelling from
229
+ the quasi-bound to the continuum oscillatory dissociating state at
230
+ large interatomic distances. Roueff & Abgrall (2022) computed
231
+ the various resonance energy level positions of H2 and the corre-
232
+ sponding emission spectrum arising from these levels by using
233
+ the recent highly accurate molecular potential of the H2 ground
234
+ state of Czachorowski et al. (2018) and extending the effective
235
+ potential by a constant value from the maximum value of the po-
236
+ tential function. This method allows one to use a standard numer-
237
+ ical integration of the Schrödinger equation applied to strictly
238
+ bound levels and has been demonstrated to be very precise for
239
+ determining the resonant energy level positions and the emission
240
+ rates. However, it does not allow a derivation of the widths or
241
+ the dissociation lifetimes. Those are obtained through different
242
+ methods based on scattering properties (Schwenke 1988; Selg
243
+ 2010).
244
+ These computations predict wavelengths of 2.1785 µm for
245
+ the 2 − 1 S (27) transition and 2.1042 µm for the 1 − 0 S (29)
246
+ transition. The predicted wavelengths for the two stronger lines
247
+ in Fig. 1 are 2.10043 µm for 4−3 S (7) and 2.18179 µm for 5−4
248
+ S (15). As can be seen in the figure, all are in excellent agreement
249
+ with the observed wavelengths. Therefore, we are confident in
250
+ the previous identification of the 2 − 1 S (27) line by P16 and in
251
+ our identification of the weak and previously unidentified feature
252
+ at 2.1042 µm as the 1 − 0 S (29) line. These two transitions are
253
+ the only lines in the 2.01 - 2.45 µm interval from quasi-bound
254
+ levels that would have been detectable in our data. (We note in
255
+ Table 1 the small Einstein A coefficient of the 2 − 0 Q(29) line
256
+ at 2.4007 µm.)
257
+ 4. Column density analysis
258
+ The analysis undertaken here follows that described in P16 for
259
+ the H2 line emission from HH7 reported in that paper, with the
260
+ addition of the 1–0 S (29) and 2–1 S (27) lines presented here. A
261
+ two-component Boltzmann distribution with temperatures Thot
262
+ and Twarm was fitted to the column densities obtained from the
263
+ de-reddened line intensities,
264
+ Ni = Ni,hot + Ni,warm,
265
+ (2)
266
+ with each component described by a Boltzmann distribution at
267
+ the corresponding temperatures, as per P16. This is shown in
268
+ Fig. 3.
269
+ We obtain Twarm = 1, 783 ± 20 K and Thot = 5, 133 ± 17 K,
270
+ with 98.5% of the total column of excited H2 gas in the warm
271
+ component of the gas and 1.5% in the hot component. This com-
272
+ pares to values of Twarm = 1, 803±12 K and Thot = 5, 200±12 K
273
+ found without these two extra lines included in the analysis2.
274
+ The additional lever arm provided by the two higher excitation
275
+ energy levels has only led to a marginal decrease in the derived
276
+ temperatures; in other words, the result is essentially the same.
277
+ We conclude that the two quasi-bound H2 lines are well mod-
278
+ elled by the same hot local thermodynamic equilibrium (LTE)
279
+ component as per all lines measured in HH7 arising from energy
280
+ levels ≥15,000 K. The level populations for the two quasi-bound
281
+ lines are ∼ 10−5 times that of the v = 1, J = 3 upper level of the
282
+ brightest H2 emission line, 1 − 0 S (1).
283
+ 5. Discussion
284
+ Table 1 summarises the present knowledge available for the two
285
+ quasi-bound levels of H2 v = 2, J = 29 and v = 1, J = 31, that
286
+ 2 The errors quoted here are the formal errors derived from the least
287
+ squares fit.
288
+ Article number, page 3 of 5
289
+
290
+ J=29
291
+ J=31
292
+ 0
293
+ dissociation limit
294
+ -1
295
+ -2
296
+ -3
297
+ -4
298
+ g
299
+ -5
300
+ 2
301
+ 6
302
+ 8
303
+ 10
304
+ 12
305
+ 0
306
+ 4
307
+ R (au)A&A proofs: manuscript no. 45358arxaa
308
+ Table 1. Properties of the two detected quasi-bound levels, v = 2, J = 29 and v = 1, J = 31, of H2 and their emission spectrum.
309
+ Transition
310
+ ˜ν
311
+ λ
312
+ A
313
+ Ar
314
+ τd
315
+ Eqb
316
+ upper
317
+ label
318
+ cm−1
319
+ µm
320
+ s−1
321
+ s−1
322
+ s
323
+ K
324
+ 2 − 0 O(31)
325
+ 1387.04
326
+ 7.2096
327
+ 2.704E-11
328
+ 5.482E-06
329
+ 8.130E12
330
+ 676.0
331
+ 2 − 0 Q(29)
332
+ 4165.40
333
+ 2.4007
334
+ 4.592E-08
335
+ 5.482E-06
336
+ 8.130E12
337
+ 676.0
338
+ 2 − 0 S (27)
339
+ 7034.45
340
+ 1.4216
341
+ 2.240E-07
342
+ 5.482E-06
343
+ 8.130E12
344
+ 676.0
345
+ 2 − 1 Q(29)
346
+ 1944.67
347
+ 5.1423
348
+ 3.947E-07
349
+ 5.482E-06
350
+ 8.130E12
351
+ 676.0
352
+ 2 − 1 S (27)
353
+ 4590.29
354
+ 2.1785
355
+ 2.944E-06
356
+ 5.482E-06
357
+ 8.130E12
358
+ 676.0
359
+ 2 − 2 S (27)
360
+ 2399.19
361
+ 4.1681
362
+ 1.873E-06
363
+ 5.482E-06
364
+ 8.130E12
365
+ 676.0
366
+ 2 − 3 S (27)
367
+ 489.60
368
+ 20.4248
369
+ 2.582E-10
370
+ 5.482E-06
371
+ 8.130E12
372
+ 676.0
373
+ 1 − 0 Q(31)
374
+ 1974.02
375
+ 5.0658
376
+ 2.452E-07
377
+ 5.219E-06
378
+ 4.083E06
379
+ 1520.5
380
+ 1 − 0 S (29)
381
+ 4752.38
382
+ 2.1042
383
+ 2.101E-06
384
+ 5.219E-06
385
+ 4.083E06
386
+ 1520.5
387
+ 1 − 1 S (29)
388
+ 2531.65
389
+ 3.9500
390
+ 2.872E-06
391
+ 5.219E-06
392
+ 4.083E06
393
+ 1520.5
394
+ 1 − 2 S (29)
395
+ 586.98
396
+ 17.0364
397
+ 4.963E-10
398
+ 5.219E-06
399
+ 4.083E06
400
+ 1520.5
401
+ Notes. ˜ν is the computed transition frequency; λ is the corresponding vacuum wavelength. A is the sum of the electric quadrupole and the magnetic
402
+ dipole contributions to the Einstein radiative emission coefficients of the transition from Roueff & Abgrall (2022). Ar is the total radiative decay
403
+ probability, and τd is the dissociation lifetime of the upper level. Eqb
404
+ upper is the quasi-bound upper level energy expressed in K above the dissociation
405
+ limit.
406
+ Fig. 3. Level column densities, divided by their degeneracies, Ni/gi,
407
+ plotted as a function of level energy, Ti, for the H2 lines measured in
408
+ HH7. They are normalised to unity for the (v, J) = (1, 3) upper-state
409
+ level at 6,952 K, which emits the 1–0 S (1) line. The two blue points (in
410
+ the lower right) are for the newly analysed 2–1 S (27) and 1–0 S (29)
411
+ lines. The dashed red line shows the best two-temperature LTE fit, as
412
+ described in Sect. 4.
413
+ have been detected. The upper level involved in the 2 − 1 S (27)
414
+ transition at 2.1785 µm, 676 K above the dissociation energy of
415
+ the ground state, is very stable against dissociation, whereas that
416
+ of the 1 − 0 S (29) transition at 2.1042 µm, located 845 K higher,
417
+ has a dissociation probability of approximately five percent and
418
+ a dissociative lifetime, τd = ℏ/Γd, resulting from quantum tun-
419
+ nelling through the centrifugal barrier (see Fig. 2) of 4.083 × 106
420
+ s, corresponding to less than two months. This indicates that the
421
+ shock wave in HH7 is partially dissociative.
422
+ As shown in Fig. 3, the 5,000 K component represents a
423
+ small percentage of the line-emitting H2 in HH7. As noted pre-
424
+ viously, similar small percentages have been observed in HH1
425
+ and in the Orion molecular outflow. Figure 3 also shows that H2
426
+ in energy levels greater than ∼ 20,000 K above the ground state
427
+ are populated only by this component. In the case of HH1, Gi-
428
+ annini et al. (2015) observed a wide range of neutral and ionised
429
+ species emitting in close proximity to the H2, many at opti-
430
+ cal wavelengths. Their analysis yields a temperature range of
431
+ 8, 000 − 80, 000 K to account for the emission. They further find
432
+ that neutral and fully ionised regions coexist inside the shock.
433
+ However, for the heavily extincted H2 line emission from HH7
434
+ (AV = 12−28 mag; P16), the species producing the optical emis-
435
+ sion lines observed by Solf & Boehm (1987), Hartigan et al.
436
+ (1989), and Hartigan et al. (2019) cannot be mixed with the H2.
437
+ In view of the detections by Giannini et al. (2015), P16, and
438
+ Geballe et al. (2017) of 5, 000 − 6, 000 K H2 in diverse envi-
439
+ ronments, it seems likely that a small percentage of H2 existing
440
+ at those temperatures is a common occurrence in collisionally
441
+ shocked molecular gas, at least in cases where collisions between
442
+ outflows and ambient molecular material occur at velocities of
443
+ many tens of km s−1, as is the case for HH1, HH7, and the Orion
444
+ Molecular Cloud. In addition, although transitions emitted from
445
+ quasi-bound levels have only been detected towards HH7, we
446
+ expect that they are present in HH1 and OMC-1 at roughly the
447
+ same intensities relative to the stronger H2 lines, as in HH7.
448
+ It is generally accepted that the maximum temperatures of
449
+ nearly all of the vibrationally excited H2 in each of the above
450
+ shocked clouds and in many others are suppressed by continu-
451
+ ous shocks, in which the collisional acceleration of the ambient
452
+ clouds and deceleration of the colliding outflows from the proto-
453
+ stars are sufficiently gradual to heat the H2 only to temperatures
454
+ of ∼2,000 K and prevent its dissociation (for more details, see
455
+ Sect. I of P16 and references therein). The existence of H2 at a
456
+ range of lower temperatures in gas cooling behind the contin-
457
+ uous shocks, which has been demonstrated by observations of
458
+ pure rotational lines (e.g. Neufeld et al. 2019), is also unsurpris-
459
+ ing. However, it seems remarkable that virtually all of the highly
460
+ ro-vibrationally excited H2 in levels with energies from 20,000
461
+ K to 53,000 K is maintained in LTE at a single temperature of
462
+ ∼5,000 K, and that there is virtually no H2 at temperatures be-
463
+ tween 2,000 K and 5,000 K. The mechanism that produces this
464
+ bimodal temperature distribution is unclear.
465
+ The location and morphology of the 5,000 K gas also is un-
466
+ clear. The gas could be located in thin (currently unresolvable)
467
+ sheets where the molecular cloud is being collisionally acceler-
468
+ ated, the wind is being collisionally decelerated, or both. Its line
469
+ emission could alternatively also be occurring in small clumps
470
+ Article number, page 4 of 5
471
+
472
+ 100
473
+ N[T,
474
+ 1 = 98.5%
475
+ warm
476
+ N[Thot] = 1.5%
477
+ 10-2
478
+ 10-4
479
+ 10-5
480
+ 10-6
481
+ 0
482
+ 1×10°
483
+ 2×10°
484
+ 3×10°
485
+ 4×10°
486
+ 5×104
487
+ 6×104
488
+ Energy Level (K)E. Roueff et al.: Analysis of the first infrared spectrum of quasi-bound H2 line emission in Herbig-Haro 7
489
+ of unusually hot and/or unusually dense gas scattered along the
490
+ shock front. Comparisons of the velocity profiles of lines origi-
491
+ nating from levels whose populations are dominated by the gas
492
+ at 5,000 K with those from levels dominated by the 2,000 K
493
+ component, at higher spectral resolution than has been employed
494
+ to date, might reveal small differences and constrain the rela-
495
+ tive locations of the two components. The good fit of the v=1,
496
+ J = 31 column density to the fit to the population-energy di-
497
+ agram (Fig. 3) indicates that dissociation is taking place in the
498
+ 5,000 K gas.
499
+ One can consider if the short lifetime of the v=1, J=31 quasi-
500
+ bound level indicates a significant continuous reformation of
501
+ molecular hydrogen in the gas phase at high temperatures. We
502
+ have estimated the formation rate of H2 through radiative asso-
503
+ ciation via that resonance level, i, H + H ↔ H2i → H2 + hν,
504
+ following the theory of Bain & Bardsley (1972), to be
505
+ αres
506
+ i
507
+ =
508
+ � 2πℏ2
509
+ MkT
510
+ �3/2
511
+ (2I + 1)(2Ji + 1)
512
+ Ai
513
+ r Ad
514
+ Air + Ad
515
+ exp(−Ei/kT),
516
+ (3)
517
+ where Ad = 1/τ and M is the reduced mass of the colliding
518
+ atoms. The contribution of v = 1, J = 31 with I = 1 and similar
519
+ values of Ar and Ad is the most efficient by orders of magnitude.
520
+ However, the derived value for its contribution at 5000K is 1.37
521
+ × 10−30 cm3 s−1, which is negligible.
522
+ Although it is difficult to assess the direct implication of the
523
+ measurable presence of these quasi-bound H2 states for shock
524
+ chemistry, their detections confirm the predictability of theoreti-
525
+ cal computations based on highly accurate potential curves. The
526
+ physical conditions associated with the astrophysical environ-
527
+ ments in which their lines are emitted may not be reproducible
528
+ in the laboratory due to their very large rotational quantum num-
529
+ bers. Thus, they probably offer the only way to probe these lev-
530
+ els. Martin et al. (1996) introduced quasi-bound levels of H2 in
531
+ their master equation studies of collisional excitation of H2 by
532
+ H and specifically mentioned the v = 2, J = 29, and v = 1,
533
+ J = 31 quasi-bound levels detected here. However, they find
534
+ that the highly excited rotational levels are not thermally popu-
535
+ lated for the range of physical conditions that they considered,
536
+ in contrast to what astronomical observations have revealed. Fi-
537
+ nally, we note that the contribution of quasi-bound levels to the
538
+ partition function of H2 and its isotopologues has been recently
539
+ computed by Zúñiga et al. (2021) using the same potential as us.
540
+ Acknowledgements. We thank K. Kaplan for having searched the two transi-
541
+ tions in his IGRINS spectra of various PDRs. We are grateful to the referee for
542
+ helpful comments. E.R. and H.A. acknowledge support by the Programme Na-
543
+ tional de Physique et de Chimie du Milieu Interstellaire (PCMI) of CNRS/INSU
544
+ with INC/INP co-funded by CEA and CNES.This research is based in large part
545
+ on observations obtained at the international Gemini Observatory, a program of
546
+ NSF’s NOIRLab, which is managed by the Association of Universities for Re-
547
+ search in Astronomy (AURA) under a cooperative agreement with the National
548
+ Science Foundation, on behalf of the Gemini Observatory partnership: the Na-
549
+ tional Science Foundation (United States), National Research Council (Canada),
550
+ Agencia Nacional de Investigación y Desarrollo (Chile), Ministerio de Ciencia,
551
+ Tecnología e Innovación (Argentina), Ministério da Ciência, Tecnologia, Ino-
552
+ vações e Comunicações (Brazil), and Korea Astronomy and Space Science In-
553
+ stitute (Republic of Korea).
554
+ References
555
+ Bain, R. A. & Bardsley, J. N. 1972, Journal of Physics B Atomic Molecular
556
+ Physics, 5, 277
557
+ Burton, M. G., Brand, P. W. J. L., Geballe, T. R., & Webster, A. S. 1989, MN-
558
+ RAS, 236, 409
559
+ Burton, M. G., Bulmer, M., Moorhouse, A., Geballe, T. R., & Brand, P. W. J. L.
560
+ 1992, MNRAS, 257, 1P
561
+ Czachorowski, P., Puchalski, M., Komasa, J., & Pachucki, K. 2018, Phys. Rev. A,
562
+ 98, 052506
563
+ Fernandes, A. J. L. & Brand, P. W. J. L. 1995, MNRAS, 274, 639
564
+ Garden, R. P., Russell, A. P. G., & Burton, M. G. 1990, ApJ, 354, 232
565
+ Geballe, T. R., Burton, M. G., & Pike, R. E. 2017, ApJ, 837, 83
566
+ Giannini, T., Antoniucci, S., Nisini, B., Bacciotti, F., & Podio, L. 2015, ApJ, 814,
567
+ 52
568
+ Hartigan, P., Curiel, C., & Raymond, J. 1989, ApJ, 347, L31
569
+ Hartigan, P., Holcomb, R., & Frank, A. 2019, ApJ, 876, 147
570
+ Hölsch, N., Beyer, M., Salumbides, E. J., et al. 2019, Phys. Rev. Lett., 122,
571
+ 103002
572
+ Kaplan, K. F., Dinerstein, H. L., Kim, H., & Jaffe, D. T. 2021, ApJ, 919, 27
573
+ Martin, P. G., Schwarz, D. H., & Mandy, M. E. 1996, ApJ, 461, 265
574
+ McCartney, M. S. K., Brand, P. W. J. L., Burton, M. G., & Chrysostomou, A.
575
+ 1999, MNRAS, 307, 315
576
+ McGregor, P. J., Hart, J., Conroy, P. G., et al. 2003, in Society of Photo-Optical
577
+ Instrumentation Engineers (SPIE) Conference Series, Vol. 4841, Instrument
578
+ Design and Performance for Optical/Infrared Ground-based Telescopes, ed.
579
+ M. Iye & A. F. M. Moorwood, 1581–1591
580
+ Molinari, S., Noriega-Crespo, A., Ceccarelli, C., et al. 2000, ApJ, 538, 698
581
+ Neufeld, D. A., DeWitt, C., Lesaffre, P., et al. 2019, ApJ, 878, L18
582
+ Neufeld, D. A., Melnick, G. J., Sonnentrucker, P., et al. 2006, ApJ, 649, 816
583
+ Pike, R. E., Geballe, T. R., Burton, M. G., & Chrysostomou, A. 2016, ApJ, 822,
584
+ 82
585
+ Roueff, E. M. & Abgrall, H. 2022, Molecular Physics, e2122887
586
+ Schwenke, D. W. 1988, Theoretica Chimica Acta, 74, 381
587
+ Selg, M. 2010, Molecular Physics, 108, 687
588
+ Solf, J. & Boehm, K. H. 1987, AJ, 93, 1172
589
+ Sperling, T., Eislöffel, J., Fischer, C., et al. 2020, A&A, 642, A216
590
+ Strom, S. E., Vrba, F. J., & Strom, K. M. 1976, AJ, 81, 314
591
+ Tiesinga, E., Mohr, P. J., Newell, D. B., & Taylor, B. N. 2021, Journal of Physical
592
+ and Chemical Reference Data, 50, 033105
593
+ Yuan, Y. & Neufeld, D. A. 2011, ApJ, 726, 76
594
+ Zealey, W. J., Williams, P. M., & Sandell, G. 1984, A&A, 140, L31
595
+ Zúñiga, J., Bastida, A., Requena, A., & Cerezo, J. 2021, J. Phys. Chem. A, 9226
596
+ Article number, page 5 of 5
597
+
3NAyT4oBgHgl3EQf1vm8/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4NE0T4oBgHgl3EQfeQCD/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d2785e7874ce4b067b9798448d02dbd4c965ff8983c9dbef28750c24cd4a3bf
3
+ size 1376301
4NE0T4oBgHgl3EQfeQCD/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6a0f33bb6528899cf72ffe3fdac8a4829cad162c349173cd016742b58a44383
3
+ size 63601
5NFAT4oBgHgl3EQfmh0R/content/2301.08623v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3d2c78f7c68f5d6984ebf65ce5725d99ae52e4a23aec15690845c0e25db5e97
3
+ size 644272
5NFAT4oBgHgl3EQfmh0R/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3703d94b02e7fe25e049dc8dc2ebb6ee004f7316408cab6b306fade10e79d1bb
3
+ size 5701677
9tE1T4oBgHgl3EQfCQLF/content/tmp_files/2301.02863v1.pdf.txt ADDED
@@ -0,0 +1,1952 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02863v1 [math.OC] 7 Jan 2023
2
+ Noname manuscript No.
3
+ (will be inserted by the editor)
4
+ A Regularized Limited Memory Subspace Minimization Conjugate
5
+ Gradient Method for Unconstrained Optimization
6
+ Wumei Sun1 · Hongwei Liu1 · Zexian Liu2
7
+ Received: date / Accepted: date
8
+ Abstract In this paper, based on the limited memory techniques and subspace minimization conjugate gra-
9
+ dient (SMCG) methods, a regularized limited memory subspace minimization conjugate gradient method is
10
+ proposed, which contains two types of iterations. In SMCG iteration, we obtain the search direction by min-
11
+ imizing the approximate quadratic model or approximate regularization model. In RQN iteration, combined
12
+ with regularization technique and BFGS method, a modified regularized quasi-Newton method is used in
13
+ the subspace to improve the orthogonality. Moreover, some simple acceleration criteria and an improved
14
+ tactic for selecting the initial stepsize to enhance the efficiency of the algorithm are designed. Additionally,
15
+ an generalized nonmonotone line search is utilized and the global convergence of our proposed algorithm
16
+ is established under mild conditions. Finally, numerical results show that, the proposed algorithm has a
17
+ significant improvement over ASMCG PR and is superior to the particularly well-known limited memory
18
+ conjugate gradient software packages CG DESCENT (6.8) and CGOPT(2.0) for the CUTEr library.
19
+ Keywords Limited memory · Subspace minimization conjugate gradient method · Orthogonality ·
20
+ Regularization model · Quasi-Newton method
21
+ Mathematics Subject Classification (2010) 49M37 · 65K05 · 90C30
22
+ 1 Introduction
23
+ Consider problem
24
+ min
25
+ x∈Rn f(x),
26
+ (1)
27
+ where f : Rn → R is a continuously differentiable nonlinear function.
28
+ Wumei Sun
29
+ E-mail: sunwumei1992@126.com
30
+ Hongwei Liu �
31
+ E-mail: hwliuxidian@163.com
32
+ Zexian Liu
33
+ E-mail: liuzexian2008@163.com
34
+ 1 School of Mathematics and Statistics, Xidian University, Xi’an 710126, China
35
+ 2 School of Mathematics and Statistics, Guizhou University, Guiyang 550025, China
36
+
37
+ 2
38
+ Wumei Sun1 et al.
39
+ Throughout the article, we use the following notations. sk−1 = xk − xk−1, fk = f(xk), gk = g(xk),
40
+ yk−1 = gk−gk−1, ∥·∥ represents the Euclidean norm and λmax denotes the maximum eigenvalue. Moreover,
41
+ dist{x, S} = inf{∥y − x∥, y ∈ S}, where x ∈ Rn and S ∈ Rn.
42
+ Nonlinear conjugate gradient(CG) method is a well-known method for solving the problem (1), which
43
+ main iteration is
44
+ xk+1 = xk + αkdk, k = 0, 1, 2, · · · ,
45
+ (2)
46
+ where xk is the kth iteration point, αk > 0 is the stepsize and dk is the search direction obtained by
47
+ d0 = −g0, dk = −gk + βkdk−1, k ≥ 1,
48
+ (3)
49
+ where gk is the gradient of f(xk) and βk is the conjugate parameter.
50
+ It is shown in theory that the convergence and numerical performance variation of different CG meth-
51
+ ods depend on the selection of conjugate parameters. Some very classical choices of the conjugate param-
52
+ eter βk are Fletcher-Reeves(FR) [9], Polak-Ribi`ere-Polyak(PRP) [30,31], Dai-Yuan(DY) [7] and Hestenes-
53
+ Stiefel(HS) [16], and are given by
54
+ βF R
55
+ k
56
+ = ∥gk+1∥2
57
+ ∥gk∥2 ,
58
+ βP RP
59
+ k
60
+ = gT
61
+ k+1yk
62
+ ∥gk∥2 ,
63
+ βDY
64
+ k
65
+ = ∥gk+1∥2
66
+ dT
67
+ k yk
68
+ ,
69
+ βHS
70
+ k
71
+ = gT
72
+ k+1yk
73
+ dT
74
+ k yk
75
+ .
76
+ CG algorithms have evolved considerably, and some well-known CG packages such as CG DESCENT [12,
77
+ 14] and CGOPT [5] have been proposed in recent years. Other recent related studies on nonlinear CG
78
+ algorithms can be found in [4,13].
79
+ The subspace minimization conjugate gradient (SMCG) algorithm, as a generalization of the CG algo-
80
+ rithm, has received much attention from scholars [1,37], which can be traced back to the work of Yuan and
81
+ Stoer [39]. The search direction of SMCG method is obtained by minimizing the following problem:
82
+ min
83
+ d∈Ωk
84
+ gT
85
+ k d + 1
86
+ 2dT Bkd,
87
+ (4)
88
+ where Ωk is a subspace spanned by the vectors gk and sk−1, i.e., Ωk = Span{gk, sk−1}, and Bk ∈ Rn×n is
89
+ an approximation of Hessian matrix, which is positive definite and symmetric. Then the search direction d
90
+ is given by
91
+ d = ugk + vsk−1,
92
+ (5)
93
+ where u and v are both real parameters. Substituting (5) to (4) and combined with the standard secant
94
+ equation Bksk−1 = yk−1, formula (4) is reorganized as follows:
95
+ min
96
+ u,v∈R
97
+
98
+  ∥gk∥2
99
+ gT
100
+ k sk−1
101
+
102
+
103
+ T 
104
+  u
105
+ v
106
+
107
+  + 1
108
+ 2
109
+
110
+  u
111
+ v
112
+
113
+
114
+ T 
115
+
116
+ ρk
117
+ gT
118
+ k yk−1
119
+ gT
120
+ k yk−1 sk−1yk−1
121
+
122
+
123
+
124
+  u
125
+ v
126
+
127
+  .
128
+ (6)
129
+ where ρk ≈ gT
130
+ k Bkgk.
131
+ On the basis of the Barzilai-Borwein(BB) method [2], Dai and Kou [6] proposed an effective BBCG3
132
+ method for strictly convex quadratic minimization problem. Afterwards, based on BBCG3 method, Liu and
133
+ Liu [26] proposed SMCG BB method for solving general unconstrained optimization problems. Motivated
134
+ by SMCG BB method, some efficient SMCG methods [20,21,36,42] were later proposed, among which
135
+
136
+ Title Suppressed Due to Excessive Length
137
+ 3
138
+ the method based on the regularization model presented by Zhao et al. [42] is the best in the numerical
139
+ performance.
140
+ The nonlinear CG method is very effective for unconstrained optimization problems. However, the
141
+ convergence of the algorithm can be very slow for some ill-posed problems and even for quadratic problems
142
+ with very small dimensions, which may be due to the loss of orthogonality [15]. Hager and Zhang [15] pointed
143
+ out theoretically that the generated successive gradients either in the CG method or the L-BFGS method
144
+ for the quadratic test problem should be orthogonal. Yet, Hager and Zhang [15] observed that, when solving
145
+ the quadratic strictly convex minimization problem PALMER1C in the CUTEr library [10], the CG method
146
+ loses orthogonality due to the rounding errors, while L-BFGS method preserves the orthogonality. In view
147
+ of this, they developed the limited memory CG method (CG DESCENT(6.8)) to correct the possible loss
148
+ of orthogonality in ill conditioned optimization problems. For the test problems in the CUTEr library [10],
149
+ their performance results indicated that CG DESCENT(6.8) has an significant improvement over their
150
+ previously proposed package CG DESCENT(5.3).
151
+ Although CG DESCENT(6.8) [15] is an efficient method for unconstrained optimization, it still suffers
152
+ from the following shortcomings:
153
+ (i) In the numerical implementation, the AWolfe line search [14] utilized in the algorithm CG DESCENT(6.8)
154
+ does not guarantee global convergence.
155
+ (ii) CG DESCENT(6.8) contains the following three pre-conditioners, corresponding to three different it-
156
+ erations:
157
+ Pk = I, Pk = Zk ˆB−1
158
+ k+1ZT
159
+ k , Pk = Zk ˆB−1
160
+ k+1ZT
161
+ k + σk ¯Zk ¯ZT
162
+ k ,
163
+ (7)
164
+ where σk is determined by (4.2) of [15], ˆBk+1, Zk and ¯Zk are given by the matrices in literature [15]. These
165
+ three pre-conditioners make the algorithm CG DESCENT(6.8) look complex.
166
+ (iii) In the convergence analysis, the algorithm CG DESCENT(6.8) needs to impose the following assump-
167
+ tions on the pre-conditioners:
168
+ ∥Pk∥ ≤ γ0, gT
169
+ k+1Pkgk+1 ≥ γ1∥gk+1∥2, dT
170
+ k P −1
171
+ k
172
+ dk ≥ γ2∥dk∥2,
173
+ (8)
174
+ where γ0 > 0, γ1 > 0 and γ2 > 0. These assumptions are comparatively strict and difficult to be verified in
175
+ actual practice.
176
+ To address the above-mentioned shortcomings, Liu et al. [27] presented an improved Dai¨CKou CG
177
+ algorithm called CGOPT(2.0), which combines limited memory technology and Dai-Kou CG method.
178
+ In CGOPT(2.0) [27], they utilized a modified quasi-Newton method to restore the lost orthogonality, and
179
+ established the convergence of CGOPT(2.0) with fewer assumptions. Some numerical experiments indicated
180
+ that CGOPT(2.0) is better than the famous CG software package CG DESCENT(6.8) [15].
181
+ In view of the above discussion, a regularized limited memory subspace minimization conjugate gradient
182
+ method on the basis of SMCG method and limited memory technique is studied in this paper. To recover
183
+ orthogonality, we propose a modified regularized quasi-Newton method. The major contributions of this
184
+ paper are the following.
185
+ 1. A regularized limited memory subspace minimization conjugate gradient algorithm is proposed, which
186
+ combines limited memory technology and SMCG method.
187
+
188
+ 4
189
+ Wumei Sun1 et al.
190
+ 2. Based on the idea of regularization and BFGS method, an improved regularized quasi-Newton method
191
+ is exploited to improve orthogonality.
192
+ 3. Some simple acceleration criteria and an improved initial stepsize selection strategy are designed to
193
+ enhance the efficiency of the algorithm. Additionally, an generalized nonmonotone line search condition
194
+ is presented, which may be regarded as an extension of the Zhang-Hager’s [41] nonmonotone line search.
195
+ 4. The convergence of the method is built under mild conditions and the corresponding numerical perfor-
196
+ mance shows that the new method is much more effective than the existing methods.
197
+ The structure of the paper is as follows. In Section 2, we describe the detail of the regularized limited
198
+ memory subspace minimization conjugate gradient algorithm, including the direction selection of SMCG
199
+ iteration and regularized Quasi-Newton iteration and an effective acceleration technique. Moreover, the
200
+ decision of the initial step size and the generalized nonmonotone Wolfe line search are also given in this
201
+ section. In Section 3, some important properties of the search direction are analyzed and the global con-
202
+ vergence of the proposed algorithm is established. Numerical experiments for algorithm comparison are
203
+ showed in Section 4. Conclusions are given in the last section.
204
+ 2 A Regularized Limited Memory Subspace Minimization Conjugate Gradient Algorithm
205
+ In the section, combining the idea of subspace minimization and regularization quasi-Newton method,
206
+ we present a regularized limited memory subspace minimization conjugate gradient algorithm. Firstly,
207
+ we give the choices of search direction under different iterations. Subsequently, we develop a very effec-
208
+ tive acceleration technique, a modified initial step selection strategy and generalized nonmonotonic line
209
+ search technology to optimize the performance of the proposed algorithm. Finally, the details of algorithm
210
+ RL SMCG are described.
211
+ 2.1 Direction Selection of SMCG Iteration and Regularized Quasi-Newton Iteration
212
+ The regularized limited memory subspace minimization conjugate gradient method mainly contains two
213
+ kinds of iterations which are SMCG iteration and regularized quasi-Newton(RQN) iteration, respectively.
214
+ Furthermore, the search direction derivation of the two iterations is also different.
215
+ 2.1.1 SMCG iteration
216
+ The search direction selection of SMCG iteration is closely related to the properties of the objective function
217
+ f(x) at the iteration point xk. By reference [3,38], defined
218
+ tk =
219
+ ���2
220
+
221
+ fk−1 − fk + gT
222
+ k sk−1
223
+
224
+ /
225
+
226
+ sT
227
+ k−1yk−1
228
+
229
+ − 1
230
+ ��� ,
231
+ (9)
232
+ to describe how f(x) approaches a quadratic function on a line segment between xk−1 and xk. Literature
233
+ [24] indicates that if the condition
234
+ tk ≤ ¯ξ4 or
235
+
236
+ tk ≤ ¯ξ5 and tk−1 ≤ ¯ξ5
237
+
238
+ ,
239
+ (10)
240
+
241
+ Title Suppressed Due to Excessive Length
242
+ 5
243
+ is satisfied, where ¯ξ4 and ¯ξ5 are the smaller positive constants and ¯ξ4 < ¯ξ5, f(x) may be near to a quadratic
244
+ function on a line between xk−1 and xk. Moreover, According to [32], we know that if the following condition
245
+ ¯ξ1 ≤ sT
246
+ k−1yk−1
247
+ ∥sk−1∥2 ≤ ∥yk−1∥2
248
+ sT
249
+ k−1yk−1
250
+ ≤ ¯ξ2,
251
+ (11)
252
+ is satisfied, then the condition number of the Hessian matrix of the normal function may be not very large,
253
+ here ¯ξ1 and ¯ξ2 are positive constants.
254
+ Similar to [42], based on some certain properties of the function f(x) at the current point xk, we derive
255
+ different search direction by dividing it into the following four cases.
256
+ (i) If the condition (11) is satisfied while the condition (10) are not, this implies that the quadratic
257
+ model may not be able to approach the objective function f(x) well at the present iteration point xk. Then,
258
+ search direction dk will be obtained by minimizing the following cubic regular subproblem, i.e.
259
+ min
260
+ dk∈Ωk mk (dk) = dT
261
+ k gk + 1
262
+ 2dT
263
+ k Bkdk + 1
264
+ 3σk ∥dk∥3
265
+ Bk ,
266
+ (12)
267
+ where Ωk is a subspace spanned by the vectors gk and sk−1, Bk ∈ Rn×n is an approximation of Hessian
268
+ matrix, which is positive definite and symmetric and satisfying the secant condition Bksk−1 = yk−1, σk ≥ 0
269
+ is an adaptive regularization parameter obtained from interpolation condition and dk is determined by
270
+ dk = ukgk + vksk−1,
271
+ (13)
272
+ where vk and uk are parameters to be established. Obviously, we could obtain (12) by giving (4) a weighted
273
+ regularization term 1
274
+ 3σk ∥dk∥3
275
+ Bk. Substituting (13) to (12), it is easy to obtain that (12) is equivalent to
276
+ min
277
+ uk,vk∈R
278
+
279
+  ∥gk∥2
280
+ gT
281
+ k sk−1
282
+
283
+
284
+ T 
285
+  uk
286
+ vk
287
+
288
+  + 1
289
+ 2
290
+
291
+  uk
292
+ vk
293
+
294
+
295
+ T
296
+ ¯Bk
297
+
298
+  uk
299
+ vk
300
+
301
+  + σk
302
+ 3
303
+ ������
304
+
305
+  uk
306
+ vk
307
+
308
+
309
+ ������
310
+ 3
311
+ ¯
312
+ Bk
313
+ .
314
+ (14)
315
+ where ¯Bk =
316
+
317
+
318
+ ρk
319
+ gT
320
+ k yk−1
321
+ gT
322
+ k yk−1 sk−1yk−1
323
+
324
+  is a positive definite and symmetric matrix, ρk is an estimate of
325
+ gT
326
+ k Bkgk. Similar to BBCG3 [6], we also use
327
+ 3
328
+ 2
329
+ ∥yk−1∥2
330
+ sT
331
+ k−1yk−1 I to estimate Bk in the term ρk, which means
332
+ ρk = 3
333
+ 2
334
+ ∥yk−1∥2
335
+ sT
336
+ k−1yk−1 ∥gk∥2. Then, by solving problem (14) we obtain the following solutions about uk and vk:
337
+
338
+  uk
339
+ vk
340
+
341
+  =
342
+
343
+
344
+ 1
345
+ (1+σk(̟∗))∆k
346
+
347
+ gT
348
+ k yk−1gT
349
+ k sk−1 − sT
350
+ k−1yk−1∥gk∥2�
351
+ 1
352
+ (1+σk(̟∗))∆k
353
+
354
+ gT
355
+ k yk−1∥gk∥2 − ρkgT
356
+ k sk−1
357
+
358
+
359
+  ,
360
+ (15)
361
+ among them,
362
+ ∆k =
363
+ ������
364
+ ρk
365
+ gT
366
+ k yk−1
367
+ gT
368
+ k yk−1 sk−1yk−1
369
+ ������
370
+ = ρksk−1yk−1 − (gT
371
+ k yk−1)2 > 0,
372
+ (16)
373
+ σk and ̟∗ are the same as those in literature [42], which will not be repeated here.
374
+ (ii) If both conditions (11) and (10) hold, this indicates that the objective function f(x) may approach
375
+ the quadratic model at the current iteration point xk. Since that is the case, let σk = 0, i.e. we consider deriv-
376
+ ing the search direction by solving the minimization problem (6). Like (i), we choose ρk = 3
377
+ 2
378
+ ∥yk−1∥2
379
+ sT
380
+ k−1yk−1 ∥gk∥2
381
+ and ∆k is determined by (16), then we obtain the following unique solution of quadratic approximate
382
+
383
+ 6
384
+ Wumei Sun1 et al.
385
+ problem (6):
386
+
387
+  ¯uk
388
+ ¯vk
389
+
390
+  =
391
+
392
+
393
+ 1
394
+ ∆k (gT
395
+ k yk−1gT
396
+ k sk−1 − sT
397
+ k−1yk−1∥gk∥2)
398
+ 1
399
+ ∆k (gT
400
+ k yk−1∥gk∥2 − ρkgT
401
+ k sk−1)
402
+
403
+  ,
404
+ (17)
405
+ here the search direction is calculated by dk = ¯ukgk + ¯vksk−1, where ¯uk and ¯vk are determined by (17).
406
+ (iii) If condition (11) is not satisfied and the conditions
407
+ ���gT
408
+ k yk−1gT
409
+ k sk−1
410
+ ��� ≤ ¯ξ3sT
411
+ k−1yk−1∥gk∥2 and sT
412
+ k−1yk−1 ≥ ¯ξ1∥sk−1∥2,
413
+ (18)
414
+ are satisfied, where 0 ≤ ¯ξ3 ≤ 1, the condition number of the Hessian matrix may be lager, hence the search
415
+ direction obtained in cases (i) and (ii) may not be better. However, the condition (18) can ensure sufficient
416
+ descent and linear growth in HS conjugate gradient method. Moreover, because of the finite termination
417
+ nature of the HS conjugate gradient method for solving exact convex quadratic minimization problems, this
418
+ choice of direction allows for faster convergence of the algorithm. Then, in this case, the search direction is
419
+ determined by (3) and βk = βHS
420
+ k
421
+ .
422
+ (iv) If neither condition (11) nor (18) holds, then we pick the following direction, i.e. :
423
+ dk = −gk.
424
+ (19)
425
+ In summary, the search direction in the SMCG iteration can be described as in the following:
426
+ dk =
427
+
428
+
429
+
430
+
431
+
432
+
433
+
434
+
435
+
436
+
437
+
438
+
439
+
440
+
441
+
442
+ ukgk + vksk−1,
443
+ if (11) holds and (10) does not hold,
444
+ ¯ukgk + ¯vksk−1,
445
+ if (11) holds and (10) holds,
446
+ −gk + βHS
447
+ k
448
+ dk−1,
449
+ if (11) does not hold and (18) holds,
450
+ −gk,
451
+ if neither (11) nor (18) holds,
452
+ (20)
453
+ where uk and vk are determined by (15); ¯uk and ¯vk are determined by (17).
454
+ If the successive gradients have orthogonality or the lost orthogonality is restored, the algorithm performs
455
+ SMCG iteration. On the contrary, if the orthogonality is lost, the iteration will turn to the following
456
+ regularized quasi-Newton iteration to improve the orthogonality.
457
+ 2.1.2 Regularized Quasi-Newton(RQN) iteration
458
+ When the successive gradients lose their orthogonality, the iteration switches from SMCG iteration to RQN
459
+ iteration. In other words, a modified regularized BFGS algorithm in subspace Sk is proposed to restore the
460
+ orthogonality, where Sk is a subspace generated by the following limited memory m search directions
461
+ Sk = span {dk−1, dk−2, · · · , dk−m} ,
462
+ where m > 0 and m is the number of limited memory. In this article, the limited memory m selected in our
463
+ algorithm does not exceed 11. Then, as soon as orthogonality is corrected, the RQN iteration is terminated
464
+ and the SMCG iteration is triggered immediately.
465
+ First, we introduce some preparations for turning to RQN iteration. Let Sk ∈ Rn×m be a matrix which
466
+ has columns consisting of dk−1, dk−2, · · · , dk−m. In similar fashion to limited memory CG method [15], we
467
+ also assume that columns of Sk are line-independent. Let the QR factorization of Sk be Sk = Zk ¯Rk, where
468
+
469
+ Title Suppressed Due to Excessive Length
470
+ 7
471
+ the columns of Zk ∈ Rn×m form the normal orthogonal bases for subspace Sk and ¯Rk ∈ Rm×m is the
472
+ upper triangular matrix with positive diagonal terms.
473
+ If gk is included almost in subspace Sk, then we think that the orthogonality property of the algorithm
474
+ may be lost. In this case, we interrupt the SMCG iteration and move to minimize the objective function in
475
+ the subspace Sk:
476
+ min
477
+ z∈Sk f(xk + z).
478
+ (21)
479
+ The solution to the subspace problem (21) will improve the orthogonality and guide us to a suitable search
480
+ direction that will lead us out of the subspace Sk. Similar to [15], we utilize the distance from gk to subspace
481
+ Sk to judge whether orthogonality is lost. If the condition
482
+ dist {gk, Sk} ≤ ˜η0∥gk∥
483
+ (22)
484
+ is satisfied, where 0 < ˜η0 < 1 and ˜η0 is small, we think gk is almost contained in Sk, it means that the
485
+ orthogonality of the successive gradients has lost. Then, we switch to RQN iteration to solve the subspace
486
+ problem (21) until the gradient is nearly orthogonal enough to the subspace to meet the condition
487
+ dist {gk, Sk} ≥ ˜η1∥gk∥,
488
+ (23)
489
+ where 0 < ˜η0 < ˜η1 < 1. At this time, the algorithm iteration will go away subspace Sk and turn to the
490
+ SMCG iteration. Because the column of Zk is the orthonormal basis of Sk, it’s not hard to know from the
491
+ definition of dist {gk, Sk} that (22) and (23) can be expressed as
492
+
493
+ 1 − ˜η2
494
+ 0
495
+
496
+ ∥gk∥2 ≤
497
+ ���ZT
498
+ k gk
499
+ ���
500
+ 2
501
+ ,
502
+ (24)
503
+ and
504
+
505
+ 1 − ˜η2
506
+ 1
507
+
508
+ ∥gk∥2 ≥
509
+ ���ZT
510
+ k gk
511
+ ���
512
+ 2
513
+ .
514
+ (25)
515
+ In [15], Hager and Zhang utilized the limited memory BFGS (L-BFGS) [22,28] method to solve the subspace
516
+ problem (21) for restoring the orthogonality, and achieved better numerical results. However, it should
517
+ be noted that the convergence analysis of the limited memory CG method [15] requires imposing strict
518
+ assumptions (8) on the preprocessors (7). Because the dimension m of the chosen subspace Sk is usually
519
+ small and when orthogonality is lost, the properties of the function at the iteration point maybe not
520
+ very good. Based on these, we consider a regularized L-BFGS method in the subspace Sk for solving the
521
+ subproblem (21).
522
+ The search direction of general quasi-Newton method [40] for unconstrained optimization (1) is the
523
+ form of dk = −B−1
524
+ k gk, where Bk is a positive definite and symmetric approximation to the Hessian matrix.
525
+ As one of the most popular methods of quasi-Newton method, L-BFGS method stores the approximate
526
+ Hessian matrix of the objective function using small memory and computes the search direction dk using
527
+ the nearest m vector pairs of (sk−i, yk−i), i = 0, 1, . . . , m − 1.
528
+
529
+ 8
530
+ Wumei Sun1 et al.
531
+ Ueda and Yamashita [35] presented a regularized Newton method for nonconvex unconstrained opti-
532
+ mization, whose search direction dk is obtained by solving the following linear equations:
533
+
534
+ ∇2f(xk) + µI
535
+
536
+ dk = −∇f(xk),
537
+ (26)
538
+ where µ > 0 is referred to as the regularized parameter. The regularized Newton method [35] generally
539
+ defaults to a step size of 1, and global convergence is guaranteed by controlling the parameter µk. However,
540
+ as a type of Newton method, the regularized Newton method in [35] must solve the Hessian matrix of
541
+ f which is particularly computationally complex. To address this drawback, some scholars proposed the
542
+ regularized limited memory BFGS-type method [33,23] for solving unconstrained optimization problems,
543
+ i.e. the search direction dk is the solution of the following equations
544
+ (Bk + µI) dk = −∇f(xk),
545
+ (27)
546
+ where matrix Bk is an approximate Hessian determined by a particular quasi-Newton method. Regular-
547
+ ization technology can effectively improve the efficiency of quasi-Newton method in solving ill-conditioned
548
+ problems. Nevertheless, when computing Bk by the L-BFGS method, it is very hard to calculate (Bk + µI)−1.
549
+ Hence, motivated by [34], we present a regularized quasi-Newton method which combines the BFGS method
550
+ with the regularized technique to improve orthogonality in the m-dimensional subspace Sk. In this paper,
551
+ we consider Bk + µI as an approximation of ∇2f(xk) + µI. Because the matrix Bk is the approximate
552
+ Hessian of f(xk) and Bk + µI can be used as an approximate Hessian of f(xk) + µ
553
+ 2 ∥x∥2. At this point, we
554
+ utilize (sk, yk(µ)) instead of (sk, yk), where
555
+ yk(µ) = (∇f(xk+1) + µxk+1) − (∇f(xk) + µxk) = yk + µsk.
556
+ Note that the regularized BFGS method stores as many vector pairs as the traditional BFGS method and
557
+ hence it does not require additional memory.
558
+ In [19], a effective BFGS quasi-Newton method for solving nonconvex unconstrained minimization was
559
+ proposed by Li and Fukushima [19], in which the matrix Bk+1 is updated by
560
+ Bk+1 =
561
+
562
+
563
+
564
+ Bk − BksksT
565
+ k Bk
566
+ sT
567
+ k Bksk
568
+ + ykyT
569
+ k
570
+ sT
571
+ k yk ,
572
+ if
573
+ sT
574
+ k yk
575
+ ∥sk∥2 > υ∥gk∥α,
576
+ Bk,
577
+ otherwise ,
578
+ where υ > 0 and α > 0. Some recent advances about modified BFGS method can be found in [18,11,34].
579
+ Inspired by the quasi-Newton methods described above, we propose an improved regularized BFGS
580
+ method to solve the subproblem (21) in subspace Sk.
581
+ Remark 1. In what follows, the variables with hats belong to subspace Sk , distinguished from the ones
582
+ found in the full space Rn.
583
+ Let ˆx = (ˆx1, ˆx2, · · · , ˆxm, )T ∈ Rm. The subproblem (21) can be expressed as
584
+ min
585
+ ˆx∈Rm f(xk + ˆx1dk−1 + ˆx2dk−2 + · · · + ˆxmdk−m).
586
+ (28)
587
+
588
+ Title Suppressed Due to Excessive Length
589
+ 9
590
+ Similar to [27], because the regularized quasi-Newton directions in the subspace Sk always transform to
591
+ the full space Rn and QR decomposition of matrix Sk, we can obtain dk = Zk ˆdk, ˆgk = ZT
592
+ k gk, ˆyk = ZT
593
+ k yk,
594
+ ˆsT
595
+ k ˆyk = sT
596
+ k yk, ∥ˆsk∥2 = ∥sk∥2 and ˆfk = fk.
597
+ Let Bk(µ) = Bk + µI, then inspired by Li and Fukushima [19], we develop an improved regularized
598
+ BFGS method to solve the above subproblem (28) with a search direction of the form
599
+ ˆdk+1 = − ˆB−1
600
+ k+1(µ)ˆgk+1,
601
+ (29)
602
+ where ˆBk+1(µ) is given by
603
+ ˆBk+1(µ) =
604
+
605
+
606
+
607
+ ˆBk(µ) −
608
+ ˆ
609
+ Bk(µ)ˆskˆsT
610
+ k ˆ
611
+ Bk(µ)
612
+ ˆsT
613
+ k ˆ
614
+ Bk(µ)ˆsk
615
+ + ˆyk(µ)ˆyT
616
+ k (µ)
617
+ ˆsT
618
+ k ˆyk(µ) ,
619
+ if mod(k, l) ̸= 0 and ˆsT
620
+ k ˆyk(µ)
621
+ ˆsT
622
+ k ˆsk
623
+ ≥ υ,
624
+ ˆI,
625
+ otherwise ,
626
+ (30)
627
+ where υ > 0, mod(k, l) ̸= 0 represents the remainder for k modulo l, ˆyk(µ) = ˆyk + µˆsk and µ > 0 is an
628
+ important regularized parameter. The condition mod(k, l) ̸= 0 means the matrix ˆBk(µ) will be reset to
629
+ the identity matrix ˆI after updating l times, which ensures the good convergence of the algorithm. In the
630
+ paper, we set l = max(m2, 20). Obviously, ˆsT
631
+ k ˆyk(µ) > 0, and as soon as the matrix ˆBk(µ) is symmetric and
632
+ positive definitive, it is not hard to prove that the matrix ˆBk+1(µ) is symmetric and positive definitive.
633
+ As a very important regularization parameter, µ is closely related to the convergence analysis of the
634
+ regularized BFGS method. In this paper, the idea of the trust-region radius is used to find the suitable
635
+ search direction by controlling µ, in other words, The ratio of objective function value reduction to model
636
+ function value reduction is utilized. Then, give the definition of a ratio function rk( ˆdk, µ) as follows
637
+ rk( ˆdk, µ) =
638
+ ˆf(xk) − ˆf(xk + αk ˆdk)
639
+ ˆf(xk) − ˆqk( ˆdk, µ)
640
+ ,
641
+ (31)
642
+ where ˆqk : Rm × R → R is a function of the form
643
+ ˆqk( ˆdk, µ) = ˆf(xk) + αkˆgT
644
+ k ˆdk + 1
645
+ 2α2
646
+ k ˆdT
647
+ k ˆBk(µ) ˆdk.
648
+ (32)
649
+ Then, if the ratio function rk( ˆdk, µ) is relatively large, this means that compared with the reduction of the
650
+ model function, the reduction of the objective function is large enough, we choose to reduce the parameter
651
+ µ. On the flip side, if the ratio function rk( ˆdk, µ) is relatively small, i.e., ˆf(xk) − ˆf(xk + αk ˆdk) is small,
652
+ we will increase µ. In addition, to ensure that the algorithms converge well, we limit µ to an interval, i.e.
653
+ 0 < µmin < µ < µmax. In general, if the next iteration point is closer to the current iteration point, the
654
+ reduction of the function value may not be obvious. At this time, we hope to get a new iteration point by
655
+ modifying the search direction, then the search direction improved by regular parameter µ may be a good
656
+ choice. Therefore, if ∥ˆsk∥2 ≤ ˆτ (ˆτ > 0), our choice and update of µ are as follows:
657
+ µk+1 =
658
+
659
+
660
+
661
+ max {µmin, σ1µk} ,
662
+ if rk( ˆdk, µ) ≥ σ3,
663
+ min {µmax, σ2µk} ,
664
+ otherwise,
665
+ (33)
666
+ where 0 < σ1 ≤ 1, σ2 > 1 and 0 < σ3 ≤ 1. Otherwise, we choose µ = 0, i.e., the regularized BFGS method
667
+ is reduced to a general BFGS method.
668
+
669
+ 10
670
+ Wumei Sun1 et al.
671
+ Remark 2. In order to simplify the symbol and facilitate writing, we still record the updated symbol
672
+ µk+1 as µ.
673
+ In the process of algorithm implementation, the search direction (29) in subspace Sk always converts
674
+ to the full space Rn at each RQN iteration, i.e.,
675
+ dk+1 = −Pkgk+1,
676
+ (34)
677
+ where
678
+ Pk = Zk ˆB−1
679
+ k+1(µ)ZT
680
+ k
681
+ (35)
682
+ and ˆBk+1(µ) is given by (30).
683
+ In Section 3, we will show that matrices ˆBk+1(µ) and Pk have some good properties in the RQN
684
+ iteration, which is critical for the convergence analysis.
685
+ 2.2 An Effective Acceleration Technique
686
+ In order to optimize the performance of the algorithm, Sun et al. [32] proposed an acceleration technique,
687
+ which replaces (2) with the following new iterative form
688
+ xk+1 = xk + ¯ηkαkdk,
689
+ (36)
690
+ where ¯ηk ≥ 0 is an acceleration parameter obtained from an interpolation function. In view of the numerical
691
+ effect of the acceleration technique, our algorithm also takes it into account. Similar to reference [32], we
692
+ minimize the following interpolation function to get the acceleration parameter ¯ηk:
693
+ ¯ηk = arg min q(ϕk(¯η)),
694
+ (37)
695
+ where ¯η ≥ 0, ϕk(¯η) = f(xk + ¯ηαkdk), and q(ϕk(¯η)) represents the interpolation function defined by ϕk(¯η).
696
+ In the paper, we consider minimizing the quadratic interpolation function [29] q(ϕk(0), ϕ′
697
+ k(0),ϕ′
698
+ k(1)), then,
699
+ ¯ηk = arg min q(ϕk(0), ϕ′
700
+ k(0), ϕ′
701
+ k(1)),
702
+ (38)
703
+ By minimizing (38) we have
704
+ ¯ηk = −¯ak
705
+ ¯bk
706
+ , ¯bk ≥ ¯ǫ,
707
+ (39)
708
+ where ¯ak = αkgT
709
+ k dk, ¯bk = αk(g¯z − gk)Tdk, g¯z = ∇f(¯z), ¯z = xk + αkdk and ¯ǫ > 0 is a small constant.
710
+ We propose the following acceleration criterion, which is simpler than the rule in reference [32], that is
711
+ ¯bk ≥ ¯ǫ, ∥s¯z∥2 ≤ ¯τ, ∥gk∥2 ≤ ˆτ, |¯tk+1| < ¯c, and |sT
712
+ k g¯z| ≥ Max(ς, ¯ς · ¯bk)
713
+ (40)
714
+ where ¯ǫ, ¯τ, ˆτ, ¯c, ς and ¯ς are all small positive constants, ¯bk = αk(g¯z − gk)T dk, s¯z = ¯z − xk, ¯z = xk + αkdk,
715
+ |¯tk+1| = | 2(fk−f¯z+gT
716
+ ¯z s¯z)
717
+ sT
718
+ ¯z g¯z
719
+ − 1|, f¯z = f(¯z) and g¯z = ∇f(¯z). When the condition (40) holds, we accelerate
720
+ the algorithm and update the relevant variables. In addition, one of the necessary conditions for successful
721
+ acceleration is that the trial iteration point must satisfy the line search condition. Therefore, if the algorithm
722
+
723
+ Title Suppressed Due to Excessive Length
724
+ 11
725
+ accelerates successfully, update the iteration point xk+1 by using (36). Otherwise the algorithm acceleration
726
+ fails and returns to the original algorithm, at which point ¯ηk = 1, update the iteration point xk+1 with (2).
727
+ In reference [32], the acceleration criterion is divided into three cases, which seems to be more complex,
728
+ while our acceleration criterion has only one case and the form is simpler.
729
+ 2.3 Choices of the Initial Stepsize and the Generalized Nonmonotone Wolfe Line Search
730
+ It is well known that the design of the search direction and the conditions of the line search are two
731
+ critical factors which affect the efficiency of the line search algorithm. In this subsection, we will develop
732
+ an improved nonmonotone Wolfe line search which can be regarded as an extension of the Zhang-Hager’s
733
+ [41] nonmonotone line search. In addition, an improved initial step selection strategy is designed.
734
+ For the sake of convenience, we express the one-dimensional line search function as
735
+ φk(α) = f(xk + αdk), α ≥ 0.
736
+ The choice of the initial stepsize α0
737
+ k is of great importance for a line search in an optimization method. For
738
+ the Newton-like methods, choosing the initial step α0
739
+ k = 1 is important to speed up convergence. For the
740
+ conjugate gradient methods, it is essential to use information from the current iteration of the problem to
741
+ make initial guesses [29]. In the conjugate gradient method, there have been various ways to choose the
742
+ initial stepsize, for example, see [5,12,15,29]. However, it did not have an agreement on which is the best.
743
+ In particular, Hager and Zhang [15] select the initial step in CG DESCENT as below:
744
+ α0
745
+ k =
746
+
747
+
748
+
749
+ arg min ¯q
750
+
751
+ φk (0) , φ′
752
+ k (0) , φk (¯τ1αk−1)
753
+
754
+ , if φk (¯τ1αk−1) ≤ φk (0) ,
755
+ ¯τ2αk−1,
756
+ otherwise,
757
+ (41)
758
+ where ¯q
759
+
760
+ φk (0) , φ′
761
+ k (0) , φk (τ1αk−1)
762
+
763
+ represents the interpolation function given by the three values φk (0) ,
764
+ φ′
765
+ k (0) and φk (τ1αk−1) , ¯τ1 and ¯τ2 are positive parameters. In CGOPT, Dai and Kou [5] determined the
766
+ initial stepsize in the following way:
767
+ α0
768
+ k =
769
+
770
+
771
+
772
+ α
773
+ if |φk (α) − φk (0)| / (τ3 + φk (0)) > τ4,
774
+ arg min ¯q
775
+
776
+ φk (0) , φ′
777
+ k (0) , φk (α)
778
+
779
+ , otherwise,
780
+ (42)
781
+ where α = max
782
+
783
+ τ5αk−1, −2 |fk − fk−1| /gT
784
+ k dk
785
+
786
+ , τ3 > 0, τ4 > 0 and τ5 > 0. Most recently, Liu and Liu
787
+ [26] discussed the development a very effective initial stepsize selection strategy for SMCG method by
788
+ combining the BB methods and the interpolation technique.
789
+ Based on the above research, we devise an improved strategy to obtain the initial stepsize. We first
790
+ consider the initial stepsize for the search direction in the RQN iteration.
791
+ (i) Initial stepsize of the search direction (34) with Bk+1(µ) ̸= I.
792
+ Since the search direction ˆd is a quasi-Newton direction in the subspace Sk, then the initial stepsize
793
+ α0
794
+ k = 1 may be a good choice. Therefore, the trial initial stepsize can be stated as
795
+ α0
796
+ k =
797
+
798
+
799
+
800
+ ˆαk,
801
+ if
802
+ ((10) or ̟ ≤ τ2) holds and ¯αk > 0,
803
+ 1,
804
+ otherwise,
805
+ (43)
806
+
807
+ 12
808
+ Wumei Sun1 et al.
809
+ where
810
+ ˆαk = min{max{¯αk, αmin}, αmax},
811
+ ¯αk = min ¯q(φk(0), φk
812
+ ′(0),φk(1)),
813
+ ̟ = |φk (1) − φk (0)| / (τ1 + φk (0)) , τ1 > 0, τ2 > 0 and αmax > αmin > 0.
814
+ Here, ¯q
815
+
816
+ φk (0) , φ′
817
+ k (0) , φk (1)
818
+
819
+ is a quadratic interpolation function for φk (0) , φ′
820
+ k (0) , and φk (1) , and
821
+ αmax and αmin represent two positive constants.
822
+ (ii) Initial stepsize of the search direction (34) with Bk+1(µ) = I.
823
+ α0
824
+ k =
825
+
826
+
827
+
828
+ ˆαk,
829
+ if
830
+ ((10) or ̟ ≤ τ2) holds and ¯αk > 0,
831
+ ¯¯αk,
832
+ otherwise,
833
+ (44)
834
+ where
835
+ ¯¯αk =
836
+
837
+
838
+
839
+ max{min{αBB2
840
+ k
841
+ , αmax}, αmin}, if gT
842
+ k sk−1 > 0,
843
+ max{min{αBB1
844
+ k
845
+ , αmax}, αmin}, if gT
846
+ k sk−1 ≤ 0,
847
+ (45)
848
+ For the initial stepsize of the search direction in the SMCG iteration. If the search direction dk is
849
+ calculated by (20) with dk ̸= −gk, the initial stepsize is chosen in the same way as the RQN iteration,
850
+ which is determined by (43). If the search direction dk is given by (19), the initial stepsize is determined
851
+ by
852
+ α0
853
+ k =
854
+
855
+
856
+
857
+ min{max{˜˜αk, αmin}, αmax}, if (10) holds, ∥gk∥2 ≤ 1, dk−1 ̸= −gk−1 and ˜˜αk > 0,
858
+ ¯¯αk,
859
+ otherwise,
860
+ (46)
861
+ where ¯¯αk is determined by (45) and ˜˜αk = min q(φk(0), φk′(0),φk(¯¯αk)).
862
+ Next, we introduce a generalized line search condition, which can be regarded as a development of the
863
+ Zhang-Hager’s nonmonotone line search. We recall the nonmonotone line search introduced by Zhang and
864
+ Hager [41]
865
+ f(xk + αkdk) ≤ Ck + δαkgT
866
+ k dk,
867
+ (47)
868
+ where
869
+ Ck+1 = ηkQkCk + f k+1
870
+ Qk+1
871
+ , Qk+1 = ηkQk + 1,
872
+ (48)
873
+ 0 < δ < 1, and ηk ∈ [0, 1]. From (48), it is easy to see that Ck+1 is a convex combination of fk+1 and
874
+ Ck. If C0 = f(x0), it is thus clear that Ck can be regard as a convex combination of the function values
875
+ f(x0), f(x1), · · · , f(xk). It means that Ck can employ information about the known function values from
876
+ the previous iteration. The Zhang-Hager’s nonmonotone line search (47) is reduced to the standard Armijo
877
+ line search condition when ηk = 0 for each k.
878
+ As it was reported in [41], the nonmonotone line search proposed by Zhang and Hager plays a crucial
879
+ role in generating an appropriate stepsize compared to the monotone line search method. Based on (47)
880
+ and (48), Huang et al. [17] presented a very effective nonmonotone line search technique, which can be
881
+
882
+ Title Suppressed Due to Excessive Length
883
+ 13
884
+ regard as an extension of Zhang-Hager’s nonmonotone line search, that is
885
+ Ck+1 = ηkQkCk + fk+1
886
+ Qk+1
887
+ ≤ Ck + δkαkgT
888
+ k dk,
889
+ (49)
890
+ where ηk ∈ [ηmin, ηmax], δmax < 1, 0 < δmin < (1 − ηmax)δmax, δmin ≤ δk ≤
891
+ δmax
892
+ Qk+1 and Qk+1 is computed
893
+ by (48).
894
+ Inspired by the previous discussion, we will study a generalized nonmonotone Wolfe line search technique
895
+ based on (48) and (49). Considering the acceleration technique, the generalized nonmonotone Wolfe line
896
+ search conditions are as follows:
897
+ Ck+1 ≤ Ck + δk¯ηkαkgT
898
+ k dk,
899
+ (50)
900
+ gT
901
+ k+1dk ≥ σgT
902
+ k dk,
903
+ (51)
904
+ where 0 < δmin < δk < δmax < 1, σ ∈ (0, 1), Q0 = 1, C0 = f0, ¯ηk is an acceleration parameter determined
905
+ by (39), Ck and Qk are updated as follows
906
+ Ck+1 = ηkQkCk + f(xk+1)
907
+ Qk+1
908
+ , Qk+1 = ηkQk + 1, f(xk+1) = f(xk + ¯ηkαkdk),
909
+ (52)
910
+ where ηk ∈ [0, 1]. Specially,
911
+ Q1 = 2.0, C1 = min{C0, f1 + 1.0},
912
+ (53)
913
+ when k ≥ 1, Ck+1 and Qk+1 are updated by (52), and ηk is given as
914
+ ηk =
915
+
916
+
917
+
918
+ 1,
919
+ if Ck − fk+1 > 0.95|Ck| and k > 100,
920
+ 0.9, otherwise.
921
+ (54)
922
+ Here ηk is a parameter that controls the degree of non-monotonicity, referred to [25].
923
+ Furthermore, we demonstrate that the generalized nonmonotone Wolfe line search is an extension of
924
+ the Zhang-Hager’s nonmonotone Wolfe line search method. It follows from (50) that we get
925
+ f(xk + ¯ηkαkdk) ≤ (Qk+1 − ηkQk)Ck + Qk+1δk¯ηkαkgT
926
+ k dk.
927
+ (55)
928
+ Since Qk+1 − ηkQk = 1, (50) is equivalent to
929
+ f(xk + ¯ηkαkdk) ≤ Ck + Qk+1δk¯ηkαkgT
930
+ k dk,
931
+ (56)
932
+ It is easy to see that if δk =
933
+ δ
934
+ Qk+1 , nonmonotone line search condition (56) reduces to the Zhang-Hager’s
935
+ nonmonotone Wolfe line search condition (47). This means that the Zhang-Hager’s nonmonotone Wolfe
936
+ line search condition in [41] can be considered as a particular version of (50).
937
+ 2.4 A Regularized Limited Memory Subspace Minimization Conjugate Gradient Algorithm(RL SMCG)
938
+ In this subsection, we describe the regularized limited memory subspace minimization conjugate gradient
939
+ algorithm in detail. As mentioned above, the regularized limited memory subspace minimization conjugate
940
+ gradient algorithm is made of two kinds of iterations. The “state” in Algorithm 1 represents for the type of
941
+
942
+ 14
943
+ Wumei Sun1 et al.
944
+ iteration, i.e., state= “SMCG” means that SMCG iteration will be carried out, and state= “RQN” means
945
+ that RQN iteration will be performed.
946
+ Algorithm 1 RL SMCG
947
+ Step 0. Chosen x0 ∈ Rn, ε > 0, ˜η0, ˜η1, υ, m, ξ1, ξ2, ξ3, ξ4, ξ5, σ1, σ2, σ3, µmin, µmax, τ, ¯τ, ¯c, ς, ¯ς, ¯ǫ, τ1,
948
+ τ2, δk, σ, IterRestart := 0, IterQuad := 0 and MinQuad. Set state = “SMCG” and k := 0.
949
+ Step 1. If ∥gk∥∞ ≤ ε, stop.
950
+ Step 2. Compute the search direction.
951
+ If (state = “SMCG”), then
952
+ If k = 0, then d0 = −g0.
953
+ elseif (IterQuad = MinQuad and IterQuad ̸= IterRestart), set
954
+ dk = −gk, IterQuad = 0, and IterRestart = 0.
955
+ else
956
+ Determine the search direction dk by (20).
957
+ end
958
+ elseif (state = “RQN”), then
959
+ Compute Pk by (35), and compute the search direction dk by (34).
960
+ end
961
+ Step 3. Determine the corresponding initial step size α0
962
+ k from (43), (44) and (46) according to the different
963
+ iteration directions in the Step 2.
964
+ Step 4. Determine a stepsize αk satisfying the generalized nonmonotone Wolfe line search (50) and (51)
965
+ with initial stepsize α0
966
+ k.
967
+ Step 5.Compute the trial iteration ¯z = xk + αkdk and g¯z = ∇f(¯z). If ∥g¯z∥∞ ≤ ε, then stop; otherwise, go
968
+ to Step 6.
969
+ Step 6. Acceleration procedure.
970
+ If the condition (40) holds, then go to 6.1.
971
+ 6.1. Compute ¯ak = αkgT
972
+ k dk, ¯bk = αk(g¯z − gk)T dk and ¯ηk by (39).
973
+ 6.2. Update the iteration point as xk+1 = xk + ¯ηkαkdk and compute fk+1 and gk+1.
974
+ 6.3. If fk+1 satisfies (50) and gk+1 satisfies (51), go to Steps 8. Otherwise, go to Steps 7.
975
+ else
976
+ go to Steps 7.
977
+ end
978
+ Step 7. Update the variable as xk+1 = xk + αkdk. Compute fk+1 and gk+1.
979
+ Step 8. Update restart conditions.
980
+ Step 9. Update Qk+1 and Ck+1 with (52).
981
+ Step 10. Update iteration type.
982
+ If (state = “SMCG”), then
983
+ If (24) holds, then state = “RQN”.
984
+ elseif (state = “RQN”), then
985
+ If (25) holds, then state = “SMCG”.
986
+ end
987
+ Step 11. Set k := k + 1 and go to Step 1.
988
+ Remark 3. Notably, when the lost orthogonality is corrected, our algorithm terminates the RQN
989
+ iteration and immediately calls the SMCG iteration. However, the limited memory CG method [15] first
990
+
991
+ Title Suppressed Due to Excessive Length
992
+ 15
993
+ carries out the complex preprocessing CG iteration after the orthogonality is improved. This means that
994
+ algorithm RL SMCG is more simple compared to the limited memory CG method [15].
995
+ 3 Convergence Analysis
996
+ In the section, we establish the global convergence of the algorithm RL SMCG under the following assump-
997
+ tions and properties.
998
+ Define N to be an open neighborhood of the level set L (x0) = {x ∈ Rn : f (x) ≤ f (x0)} , where x0 is
999
+ an initial point.
1000
+ Assumption 1 (i) The objective function f is continuously differentiable in N and the level set is bounded
1001
+ from below. (ii) The gradient g of the objective function is Lipschitz continuous in N, i.e., there exists a
1002
+ constant L > 0 such that ∥g(x) − g(y)∥ ≤ L ∥x − y∥ , ∀x, y ∈ N.
1003
+ Under these assumptions, we have the following several properties.
1004
+ Lemma 1 Suppose that Assumption 1 holds. Then, for ˆBk+1(µ) in (30), there exist three constants ˆξ1 >
1005
+ 0, ˆξ2 > 0 and ˆξ3 > 0 such that
1006
+ λmax
1007
+
1008
+ ˆBk+1(µ)
1009
+
1010
+ ≤ ˆξ1, λmax
1011
+
1012
+ ˆB−1
1013
+ k+1(µ)
1014
+
1015
+ ≤ ˆξ2,
1016
+ ��� ˆB−1
1017
+ k+1(µ)
1018
+ ��� ≤ ˆξ3.
1019
+ Proof We know that Zk is a normal orthogonal basis of Sk and the dimension m < +∞, hence we have
1020
+ ξ0 > 0 such that ∥Zk∥ ≤ ξ0. According to (30) and the property of the matrix norm in finite dimensional
1021
+ spaces, we can get that λmax
1022
+
1023
+ ˆBk(µ)
1024
+
1025
+ = 1 or
1026
+ λmax
1027
+
1028
+ ˆBk+1(µ)
1029
+
1030
+ ≤ λmax
1031
+
1032
+ ˆBk(µ)
1033
+
1034
+ + λmax
1035
+
1036
+
1037
+ ˆBk(µ)ˆskˆsT
1038
+ k ˆBk(µ)
1039
+ ˆsT
1040
+ k ˆBk(µ)ˆsk
1041
+
1042
+ + λmax
1043
+ � ˆyk(µ)ˆyT
1044
+ k (µ)
1045
+ ˆsT
1046
+ k ˆyk(µ)
1047
+
1048
+ (57)
1049
+ ≤ λmax
1050
+
1051
+ ˆBk(µ)
1052
+
1053
+ + ˆyT
1054
+ k (µ)ˆyk(µ)
1055
+ ˆsT
1056
+ k ˆyk(µ)
1057
+ .
1058
+ Further, by ˆyk(µ) = ˆyk + µˆsk, µ > 0, we get
1059
+ ˆyT
1060
+ k (µ)ˆyk(µ)
1061
+ ˆsT
1062
+ k ˆyk(µ)
1063
+ = ∥ˆyk∥2 + µ2
1064
+ k∥ˆsk∥2 + 2µˆsT
1065
+ k ˆyk
1066
+ ˆsT
1067
+ k ˆyk + µ∥ˆsk∥2
1068
+ = ∥ˆyk∥2 + µˆsT
1069
+ k ˆyk
1070
+ ˆsT
1071
+ k ˆyk + µ∥ˆsk∥2 + µˆsT
1072
+ k ˆyk + µ2
1073
+ k∥ˆsk∥2
1074
+ ˆsT
1075
+ k ˆyk + µ∥ˆsk∥2
1076
+ ≤ ∥ˆyk∥2 + µˆsT
1077
+ k ˆyk
1078
+ ˆsT
1079
+ k ˆyk
1080
+ + µ
1081
+ ≤ L2ξ2
1082
+ 0∥ˆsk∥2
1083
+ ˆsT
1084
+ k ˆyk
1085
+ + 2µ
1086
+ ≤ L2ξ2
1087
+ 0
1088
+ υ
1089
+ + 2µmax.
1090
+ The fourth inequality above is obtained from ˆyk = ZT
1091
+ k yk, ∥Zk∥ ≤ ξ0 and Assumption 1 (ii). Because
1092
+ ˆBk(µ) will be set to ˆI after a maximum of l updates, combining with (57) easy to get λmax
1093
+
1094
+ ˆBk+1(µ)
1095
+
1096
+
1097
+ 1 + lL2ξ2
1098
+ 0
1099
+ υ
1100
+ + 2lµmax ≜ ˆξ1.
1101
+
1102
+ 16
1103
+ Wumei Sun1 et al.
1104
+ Let ˆPk(µ) = ˆB−1
1105
+ k+1(µ). According to (30) and some simple matrix operations, we have that ˆPk(µ) = ˆI
1106
+ or
1107
+ ˆPk(µ) =
1108
+
1109
+ ˆI − ˆyk(µ)ˆsT
1110
+ k
1111
+ ˆsT
1112
+ k ˆyk(µ)
1113
+ �T
1114
+ ˆPk−1(µ)
1115
+
1116
+ ˆI − ˆyk(µ)ˆsT
1117
+ k
1118
+ ˆsT
1119
+ k ˆyk(µ)
1120
+
1121
+ +
1122
+ ˆskˆsT
1123
+ k
1124
+ ˆsT
1125
+ k ˆyk(µ).
1126
+ (58)
1127
+ It is not difficult to that λmax
1128
+ ��
1129
+ ˆI − ˆyk(µ)ˆsT
1130
+ k
1131
+ ˆsT
1132
+ k ˆyk(µ)
1133
+ �T �
1134
+ ˆI − ˆyk(µ)ˆsT
1135
+ k
1136
+ ˆsT
1137
+ k ˆyk(µ)
1138
+ ��
1139
+ = ∥ˆyk(µ)∥2∥ˆsk∥2
1140
+ (ˆsT
1141
+ k ˆyk(µ))
1142
+ 2
1143
+ . For any ˆz ̸= 0 ∈ Rm and
1144
+ ˆPk(µ) in (58), we have
1145
+ ˆzT ˆPk(µ)ˆz = ˆzT
1146
+
1147
+ ˆI − ˆyk(µ)ˆsT
1148
+ k
1149
+ ˆsT
1150
+ k ˆyk(µ)
1151
+ �T
1152
+ ˆPk−1(µ)
1153
+
1154
+ ˆI − ˆyk(µ)ˆsT
1155
+ k
1156
+ ˆsT
1157
+ k ˆyk(µ)
1158
+
1159
+ ˆz +
1160
+
1161
+ ˆsT
1162
+ k ˆz
1163
+ �2
1164
+ ˆsT
1165
+ k ˆyk(µ)
1166
+ ≤ λmax
1167
+
1168
+ ˆPk−1(µ)
1169
+
1170
+ ˆzT
1171
+
1172
+ ˆI − ˆyk(µ)ˆsT
1173
+ k
1174
+ ˆsT
1175
+ k ˆyk(µ)
1176
+ �T �
1177
+ ˆI − ˆyk(µ)ˆsT
1178
+ k
1179
+ ˆsT
1180
+ k ˆyk(µ)
1181
+
1182
+ ˆz +
1183
+
1184
+ ˆsT
1185
+ k ˆz
1186
+ �2
1187
+ ˆsT
1188
+ k ˆyk(µ)
1189
+ ≤ λmax
1190
+
1191
+ ˆPk−1(µ)
1192
+
1193
+ λmax
1194
+ ��
1195
+ ˆI − ˆyk(µ)ˆsT
1196
+ k
1197
+ ˆsT
1198
+ k ˆyk(µ)
1199
+ �T �
1200
+ ˆI − ˆyk(µ)ˆsT
1201
+ k
1202
+ ˆsT
1203
+ k ˆyk(µ)
1204
+ ��
1205
+ ∥ˆz∥2 +
1206
+
1207
+ ˆsT
1208
+ k ˆz
1209
+ �2
1210
+ ˆsT
1211
+ k ˆyk(µ)
1212
+ ≤ λmax
1213
+
1214
+ ˆPk−1(µ)
1215
+ � ∥ˆyk(µ)∥2∥ˆsk∥2
1216
+
1217
+ ˆsT
1218
+ k ˆyk(µ)
1219
+ �2
1220
+ ∥ˆz∥2 +
1221
+ ∥ˆsk∥2
1222
+ ˆsT
1223
+ k ˆyk(µ)∥ˆz∥2.
1224
+ The above inequality is divided by ∥ˆz∥2, and the resulting inequality is maximized, then we have
1225
+ λmax
1226
+
1227
+ ˆPk(µ)
1228
+
1229
+ ≤ λmax
1230
+
1231
+ ˆPk−1(µ)
1232
+ � ∥ˆyk(µ)∥2∥ˆsk∥2
1233
+
1234
+ ˆsT
1235
+ k ˆyk(µ)
1236
+ �2
1237
+ +
1238
+ ∥ˆsk∥2
1239
+ ˆsT
1240
+ k ˆyk(µ)
1241
+ ≤ λmax
1242
+
1243
+ ˆPk−1(µ)
1244
+
1245
+
1246
+
1247
+ ∥ˆyk(µ)∥2
1248
+ ˆsT
1249
+ k ˆyk(µ)
1250
+ ∥ˆsk∥2
1251
+ ˆsT
1252
+ k ˆyk(µ)
1253
+
1254
+  + ∥ˆsk∥2
1255
+ ˆsT
1256
+ k ˆyk
1257
+ ≤ λmax
1258
+
1259
+ ˆPk−1(µ)
1260
+ � �L2ξ2
1261
+ 0
1262
+ υ
1263
+ + 2µmax
1264
+ � ∥ˆsk∥2
1265
+ ˆsT
1266
+ k ˆyk
1267
+ + ∥ˆsk∥2
1268
+ ˆsT
1269
+ k ˆyk
1270
+
1271
+ �L2ξ2
1272
+ 0
1273
+ υ2
1274
+ + 2µmax
1275
+ υ
1276
+
1277
+ λmax
1278
+
1279
+ ˆPk−1(µ)
1280
+
1281
+ + 1
1282
+ υ .
1283
+ The third inequality above is obtained from ˆyk = ZT
1284
+ k yk, ∥Zk∥ ≤ ξ0 and Assumption 1 (ii). Because ˆPk(µ)
1285
+ will be set to ˆI after a maximum of l updates, it is easy to know that there exists a constant ˆξ2 > 0 such
1286
+ that λmax
1287
+
1288
+ ˆB−1
1289
+ k+1(µ)
1290
+
1291
+ = λmax
1292
+
1293
+ ˆPk(µ)
1294
+
1295
+ ≤ ˆξ2.
1296
+ Since ˆB−1
1297
+ k+1(µ) is a positive definite and symmetric matrix, we have
1298
+ ��� ˆB−1
1299
+ k+1(µ)
1300
+ ���
1301
+ 2 = λmax
1302
+
1303
+ ˆB−1
1304
+ k+1(µ)
1305
+
1306
+
1307
+ ˆξ2. As a result, using the equivalence property of matrix norm in a finite dimensional space, it follows that
1308
+ there exists a constant ˆξ3 > 0 such that
1309
+ ��� ˆB−1
1310
+ k+1(µ)
1311
+ ��� ≤ ˆξ3. The proof is completed.
1312
+ ⊓⊔
1313
+ Lemma 2 Suppose that Assumption 1 holds. Then, for Pk in (35), there exist three constants γ0 > 0, γ1 > 0
1314
+ and γ2 > 0 such that
1315
+ ∥Pk∥ ≤ γ0, gT
1316
+ k+1Pkgk+1 ≥ γ1 ∥gk+1∥2 , dT
1317
+ k P −1
1318
+ k
1319
+ dk ≥ γ2 ∥dk∥2 ,
1320
+ (59)
1321
+ where P −1
1322
+ k
1323
+ denotes the pseudoinverse of Pk.
1324
+ Proof By (25), (35) and Lemma 1, we obtain that
1325
+ ∥Pk∥ =
1326
+ ���Zk ˆB−1
1327
+ k+1(µ)ZT
1328
+ k
1329
+ ��� =
1330
+ ��� ˆB−1
1331
+ k+1(µ)
1332
+ ��� ≤ ˆξ3 ≜ γ0,
1333
+ gT
1334
+ k+1Pkgk+1 = gT
1335
+ k+1Zk ˆB−1
1336
+ k+1(µ)ZT
1337
+ k gk+1
1338
+
1339
+ Title Suppressed Due to Excessive Length
1340
+ 17
1341
+ = ˆgT
1342
+ k+1 ˆB−1
1343
+ k+1(µ)ˆgk+1
1344
+ ≥ λmin
1345
+
1346
+ ˆB−1
1347
+ k+1(µ)
1348
+
1349
+ ∥ˆgk+1∥2
1350
+ ≥ 1
1351
+ ˆξ1
1352
+
1353
+ 1 − ˜η2
1354
+ 1
1355
+
1356
+ ∥gk+1∥2 ≜ γ1 ∥gk+1∥2 ,
1357
+ dT
1358
+ k P −1
1359
+ k
1360
+ dk = dT
1361
+ k Zk ˆB−1
1362
+ k+1(µ)ZT
1363
+ k dk = ˆdT
1364
+ k ˆB−1
1365
+ k+1(µ) ˆdk ≥ 1
1366
+ ˆξ2
1367
+ ��� ˆdk
1368
+ ���
1369
+ 2
1370
+ = 1
1371
+ ˆξ2
1372
+ ∥dk∥2 ≜ γ2 ∥dk∥2 .
1373
+ Therefore, we can get the conclusions. The proof is completed.
1374
+ ⊓⊔
1375
+ Subsequently, we provide some properties of the search directions produced by the algorithm RL SMCG,
1376
+ which are crucial for the following convergence analysis.
1377
+ Lemma 3 Suppose that Assumption 1 holds. Then, there exists a constant c1 > 0 such that the search
1378
+ directions (20) and (34) are calculated by algorithm RL SMCG satisfy the sufficient descent condition:
1379
+ gT
1380
+ k dk ≤ −¯c1∥gk∥2.
1381
+ (60)
1382
+ Proof We divide the proof into the following two cases.
1383
+ (i) SMCG iteration. Similar to the proof of Lemma 4.1 of [42], it is easy to have
1384
+ gT
1385
+ k dk ≤ −c1∥gk∥2,
1386
+ where c1 = min
1387
+
1388
+ 1
1389
+ 2, 1 − ¯ξ3,
1390
+ 2
1391
+ 3¯ξ2 ,
1392
+ 1
1393
+ 3¯ξ2 ,
1394
+ 2
1395
+ 5¯ξ2
1396
+
1397
+ .
1398
+ (ii) RQN iteration. According to Lemma 2, we have
1399
+ gT
1400
+ k dk = −gT
1401
+ k Pk−1gk ≤ −γ1 ∥gk∥2 .
1402
+ By setting ¯c1 = min {c1, γ1}, we can obtain (60). The proof is completed.
1403
+ ⊓⊔
1404
+ Lemma 4 Suppose that Assumption 1 holds. Then, there exists a constant c1 > 0 such that the search
1405
+ directions (20) and (34) are calculated by algorithm RL SMCG satisfy
1406
+ ∥dk∥ ≤ ¯c2∥gk∥.
1407
+ (61)
1408
+ Proof We divide the proof into the following two cases.
1409
+ (i) SMCG iteration. Referring to the proof procedure of Lemma 4.2 of [42], it is easy to get
1410
+ ∥dk∥ ≤ c2∥gk∥,
1411
+ where c2 = max
1412
+
1413
+ 1, 1 + L
1414
+ ¯ξ1 , 20
1415
+ ¯ξ1
1416
+
1417
+ .
1418
+ (ii) RQN iteration. According to Lemma 2, we obtain ∥dk∥ = ∥−Pk−1gk∥ ≤ γ0 ∥gk���.
1419
+ By setting ¯c2 = min {c2, γ0}, we can obtain (61). The proof is completed.
1420
+ ⊓⊔
1421
+ The following lemmas are very critical for the convergence analysis of algorithm RL SMCG.
1422
+
1423
+ 18
1424
+ Wumei Sun1 et al.
1425
+ Lemma 5 Suppose that Assumption 1 holds, and the sequence {xk} is generated by the algorithm RL SMCG.
1426
+ Then,
1427
+ If acceleration succeeds:
1428
+ ¯ηkαk ≥
1429
+ �1 − σ
1430
+ L
1431
+ � ��gT
1432
+ k dk
1433
+ ��
1434
+ ∥dk∥2 .
1435
+ (62)
1436
+ If acceleration fails:
1437
+ αk ≥
1438
+ �1 − σ
1439
+ L
1440
+ � ��gT
1441
+ k dk
1442
+ ��
1443
+ ∥dk∥2 .
1444
+ (63)
1445
+ Where σ are given by (51).
1446
+ Proof We divide the proof into the following two cases.
1447
+ (i) If acceleration succeeds:
1448
+ From (51) and Assumptions 1 (ii), we obtain that
1449
+ (σ − 1)gT
1450
+ k dk ≤ g(xk + ¯ηkαkdk)T dk − gT
1451
+ k dk = (g(xk + ¯ηkαkdk) − gk)T dk ≤ L¯ηkαk∥dk∥2,
1452
+ which yields
1453
+ ¯ηkαk ≥
1454
+ �σ − 1
1455
+ L
1456
+ � gT
1457
+ k dk
1458
+ ∥dk∥2 .
1459
+ This means that (62) holds.
1460
+ (ii) If acceleration fails:
1461
+ Let ¯ηk = 1, and the rest of the proof procedure is the same as before.
1462
+ ⊓⊔
1463
+ Lemma 6 Suppose that Assumption 1 holds, and the sequence {xk} is generated by the algorithm RL SMCG.
1464
+ Then, there holds that fk ≤ Ck for each k.
1465
+ Proof We divide the proof into the following two cases.
1466
+ (i) If acceleration succeeds:
1467
+ The new iterative update format is xk+1 = xk + ¯ηkαkdk, where ¯ηk = − ¯ak
1468
+ ¯bk . Through (56), we have
1469
+ fk+1 = f(xk + ¯ηkαkdk) ≤ Ck + Qk+1δk¯ηkαkgT
1470
+ k dk. Combining (52), δk > 0, lemma 5 and the sufficiently
1471
+ descent property of the direction dk+1, we have fk+1 < Ck. The remaining proof process refers to Lemma
1472
+ 5.1 in [42], we can obtain fk+1 ≤ Ck+1, hence fk ≤ Ck is established for each k.
1473
+ (ii) If acceleration fails:
1474
+ Let ¯ηk = 1, and the rest of the proof procedure is the same as before.
1475
+ ⊓⊔
1476
+ Theorem 1 Suppose that Assumption 1 holds, the sequence {xk} is generated by the algorithm RL SMCG.
1477
+ Then,
1478
+ lim
1479
+ k→∞ ∥gk∥ = 0.
1480
+ (64)
1481
+ Proof We divide the proof into the following two cases.
1482
+ (i) If acceleration succeeds:
1483
+ By Assumptions 1, lemmas 3 - 5 and the generalized nonmonotone Wolfe line search conditions (50)
1484
+ and (51), we get that
1485
+ Ck+1 ≤ Ck + δk¯ηkαkgT
1486
+ k dk
1487
+ (65)
1488
+
1489
+ Title Suppressed Due to Excessive Length
1490
+ 19
1491
+ ≤ Ck + δmin¯ηkαkgT
1492
+ k dk
1493
+ ≤ Ck + δmin 1 − σ
1494
+ L
1495
+ (gT
1496
+ k dk)2
1497
+ ∥dk∥2
1498
+ ≤ Ck + δmin(1 − σ)¯c2
1499
+ 1
1500
+ L¯c2
1501
+ 2
1502
+ ∥gk∥2
1503
+ = Ck + β∥gk∥2.
1504
+ Where β =
1505
+ δmin(1−σ)¯c2
1506
+ 1
1507
+ L¯c2
1508
+ 2
1509
+ . Combined with (53), we have C1 ≤ C0 that means that Ck is monotonically
1510
+ decreasing. According to lemma 6 and Assumption 1 (i), we know Ck is bounded from below. Then
1511
+
1512
+
1513
+ k=0
1514
+ β∥gk∥2 < ∞,
1515
+ therefore,
1516
+ lim
1517
+ k→∞ ∥g(xk)∥ = 0.
1518
+ (ii) If acceleration fails:
1519
+ Let ¯ηk = 1, and the rest of the proof procedure is the same as before.
1520
+ ⊓⊔
1521
+ 4 Numerical Experiments
1522
+ In this section, we compare the numerical performance of RL SMCG with ASMCG PR [32], CG DESCENT(6.8)
1523
+ [15] and CGOPT(2.0) [27] for the 145 test problems from CUTEr library [10]. The codes of CG DESCENT(6.8)
1524
+ [15] and CGOPT(2.0) [27] can be downloaded from http://users.clas.ufl.edu/hager/papers/Software and
1525
+ https://web.xidian.edu.cn/xdliuhongwei/en/paper.html or http://lsec.cc.ac.cn/ dyh/software.html, respec-
1526
+ tively.
1527
+ In the numerical experiments, we set the parameters of RL SMCG as: ¯ξ1 = 10−10, ¯ξ2 = 1.2 × 104,
1528
+ ¯ξ3 = 5 × 10−5, ¯ξ4 = 10−4, ¯ξ5 = 0.08, ˜η0 = 10−9, ˜η1 = 0.5, υ = 5 × 10−7, m = min{n, 11}, σ1 = 0.1,
1529
+ σ2 = 5, σ3 = 0.85, ˆτ = 1, ¯τ = 0.225, ¯c = 0.1, ς = 5 × 10−5(n ≤ 11), ς = 5 × 10−6(n > 11), ¯ς = 5 × 10−3,
1530
+ τ1 = 0.1, τ2 = 135, δk = 0.0005 and σ = 0.9999. CG DESCENT(6.8) and CGOPT(2.0) take the default
1531
+ parameters in their codes but the stopping conditions. Note that the number of memory m for RL SMCG is
1532
+ min{n, 11} while the number of memory for CG DESCENT(6.8) is 11. All test methods in the experiment
1533
+ are terminated if ∥gk∥∞ ≤ 10−6 is satisfied, and we set the number of iterations for all test algorithms to
1534
+ be no more than 200,000. In addition, all algorithms are running in Ubuntu 10.04 LTS.
1535
+ We will show the performances of the test methods using the performance profiles introduced by Dolan
1536
+ and Mor´e [8]. In the following Figs. 1-12, “Niter”,“Nf”,“Ng” and “Tcpu” represent the number of iterations,
1537
+ the number of function evaluations, the number of gradient evaluations and CPU time(s), respectively.
1538
+ We divided the numerical experiments in three teams.
1539
+ In the first set of numerical experiments, figures 1-4 illustrate the performance profiles of RL SMCG
1540
+ and ASMCG PR [32]. From Figs. 1, 2, 3 and 4, we can observe that RL SMCG has a quite significant
1541
+ improvement over ASMCG PR in terms of the number of iterations, the number of function evaluations,
1542
+
1543
+ 20
1544
+ Wumei Sun1 et al.
1545
+ 1
1546
+ 2
1547
+ 3
1548
+ 4
1549
+ 5
1550
+ 6
1551
+ 7
1552
+ 8
1553
+ 9
1554
+ 10
1555
+ 11
1556
+ τ
1557
+ 0.4
1558
+ 0.5
1559
+ 0.6
1560
+ 0.7
1561
+ 0.8
1562
+ 0.9
1563
+ 1
1564
+ P(τ)
1565
+ ARL_SMCG
1566
+ ASMCG_PR
1567
+ Fig. 1: Niter
1568
+ 1
1569
+ 2
1570
+ 3
1571
+ 4
1572
+ 5
1573
+ 6
1574
+ 7
1575
+ 8
1576
+ 9
1577
+ 10
1578
+ 11
1579
+ τ
1580
+ 0.4
1581
+ 0.5
1582
+ 0.6
1583
+ 0.7
1584
+ 0.8
1585
+ 0.9
1586
+ 1
1587
+ P(τ)
1588
+ ARL_SMCG
1589
+ ASMCG_PR
1590
+ Fig. 2: Nf
1591
+ 1
1592
+ 2
1593
+ 3
1594
+ 4
1595
+ 5
1596
+ 6
1597
+ 7
1598
+ 8
1599
+ 9
1600
+ 10
1601
+ 11
1602
+ τ
1603
+ 0.4
1604
+ 0.5
1605
+ 0.6
1606
+ 0.7
1607
+ 0.8
1608
+ 0.9
1609
+ 1
1610
+ P(τ)
1611
+ ARL_SMCG
1612
+ ASMCG_PR
1613
+ Fig. 3: Ng
1614
+ 1
1615
+ 2
1616
+ 3
1617
+ 4
1618
+ 5
1619
+ 6
1620
+ 7
1621
+ 8
1622
+ 9
1623
+ 10
1624
+ 11
1625
+ τ
1626
+ 0.4
1627
+ 0.5
1628
+ 0.6
1629
+ 0.7
1630
+ 0.8
1631
+ 0.9
1632
+ 1
1633
+ P(τ)
1634
+ ARL_SMCG
1635
+ ASMCG_PR
1636
+ Fig. 4: Tcpu
1637
+ the number of gradient evaluations and CPU time. It indicates that the limited memory technique equipped
1638
+ in RL SMCG indeed brings quite significant numerical improvements.
1639
+ In the second set of numerical experiments, we give a comparison of the performance profiles of
1640
+ RL SMCG with CG DESCENT(6.8) [15]. Regarding the number of iterations and the number of func-
1641
+ tion evaluations in Fig. 5 and Fig. 6 respectively, we observe that RL SMCG is a little better than
1642
+ CG DESCENT(6.8) for the number of iterations and the number of function evaluations. As shown in
1643
+ Fig. 7, we can see that RL SMCG is much better than CG DESCENT(6.8) in terms of the number of
1644
+ gradient evaluations, because RL SMCG outperforms for about 71.5% of the CUTEr test problems, while
1645
+ the percentage of software CG DESCENT(6.8) is below 40%. It can be observe from Fig. 8 that RL SMCG
1646
+ is faster than CG DESCENT(6.8) in terms of CPU time. By Theorem 1, RL SMCG is globally conver-
1647
+ gent with the generalized nonmonotone Wolfe line search, while CG DESCENT (6.8) does not guarantee
1648
+ global convergence when using the rather efficient approximate Wolfe (AWolfe) line search. This means that
1649
+ RL SMCG is superior to CG DESCENT(6.8) for CUTEr library in theory and numerical performance.
1650
+ In the third set of the numerical experiments, comparing the performance of RL SMCG with CGOPT(2.0)
1651
+ [27]. As shown in Figs. 9 and 10, we can take a look at RL SMCG performs almost always better than
1652
+ CGOPT(2.0) in terms of the number of iterations and the number of function evaluations. Figures. 11 and
1653
+ 12 indicates that RL SMCG outperforms CGOPT(2.0) in terms of the number of gradient evaluations and
1654
+ CPU time for the CUTEr library.
1655
+
1656
+ Title Suppressed Due to Excessive Length
1657
+ 21
1658
+ 1
1659
+ 2
1660
+ 3
1661
+ 4
1662
+ 5
1663
+ 6
1664
+ 7
1665
+ 8
1666
+ 9
1667
+ 10
1668
+ 11
1669
+ τ
1670
+ 0.4
1671
+ 0.5
1672
+ 0.6
1673
+ 0.7
1674
+ 0.8
1675
+ 0.9
1676
+ 1
1677
+ P(τ)
1678
+ ARL_SMCG
1679
+ CG_DESCENT(6.8)
1680
+ Fig. 5: Niter
1681
+ 1
1682
+ 2
1683
+ 3
1684
+ 4
1685
+ 5
1686
+ 6
1687
+ 7
1688
+ 8
1689
+ 9
1690
+ 10
1691
+ 11
1692
+ τ
1693
+ 0.4
1694
+ 0.5
1695
+ 0.6
1696
+ 0.7
1697
+ 0.8
1698
+ 0.9
1699
+ 1
1700
+ P(τ)
1701
+ ARL_SMCG
1702
+ CG_DESCENT(6.8)
1703
+ Fig. 6: Nf
1704
+ 1
1705
+ 2
1706
+ 3
1707
+ 4
1708
+ 5
1709
+ 6
1710
+ 7
1711
+ 8
1712
+ 9
1713
+ 10
1714
+ 11
1715
+ τ
1716
+ 0.4
1717
+ 0.5
1718
+ 0.6
1719
+ 0.7
1720
+ 0.8
1721
+ 0.9
1722
+ 1
1723
+ P(τ)
1724
+ ARL_SMCG
1725
+ CG_DESCENT(6.8)
1726
+ Fig. 7: Ng
1727
+ 1
1728
+ 2
1729
+ 3
1730
+ 4
1731
+ 5
1732
+ 6
1733
+ 7
1734
+ 8
1735
+ 9
1736
+ 10
1737
+ 11
1738
+ τ
1739
+ 0.4
1740
+ 0.5
1741
+ 0.6
1742
+ 0.7
1743
+ 0.8
1744
+ 0.9
1745
+ 1
1746
+ P(τ)
1747
+ ARL_SMCG
1748
+ CG_DESCENT(6.8)
1749
+ Fig. 8: Tcpu
1750
+ From the results of the above three numerical experiments, it is clear that the proposed algorithm
1751
+ RL SMCG is quite effective.
1752
+ 1
1753
+ 2
1754
+ 3
1755
+ 4
1756
+ 5
1757
+ 6
1758
+ 7
1759
+ 8
1760
+ 9
1761
+ 10
1762
+ 11
1763
+ τ
1764
+ 0.5
1765
+ 0.6
1766
+ 0.7
1767
+ 0.8
1768
+ 0.9
1769
+ 1
1770
+ P(τ)
1771
+ ARL_SMCG
1772
+ CGOPT(2.0)
1773
+ Fig. 9: Niter
1774
+ 1
1775
+ 2
1776
+ 3
1777
+ 4
1778
+ 5
1779
+ 6
1780
+ 7
1781
+ 8
1782
+ 9
1783
+ 10
1784
+ 11
1785
+ τ
1786
+ 0.5
1787
+ 0.6
1788
+ 0.7
1789
+ 0.8
1790
+ 0.9
1791
+ 1
1792
+ P(τ)
1793
+ ARL_SMCG
1794
+ CGOPT(2.0)
1795
+ Fig. 10: Nf
1796
+
1797
+ 22
1798
+ Wumei Sun1 et al.
1799
+ 1
1800
+ 2
1801
+ 3
1802
+ 4
1803
+ 5
1804
+ 6
1805
+ 7
1806
+ 8
1807
+ 9
1808
+ 10
1809
+ 11
1810
+ τ
1811
+ 0.5
1812
+ 0.6
1813
+ 0.7
1814
+ 0.8
1815
+ 0.9
1816
+ 1
1817
+ P(τ)
1818
+ ARL_SMCG
1819
+ CGOPT(2.0)
1820
+ Fig. 11: Ng
1821
+ 1
1822
+ 2
1823
+ 3
1824
+ 4
1825
+ 5
1826
+ 6
1827
+ 7
1828
+ 8
1829
+ 9
1830
+ 10
1831
+ 11
1832
+ τ
1833
+ 0.5
1834
+ 0.6
1835
+ 0.7
1836
+ 0.8
1837
+ 0.9
1838
+ 1
1839
+ P(τ)
1840
+ ARL_SMCG
1841
+ CGOPT(2.0)
1842
+ Fig. 12: Tcpu
1843
+ 5 Conclusions
1844
+ In this paper, combined subspace minimization conjugate gradient method with limited memory technique,
1845
+ we presented a regularized limited memory subspace minimization conjugate gradient method, which con-
1846
+ tains two types of iteration. In the proposed algorithm, a modified regularized quasi-Newton method is
1847
+ given in small dimensional subspace to correct the orthogonality, and an improved initial step size selection
1848
+ strategy and some simple acceleration criteria are designed. Moreover, we establish the global convergence
1849
+ of the proposed algorithm by utilizing generalized nonmonotone Wolfe line search under some mild as-
1850
+ sumptions. Some numerical results suggest that our algorithm yields a tremendous improvement over the
1851
+ ASMCG PR and outperforms the most up-to-date limited memory CG software packages CG DESCENT
1852
+ (6.8) and CGOPT(2.0).
1853
+ 6 Declarations
1854
+ 6.1 Ethical Approval
1855
+ Not Applicable
1856
+ 6.2 Availability of supporting data
1857
+ Data sharing not applicable to this article as no datasets were generated or analyzed during the current
1858
+ study.
1859
+ 6.3 Competing interests
1860
+ The authors declare no competing interests.
1861
+
1862
+ Title Suppressed Due to Excessive Length
1863
+ 23
1864
+ 6.4 Funding
1865
+ This research was supported by the National Natural Science Foundation of China (No. 11901561), the
1866
+ Natural Science Foundation of Guizhou (No. ZK[2022]084) and the Natural Science Basic Research Program
1867
+ of Shaanxi (No. 2021JM-396).
1868
+ 6.5 Authors’ contributions
1869
+ Wumei Sun wrote the main manuscript text. Hongwei Liu and Zexian Liu reviewed and revised the
1870
+ manuscript.
1871
+ 6.6 Acknowledgments
1872
+ The authors would like to thank the editor and the anonymous referees for their valuable suggestions and
1873
+ comments which have greatly improved the presentation of this paper.
1874
+ References
1875
+ 1. Andrei, N.: An accelerated subspace minimization three-term conjugate gradient algorithm for unconstrained opti-
1876
+ mization. Numer. Algor. 65, 859-874 (2014)
1877
+ 2. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer Anal. 8, 141-148 (1988)
1878
+ 3. Dai, Y.H., Yuan, J.Y., Yuan, Y.X.: Modified two-point stepsize gradient methods for unconstrained optimization
1879
+ problems. Comput. Optim. Appl. 22(1), 103-109 (2002)
1880
+ 4. Dai, Y.H.: Nonlinear Conjugate Gradient Methods. Wiley Encyclopedia of Operations Research and Management
1881
+ Science(2011). https://doi.org/10.1002/9780470400531.eorms0183
1882
+ 5. Dai, Y.H., Kou, C.X.: A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line
1883
+ search. SIAM J. Optim. 23(1), 296-320 (2013)
1884
+ 6. Dai, Y.H., Kou, C.X.: A Barzilai-Borwein conjugate gradient method. Sci. China Math. 59(8), 1511-1524 (2016)
1885
+ 7. Dai, Y.H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J.
1886
+ Optim. 10(1), 177-182 (1999)
1887
+ 8. Dolan, E.D., Mor´e, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201-213
1888
+ (2002)
1889
+ 9. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Computer Journal. 7, 149-154 (1964)
1890
+ 10. Gould, N.I.M., Orban, D., Toint, Ph.L: CUTEr and SifDec: A Constrained and Unconstrained Testing Environment,
1891
+ revisited. ACM Trans. Math. Softw. 29, 373-394 (2003)
1892
+ 11. Gu, G.Z., Li, D.H., Qi, L.Q., Zhou, S.Z.: Descent directions of quasi-Newton methods for symmetric nonlinear equations.
1893
+ SIAM J. Numer. Anal. 40, 1763-1774 (2003)
1894
+ 12. Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM
1895
+ J. Optim. 16(1), 170-192 (2005)
1896
+ 13. Hager, W.W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2(1), 35-58 (2006)
1897
+ 14. Hager, W.W., Zhang, H.: Algorithm 851: CG DESCENT, a conjugate gradient method with guaranteed descent. ACM
1898
+ Trans. Math. Software. 32(1), 113-137 (2006)
1899
+ 15. Hager, W.W., Zhang, H.: The limited memory conjugate gradient method. SIAM J. Optim. 23, 2150-2168 (2013)
1900
+ 16. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49,
1901
+ 409-436 (1952)
1902
+ 17. Huang, S., Wan, Z., Chen, X.H.: A new nonmonotone line search technique for unconstrained optimization. Numer.
1903
+ Algor. 68(4), 671-689 (2015)
1904
+
1905
+ 24
1906
+ Wumei Sun1 et al.
1907
+ 18. Li, D.H., Fukushima, M.: A globally and superlinearly convergent Gauss-Newton-based BFGS methods for symmetric
1908
+ nonlinear equations. SIAM J. Numer. Anal. 37, 152-172 (1999)
1909
+ 19. Li, D. H., Fukushima, M.: On the global convergence of BFGS method for nonconvex unconstrained optimization
1910
+ problems. SIAM J. Optim. 11(4), 1054-1064 (2001)
1911
+ 20. Li, M., Liu, H.W., Liu, Z.X.: A new subspace minimization conjugate gradient method with nonmonotone line search
1912
+ for unconstrained optimization. Numer Algor. 79, 195-219 (2018)
1913
+ 21. Li, Y.F., Liu, Z.X., Liu, H.W.: A subspace minimization conjugate gradient method based on conic model for uncon-
1914
+ strained optimization. Computational and Applied Mathematics. 38(1), (2019)
1915
+ 22. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503-528
1916
+ (1989)
1917
+ 23. Liu, T. W.: A regularized limited memory BFGS method for nonconvex unconstrained minimization. Numer. Algor.
1918
+ 65, 305-323 (2014)
1919
+ 24. Liu, Z.X., Liu, H.W.: An efficient gradient method with approximate optimal stepsize for large-scale unconstrained
1920
+ optimization. Numer. Algorithms 78(1), 21-39 (2018)
1921
+ 25. Liu, Z.X., Liu, H.W.: Several efficient gradient methods with approximate optimal stepsizes for large scale unconstrained
1922
+ optimization. J. Comput. Appl. Math. 328, 400-413 (2018)
1923
+ 26. Liu, H.W., Liu, Z.X.: An efficient Barzilai-Borwein conjugate gradient method for unconstrained optimization. J.
1924
+ Optim. Theory Appl. 180, 879-906 (2019)
1925
+ 27. Liu, Z.X., Liu, H.W., Dai, Y.H.: An improved Dai¨CKou conjugate gradient algorithm for unconstrained optimization.
1926
+ Comput. Optim. Appl. 75(1), 145-167 (2020)
1927
+ 28. Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comput. 35, 773-782 (1980)
1928
+ 29. Nocedal, J., Wright, S.J.: Numerical Optimization. New York, Springer (1999)
1929
+ 30. Polak, E., Ribi`ere, G.: Note sur la convergence de m´ethodes de directions conjugu´ees. Rev. Franaise Informat. Rech.
1930
+ Op´erationnelle. 3(16), 35-43 (1969)
1931
+ 31. Polyak, B.T.: The conjugate gradient method in extremal problems. Ussr Comput. Math. Math. Phys. 9(4), 94-112
1932
+ (1969)
1933
+ 32. Sun, W., Liu, H., Liu, Z.: A Class of Accelerated Subspace Minimization Conjugate Gradient Methods. J. Optim.
1934
+ Theory Appl. 190(3), 811-840 (2021)
1935
+ 33. Tarzangh, D.A., Peyghami, M.R.: A new regularized limited memory BFGS-type method based on modified secant
1936
+ conditions for unconstrained optimization problems. J. Global Optim. 63, 709-728 (2015)
1937
+ 34. Tankaria, H., Sugimoto, S., Yamashita, N.: A regularized limited memory BFGS method for large-scale unconstrained
1938
+ optimization and its efficient implementations. Comput. Optim. Appl. 82, 61-88 (2022)
1939
+ 35. Ueda, K., Yamashita, N.: Convergence properties of the regularized newton method for the unconstrained nonconvex
1940
+ optimization. Appl. Math. Optim. 62, 27-46 (2010)
1941
+ 36. Wang, T., Liu, Z.X., Liu, H.W.: A new subspace minimization conjugate gradient method based on tensor model for
1942
+ unconstrained optimization. Int. J. Comput. Math. 96(10), 1924-1942 (2019)
1943
+ 37. Yang, Y.T., Chen, Y.T. Lu, Y.L.: A subspace conjugate gradient algorithm for large-scale unconstrained optimization.
1944
+ Numer Algor. 76, 813-828 (2017)
1945
+ 38. Yuan, Y.X.: A modified BFGS algorithm for unconstrained optimization. IMA J. Numer. Anal. 11(3), 325-332 (1991)
1946
+ 39. Yuan, Y.X., Stoer, J.: A subspace study on conjugate gradient algorithms. Z. Angew. Math. Mech. 75(1), 69-77 (1995)
1947
+ 40. Yuan, Y. X., Sun, W. Y.: Theory and methods of optimization. Science Press of China (1999)
1948
+ 41. Zhang, H., Hager, W.W.,: A Nonmonotone Line Search Technique and Its Application to Unconstrained Optimization.
1949
+ SIAM J. Optim. 14(4), 1043-1056 (2004)
1950
+ 42. Zhao, T., Liu, H.W., Liu, Z.X.: New subspace minimization conjugate gradient methods based on regularization model
1951
+ for unconstrained optimization. Numer. Algor. 87, 1501-1534 (2021)
1952
+
9tE1T4oBgHgl3EQfCQLF/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9tE4T4oBgHgl3EQfdwyk/content/tmp_files/2301.05094v1.pdf.txt ADDED
@@ -0,0 +1,701 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NV center magnetometry up to 130 GPa as if at ambient pressure
2
+ Antoine Hilberer,1 Lo¨ıc Toraille,2, 3 Cassandra Dailledouze,1 Marie-Pierre Adam,1 Liam
3
+ Hanlon,1 Gunnar Weck,2, 3 Martin Schmidt,1 Paul Loubeyre,2, 3 and Jean-Fran¸cois Roch1, ∗
4
+ 1Universit´e Paris-Saclay, CNRS, ENS Paris-Saclay,
5
+ CentraleSupelec, LuMIn, F-91190 Gif-sur-Yvette, France
6
+ 2CEA DAM DIF, F-91297 Arpajon, France
7
+ 3Universit´e Paris-Saclay, CEA, Laboratoire Mati`ere en Conditions Extrˆemes, 91680 Bruy`eres-le-Chˆatel, France
8
+ (Dated: January 13, 2023)
9
+ Engineering a layer of nitrogen-vacancy (NV) centers on the tip of a diamond anvil creates a
10
+ multipurpose quantum sensors array for high pressure measurements, especially for probing magnetic
11
+ and superconducting properties of materials. Expanding this concept above 100 GPa appears to be
12
+ a substantial challenge. We observe that deviatoric stress on the anvil tip sets a limit at 40-50 GPa
13
+ for practical magnetic measurements based on optically detected magnetic resonance (ODMR) of
14
+ NV centers under pressure. We show that this limit can be circumvented up to at least 130 GPa
15
+ by machining a micropillar on the anvil tip to create a quasi-hydrostatic stress environment for the
16
+ NV centers. This is quantified using the pressure dependence of the diamond Raman shift, the NV
17
+ ODMR dependence on applied magnetic field, and NV photoluminescence spectral shift. This paves
18
+ the way for direct and reliable detection of the Meissner effect in superconductors above 100 GPa,
19
+ such as super-hydrides.
20
+ Introduction. The diamond anvil cell (DAC) is rou-
21
+ tinely used to synthesize compounds under megabar
22
+ (100 GPa) pressures, exhibiting novel phenomena and
23
+ remarkable properties. Recent examples such as the ob-
24
+ servation of metal hydrogen [1], superconductivity close
25
+ to ambient temperature in superhydrides [2–4], or su-
26
+ perionic water ice [5] are lacking detailed magnetic or
27
+ transport measurements for their definite proof and clear
28
+ understanding. In particular, magnetic measurements re-
29
+ main challenging at megabar pressures because they are
30
+ mainly based on flux detection by inductive coils and
31
+ must thus extract the signal of the few-micrometers sam-
32
+ ples from the much larger magnetic background signal of
33
+ the bulky DAC apparatus. This constraint can be cir-
34
+ cumvented by implementing in the DAC sensing methods
35
+ that exploit the magnetic sensitivity of nitrogen-vacancy
36
+ (NV) centers in diamond [6–9].
37
+ This method offers a
38
+ tabletop optical microscopy instrumentation, the map-
39
+ ping of the magnetic field in the sample chamber with
40
+ micrometer spatial resolution and the absence of any sen-
41
+ sitivity decrease with the sample size down to the mi-
42
+ crometer scale. Another key feature is the easy combi-
43
+ nation with synchrotron X-ray characterizations to cor-
44
+ relate the magnetic or superconducting properties with a
45
+ well-defined crystallographic structure [10]. Yet, the ex-
46
+ tension of this technique to extreme pressures remains a
47
+ challenge [11]. We investigate here how the existence of a
48
+ deviatoric stress in the diamond anvil sets effective limits
49
+ to the magnetic response of NV centers localized at the
50
+ anvil tip to maximize sample proximity [6, 7]. We then
51
+ propose and implement a method that overcomes that
52
+ limit and keeps the full NV quantum sensing capabilities
53
+ at pressures above 100 GPa.
54
+ Experimental configuration.
55
+ The negatively charged
56
+ NV center is a point defect of diamond that emits visible
57
+ photoluminescence (PL) by absorbing green photons
58
+ and re-emitting red photons (at ambient pressure), with
59
+ an electronic spin s = 1 in the ground and excited
60
+ states. In the absence of external magnetic and stress
61
+ fields, the ms = ±1 spin sublevels of the ground state
62
+ are degenerate and separated by D = 2.87 GHz from
63
+ the ms = 0 sublevel (Fig. 1a). Spin-dependent PL arises
64
+ from a spin-selective difference in the non-radiative
65
+ coupling to metastable singlet states, which also induces
66
+ optical pumping into the ms = 0 state under green
67
+ illumination [12].
68
+ The energy difference between the
69
+ sublevels of the ground state can then be read out
70
+ from the change of the NV luminescence intensity upon
71
+ scanning the frequency of an additional microwave
72
+ excitation.
73
+ Dips in the PL intensity indicate that
74
+ the excitation microwave frequency is resonant with a
75
+ transition between two sublevels, leading to optically
76
+ detected magnetic resonance (ODMR) that can be easily
77
+ implemented by optically addressing the NV centers
78
+ through the diamond anvil [6].
79
+ Here we use the same experimental configuration as in
80
+ Ref. [6], keeping two crucial characteristics: 1) the NV
81
+ centers are integrated in the DAC device by mounting a
82
+ IIas ultra-pure Almax-Boehler design [100]-cut diamond
83
+ anvil with a dense ensemble of NV centers (typically
84
+ 104
85
+ NV/µm2) implanted at about 10 nm beneath
86
+ the anvil surface using a nitrogen Focused Ion Beam
87
+ (FIB) [13] (Fig. 1b); 2) the microwave excitation is
88
+ applied using an external single-turn coil above the
89
+ rhenium gasket of the DAC. The metallic gasket is
90
+ machined with a slit, filled with an epoxy-glue mixture
91
+ ensuring
92
+ sample
93
+ confinement
94
+ and
95
+ DAC
96
+ mechanical
97
+ stability, that re-distributes the induced currents in the
98
+ metal, leading to a focusing and amplification of the
99
+ microwave flux in the sample chamber similarly to a
100
+ arXiv:2301.05094v1 [quant-ph] 12 Jan 2023
101
+
102
+ 2
103
+ (a)
104
+ (b)
105
+ (d)
106
+ (c)
107
+ NV layer
108
+ Anvil 1
109
+ Anvil 2
110
+ Gasket
111
+ Pressure
112
+ ms=0
113
+ ms=±1
114
+ D
115
+ D+훿
116
+ FIG. 1.
117
+ (a) Energy diagram of the NV center ground state
118
+ and evolution under stress. (b) Schematic cross-section of the
119
+ location of NV centers implanted as a layer below the anvil
120
+ culet surface. (c) Design of the machined gasket compatible
121
+ with the MW excitation of the NV centers. Red arrows show
122
+ initial MW excitation current in the wire loop, blue arrows
123
+ are currents induced into the gasket. The areas shaded in red
124
+ indicate the intensity of the MW field. (d) ODMR spectra
125
+ of NV centers implanted in the tip of a standard diamond
126
+ anvil at different pressures, as a function of a magnetic field
127
+ applied along the [100] diamond axis. Green dashed lines are
128
+ fits of the eigenfrequencies computed with the NV ground
129
+ state Hamiltonian given by eq. 1.
130
+ Lenz lens [14] (Fig. 1c).
131
+ Upon pressure increase, the
132
+ PL excitation wavelength was decreased to match the
133
+ blueshift of the NV absorption spectrum [11] by using
134
+ continuous-wave (cw) lasers at successive wavelengths
135
+ 532, 488, 457 and 405 nm. A customized confocal optical
136
+ microscope was used to collect the PL. A static vector
137
+ magnetic field was applied on the DAC using three
138
+ Helmholtz coil pairs with an amplitude ranging between
139
+ 0 and 10 mT. The magnetic field was aligned along
140
+ the DAC axis with accuracy ±0.5◦.
141
+ This orientation
142
+ corresponds to the diamond [100] crystal axis for which
143
+ all NV centers have equivalent responses to stress and
144
+ magnetic field. Pressure in the DAC was measured using
145
+ the calibrated diamond Raman phonon mode at the
146
+ anvil tip [15].
147
+ Stress effect on the NV magnetic response. We per-
148
+ formed cw-ODMR experiments on the NV centers un-
149
+ der pressures ranging from 10 GPa to 70 GPa. At each
150
+ pressure point, we collected the ODMR spectrum for the
151
+ ensemble of NV centers under varying amplitude of the
152
+ applied magnetic field.
153
+ 1300
154
+ 1400
155
+ 1500
156
+ 1600
157
+ 1700
158
+ Raman shift ν (cm−1)
159
+ Intensity (a.u.)
160
+ P = 92 GPa
161
+ Culet
162
+ Micropillar
163
+ 40 µm
164
+ (a)
165
+ (b)
166
+ (c)
167
+ (d)
168
+ *
169
+ 25
170
+ 50
171
+ 75
172
+ Pressure (GPa)
173
+ 3.0
174
+ 3.2
175
+ 3.4
176
+ Vmol (cm3.mol−1)
177
+ 1.95
178
+ 2.00
179
+ 2.05
180
+ 2.10
181
+ 2.15
182
+ 2.20
183
+ 2.25
184
+ 2.30
185
+ NV− ZPL energy (eV)
186
+ Linear fits
187
+ Micropillar
188
+ Standard anvil
189
+ 600
190
+ 670
191
+ λ (nm)
192
+ PL (a.u.)
193
+ Anvil 1
194
+ Anvil 2
195
+ Gasket
196
+ PTM
197
+ NV layer
198
+ −0.20 −0.15 −0.10 −0.05 0.00
199
+ ln(V/V0)
200
+ 0.00
201
+ 0.05
202
+ 0.10
203
+ 0.15
204
+ 0.20
205
+ ln(ν/ν0)
206
+ Occelli et al. [16]
207
+ Micropillar
208
+ FIG. 2.
209
+ (a) Scanning electron microscope image of a FIB-
210
+ machined micropillar on a diamond anvil culet of 100 µm
211
+ diameter. The bottom panel shows a schematic cross-section
212
+ with the distortion under pressure of the culet. (b) Energy of
213
+ the NV center zero-phonon line (ZPL) as a function of pres-
214
+ sure and diamond volume, recorded for NV centers implanted
215
+ in and out of the micropillar. Inset: typical PL spectra of the
216
+ NV centers recorded at 0, 37 and 78 GPa (bottom to top).
217
+ The arrows indicate the ZPL position. (c) Diamond Raman
218
+ spectra recorded on a pressurized microstructured diamond
219
+ anvil at 92 GPa, on and outside the micropillar. In the spec-
220
+ trum taken on the micropillar, the peak indicated by the star
221
+ reveals hydrostatic compression. (d) Raman frequency shift
222
+ measured on the micropillar as a function of relative diamond
223
+ volume. Data from [16] is a reference of the Raman shift of
224
+ diamond under hydrostatic pressure.
225
+ The data are shown in Fig. 1d. Four effects of stress
226
+ on the ODMR signals are observed. First, the zero-field
227
+ center frequency D = 2.87 GHz increases almost linearly
228
+ with a slope of 9.6 MHz/GPa to a value D + δ, where δ
229
+ is the pressure induced variation. Second, a splitting ∆σ
230
+ appears between the transition lines in the absence of an
231
+ external magnetic field. This splitting increases almost
232
+ linearly with pressure with a slope of 3.9 MHz/GPa and
233
+ originates in deviatoric stress at the anvil culet. Conse-
234
+ quently, at a given pressure, the quasi-linear evolution of
235
+ the Zeeman splitting due to the applied magnetic field
236
+ can only be recovered above a compensating amplitude
237
+ of the magnetic field that increases with pressure. This
238
+ detrimental influence of stress hence weakens the NV
239
+
240
+ 3.8
241
+ 51 GPa
242
+ 1.025
243
+ α =0.56
244
+ 41 GPa
245
+ 3.6
246
+ 1.000
247
+ MW frequency (GHz)
248
+ α =0.57
249
+ 30 GPa
250
+ PL intensity (a.u.)
251
+ α =0.56
252
+ 0.975
253
+ 20 GPa
254
+ 3.4
255
+ α =0.56
256
+ 0.950
257
+ 10 GPa
258
+ 3.2
259
+ α =0.67
260
+ 0.925
261
+ 0.900
262
+ 3.0
263
+ 0.875
264
+ 2.8
265
+ 0.850
266
+ 0
267
+ 5
268
+ 10
269
+ 5
270
+ 10
271
+ 5
272
+ 10
273
+ 5
274
+ 10
275
+ 5
276
+ 10
277
+ α model fit
278
+ B applied in [100] (mT)3
279
+ sensing magnetic sensitivity. Furthermore, the required
280
+ larger applied bias magnetic field isn’t aligned with a
281
+ given NV axis here, to overlap responses from all NV
282
+ orientations, and thus mixes the sublevels of the ground
283
+ state. This mixing perturbs the optically induced spin
284
+ polarization and quenches the PL [17]. Third, the shape
285
+ of the ODMR spectra differs from the conventional
286
+ symmetrical pair of peaks.
287
+ The contrast of the low
288
+ frequency branch becomes gradually smaller than the
289
+ high frequency branch.
290
+ After vanishing at a pressure
291
+ around 40 GPa, a slightly positive contrast reappears
292
+ (increase of PL at resonance) above 50 GPa under high
293
+ enough magnetic field.
294
+ Finally, the overall observed
295
+ ODMR contrast decreases severely under pressure.
296
+ In the diamond lattice under mechanical stress (or
297
+ equivalently strain), the Hamiltonian describing the NV
298
+ center ground state is modified by a spin-mechanical in-
299
+ teraction [18, 19] related to the stress tensor
300
+ ↔σ.
301
+ The
302
+ stress tensor must exhibit the cylindrical symmetry of
303
+ the anvil. At the anvil tip, the stress components parallel
304
+ (σ∥) and perpendicular (σ⊥) to the surface differ. Due to
305
+ continuity of the normal stress component, σ⊥ is equal to
306
+ the experimental pressure P in the DAC chamber. The
307
+ tangential component, σ∥, is reduced by a factor α com-
308
+ pared to σ⊥. Using a simplified model of a semi-infinite
309
+ anvil with a flat face and a circularly symmetric distribu-
310
+ tion of pressure applied to this face, the α parameter was
311
+ estimated about 0.6 [20]. Neglecting off-diagonal shear
312
+ stress components, the stress tensor then reads as:
313
+ ↔σ=
314
+
315
+
316
+ αP
317
+ 0
318
+ 0
319
+ 0
320
+ αP
321
+ 0
322
+ 0
323
+ 0
324
+ P
325
+
326
+ � .
327
+ (1)
328
+ Using this stress tensor, the diagonalization of the NV
329
+ ground state Hamiltonian yields modified spin resonance
330
+ frequencies which can be approximated to first order as:
331
+ ν± = D + δ ± ∆/2
332
+ (2)
333
+ where δ is the spectral shift due to compression, and
334
+ ∆ =
335
+
336
+ ∆2σ + ∆2
337
+ B is the quadratic sum of the splittings
338
+ respectively induced by the stress and by the magnetic
339
+ field (see Supplementary Material for the full expression).
340
+ Since eq. (2) is exact only for low off-axis magnetic field,
341
+ a full numerical diagonalization was used to accurately
342
+ fit the measured resonance frequencies, as shown by the
343
+ green dashed lines in fig. 1d. Only two parameters, α
344
+ and P, are hence needed to predict the magnetic field re-
345
+ sponse under stress. We obtained a value α = 0.56 that is
346
+ essentially constant with pressure, quantifying deviatoric
347
+ stress close to the 0.6 value given in Ref. [20].
348
+ Deviatoric stress thus introduces major modifications
349
+ to the NV behavior as the anisotropic compression of
350
+ the diamond host lattice distorts the C3v symmetry of
351
+ the NV center. Here we quantified changes within the
352
+ NV ground triplet states, but the stress dependence of
353
+ the singlet states and the excited triplet states remains
354
+ unexplored and is difficult to assess. As a hypothesis, we
355
+ attribute the observed modification and ultimate loss of
356
+ ODMR contrast to the effect of deviatoric stress on these
357
+ levels involved in the contrast mechanism [21].
358
+ This
359
+ hypothesis is corroborated by recent results obtained
360
+ on
361
+ microdiamonds
362
+ compressed
363
+ quasi-hydrostatically
364
+ inside the sample chamber of a DAC, for which the
365
+ ODMR signal could be conserved up to 140 GPa [22].
366
+ These results converge toward a possible circumventing
367
+ strategy by ensuring hydrostatic compression of the NV
368
+ centers.
369
+ Restoring hydrostaticity with diamond microstructura-
370
+ tion. A strategy to try to mitigate deviatoric stress can
371
+ be implemented by microstructuring the diamond anvil
372
+ culet. A successful geometry is presented in Fig. 2a. A
373
+ pillar, 7 µm in diameter and with a 2 µm deep trench
374
+ around it was FIB-machined on an NV-implanted dia-
375
+ mond anvil culet. The pillar surface is thus disconnected
376
+ from the anvil surface submitted to deviatoric stress in-
377
+ duced by anvil cupping tension [23, 24].
378
+ This also al-
379
+ lows the pressure-transmitting medium (PTM) to fill the
380
+ trench to immerse the pillar in a stress field close to hy-
381
+ drostatic conditions. The pillar is then equivalent to a di-
382
+ amond microdisk that would be integrated in the sample
383
+ chamber of the DAC but ensures perfect reproducibility
384
+ and removes any interface with the diamond culet to op-
385
+ timize PL measurements. As seen below, this design is
386
+ also very robust and can withstand extreme pressures.
387
+ The hydrostaticity of the stress exerted on diamond
388
+ under pressure can be tested by measuring the Raman
389
+ frequency of the diamond optical phonon.
390
+ Under hy-
391
+ drostatic conditions, the dependence of the frequency of
392
+ the Raman scattering with diamond volume follows a
393
+ Gruneisen relation of parameter γ = 0.97(1) whereas the
394
+ frequency shift is smaller under deviatoric stress [16]. As
395
+ seen in Fig. 2c, the Raman spectra measured at the dia-
396
+ mond anvil culet on the micropillar and away from it dif-
397
+ fer. In both cases, the broad asymmetric peak is associ-
398
+ ated to the stress distribution within the thickness of the
399
+ anvil that is optically probed and the high frequency edge
400
+ is used to estimate the pressure [15]. At the micropil-
401
+ lar, a well separated peak appears with higher frequency
402
+ shift. The pressure evolution of its center wavenumber
403
+ perfectly matches the value obtained for diamond under
404
+ hydrostatic pressure [16] as shown in Fig. 2d. This indi-
405
+ cates that the tip of the micropillar hosting part of the
406
+ NV center layer is then close to hydrostatic pressure.
407
+ Accordingly the PL spectrum of the NV layer in
408
+ the micropillar shows a pressure induced blue shift
409
+ (Fig. 2b) that can be quantified with the zero-phonon line
410
+ (ZPL) [11]. While the NV ZPL dependence with pressure
411
+ is not linear, its evolution becomes linear when plotted
412
+ versus the compressed diamond volume estimated using
413
+
414
+ 4
415
+ 0
416
+ 5
417
+ 10
418
+ 3.0
419
+ 3.5
420
+ 4.0
421
+ 4.5
422
+ 5.0
423
+ MW frequency (GHz)
424
+ 20 GPa
425
+ α =0.95
426
+ α model fit
427
+ 5
428
+ 10
429
+ 50 GPa
430
+ α =0.95
431
+ 5
432
+ 10
433
+ B applied in [100] (mT)
434
+ 74 GPa
435
+ α =0.95
436
+ 5
437
+ 10
438
+ 103 GPa
439
+ α =0.95
440
+ 5
441
+ 10
442
+ 131 GPa
443
+ α =0.97
444
+ 0.93
445
+ 0.94
446
+ 0.95
447
+ 0.96
448
+ 0.97
449
+ 0.98
450
+ 0.99
451
+ 1.00
452
+ PL intensity (a.u.)
453
+ (a)
454
+ 4.0
455
+ 4.5
456
+ Microwave frequency (GHz)
457
+ PL intensity (a.u.)
458
+ |B| = 6 mT
459
+ P = 73 GPa
460
+ P = 103 GPa
461
+ P = 131 GPa
462
+ (b)
463
+ FIG. 3.
464
+ (a) ODMR spectra obtained from NV centers implanted in a micropillar at varying pressures, as a function of magnetic
465
+ field applied along the diamond [100] axis. Fitted values of the stress anisotropy parameter α ≃ 0.95 indicate quasi-hydrostatic
466
+ conditions. (b) ODMR spectra recorded for NV centers in the micropillar for a magnetic field of 6 mT amplitude. The signals
467
+ at 73 GPa, 103 GPa, and 131 GPa are normalized for clarity, with contrast values of 5%, 3% and 1.5% respectively.
468
+ the diamond equation of state [25].
469
+ Linear fit gives a
470
+ slope of −769±4 meV/(cm3·mol−1). A similar measure-
471
+ ment performed on a non modified diamond anvil yields
472
+ a weaker slope of −434 ± 2 meV/(cm3·mol−1). This sig-
473
+ nificant difference in the pressure dependence of the ZPL
474
+ is another indication of the deviatoric stress reduction
475
+ caused by the microstructuration.
476
+ ODMR measurements were also performed for the NV
477
+ centers hosted in the micropillar.
478
+ As shown in Fig. 3
479
+ corresponding to the pressure evolution up to 130 GPa,
480
+ most of the detrimental effects previously observed and
481
+ attributed to deviatoric stress are now suppressed. The
482
+ spectra consistently show a negative contrast remaining
483
+ almost constant up to at least 100 GPa. Increasing fur-
484
+ ther the pressure up to 130 GPa (where the experiment
485
+ was stopped by one of the anvils breaking), a slight
486
+ decrease of the contrast was observed and is attributed
487
+ to a degraded efficiency of the microwave excitation
488
+ for frequencies higher than 4 GHz. The magnetic field
489
+ response remains also unchanged across the whole tested
490
+ pressure range.
491
+ The ODMR spectra exhibit a very
492
+ low zero-field splitting ∆σ of 0.29 ± 0.03 MHz/GPa
493
+ with increasing pressure, and a shift of the zero-field
494
+ center frequency D + δ of 13.42 ± 0.14 MHz/GPa. As
495
+ shown in Fig. 4 these values differ significantly from
496
+ those measured for NV centers in standard anvils, and
497
+ were consistent across four experimental runs performed
498
+ on different anvils, with pillars machined either using
499
+ a FIB or a femtosecond laser.
500
+ Applying the model
501
+ described above for the spin-mechanical interaction,
502
+ the evolution of the ODMR eigenfrequencies versus
503
+ the applied magnetic field were well-fitted using an
504
+ anisotropy parameter α ≃ 0.95 that stays constant
505
+ within the pressure range tested (Fig. 3a). Since α ≃ 1
506
+ (a)
507
+ (b)
508
+ 0
509
+ 25
510
+ 50
511
+ 75
512
+ 100
513
+ 125
514
+ 150
515
+ Pressure (GPa)
516
+ 3.0
517
+ 3.5
518
+ 4.0
519
+ 4.5
520
+ D + δ (GHz)
521
+ Standard anvil
522
+ Micropillar run 1, 2, 3, 4
523
+ Doherty et al. [11]
524
+ Dai et al. [22]
525
+ 0
526
+ 25
527
+ 50
528
+ 75
529
+ 100
530
+ 125
531
+ 150
532
+ Pressure (GPa)
533
+ 0
534
+ 50
535
+ 100
536
+ 150
537
+ 200
538
+ 250
539
+ ∆σ (MHz)
540
+ Standard anvil
541
+ Micropillar run 1, 2, 3, 4
542
+ FIG. 4.
543
+ (a) Pressure dependence of ODMR center frequency
544
+ D + δ, showing a quasi-linear shift of 13.42 ± 0.14 MHz/GPa
545
+ on the micropillar compared to 9.68 ± 0.8 MHz/GPa on the
546
+ standard anvil. The extrapolation of the values measured up
547
+ to 60 GPa in [11] and the fit up to 140 GPa from [22] are
548
+ given for comparison.
549
+ (b) Pressure dependence of ODMR
550
+ frequency splitting ∆σ at zero magnetic field.
551
+ At the mi-
552
+ cropillar, ∆σ increases by 0.29 ± 0.03 MHz/GPa instead of
553
+ 3.89±0.06 MHz/GPa with the standard geometry of the anvil.
554
+
555
+ 5
556
+ would indicate perfect hydrostaticity, this result gives
557
+ an independent confirmation of the almost hydrostatic
558
+ pressure applied on the NV centers in the micropillar.
559
+ Consequently, the microstructuration strategy enables
560
+ efficient magnetic field sensing at pressures higher
561
+ than 100 GPa with a sensitivity improved by orders of
562
+ magnitude compared to the use of a standard anvil with
563
+ a flat tip (see Supplementary Material).
564
+ Conclusion.
565
+ Microstructuration of diamond anvils,
566
+ implemented here by machining a micropillar on the
567
+ culet,
568
+ provides quasi-hydrostatic conditions for NV
569
+ centers implanted in the anvil up to 100 GPa and
570
+ above.
571
+ With this design NV magnetic sensing can be
572
+ implemented under such extreme pressures as if at
573
+ ambient pressure. This work opens the way to sensitive
574
+ and spatially resolved magnetic measurements in the
575
+ constrained environment of the DAC which should now
576
+ be used for a convincing observation of the Meissner
577
+ effect in super-hydrides.
578
+ We are grateful to Olivier Marie and Gr´egoire Le
579
+ Caruyer for machining of the diamond culets, to Flo-
580
+ rent Occelli for assistance in DACs preparation and to
581
+ Doroth´ee Colson and Anne Forget for annealing the dia-
582
+ mond anvils after nitrogen implantation. This work has
583
+ received funding from the EMPIR program co-financed
584
+ by the Participating States and the European Union’s
585
+ Horizon 2020 research and innovation program (20IND05
586
+ QADeT), from the Agence Nationale de la Recherche
587
+ under the project SADAHPT and the ESR/EquipEx+
588
+ program (grant number ANR-21-ESRE-0031), and from
589
+ the Paris ˆIle-de-France R´egion in the framework of DIM
590
+ SIRTEQ. JFR acknowledges support from Institut Uni-
591
+ versitaire de France.
592
+ ∗ jean-francois.roch@ens-paris-saclay.fr
593
+ [1] P. Loubeyre, F. Occelli, and P. Dumas, Nature 577, 631
594
+ (2020).
595
+ [2] J. A. Flores-Livas, L. Boeri, A. Sanna, G. Profeta,
596
+ R. Arita, and M. Eremets, Physics Reports 856, 1 (2020).
597
+ [3] A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin,
598
+ M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Bal-
599
+ akirev, D. E. Graf, V. B. Prakapenka, E. Greenberg,
600
+ D. A. Knyazev, M. Tkacz, and M. I. Eremets, Nature
601
+ 569, 528 (2019).
602
+ [4] M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe,
603
+ M. Baldini, Y. Meng, V. V. Struzhkin, and R. J.
604
+ Hemley, Physical Review Letters 122, 10.1103/Phys-
605
+ RevLett.122.027001 (2019).
606
+ [5] G.
607
+ Weck,
608
+ J.-A.
609
+ Queyroux,
610
+ S.
611
+ Ninet,
612
+ F.
613
+ Datchi,
614
+ M. Mezouar, and P. Loubeyre, Physical Review Letters
615
+ 128, 165701 (2022).
616
+ [6] M. Lesik, T. Plisson, L. Toraille, J. Renaud, F. Occelli,
617
+ M. Schmidt, O. Salord, A. Delobbe, T. Debuisschert,
618
+ L. Rondin, P. Loubeyre, and J.-F. Roch, Science 366,
619
+ 1359 (2019).
620
+ [7] S. Hsieh, P. Bhattacharyya, C. Zu, T. Mittiga, T. J.
621
+ Smart, F. Machado, B. Kobrin, T. O. H¨ohn, N. Z. Rui,
622
+ M. Kamrani, S. Chatterjee, S. Choi, M. Zaletel, V. V.
623
+ Struzhkin, J. E. Moore, V. I. Levitas, R. Jeanloz, and
624
+ N. Y. Yao, Science 366, 1349 (2019).
625
+ [8] K. Y. Yip, K. O. Ho, K. Y. Yu, Y. Chen, W. Zhang,
626
+ S. Kasahara, Y. Mizukami, T. Shibauchi, Y. Matsuda,
627
+ S. K. Goh, and S. Yang, Science 366, 1355 (2019).
628
+ [9] Y.-X. Shang, F. Hong, J.-H. Dai, H. Yu, Y.-N. Lu, E.-K.
629
+ Liu, X.-H. Yu, G.-Q. Liu, and X.-Y. Pan, Chinese Physics
630
+ Letters 36, 086201 (2019).
631
+ [10] L.
632
+ Toraille,
633
+ A.
634
+ Hilberer,
635
+ T.
636
+ Plisson,
637
+ M.
638
+ Lesik,
639
+ M.
640
+ Chipaux,
641
+ B.
642
+ Vindolet,
643
+ C.
644
+ P´epin,
645
+ F.
646
+ Occelli,
647
+ M. Schmidt, T. Debuisschert, N. Guignot, J.-P. Itie,
648
+ P. Loubeyre, and J.-F. Roch, New Journal of Physics
649
+ 10.1088/1367-2630/abc28f (2020).
650
+ [11] M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P.
651
+ McGuinness, Y. Meng, A. Stacey, T. J. Karle, R. J. Hem-
652
+ ley, N. B. Manson, L. C. L. Hollenberg, and S. Prawer,
653
+ Physical Review Letters 112, 047601 (2014).
654
+ [12] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko,
655
+ J. Wrachtrup, and L. C. Hollenberg, Physics Reports
656
+ 528, 1 (2013).
657
+ [13] M.
658
+ Lesik,
659
+ P.
660
+ Spinicelli,
661
+ S.
662
+ Pezzagna,
663
+ P.
664
+ Happel,
665
+ V. Jacques, O. Salord, B. Rasser, A. Delobbe, P. Su-
666
+ draud, A. Tallaire, J. Meijer, and J.-F. Roch, Physica
667
+ Status Solidi A 210, 2055 (2013).
668
+ [14] T. Meier, N. Wang, D. Mager, J. G. Korvink, S. Petitgi-
669
+ rard, and L. Dubrovinsky, Science Advances 3, eaao5242
670
+ (2017).
671
+ [15] Y. Akahama and H. Kawamura, Journal of Applied
672
+ Physics 96, 3748 (2004).
673
+ [16] F. Occelli, P. Loubeyre, and R. LeToullec, Nature Mate-
674
+ rials 2, 151 (2003).
675
+ [17] J.-P. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux,
676
+ T. Debuisschert, J.-F. Roch, and V. Jacques, New Jour-
677
+ nal of Physics 14, 103033 (2012).
678
+ [18] A. E. Hughes and W. A. Runciman, Proceedings of the
679
+ Physical Society 90, 827 (1967).
680
+ [19] A. Barfuss, M. Kasperczyk, J. K¨olbl, and P. Maletinsky,
681
+ Physical Review B 99, 174102 (2019).
682
+ [20] A. L. Ruoff, H. Luo, and Y. K. Vohra, Journal of Applied
683
+ Physics 69, 6413 (1991).
684
+ [21] M. L. Goldman, M. W. Doherty, A. Sipahigil, N. Y. Yao,
685
+ S. D. Bennett, N. B. Manson, A. Kubanek, and M. D.
686
+ Lukin, Physical Review B 91, 165201 (2015).
687
+ [22] J.-H. Dai, Y.-X. Shang, Y.-H. Yu, Y. Xu, H. Yu, F. Hong,
688
+ X.-H. Yu, X.-Y. Pan, and G.-Q. Liu, Chinese Physics
689
+ Letters 39, 117601 (2022).
690
+ [23] S. Liu, Z. Li, Q. Jing, Y. Zhang, H. Ma, T. Tao, X. Wang,
691
+ Y. Bi, J. Weng, and J.-a. Xu, Review of Scientific Instru-
692
+ ments 85, 046113 (2014).
693
+ [24] B. Li, C. Ji, W. Yang, J. Wang, K. Yang, R. Xu, W. Liu,
694
+ Z. Cai, J. Chen, and H.-k. Mao, Proceedings of the Na-
695
+ tional Academy of Sciences 115, 1713 (2018).
696
+ [25] G. Shen, Y. Wang, A. Dewaele, C. Wu, D. E. Fratan-
697
+ duono, J. Eggert, S. Klotz, K. F. Dziubek, P. Loubeyre,
698
+ O. V. Fat’yanov, P. D. Asimow, T. Mashimo, R. M. M.
699
+ Wentzcovitch, and other members of the IPPS task
700
+ group, High Pressure Research 40, 299 (2020).
701
+
9tE4T4oBgHgl3EQfdwyk/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ANFRT4oBgHgl3EQftjjG/content/tmp_files/2301.13628v1.pdf.txt ADDED
@@ -0,0 +1,714 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Coherent driving of direct and indirect excitons in a quantum dot molecule
2
+ Frederik Bopp,1, ∗ Johannes Schall,2 Nikolai Bart,3 Florian Vogl,1 Charlotte Cullip,1 Friedrich
3
+ Sbresny,4 Katarina Boos,4 Christopher Thalacker,1 Michelle Lienhart,1 Sven Rodt,2 Dirk Reuter,5
4
+ Arne Ludwig,3 Andreas Wieck,3 Stephan Reitzenstein,2 Kai M¨uller,4 and Jonathan J. Finley1, †
5
+ 1Walter Schottky Institut, School of Natural Sciences, and MCQST,
6
+ Technische Universit¨at M¨unchen, Am Coulombwall 4, 85748 Garching, Germany
7
+ 2Technische Universit¨at Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
8
+ 3Faculty of Physics and Astronomy, Ruhr-Universit¨at Bochum,
9
+ Universit¨atsstraße 150, 44801 Bochum, Germany
10
+ 4Walter Schottky Institut, School of Computation, Information and Technology, and MCQST,
11
+ Technische Universit¨at M¨unchen, Am Coulombwall 4, 85748 Garching, Germany
12
+ 5Paderborn University, Department of Physics, Warburger Straße 100, 33098 Paderborn, Germany
13
+ (Dated: February 1, 2023)
14
+ Quantum dot molecules (QDMs) are one of the few quantum light sources that promise deter-
15
+ ministic generation of one- and two-dimensional photonic graph states.
16
+ The proposed protocols
17
+ rely on coherent excitation of the tunnel-coupled and spatially indirect exciton states. Here, we
18
+ demonstrate power-dependent Rabi oscillations of direct excitons, spatially indirect excitons, and
19
+ excitons with a hybridized electron wave function. An off-resonant detection technique based on
20
+ phonon-mediated state transfer allows for spectrally filtered detection under resonant excitation.
21
+ Applying a gate voltage to the QDM-device enables a continuous transition between direct and
22
+ indirect excitons and, thereby, control of the overlap of the electron and hole wave function. This
23
+ does not only vary the Rabi frequency of the investigated transition by a factor of ≈ 3, but also
24
+ allows to optimize graph state generation in terms of optical pulse power and reduction of radiative
25
+ lifetimes.
26
+ I.
27
+ INTRODUCTION
28
+ The use of single photons as flying qubits facilitates
29
+ transmission of quantum information at the speed of
30
+ light. However, transfer over large distances unavoidably
31
+ comes with losses and decoherence. Encoding quantum
32
+ information on an ensemble of entangled photons, a so-
33
+ called graph state [1], instead of a single photon, provides
34
+ a possibility to mitigate the losses is transmission chan-
35
+ nels [2, 3].
36
+ Furthermore, other specific forms of graph
37
+ states such as photonic cluster states promise realization
38
+ of measurement-based quantum computing [4] as well as
39
+ quantum error correction [5, 6].
40
+ Following
41
+ the
42
+ Lindner-Rudolph
43
+ protocol [7],
44
+ one-
45
+ dimensional photonic cluster states can be deterministi-
46
+ cally generated by utilizing single spins in semiconductor
47
+ quantum dots (QDs). The polarization entanglement of
48
+ up to five photons has been achieved in a one-dimensional
49
+ cluster state has been achieved [8] and most recent ex-
50
+ periments demonstrate localizable entanglement over ten
51
+ photons [9]. While the nanophotonic environment of QDs
52
+ provides high photon emission rates, the cluster state cre-
53
+ ation fidelity is limited by spin dephasing and modified
54
+ selection rules in the presence of a transverse magnetic
55
+ field [9]. These challenges can be overcome by using a
56
+ pair of tunnel coupled and vertically stacked QDs, so
57
+ called quantum dot molecules (QDMs) [10]. Besides pro-
58
+ longing the spin coherence compared to single quantum
59
+ ∗ frederik.bopp@wsi.tum.de
60
+ † finley@wsi.tum.de
61
+ dots [11], QDMs possess an unique level structure [12].
62
+ This level structure enables, for example, spin rotations
63
+ and spin readout transitions without application of a
64
+ magnetic field. The ability to create spatially indirect
65
+ excitons, with one charge carrier occupying the upper
66
+ and one the lower QD [13], provides a cycling transi-
67
+ tion which can be used for generating time-bin entangled
68
+ photons [10]. Moreover, QDMs are proposed to generate
69
+ two-dimensional photonic cluster states by harnessing the
70
+ tunnel coupling between the two QDs and inter-dot con-
71
+ trol gates [14].
72
+ The foundation for creating one- and two-dimensional
73
+ photonic cluster states is the occurrence of excitons in
74
+ spatially direct, spatially indirect, and hybridized config-
75
+ urations [15]. In these different configurations, the charge
76
+ carriers of an electron-hole pair are located in the same
77
+ QD, in different QDs, or one of the charge wave func-
78
+ tions is hybridized over both quantum dots, respectively.
79
+ In each configuration, the overlap of the electron and
80
+ hole wave functions and, therefore, the transition dipole
81
+ moment (TDM) of the corresponding optical transition
82
+ differs. This results in a change of both the lifetime of the
83
+ excited state and the pulse area needed for maximal pop-
84
+ ulation inversion [16]. While the lifetime influences the
85
+ cluster state creation efficiency and rate, the π-pulse area
86
+ sets the intensity of the required optical control pulses.
87
+ Hence, the TDM of the addressed transitions influences
88
+ the generation process of photonic cluster states. Fur-
89
+ thermore, the proposed protocols require coherent exci-
90
+ tation of electron-hole pairs in various exciton configura-
91
+ tions to control and readout the exciton spin state.
92
+ In this work, we demonstrate coherent Rabi oscillations
93
+ arXiv:2301.13628v1 [cond-mat.mes-hall] 31 Jan 2023
94
+
95
+ 2
96
+ of direct, spatially indirect, and hybridized excitons in a
97
+ single QDM. An off-resonant detection technique is in-
98
+ troduced and applied, relying on phonon-mediated state
99
+ transfers. We examine the dependence of the Rabi fre-
100
+ quency on the excitonic configuration, as the overlap of
101
+ the electron and hole wave functions changes. Tuning the
102
+ electric field via a gate voltage allows electrical control of
103
+ this wave function overlap and, therefore, of the pulse
104
+ area needed for population inversion.
105
+ In this way, we
106
+ demonstrate and quantify electric control of the TDM.
107
+ Finally, a simple one-dimensional model of a double-well
108
+ potential allows us to model the voltage-dependence of
109
+ the TDM.
110
+ II.
111
+ RESULTS
112
+ By vertically stacking two QDs with a separation in
113
+ the nm regime, charge wave functions can hybridize
114
+ across both QDss.
115
+ In addition, both direct and spa-
116
+ tially indirect excitons can form. Figure 1 (a) illustrates
117
+ a schematic band-diagram of a QDM. The two QDs
118
+ are depicted by a double-well potential, in which elec-
119
+ trons (filled circle) and holes (empty circle) are trapped.
120
+ The design of the investigated sample, described in Ap-
121
+ pendix A, energetically favours the location of a hole
122
+ in the top QD. Consequently, a direct/indirect exciton
123
+ (red/blue ellipse) forms, when an electron is trapped in
124
+ the top/bottom QD. The QDM is embedded in a p-i-n
125
+ diode structure; applying a gate voltage V facilitates tun-
126
+ ing of the energy levels of both QDs relative to each other.
127
+ In this way, the direct and indirect exciton energies can
128
+ be brought into resonance. At the resonance condition,
129
+ the electron wave function hybridizes across both dots,
130
+ molecular bonding and anti-bonding states form, and an
131
+ avoided crossing between the orbital states occurs. Since
132
+ we can control the tunnel coupling between the two QDs
133
+ by varying the gate voltage, we use this dependency to
134
+ investigate coherent driving of different exciton configu-
135
+ rations.
136
+ The most elemental charge state exhibiting the hy-
137
+ bridization of wave functions is the neutral exciton (X0).
138
+ Figure 1 (b) shows a voltage-dependent photolumines-
139
+ cence measurement of the X0. We make use of a two-
140
+ phase electrical and optical sequence to deterministi-
141
+ cally prepare the QDM in a zero-charge ground-state
142
+ and individually adjust the tunnel coupling [17]. Excit-
143
+ ing the energetically higher p-shell orbital of the upper
144
+ dot at 1353.6 meV enables the unimpeded detection of
145
+ the X0 s-shell emission for multiple coupling conditions.
146
+ At 0.16 V, the electron wave function hybridizes and an
147
+ avoided crossing forms.
148
+ The resulting electron eigen-
149
+ states are described by symmetric and antisymmetric
150
+ wave functions [13]. The corresponding lower and higher
151
+ energy transitions of the avoided crossing are denoted
152
+ LOW and UP in Figure 1 (b). The red and blue dashed
153
+ lines depict the energies of a direct and indirect exciton,
154
+ respectively. By increasing the gate voltage, the exciton
155
+ 0
156
+ 50
157
+ 100
158
+ 150
159
+ 0
160
+ 5
161
+ 10
162
+ 0.05
163
+ 0.1
164
+ 0.15
165
+ 0.2
166
+ 1336
167
+ 1338
168
+ 1340
169
+ 1342
170
+ Energy (meV)
171
+ Gate Voltage (V)
172
+ Power1/2 (nW1/2)
173
+ Emission (cts/3s)
174
+ kCounts (/s)
175
+ 103
176
+ 102
177
+ 101
178
+ V
179
+ z
180
+ E
181
+ (a)
182
+ (b)
183
+ AlGaAs
184
+ Excita�on
185
+ Emission
186
+ Emission
187
+ UP
188
+ LOW
189
+ cgs
190
+ UP
191
+ LOW
192
+ (c)
193
+ (d)
194
+ 0.1 V
195
+ 𝛾P
196
+ FIG. 1. Rabi oscillations of the neutral exciton in a QDM.
197
+ (a) Schematic band structure of a QDM represented by a
198
+ double-well potential. An AlGaAs barrier below the molecule
199
+ prolongs tunneling times for electrons while not affecting tun-
200
+ neling for holes. One hole (empty circle) is located in the up-
201
+ per QD, while electrons (filled circles) occur in both dots. As
202
+ a consequence, direct (red ellipse) and indirect (blue ellipse)
203
+ excitons arise. A gate voltage V applied to the sample facil-
204
+ itates tuning of the direct and indirect exciton energies rela-
205
+ tive to each other. (b) Voltage-dependent photoluminescence
206
+ of the neutral exciton. The red and blue dashed lines indicate
207
+ the energies of the direct and indirect excitons. tunnel cou-
208
+ pling between the two QDs leads to an avoided crossing with
209
+ a symmetric (pink) and an anti-symmetric (green) electron
210
+ eigenstate. The upper (lower) energy transition is called UP
211
+ (LOW). Triangles indicate the excitation energy and voltage
212
+ applied in Figure 2. (c) Neutral exciton state diagram illus-
213
+ trating the excitation and detection scheme for monitoring
214
+ Rabi oscillations. While a resonant light field (green) is driv-
215
+ ing UP, a phonon-mediated state transfer with rate γP (black
216
+ arrow) is enabling emission from both UP and the energet-
217
+ ically detuned LOW. (d) Power-dependent Rabi oscillations
218
+ when exciting UP and detecting UP (green) or LOW (pink)
219
+ at 0.1 V.
220
+
221
+ ge1336
222
+ 0050.150.210e
223
+ 1338
224
+ uS
225
+ C1340n
226
+ 01342SMSGaateVolta3
227
+ character changes from direct to hybridized to indirect
228
+ for the upper energy branch, and vice versa for the lower
229
+ energy branch. As a result, the overlap of the electron
230
+ and hole wave functions changes.
231
+ The change of the wave function overlap is quanti-
232
+ fied by coherently driving Rabi oscillations on the ex-
233
+ citon transition.
234
+ The Rabi frequency of a resonantly
235
+ excited two-level system ΩR =
236
+ �� E0D
237
+
238
+ �� is linearly depen-
239
+ dent on the TDM D, which in return is proportional to
240
+ the overlap of the electron and hole wave function [18].
241
+ In addition, ΩR depends linearly on the electric driving
242
+ field amplitude E0. The E0-dependence allows the ob-
243
+ servation of power-dependent Rabi oscillations [19]. For
244
+ this purpose, a 5 ps laser pulse is applied to resonantly
245
+ drive the crystal ground state (cgs)-to-X0 transition in
246
+ the QDM. The occupation of the excited state is mon-
247
+ itored by detecting the photons emitted by the driven
248
+ two-level system. Commonly, emission from resonantly
249
+ excited states is detected in a cross-polarized setup con-
250
+ figuration to suppress the excitation laser [20]. At high
251
+ excitation power, however, laser light can leak into the
252
+ detection channel and reduce the signal-to-noise ratio.
253
+ We propose and demonstrate a readout technique utiliz-
254
+ ing a phonon-mediated state transfer [21], which detunes
255
+ the emitted photons energetically from the two-level sys-
256
+ tem.
257
+ Thereby, the limitation of an insufficiently sup-
258
+ pressed excitation laser is eliminated via spectral filter-
259
+ ing, and the visibility of the Rabi oscillations is increased.
260
+ Figure 1 (c) visualizes the state diagram of the X0. The
261
+ two excited states UP and LOW can both radiatively de-
262
+ cay into the cgs. A phonon emission process with rate
263
+ γP can transfer the electron from the UP to the LOW
264
+ configuration [21].
265
+ Since the excitation pulse length is
266
+ short compared to the decay rates, the cgs-UP system
267
+ is well approximated by a two-level system. It is coher-
268
+ ently driven by a 5 ps laser pulse (green arrow). Fig-
269
+ ure 1 (d) shows the power-dependent resonance fluores-
270
+ cence emission of the UP transition as green data points.
271
+ The measurement is performed at 0.1 V, such that the
272
+ driven transition exhibits a direct exciton character, as
273
+ shown in Figure 1 (b). Rabi oscillations are observed up
274
+ to a pulse area of slightly above 2π and 602 nW. However,
275
+ a decreasing signal-to-noise ratio prevents the detection
276
+ of oscillations above 602 nW due to nsufficient suppres-
277
+ sion of the excitation laser.
278
+ To improve the signal-to-noise ratio, which decreases
279
+ with increasing power,
280
+ we make use of a phonon-
281
+ mediated state transfer.
282
+ The emission of a phonon
283
+ transfers the electron from the UP into the LOW
284
+ configuration.
285
+ This process can only occur as long as
286
+ the system is in the excited state. Thus, the ensemble
287
+ occupation of LOW is proportional to the ensemble
288
+ occupation of UP, and so is the number of emitted
289
+ photons of both transitions.
290
+ In addition, due to the
291
+ avoided crossing, the emission of LOW is at least
292
+ 2.1 meV detuned from the driving energy for any gate
293
+ voltage, which allows the spectral filtering of the emis-
294
+ sion from the excitation laser pulse. Thus, the resonant
295
+ kCounts (/s)
296
+ Power1/2 (nW1/2)
297
+ UP
298
+ LOW
299
+ 0.1 V
300
+ 0.22 V
301
+ 0
302
+ 50
303
+ 100
304
+ 0
305
+ 1
306
+ 2
307
+ 3
308
+ 0
309
+ 50
310
+ 100
311
+ 0
312
+ 5
313
+ 10
314
+ 0
315
+ 50
316
+ 100
317
+ 0
318
+ 2
319
+ 4
320
+ 0
321
+ 50
322
+ 100
323
+ 0
324
+ 0.1
325
+ 0.2
326
+ FIG. 2.
327
+ Rabi oscillations of the UP and LOW branch at 0.1 V
328
+ (left) and 0.22 V (right) by phonon-mediated state transfers.
329
+ The red data points correspond to a direct, the blue to an
330
+ indirect driven transition.
331
+ excitation of the two-level system and the off-resonant
332
+ monitoring of its excited state occupation are achieved
333
+ simultaneously.
334
+ The power-dependent emission of the
335
+ LOW transition when exciting UP is shown by the
336
+ pink data points in Figure 1 (d).
337
+ Below 602 nW, both
338
+ readout techniques show the same Rabi frequency as
339
+ expected, confirming the proportionality of occupancy
340
+ between UP and LOW. However, in contrast to the
341
+ resonant detection (green), Rabi oscillations are well
342
+ resolvable up to a pulse area of 7π.
343
+ The reduction of
344
+ the oscillation amplitude arises from interactions with
345
+ phonons [22], while the increase of the mean is attributed
346
+ to a slightly chirped excitation laser pulse [23]. From the
347
+ relative intensities of both transitions, we can conclude
348
+ that the phonon induced relaxation rate is compara-
349
+ ble to the radiative decay rate of the direct UP transition.
350
+ Electric control of the tunnel coupling between the two
351
+ QDs allows coherent excitation of electron-hole pairs in
352
+ different occupation configurations. Figure 2 shows the
353
+ power-dependent emission of the QDM while resonantly
354
+ exciting UP and detecting LOW (green dashed box, UP).
355
+ The measurements are performed at 0.1 V (left) and
356
+ 0.22 V (right), on either side of the avoided crossing. The
357
+ red and blue data points indicate a direct and indirect
358
+ character of the excited transition, respectively. We ob-
359
+ serve Rabi oscillations for both the direct and indirect
360
+ transitions, which confirms that coherent excitation of a
361
+ spatially indirect exciton is possible. However, the Rabi
362
+
363
+ 4
364
+ 0
365
+ 0.1
366
+ 0.2
367
+ 0.3
368
+ Gate Voltage (V)
369
+ 0
370
+ 0.05
371
+ 0.1
372
+ 0.15
373
+ Rabi Frequency (1/nW1/2)
374
+ 0
375
+ 0.2
376
+ 0.4
377
+ 0.6
378
+ 0.8
379
+ 1
380
+ FIG. 3.
381
+ Measured voltage dependent Rabi frequency of
382
+ UP (green) and LOW (pink), plotted on the left axes. The
383
+ right axes visualizes the calculated overlap of the electron
384
+ and hole wave functions as a function of the voltage, where
385
+ the pink/green dashed line corresponds to the lowest/second-
386
+ lowest electron eigenenergy. The red/blue shaded background
387
+ indicates the direct/indirect character of the transition.
388
+ frequency of the indirect configuration is reduced com-
389
+ pared to the direct configuration. This is caused by the
390
+ reduced overlap of the electron and hole wave functions
391
+ and the accompanying decrease of the TDM for the in-
392
+ direct exciton.
393
+ A verification of these results is found by performing
394
+ the same experiments on the lower branch (Figure 2,
395
+ pink box, LOW). Similar to the previous case, a phonon
396
+ absorption process facilitates a state transfer from LOW
397
+ to UP and, therefore, the off-resonant detection of UP
398
+ while exciting LOW. This allows us to off-resonantly
399
+ monitor Rabi oscillations of the LOW branch.
400
+ The
401
+ investigated gate voltages of both excitation cases are
402
+ chosen to be ±0.06 V away from the avoided crossing.
403
+ Therefore, the electron configuration of the upper branch
404
+ at 0.1 V (0.22 V) resembles the electron configuration of
405
+ the lower branch at 0.22 V (0.1 V). This leads to a com-
406
+ parable Rabi frequency of the direct (red) and indirect
407
+ (blue) exciton of the upper and lower energy transition
408
+ at the two voltages. The difference in absolute counts
409
+ between the excitation of UP and LOW is attributed
410
+ to the underlying phonon process.
411
+ When exciting UP
412
+ (LOW), we rely on the emission (absorption) of a
413
+ phonon to detect the signal.
414
+ Since the measurements
415
+ are performed at 10 K, the probability of absorbing a
416
+ phonon is strongly reduced compared to the emission.
417
+ Since our QDM device allows continuous tuning the
418
+ gate voltage while maintaining the prepared charge state,
419
+ arbitrary exciton configurations can be set.
420
+ Thereby,
421
+ the overlap of the electron and hole wave functions is
422
+ analyzable for any coupling condition. Figure 3 shows
423
+ the power-dependent Rabi frequencies as a function of
424
+ the gate voltage for the upper (green) and lower branch
425
+ (pink). The Rabi frequencies are extracted by fitting a
426
+ sin2(laser power) function to the data, with an exponen-
427
+ tial decay to take phonon dephasing into account, and a
428
+ linear increase with intensity to compensate for a chirped
429
+ excitation pulse. We observe a continuous increase (de-
430
+ crease) of the frequency when transitioning from an indi-
431
+ rect (direct) to a direct (indirect) exciton. By raising the
432
+ gate voltage and following the UP transition, the elec-
433
+ tron occupation shifts from the top to the bottom dot.
434
+ The opposite holds for the LOW transition. This leads
435
+ to a continuous variation of the overlap of the electron
436
+ and hole wave functions and, consequently, to a change
437
+ in the Rabi frequency. Within the investigated range be-
438
+ tween 0.1 V and 0.22 V, we are able to electrically tune
439
+ the Rabi frequency by a factor of ≈ 3.
440
+ The wave function overlap is modeled by calculating
441
+ the eigenenergies and -values of a tilted, one-dimensional
442
+ double-squarewell potential representing the QDM. By
443
+ fitting the energy difference between the two lowest eigen-
444
+ states to the voltage-dependent separation of UP and
445
+ LOW, the depth of the squarewell potential and the effec-
446
+ tive electron mass are determined. A detailed description
447
+ of the model is provided in Appendix B. The right axes
448
+ of Figure 3 shows the overlap of the electron and hole
449
+ wave functions |⟨ψe|ψh⟩| for the lowest (pink) and sec-
450
+ ond lowest (green) electron eigenenergy by dashed lines.
451
+ The electron eigenenergies correspond to the LOW and
452
+ UP transition, respectively. The one-dimensional model
453
+ provides a remarkably good description of the measured
454
+ voltage-dependent Rabi frequencies. Thereby, the Rabi
455
+ frequency can be related to the TDM of direct, indirect,
456
+ and hybridized excitons, which allows determination the
457
+ π-pulse area as well as the difference in radiative lifetime
458
+ of the corresponding transition.
459
+ III.
460
+ DISCUSSION AND SUMMARY
461
+ Adressing direct, indirect, and hybridized excitons is
462
+ fundamental for using QDMs as spin-photon interfaces.
463
+ In addition, the electrical tuneability of the TDM of the
464
+ adressed transitions at and around the tunnel coupling
465
+ regime is one key parameter of a QDM. It not only de-
466
+ termines the π-pulse power of the addressed transition,
467
+ as shown in this work, but is also directly related to the
468
+ lifetime of the excited state. Therefore, it is one of the
469
+ parameters setting the creation rate for generating one-
470
+ and two- dimensional photonic cluster states as well as
471
+ for performing quantum-repeater protocols.
472
+ We have demonstrated the coherent excitation of di-
473
+ rect, indirect, and hybridized excitons – one of the el-
474
+ ementary building blocks for creating photonic cluster
475
+ states from QDMs. We use non-resonant readout, which
476
+ is facilitated by phonon-mediated charge relaxation and
477
+ excitation between the two lowest energy eigenstates of
478
+ the electron.. Voltage-dependent Rabi oscillations show
479
+ a continuous increase of the Rabi frequency when tran-
480
+ sitioning from an indirect to a direct exciton.
481
+ This is
482
+
483
+ 5
484
+ attributed to an electrically controlled increase of the
485
+ TDM of a direct compared to an indirect transition. Fur-
486
+ thermore, we apply a one-dimensional model to calculate
487
+ the overlap of the X0 electron and hole wave functions.
488
+ Within the voltage range presented, we are able to tune
489
+ the Rabi frequency and consequently the TDM by a fac-
490
+ tor of ≈ 3. This corresponds to a variation of the radia-
491
+ tive lifetime between a direct and an indirect exciton by
492
+ a factor of ≈ 9, as it scales quadratically with the TDM.
493
+ The coherent excitation and the electrical tunability
494
+ between various exciton configurations in QDMs not only
495
+ paves the way towards the generation of entangled multi-
496
+ photon states. It might also enable protocols which uti-
497
+ lize fast electrical switching between the exciton config-
498
+ urations. This can reduce their lifetime and the π-pulse
499
+ power and highly improve the cluster state generation
500
+ rate.
501
+ ACKNOWLEDGMENTS
502
+ The authors gratefully acknowledge financial sup-
503
+ port from the German Federal Ministry of Educa-
504
+ tion and Research (BMBF) via Q.Link.X (16KIS0874,
505
+ 16KIS086), QR.X (16KISQ027, 16KISQ014, 16KISQ012
506
+ and 16KISQ009), the European Union’s Horizon 2020 re-
507
+ search and innovation program under grant agreement
508
+ 862035 (QLUSTER) and the Deutsche Forschungsge-
509
+ meinschaft (DFG, German Research Foundation) via
510
+ SQAM (FI947-5-1), DIP (FI947-6-1), and the Excellence
511
+ Cluster MCQST (EXC-2111, 390814868). F.B. gratefully
512
+ acknowledges the Exploring Quantum Matter (ExQM)
513
+ programme funded by the State of Bavaria. F.S., K.B.,
514
+ and K.M. gratefully acknowledge the BMBF for financial
515
+ support via project MOQUA (13N14846).
516
+ Appendix A: Sample
517
+ The investigated InAs QDM is enclosed in a GaAs
518
+ matrix and was grown by molecular beam epitaxy.
519
+ It
520
+ consists of two vertically stacked QDs.
521
+ The inter-dot
522
+ coupling strength is determined by a wetting layer-
523
+ to-wetting layer separation of 10 nm.
524
+ In addition, an
525
+ AlxGa(x−1)As barrier (x = 0.33) with a thickness of
526
+ 2.5 nm is placed between the dots to reduce the coupling
527
+ strength. The height of the top (bottom) QD was fixed
528
+ to 2.9 nm (2.7 nm) via the indium-flush technique during
529
+ growth.
530
+ This height configuration facilitates electric
531
+ field-induced tunnel coupling of orbital states in the
532
+ conduction band. A 50 nm thick AlxGa(x−1)As tunnel
533
+ barrier (x = 0.33) was grown 5 nm below the QDM
534
+ to prolong electron tunneling times.
535
+ The molecule is
536
+ embedded in a p-i-n diode, with the doped regions used
537
+ as contacts to gate the sample. The diode contacts are
538
+ placed more than 150 nm away from the molecule to
539
+ prevent uncontrolled charge tunneling into the QDM.
540
+ Furthermore, a distributed Bragg reflector was grown
541
+ below the diode and a circular Bragg grating was
542
+ positioned deterministically via in-situ electron beam
543
+ lithography above an individual and pre-selected QDM
544
+ to improve photon in- and outcoupling efficiencies [24].
545
+ All measurements are performed at 10 K.
546
+ Appendix B: Double-well potential model
547
+ To calculate the overlap of the electron and hole wave
548
+ functions, we set up a model consisting of a double-
549
+ squarewell potential representing the conduction band of
550
+ the QDM. We assume that the variation of the in-plane
551
+ wave functions is small compared to the wave functions
552
+ along the growth direction z, when changing the gate
553
+ voltage. This assumption is reasonable, since the confine-
554
+ ment of charges along the growth axes and the translation
555
+ introduced by the gate voltage along the growth axes ex-
556
+ ceeds the in-plane variation. We can, therefore, approach
557
+ the problem with a one-dimensional model and expect
558
+ an acceptable degree of accuracy. The potential V (z) is
559
+ designed to match the dimensions of the QDM with re-
560
+ spect to the tunnel barrier width and dot heights (see
561
+ Section A). z is here the growth direction of the sample.
562
+ In addition, we tilt the potential to imitate the presence
563
+ of an applied gate voltage. Solving the time-independent
564
+ Schr¨odinger equation for a given gate voltage allows us to
565
+ obtain the envelope functions Ψ and their eigenenergies
566
+ E of an electron with mass me trapped in the double-well
567
+ potential. The envelope functions are then used to rep-
568
+ resent the wave function of the electron since the Bloch
569
+ part of the wave functions are only weakly sensitive to
570
+ electric fields of the magnitude applied here.
571
+ To define the free parameters of the double-well model,
572
+ we determine the effective electron mass me and the po-
573
+ tential depth by fitting the difference between the cal-
574
+ culated two lowest eigenenergies to the measured energy
575
+ difference ∆E between UP and LOW. ∆E between the
576
+ two X0 branches is purely determined by the energy dif-
577
+ ference between the electron eigenstates. For calculating
578
+ the hole wave function, the potential is inverted to repre-
579
+ sent the valance band. Its depth is set to match half the
580
+ depth of the electron potential whereas the heavy hole
581
+ mass is set to match mh = 10 me [25]. Since we are inter-
582
+ ested in calculating the overlap of wave functions rather
583
+ than absolute transition energies, it is sufficient to work
584
+ with relative values in the model.
585
+ [1] H. J. Briegel and R. Raussendorf, Persistent entangle-
586
+ ment in arrays of interacting particles, Physical Review
587
+ Letters 5, 910 (2001).
588
+
589
+ 6
590
+ [2] K. Azuma, K. Tamaki, and H. K. Lo, All-photonic quan-
591
+ tum repeaters, Nature Communications 6 (2015).
592
+ [3] K. Azuma and G. Kato, Aggregating quantum repeaters
593
+ for the quantum internet, Physical Review A 96, 032332
594
+ (2017).
595
+ [4] R. Raussendorf and H. J. Briegel, A one-way quantum
596
+ computer, Physical Review Letters 86, 5188 (2001).
597
+ [5] D. Schlingemann and R. F. Werner, Quantum error-
598
+ correcting codes associated with graphs, Physical Review
599
+ A - Atomic, Molecular, and Optical Physics 65, 8 (2002).
600
+ [6] B.
601
+ A.
602
+ Bell,
603
+ D.
604
+ A.
605
+ Herrera-Mart´ı,
606
+ M.
607
+ S.
608
+ Tame,
609
+ D. Markham, W. J. Wadsworth, and J. G. Rarity, Exper-
610
+ imental demonstration of a graph state quantum error-
611
+ correction code, Nature Communications 5, 1 (2014).
612
+ [7] N. H. Lindner and T. Rudolph, Proposal for pulsed On-
613
+ demand sources of photonic cluster state strings, Physical
614
+ Review Letters 103 (2009).
615
+ [8] I. Schwartz, D. Cogan, E. R. Schmidgall, Y. Don,
616
+ L. Gantz, O. Kenneth, N. H. Lindner, and D. Gershoni,
617
+ Deterministic generation of a cluster state of entangled
618
+ photons, Science 354, 434 (2016).
619
+ [9] D. Cogan, Z.-E. Su, O. Kenneth, and D. Gershoni, A de-
620
+ terministic source of indistinguishable photons in a clus-
621
+ ter state, (2021), arXiv:2110.05908.
622
+ [10] A.
623
+ Vezvaee,
624
+ P.
625
+ Hilaire,
626
+ M.
627
+ F.
628
+ Doty,
629
+ and
630
+ S.
631
+ E.
632
+ Economou, Deterministic generation of entangled pho-
633
+ tonic cluster states from quantum dot molecules, (2022),
634
+ arXiv:2206.03647.
635
+ [11] K. X. Tran, A. S. Bracker, M. K. Yakes, J. Q. Grim,
636
+ and S. G. Carter, Enhanced Spin Coherence of a Self-
637
+ Assembled Quantum Dot Molecule at the Optimal Elec-
638
+ trical Bias, Physical Review Letters 129, 2202.08256
639
+ (2022).
640
+ [12] M. F. Doty, J. I. Climente, A. Greilich, M. Yakes, A. S.
641
+ Bracker, and D. Gammon, Hole-spin mixing in InAs
642
+ quantum dot molecules, Physical Review B - Condensed
643
+ Matter and Materials Physics 81 (2010).
644
+ [13] H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress,
645
+ D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley,
646
+ Direct Observation of Controlled Coupling in an Individ-
647
+ ual Quantum Dot Molecule, Physical Review Letters 94,
648
+ 057402 (2005).
649
+ [14] S. E. Economou, N. Lindner, and T. Rudolph, Optically
650
+ generated 2-dimensional photonic cluster state from cou-
651
+ pled quantum dots, Physical Review Letters 105 (2010).
652
+ [15] E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Pono-
653
+ marev, V. L. Korenev, M. E. Ware, M. F. Doty, T. L.
654
+ Reinecke, and D. Gammon, Optical Signatures of Cou-
655
+ pled Quantum Dots, Science 311, 636 (2006).
656
+ [16] K. C. Wijesundara, J. E. Rolon, S. E. Ulloa, A. S.
657
+ Bracker, D. Gammon, and E. A. Stinaff, Tunable exci-
658
+ ton relaxation in vertically coupled semiconductor InAs
659
+ quantum dots, Physical Review B - Condensed Matter
660
+ and Materials Physics 84, 81404 (2011).
661
+ [17] F. Bopp, J. Rojas, N. Revenga, H. Riedl, F. Sbresny,
662
+ K.
663
+ Boos,
664
+ T.
665
+ Simmet,
666
+ A.
667
+ Ahmadi,
668
+ D.
669
+ Gershoni,
670
+ J. Kasprzak, A. Ludwig, S. Reitzenstein, A. Wieck,
671
+ D. Reuter, K. M¨uller, and J. J. Finley, Quantum Dot
672
+ Molecule Devices with Optical Control of Charge Status
673
+ and Electronic Control of Coupling, Advanced Quantum
674
+ Technologies 5, 2200049 (2022).
675
+ [18] M. Fox, Quantum Optics: An Introduction (Oxford Uni-
676
+ versity Press), 2006.
677
+ [19] T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S.
678
+ Katzer, D. Park, C. Piermarocchi, and L. J. Sham, Rabi
679
+ Oscillations of Excitons in Single Quantum Dots, Physi-
680
+ cal Review Letters 87, 133603 (2001).
681
+ [20] A. V. Kuhlmann, J. Houel, D. Brunner, A. Ludwig,
682
+ D. Reuter, A. D. Wieck, and R. J. Warburton, A dark-
683
+ field microscope for background-free detection of reso-
684
+ nance fluorescence from single semiconductor quantum
685
+ dots operating in a set-and-forget mode, Review of Sci-
686
+ entific Instruments 84, 073905 (2013).
687
+ [21] T. Nakaoka, E. C. Clark, H. J. Krenner, M. Sabathil,
688
+ M. Bichler, Y. Arakawa, G. Abstreiter, and J. J. Finley,
689
+ Direct observation of acoustic phonon mediated relax-
690
+ ation between coupled exciton states in a single quantum
691
+ dot molecule, Physical Review B - Condensed Matter and
692
+ Materials Physics 74 (2006).
693
+ [22] J. F¨orstner, C. Weber, J. Danckwerts, and A. Knorr,
694
+ Phonon-assisted damping of rabi oscillations in semi-
695
+ conductor quantum dots, Physical Review Letters 91,
696
+ 127401 (2003).
697
+ [23] T. Kaldewey, S. L¨uker, A. V. Kuhlmann, S. R. Valentin,
698
+ J. M. Chauveau, A. Ludwig, A. D. Wieck, D. E. Reiter,
699
+ T. Kuhn, and R. J. Warburton, Demonstrating the de-
700
+ coupling regime of the electron-phonon interaction in a
701
+ quantum dot using chirped optical excitation, Physical
702
+ Review B 95, 241306 (2017).
703
+ [24] J. Schall, M. Deconinck, N. Bart, M. Florian, M. Hel-
704
+ versen, C. Dangel, R. Schmidt, L. Bremer, F. Bopp,
705
+ I. H¨ullen, C. Gies, D. Reuter, A. D. Wieck, S. Rodt,
706
+ J. J. Finley, F. Jahnke, A. Ludwig, and S. Reitzenstein,
707
+ Bright Electrically Controllable Quantum-Dot-Molecule
708
+ Devices Fabricated by In Situ Electron-Beam Lithogra-
709
+ phy, Advanced Quantum Technologies 4, 2100002 (2021).
710
+ [25] N. Bouarissa and H. Aourag, Effective masses of electrons
711
+ and heavy holes in InAs, InSb, GaSb, GaAs and some of
712
+ their ternary compounds, Infrared Physics & Technology
713
+ 40, 343 (1999).
714
+
ANFRT4oBgHgl3EQftjjG/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,504 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf,len=503
2
+ page_content='Coherent driving of direct and indirect excitons in a quantum dot molecule Frederik Bopp,1, ∗ Johannes Schall,2 Nikolai Bart,3 Florian Vogl,1 Charlotte Cullip,1 Friedrich Sbresny,4 Katarina Boos,4 Christopher Thalacker,1 Michelle Lienhart,1 Sven Rodt,2 Dirk Reuter,5 Arne Ludwig,3 Andreas Wieck,3 Stephan Reitzenstein,2 Kai M¨uller,4 and Jonathan J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
3
+ page_content=' Finley1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
4
+ page_content=' † 1Walter Schottky Institut,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
5
+ page_content=' School of Natural Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
6
+ page_content=' and MCQST,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
7
+ page_content=' Technische Universit¨at M¨unchen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
8
+ page_content=' Am Coulombwall 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
9
+ page_content=' 85748 Garching,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
10
+ page_content=' Germany 2Technische Universit¨at Berlin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
11
+ page_content=' Hardenbergstraße 36,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
12
+ page_content=' 10623 Berlin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
13
+ page_content=' Germany 3Faculty of Physics and Astronomy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
14
+ page_content=' Ruhr-Universit¨at Bochum,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
15
+ page_content=' Universit¨atsstraße 150,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
16
+ page_content=' 44801 Bochum,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
17
+ page_content=' Germany 4Walter Schottky Institut,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
18
+ page_content=' School of Computation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
19
+ page_content=' Information and Technology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
20
+ page_content=' and MCQST,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
21
+ page_content=' Technische Universit¨at M¨unchen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
22
+ page_content=' Am Coulombwall 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
23
+ page_content=' 85748 Garching,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
24
+ page_content=' Germany 5Paderborn University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
25
+ page_content=' Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
26
+ page_content=' Warburger Straße 100,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
27
+ page_content=' 33098 Paderborn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
28
+ page_content=' Germany (Dated: February 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
29
+ page_content=' 2023) Quantum dot molecules (QDMs) are one of the few quantum light sources that promise deter- ministic generation of one- and two-dimensional photonic graph states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
30
+ page_content=' The proposed protocols rely on coherent excitation of the tunnel-coupled and spatially indirect exciton states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
31
+ page_content=' Here, we demonstrate power-dependent Rabi oscillations of direct excitons, spatially indirect excitons, and excitons with a hybridized electron wave function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
32
+ page_content=' An off-resonant detection technique based on phonon-mediated state transfer allows for spectrally filtered detection under resonant excitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
33
+ page_content=' Applying a gate voltage to the QDM-device enables a continuous transition between direct and indirect excitons and, thereby, control of the overlap of the electron and hole wave function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
34
+ page_content=' This does not only vary the Rabi frequency of the investigated transition by a factor of ≈ 3, but also allows to optimize graph state generation in terms of optical pulse power and reduction of radiative lifetimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
35
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
36
+ page_content=' INTRODUCTION The use of single photons as flying qubits facilitates transmission of quantum information at the speed of light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
37
+ page_content=' However, transfer over large distances unavoidably comes with losses and decoherence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
38
+ page_content=' Encoding quantum information on an ensemble of entangled photons, a so- called graph state [1], instead of a single photon, provides a possibility to mitigate the losses is transmission chan- nels [2, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
39
+ page_content=' Furthermore, other specific forms of graph states such as photonic cluster states promise realization of measurement-based quantum computing [4] as well as quantum error correction [5, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
40
+ page_content=' Following the Lindner-Rudolph protocol [7], one- dimensional photonic cluster states can be deterministi- cally generated by utilizing single spins in semiconductor quantum dots (QDs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
41
+ page_content=' The polarization entanglement of up to five photons has been achieved in a one-dimensional cluster state has been achieved [8] and most recent ex- periments demonstrate localizable entanglement over ten photons [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
42
+ page_content=' While the nanophotonic environment of QDs provides high photon emission rates, the cluster state cre- ation fidelity is limited by spin dephasing and modified selection rules in the presence of a transverse magnetic field [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
43
+ page_content=' These challenges can be overcome by using a pair of tunnel coupled and vertically stacked QDs, so called quantum dot molecules (QDMs) [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
44
+ page_content=' Besides pro- longing the spin coherence compared to single quantum ∗ frederik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
45
+ page_content='bopp@wsi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
46
+ page_content='tum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
47
+ page_content='de † finley@wsi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
48
+ page_content='tum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
49
+ page_content='de dots [11], QDMs possess an unique level structure [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
50
+ page_content=' This level structure enables, for example, spin rotations and spin readout transitions without application of a magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
51
+ page_content=' The ability to create spatially indirect excitons, with one charge carrier occupying the upper and one the lower QD [13], provides a cycling transi- tion which can be used for generating time-bin entangled photons [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
52
+ page_content=' Moreover, QDMs are proposed to generate two-dimensional photonic cluster states by harnessing the tunnel coupling between the two QDs and inter-dot con- trol gates [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
53
+ page_content=' The foundation for creating one- and two-dimensional photonic cluster states is the occurrence of excitons in spatially direct, spatially indirect, and hybridized config- urations [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
54
+ page_content=' In these different configurations, the charge carriers of an electron-hole pair are located in the same QD, in different QDs, or one of the charge wave func- tions is hybridized over both quantum dots, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
55
+ page_content=' In each configuration, the overlap of the electron and hole wave functions and, therefore, the transition dipole moment (TDM) of the corresponding optical transition differs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
56
+ page_content=' This results in a change of both the lifetime of the excited state and the pulse area needed for maximal pop- ulation inversion [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
57
+ page_content=' While the lifetime influences the cluster state creation efficiency and rate, the π-pulse area sets the intensity of the required optical control pulses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
58
+ page_content=' Hence, the TDM of the addressed transitions influences the generation process of photonic cluster states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
59
+ page_content=' Fur- thermore, the proposed protocols require coherent exci- tation of electron-hole pairs in various exciton configura- tions to control and readout the exciton spin state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
60
+ page_content=' In this work, we demonstrate coherent Rabi oscillations arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
61
+ page_content='13628v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
62
+ page_content='mes-hall] 31 Jan 2023 2 of direct, spatially indirect, and hybridized excitons in a single QDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
63
+ page_content=' An off-resonant detection technique is in- troduced and applied, relying on phonon-mediated state transfers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
64
+ page_content=' We examine the dependence of the Rabi fre- quency on the excitonic configuration, as the overlap of the electron and hole wave functions changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
65
+ page_content=' Tuning the electric field via a gate voltage allows electrical control of this wave function overlap and, therefore, of the pulse area needed for population inversion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
66
+ page_content=' In this way, we demonstrate and quantify electric control of the TDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
67
+ page_content=' Finally, a simple one-dimensional model of a double-well potential allows us to model the voltage-dependence of the TDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
68
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
69
+ page_content=' RESULTS By vertically stacking two QDs with a separation in the nm regime, charge wave functions can hybridize across both QDss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
70
+ page_content=' In addition, both direct and spa- tially indirect excitons can form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
71
+ page_content=' Figure 1 (a) illustrates a schematic band-diagram of a QDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
72
+ page_content=' The two QDs are depicted by a double-well potential, in which elec- trons (filled circle) and holes (empty circle) are trapped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
73
+ page_content=' The design of the investigated sample, described in Ap- pendix A, energetically favours the location of a hole in the top QD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
74
+ page_content=' Consequently, a direct/indirect exciton (red/blue ellipse) forms, when an electron is trapped in the top/bottom QD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
75
+ page_content=' The QDM is embedded in a p-i-n diode structure;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
76
+ page_content=' applying a gate voltage V facilitates tun- ing of the energy levels of both QDs relative to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
77
+ page_content=' In this way, the direct and indirect exciton energies can be brought into resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
78
+ page_content=' At the resonance condition, the electron wave function hybridizes across both dots, molecular bonding and anti-bonding states form, and an avoided crossing between the orbital states occurs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
79
+ page_content=' Since we can control the tunnel coupling between the two QDs by varying the gate voltage, we use this dependency to investigate coherent driving of different exciton configu- rations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
80
+ page_content=' The most elemental charge state exhibiting the hy- bridization of wave functions is the neutral exciton (X0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
81
+ page_content=' Figure 1 (b) shows a voltage-dependent photolumines- cence measurement of the X0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
82
+ page_content=' We make use of a two- phase electrical and optical sequence to deterministi- cally prepare the QDM in a zero-charge ground-state and individually adjust the tunnel coupling [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
83
+ page_content=' Excit- ing the energetically higher p-shell orbital of the upper dot at 1353.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
84
+ page_content='6 meV enables the unimpeded detection of the X0 s-shell emission for multiple coupling conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
85
+ page_content=' At 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
86
+ page_content='16 V, the electron wave function hybridizes and an avoided crossing forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
87
+ page_content=' The resulting electron eigen- states are described by symmetric and antisymmetric wave functions [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
88
+ page_content=' The corresponding lower and higher energy transitions of the avoided crossing are denoted LOW and UP in Figure 1 (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
89
+ page_content=' The red and blue dashed lines depict the energies of a direct and indirect exciton, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
90
+ page_content=' By increasing the gate voltage, the exciton 0 50 100 150 0 5 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
91
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
92
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
93
+ page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
94
+ page_content='2 1336 1338 1340 1342 Energy (meV) Gate Voltage (V) Power1/2 (nW1/2) Emission (cts/3s) kCounts (/s) 103 102 101 V z E (a) (b) AlGaAs Excita�on Emission Emission UP LOW cgs UP LOW (c) (d) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
95
+ page_content='1 V 𝛾P FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
96
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
97
+ page_content=' Rabi oscillations of the neutral exciton in a QDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
98
+ page_content=' (a) Schematic band structure of a QDM represented by a double-well potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
99
+ page_content=' An AlGaAs barrier below the molecule prolongs tunneling times for electrons while not affecting tun- neling for holes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
100
+ page_content=' One hole (empty circle) is located in the up- per QD, while electrons (filled circles) occur in both dots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
101
+ page_content=' As a consequence, direct (red ellipse) and indirect (blue ellipse) excitons arise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
102
+ page_content=' A gate voltage V applied to the sample facil- itates tuning of the direct and indirect exciton energies rela- tive to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
103
+ page_content=' (b) Voltage-dependent photoluminescence of the neutral exciton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
104
+ page_content=' The red and blue dashed lines indicate the energies of the direct and indirect excitons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
105
+ page_content=' tunnel cou- pling between the two QDs leads to an avoided crossing with a symmetric (pink) and an anti-symmetric (green) electron eigenstate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
106
+ page_content=' The upper (lower) energy transition is called UP (LOW).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
107
+ page_content=' Triangles indicate the excitation energy and voltage applied in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
108
+ page_content=' (c) Neutral exciton state diagram illus- trating the excitation and detection scheme for monitoring Rabi oscillations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
109
+ page_content=' While a resonant light field (green) is driv- ing UP, a phonon-mediated state transfer with rate γP (black arrow) is enabling emission from both UP and the energet- ically detuned LOW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
110
+ page_content=' (d) Power-dependent Rabi oscillations when exciting UP and detecting UP (green) or LOW (pink) at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
111
+ page_content='1 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
112
+ page_content=' ge1336 0050.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
113
+ page_content='150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
114
+ page_content='210e 1338 uS C1340n 01342SMSGaateVolta3 character changes from direct to hybridized to indirect for the upper energy branch, and vice versa for the lower energy branch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
115
+ page_content=' As a result, the overlap of the electron and hole wave functions changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
116
+ page_content=' The change of the wave function overlap is quanti- fied by coherently driving Rabi oscillations on the ex- citon transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
117
+ page_content=' The Rabi frequency of a resonantly excited two-level system ΩR = �� E0D ℏ �� is linearly depen- dent on the TDM D, which in return is proportional to the overlap of the electron and hole wave function [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
118
+ page_content=' In addition, ΩR depends linearly on the electric driving field amplitude E0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
119
+ page_content=' The E0-dependence allows the ob- servation of power-dependent Rabi oscillations [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
120
+ page_content=' For this purpose, a 5 ps laser pulse is applied to resonantly drive the crystal ground state (cgs)-to-X0 transition in the QDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
121
+ page_content=' The occupation of the excited state is mon- itored by detecting the photons emitted by the driven two-level system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
122
+ page_content=' Commonly, emission from resonantly excited states is detected in a cross-polarized setup con- figuration to suppress the excitation laser [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
123
+ page_content=' At high excitation power, however, laser light can leak into the detection channel and reduce the signal-to-noise ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
124
+ page_content=' We propose and demonstrate a readout technique utiliz- ing a phonon-mediated state transfer [21], which detunes the emitted photons energetically from the two-level sys- tem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
125
+ page_content=' Thereby, the limitation of an insufficiently sup- pressed excitation laser is eliminated via spectral filter- ing, and the visibility of the Rabi oscillations is increased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
126
+ page_content=' Figure 1 (c) visualizes the state diagram of the X0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
127
+ page_content=' The two excited states UP and LOW can both radiatively de- cay into the cgs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
128
+ page_content=' A phonon emission process with rate γP can transfer the electron from the UP to the LOW configuration [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
129
+ page_content=' Since the excitation pulse length is short compared to the decay rates, the cgs-UP system is well approximated by a two-level system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
130
+ page_content=' It is coher- ently driven by a 5 ps laser pulse (green arrow).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
131
+ page_content=' Fig- ure 1 (d) shows the power-dependent resonance fluores- cence emission of the UP transition as green data points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
132
+ page_content=' The measurement is performed at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
133
+ page_content='1 V, such that the driven transition exhibits a direct exciton character, as shown in Figure 1 (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
134
+ page_content=' Rabi oscillations are observed up to a pulse area of slightly above 2π and 602 nW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
135
+ page_content=' However, a decreasing signal-to-noise ratio prevents the detection of oscillations above 602 nW due to nsufficient suppres- sion of the excitation laser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
136
+ page_content=' To improve the signal-to-noise ratio, which decreases with increasing power, we make use of a phonon- mediated state transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
137
+ page_content=' The emission of a phonon transfers the electron from the UP into the LOW configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
138
+ page_content=' This process can only occur as long as the system is in the excited state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
139
+ page_content=' Thus, the ensemble occupation of LOW is proportional to the ensemble occupation of UP, and so is the number of emitted photons of both transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
140
+ page_content=' In addition, due to the avoided crossing, the emission of LOW is at least 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
141
+ page_content='1 meV detuned from the driving energy for any gate voltage, which allows the spectral filtering of the emis- sion from the excitation laser pulse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
142
+ page_content=' Thus, the resonant kCounts (/s) Power1/2 (nW1/2) UP LOW 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
143
+ page_content='1 V 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
144
+ page_content='22 V 0 50 100 0 1 2 3 0 50 100 0 5 10 0 50 100 0 2 4 0 50 100 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
145
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
146
+ page_content='2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
147
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
148
+ page_content=' Rabi oscillations of the UP and LOW branch at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
149
+ page_content='1 V (left) and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
150
+ page_content='22 V (right) by phonon-mediated state transfers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
151
+ page_content=' The red data points correspond to a direct, the blue to an indirect driven transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
152
+ page_content=' excitation of the two-level system and the off-resonant monitoring of its excited state occupation are achieved simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
153
+ page_content=' The power-dependent emission of the LOW transition when exciting UP is shown by the pink data points in Figure 1 (d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
154
+ page_content=' Below 602 nW, both readout techniques show the same Rabi frequency as expected, confirming the proportionality of occupancy between UP and LOW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
155
+ page_content=' However, in contrast to the resonant detection (green), Rabi oscillations are well resolvable up to a pulse area of 7π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
156
+ page_content=' The reduction of the oscillation amplitude arises from interactions with phonons [22], while the increase of the mean is attributed to a slightly chirped excitation laser pulse [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
157
+ page_content=' From the relative intensities of both transitions, we can conclude that the phonon induced relaxation rate is compara- ble to the radiative decay rate of the direct UP transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
158
+ page_content=' Electric control of the tunnel coupling between the two QDs allows coherent excitation of electron-hole pairs in different occupation configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
159
+ page_content=' Figure 2 shows the power-dependent emission of the QDM while resonantly exciting UP and detecting LOW (green dashed box, UP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
160
+ page_content=' The measurements are performed at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
161
+ page_content='1 V (left) and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
162
+ page_content='22 V (right), on either side of the avoided crossing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
163
+ page_content=' The red and blue data points indicate a direct and indirect character of the excited transition, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
164
+ page_content=' We ob- serve Rabi oscillations for both the direct and indirect transitions, which confirms that coherent excitation of a spatially indirect exciton is possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
165
+ page_content=' However, the Rabi 4 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
166
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
167
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
168
+ page_content='3 Gate Voltage (V) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
169
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
170
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
171
+ page_content='15 Rabi Frequency (1/nW1/2) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
172
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
173
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
174
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
175
+ page_content='8 1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
176
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
177
+ page_content=' Measured voltage dependent Rabi frequency of UP (green) and LOW (pink), plotted on the left axes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
178
+ page_content=' The right axes visualizes the calculated overlap of the electron and hole wave functions as a function of the voltage, where the pink/green dashed line corresponds to the lowest/second- lowest electron eigenenergy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
179
+ page_content=' The red/blue shaded background indicates the direct/indirect character of the transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
180
+ page_content=' frequency of the indirect configuration is reduced com- pared to the direct configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
181
+ page_content=' This is caused by the reduced overlap of the electron and hole wave functions and the accompanying decrease of the TDM for the in- direct exciton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
182
+ page_content=' A verification of these results is found by performing the same experiments on the lower branch (Figure 2, pink box, LOW).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
183
+ page_content=' Similar to the previous case, a phonon absorption process facilitates a state transfer from LOW to UP and, therefore, the off-resonant detection of UP while exciting LOW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
184
+ page_content=' This allows us to off-resonantly monitor Rabi oscillations of the LOW branch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
185
+ page_content=' The investigated gate voltages of both excitation cases are chosen to be ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
186
+ page_content='06 V away from the avoided crossing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
187
+ page_content=' Therefore, the electron configuration of the upper branch at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
188
+ page_content='1 V (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
189
+ page_content='22 V) resembles the electron configuration of the lower branch at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
190
+ page_content='22 V (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
191
+ page_content='1 V).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
192
+ page_content=' This leads to a com- parable Rabi frequency of the direct (red) and indirect (blue) exciton of the upper and lower energy transition at the two voltages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
193
+ page_content=' The difference in absolute counts between the excitation of UP and LOW is attributed to the underlying phonon process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
194
+ page_content=' When exciting UP (LOW), we rely on the emission (absorption) of a phonon to detect the signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
195
+ page_content=' Since the measurements are performed at 10 K, the probability of absorbing a phonon is strongly reduced compared to the emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
196
+ page_content=' Since our QDM device allows continuous tuning the gate voltage while maintaining the prepared charge state, arbitrary exciton configurations can be set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
197
+ page_content=' Thereby, the overlap of the electron and hole wave functions is analyzable for any coupling condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
198
+ page_content=' Figure 3 shows the power-dependent Rabi frequencies as a function of the gate voltage for the upper (green) and lower branch (pink).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
199
+ page_content=' The Rabi frequencies are extracted by fitting a sin2(laser power) function to the data, with an exponen- tial decay to take phonon dephasing into account, and a linear increase with intensity to compensate for a chirped excitation pulse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
200
+ page_content=' We observe a continuous increase (de- crease) of the frequency when transitioning from an indi- rect (direct) to a direct (indirect) exciton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
201
+ page_content=' By raising the gate voltage and following the UP transition, the elec- tron occupation shifts from the top to the bottom dot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
202
+ page_content=' The opposite holds for the LOW transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
203
+ page_content=' This leads to a continuous variation of the overlap of the electron and hole wave functions and, consequently, to a change in the Rabi frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
204
+ page_content=' Within the investigated range be- tween 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
205
+ page_content='1 V and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
206
+ page_content='22 V, we are able to electrically tune the Rabi frequency by a factor of ≈ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
207
+ page_content=' The wave function overlap is modeled by calculating the eigenenergies and -values of a tilted, one-dimensional double-squarewell potential representing the QDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
208
+ page_content=' By fitting the energy difference between the two lowest eigen- states to the voltage-dependent separation of UP and LOW, the depth of the squarewell potential and the effec- tive electron mass are determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
209
+ page_content=' A detailed description of the model is provided in Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
210
+ page_content=' The right axes of Figure 3 shows the overlap of the electron and hole wave functions |⟨ψe|ψh⟩| for the lowest (pink) and sec- ond lowest (green) electron eigenenergy by dashed lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
211
+ page_content=' The electron eigenenergies correspond to the LOW and UP transition, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
212
+ page_content=' The one-dimensional model provides a remarkably good description of the measured voltage-dependent Rabi frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
213
+ page_content=' Thereby, the Rabi frequency can be related to the TDM of direct, indirect, and hybridized excitons, which allows determination the π-pulse area as well as the difference in radiative lifetime of the corresponding transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
214
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
215
+ page_content=' DISCUSSION AND SUMMARY Adressing direct, indirect, and hybridized excitons is fundamental for using QDMs as spin-photon interfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
216
+ page_content=' In addition, the electrical tuneability of the TDM of the adressed transitions at and around the tunnel coupling regime is one key parameter of a QDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
217
+ page_content=' It not only de- termines the π-pulse power of the addressed transition, as shown in this work, but is also directly related to the lifetime of the excited state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
218
+ page_content=' Therefore, it is one of the parameters setting the creation rate for generating one- and two- dimensional photonic cluster states as well as for performing quantum-repeater protocols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
219
+ page_content=' We have demonstrated the coherent excitation of di- rect, indirect, and hybridized excitons – one of the el- ementary building blocks for creating photonic cluster states from QDMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
220
+ page_content=' We use non-resonant readout, which is facilitated by phonon-mediated charge relaxation and excitation between the two lowest energy eigenstates of the electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
221
+ page_content='. Voltage-dependent Rabi oscillations show a continuous increase of the Rabi frequency when tran- sitioning from an indirect to a direct exciton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
222
+ page_content=' This is 5 attributed to an electrically controlled increase of the TDM of a direct compared to an indirect transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
223
+ page_content=' Fur- thermore, we apply a one-dimensional model to calculate the overlap of the X0 electron and hole wave functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
224
+ page_content=' Within the voltage range presented, we are able to tune the Rabi frequency and consequently the TDM by a fac- tor of ≈ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
225
+ page_content=' This corresponds to a variation of the radia- tive lifetime between a direct and an indirect exciton by a factor of ≈ 9, as it scales quadratically with the TDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
226
+ page_content=' The coherent excitation and the electrical tunability between various exciton configurations in QDMs not only paves the way towards the generation of entangled multi- photon states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
227
+ page_content=' It might also enable protocols which uti- lize fast electrical switching between the exciton config- urations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
228
+ page_content=' This can reduce their lifetime and the π-pulse power and highly improve the cluster state generation rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
229
+ page_content=' ACKNOWLEDGMENTS The authors gratefully acknowledge financial sup- port from the German Federal Ministry of Educa- tion and Research (BMBF) via Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
230
+ page_content='Link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
231
+ page_content='X (16KIS0874, 16KIS086), QR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
232
+ page_content='X (16KISQ027, 16KISQ014, 16KISQ012 and 16KISQ009), the European Union’s Horizon 2020 re- search and innovation program under grant agreement 862035 (QLUSTER) and the Deutsche Forschungsge- meinschaft (DFG, German Research Foundation) via SQAM (FI947-5-1), DIP (FI947-6-1), and the Excellence Cluster MCQST (EXC-2111, 390814868).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
233
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
234
+ page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
235
+ page_content=' gratefully acknowledges the Exploring Quantum Matter (ExQM) programme funded by the State of Bavaria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
236
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
237
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
238
+ page_content=', K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
239
+ page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
240
+ page_content=', and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
241
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
242
+ page_content=' gratefully acknowledge the BMBF for financial support via project MOQUA (13N14846).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
243
+ page_content=' Appendix A: Sample The investigated InAs QDM is enclosed in a GaAs matrix and was grown by molecular beam epitaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
244
+ page_content=' It consists of two vertically stacked QDs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
245
+ page_content=' The inter-dot coupling strength is determined by a wetting layer- to-wetting layer separation of 10 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
246
+ page_content=' In addition, an AlxGa(x−1)As barrier (x = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
247
+ page_content='33) with a thickness of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
248
+ page_content='5 nm is placed between the dots to reduce the coupling strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
249
+ page_content=' The height of the top (bottom) QD was fixed to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
250
+ page_content='9 nm (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
251
+ page_content='7 nm) via the indium-flush technique during growth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
252
+ page_content=' This height configuration facilitates electric field-induced tunnel coupling of orbital states in the conduction band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
253
+ page_content=' A 50 nm thick AlxGa(x−1)As tunnel barrier (x = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
254
+ page_content='33) was grown 5 nm below the QDM to prolong electron tunneling times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
255
+ page_content=' The molecule is embedded in a p-i-n diode, with the doped regions used as contacts to gate the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
256
+ page_content=' The diode contacts are placed more than 150 nm away from the molecule to prevent uncontrolled charge tunneling into the QDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
257
+ page_content=' Furthermore, a distributed Bragg reflector was grown below the diode and a circular Bragg grating was positioned deterministically via in-situ electron beam lithography above an individual and pre-selected QDM to improve photon in- and outcoupling efficiencies [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
258
+ page_content=' All measurements are performed at 10 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
259
+ page_content=' Appendix B: Double-well potential model To calculate the overlap of the electron and hole wave functions, we set up a model consisting of a double- squarewell potential representing the conduction band of the QDM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
260
+ page_content=' We assume that the variation of the in-plane wave functions is small compared to the wave functions along the growth direction z, when changing the gate voltage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
261
+ page_content=' This assumption is reasonable, since the confine- ment of charges along the growth axes and the translation introduced by the gate voltage along the growth axes ex- ceeds the in-plane variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
262
+ page_content=' We can, therefore, approach the problem with a one-dimensional model and expect an acceptable degree of accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
263
+ page_content=' The potential V (z) is designed to match the dimensions of the QDM with re- spect to the tunnel barrier width and dot heights (see Section A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
264
+ page_content=' z is here the growth direction of the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
265
+ page_content=' In addition, we tilt the potential to imitate the presence of an applied gate voltage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
266
+ page_content=' Solving the time-independent Schr¨odinger equation for a given gate voltage allows us to obtain the envelope functions Ψ and their eigenenergies E of an electron with mass me trapped in the double-well potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
267
+ page_content=' The envelope functions are then used to rep- resent the wave function of the electron since the Bloch part of the wave functions are only weakly sensitive to electric fields of the magnitude applied here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
268
+ page_content=' To define the free parameters of the double-well model, we determine the effective electron mass me and the po- tential depth by fitting the difference between the cal- culated two lowest eigenenergies to the measured energy difference ∆E between UP and LOW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
269
+ page_content=' ∆E between the two X0 branches is purely determined by the energy dif- ference between the electron eigenstates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
270
+ page_content=' For calculating the hole wave function, the potential is inverted to repre- sent the valance band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
271
+ page_content=' Its depth is set to match half the depth of the electron potential whereas the heavy hole mass is set to match mh = 10 me [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
272
+ page_content=' Since we are inter- ested in calculating the overlap of wave functions rather than absolute transition energies, it is sufficient to work with relative values in the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
273
+ page_content=' [1] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
274
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
275
+ page_content=' Briegel and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
276
+ page_content=' Raussendorf, Persistent entangle- ment in arrays of interacting particles, Physical Review Letters 5, 910 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
277
+ page_content=' 6 [2] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
278
+ page_content=' Azuma, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
279
+ page_content=' Tamaki, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
280
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
281
+ page_content=' Lo, All-photonic quan- tum repeaters, Nature Communications 6 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
282
+ page_content=' [3] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
283
+ page_content=' Azuma and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
284
+ page_content=' Kato, Aggregating quantum repeaters for the quantum internet, Physical Review A 96, 032332 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
285
+ page_content=' [4] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
286
+ page_content=' Raussendorf and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
287
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
288
+ page_content=' Briegel, A one-way quantum computer, Physical Review Letters 86, 5188 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
289
+ page_content=' [5] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
290
+ page_content=' Schlingemann and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
291
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
292
+ page_content=' Werner, Quantum error- correcting codes associated with graphs, Physical Review A - Atomic, Molecular, and Optical Physics 65, 8 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
293
+ page_content=' [6] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
294
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
295
+ page_content=' Bell, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
296
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
297
+ page_content=' Herrera-Mart´ı, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
298
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
299
+ page_content=' Tame, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
300
+ page_content=' Markham, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
301
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
302
+ page_content=' Wadsworth, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
303
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
304
+ page_content=' Rarity, Exper- imental demonstration of a graph state quantum error- correction code, Nature Communications 5, 1 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
305
+ page_content=' [7] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
306
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
307
+ page_content=' Lindner and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
308
+ page_content=' Rudolph, Proposal for pulsed On- demand sources of photonic cluster state strings, Physical Review Letters 103 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
309
+ page_content=' [8] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
310
+ page_content=' Schwartz, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
311
+ page_content=' Cogan, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
312
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
313
+ page_content=' Schmidgall, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
314
+ page_content=' Don, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
315
+ page_content=' Gantz, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
316
+ page_content=' Kenneth, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
317
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
318
+ page_content=' Lindner, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
319
+ page_content=' Gershoni, Deterministic generation of a cluster state of entangled photons, Science 354, 434 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
320
+ page_content=' [9] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
321
+ page_content=' Cogan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
322
+ page_content='-E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
323
+ page_content=' Su, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
324
+ page_content=' Kenneth, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
325
+ page_content=' Gershoni, A de- terministic source of indistinguishable photons in a clus- ter state, (2021), arXiv:2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
326
+ page_content='05908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
327
+ page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
328
+ page_content=' Vezvaee, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
329
+ page_content=' Hilaire, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
330
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
331
+ page_content=' Doty, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
332
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
333
+ page_content=' Economou, Deterministic generation of entangled pho- tonic cluster states from quantum dot molecules, (2022), arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
334
+ page_content='03647.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
335
+ page_content=' [11] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
336
+ page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
337
+ page_content=' Tran, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
338
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
339
+ page_content=' Bracker, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
340
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
341
+ page_content=' Yakes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
342
+ page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
343
+ page_content=' Grim, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
344
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
345
+ page_content=' Carter, Enhanced Spin Coherence of a Self- Assembled Quantum Dot Molecule at the Optimal Elec- trical Bias, Physical Review Letters 129, 2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
346
+ page_content='08256 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
347
+ page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
348
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
349
+ page_content=' Doty, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
350
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
351
+ page_content=' Climente, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
352
+ page_content=' Greilich, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
353
+ page_content=' Yakes, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
354
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
355
+ page_content=' Bracker, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
356
+ page_content=' Gammon, Hole-spin mixing in InAs quantum dot molecules, Physical Review B - Condensed Matter and Materials Physics 81 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
357
+ page_content=' [13] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
358
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
359
+ page_content=' Krenner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
360
+ page_content=' Sabathil, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
361
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
362
+ page_content=' Clark, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
363
+ page_content=' Kress, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
364
+ page_content=' Schuh, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
365
+ page_content=' Bichler, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
366
+ page_content=' Abstreiter, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
367
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
368
+ page_content=' Finley, Direct Observation of Controlled Coupling in an Individ- ual Quantum Dot Molecule, Physical Review Letters 94, 057402 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
369
+ page_content=' [14] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
370
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
371
+ page_content=' Economou, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
372
+ page_content=' Lindner, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
373
+ page_content=' Rudolph, Optically generated 2-dimensional photonic cluster state from cou- pled quantum dots, Physical Review Letters 105 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
374
+ page_content=' [15] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
375
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
376
+ page_content=' Stinaff, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
377
+ page_content=' Scheibner, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
378
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
379
+ page_content=' Bracker, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
380
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
381
+ page_content=' Pono- marev, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
382
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
383
+ page_content=' Korenev, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
384
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
385
+ page_content=' Ware, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
386
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
387
+ page_content=' Doty, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
388
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
389
+ page_content=' Reinecke, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
390
+ page_content=' Gammon, Optical Signatures of Cou- pled Quantum Dots, Science 311, 636 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
391
+ page_content=' [16] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
392
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
393
+ page_content=' Wijesundara, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
394
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
395
+ page_content=' Rolon, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
396
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
397
+ page_content=' Ulloa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
398
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
399
+ page_content=' Bracker, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
400
+ page_content=' Gammon, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
401
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
402
+ page_content=' Stinaff, Tunable exci- ton relaxation in vertically coupled semiconductor InAs quantum dots, Physical Review B - Condensed Matter and Materials Physics 84, 81404 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
403
+ page_content=' [17] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
404
+ page_content=' Bopp, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
405
+ page_content=' Rojas, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
406
+ page_content=' Revenga, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
407
+ page_content=' Riedl, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
408
+ page_content=' Sbresny, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
409
+ page_content=' Boos, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
410
+ page_content=' Simmet, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
411
+ page_content=' Ahmadi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
412
+ page_content=' Gershoni, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
413
+ page_content=' Kasprzak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
414
+ page_content=' Ludwig, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
415
+ page_content=' Reitzenstein, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
416
+ page_content=' Wieck, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
417
+ page_content=' Reuter, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
418
+ page_content=' M¨uller, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
419
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
420
+ page_content=' Finley, Quantum Dot Molecule Devices with Optical Control of Charge Status and Electronic Control of Coupling, Advanced Quantum Technologies 5, 2200049 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
421
+ page_content=' [18] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
422
+ page_content=' Fox, Quantum Optics: An Introduction (Oxford Uni- versity Press), 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
423
+ page_content=' [19] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
424
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
425
+ page_content=' Stievater, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
426
+ page_content=' Li, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
427
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
428
+ page_content=' Steel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
429
+ page_content=' Gammon, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
430
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
431
+ page_content=' Katzer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
432
+ page_content=' Park, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
433
+ page_content=' Piermarocchi, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
434
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
435
+ page_content=' Sham, Rabi Oscillations of Excitons in Single Quantum Dots, Physi- cal Review Letters 87, 133603 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
436
+ page_content=' [20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
437
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
438
+ page_content=' Kuhlmann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
439
+ page_content=' Houel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
440
+ page_content=' Brunner, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
441
+ page_content=' Ludwig, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
442
+ page_content=' Reuter, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
443
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
444
+ page_content=' Wieck, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
445
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
446
+ page_content=' Warburton, A dark- field microscope for background-free detection of reso- nance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode, Review of Sci- entific Instruments 84, 073905 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
447
+ page_content=' [21] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
448
+ page_content=' Nakaoka, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
449
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
450
+ page_content=' Clark, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
451
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
452
+ page_content=' Krenner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
453
+ page_content=' Sabathil, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
454
+ page_content=' Bichler, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
455
+ page_content=' Arakawa, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
456
+ page_content=' Abstreiter, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
457
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
458
+ page_content=' Finley, Direct observation of acoustic phonon mediated relax- ation between coupled exciton states in a single quantum dot molecule, Physical Review B - Condensed Matter and Materials Physics 74 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
459
+ page_content=' [22] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
460
+ page_content=' F¨orstner, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
461
+ page_content=' Weber, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
462
+ page_content=' Danckwerts, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
463
+ page_content=' Knorr, Phonon-assisted damping of rabi oscillations in semi- conductor quantum dots, Physical Review Letters 91, 127401 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
464
+ page_content=' [23] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
465
+ page_content=' Kaldewey, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
466
+ page_content=' L¨uker, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
467
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
468
+ page_content=' Kuhlmann, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
469
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
470
+ page_content=' Valentin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
471
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
472
+ page_content=' Chauveau, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
473
+ page_content=' Ludwig, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
474
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
475
+ page_content=' Wieck, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
476
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
477
+ page_content=' Reiter, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
478
+ page_content=' Kuhn, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
479
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
480
+ page_content=' Warburton, Demonstrating the de- coupling regime of the electron-phonon interaction in a quantum dot using chirped optical excitation, Physical Review B 95, 241306 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
481
+ page_content=' [24] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
482
+ page_content=' Schall, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
483
+ page_content=' Deconinck, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
484
+ page_content=' Bart, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
485
+ page_content=' Florian, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
486
+ page_content=' Hel- versen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
487
+ page_content=' Dangel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
488
+ page_content=' Schmidt, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
489
+ page_content=' Bremer, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
490
+ page_content=' Bopp, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
491
+ page_content=' H¨ullen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
492
+ page_content=' Gies, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
493
+ page_content=' Reuter, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
494
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
495
+ page_content=' Wieck, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
496
+ page_content=' Rodt, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
497
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
498
+ page_content=' Finley, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
499
+ page_content=' Jahnke, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
500
+ page_content=' Ludwig, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
501
+ page_content=' Reitzenstein, Bright Electrically Controllable Quantum-Dot-Molecule Devices Fabricated by In Situ Electron-Beam Lithogra- phy, Advanced Quantum Technologies 4, 2100002 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
502
+ page_content=' [25] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
503
+ page_content=' Bouarissa and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
504
+ page_content=' Aourag, Effective masses of electrons and heavy holes in InAs, InSb, GaSb, GaAs and some of their ternary compounds, Infrared Physics & Technology 40, 343 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ANFRT4oBgHgl3EQftjjG/content/2301.13628v1.pdf'}
AdE1T4oBgHgl3EQf9Aai/content/2301.03552v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef488e8f3bb4e37fac1e381ef70ec744e01c9ac818f66270cfeb8195b32cf74f
3
+ size 1435996
AdE1T4oBgHgl3EQf9Aai/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad89888cd96e4459fd96b2a27c98b446ff02aeb2c9eb237bb3d9dac67b3193fa
3
+ size 120724
AdE1T4oBgHgl3EQfDQNp/content/2301.02874v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a24bde8e73e94bda77f2fb529cbd6397125763e8f6998ee1f74ded39eed7ea7c
3
+ size 1670785
AdE1T4oBgHgl3EQfDQNp/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dfb1b85a9759e9598a416379e63519568dec7988ed56397d3b833403c7a6354
3
+ size 3145773
AdE1T4oBgHgl3EQfDQNp/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6d3071ed3503373b3b3b57eed988f22f91f7f988b285ea8c4a100e7bf2bad4e
3
+ size 122776
BNAyT4oBgHgl3EQfd_jC/content/2301.00314v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93a47047da1d4260707e20ffac236326e55718cd10cef2c9b885b8c3d2ddf154
3
+ size 8207999
DtFJT4oBgHgl3EQfBiw4/content/tmp_files/2301.11425v1.pdf.txt ADDED
@@ -0,0 +1,694 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Anomalously high supercurrent density in a two-dimensional topological material
2
+
3
+ Qi Zhang1*†, Md Shafayat Hossain1*†, Brian Casas2, Wenkai Zheng2, Zi-Jia Cheng1, Zhuangchai Lai3,4, Yi-Hsin
4
+ Tu5, Guoqing Chang6, Yao Yao3, Siyuan Li3, Yu-Xiao Jiang1, Sougata Mardanya5, Tay-Rong Chang5, Jing-Yang
5
+ You7, Yuan-Ping Feng7,8, Guangming Cheng9, Jia-Xin Yin1, Nana Shumiya1, Tyler A. Cochran1, Xian P. Yang1,
6
+ Maksim Litskevich1, Nan Yao9, Kenji Watanabe10, Takashi Taniguchi11, Hua Zhang3,12,13†, Luis Balicas2, M.
7
+ Zahid Hasan1,14†
8
+ 1Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton
9
+ University, Princeton, New Jersey, USA.
10
+ 2National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA.
11
+ 3Department of Chemistry, City University of Hong Kong, Hong Kong, China.
12
+ 4Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China.
13
+ 5Department of Physics, National Cheng Kung University, 701 Tainan, Taiwan
14
+ 6Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological
15
+ University, Singapore 637371, Singapore.
16
+ 7Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
17
+ 8Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
18
+ 9Princeton Institute for Science and Technology of Materials, Princeton University, Princeton, NJ, USA.
19
+ 10Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan.
20
+ 11International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan.
21
+ 12Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of
22
+ Hong Kong, Hong Kong, China.
23
+ 13Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China.
24
+ 14Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
25
+
26
+ * These authors contributed equally to this work
27
+ †Corresponding
28
+ to:
29
+ qz9@princeton.edu;
30
+ mdsh@princeton.edu;
31
+ hua.zhang@cityu.edu.hk;
32
+ mzhasan@princeton.edu
33
+ Ongoing advances in superconductors continue to revolutionize technology thanks to the increasingly
34
+ versatile and robust availability of lossless supercurrent. In particular high supercurrent density can lead to
35
+ more efficient and compact power transmission lines, high-field magnets, as well as high-performance
36
+ nanoscale radiation detectors and superconducting spintronics. Here, we report the discovery of an
37
+ unprecedentedly high superconducting critical current density (17 MA/cm2 at 0 T and 7 MA/cm2 at 8 T) in
38
+ 1T′-WS2, exceeding those of all reported two-dimensional superconductors to date. 1T′-WS2 features a
39
+ strongly anisotropic (both in- and out-of-plane) superconducting state that violates the Pauli paramagnetic
40
+ limit signaling the presence of unconventional superconductivity. Spectroscopic imaging of the vortices
41
+ further substantiates the anisotropic nature of the superconducting state. More intriguingly, the normal state
42
+ of 1T′-WS2 carries topological properties. The band structure obtained via angle-resolved photoemission
43
+ spectroscopy and first-principles calculations points to a Z2 topological invariant. The concomitance of
44
+ topology and superconductivity in 1T′-WS2 establishes it as a topological superconductor candidate, which
45
+ is promising for the development of quantum computing technology.
46
+
47
+ Since the discovery of superconductivity by Heike
48
+ Kamerlingh Onnes back in 1911 [1], superconductors have
49
+ revolutionized science and technology through numerous
50
+ applications ranging from superconducting qubits to high-
51
+ field magnets [2-4]. High-field magnets fabricated from
52
+ superconductors with high critical current density, have
53
+ enabled scientific discoveries across physical, chemical,
54
+ and biological sciences [5-7]. On the other hand,
55
+ superconducting materials exhibiting topological properties
56
+ offer possibilities beyond this classical application
57
+ paradigm, opening a new frontier to implement fault-
58
+ tolerant quantum information technologies. Recently, two-
59
+ dimensional
60
+ (2D)
61
+ transition
62
+ metal
63
+ dichalcogenides
64
+ (TMDCs) attracted considerable interests thanks to their
65
+ abundant crystal structures and novel physical properties
66
+ [8-11]. Specifically, hole-doped TMDCs have been
67
+ considered as candidates for topological superconductivity
68
+ based on momentum-space-split spinless fermions [8]. For
69
+
70
+ example, the coexistence of superconductivity with a
71
+ topologically non-trivial electronic state makes 2M-WS2 a
72
+ good candidate for topological superconductivity [12].
73
+ Here, we access both avenues and demonstrate an
74
+ unprecedentedly high superconducting critical current
75
+ density and topological features in the 2D superconductor
76
+ 1T′-WS2.
77
+ 1T′-WS2 is composed of a distorted [WS6] octahedral and
78
+ crystallizes in a monoclinic layered structure [13], as shown
79
+ in Fig. 1a. High purity 1T′-WS2 crystals were synthesized
80
+ via a previously reported method [13]. The single-phase
81
+ nature can be observed in the cross-sectional scanning
82
+ transmission electron microscope (STEM) image (Fig. 1b).
83
+ STEM image unveils the atomic stacking pertaining to a
84
+ monoclinic and distorted structure. This atomic-resolution
85
+ characterization confirms the high crystallinity and phase
86
+ purity of the as-synthesized 1T′-WS2 crystals, consistent
87
+ with the previous report [13]. After characterizing the bulk
88
+ material, we fabricated devices based on few-layer 1T′-WS2
89
+ for transport measurements. Thin flakes of 1T′-WS2
90
+ obtained via mechanical exfoliation were transferred onto a
91
+ SiO2 (285 nm)/Si substrate (inset of Fig. S1a). The Raman
92
+ spectrum of the as-prepared 1T′-WS2 flake shows a series
93
+ of peaks at ~112, ~178, ~270, ~316, and ~407 cm-1 (Fig.
94
+ S1a), consistent with single-phase 1T′-WS2 [13]. The
95
+ thickness of the flakes used in our measurements is ~6.1
96
+ nm as measured by the atomic force microscope (Fig. S1b).
97
+ The
98
+ device
99
+ was
100
+ fabricated
101
+ following
102
+ a
103
+ Hall-bar
104
+ configuration and measured from T = 300 K to 2.0 K in a
105
+ Physical Property Measurement System. Figure 1c depicts
106
+ the four-probe resistance as a function of temperature and
107
+ captures the electrical transport behavior of the sample. At
108
+ high temperatures, it exhibits metallic behavior (dR/dT > 0),
109
+ indicating phonon-scattering-dominated transport [14]. The
110
+ superconducting transition occurs at 7.7 K, which is slightly
111
+ lower than the bulk critical temperature (Tc) of 1T′-WS2
112
+ (8.6 K) [13]. We also measured the Hall effect of 1T′-WS2
113
+ above the critical temperature. Strikingly, the carrier
114
+ concentration in 1T′-WS2 approaches 1015~1016 cm-2 at T =
115
+ 10 K (Fig. S2a and S2b). This value is much higher than the
116
+ typical
117
+ carrier
118
+ concentration
119
+ (~1014
120
+ cm-2)
121
+ of
122
+ 2D
123
+ superconductors with electrostatic gating [15].
124
+ To investigate the superconducting state of 1T′-WS2, we
125
+ performed magneto-transport measurements (Fig. 1d). We
126
+ start with the angular dependence of the upper critical
127
+ magnetic field (Hc2), defined as the magnetic field at which
128
+ the resistance drops to 50% of its normal state value. The
129
+ details of the angular dependent measurement are described
130
+ in Fig. S3. For a clear visualization, we normalized the
131
+ resistance by Rn, i.e., the normal state resistance for all the
132
+ samples. Figure 1e summarizes the magnetic field
133
+ dependence of the resistance at different angles (θ) at T =
134
+ 0.33 K, where θ is the angle between the z-axis and the
135
+ magnetic field direction (Fig. 1d). As the sample is rotated
136
+ from the perpendicular (θ = 0º) to a parallel field (θ = 90º)
137
+ configuration, the transition towards superconductivity
138
+ progressively shifts to higher fields, manifesting a clear
139
+ superconducting anisotropy (Fig. 1e). In Fig. 1f, we present
140
+ a plot of Hc2 as a function of θ, showing that the highest Hc2
141
+ occurs when the magnetic field is applied parallel to the
142
+ sample plane. To understand the anisotropic nature of Hc2,
143
+ we fitted our data to the Tinkham formula, which describes
144
+ the angular dependence of Hc2 for a 2D superconductor
145
+ [16]:
146
+
147
+ where Hc2,⊥ and Hc2,// are the upper critical field for fields
148
+ perpendicular and parallel to the plane of the sample,
149
+ respectively. As shown in Fig. 1f, the blue fitting curve
150
+ matches the data quite well and thus confirms the 2D nature
151
+ of the superconductivity in 1T′-WS2. The fitting of the
152
+ angle dependent critical field for smaller angular regimes to
153
+ the 2D Tinkham formula is shown in Fig. S4.
154
+ After exploring the anisotropy of Hc2 along the out-of-
155
+ plane directions, we then examined how Hc2 evolved along
156
+ the in-plane directions. As the device is rotated from the x-
157
+ axis (φ = 0°; φ is the angle between the magnetic field and
158
+ the x-axis as shown in Fig. 1d) to the y-axis (φ = 90°), the
159
+ superconducting transition progressively shifts from higher
160
+ fields to lower fields (Fig. 1g). Careful measurements were
161
+ performed to rule out the possibility of an accidental out-of-
162
+ plane component (Fig. S5). Such a planar anisotropy is
163
+ likely to result from the reduced crystal symmetry due to
164
+ the distorted structure of 1T′-WS2, as clearly seen in Fig.
165
+ 1a. Figure 1h, which shows Hc2 as a function of φ, reveals
166
+ an emergent two-fold symmetry. Furthermore, we observed
167
+ that the largest value of the in-plane Hc2 (28 T). To obtain a
168
+ quantitative understanding of such a large value, we
169
+ compared it to the expected Pauli paramagnetic limiting
170
+ field. In conventional superconductors, a sufficiently high
171
+ external magnetic field can suppress superconductivity
172
+ through the orbital [17] and spin Zeeman effect [18,19]. For
173
+ a few-layer sample, the suppression from the orbital effect
174
+ is nearly absent when the magnetic field is parallel to the
175
+ sample plane. Consequently, the Zeeman effect imposes an
176
+ upper bound on Hc2, known as the Pauli limit (Hp = 1.84×Tc
177
+ T/K) [20]. We find that the in-plane Hc2 (28 T) in 1T���-WS2
178
+ clearly violates the Pauli limit (14 T for Tc = 7.7 K). Such a
179
+ violation combined with the emergence of two-fold
180
+ symmetry for the in-plane Hc2 suggests unconventional
181
+ superconductivity in 1T′-WS2.
182
+ We further explored the superconducting transition via
183
+ systematic temperature dependent measurements. Figures
184
+ 1i and 1j show such data taken when the magnetic field was
185
+ perpendicular and parallel to the sample plane, respectively.
186
+ In both cases, the superconducting transition shifts
187
+ gradually to lower magnetic fields as the temperature
188
+ increases. The temperature dependence of the out-of-plane
189
+ upper critical field (Hc2,⊥) and in-plane upper critical field
190
+
191
+ COS 0
192
+ FIG.1 Crystal structure and Superconductivity of 1T′-WS2. a, Schematic illustration of the structure of 1T′-WS2. Top
193
+ panel: side view of the crystallographic structure; bottom panel: top view of a typical monolayer. b, Cross-sectional STEM
194
+ image of 1T′-WS2. Inset: high-magnification STEM image of layered structure with atomic resolution. c, Temperature-
195
+ dependent electrical resistance of the mechanically exfoliated 1T′-WS2 without magnetic field. Insets: optical image of the
196
+ 1T′-WS2 device covered by h-BN with Hall-bar configuration (top) and small range Rxx-T plot of 1T′-WS2 around Tc shown in
197
+ the area within the red rectangle (bottom). d, Schematic illustration of a 1T′-WS2 device and the rotation experiment setup,
198
+ where the x-axis is parallel to c-axis of the crystal and z-axis is perpendicular to crystalline plane. θ is the angle between the
199
+ out-of-plane magnetic field and the z-axis; φ is the angle between the in-plane magnetic field and the x-axis. e, Magnetic field
200
+ dependence of the normalized resistance of the 1T′-WS2 device at T = 0.33 K with different out-of-plane rotation angles θ. f,
201
+ The θ-dependence of the upper critical field. The blue curve denotes a fit to the data following the Tinkham formula for a 2D
202
+ superconductor. g, Magnetic field dependence of the normalized resistance of the 1T′-WS2 device at T = 0.33 K with
203
+ different in-plane rotation angles φ. h, The φ-dependence of the upper critical field. The green dashed line indicates the Pauli
204
+ limit. i, j, Superconducting transition of the 1T′-WS2 device under a perpendicular magnetic field (i) and under a parallel
205
+ magnetic field (j) at different temperature. k, Temperature dependence of the upper critical field with magnetic field
206
+ directions parallel and perpendicular to the crystal plane. The red curve represents the linear relationship between Hc2,⊥ and T
207
+ according to the 2D GL theory.
208
+
209
+ c
210
+ 0.3
211
+ 10 um
212
+ BN
213
+ 0.2
214
+ IT'WS
215
+ 0.05
216
+ C
217
+ 0.1
218
+ 0.0
219
+ 12
220
+ T (K)
221
+ 0
222
+ 100
223
+ 200
224
+ 300
225
+ T (K)
226
+ 2D-Tinkham (Hc2,//) are summarized in Fig. 1k. Hc2,⊥ displays a linear
227
+ dependence on temperature, that is well fitted by the
228
+ standard
229
+ Ginzburg-Landau
230
+ (GL)
231
+ theory
232
+ for
233
+ 2D
234
+ superconductors [16]:
235
+
236
+ where
237
+ (0) is the zero-temperature GL in-plane
238
+ coherence length, Φ0 is the magnetic flux quantum, and Tc
239
+ is the critical temperature at which the resistance drops to
240
+ 50% of its value in the normal state. From the fit we can
241
+ estimate the coherence length
242
+ (0) ≈ 9.6 nm. The
243
+ temperature dependence of Hc2,//, on the other hand, follows
244
+ the GL formula expected for 2D superconductors [16]:
245
+
246
+ where dSC is the superconducting thickness. From the
247
+ fitting of Hc2,//, the superconducting thickness is around 3.2
248
+ nm, which is smaller than
249
+ (0) and consistent with 2D
250
+ superconductivity.
251
+
252
+
253
+ FIG.2 Scanning tunneling microscopy measurements on
254
+ 1T′-WS2. a, Topographic image of the bc plane of 1T′-
255
+ WS2. Top inset: a zoom-in view of the topographic image
256
+ showing the atomic arrangements. Bottom inset: Fast
257
+ Fourier transform of the topographic image. b, A zero-bias
258
+ conductance map of vortices at 1 T. Inset: Fourier
259
+ transform of the dI/dV map. c, d, The conductance map of a
260
+ single vortex at 1 T with zero bias (c) and 1 mV bias (d). e,
261
+ Tunneling spectroscopy spectrum taken at 4.2 K, revealing
262
+ a superconducting gap. Light blue curves are the
263
+ differential spectra taken at different positions on the
264
+ surface; the dark blue curve denotes the average spectra. f,
265
+ Field dependence of tunneling spectroscopy taken at 0 T, 1
266
+ T and 5 T.
267
+ To further characterize the anisotropic superconductivity
268
+ in 1T′-WS2, we performed scanning tunneling microscopy
269
+ (STM) measurements and directly imaged the vortices
270
+ under magnetic field. A single crystal was cleaved in-situ at
271
+ T = 77 K and measured at T = 4.2 K. Figure 2a shows the
272
+ topography of 1T′-WS2 over a large area. The atomically
273
+ resolved STM topographic image reveals a clean surface
274
+ featuring zigzag chains along the b-axis of the crystal (top
275
+ inset of Fig. 2a). In addition, the corresponding fast Fourier
276
+ transform pattern also exhibits the distorted octahedral
277
+ coordination feature (bottom inset of Fig. 2a). A zero-
278
+ energy conductance map under 1 T applied perpendicularly
279
+ to the bc plane is shown in Fig. 2b. The Fourier transform
280
+ of the dI/dV map is two-fold symmetric (inset of Fig. 2b).
281
+ The conductance maps of a single vortex at 0.1 T taken at V
282
+ = 0 mV (Fig. 2c) and 1 mV (Fig. 2d) further highlight the
283
+ anisotropic nature of the superconductivity. Consistent with
284
+ the anisotropy observed in our transport data, the vortices
285
+ are anisotropic and elongated along the b direction,
286
+ reflecting the anisotropy of the Ginzburg-Landau coherence
287
+ length between both directions. Tunneling differential
288
+ conductance collected from an atomically resolved lattice
289
+ illustrates a superconducting gap with sharp coherence
290
+ peaks (Fig. 2e). This superconducting gap disappears
291
+ gradually as the magnetic field is increased (Fig. 2f).
292
+ Subsequently, we performed critical current density (Jc)
293
+ measurements. As alluded in the introduction, an important
294
+ aspect of a superconductor is its Jc, which dictates several
295
+ practical
296
+ applications.
297
+ The
298
+ higher
299
+ the
300
+ Jc
301
+ of
302
+ a
303
+ superconductor, the smaller and more efficient the
304
+ superconducting devices that can be fabricated from it or
305
+ the larger the magnetic fields that can be generated. We
306
+ measured differential resistance of the 1T′-WS2 device with
307
+ thickness of 6 nm as a function of direct current (DC) bias
308
+ current at different temperatures (Fig. 3a). Note that, Jc is
309
+ defined as the current density at which the differential
310
+ resistance (dV/dI) reaches its maximum, as reported in
311
+ previous works [21,22]. Remarkably, as seen in Fig. 3b,
312
+ 1T′-WS2 exhibits ultrahigh critical current densities
313
+ reaching 17 MA/cm2 at T = 0.33 K. Figure 3b highlights the
314
+ temperature dependence of the critical current density,
315
+ featuring an enormous Jc = 13 MA/cm2 at liquid He
316
+ temperature (4.2 K). In addition, we systematically
317
+ measured the critical currents of samples with different
318
+ layer thicknesses, as shown in Fig. S6. The thickness
319
+ dependence of the critical current density is summarized in
320
+ Fig. 3c. There is no obvious difference among the samples
321
+ with thicknesses exceeding 20 nm. The critical current
322
+ densities increase as the devices become thinner, which is
323
+ also observed in atomically thin TaS2 [23]. Furthermore, we
324
+ evaluated the field dependence of Jc (Fig. S7). The critical
325
+ current density falls rapidly as the perpendicular magnetic
326
+ field increases (Fig. 3d). In contrast, the critical current
327
+ density is rarely influenced by a parallel magnetic field
328
+ since 1T′-WS2 shows extremely high in-plane upper critical
329
+
330
+ GJH
331
+ 100nm
332
+ 0
333
+ 0.2nS
334
+ 100nm
335
+ 0mV
336
+ e
337
+ T=4K
338
+ T=4K
339
+ 0.2
340
+ 0.2
341
+ (su)
342
+ (su) Λp/Ip
343
+ my
344
+ ΛP/Ip
345
+ 0.1
346
+ 0
347
+ 5T
348
+ 1T
349
+ -OT
350
+ 0
351
+ -10
352
+ -5
353
+ 0
354
+ 5
355
+ 10
356
+ -10
357
+ -5
358
+ 0
359
+ 5
360
+ 10
361
+ 20nm
362
+ Bias (mV)
363
+ Bias (mV)fields. Even under an 8 T in-plane magnetic field, Jc is
364
+ substantially large (7 MA/cm2).
365
+ Experimentally, numerous 2D superconducting transition
366
+ metal dichalcogenides have been studied [20-33]. In-plane
367
+ anisotropic upper critical fields were observed in 2H-NbSe2
368
+ [24] and Td-MoTe2 [25]. 2H-NbSe2 [20] and ionic-gated
369
+ 2H-MoS2 [26] also exhibited high in-plane upper critical
370
+ fields. However, we emphasize that 1T′-WS2 is the only 2D
371
+ material to our knowledge that shows the suitable critical
372
+ temperature and high critical current under high in-plane
373
+ magnetic field, which are crucial for building high-field
374
+ magnets. Even for a thick sample, the in-plane critical field
375
+ surpasses 8 T at 4 K (Fig. S8). We summarize the
376
+ parameters of 2D superconductors in Fig. 3e. As for 1T-
377
+ MoS2 [27], 2H-TaS2 [23], 3R-TaSe2 [28], Td-MoTe2 [25],
378
+ 2H-NbS2 [29], their critical temperatures are below the
379
+ temperature of liquid helium (4.2 K), rendering the
380
+ construction of high-field magnets impractical. Gated MoS2
381
+ displays a relatively high critical temperature and also very
382
+ high critical fields, but superconductors under ionic gating
383
+ are not suitable for applications [30]. Lastly, 2H-NbSe2 is
384
+ comparable to 1T′-WS2 in critical fields and critical
385
+ temperatures. However, its critical current density is two
386
+ orders of magnitude lower than that of 1T′-WS2 [31]. The
387
+ significance of our work is that we
388
+ report
389
+ an
390
+ unprecedentedly high superconducting critical current
391
+ density (17 MA/cm2 at 0 T) in 1T′-WS2, which exceeds
392
+ those of all the known 2D superconductors to date [21-33].
393
+ Notably, it even exceeds the Jc of MgB2 films [34], a well-
394
+ known superconductor for high-critical-current applications
395
+ (Fig. 3e). Even under an 8 T in-plane magnetic field, the Jc
396
+ of 1T′-WS2 is substantially large (7 MA/cm2). As a
397
+ reference, the critical currents of commercial magnet
398
+ building materials are listed here, such as Nb-Ti alloy (0.1
399
+ MA/cm2 at 10 T) and Nb3Sn (0.5 MA/cm2 at 10 T) [35].
400
+ The large Jc at zero and finite magnetic fields makes 1T′-
401
+ WS2 a potential candidate for future study on building next-
402
+ generation superconducting magnets.
403
+ Having explored the superconductivity of 1T′-WS2, we
404
+ turn to the topological features pertinent to its electronic
405
+ band structure using a series of theoretical calculations and
406
+ angle-resolved
407
+ photoemission
408
+ spectroscopy
409
+ (ARPES)
410
+ experiments. The calculated bulk band structure is shown in
411
+ Fig. S9. Besides the continuous energy gap between
412
+ conduction band and valence band around the Fermi level,
413
+ we observe a band inversion at the -point between W d
414
+ and S p orbitals, which leads to a strong topological
415
+ insulating phase. Furthermore, the surface-projected
416
+ calculation shows the topological Dirac surface state
417
+ emerging from the valence band and merging into
418
+ conduction bands (Fig. 4a). The corresponding ARPES data
419
+ (Fig. 4b), taken at T = 10 K (above Tc) matches the first
420
+ principles calculations below EF. In particular we identify
421
+ the linear-dispersed hole pocket at
422
+ to be the lower cone
423
+ of the topological surface state, as it shows no photon-
424
+
425
+ FIG.3 Ultrahigh critical current density of 1T′-WS2. a,
426
+ Differential resistance of a 6-nm-thick 1T′-WS2 sample as a
427
+ function of the direct current (DC) bias at different
428
+ temperatures. b, Critical current density for a 1T′-WS2
429
+ device as a function of the temperature. c, Critical current
430
+ density of the 1T′-WS2 device plotted as a function of
431
+ sample thickness. d, Critical current densities of the 1T′-
432
+ WS2 device plotted as a function of perpendicular and
433
+ parallel magnetic fields. e, Comparison of critical current
434
+ densities among 1T′-WS2 and other representative 2D
435
+ superconductors, such as twisted bilayer graphene (TBG)
436
+ and transition metal dichalcogenides. Commercial magnet
437
+ building materials are also included for reference. Here, the
438
+ superconducting critical temperatures Tc of the different
439
+ materials were determined under zero magnetic field.
440
+ energy dependence and agrees well with the calculated
441
+ dispersion of the Dirac state (More details of ARPES data
442
+ analysis are shown in Figs. S10-12). ARPES Fermi surface
443
+ map also visualizes the highly anisotropic Fermi surface
444
+ (Fig. 4c), which possibly contributes to the extremely
445
+ anisotropic
446
+ Hc2
447
+ in
448
+ 1T′-WS2.
449
+ The
450
+ calculated
451
+ superconducting gap of 1T′-WS2 on the Fermi surface is
452
+ presented in Fig. 4d. These results lend crucial credence to
453
+ the in-plane anisotropy of superconductivity. It is noted that
454
+ so far there is no clear relationship between the topological
455
+ nature and high critical current.
456
+
457
+ 0.4K -
458
+ 1.8K—2.5K—3.5K
459
+ 4.5K—5.5K—
460
+ 6.5K—7.5K
461
+ 8.4nm 1T-MoS2
462
+ 2nm 1T-WS2
463
+ 7nm 3R-TaSe2
464
+ 6nm 1T'-WS2★
465
+ 6.5nm T.-MoTe2
466
+ 1T" WS, @8T
467
+ 1.6nm TBG
468
+ 6nm 2H-NbS2
469
+ 7.6nm a-Mo2C
470
+ MgB- filn
471
+ 4.2nm 2H-TaS2
472
+ Nb,Sn @10T
473
+ 3nm 2H-NbSe2
474
+ 1.6nm gated
475
+ Nb-Ti @10T
476
+ MoS2
477
+ FIG.4 Topological features of 1T′-WS2. a, Calculated surface band structure of 1T′-WS2 at ky = 0, featuring a topological
478
+ Dirac surface state near the Fermi level. b, Energy-momentum cut acquired through ARPES. c, Fermi surface of 1T′-WS2. d,
479
+ Calculated superconducting gap which all kz are projected in the surface Brillouin zone at 2.5 K on the Fermi surface. The
480
+ unit of the color bar is meV.
481
+ In summary, combining a series of experimental and
482
+ numerical techniques, we comprehensively studied 1T′-
483
+ WS2 and find a unique blend of ultrahigh critical
484
+ supercurrent density, large superconducting anisotropy (in-
485
+ plane versus out-of-plane) along with topological features.
486
+ Our findings not only provide a promising material
487
+ platform for high magnetic field technologies but also
488
+ unveil a promising platform for future exploration of
489
+ topological superconductivity, which may be used to
490
+ fabricate topologically protected qubits for future quantum
491
+ computing schemes.
492
+
493
+ ACKNOWLEDGEMENTS. Experimental and theoretical
494
+ work at Princeton University was supported by the Gordon
495
+ and 286 Betty Moore Foundation (GBMF4547; M.Z.H.).
496
+ The material characterization is supported by the United
497
+ States 287 Department of Energy (US DOE) under the
498
+ Basic Energy Sciences program (grant number DOE/BES
499
+ DE-FG-288 02-05ER46200). L.B. is supported by DOE-
500
+ BES through award DE-SC0002613. The National High
501
+
502
+
503
+ Magnetic Field Laboratory acknowledges support from the
504
+ US-NSF Cooperative agreement Grant number DMR-
505
+ 1644779 and the state of Florida. The authors acknowledge
506
+ the sample characterization of Imaging and Analysis Center
507
+ (IAC) at Princeton University, partially supported by the
508
+ Princeton Center for Complex Materials (PCCM) and the
509
+ NSF-MRSEC program (MRSEC; DMR-2011750). G.C.
510
+ acknowledges the support of the National Research
511
+ Foundation, Singapore under its Fellowship Award (NRF-
512
+ NRFF13-2021-0010)
513
+ and
514
+ the
515
+ Nanyang
516
+ Assistant
517
+ Professorship
518
+ grant
519
+ from
520
+ Nanyang
521
+ Technological
522
+ University. J.Y.Y. and Y.P.F. is supported by the Ministry
523
+ of Education, Singapore, under its MOE AcRF Tier 3
524
+ Award MOE2018-T3-1-002. H.Z. thanks the support from
525
+ ITC via the Hong Kong Branch of National Precious
526
+ Metals Material Engineering Research Center (NPMM), the
527
+
528
+ Research Grants Council of Hong Kong (AoE/P-701/20),
529
+ the Start-Up Grant (Project No. 9380100) and grant
530
+ (Project No. 1886921) from the City University of Hong
531
+ Kong, and the Science Technology and Innovation
532
+ Committee
533
+ of
534
+ Shenzhen
535
+ Municipality
536
+ (grant
537
+ no.
538
+ JCYJ20200109143412311). K.W. and T.T. acknowledge
539
+ support from JSPS KAKENHI (Grant Numbers 19H05790,
540
+ 20H00354 and 21H05233).
541
+
542
+ [1] H. K. Onnes, The discovery of superconductivity.
543
+ Commun. Phys. Lab 12, 12 (1911).
544
+ [2] J. Bardeen, L. N. Cooper, J. R. Schrieffer, Microscopic
545
+ theory of superconductivity. Phys. Rev. 106, 162
546
+ (1957).
547
+ [3] T. G. Berlincourt, Emergence of Nb-Ti as supermagnet
548
+ material. Cryogenics 27, 283-289 (1987).
549
+ [4] I.
550
+ Siddiqi,
551
+ Engineering
552
+ high-coherence
553
+ superconducting qubits. Nat. Rev. Mater. 6, 875-891
554
+ (2021).
555
+ [5] Y. Zhang et al., Experimental observation of the
556
+ quantum Hall effect and Berry's phase in graphene.
557
+ Nature 438, 201-204 (2005).
558
+ [6] M.A. Shampo et al., Nobel Prize for Nuclear Magnetic
559
+ Resonance Spectroscopy. Mayo Clin Proc. 87(12),
560
+ e109 (2012).
561
+ [7] P. C. Lauterbur, Paul Lauterbur and Sir Peter
562
+ Mansfield for MRI. Euro. Heart J. 40, 1898-1899
563
+ (2019).
564
+ [8] Y.T. Hsu et al., Topological superconductivity in
565
+ monolayer transition metal dichalcogenides. Nat.
566
+ Commun. 8, 14985 (2017).
567
+ [9] S. Tang et al., Quantum spin Hall state in monolayer
568
+ 1T'-WTe2. Nat. Phys. 13, 683–687 (2017).
569
+ [10] P. Chen et al., Large quantum-spin-Hall gap in single-
570
+ layer 1T′ WSe2. Nat. Commun. 9, 2003 (2018).
571
+ [11] P. Li et al., Evidence for topological type-II Weyl
572
+ semimetal WTe2. Nat. Commun. 8, 2150 (2017).
573
+
574
+ 0.2
575
+ b
576
+ 0.4
577
+ 0.4
578
+ 0.0
579
+ 0.0
580
+ 0.2
581
+ 0.3
582
+ (ev)
583
+ E, (eV)
584
+ 0.2
585
+ -0.2
586
+ 0
587
+ 0.2
588
+ 0.4H
589
+ -0.4
590
+ -0.2
591
+ 0.1
592
+ 0.6
593
+ -0.6
594
+ 0.4
595
+ -0.4-0.2
596
+ 0.0
597
+ 0.2
598
+ 0.4
599
+ -0.4
600
+ -0.2
601
+ 0.0
602
+ 0.2
603
+ 0.4
604
+ -0.5
605
+ 0.5
606
+ k (A-1)
607
+ k (A-1)
608
+ (A-1[12] Y. Fang et al., Discovery of superconductivity in 2M
609
+ WS2 with possible topological surface states. Adv.
610
+ Mater. 31, 1901942 (2019).
611
+ [13] Z. Lai et al., Metastable 1T′-phase group VIB
612
+ transition
613
+ metal
614
+ dichalcogenide
615
+ crystals. Nat.
616
+ Mater. 20, 1113-1120 (2021).
617
+ [14] T. Kawamura & S. D. Sarma, Phonon-scattering-
618
+ limited
619
+ electron
620
+ mobilities
621
+ in
622
+ AlxGa1-xAs/GaAs
623
+ heterojunctions. Phys. Rev. B, 45, 3612 (1992).
624
+ [15] J. T. Ye et al., Superconducting dome in a gate-tuned
625
+ band insulator. Science 338, 1193-1196 (2012).
626
+ [16] M. Tinkham, Introduction to Superconductivity 2nd
627
+ edn (McGraw-Hill, New York, 1996).
628
+ [17] H. F. Hess et al., Scanning-tunneling-microscope
629
+ observation of the Abrikosov flux lattice and the
630
+ density of states near and inside a fluxoid. Phys. Rev.
631
+ Lett. 62, 214-216 (1989).
632
+ [18] B. S. Chandrasekhar, A note on the maximum critical
633
+ field of high-field superconductors. Appl. Phys. Lett. 1,
634
+ 7-8 (1962).
635
+ [19] A. M. Clogston, Upper limit for critical field in hard
636
+ superconductors. Phys. Rev. Lett. 9, 266-267 (1962).
637
+ [20] X. Xi et al., Ising pairing in superconducting NbSe2
638
+ atomic layers. Nat. Phys. 12, 139-143 (2016).
639
+ [21] C. Xu et al., Large-area high-quality 2D ultrathin
640
+ Mo2C superconducting crystals. Nat. Mater. 14, 1135-
641
+ 1141 (2015).
642
+ [22] Z. Wang et al., Superconducting 2D NbS2 grown
643
+ epitaxially by chemical vapor deposition. ACS Nano
644
+ 15, 18403-18410 (2021).
645
+ [23] Navarro, E. et al. Enhanced superconductivity in
646
+ atomically thin TaS2. Nat. Commun. 7, 11043 (2016).
647
+ [24] A.
648
+ Hamill
649
+ et
650
+ al.,
651
+ Two-fold
652
+ symmetric
653
+ superconductivity in few-layer NbSe2. Nat. Phys. 17,
654
+ 949-954 (2021).
655
+ [25] J. Cui et al., Transport evidence of asymmetric spin-
656
+ orbit coupling in few-layer superconducting 1Td-
657
+ MoTe2. Nat. Commun. 10, 2044 (2019).
658
+ [26] J.M. Lu et al., Evidence for two-dimensional Ising
659
+ superconductivity in gated MoS2. Science 350, 1353-
660
+ 1357 (2015).
661
+ [27] C.H. Sharma et al., 2D superconductivity and vortex
662
+ dynamics in 1T-MoS2. Commun. Phys. 1, 90 (2018).
663
+ [28] Y. Deng et al., Controlled growth of 3R phase
664
+ tantalum
665
+ diselenide
666
+ and
667
+ its
668
+ enhanced
669
+ superconductivity. J. Am. Chem. Soc. 142, 2948-2955
670
+ (2020).
671
+ [29] Z. Wang et al., Superconducting 2D NbS2 grown
672
+ epitaxially by chemical vapor deposition. ACS Nano
673
+ 15, 18403-18410 (2021).
674
+ [30] O. Zheliuk et al., Josephson coupled Ising pairing
675
+ induced in suspended MoS2 bilayers by double-side
676
+ ionic gating. Nat. Nanotechnol. 14, 1123–1128 (2019).
677
+ [31] N. Paradiso et al., Phase slip lines in superconducting
678
+ few-layer NbSe2 crystals. 2D Materials 6, 025039
679
+ (2019).
680
+ [32] Y. Saito et al., Independent superconductors and
681
+ correlated insulators in twisted bilayer graphene. Nat.
682
+ Phys. 16, 926-930 (2020).
683
+ [33] Y. Ji et al., Enhanced critical field and anomalous
684
+ metallic state in two-dimensional centrosymmetric 1T′-
685
+ WS2. Phys. Rev. B 105, L161402 (2022).
686
+ [34] C. Eom et al.,. High critical current density and
687
+ enhanced irreversibility field in superconducting
688
+ MgB2 thin films. Nature 411, 558-560 (2001).
689
+ [35] P. J. Lee, D.C. Larbalestier, Microstructural factors
690
+ important for the development of high critical current
691
+ density Nb3Sn strand. Cryogenics 48, 283-292 (2008).
692
+
693
+
694
+
DtFJT4oBgHgl3EQfBiw4/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
E9AyT4oBgHgl3EQfrPkW/content/2301.00555v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:219eb876b9253124407c145de49069031c04820b63b1a4662a640b2028a90e20
3
+ size 2100020
E9AyT4oBgHgl3EQfrPkW/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa6e82753cc24369b4a930b174201b30f013253ea95af743187d84d6f3df7289
3
+ size 6225965
E9AyT4oBgHgl3EQfrPkW/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d53e2ea1cc5548672c5085daef41179242526f6605cd979f5e704a348e15f71
3
+ size 194060
FNE0T4oBgHgl3EQfQwDu/content/2301.02199v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf5ea0869c6a89c4563c0da29c2eff079e5e053441841948bcae735c71de467b
3
+ size 226215
FNE0T4oBgHgl3EQfQwDu/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3b8ece6910718aa688bd78b6143c2800a97a1b362cfdd3b66feebedde9c5e6b
3
+ size 3276845
FNE0T4oBgHgl3EQfQwDu/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58696d5256e607a4bd92fed1aacafcfb7d7aeffb82c5bd799be4d447bd0b1977
3
+ size 111134
FtE1T4oBgHgl3EQfqwWe/content/2301.03347v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6ea47d68b4a1db129b3514c470cd256172333d8e569b1d87bff50b09ec70b4f
3
+ size 9937602
G9E0T4oBgHgl3EQfRQDg/content/tmp_files/2301.02206v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
G9E0T4oBgHgl3EQfRQDg/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
GdE2T4oBgHgl3EQf-gnI/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4204b0442701f145a9f7c918576eb7616ea8b3cc05bb64588f4b88324322c4ad
3
+ size 7864365
H9FIT4oBgHgl3EQfYCsV/content/tmp_files/2301.11246v1.pdf.txt ADDED
@@ -0,0 +1,1374 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MNRAS 000, 1–?? (2023)
2
+ Preprint 27 January 2023
3
+ Compiled using MNRAS LATEX style file v3.0
4
+ Divergence of the local large-scale structure velocity field
5
+ and its implications for Tilted Cosmology
6
+ Erick Past´en1⋆ Sebasti´an G´alvez2† V´ıctor H. C´ardenas1‡
7
+ 1Instituto de F´ısica y Astronom´ıa, Universidad de Valpara´ıso, Gran Breta˜na 1111, Valpara´ıso, Chile
8
+ 2Centro cient´ıfico tecnol´ogico de Valpara´ıso, Universidad Federico Santa Mar´ıa, Av. Espa˜na 1680, Valpara´ıso Chile
9
+ Accepted XXX. Received YYY; in original form ZZZ
10
+ ABSTRACT
11
+ We characterize the peculiar velocity field of the local large-scale structure reconstructed from the 2M + + survey,
12
+ by treating it as a fluid, extracting the gradient and the divergence via different approximations. This reconstructed
13
+ field is important for cosmology, since it was used to correct the peculiar redshifts of the last SNIA compilation
14
+ Pantheon+. We conclude that the local velocity field can be described on average as a slightly contracting fluid,
15
+ with intriguing implications for the “Tilted Cosmology” model. We compute representative values of the apparent
16
+ deceleration parameter (˜q) measured by observers inside the contracting region, in order to compare our results with
17
+ the theoretical predictions of the tilted-universe scenario. As predicted, the computed values are found to be negative
18
+ on a range of averaged scales, allowing for a possible explanation of dark energy as an effect induced by our peculiar
19
+ motion relative to the universal expansion.
20
+ Key words: dark energy – large-scale structure of Universe
21
+ 1 INTRODUCTION
22
+ Dark Energy (DE) is the usual explanation for the apparent
23
+ universal acceleration implied by the SNIA data (Riess et al.
24
+ 1998; Perlmutter et al. 1999). However, the suggestion for
25
+ the existence of dark energy is ultimately based on the cos-
26
+ mological principle, that is on the assumption of a globally
27
+ homogeneous and isotropic Friedmann universe. The require-
28
+ ment of an extra parameter ΩΛ is then necessary to explain
29
+ the dimming of the supernovae magnitudes at large redshifts.
30
+ Nevertheless, new interesting ideas have emerged in recent
31
+ years, putting in doubt the cosmological principle, the Fried-
32
+ mann models and the existence of dark energy.
33
+ On sufficiently large scales the universe appears homo-
34
+ geneous and isotropic, according to the Cosmic Microwave
35
+ Background (CMB) observations. On small scales, however,
36
+ our cosmos is far from that, due to complex structures that
37
+ produce overdensities/underdensities (Keenan et al. 2013),
38
+ fractal-like structures (Labini et al. 1998; Labini 2011) and
39
+ bulk peculiar motions that are not at rest with respect to
40
+ the Hubble flow (Hudson et al. 1999; Feindt 2013; Magoulas
41
+ et al. 2014). There have been many works claiming that some
42
+ of these effects can mimic an apparent acceleration. Possibly
43
+ the combination of some (perhaps of all) of these contribu-
44
+ tions may have an effect stronger than we have previously
45
+ ⋆ E-mail: erick.contreras@postgrado.uv.cl
46
+ † E-mail: sebastian.galvez@usm.cl
47
+ ‡ E-mail: victor.cardenas@uv.cl
48
+ thought (Celerier 2006; Enqvist 2007; Tsagas 2011; Cosmai
49
+ et al. 2019; Asvesta et al. 2022).
50
+ One of the proposed scenarios is the “tilted cosmological
51
+ model” (Tsagas 2011). The latter offers a natural environ-
52
+ ment for the theoretical study of the observed large-scale
53
+ peculiar motions, by allowing for two groups of relatively
54
+ moving observers. One group is aligned with the reference
55
+ frame of the cosmos, which is identified with the coordinate
56
+ system of the CMB, where the associated dipole vanishes by
57
+ construction. The second group are the real observers, living
58
+ in typical galaxies like our Milky Way and moving relative
59
+ to the CMB frame (e.g. see (Tsagas et al. 2008; Ellis et al.
60
+ 2012)). Adopting a tilted almost-Friedmann universe and us-
61
+ ing linear relativistic cosmological perturbation theory, it was
62
+ shown that relative-motion effects can lead to an apparent
63
+ change in the sign of the deceleration parameter inside lo-
64
+ cally contracting bulk flows. Although the effect is a local
65
+ artefact of the observers’ peculiar motion, the affected scales
66
+ can be large enough to have cosmological relevance. Then,
67
+ observers inside (slightly) contracting bulk peculiar flows can
68
+ be misled to believe that their universe recently entered a
69
+ phase of accelerated expansion. Put another way, the unsus-
70
+ pecting observers may misinterpret the local contraction of
71
+ the bulk flow they live in, as global acceleration of the sur-
72
+ rounding universe (see (Tsagas & Kadiltzoglou 2015; Tsagas
73
+ 2021, 2022) for further discussion and details). Our aim is to
74
+ investigate this possibility by comparing theory to observa-
75
+ tions.
76
+ We use the velocity field reconstruction from the 2M++
77
+ galaxy survey (Carrick et al. 2015). This reconstruction pro-
78
+ © 2023 The Authors
79
+ arXiv:2301.11246v1 [astro-ph.CO] 26 Jan 2023
80
+
81
+ 2
82
+ E. Past´en et al.
83
+ vides a pair of data-cubes containing the density contrast and
84
+ the velocity vectors in galactic coordinate. One can use these
85
+ data to apply basic calculus and also to perform corrections
86
+ due to peculiar velocities in cosmological data, as it was done
87
+ in the last Pantheon+ SNIA compilation (Scolnic et al. 2022;
88
+ Carr et al. 2022). In the present paper we estimate the av-
89
+ erage volume scalar of this local velocity-field reconstruction
90
+ by different methods and on different scales. In all cases, the
91
+ local bulk flow is found to contract on average, leading to neg-
92
+ ative values for the local deceleration parameter on a range
93
+ of scales. These results seem to support the tilted cosmolog-
94
+ ical scenario as an alternative natural explanation of the DE
95
+ problem.
96
+ In section 2 we provide a brief but concise description of
97
+ tilted cosmological scenario, referring the reader to the re-
98
+ lated literature for more details. In section 3 we discuss how
99
+ to relate the parameters obtained from the velocity-field re-
100
+ construction with the theory and in section 4 we present the
101
+ data used. Finally, we summarize the method and the results
102
+ in sections 5 and 6 and discuss their implications for cosmol-
103
+ ogy at the end of this paper. In addition to cosmology, our
104
+ analysis has potential applications to astrophysics and to the
105
+ local structure dynamics.
106
+ 2 TILTED COSMOLOGY MODEL
107
+ Consider a perturbed Friedmann-Robertson-Walker (FRW)
108
+ universe with two groups of relatively moving observers. As-
109
+ suming that ua and ˜ua are the 4-velocities of these observers
110
+ and va is the (non-relativistic) peculiar velocity of the latter
111
+ group with respect to the former, we have
112
+ ˜ua = ua + va ,
113
+ (1)
114
+ to first approximation (with uava = 0 always). Introducing
115
+ two sets of observers means that (strictly speaking) there are
116
+ two temporal directions (along ua and ˜ua) and two associated
117
+ 3-spaces (orthogonal ua to and ˜ua). Then, the corresponding
118
+ (covariant) differential operators are ˙ = ua∇a and ′ = ˜ua∇a
119
+ for the time derivatives, with Da = ha
120
+ b∇b and ˜Da = ˜ha
121
+ b∇b for
122
+ the spatial gradients. Also, the tensors hab = gab + uaub and
123
+ ˜hab = gab + ˜ua˜ub project orthogonal to ua and ˜ua respectively.
124
+ The kinematic information of the observers’ motion is de-
125
+ coded by decomposing the gradient of their 4-velocity field
126
+ as follows
127
+ ∇bua = 1
128
+ 3 Θhab + σab + ωab − Aaub .
129
+ (2)
130
+ In the above, Θ is the volume expansion/contraction scalar
131
+ (when positive/negative respectively), σab is the shear, ωab
132
+ is the vorticity and Aa is the 4-acceleration (e.g. see Tsagas
133
+ et al. (2008); Ellis et al. (2012)). In an exactly analogous way,
134
+ the ˜ua-field splits as ∇b˜ua = (˜Θ/3)˜hab + ˜σab + ˜ωab − ˜Aa˜ub, with
135
+ the tildas denoting variables evaluated in the tilted frame of
136
+ the bulk flow. Relative to the same coordinate system, the
137
+ peculiar-velocity field splits as
138
+ ˜Db˜va = 1
139
+ 3
140
+ ˜θ˜hab + ˜ςab + ˜ϖab ,
141
+ (3)
142
+ where ˜θ, ˜ςab and ˜ϖab are the volume scalar, the shear and the
143
+ vorticity of the bulk peculiar motion (Tsagas & Kadiltzoglou
144
+ 2015). Of the last three variables, the most important for our
145
+ purposes is the peculiar volume scalar (˜θ), which takes pos-
146
+ itive/negative values in locally expanding/contracting bulk
147
+ flows respectively.
148
+ The three kinematic sets defined above are related by
149
+ lengthy nonlinear expressions (e.g. see Maartens (1998) for
150
+ the full list). Assuming non-relativistic peculiar motions on
151
+ an FRW background, we obtain the linear relations
152
+ ˜Θ = Θ + ˜θ
153
+ and
154
+ ˜Θ
155
+ ′ = ˙Θ + ˜θ
156
+ ′ ,
157
+ (4)
158
+ between the volume scalars and between their time deriva-
159
+ tives evaluated in the two frames. At this point, we note
160
+ that Θ and ˜Θ monitor the expansion rate of the universe,
161
+ namely the Hubble parameters, as measured in their corre-
162
+ sponding frames (that is Θ = 3H and ˜Θ = 3 ˜H). Then, equa-
163
+ tions (4a) and (4b) imply that the expansion and the accel-
164
+ eration/deceleration rates measured in the tilted coordinate
165
+ system differ from those measured in its CMB counterpart
166
+ solely due to relative-motion effects. In particular, recalling
167
+ that
168
+ q = −1 − 3 ˙Θ
169
+ Θ2
170
+ and
171
+ ˜q = −1 − 3˜Θ′
172
+ ˜Θ2 ,
173
+ (5)
174
+ define the deceleration parameters in the CMB and the bulk-
175
+ flow frames respectively, the following useful relation between
176
+ ˜q and q can be obtained (Tsagas & Kadiltzoglou 2015; Tsagas
177
+ 2021):
178
+ ˜q = q +
179
+ ˜θ′
180
+ 2 ˙H
181
+ ,
182
+ (6)
183
+ to first approximation. Recall that ˜Θ = Θ = 3H in the Fried-
184
+ mann background. Also note that, whereas ˜θ/H ≪ 1 at the
185
+ linear level, the ratio ˜θ′/ ˙H of their time derivatives is not
186
+ always small. Finally, using relativistic linear cosmological
187
+ perturbation theory, we arrive at:
188
+ ˜q = q + 1
189
+ 9 (λH
190
+ λ )
191
+ 2 ˜θ
192
+ H .
193
+ (7)
194
+ with λH = 1/H and λ representing the Hubble horizon and
195
+ the scale of the bulk flow in question. Note that we have fo-
196
+ cused on bulk peculiar flows with sizes considerably smaller
197
+ than the Hubble length (i.e. λ ≪ λH – see (Tsagas & Kadilt-
198
+ zoglou 2015; Tsagas 2021) for the full details of the deriva-
199
+ tion).1
200
+ Following (7), the deceleration parameter measured locally
201
+ by the bulk flow observers (˜q) differs from that of the global
202
+ universe, which by definition coincides with the deceleration
203
+ parameter measured in the idealised CMB frame (q). The
204
+ difference is entirely due to the peculiar motion of the tilted
205
+ observer, since ˜q = q when ˜θ = 0. Also, the “correction” term
206
+ in (7) is scale-dependent and it gets stronger on progressively
207
+ smaller scales (i.e. for λ ≪ λH), despite the fact that ˜θ/H ≪ 1
208
+ throughout the linear regime. Moreover, in accord with (7),
209
+ the overall impact of relative motion on ˜q is also determined
210
+ by the sign of the peculiar volume scalar (˜θ). The latter is
211
+ positive in locally expanding bulk flows, which means that
212
+ 1 Expression (7) has been obtained on an Einstein-de Sitter back-
213
+ ground, primarily for reasons of mathematical simplicity. It is fairly
214
+ straightforward to show that the linear result (7) holds on essen-
215
+ tially all FRW backgrounds, irrespective of their equation of state
216
+ and spatial curvature (Tsagas 2022).
217
+ MNRAS 000, 1–?? (2023)
218
+
219
+ Divergence of the local large-scale structure velocity field and its implications for Tilted Cosmology
220
+ 3
221
+ the deceleration parameter measured by observers residing in
222
+ them will be larger than that of the actual universe (i.e. ˜q > q
223
+ when ˜θ > 0). In the opposite case, that is inside locally con-
224
+ tracting bulk flows, the local deceleration parameter becomes
225
+ smaller (i.e. ˜q < q for θ < 0). The latter case is clearly the most
226
+ intriguing, since it allows for the sign of the deceleration pa-
227
+ rameter to change, from positive to negative, when measured
228
+ by observers inside locally contracting bulk flows. Although
229
+ the sign-change of ˜q is simply an illusion and a local artefact
230
+ of the observer’s relative motion, the affected scales can be
231
+ large enough to make it look as a recent global event. If so,
232
+ an unsuspecting observer may be misled to believe that their
233
+ universe has recently entered a phase of accelerated expan-
234
+ sion. According to (7), the “transition scale”, where the local
235
+ deceleration parameter crosses the ˜q = 0 threshold is (Tsagas
236
+ 2021)
237
+ λT = 1
238
+ 3
239
+
240
+ ˜∣θ∣
241
+ qH λH ,
242
+ (8)
243
+ where q > 0 always (with q = 1/2 in the case of the Einstein-de
244
+ Sitter background).
245
+ Although theoretically the model outlined above is well
246
+ developed, it is not obvious yet how one should relate the
247
+ tilted cosmological scenario to the observations. Parametriz-
248
+ ing the deceleration function as ˜q = ˜q(z) and then using it
249
+ in (7), has led to a good fit with the Pantheon SNIA sam-
250
+ ple (Asvesta et al. 2022). Also, an apparent (Doppler-like)
251
+ dipole anisotropy is expected to appear in the observed dis-
252
+ tribution of the local deceleration parameter (˜q), due to the
253
+ bulk-flow motion relative to the CMB frame (Tsagas 2011).
254
+ However, which observational frame (heliocentric, geocen-
255
+ tric, galactic, or cosmological) should be employed and what
256
+ peculiar-velocity corrections should be applied to the data, in
257
+ order to observe the aforementioned dipolar anisotropy, are
258
+ the subjects of ongoing debate (Colin et al. 2019a,b; Rubin &
259
+ Heitlauf 2020; ?). In this paper, our aim is to study the dy-
260
+ namical structure of the peculiar velocity field directly from
261
+ data reconstruction. We choose the velocity field reconstruc-
262
+ tion of the 2M++ survey (Carrick et al. 2015), which has been
263
+ previously used in cosmology to correct the peculiar velocities
264
+ of the SNIA data in the last Pantheon+ compilation (Scolnic
265
+ et al. 2022; Carr et al. 2022). The methods used to character-
266
+ ize this peculiar velocity field and the procedures employed
267
+ to relate our results with those of the tilted cosmologies are
268
+ discussed in the next sections.
269
+ 3 CLASSICAL FLUID APPROXIMATION
270
+ The kinematic analysis outlined in the previous section, is
271
+ straightforwardly adapted to the Newtonian framework as
272
+ well (e.g. see Ellis (1971, 1990) for further discussion and de-
273
+ tails). In so doing, one replaces the projector (hab), which
274
+ also acts as the metric tensor of the 3-space, with the Kro-
275
+ necker delta (δij). Also, time derivatives and 3-dimensional
276
+ covariant gradients are replaced by convective derivatives and
277
+ by ordinary partial derivatives respectively. Note that, given
278
+ the near spatial flatness of the observed universe, any cur-
279
+ vature corrections due to a nonzero connection (Γa
280
+ bc) will
281
+ be of the second perturbative order. Then, focusing on the
282
+ Figure 1. Peculiar velocities of the Pantheon+ SNIA compilation
283
+ peculiar-velocity field (v = vi), we have ˜θij = ∇v = ∂jvi and
284
+ ˜θij = 1
285
+ 3
286
+ ˜θδij + ˜ςij + ˜ϖij .
287
+ (9)
288
+ Here, the (local) volume expansion/contraction scalar, the
289
+ shear tensor and the vorticity tensor of the bulk peculiar flow
290
+ are respectively defined as
291
+ ˜θ
292
+ =
293
+ ∂ivi = δ
294
+ ij∂jvi ,
295
+ (10)
296
+ ˜ςij
297
+ =
298
+ 1
299
+ 2 (∂jvi + ∂ivj) − 1
300
+ 3
301
+ ˜θ δij,
302
+ (11)
303
+ ˜ϖij
304
+ =
305
+ 1
306
+ 2 (∂jvi − ∂ivj) .
307
+ (12)
308
+ It ts possible to evaluate the gradient tensor of the local
309
+ peculiar-velocity field using this approach. In particular, the
310
+ gradient tensor can be reduced to the 3 × 3-matrix of the
311
+ partial derivatives of the ˜vi-field as:
312
+ ˜θij = ∂jvi =
313
+
314
+ ⎜⎜⎜⎜⎜⎜
315
+
316
+ ∂vx
317
+ ∂x
318
+ ∂vx
319
+ ∂y
320
+ ∂vx
321
+ ∂y
322
+ ∂vy
323
+ ∂x
324
+ ∂vy
325
+ ∂y
326
+ ∂vy
327
+ ∂y
328
+ ∂vz
329
+ ∂x
330
+ ∂vz
331
+ ∂y
332
+ ∂vz
333
+ ∂y
334
+
335
+ ⎟⎟⎟⎟⎟⎟
336
+
337
+ ,
338
+ (13)
339
+ directly relating ˜θij to the Jacobian tensor of the field.
340
+ 4 THE 2M++ VELOCITY FIELD
341
+ RECONSTRUCTION
342
+ The
343
+ last
344
+ Supernovae
345
+ IA
346
+ compilation,
347
+ namely
348
+ Pan-
349
+ theon+ (Scolnic et al. 2022), was released in 2022 showing
350
+ a great improvement in the utility of data at low redshifts
351
+ for cosmological uses. Part of this improvement is due to
352
+ better corrections of the peculiar velocities of the SNIA
353
+ data (Carr et al. 2022) (see Figure 1). This was done by
354
+ using a velocity field reconstruction based on the 2M++
355
+ galaxy survey (Carrick et al. 2015) (see Figure 2). The
356
+ reconstruction procedure can be summarized as follows. If
357
+ MNRAS 000, 1–?? (2023)
358
+
359
+ 400
360
+ 75
361
+ 50
362
+ 200
363
+ 25
364
+ 0
365
+ -25
366
+ -200
367
+ -50
368
+ 75
369
+ -400
370
+ 0
371
+ 50
372
+ 100
373
+ 150
374
+ 200
375
+ 250
376
+ 300
377
+ 350
378
+ Ideg4
379
+ E. Past´en et al.
380
+ Figure 2. Peculiar Velocity field reconstruction from the 2M++ density field in galactic coordinates. Visualizations in 3D, with (left)
381
+ and without (right) external dipole component.
382
+ δ(r) is the density contrast, then the peculiar velocity field
383
+ can be approximated as proportional to the gravitational
384
+ acceleration when the fluctuations are small:
385
+ v(r) = f(Ωm)
386
+
387
+ ∫ d
388
+ 3r
389
+ ′δ(r
390
+ ′) r′ − r
391
+ ∣r′ − r∣3 .
392
+ (14)
393
+ Here, f is the growth rate of cosmic structures defined as
394
+ f = Ωγ
395
+ m, where γ = 0.5 for ΛCDM cosmology. Also, r = HR
396
+ is measured in km/s where R, with R being the comoving
397
+ distance in Mpc and H the Hubble parameter.
398
+ Since the total density perturbation (δ) cannot be directly
399
+ observed, a bias parameter (b) has been introduced to relate
400
+ the observed density contrast (δg) with the real one:
401
+ δ =
402
+ δg
403
+ b ,
404
+ (15)
405
+ at the linear level. Therefore, the important parameter in
406
+ evaluating the velocity field is the ratio β = f/b, since we can
407
+ write:
408
+ v(r) = β
409
+ 4π ∫ d
410
+ 3r
411
+ ′δg(r
412
+ ′) r′ − r
413
+ ∣r′ − r∣3 ,
414
+ (16)
415
+ to relate directly the peculiar velocity with the observed
416
+ galaxy density. Also, as the observations extend only up
417
+ to a maximum scale (Rmax), the contribution beyond this
418
+ length can be added as a constant external velocity parame-
419
+ ter (Vext), so that finally:
420
+ v(r) = β
421
+ 4π ∫
422
+ Rmax
423
+ d
424
+ 3r
425
+ ′δg(r
426
+ ′) r′ − r
427
+ ∣r′ − r∣3 + Vext ,
428
+ (17)
429
+ where β and Vext are determined empirically from the recon-
430
+ struction of the density field.
431
+ We use the density contrast and the velocity field (see Fig-
432
+ ure 3)) given by (Carrick et al. 2015), which can be easily
433
+ downloaded from https://cosmicflows.iap.fr/. There, the au-
434
+ thors provide two useful data-cubes containing the density
435
+ contrast δ and the velocity field v using the best-fit param-
436
+ eters β = 0.431 ± 0.021 and Vext = (89 ± 21, −131 ± 23, 17 ±
437
+ 26)km/s (with ∣Vext∣= 159±23km/s) in galactic Cartesian co-
438
+ ordinates. It is also important to note that a different value
439
+ of β, namely β = 0.341+0.031
440
+ −0.047, was used to correct the Pan-
441
+ theon+ data (Said et al. 2020; Carr et al. 2022), claiming
442
+ that it gives a better fit when comparing the SDSS Funda-
443
+ mental Plane peculiar velocities to the predicted peculiar ve-
444
+ locity field. Overall, we can write v = βvrec, where vrec gives
445
+ the directions and relative magnitudes of the velocity field.
446
+ Then, it is easy to use both values and compare the results.
447
+ In order to apply the same corrections to Pantheon+, the
448
+ whole velocity field was approximated by a radially decaying
449
+ function along the direction of the bulk flow. The latter is a
450
+ 200 Mpc sphere, composed by the sum of an external Vext
451
+ and a small average internal velocity v200. Interestingly, the
452
+ external dipole component does not contribute to the gradi-
453
+ ent as it is a constant.2 Therefore:
454
+ ∇v = ∇(βvrec + Vext) = β∇vrec .
455
+ (18)
456
+ 5 METHODS
457
+ 5.1 Finite differences
458
+ We use the central finite difference method to compute
459
+ derivatives in each pixel of the data-cube as:
460
+ ∇v = ∂jvi ≈
461
+ vi(xj + s) − vi(xj − s)
462
+ 2s
463
+ ,
464
+ (19)
465
+ where xi is the central point of a pixel (I, J, K) of the array.
466
+ Also, s is the physical size of a pixel, so we can use directly the
467
+ 2 Even a radially decaying Vext function, with a fixed direction,
468
+ does not affect the average divergence of the velocity field.
469
+ MNRAS 000, 1–?? (2023)
470
+
471
+ 150
472
+ 100
473
+ Mpc)
474
+ 50
475
+ T-)
476
+ 0
477
+ -100
478
+ -150
479
+ -200
480
+ 200
481
+ 150
482
+ 100
483
+ 50
484
+ -200
485
+ -150
486
+ -100
487
+ -50
488
+ 0
489
+ -100
490
+ 50
491
+ -150
492
+ 100
493
+ 150
494
+ 200
495
+ 200150
496
+ 100
497
+ Mpc)
498
+ 50
499
+ T-)
500
+ 0
501
+ -100
502
+ -150
503
+ -200
504
+ 200
505
+ 150
506
+ 100
507
+ 50
508
+ -200
509
+ -150
510
+ -100
511
+ -50
512
+ -100
513
+ 50
514
+ -150
515
+ 100
516
+ 150
517
+ 200
518
+ 200Divergence of the local large-scale structure velocity field and its implications for Tilted Cosmology
519
+ 5
520
+ Figure 3. The density contrast and the vector velocity field projected over the GZ = 0 and GZ = 50h−1Mpc galactic planes.
521
+ cube data to ensure the right conversion of a pixel to the phys-
522
+ ical value, which fortunately is the same for each coordinate.
523
+ For the case of the velocity field used here, with 2573 pixels
524
+ in a datacube of length 400/h (where h/100 km/secMpc is
525
+ the dimensionless normalised Hubble parameter), we have:
526
+ s = 400Mpc
527
+ 257h
528
+ ,
529
+ (20)
530
+ Neglecting the borders of the sample, leads to a 2553 array
531
+ containing each pixel in a 3 × 3 matrix that corresponds to
532
+ the gradient tensor of the peculiar velocity field. For a central
533
+ finite difference approximation of a function f, one may write:
534
+ f
535
+ ′(x) = f(x + s) − f(x − s)
536
+ 2s
537
+ − s2
538
+ 6 f
539
+ ′′′(ξ)
540
+ = f
541
+
542
+ 1(x) − ϵ ,
543
+ (21)
544
+ for some ξ ∈ [x − s, x + s]. In the above, f ′
545
+ 1(x) is the cen-
546
+ tral approximation for the derivative and ϵ ∝ s2f ′′′(ξ) is the
547
+ truncation error.
548
+ MNRAS 000, 1–?? (2023)
549
+
550
+ GZ= 0 (h-1 Mpc)
551
+ 200
552
+ 150 -
553
+ 10
554
+ 100
555
+ GY (h-1 Mpc)
556
+ 50
557
+ 0
558
+ OS-
559
+ 100
560
+ 150
561
+ 200
562
+ 200
563
+ 150
564
+ 100
565
+ -50
566
+ 100
567
+ 150
568
+ 200
569
+ GX (h-1 Mpc)GZ= 50 (h-1 Mpc)
570
+ 200
571
+ 150 -
572
+ 5
573
+ 100
574
+ GY (h-1 Mpc)
575
+ 50
576
+ 0
577
+ -50
578
+ -100
579
+ 150
580
+ 200
581
+ 200
582
+ 150
583
+ 100
584
+ -50
585
+ 50
586
+ 100
587
+ 150
588
+ 200
589
+ Gx (h-1 Mpc)GZ= 0 (h-1 Mpc)
590
+ 200 -
591
+ 150
592
+ 1000
593
+ 100 -
594
+ 800
595
+ 50
596
+ GY (h-1 Mpc)
597
+ 600
598
+ -50
599
+ 400
600
+ -100 -
601
+ 200
602
+ -150
603
+ -200 -
604
+ -200
605
+ -150
606
+ -100
607
+ -50
608
+ 50
609
+ 100
610
+ 150
611
+ 200
612
+ GX (h-1 Mpc)GZ= 50 (h-1 Mpc)
613
+ 200 -
614
+ 150
615
+ 800
616
+ 100 -
617
+ 50
618
+ 600
619
+ GY (h-1 Mpc)
620
+ 400
621
+ -50
622
+ -100
623
+ 200
624
+ -150
625
+ -200 -
626
+ -200
627
+ -150
628
+ -100
629
+ -50
630
+ 50
631
+ 100
632
+ 150
633
+ 200
634
+ GX (h-1 Mpc)6
635
+ E. Past´en et al.
636
+ Figure 4. Graphic representation of the upper face of a box with side 2s enclosing the pixel [I, J, K]. The finite difference method
637
+ approximate the flux across this surface as simply the contribution of v[I, J, K + 1] over it (left). Meanwhile, the integral approximation
638
+ technique considers the contributions of the side and of the diagonal pixels as well (right).
639
+ 5.2 Integral Approximations
640
+ A direct approximation of the divergence could be computed
641
+ recalling the definition of the operator:
642
+ ∇ ⋅ v = lim
643
+ V →0
644
+ 1
645
+ V ∯
646
+ ∂V v ⋅ dA .
647
+ (22)
648
+ In so doing, we choose a box-like volume of size 2s around
649
+ the central point of each pixel and compute the flux of the
650
+ velocity field through the box. Then, by dividing the flux
651
+ over the volume, we can extract an approximate value for
652
+ the divergence. Note the difference with the central finite dif-
653
+ ference method in equation (19), as this approach ignores the
654
+ contribution over diagonal pixels (see Figure 4) .
655
+ 5.3 Theoretical estimation
656
+ Following equation (17) the divergence of the velocity field
657
+ and the density contrast are also related by the linear ex-
658
+ pression:
659
+ ∇ ⋅ v(r) = β
660
+ 4π ∫
661
+ Rmax
662
+ d
663
+ 3r
664
+ ′δg(r
665
+ ′)∇ ⋅
666
+ r′ − r
667
+ ∣r′ − r∣3 = −βδg(r) .
668
+ (23)
669
+ Note that, as the r coordinate is measured in km/s, to ex-
670
+ press the divergence in
671
+ km/s
672
+ Mpc/h units, we need to multiply this
673
+ quantity by a factor of 100h2.
674
+ 6 RESULTS
675
+ We have computed the gradient matrix using the Numpy pack-
676
+ age from Python to manipulate matrix and arrays. The fol-
677
+ lowing three methods of estimating the volume scalar have
678
+ been used:
679
+ (i) A decomposition of the full gradient tensor of the ve-
680
+ locity field employing finite differences.
681
+ (ii) A integration approximation for the divergence using
682
+ a box volume around the pixels.
683
+ (iii) A theoretical estimation by means of relation (23).
684
+ The results obtained via these different methods are plot-
685
+ ted in Figure 5. To relate the latter with the tilted cosmology
686
+ scenario, we need to estimate an average value for ˜θ and thus
687
+ put the predictions of the tilted model to the test. In our
688
+ analysis, this corresponds to an average divergence of the
689
+ entire fluid, which is then averaged over a spherical volume
690
+ V = 4πλ3/3 as:
691
+ ˜θ = 1
692
+ V ∫
693
+ V (∇ ⋅ v)dV ≈ s3
694
+ V ∑
695
+ i
696
+ (∇ ⋅ v)i ,
697
+ (24)
698
+ where the sum is over the pixels that reside inside a sphere
699
+ of radius λ.
700
+ Assuming that λ = 200/h Mpc for example, which is the
701
+ radial scale of the survey, and setting β ≃ 0.43, as provided
702
+ by (Carrick et al. 2015), the finite difference method leads to:
703
+ ˜θ ≈ −0.24 km/s
704
+ Mpc/h .
705
+ (25)
706
+ Surprisingly, we have a locally contracting peculiar veloc-
707
+ ity field, as the average divergence is negative. Alternatively,
708
+ if we use the value β ≃ 0.34 that was used to correct the Pan-
709
+ theon+ redshifts, we have:
710
+ ˜θ ≈ −0.19 km/s
711
+ Mpc/h .
712
+ (26)
713
+ The corresponding values of the local divergence field
714
+ through the integral approximation method are:
715
+ ˜θ ≈ −0.21 km/s
716
+ Mpc/h,
717
+ (27)
718
+ MNRAS 000, 1–?? (2023)
719
+
720
+ v[I-1,J+1,K+1]
721
+ v[],J+1,K+1]
722
+ v[I+1,J+1,K+1]
723
+ v[I-1,J+1,K+1]
724
+ v[lJ+1,K+1]
725
+ v[I+1,J+1,K+1]
726
+ v[1-1,J,K+1]
727
+ v[I+1,J,K+1]
728
+ v[I-1,J,K+1]
729
+ v[l,J+1,K+1]
730
+ v[],J,K+1]
731
+ v[l,J,K+1]
732
+ v[I-1,J-1,K+1]
733
+ v[l,J-1,K+1]
734
+ v[I+1,J-1,K+1]
735
+ v[I-1,J-1,K+1]
736
+ v[I,J-1,K+1]
737
+ v[I+1,J-1,K+1]
738
+ zDivergence of the local large-scale structure velocity field and its implications for Tilted Cosmology
739
+ 7
740
+ Figure 5. Divergence of the velocity field in
741
+ km/s
742
+ Mpc/h using the finite difference, integral approximation and theoretical computation,
743
+ projected over GZ = 0 and GZ = 50h−1Mpc galactic planes.
744
+ MNRAS 000, 1–?? (2023)
745
+
746
+ GZ= 50 (h-1 Mpc)
747
+ 150
748
+ 100
749
+ OS-
750
+ GY (h-1 Mpc)
751
+ 50
752
+ 100
753
+ 50
754
+ 150
755
+ -100
756
+ 200
757
+ 150
758
+ -250
759
+ 150
760
+ 100
761
+ -50
762
+ 50
763
+ 100
764
+ 150
765
+ Gx (h-1 Mpc)GZ= 0 (h-1 Mpc)
766
+ 150
767
+ 100
768
+ -100
769
+ GY (h-1 Mpc)
770
+ 50
771
+ 0
772
+ 200
773
+ -50
774
+ O0E-
775
+ 100
776
+ 150
777
+ 400
778
+ 150
779
+ -100
780
+ 50
781
+ 100
782
+ 150
783
+ Gx (h-1 Mpc)GZ= 50 (h-1 Mpc)
784
+ 150
785
+ 100
786
+ 50
787
+ GY (h-1 Mpc)
788
+ 50
789
+ 0
790
+ 100
791
+ -50
792
+ 150
793
+ -100
794
+ 150
795
+ 200
796
+ 150
797
+ -100
798
+ 50
799
+ 50
800
+ 100
801
+ 150
802
+ Gx (h-1 Mpc)GZ= 0 (h-1 Mpc)
803
+ 200
804
+ 150 -
805
+ 100
806
+ 100
807
+ GY (h-1 Mpc)
808
+ 50
809
+ 200
810
+ 0
811
+ 0E-
812
+ -50
813
+ 400
814
+ 100
815
+ 500
816
+ 150
817
+ 200
818
+ 600
819
+ -200
820
+ 150
821
+ -100
822
+ -50
823
+ 50
824
+ 100
825
+ 150
826
+ 200
827
+ Gx (h-1 Mpc)GZ= 50 (h-1 Mpc)
828
+ 200
829
+ 150
830
+ 100
831
+ 50
832
+ GY (h-1 Mpc)
833
+ 50
834
+ 100
835
+ 0
836
+ 150
837
+ -50
838
+ 200
839
+ -100
840
+ 250
841
+ 150
842
+ 00E-
843
+ 200
844
+ -200
845
+ 150
846
+ -100
847
+ -50
848
+ 0
849
+ 50
850
+ 100
851
+ 150
852
+ 200
853
+ Gx (h-1 Mpc)GZ= 0 (h-1 Mpc)
854
+ 150
855
+ 100
856
+ 100
857
+ GY (h-1 Mpc)
858
+ 50
859
+ -200
860
+ 0
861
+ 50
862
+ 00E-
863
+ -100
864
+ 400
865
+ 150
866
+ 500
867
+ 150
868
+ 100
869
+ -50
870
+ 100
871
+ 150
872
+ Gx (h-1 Mpc)8
873
+ E. Past´en et al.
874
+ Figure 6. Residual curl vector field in
875
+ km/s
876
+ Mpc/h units from finite difference method, projected over GZ = 0 and GZ = 50h−1Mpc
877
+ when β ≃ 0.43 and
878
+ ˜θ ≈ −0.17 km/s
879
+ Mpc/h.
880
+ (28)
881
+ for β ≃ 0.34.
882
+ Finally, employing the theoretical estimation method, set-
883
+ ting h ≃ 0.7 and integrating the density contrast over the
884
+ same scale gives
885
+ ˜θ ≈ −0.29 km/s
886
+ Mpc/h
887
+ (29)
888
+ and:
889
+ ˜θ ≈ −0.23 km/s
890
+ Mpc/h.
891
+ (30)
892
+ respectively. Therefore, the theoretical estimation provides
893
+ the higher values for ˜θ, while the integral approximation gives
894
+ the lowest. What is most important, however, is that all three
895
+ methods are consistent both in the sign and in the magnitude
896
+ of ˜θ.
897
+ Substituting ˜θ into the right-hand side of equation (7), we
898
+ can compute representative estimates of the local decelera-
899
+ tion parameter (˜q) measured by the bulk-flow observers on
900
+ MNRAS 000, 1–?? (2023)
901
+
902
+ GZ= (h-1 Mpc)
903
+ 200 -
904
+ 150
905
+ 20
906
+ 100
907
+ 15
908
+ 50 -
909
+ GY (h-1 Mpc)
910
+ 0
911
+ :::::
912
+ ::
913
+ :::::::::
914
+ 10
915
+ -50 -
916
+ .
917
+ -100
918
+ 5
919
+ -150 -
920
+ -200
921
+ -200
922
+ -150
923
+ -100
924
+ -50
925
+ 0
926
+ 50
927
+ 100
928
+ 150
929
+ 200
930
+ GX (h-1 Mpc)GZ= 50 (h-1 Mpc)
931
+ 200 -
932
+ 150
933
+ 35
934
+ 100 -
935
+ 50 -
936
+ - 25
937
+ GY (h-1 Mpc)
938
+ 0
939
+ 20
940
+ -50 -
941
+ 15
942
+ -100
943
+ 10
944
+ -150 -
945
+ -200
946
+ -200
947
+ -150
948
+ -100
949
+ -50
950
+ 0
951
+ 50
952
+ 100
953
+ 150
954
+ 200
955
+ GX (h-1 Mpc)Divergence of the local large-scale structure velocity field and its implications for Tilted Cosmology
956
+ 9
957
+ Figure 7. Projections of the shear tensor in
958
+ km/s
959
+ Mpc/h units estimated with finite difference method over cartesian planes that pass on the
960
+ origin.
961
+ different scales (λ). The results, which assign negative values
962
+ to ˜q on scales up to 200 Mpc through all three estimation
963
+ methods, are summarized in Table 1. Note that we have set
964
+ h ≃ 0.7 in all cases. Also, although (7) holds in essentially
965
+ all tilted FRW models, here we have assumed an Einstein-de
966
+ Sitter background (with q = 0.5) for mathematical simplicity.
967
+ 6.1 Uncertainties
968
+ We have identified both controlled and uncontrolled uncer-
969
+ tainties in our estimations. In the former group we have the fit
970
+ uncertainties for the reconstruction parameters β and Vext.
971
+ Of those two, we are mainly interested in β, given that Vext
972
+ does not enter the gradient calculation. Then, if we define the
973
+ divergence of the relative velocity field vrec as ˜θrec, we have:
974
+ ˜θ = β˜θrec ,
975
+ (31)
976
+ while the uncertainty in ˜θ due to the β parameter can be
977
+ written as:
978
+ ∆˜θβ = ˜θrec∆β .
979
+ (32)
980
+ This is the uncertainty recorded in Table 1.
981
+ Turning to the uncontrolled uncertainties, we can group
982
+ different possible biases and systematic effects coming from
983
+ the reconstruction process, as well as errors between approx-
984
+ imations and real values. A detailed summary of the first
985
+ MNRAS 000, 1–?? (2023)
986
+
987
+ GX= 0 (h-1 Mpc)
988
+ 200
989
+ 150 -
990
+ 70
991
+ 100
992
+ - 60
993
+ 50 -
994
+ (h-1 Mpc)
995
+ 50
996
+ 0
997
+ :::::
998
+ 40
999
+ -50 -
1000
+ 30
1001
+ -100
1002
+ 20
1003
+ -150
1004
+ 10
1005
+ -200
1006
+ -200
1007
+ -150
1008
+ -100
1009
+ -50
1010
+ 0
1011
+ 50
1012
+ 100
1013
+ 150
1014
+ 200
1015
+ GY (h-1 Mpc)GY= 0 (h-1 Mpc)
1016
+ 200 -
1017
+ 100
1018
+ 150 -
1019
+ 80
1020
+ 100
1021
+ 50 -
1022
+ GX (h-1 Mpc)
1023
+ 60
1024
+ 0
1025
+ :::::
1026
+ ::
1027
+ -50 -
1028
+ 40
1029
+ -100
1030
+ -20
1031
+ -150 -
1032
+ -200
1033
+ -200
1034
+ -150
1035
+ -100
1036
+ -50
1037
+ 0
1038
+ 50
1039
+ 100
1040
+ 150
1041
+ 200
1042
+ GZ (h-1 Mpc)GZ= 0 (h-1 Mpc)
1043
+ 200
1044
+ 150
1045
+ 70
1046
+ 100
1047
+ - 60
1048
+ 50 -
1049
+ GY (h-1 Mpc)
1050
+ 50
1051
+ 0
1052
+ :::::
1053
+
1054
+ 40
1055
+ -50 -
1056
+ 30
1057
+ -100
1058
+ 20
1059
+ -150
1060
+ 10
1061
+ -200
1062
+ -200
1063
+ -150
1064
+ -100
1065
+ -50
1066
+ 0
1067
+ 50
1068
+ 100
1069
+ 150
1070
+ 200
1071
+ GX (h-1 Mpc)10
1072
+ E. Past´en et al.
1073
+ type can be found in (Carrick et al. 2015). With regard to
1074
+ the approximation errors, we can estimate the precision of
1075
+ the estimation by comparing to the theoretical result. In this
1076
+ respect, the finite difference method seems more precise than
1077
+ the volume integration method, as it is closer to the theoret-
1078
+ ically predicted values. Moreover, according to relation (14),
1079
+ the velocity field should be irrotational as the field is propor-
1080
+ tional to a Newtonian gravity potential in the linear regime.
1081
+ However, when the anti-symmetric part of the gradient tensor
1082
+ is computed we got a non-zero value, leading to a residual low
1083
+ vorticity term that could be related with a deviation of the fi-
1084
+ nite difference method with respect to theoretical estimation.
1085
+ (potential velocity) A symmetric trace-less part of the gradi-
1086
+ ent can also be computed via finite difference method. Resid-
1087
+ ual Curl and projections of the estimated Shear are plotted
1088
+ in Figures 6 and 7.
1089
+ 7 DISCUSSION
1090
+ We have estimated the average volume scalar of the recon-
1091
+ structed peculiar velocity of the local universe via different
1092
+ methods. The volume scalar is related to the divergence of the
1093
+ velocity field. This is so because the velocity divergence mea-
1094
+ sures the change in the local volume of the associated bulk
1095
+ flow and therefore its tendency to locally expand or contract.
1096
+ Then, a positive divergence implies that the fluid tends to
1097
+ expand locally, whereas a negative one indicates a contract-
1098
+ ing region. We have plotted the divergence scalar for different
1099
+ galactic planes in Figure 5. There, one can see that the pecu-
1100
+ liar velocity divergence is highly negative in regions where the
1101
+ density contrast is high, while it is positive in regions where
1102
+ matter content is low. This is to be expected, of course, given
1103
+ the attractive nature of gravity. At this point, it also helps
1104
+ to recall the familiar divergence theorem:
1105
+
1106
+ V (∇ ⋅ v)dV = ∯
1107
+ ∂V v ⋅ dA .
1108
+ (33)
1109
+ Integrating the divergence over the region V reveals whether
1110
+ the latter contracts or expands, as the right-hand side of the
1111
+ equation represents the fluid fraction that ”enters” or ”goes
1112
+ out” of the volume surface ∂V over time.
1113
+ Surprisingly, the values of the local volume scalar (˜θ) as-
1114
+ sociated with the reconstructed peculiar velocity field, were
1115
+ found negative over a range of scales and by means of different
1116
+ estimation methods. This result has direct implications for
1117
+ the tilted cosmological scenario (Tsagas 2011; Asvesta et al.
1118
+ 2022),. The latter predicts that observers living in contracting
1119
+ bulk peculiar flows could measure a negative deceleration pa-
1120
+ rameter locally, even when the universe is decelerating glob-
1121
+ ally (Tsagas & Kadiltzoglou 2015; Tsagas 2021, 2022). Also,
1122
+ as predicted, we found that the impact of the observer’s pecu-
1123
+ liar motion becomes stronger on progressively smaller scales,
1124
+ namely closer to the observer, while it decays away from them
1125
+ (see Table 1). The transition length (λT ), that is the max-
1126
+ imum scale where the local deceleration parameter appears
1127
+ to cross the ˜q = 0 mark and turn negative, also depends on
1128
+ the observer’s position inside the bulk flow. Following (8),
1129
+ for observes residing within 70/h Mpc from the centre of
1130
+ the bulk flow, we find λT ≳ 360 Mpc, λT ≳ 310 Mpc and
1131
+ λT ≳ 390 Mpc, when adopting the Finite Difference method,
1132
+ the Integral Approximation method and the Discrete Density
1133
+ Integration method respectively. Overall, the closer the ob-
1134
+ server is to the bulk-flow centre, the more negative the local
1135
+ value of ˜ϑ and the larger the associated transition length.
1136
+ As appealing these results may be, it is important to re-
1137
+ main vigilant. It is possible, for example, that the values of
1138
+ the average divergence could change, as more refined surveys
1139
+ and models are developed. It is also still unknown whether
1140
+ matter residing outside the survey range could impact the
1141
+ mean divergence of the peculiar velocity field. Recall that in
1142
+ the reconstruction used here this contribution was approxi-
1143
+ mated by a constant velocity term. In addition, there have
1144
+ been recent claims that we live in a large void extending up
1145
+ to ∼ 300 Mpc. However, a negative expansion scalar is not
1146
+ compatible with the idea of a large void, where one expects to
1147
+ find an expanding bulk flow rather than a contracting one.
1148
+ In this respect, our analysis does not seem to support the
1149
+ presence of a large underdensity.
1150
+ Finally, peculiar velocities seem unlikely to change the lo-
1151
+ cal value of the Hubble parameter appreciably and therefore
1152
+ to solve the H0 tension. One can immediately realise this by
1153
+ looking at the linear relation (4a). Indeed, keeping in mind
1154
+ that ∣˜θ∣/Θ = ∣˜θ∣/3H ≪ 1 on sufficiently large scales, the im-
1155
+ pact of the observer’s relative motion on the Hubble param-
1156
+ eter should be minimal.3 Instead, there might be other ex-
1157
+ planations, such as systematics, the evolution of cosmological
1158
+ parameters with redshift, etc (e.g. see Krishnan et al. (2020);
1159
+ Colgain et al. (2022)).
1160
+ 8 CONCLUSIONS
1161
+ We have computed the average divergence (˜θ) of the peculiar
1162
+ velocity field reconstructed from the 2M++ survey, which was
1163
+ used to correct cosmological redshifts in the last SNIA com-
1164
+ pilation Pantheon+. In so doing, we employed three differ-
1165
+ ent approximation methods, coming from standard numerical
1166
+ analysis, the divergence theorem and from a linear theoretical
1167
+ derivation of the peculiar velocity formulae. In all cases, the
1168
+ resulting values of the velocity divergence were found neg-
1169
+ ative over a range of scales, suggesting that we live inside
1170
+ a contracting bulk flow. According to the tilted cosmologi-
1171
+ cal scenario, the deceleration parameter measured locally by
1172
+ observers residing in contracting bulk flows can be negative,
1173
+ although the surrounding universe is globally decelerating.
1174
+ Our numerical results support this scenario, thus allowing
1175
+ for the recent accelerated expansion to be just an illusion
1176
+ produced by our peculiar motion relative to the CMB rest
1177
+ frame. Nevertheless, this possibility should be treated with
1178
+ care, as the computed values are still representative of the
1179
+ measurements a typical bulk-flow observer will make. There-
1180
+ fore, better surveys with refined precision and broader range
1181
+ are needed to improve the values computed here. In any case,
1182
+ however, our results support the need for a deeper study and
1183
+ for the proper understanding of the implications the observed
1184
+ large-scale peculiar motions may have for our interpretation
1185
+ of the cosmological parameters,
1186
+ 3 Recall that, although ∣˜θ∣/H ≪ 1 always during the linear regime,
1187
+ this is not necessarily the case for the ratio ∣˜θ′∣/ ˙H.
1188
+ MNRAS 000, 1–?? (2023)
1189
+
1190
+ Divergence of the local large-scale structure velocity field and its implications for Tilted Cosmology
1191
+ 11
1192
+ λ( Mpc
1193
+ h
1194
+ )
1195
+ ˜θ( km/s
1196
+ Mpc/h )
1197
+ ˜q
1198
+ Finite Difference
1199
+ 70
1200
+ −3.36+0.07
1201
+ −0.07 (−2.65+0.08
1202
+ −0.12)
1203
+ -6.36 (-4.90)
1204
+ 100
1205
+ −2.77+0.06
1206
+ −0.06 (−2.19+0.10
1207
+ −0.07)
1208
+ -2.27 (-1.70)
1209
+ 125
1210
+ −1.48+0.03
1211
+ −0.03 (−1.17+0.06
1212
+ −0.04)
1213
+ -0.45 (-0.25)
1214
+ 150
1215
+ −0.65+0.01
1216
+ −0.01 (−0.51+0.02
1217
+ −0.02)
1218
+ +0.21 (+0.27)
1219
+ 200
1220
+ −0.24+0.005
1221
+ −0.005 (−0.19+0.008
1222
+ −0.005)
1223
+ +0.44 (+0.45)
1224
+ Integral Approximation
1225
+ 70
1226
+ −2.45+0.05
1227
+ −0.05 (−1.94+0.09
1228
+ −0.06)
1229
+ -4.5 (-3.45)
1230
+ 100
1231
+ −1.99+0.04
1232
+ −0.04 (−1.57+0.07
1233
+ −0.05)
1234
+ -1.49 (-1.07)
1235
+ 125
1236
+ −1.13+0.02
1237
+ −0.02 (−0.90+0.04
1238
+ −0.03)
1239
+ -0.22 (-0.07)
1240
+ 150
1241
+ −0.47+0.01
1242
+ −0.01 (−0.37+0.007
1243
+ −0.01 )
1244
+ +0.29 (+0.33)
1245
+ 200
1246
+ −0.21+0.004
1247
+ −0.004 (−0.17+0.008
1248
+ −0.005)
1249
+ +0.45 (+0.46)
1250
+ Discrete Density Integration
1251
+ 70
1252
+ −3.94+0.08
1253
+ −0.08 (−3.11+0.15
1254
+ −0.10)
1255
+ -7.54 (-5.86)
1256
+ 100
1257
+ −3.17+0.07
1258
+ −0.07 (−2.50+0.12
1259
+ −0.08)
1260
+ -2.67 (-2.00)
1261
+ 125
1262
+ −1.66+0.03
1263
+ −0.03 (−1.31+0.06
1264
+ −0.04)
1265
+ -0.56 (-0.34)
1266
+ 150
1267
+ −0.76+0.02
1268
+ −0.02 (−0.59+0.03
1269
+ −0.02)
1270
+ +0.16 (+0.23)
1271
+ 200
1272
+ −0.29+0.006
1273
+ −0.006 (−0.23 +0.01
1274
+ −0.007)
1275
+ +0.42 (+0.44)
1276
+ Table 1. Representative values for ˜q on different scales (λ), using β as it is in the datacube with the finite difference approximation,
1277
+ integral approximation and theoretical estimation. In parenthesis are the values of ˜q obtained after using β from Pantheon+. Note that,
1278
+ for numerical simplicity and demonstration purposes, we have set q = 0.5 in the CMB frame and h ≃ 0.7. Note that according to equation
1279
+ 7, the error propagation for ˜q estimations are negligible
1280
+ ACKNOWLEDGMENTS
1281
+ EP
1282
+ acknowledges
1283
+ support
1284
+ from
1285
+ the
1286
+ graduate
1287
+ scholar-
1288
+ ship ANID-Subdirecci´on de Capital Humano/Doctorado
1289
+ Nacional/2021-21210824. We also wish to thank Christos
1290
+ Tsagas for his comments, which helped us understand fur-
1291
+ ther the tilted cosmological scenario.
1292
+ DATA AVAILABILITY
1293
+ The data underlying this article, including the programs and
1294
+ the results of gradient estimations, will be shared on reason-
1295
+ able request to the corresponding author.
1296
+ REFERENCES
1297
+ Asvesta K., Kazantzidis L., Perivolaropoulos L., Tsagas C. G.,
1298
+ 2022, Mon. Not. R. Astron. Soc., 513, 2394
1299
+ Carr A., Davis T. M., Scolnic D., Said K., Brout D., Peterson E. R.,
1300
+ Kessler R., 2022, Publications of the Astronomical Society of
1301
+ Australia, 39
1302
+ Carrick J., Turnbull S. J., Lavaux G., Hudson M. J., 2015, Monthly
1303
+ Notices of the Royal Astronomical Society, 450, 317
1304
+ Celerier M.-N., 2006, arXiv
1305
+ Colgain E., Sheikh-Jabbari M. M., Solomon R., Dainotti M. G.,
1306
+ Stojkovic D., 2022, doi:10.48550/ARXIV.2206.11447, https:
1307
+ //arxiv.org/abs/2206.11447
1308
+ Colin
1309
+ J.,
1310
+ Mohayaee
1311
+ R.,
1312
+ Rameez
1313
+ M.,
1314
+ Sarkar
1315
+ S.,
1316
+ 2019a,
1317
+ A
1318
+ response
1319
+ to
1320
+ Rubin
1321
+ &;
1322
+ Heitlauf:
1323
+ ”Is
1324
+ the
1325
+ expansion
1326
+ of
1327
+ the
1328
+ universe
1329
+ accelerating?
1330
+ All
1331
+ signs
1332
+ still
1333
+ point
1334
+ to
1335
+ yes”, doi:10.48550/ARXIV.1912.04257, https://arxiv.org/
1336
+ abs/1912.04257
1337
+ Colin J., Mohayaee R., Rameez M., Sarkar S., 2019b, Astronomy
1338
+ & Astrophysics, 631, L13
1339
+ Cosmai L., Fanizza G., Labini F. S., Pietronero L., Tedesco L.,
1340
+ 2019, Classical and Quantum Gravity, 36, 045007
1341
+ Ellis G. F. R., 1971, in R. K. Sachs ed., General Relativity and
1342
+ Cosmology. Academic Press, New York, pp 104–182
1343
+ Ellis G. F. R., 1990, Mon. Not. R. Astron. Soc., 243, 509
1344
+ Ellis G. F. R., Maartens R., MacCallum M. A. H., 2012, Relativis-
1345
+ tic Cosmology. Cambridge University Press, Cambridge
1346
+ Enqvist K., 2007, General Relativity and Gravitation, 40, 451
1347
+ Feindt U. e. a., 2013, A&A, 560, A90
1348
+ Hudson M. J., Smith R. J., Lucey J. R., Schlegel D. J., Davies
1349
+ R. L., 1999, The Astrophysical Journal, 512, L79
1350
+ Keenan R. C., Barger A. J., Cowie L. L., 2013, The Astrophysical
1351
+ Journal, 775, 62
1352
+ Krishnan C., Colg´ain E., Ruchika Sen A., Sheikh-Jabbari M., Yang
1353
+ T., 2020, Physical Review D, 102
1354
+ Labini F. S., 2011, Classical and Quantum Gravity, 28, 164003
1355
+ Labini F., Montuori M., Pietronero L., 1998, Physics Reports, 293,
1356
+ 61
1357
+ Maartens R., 1998, Phys. Rev. D, 58, 124006
1358
+ Magoulas C., Springob C., Colless M., Mould J., Lucey J., Erdo˘gdu
1359
+ P., Jones D. H., 2014, Proceedings of the International Astro-
1360
+ nomical Union, 11, 336–339
1361
+ Perlmutter S., et al., 1999, The Astrophysical Journal, 517, 565
1362
+ Riess A. G., et al., 1998, The Astronomical Journal, 116, 1009
1363
+ Rubin D., Heitlauf J., 2020, The Astrophysical Journal, 894, 68
1364
+ Said K., Colless M., Magoulas C., Lucey J. R., Hudson M. J., 2020,
1365
+ Monthly Notices of the Royal Astronomical Society, 497, 1275
1366
+ Scolnic D., et al., 2022, The Astrophysical Journal, 938, 113
1367
+ Tsagas C. G., 2011, Phys. Rev. D, 84, 063503
1368
+ Tsagas C. G., 2021, Eur. Phys. J. C, 81, 753
1369
+ Tsagas C. G., 2022, Eur. Phys. J. C, 82, 521
1370
+ Tsagas C. G., Kadiltzoglou M. I., 2015, Phys. Rev. D, 92, 043515
1371
+ Tsagas C. G., Challinor A., Maartens R., 2008, Phys. Rep., 465,
1372
+ 61
1373
+ MNRAS 000, 1–?? (2023)
1374
+
H9FIT4oBgHgl3EQfYCsV/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
HtE3T4oBgHgl3EQfWwou/content/tmp_files/2301.04471v1.pdf.txt ADDED
@@ -0,0 +1,488 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DATASET OF FLUORESCENCE SPECTRA AND CHEMICAL
2
+ PARAMETERS OF OLIVE OILS
3
+ AN OPEN SOURCE DATASET
4
+ Francesca Venturini ∗
5
+ Institute of Applied Mathematics and Physics
6
+ Zurich University of Applied Sciences
7
+ Winterthur, Switzerland, vent@zhaw.ch
8
+ Artificial Intelligence Research and Development
9
+ TOELT LLC, Switzerland
10
+ Michela Sperti
11
+ PolitoBIOMed Lab
12
+ Department of Mechanical and
13
+ Aerospace Engineering
14
+ Politecnico di Torino, Turin, Italy
15
+ Umberto Michelucci
16
+ Artificial Intelligence Research and Development
17
+ TOELT LLC, Switzerland
18
+ umberto.michelucci@toelt.ai
19
+ Computer Science Department
20
+ Lucerne University of Applied Sciences and Arts
21
+ Lucerne, Switzerland
22
+ Arnaud Gucciardi
23
+ Artificial Intelligence Research and Development
24
+ TOELT LLC, Switzerland
25
+ arnaud.gucciardi@toelt.ai
26
+ Artificial Intelligence Laboratory
27
+ University of Ljubljana, Ljubljana, Slovenia
28
+ Vanessa M. Martos
29
+ Department of Plant Physiology
30
+ Faculty of Sciences
31
+ Biotechnology Institute
32
+ University of Granada, Spain
33
+ Marco A. Deriu
34
+ PolitoBIOMed Lab
35
+ Department of Mechanical and
36
+ Aerospace Engineering
37
+ Politecnico di Torino, Turin, Italy
38
+ January 12, 2023
39
+ ABSTRACT
40
+ This dataset encompasses fluorescence spectra and chemical parameters of 24 olive oil samples from
41
+ the 2019–2020 harvest provided by the producer Conde de Benalúa, Granada, Spain. The oils are
42
+ characterized by different qualities: 10 extra virgin olive oil (EVOO), 8 virgin olive oil (VOO), and
43
+ 6 lampante olive oil (LOO) samples. For each sample, the dataset includes fluorescence spectra
44
+ obtained with two excitation wavelengths, oil quality, and five chemical parameters necessary for
45
+ the quality assessment of olive oil. The fluorescence spectra were obtained by exciting the samples
46
+ at 365 nm and 395 nm under identical conditions. The dataset includes the values of the following
47
+ chemical parameters for each olive oil sample: acidity, peroxide value, K270, K232, ethyl esters,
48
+ and the quality of the samples (EVOO, VOO, or LOO). The dataset offers a unique possibility for
49
+ researchers in food technology to develop machine learning models based on fluorescence data for
50
+ the quality assessment of olive oil due to the availability of both spectroscopic and chemical data.
51
+ The dataset can be used, for example, to predict one or multiple chemical parameters or to classify
52
+ samples based on their quality from fluorescence spectra.
53
+ Keywords Fluorescence · Olive Oil · Chemical Parameters · Quality control
54
+ ∗Contact email: vent@zhaw.ch
55
+ arXiv:2301.04471v1 [q-bio.QM] 10 Jan 2023
56
+
57
+ Dataset of Fluorescence Spectra and Chemical Parameters of Olive Oils
58
+ DATASET
59
+ 1
60
+ Summary
61
+ The dataset presented is a compilation of measurements of analytical chemistry and fluorescence spectroscopy. The
62
+ dataset includes fluorescence spectra and chemical parameters of 24 Spanish olive oils from the 2019–2020 harvest. The
63
+ 24 samples were collected at SCA San Sebastián Puente del Ventorro, Benalua de las Villas, Spain. The data were later
64
+ measured at the Institute of Applied Mathematics and Physics, Zurich University of Applied Sciences, Technikumstrasse
65
+ 9, 8401 Winterthur, Switzerland. The fluorescence spectroscopy data was acquired by a miniature spectrometer with a
66
+ 1024 element CCD array that acquires the entire spectrum in one single measurement. The dataset includes a total of
67
+ 960 spectra (24 oil samples × 2 excitation wavelengths x 20 repeated measurements). Each of the 960 spectra is an
68
+ array of 1024 values whose elements are the intensity at the different pixel positions. The chemical parameters were
69
+ determined by accredited laboratories using the procedures described in the European Commission regulation and its
70
+ amendment Commission [2013, 1991]. These regulations control the methods for the quality assessment of olive oils
71
+ and provide a decision tree to verify whether an olive oil class is consistent with the declared quality.
72
+ The value of the dataset for research purposes is summarized in the points below.
73
+ • The data are useful for studying the link between optical properties (fluorescence and absorption spectroscopy),
74
+ chemical characteristics (such as oil acidity, peroxide value, and fatty acid content), and olive oil quality (extra
75
+ virgin, virgin, and lampante olive oil).
76
+ • This dataset is the first available that contains fluorescence spectra and chemical analysis obtained by accredited
77
+ laboratories on samples coming from a single producer.
78
+ • Many researchers can benefit from the data: computer scientists can use the data to develop machine learning
79
+ models that link optical to chemical properties; researchers in food technology that are interested in studying
80
+ chemical properties of olive oil samples of different qualities; engineers that want to develop new optical
81
+ analysis techniques alternative to the current expensive and time-consuming analytical chemistry methods.
82
+ • This dataset can be used to perform explainability analysis to identify spectral characteristics that are related
83
+ to different chemical properties (e.g., the acidity of the oil). An example is given in the paper Venturini et al.
84
+ [2023]. This will further advance the understanding of the complex chemical composition of olive oil and its
85
+ link to its quality and health benefits.
86
+ • This dataset can be used to develop instruments based on fluorescence spectroscopy for the rapid and cost-
87
+ effective quality assessment of olive oil.
88
+ 2
89
+ Data Description
90
+ The dataset consists of one CSV file that contains the columns described in Table 1.
91
+ A background file2 is also provided. The file contains 1024 values that correspond to the intensity measured by the
92
+ spectrometer without any light (dark counts). This spectrum can be subtracted from the raw fluorescence spectra to
93
+ remove the effect of the dark counts. The same file can be used for the spectra taken at both 365 nm and 395 nm.
94
+ The raw fluorescence spectra of selected oils obtained with excitation at 365 nm and 395 nm are shown in Fig. 1.
95
+ 3
96
+ Materials and methods
97
+ 3.1
98
+ Olive Oil Samples
99
+ The dataset contains the fluorescence spectra and the chemical parameters of 24 oils. The oils are characterized by
100
+ different quality categories: 10 extra virgin olive oil (EVOO), 8 virgin olive oil (VOO), and 6 lampante olive oil (LOO)
101
+ samples. All samples were provided by Conde de Benalúa, Granada, southern Spain, and were prepared from the
102
+ 2019–2020 harvest. The properties and values of the chemical parameters of the oil samples are listed in Table 2.
103
+ For data acquisition, the samples were placed in commercial 4 ml clear glass vials, taking care that no headspace was
104
+ present to reduce oxidation. All oils were stored in the dark and at 20 °C during the entire time of the measurements.
105
+ 3.2
106
+ Fluorescence Data Acquisition
107
+ The fluorescence spectroscopy data were acquired using the portable sensor described in Venturini et al. [2021]. Since
108
+ already published, only the most relevant characteristics are reported here. The reader is referred to this publication
109
+ 2Fluorescence_olive_oil_dataset_background.csv
110
+ 2
111
+
112
+ Dataset of Fluorescence Spectra and Chemical Parameters of Olive Oils
113
+ DATASET
114
+ Feature
115
+ Datatype
116
+ Description
117
+ Sample
118
+ String
119
+ Oil sample name: the values are ’D03’,’D04’,’D05’, ’D06’, ’D07’ ,’D08’, ’D09’,
120
+ ’D10’, ’D 19’, ’D20’, ’D35’, ’D38’, ’D45’, ’D46’, ’D47’, ’D49’, ’D51’, ’D52’,
121
+ ’D53’, ’D64’, ’D77’, ’D81’, ’D92’,’D73’
122
+ Repetition
123
+ Integer
124
+ Repetition number. There are 20 repetition for each oil and led: the iteration
125
+ number goes from 0 to 19)
126
+ Led
127
+ Integer
128
+ Excitation LED identifier: 1 (395 nm), 2 (365 nm)
129
+ Data
130
+ Float
131
+ The fluorescence spectra. The feature is a string composed of 1024 values given
132
+ between square brackets and seprated by a comma, as for example [1491.0,
133
+ 1508.0, ..., 1545.0]. Each value is the raw intensity of the fluorescence signal at
134
+ the given pixel of the detector of the spectrometer.
135
+ Quality
136
+ String
137
+ Quality of the oil. Possible values are ‘EXTRA’, ‘VIRGIN’, ‘LAMPANTE’
138
+ FAEES
139
+ Float
140
+ Fatty acid ethyl esters in mg/Kg: content of waxes, fatty acid methyl esters and
141
+ fatty acid ethyl esters
142
+ K232
143
+ Float
144
+ UV Absorbance at 232 nm (K270)
145
+ K270
146
+ Float
147
+ UV Absorbance at 270 nm (K232)
148
+ Acidity
149
+ Float
150
+ Acidity: expressed as percentage (%) of oleic acid
151
+ Peroxide Index
152
+ Float
153
+ Quantity of those substances in the sample, expressed in terms of milliequivalents
154
+ of active oxygen per kilogram (mEqO2/Kg), which oxidize potassium iodide.
155
+ Table 1: Information on each feature available in the dataset.
156
+ for more details. The schematic design of the spectrometer is sown in Fig. 2. The excitation light was provided by
157
+ two UV LEDs with emission at 365 nm and 395 nm driven by a current driver (MIC4801, Micrel Inc., San Jose, CA,
158
+ USA) to adjust the excitation intensity. The fluorescence signal was collected by a miniature spectrometer (STS-Vis,
159
+ Ocean Optics, Dunedin, FL, USA) with a 1024-element CCD array which acquires the entire spectrum in one single
160
+ measurement with a resolution of 16 nm. The spectrometer was placed at 90° with respect to the LEDs to avoid the
161
+ excitation light transmitted by the sample to reach the spectrometer. The sensor has a recess where standard 4 ml clear
162
+ glass vials with the sample can be inserted.
163
+ All spectra of the dataset were acquired on undiluted samples at room temperature under identical conditions (illumina-
164
+ tion intensity, integration time, and geometry) for a quantitative comparison. The integration time was 1 s. During the
165
+ measurements, the setup was kept in complete darkness to minimize the effect of stray light.
166
+ Each spectrum consists of an array of 1024 values (one for each pixel). The value corresponds to the intensity in counts
167
+ at the different positions of the pixels. To obtain the wavelength (in nanometers) corresponding to each pixel, the
168
+ following formula can be used:
169
+ i = a + b · i + c · i2 + d · i3
170
+ (1)
171
+ where i indicates the pixel (i = 0, ..., 1023) and
172
+ a = 337.92288208 nm
173
+ b = 0.4470772743 nm
174
+ c = 3.55128 · 10−5 nm
175
+ d = −8.38601 · 10−9 nm
176
+ (2)
177
+ Calibration parameters were provided by the spectrometer manufacturer. All spectra correspond to the raw data without
178
+ any data processing (smoothing, background subtraction, or normalization). Since all the measurements were done
179
+ under identical conditions the intensities are directly comparable.
180
+ 3.3
181
+ Chemical Analysis
182
+ For each olive oil sample, the dataset includes the values of the following chemical parameters: acidity, peroxide value,
183
+ K270, K232, ethyl esters concentration and the samples quality class (EVOO, VOO, or LOO) (see Tab. 2).
184
+ The chemical parameters were determined by accredited laboratories using the procedures described in the European
185
+ Commission regulation and its amendment (Commission [2013, 1991]).
186
+ 3
187
+
188
+ Dataset of Fluorescence Spectra and Chemical Parameters of Olive Oils
189
+ DATASET
190
+ Excitation 365 nm
191
+ EVOO
192
+ Excitation 395 nm
193
+ VOO
194
+ LOO
195
+ 0
196
+ 4'000
197
+ 8'000
198
+ Intensity (a.u.)
199
+ 0
200
+ 4'000
201
+ 8'000
202
+ Intensity (a.u.)
203
+ 12'000
204
+ 0
205
+ 4'000
206
+ 8'000
207
+ Intensity (a.u.)
208
+ 678 nm
209
+ 722 nm
210
+ 678 nm
211
+ 722 nm
212
+ 500
213
+ 550
214
+ 600
215
+ 650
216
+ 700
217
+ 750
218
+ 500
219
+ Wavelength (nm)
220
+ 550
221
+ 600
222
+ 650
223
+ 700
224
+ 750
225
+ 800
226
+ Wavelength (nm)
227
+ Figure 1: Fluorescence emission spectra of selected olive oils divided in the quality classes EVOO, VOO and LOO. On
228
+ the left: spectra obtained with excitation at 365 nm; on the right: spectra obtained with excitation at 395 nm. Each
229
+ curve shows a single spectrum without averaging or smoothing after the background subtraction. Reproduced from
230
+ Venturini et al. [2023].
231
+ 4
232
+ Funding
233
+ This research was supported by the projects: “VIRTUOUS” funded by the European Union’s Horizon 2020 Project
234
+ H2020-MSCA-RISE-2019 Grant No. 872181; “SUSTAINABLE” funded by the European Union’s Horizon 2020
235
+ Project H2020-MSCA-RISE-2020 Grant No. 101007702; “Project of Excellence” from Junta de Andalucia-FEDER-
236
+ Fondo de Desarrollo Europeo 2018. Ref. P18–H0-4700.
237
+ 5
238
+ Author Contributions
239
+ Conceptualization: Francesca Venturini and Umberto Michelucci; methodology: Francesca Venturini and Umberto
240
+ Michelucci; software, Michela Sperti and Arnaud Gucciardi; validation, Francesca Venturini and Umberto Michelucci;
241
+ formal analysis, Francesca Venturini and Umberto Michelucci; investigation, Francesca Venturini and Umberto
242
+ Michelucci; resources, Vanessa M. Martos; data curation, Michela Sperti and Arnaud Gucciardi; writing, original draft
243
+ preparation, Francesca Venturini and Umberto Michelucci; writing, review and editing, Francesca Venturini, Umberto
244
+ Michelucci, Arnaud Gucciardi and Marco A. Deriu; funding acquisition, Vanessa M. Martos and Marco A. Deriu. All
245
+ authors have read and agreed to the published version of the manuscript.
246
+ 6
247
+ Data Availability
248
+ The data presented in this study are openly available in Dataset of Fluorescence Spectra and Chemical Parameters of
249
+ Olive Oils at https://data.mendeley.com/datasets/thkcz3h6n6/6, DOI: 10.17632/thkcz3h6n6.6.
250
+ 4
251
+
252
+ Dataset of Fluorescence Spectra and Chemical Parameters of Olive Oils
253
+ DATASET
254
+ Label
255
+ Acidity
256
+ Peroxide value
257
+ K270
258
+ K232
259
+ FAEES
260
+ Quality
261
+ (%)
262
+ (mEq O2/kg)
263
+ (mg/Kg)
264
+ D03
265
+ 0.35
266
+ 8.4
267
+ 0.123
268
+ 1.435
269
+ 26
270
+ VOO
271
+ D04
272
+ 0.34
273
+ 8.6
274
+ 0.108
275
+ 1.403
276
+ 40
277
+ VOO
278
+ D05
279
+ 0.36
280
+ 10.3
281
+ 0.112
282
+ 1.44
283
+ 18
284
+ VOO
285
+ D06
286
+ 0.31
287
+ 9.2
288
+ 0.151
289
+ 1.484
290
+ 18
291
+ VOO
292
+ D07
293
+ 0.50
294
+ 8.9
295
+ 0.150
296
+ 1.537
297
+ 47
298
+ VOO
299
+ D08
300
+ 0.40
301
+ 8.5
302
+ 0.158
303
+ 1.546
304
+ 25
305
+ VOO
306
+ D09
307
+ -
308
+ -
309
+ -
310
+ -
311
+ -
312
+ LOO
313
+ D10
314
+ -
315
+ -
316
+ -
317
+ -
318
+ -
319
+ LOO
320
+ D19
321
+ 0.25
322
+ 4.9
323
+ 0.13
324
+ 1.540
325
+ 10
326
+ EVOO
327
+ D20
328
+ 0.26
329
+ 4.6
330
+ 0.14
331
+ 1.540
332
+ 10
333
+ EVOO
334
+ D35
335
+ 0.17
336
+ 6.4
337
+ 0.12
338
+ 1.63
339
+ 8
340
+ EVOO
341
+ D38
342
+ 0.16
343
+ 6.4
344
+ 0.12
345
+ 1.63
346
+ 9
347
+ EVOO
348
+ D45
349
+ 0.17
350
+ 4.9
351
+ 0.12
352
+ 1.63
353
+ 7
354
+ EVOO
355
+ D46
356
+ 0.18
357
+ 5.0
358
+ 0.13
359
+ 1.63
360
+ 8
361
+ EVOO
362
+ D47
363
+ 0.18
364
+ 5.2
365
+ 0.13
366
+ 1.64
367
+ 16
368
+ EVOO
369
+ D49
370
+ 0.9
371
+ 9.9
372
+ -
373
+ -
374
+ -
375
+ LOO
376
+ D51
377
+ 2.16
378
+ -
379
+ -
380
+ -
381
+ -
382
+ LOO
383
+ D52
384
+ 1.78
385
+ 22
386
+ -
387
+ -
388
+ -
389
+ LOO
390
+ D53
391
+ 0.7
392
+ 8.7
393
+ -
394
+ -
395
+ -
396
+ LOO
397
+ D64
398
+ 0.2
399
+ 7.1
400
+ 0.13
401
+ 1.63
402
+ 29
403
+ VOO
404
+ D73
405
+ 0.2
406
+ 8.9
407
+ 0.14
408
+ 1.66
409
+ 15
410
+ EVOO
411
+ D77
412
+ 0.24
413
+ 10.4
414
+ 0.13
415
+ 1.74
416
+ 26
417
+ VOO
418
+ D81
419
+ 0.16
420
+ 4.9
421
+ 0.12
422
+ 1.63
423
+ 9
424
+ EVOO
425
+ D92
426
+ 0.18
427
+ 5
428
+ 0.17
429
+ 1.91
430
+ 15
431
+ EVOO
432
+ Table 2: List of olive oil samples and their physicochemical characteristics. FAEES: fatty acid ethyl esters, EVOO:
433
+ extra virgin olive oil, VOO: virgin olive oil, LOO: lampante olive oil.
434
+ 7
435
+ Ackowledgments
436
+ The authors would like to thank Michael Baumgartner and Ivo Herzig (Institute of Applied Mathematics and Physics,
437
+ Zurich University of Applied Sciences, Winterthur, Switzerland) for help for the realization of the sensor, and Josep
438
+ Palau Caballero and Arturo Jimenez (SCA San Sebastián Puente del Ventorro, s/n, 18566 Benalua de las Villas, Spain)
439
+ for providing the oil samples.
440
+ 8
441
+ Conflicts of Interest
442
+ The authors declare no conflicts of interest and no known competing financial interests or personal relationships that
443
+ could have appeared to influence the work reported in this paper.
444
+ 9
445
+ Abbreviations
446
+ The following abbreviations are used in this manuscript:
447
+ LOO
448
+ Lampante Olive Oil
449
+ EVOO
450
+ Extra Vigrin Olive Oil
451
+ VOO
452
+ Virgin Olive Oil
453
+ CCD
454
+ Charge-Coupled Device
455
+ LED
456
+ Light Emitting Diode
457
+ UV
458
+ Ultraviolet
459
+ FAEES
460
+ Fatty Acid Ethyl Ester
461
+ 5
462
+
463
+ Dataset of Fluorescence Spectra and Chemical Parameters of Olive Oils
464
+ DATASET
465
+ LED
466
+ Driver
467
+ Spectrometer
468
+ Excitation
469
+ LED
470
+ Sample
471
+ Fluorescence
472
+ Raspberry Pi
473
+ Figure 2: Schematics of the portable fluorescence sensor. Blue: excitation light, red: fluorescence light. From Venturini
474
+ et al. [2021].
475
+ References
476
+ European Commission. Commission implementing regulation no 1348/2013 of december 17 2013. Official Journal of
477
+ the European Union, 338:31–67, 2013.
478
+ European Commission. Commission regulation (eec) no. 2568/91 of 11 july 1991 on the characteristics of olive oil and
479
+ olive-residue oil and on the relevant methods of analysis official journal l 248, 5 september 1991. Offic. JL, 248:1–83,
480
+ 1991.
481
+ Francesca Venturini, Michela Sperti, Umberto Michelucci, Arnaud Gucciardi, Vanessa M Martos, and Marco A Deriu.
482
+ Extraction of physicochemical properties from the fluorescence spectrum with 1d convolutional neural networks:
483
+ Application to olive oil. Journal of Food Engineering, 336:111198, 2023.
484
+ Francesca Venturini, Michela Sperti, Umberto Michelucci, Ivo Herzig, Michael Baumgartner, Josep Palau Caballero,
485
+ Arturo Jimenez, and Marco Agostino Deriu. Exploration of spanish olive oil quality with a miniaturized low-cost
486
+ fluorescence sensor and machine learning techniques. Foods, 10(5):1010, 2021.
487
+ 6
488
+
HtE3T4oBgHgl3EQfWwou/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf,len=241
2
+ page_content='DATASET OF FLUORESCENCE SPECTRA AND CHEMICAL PARAMETERS OF OLIVE OILS AN OPEN SOURCE DATASET Francesca Venturini ∗ Institute of Applied Mathematics and Physics Zurich University of Applied Sciences Winterthur, Switzerland, vent@zhaw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
3
+ page_content='ch Artificial Intelligence Research and Development TOELT LLC, Switzerland Michela Sperti PolitoBIOMed Lab Department of Mechanical and Aerospace Engineering Politecnico di Torino, Turin, Italy Umberto Michelucci Artificial Intelligence Research and Development TOELT LLC, Switzerland umberto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
4
+ page_content='michelucci@toelt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
5
+ page_content='ai Computer Science Department Lucerne University of Applied Sciences and Arts Lucerne, Switzerland Arnaud Gucciardi Artificial Intelligence Research and Development TOELT LLC, Switzerland arnaud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
6
+ page_content='gucciardi@toelt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
7
+ page_content='ai Artificial Intelligence Laboratory University of Ljubljana, Ljubljana, Slovenia Vanessa M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
8
+ page_content=' Martos Department of Plant Physiology Faculty of Sciences Biotechnology Institute University of Granada, Spain Marco A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
9
+ page_content=' Deriu PolitoBIOMed Lab Department of Mechanical and Aerospace Engineering Politecnico di Torino, Turin, Italy January 12, 2023 ABSTRACT This dataset encompasses fluorescence spectra and chemical parameters of 24 olive oil samples from the 2019–2020 harvest provided by the producer Conde de Benalúa, Granada, Spain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
10
+ page_content=' The oils are characterized by different qualities: 10 extra virgin olive oil (EVOO), 8 virgin olive oil (VOO), and 6 lampante olive oil (LOO) samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
11
+ page_content=' For each sample, the dataset includes fluorescence spectra obtained with two excitation wavelengths, oil quality, and five chemical parameters necessary for the quality assessment of olive oil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
12
+ page_content=' The fluorescence spectra were obtained by exciting the samples at 365 nm and 395 nm under identical conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
13
+ page_content=' The dataset includes the values of the following chemical parameters for each olive oil sample: acidity, peroxide value, K270, K232, ethyl esters, and the quality of the samples (EVOO, VOO, or LOO).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
14
+ page_content=' The dataset offers a unique possibility for researchers in food technology to develop machine learning models based on fluorescence data for the quality assessment of olive oil due to the availability of both spectroscopic and chemical data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
15
+ page_content=' The dataset can be used, for example, to predict one or multiple chemical parameters or to classify samples based on their quality from fluorescence spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
16
+ page_content=' Keywords Fluorescence · Olive Oil · Chemical Parameters · Quality control ∗Contact email: vent@zhaw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
17
+ page_content='ch arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
18
+ page_content='04471v1 [q-bio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
19
+ page_content='QM] 10 Jan 2023 Dataset of Fluorescence Spectra and Chemical Parameters of Olive Oils DATASET 1 Summary The dataset presented is a compilation of measurements of analytical chemistry and fluorescence spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
20
+ page_content=' The dataset includes fluorescence spectra and chemical parameters of 24 Spanish olive oils from the 2019–2020 harvest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
21
+ page_content=' The 24 samples were collected at SCA San Sebastián Puente del Ventorro, Benalua de las Villas, Spain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
22
+ page_content=' The data were later measured at the Institute of Applied Mathematics and Physics, Zurich University of Applied Sciences, Technikumstrasse 9, 8401 Winterthur, Switzerland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
23
+ page_content=' The fluorescence spectroscopy data was acquired by a miniature spectrometer with a 1024 element CCD array that acquires the entire spectrum in one single measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
24
+ page_content=' The dataset includes a total of 960 spectra (24 oil samples × 2 excitation wavelengths x 20 repeated measurements).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
25
+ page_content=' Each of the 960 spectra is an array of 1024 values whose elements are the intensity at the different pixel positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
26
+ page_content=' The chemical parameters were determined by accredited laboratories using the procedures described in the European Commission regulation and its amendment Commission [2013, 1991].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
27
+ page_content=' These regulations control the methods for the quality assessment of olive oils and provide a decision tree to verify whether an olive oil class is consistent with the declared quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
28
+ page_content=' The value of the dataset for research purposes is summarized in the points below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
29
+ page_content=' The data are useful for studying the link between optical properties (fluorescence and absorption spectroscopy), chemical characteristics (such as oil acidity, peroxide value, and fatty acid content), and olive oil quality (extra virgin, virgin, and lampante olive oil).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
30
+ page_content=' This dataset is the first available that contains fluorescence spectra and chemical analysis obtained by accredited laboratories on samples coming from a single producer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
31
+ page_content=' Many researchers can benefit from the data: computer scientists can use the data to develop machine learning models that link optical to chemical properties;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
32
+ page_content=' researchers in food technology that are interested in studying chemical properties of olive oil samples of different qualities;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
33
+ page_content=' engineers that want to develop new optical analysis techniques alternative to the current expensive and time-consuming analytical chemistry methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
34
+ page_content=' This dataset can be used to perform explainability analysis to identify spectral characteristics that are related to different chemical properties (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
35
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
36
+ page_content=', the acidity of the oil).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
37
+ page_content=' An example is given in the paper Venturini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
38
+ page_content=' [2023].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
39
+ page_content=' This will further advance the understanding of the complex chemical composition of olive oil and its link to its quality and health benefits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
40
+ page_content=' This dataset can be used to develop instruments based on fluorescence spectroscopy for the rapid and cost- effective quality assessment of olive oil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
41
+ page_content=' 2 Data Description The dataset consists of one CSV file that contains the columns described in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
42
+ page_content=' A background file2 is also provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
43
+ page_content=' The file contains 1024 values that correspond to the intensity measured by the spectrometer without any light (dark counts).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
44
+ page_content=' This spectrum can be subtracted from the raw fluorescence spectra to remove the effect of the dark counts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
45
+ page_content=' The same file can be used for the spectra taken at both 365 nm and 395 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
46
+ page_content=' The raw fluorescence spectra of selected oils obtained with excitation at 365 nm and 395 nm are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
47
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
48
+ page_content=' 3 Materials and methods 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
49
+ page_content='1 Olive Oil Samples The dataset contains the fluorescence spectra and the chemical parameters of 24 oils.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
50
+ page_content=' The oils are characterized by different quality categories: 10 extra virgin olive oil (EVOO), 8 virgin olive oil (VOO), and 6 lampante olive oil (LOO) samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
51
+ page_content=' All samples were provided by Conde de Benalúa, Granada, southern Spain, and were prepared from the 2019–2020 harvest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
52
+ page_content=' The properties and values of the chemical parameters of the oil samples are listed in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
53
+ page_content=' For data acquisition, the samples were placed in commercial 4 ml clear glass vials, taking care that no headspace was present to reduce oxidation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
54
+ page_content=' All oils were stored in the dark and at 20 °C during the entire time of the measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
55
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
56
+ page_content='2 Fluorescence Data Acquisition The fluorescence spectroscopy data were acquired using the portable sensor described in Venturini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
57
+ page_content=' [2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
58
+ page_content=' Since already published, only the most relevant characteristics are reported here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
59
+ page_content=' The reader is referred to this publication 2Fluorescence_olive_oil_dataset_background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
60
+ page_content='csv 2 Dataset of Fluorescence Spectra and Chemical Parameters of Olive Oils DATASET Feature Datatype Description Sample String Oil sample name: the values are ’D03’,’D04’,’D05’, ’D06’, ’D07’ ,’D08’, ’D09’, ’D10’, ’D 19’, ’D20’, ’D35’, ’D38’, ’D45’, ’D46’, ’D47’, ’D49��, ’D51’, ’D52’, ’D53’, ’D64’, ’D77’, ’D81’, ’D92’,’D73’ Repetition Integer Repetition number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
61
+ page_content=' There are 20 repetition for each oil and led: the iteration number goes from 0 to 19) Led Integer Excitation LED identifier: 1 (395 nm), 2 (365 nm) Data Float The fluorescence spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
62
+ page_content=' The feature is a string composed of 1024 values given between square brackets and seprated by a comma, as for example [1491.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
63
+ page_content='0, 1508.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
64
+ page_content='0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
65
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
66
+ page_content=', 1545.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
67
+ page_content='0].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
68
+ page_content=' Each value is the raw intensity of the fluorescence signal at the given pixel of the detector of the spectrometer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
69
+ page_content=' Quality String Quality of the oil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
70
+ page_content=' Possible values are ‘EXTRA’,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
71
+ page_content=' ‘VIRGIN’,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
72
+ page_content=' ‘LAMPANTE’ FAEES Float Fatty acid ethyl esters in mg/Kg: content of waxes,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
73
+ page_content=' fatty acid methyl esters and fatty acid ethyl esters K232 Float UV Absorbance at 232 nm (K270) K270 Float UV Absorbance at 270 nm (K232) Acidity Float Acidity: expressed as percentage (%) of oleic acid Peroxide Index Float Quantity of those substances in the sample,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
74
+ page_content=' expressed in terms of milliequivalents of active oxygen per kilogram (mEqO2/Kg),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
75
+ page_content=' which oxidize potassium iodide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
76
+ page_content=' Table 1: Information on each feature available in the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
77
+ page_content=' for more details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
78
+ page_content=' The schematic design of the spectrometer is sown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
79
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
80
+ page_content=' The excitation light was provided by two UV LEDs with emission at 365 nm and 395 nm driven by a current driver (MIC4801, Micrel Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
81
+ page_content=', San Jose, CA, USA) to adjust the excitation intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
82
+ page_content=' The fluorescence signal was collected by a miniature spectrometer (STS-Vis, Ocean Optics, Dunedin, FL, USA) with a 1024-element CCD array which acquires the entire spectrum in one single measurement with a resolution of 16 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
83
+ page_content=' The spectrometer was placed at 90° with respect to the LEDs to avoid the excitation light transmitted by the sample to reach the spectrometer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
84
+ page_content=' The sensor has a recess where standard 4 ml clear glass vials with the sample can be inserted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
85
+ page_content=' All spectra of the dataset were acquired on undiluted samples at room temperature under identical conditions (illumina- tion intensity, integration time, and geometry) for a quantitative comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
86
+ page_content=' The integration time was 1 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
87
+ page_content=' During the measurements, the setup was kept in complete darkness to minimize the effect of stray light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
88
+ page_content=' Each spectrum consists of an array of 1024 values (one for each pixel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
89
+ page_content=' The value corresponds to the intensity in counts at the different positions of the pixels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
90
+ page_content=' To obtain the wavelength (in nanometers) corresponding to each pixel, the following formula can be used: i = a + b · i + c · i2 + d · i3 (1) where i indicates the pixel (i = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
91
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
92
+ page_content=', 1023) and a = 337.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
93
+ page_content='92288208 nm b = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
94
+ page_content='4470772743 nm c = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
95
+ page_content='55128 · 10−5 nm d = −8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
96
+ page_content='38601 · 10−9 nm (2) Calibration parameters were provided by the spectrometer manufacturer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
97
+ page_content=' All spectra correspond to the raw data without any data processing (smoothing, background subtraction, or normalization).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
98
+ page_content=' Since all the measurements were done under identical conditions the intensities are directly comparable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
99
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
100
+ page_content='3 Chemical Analysis For each olive oil sample, the dataset includes the values of the following chemical parameters: acidity, peroxide value, K270, K232, ethyl esters concentration and the samples quality class (EVOO, VOO, or LOO) (see Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
101
+ page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
102
+ page_content=' The chemical parameters were determined by accredited laboratories using the procedures described in the European Commission regulation and its amendment (Commission [2013, 1991]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
103
+ page_content=" 3 Dataset of Fluorescence Spectra and Chemical Parameters of Olive Oils DATASET Excitation 365 nm EVOO Excitation 395 nm VOO LOO 0 4'000 8'000 Intensity (a." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
104
+ page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
105
+ page_content=") 0 4'000 8'000 Intensity (a." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
106
+ page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
107
+ page_content=") 12'000 0 4'000 8'000 Intensity (a." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
108
+ page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
109
+ page_content=') 678 nm 722 nm 678 nm 722 nm 500 550 600 650 700 750 500 Wavelength (nm) 550 600 650 700 750 800 Wavelength (nm) Figure 1: Fluorescence emission spectra of selected olive oils divided in the quality classes EVOO, VOO and LOO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
110
+ page_content=' On the left: spectra obtained with excitation at 365 nm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
111
+ page_content=' on the right: spectra obtained with excitation at 395 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
112
+ page_content=' Each curve shows a single spectrum without averaging or smoothing after the background subtraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
113
+ page_content=' Reproduced from Venturini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
114
+ page_content=' [2023].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
115
+ page_content=' 4 Funding This research was supported by the projects: “VIRTUOUS” funded by the European Union’s Horizon 2020 Project H2020-MSCA-RISE-2019 Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
116
+ page_content=' 872181;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
117
+ page_content=' “SUSTAINABLE” funded by the European Union’s Horizon 2020 Project H2020-MSCA-RISE-2020 Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
118
+ page_content=' 101007702;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
119
+ page_content=' “Project of Excellence” from Junta de Andalucia-FEDER- Fondo de Desarrollo Europeo 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
120
+ page_content=' Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
121
+ page_content=' P18–H0-4700.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
122
+ page_content=' 5 Author Contributions Conceptualization: Francesca Venturini and Umberto Michelucci;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
123
+ page_content=' methodology: Francesca Venturini and Umberto Michelucci;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
124
+ page_content=' software, Michela Sperti and Arnaud Gucciardi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
125
+ page_content=' validation, Francesca Venturini and Umberto Michelucci;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
126
+ page_content=' formal analysis, Francesca Venturini and Umberto Michelucci;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
127
+ page_content=' investigation, Francesca Venturini and Umberto Michelucci;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
128
+ page_content=' resources, Vanessa M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
129
+ page_content=' Martos;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
130
+ page_content=' data curation, Michela Sperti and Arnaud Gucciardi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
131
+ page_content=' writing, original draft preparation, Francesca Venturini and Umberto Michelucci;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
132
+ page_content=' writing, review and editing, Francesca Venturini, Umberto Michelucci, Arnaud Gucciardi and Marco A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
133
+ page_content=' Deriu;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
134
+ page_content=' funding acquisition, Vanessa M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
135
+ page_content=' Martos and Marco A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
136
+ page_content=' Deriu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
137
+ page_content=' All authors have read and agreed to the published version of the manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
138
+ page_content=' 6 Data Availability The data presented in this study are openly available in Dataset of Fluorescence Spectra and Chemical Parameters of Olive Oils at https://data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
139
+ page_content='mendeley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
140
+ page_content='com/datasets/thkcz3h6n6/6, DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
141
+ page_content='17632/thkcz3h6n6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
142
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
143
+ page_content=' 4 Dataset of Fluorescence Spectra and Chemical Parameters of Olive Oils DATASET Label Acidity Peroxide value K270 K232 FAEES Quality (%) (mEq O2/kg) (mg/Kg) D03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
144
+ page_content='35 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
145
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
146
+ page_content='123 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
147
+ page_content='435 26 VOO D04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
148
+ page_content='34 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
149
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
150
+ page_content='108 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
151
+ page_content='403 40 VOO D05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
152
+ page_content='36 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
153
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
154
+ page_content='112 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
155
+ page_content='44 18 VOO D06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
156
+ page_content='31 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
157
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
158
+ page_content='151 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
159
+ page_content='484 18 VOO D07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
160
+ page_content='50 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
161
+ page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
162
+ page_content='150 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
163
+ page_content='537 47 VOO D08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
164
+ page_content='40 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
165
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
166
+ page_content='158 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
167
+ page_content='546 25 VOO D09 LOO D10 LOO D19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
168
+ page_content='25 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
169
+ page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
170
+ page_content='13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
171
+ page_content='540 10 EVOO D20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
172
+ page_content='26 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
173
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
174
+ page_content='14 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
175
+ page_content='540 10 EVOO D35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
176
+ page_content='17 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
177
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
178
+ page_content='12 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
179
+ page_content='63 8 EVOO D38 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
180
+ page_content='16 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
181
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
182
+ page_content='12 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
183
+ page_content='63 9 EVOO D45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
184
+ page_content='17 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
185
+ page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
186
+ page_content='12 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
187
+ page_content='63 7 EVOO D46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
188
+ page_content='18 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
189
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
190
+ page_content='13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
191
+ page_content='63 8 EVOO D47 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
192
+ page_content='18 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
193
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
194
+ page_content='13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
195
+ page_content='64 16 EVOO D49 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
196
+ page_content='9 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
197
+ page_content='9 LOO D51 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
198
+ page_content='16 LOO D52 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
199
+ page_content='78 22 LOO D53 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
200
+ page_content='7 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
201
+ page_content='7 LOO D64 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
202
+ page_content='2 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
203
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
204
+ page_content='13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
205
+ page_content='63 29 VOO D73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
206
+ page_content='2 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
207
+ page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
208
+ page_content='14 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
209
+ page_content='66 15 EVOO D77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
210
+ page_content='24 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
211
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
212
+ page_content='13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
213
+ page_content='74 26 VOO D81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
214
+ page_content='16 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
215
+ page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
216
+ page_content='12 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
217
+ page_content='63 9 EVOO D92 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
218
+ page_content='18 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
219
+ page_content='17 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
220
+ page_content='91 15 EVOO Table 2: List of olive oil samples and their physicochemical characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
221
+ page_content=' FAEES: fatty acid ethyl esters, EVOO: extra virgin olive oil, VOO: virgin olive oil, LOO: lampante olive oil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
222
+ page_content=' 7 Ackowledgments The authors would like to thank Michael Baumgartner and Ivo Herzig (Institute of Applied Mathematics and Physics, Zurich University of Applied Sciences, Winterthur, Switzerland) for help for the realization of the sensor, and Josep Palau Caballero and Arturo Jimenez (SCA San Sebastián Puente del Ventorro, s/n, 18566 Benalua de las Villas, Spain) for providing the oil samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
223
+ page_content=' 8 Conflicts of Interest The authors declare no conflicts of interest and no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
224
+ page_content=' 9 Abbreviations The following abbreviations are used in this manuscript: LOO Lampante Olive Oil EVOO Extra Vigrin Olive Oil VOO Virgin Olive Oil CCD Charge-Coupled Device LED Light Emitting Diode UV Ultraviolet FAEES Fatty Acid Ethyl Ester 5 Dataset of Fluorescence Spectra and Chemical Parameters of Olive Oils DATASET LED Driver Spectrometer Excitation LED Sample Fluorescence Raspberry Pi Figure 2: Schematics of the portable fluorescence sensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
225
+ page_content=' Blue: excitation light, red: fluorescence light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
226
+ page_content=' From Venturini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
227
+ page_content=' [2021].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
228
+ page_content=' References European Commission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
229
+ page_content=' Commission implementing regulation no 1348/2013 of december 17 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
230
+ page_content=' Official Journal of the European Union, 338:31–67, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
231
+ page_content=' European Commission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
232
+ page_content=' Commission regulation (eec) no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
233
+ page_content=' 2568/91 of 11 july 1991 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis official journal l 248, 5 september 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
234
+ page_content=' Offic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
235
+ page_content=' JL, 248:1–83, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
236
+ page_content=' Francesca Venturini, Michela Sperti, Umberto Michelucci, Arnaud Gucciardi, Vanessa M Martos, and Marco A Deriu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
237
+ page_content=' Extraction of physicochemical properties from the fluorescence spectrum with 1d convolutional neural networks: Application to olive oil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
238
+ page_content=' Journal of Food Engineering, 336:111198, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
239
+ page_content=' Francesca Venturini, Michela Sperti, Umberto Michelucci, Ivo Herzig, Michael Baumgartner, Josep Palau Caballero, Arturo Jimenez, and Marco Agostino Deriu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
240
+ page_content=' Exploration of spanish olive oil quality with a miniaturized low-cost fluorescence sensor and machine learning techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
241
+ page_content=' Foods, 10(5):1010, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
242
+ page_content=' 6' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HtE3T4oBgHgl3EQfWwou/content/2301.04471v1.pdf'}
INE0T4oBgHgl3EQfRwA9/content/2301.02211v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:951ba9adf4228aa649a3d483385f2aa5d1dbef3e29cd4076c1ce60f9f929ea02
3
+ size 388257
INE0T4oBgHgl3EQfRwA9/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62134b3b589579c585700857f3a2764c2cbce8b8f8817b7ff685b90e9b72df9d
3
+ size 2687021
INE0T4oBgHgl3EQfRwA9/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a57c24b9b72de39c9914168616a49aa5aa7eef3a1bdb9a7b34a6c1ead4aaf929
3
+ size 100921
INFIT4oBgHgl3EQfYSsB/content/tmp_files/2301.11247v1.pdf.txt ADDED
@@ -0,0 +1,1072 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Prepared for submission to JINST
2
+ The EXTRA-BL4S experiment for the measurement of the
3
+ energy and angular distributions of transition radiation
4
+ X-rays
5
+ M. N. Mazziotta,𝑎,1 F. Loparco, 𝑎,𝑏,1 A. Anelli,𝑐 M. M. Belviso,𝑐 A. Buquicchio,𝑐
6
+ E. V. Cassano,𝑐 M. De Cosmo,𝑐 P. Ginefra,𝑐 M. L. Martulli,𝑐 C. Picci,𝑐 D. Picicci,𝑐
7
+ R. D. Soriano,𝑐 A. P. Tatulli,𝑐 G. Tripaldella,𝑐 V. M. Zupo,𝑐 M. F. Muscarella,𝑐 S. Turbacci,𝑐
8
+ M. Boselli,𝑑 C. B. da Cruz E Silva,𝑑,2 M. Joos𝑑 and P. Schütze𝑒
9
+ 𝑎Istituto Nazionale di Fisica Nucleare, Sezione di Bari,
10
+ via Orabona 4, I-70126 Bari, Italy
11
+ 𝑏Dipartimento di Fisica dell’Università e del Politecnico di Bari,
12
+ via Amendola 173, I-70126 Bari, Italy
13
+ 𝑐The EXTRA Team Liceo Scientifico Statale "A. Scacchi",
14
+ Corso Cavour 241, I-70121 Bari, Italy
15
+ 𝑑CERN, the European Organization for Nuclear Research,
16
+ Esplanade des Particules 1, 1211 Geneva, Switzerland
17
+ 𝑒DESY, Notkestrasse 85, D-22607 Hamburg
18
+ E-mail: mazziotta@ba.infn.it, francesco.loparco@ba.infn.it
19
+ Abstract: We have designed and implemented an experiment to measure the angular distributions
20
+ and the energy spectra of the transition radiation X-rays emitted by fast electrons and positrons
21
+ crossing different radiators. Our experiment was selected among the proposals of the 2021 Beamline
22
+ for Schools contest, a competition for high-school students organized every year by CERN, and
23
+ was performed at the DESY II Test Beam facility area TB21, using a high-purity beam of electrons
24
+ or positrons with momenta in the range from 1 to 6 GeV/c. The measurements were performed
25
+ using a 100 𝜇m thick silicon pixel detector, with a pitch of 55 𝜇m. Our results are consistent with
26
+ the expectations from the theoretical models describing the production of transition radiation in
27
+ multilayer regular radiators.
28
+ Keywords: Transition radiation detectors; Particle identification methods
29
+ 1Corresponding authors.
30
+ 2Now at LIP - Laboratório de Instrumentação e Física Experimental de Partículas Avenida Prof. Gama Pinto 2,
31
+ Complexo Interdisciplinar (3is), 1649-003 Lisboa, Portugal
32
+ arXiv:2301.11247v1 [hep-ex] 26 Jan 2023
33
+
34
+ Contents
35
+ 1
36
+ Introduction
37
+ 1
38
+ 2
39
+ The BL4S competition
40
+ 1
41
+ 3
42
+ The EXTRA experiment
43
+ 3
44
+ 4
45
+ Data analysis
46
+ 7
47
+ 4.1
48
+ Conversion & Clustering
49
+ 7
50
+ 4.2
51
+ Detector alignment procedure
52
+ 7
53
+ 4.3
54
+ Data selection and analysis
55
+ 8
56
+ 5
57
+ Results
58
+ 10
59
+ 6
60
+ Conclusions
61
+ 15
62
+ 1
63
+ Introduction
64
+ In recent years, high-school physics curricula increasingly include topics related to modern high-
65
+ energy physics and particle detectors. Universities and research centers promote several programs
66
+ to bring high-school students in touch with modern physics and the scientific research. The Liceo
67
+ Scientifico “A. Scacchi” in Bari has taken part in such projects for years, and in 2021 the school
68
+ promoted the participation of a team of students of the 12𝑡ℎ and 13𝑡ℎ grade in the Beamline for
69
+ Schools (BL4S) competition.
70
+ BL4S is organized by CERN in collaboration with DESY, and offers to groups of high-school
71
+ students the unique opportunity to propose a scientific experiment at a particle accelerator facility
72
+ and to win a trip to perform it. Because of the maintenance of CERN accelerators, the experiment
73
+ was performed at the DESY II Beam Test facility in Hamburg. The students, coordinated by their
74
+ physics teachers and under the supervision of experienced researchers from the Physics Department
75
+ of the Bari University and from the INFN Unit in Bari, won the competition.
76
+ The goal of the experiment conceived by the team was to study the transition radiation emitted
77
+ by fast electrons and positrons crossing different kinds of radiators. This paper provides a short
78
+ presentation of the BL4S competition and presents the experiment and the result obtained by the
79
+ team during their beam time in Hamburg in September 2021.
80
+ 2
81
+ The BL4S competition
82
+ Beamline for Schools (BL4S) [1] is a physics competition organised by CERN and DESY, which
83
+ invites high-school students from all over the world to propose an experiment to be performed at a
84
+ – 1 –
85
+
86
+ particle accelerator. Each team has to write an original scientific proposal, explaining the theoretical
87
+ background of the selected topic, and describing both the procedure to carry it out at a test beam
88
+ facility and the results that they expect to find. A jury of experts, including scientists of CERN
89
+ and DESY, review the proposal and select two teams (three from 2022 on) that win a trip to a fully
90
+ equipped beam line of a particle accelerator.
91
+ From 2014 to 2018 the winning experiments took place at the test beam area of the CERN
92
+ Proton Synchrotron (PS) accelerator. In 2019 the competition moved to the DESY II Test Beam
93
+ Facility (Hamburg) [2]. The partnership between CERN and the German laboratory allowed BL4S
94
+ to continue during the three-year long shutdown of the CERN accelerator complex for upgrade and
95
+ maintenance.
96
+ The competition is structured in several preparatory phases, which include conferences and
97
+ meetings with the organisers. Once the competition is announced, usually in Autumn, interested
98
+ teams start preparing their proposals. Teams can include students either from the same school or
99
+ from different schools. Having teams representing two schools or more is not unusual. During
100
+ the proposal preparation, students are involved in an intense research project. After the conception
101
+ and design of their experiment, the participants must write a well structured proposal and submit
102
+ it on time. The students are not alone in this process, but they are guided by their coaches, who
103
+ provide them with details on particle physics and teach them the necessary technical skills. Team
104
+ coaches can be teachers, parents or scientists of local universities. It is important that students are
105
+ well aware of each scientific detail of the proposed experiment, so that the theoretical background is
106
+ clear and solid. The students are required to write down in detail how they intend to use the particle
107
+ beam for their measurements and which equipment and detectors they need. Moreover, participants
108
+ often complement their theoretical hypothesis with computer simulations. In fact, it is fundamental
109
+ that students acquire the rudimentary programming skills that will be required in case of victory.
110
+ Lastly, conclusions must contain the team’s expectations and motivation, which play a significant
111
+ role in the jury’s decision. The BL4S organisers are always available to answer questions that the
112
+ teams might have during the preparation of their proposals. Many teams contact them to discuss
113
+ the feasibility of their experiments or practical problems that they encounter.
114
+ In the final phase of the competition, a jury consisting of more than 50 volunteers selects
115
+ the teams that are invited to a research institute to perform their experiment together with support
116
+ scientists. Prior to the visit, the winning teams work remotely with the BL4S scientists to refine
117
+ their experiments and perform a detailed planning.
118
+ The beam time of the winning teams usually happens just after the summer, and the students
119
+ have 12 full days of access to the experimental area to perform their measurements, supervised by
120
+ the support scientists. During their stay, they work as a team of professional scientist would do and
121
+ they complement their scientific experience with visits and lectures.
122
+ After taking the data at the beam line, the teams are encouraged to analyse their data to answer
123
+ the scientific question of the initial proposal, and to write a paper. During this phase, the team
124
+ members stay in close contact with the BL4S support scientists and the team coaches.
125
+ – 2 –
126
+
127
+ Figure 1. Schematic view of the experimental setup.
128
+ 3
129
+ The EXTRA experiment
130
+ The EXTRA (Electron X-ray Transition RAdiation) experiment is designed to study the transition
131
+ radiation (TR) [3] emitted by fast electrons and positrons crossing different radiators.
132
+ Highly relativistic particles crossing the boundary between materials with different dielectric
133
+ constants can produce TR in the X-ray region. However, since the yield of TR photons emitted at
134
+ a single interface is considerably small (it is of the order of the fine structure constant 𝛼 ≈ 1/137),
135
+ multiple boundaries are needed to enhance the X-ray production. Periodic radiators, consisting
136
+ of stacks of thin foils of dielectric material separated by thicker air gaps, are commonly used in
137
+ transition radiation detectors (TRDs) [4].
138
+ The main features of the TR emitted by a periodic radiator depend on the kinematic properties
139
+ of the radiating particles and on the radiator properties. They can be summarized as follows [5]:
140
+ 1. The effective TR photon emission starts at a threshold Lorentz factor, which is given by
141
+ 𝛾𝑡ℎ𝑟 = 𝑑1𝜔1/𝑐, where 𝑑1 is the thickness of the foils, while 𝜔1 is the plasma frequency of
142
+ the foil material.
143
+ 2. The TR emission increases with the Lorentz factor 𝛾 until it reaches saturation at 𝛾𝑠𝑎𝑡 =
144
+ 𝛾𝑡ℎ𝑟
145
+ √︁
146
+ 𝑑2/𝑑1, where 𝑑2 is the thickness of the air gaps.
147
+ 3. Most of the TR energy is emitted near the energy ℏ𝜔𝑚𝑎𝑥 = ℏ𝜔2
148
+ 1𝑑1/2𝜋𝑐.
149
+ 4. The angular distribution of TR photons exhibits a few maxima and extends up to 𝜃𝑚𝑎𝑥 =
150
+ √︃
151
+ 1/𝛾2 + 𝜔2
152
+ 1/𝜔2.
153
+ We have designed an experimental setup to measure the energy spectra and the angular
154
+ distributions of the TR X-rays emitted by fast electrons and positrons crossing different radiators.
155
+ Similar measurements were performed in the past at the CERN SPS with beams of 20 GeV/c
156
+ electrons and of 120, 180 and 290 GeV/c muons, using silicon strip detectors [6], silicon pixel
157
+ – 3 –
158
+
159
+ Beam
160
+ Radiator
161
+ Timepix3
162
+ BeamTelescopeScintillatorsFigure 2. Pictures of the experimental setup.
163
+ – 4 –
164
+
165
+ beamling
166
+ forschools
167
+ cern.ch/bl4sRadiator
168
+ Foil/gap material
169
+ d1 (𝜇m)
170
+ d2 (𝜇m)
171
+ N 𝑓
172
+ EXTRA
173
+ polyethylene/air
174
+ 23
175
+ 500
176
+ 150
177
+ INFN
178
+ polyethylene/air
179
+ 25
180
+ 300
181
+ 155
182
+ CERN
183
+ polyethylene/air
184
+ 25
185
+ 240
186
+ 190
187
+ Table 1. Parameters of radiators used in the beam test: 𝑑1 and 𝑑2 are the thickness of the foils and the gap
188
+ respectively; 𝑁 𝑓 is the number of foils.
189
+ Radiator
190
+ distance ( cm)
191
+ Beam particle
192
+ Beam momenta ( GeV/c)
193
+ EXTRA
194
+ 40.5
195
+ 𝑒−
196
+ 1, 2, 3, 4, 5, 6
197
+ 88.0
198
+ 𝑒−
199
+ 1, 2, 3, 4, 5, 6
200
+ 132.0
201
+ 𝑒−
202
+ 1, 2, 3, 4, 5, 6
203
+ INFN
204
+ 88.9
205
+ 𝑒−
206
+ 1, 2, 3, 4, 5, 6
207
+ CERN
208
+ 88.4
209
+ 𝑒−/𝑒+
210
+ 1, 2, 3, 4, 5
211
+ Table 2. Summary of the data taking configurations. For each radiator the beam particle, their momenta and
212
+ the distance between the radiator and the X-ray detector are reported.
213
+ detectors [7, 8] and GaAs pixel detectors [8, 9]. Parallel to the measurements, an effort to develop
214
+ accurate Monte Carlo simulations of the TR process is being carried out [10]. One of the goals of
215
+ these activities is that of exploiting TR for the identification of charged hadrons in the TeV energy
216
+ region [11]. In this region all hadrons have Lorentz factor exceeding the typical threshold values
217
+ for TR production (usually 𝛾𝑡ℎ𝑟 ∼ 500 ÷ 1000), and the simultaneous measurement of the energies
218
+ and of the emission angles of TR X-rays can help to discriminate among different hadron species.
219
+ Our measurements were performed at the DESY II Test Beam Facility [2] area TB21, using
220
+ a beam of either electrons or positrons with momenta in the range from 1 to 6 GeV/c. A scheme
221
+ of the setup is shown in Fig. 1, while some pictures are shown in Fig. 2. The radiator is followed
222
+ by a Timepix3 assembly containing a thin silicon pixel sensor, which is used to detect the TR
223
+ X-rays. A downstream beam telescope, composed by an array of six silicon pixel detectors, is
224
+ used to reconstruct the tracks of the beam particles [12]. A set of two trigger scintillators, located
225
+ downstream of the last plane of the beam telescope, is used for triggering the data acquisition.
226
+ In our experiment we used three different radiators, which in the following will be labelled
227
+ as "EXTRA", "INFN" and "CERN" respectively. Their features are summarized in Tab. 1. In
228
+ particular, the EXTRA radiator was assembled for this measurement by the students at the Liceo
229
+ Scientifico "A. Scacchi" in Bari. Fig. 3 shows some picture taken during the assembly of this
230
+ radiator. The INFN and CERN radiators were borrowed from the Bari INFN Group and were used
231
+ in a beam test campaign performed in 2006 [13].
232
+ With these radiators, several measurements were performed, changing the beam composition
233
+ and momentum, and the distance between the radiator and the X-ray detector. The different data
234
+ taking configurations are summarized in Tab. 2.
235
+ The TR X-rays were detected by a 100 𝜇m thick silicon sensor, bump-bonded to a Timepix3
236
+ readout chip [14], consisting of a pixel matrix of 256×256 pixels with a pitch of 55 𝜇m. This silicon
237
+ – 5 –
238
+
239
+ Figure 3. Assembly of the EXTRA radiator at the Liceo Scientifico "A. Scacchi".
240
+ detector assembly was placed such that the sensor faces the radiator to mitigate prior absorption in
241
+ the readout chip. The sensor of the assembly with the ID W5_E2 was operated at a bias voltage of
242
+ −21 V to ensure full depletion [15].
243
+ The pixel pitch of the silicon sensor and its distance from the radiator determine the minimum
244
+ detectable angular separation 𝜃𝑚𝑖𝑛 of TR X-rays from the direction of the radiating particles, as
245
+ they should be separated of at least one pixel. Its value is in fact given by 𝜃𝑚𝑖𝑛 ≳ 𝑤/𝑑, where
246
+ 𝑤 = 55 𝜇m is the pixel pitch and 𝑑 is the distance of the silicon detector from the radiator. The
247
+ configurations with larger distances allow to detect smaller angular separations; however, due to the
248
+ X-ray absorption in the radiator and in the air gap between the radiator and the sensor, the number
249
+ of detected TR X-rays will decrease with the distance from the radiator, and the angular resolution
250
+ will deteriorate due to multiple Coulomb scattering of the primary particles in air.
251
+ While the TR X-rays are likely absorbed by the front sensor, the radiating charged particles
252
+ traverse the detector and leave an ionization track in the detectors of the beam telescope, which
253
+ consists of an array of six regularly spaced silicon pixel detectors. In this configuration, scattering
254
+ in air is limited to a minimum, enabling a track resolution of a few 𝜇m extrapolated to the Timepix3
255
+ detector [12], which is more than sufficient for an identification of the charged particle among two
256
+ or more clusters in the Timepix3 detector with cluster distances larger than a pixel pitch.
257
+ Finally, the two scintillators, approximately shadowing the size of the telescope sensor planes
258
+ and located at the end of the beam line, are used for triggering the data acquisition.
259
+ The data acquisition was performed using the software framework EUDAQ2 [16], which
260
+ – 6 –
261
+
262
+ 语integrates the control and readout of the Timepix3 assembly and the beam telescope, and features a
263
+ graphical user interface for the configuration of connected devices, starting and stopping runs and
264
+ data storage. An AIDA TLU [17] was used to form a trigger signal as a coincidence of the signals
265
+ from the two scintillators while enabling a busy-handshake with the detectors.
266
+ 4
267
+ Data analysis
268
+ 4.1
269
+ Conversion & Clustering
270
+ The raw data contains a collection of hit pixels per detector plane per trigger, which defines a
271
+ so-called "event", including the corresponding pixel addresses; for the data from the Timepix3
272
+ assembly, the corresponding information on the energy deposit, in form of a digitised signal, is
273
+ also stored, while for the beam telescope no charge information is recorded. The collected data
274
+ are converted to ROOT TTree format [18] using the data analysis framework Corryvreckan [19].
275
+ In addition, this software performs a clustering procedure, which identifies adjacent hit pixels and
276
+ connects them to form a so-called "cluster" under the hypothesis that pixel hits in one cluster are
277
+ caused by a single incident particle. The cluster center, as an estimation on the incidence position
278
+ of the particle, is calculated either as the center-of-gravity using the charge information, or as the
279
+ arithmetic mean of the pixel hit positions in case of binary hit information.
280
+ The energy calibration of the silicon pixel detector is performed assuming that the most probable
281
+ energy loss of 5 GeV/c electrons crossing a 100 𝜇m thick silicon layer is 25.41 keV. This value
282
+ has been calculated using a dedicated Monte Carlo simulation developed by H. Bichsel for the
283
+ calculation of the energy losses of charged particles in thin silicon absorbers [20].
284
+ 4.2
285
+ Detector alignment procedure
286
+ The positions of the clusters in each silicon detector are evaluated in the local detector reference
287
+ frame, with the 𝑧-axis oriented along the beam direction and the 𝑥 − 𝑦 plane corresponding to
288
+ the detector plane, with the origin in the center of the detector. In the global reference frame the
289
+ 𝑧-axis is also directed along the beam direction, and the detectors are disposed on planes parallel
290
+ to the 𝑥 − 𝑦 plane, with their centers at the coordinates (𝑥𝑖
291
+ 0, 𝑦𝑖
292
+ 0, 𝑧𝑖
293
+ 0). Due to mechanical tolerances
294
+ in the assembly of the detectors, the coordinates (𝑥𝑖
295
+ 0, 𝑦𝑖
296
+ 0) are slightly misaligned with respect to the
297
+ reference values (0, 0).
298
+ A dedicated alignment run has been therefore performed to evaluate the coordinates (𝑥𝑖
299
+ 0, 𝑦𝑖
300
+ 0) of
301
+ the centers of the silicon detectors (the index 𝑖 = 0 refers to the Timepix3 sensor, while the indices
302
+ 𝑖 = 1 . . . 6 refer to the detectors of the beam telescope). The alignment run has been performed
303
+ removing the radiator from the beam line and using 5 GeV/c electrons.
304
+ We have implemented an iterative alignment procedure selecting a sample of events with only
305
+ one cluster in each silicon detector. This choice is aimed to select events with only one electron
306
+ track across all the detectors. In the first iteration we assume 𝑥𝑖
307
+ 0 = 0 and 𝑦𝑖
308
+ 0 = 0 for all detectors. We
309
+ fit all the tracks with a straight line and, for each track, we evaluate the residuals in each detector as
310
+ 𝑟𝑖
311
+ 𝑥 = 𝑥𝑖 − 𝑥𝑖
312
+ 𝑓 𝑖𝑡 and 𝑟𝑖
313
+ 𝑦 = 𝑦𝑖 − 𝑦𝑖
314
+ 𝑓 𝑖𝑡, where (𝑥𝑖, 𝑦𝑖) and (𝑥𝑖
315
+ 𝑓 𝑖𝑡, 𝑦𝑖
316
+ 𝑓 𝑖𝑡) are respectively the true and fitted
317
+ positions of the cluster in the 𝑖-th detector. We then build the distributions of the residuals 𝑟𝑖
318
+ 𝑥 and 𝑟𝑖
319
+ 𝑦
320
+ and, in the next iteration, we set 𝑥𝑖
321
+ 0 = −𝜇𝑖
322
+ 𝑥 and 𝑦𝑖
323
+ 0 = −𝜇𝑖
324
+ 𝑦, where 𝜇𝑖
325
+ 𝑥 and 𝜇𝑖
326
+ 𝑦 are the average values
327
+ – 7 –
328
+
329
+ Figure 4. Distributions of the residuals in the silicon detector equipped with the TimePix3 chip after the
330
+ alignment procedure.
331
+ of these distributions. The iterative procedure is terminated when |𝜇𝑖
332
+ 𝑥| < 1 𝜇m and |𝜇𝑖
333
+ 𝑦| < 1 𝜇m
334
+ for all detectors. Convergence is reached after the second iteration.
335
+ Fig. 4 shows the distributions of the residuals in the silicon detector equipped with the Timepix3
336
+ chip after the alignment procedure. The RMS of the residual distributions in both the 𝑥 and 𝑦 views
337
+ are of about 10 𝜇m.
338
+ Fig. 5 shows the distributions of the direction cosines of the electron tracks in the alignment
339
+ run. We see that the average values of the direction cosines 𝑐𝑥 and 𝑐𝑦 are slightly different from
340
+ zero. This result implies that the 𝑧-axis of our reference frame is not perfectly aligned with the
341
+ direction of the beam. The tilt angle can be estimated from the average value of 𝑐𝑧, and is of about
342
+ 5 mrad. Finally, from the values of the RMS of the distributions of 𝑐𝑥 and 𝑐𝑦 we can deduce that
343
+ the beam divergence is of about 1 mrad in both the 𝑥 and 𝑦 directions.
344
+ 4.3
345
+ Data selection and analysis
346
+ As discussed in Sec. 3, several runs in different configurations have been taken, by changing the
347
+ beam composition and momentum, the radiator and its distance from the silicon pixel detector.
348
+ In each of these runs we have selected events with at least one cluster in the silicon pixel sensor
349
+ and at least 3 clusters in different detectors of the beam telescope. This choice is motivated by the
350
+ need of identifying, among the clusters in the silicon sensor, the one originated by the ionization
351
+ energy deposit of the beam particle and those eventually originated by the absorption of TR X-rays
352
+ produced in the upstream radiator.
353
+ Fig. 6 shows the distribution of the total number of clusters in the detectors of the beam
354
+ telescope for all the runs performed with electrons crossing the EXTRA radiator, which was placed
355
+ at a distance of 88.9 cm from the silicon pixel sensor. As expected, the distribution is peaked at 6
356
+ clusters, corresponding to clean electron tracks, yielding one cluster in each detector. Events with
357
+ less than 6 clusters can be originated from inefficiencies of some detectors in the beam telescope
358
+ or from beam particles which do not cross all the telescope planes. Events with more than 6
359
+ clusters can be originated from delta rays accompanying the primary electron track or from TR
360
+ X-rays passing through the upstream silicon sensor and being absorbed in any detector of the silicon
361
+ – 8 –
362
+
363
+ X103
364
+ Entries
365
+ 542808
366
+ 1.2
367
+ Mean
368
+ 4.227e-04
369
+ RMS
370
+ 1.064e-02
371
+ x? / ndf
372
+ 1.047e+04/2389
373
+ Constant
374
+ 1.126e+03±1.961e+00
375
+ Mean
376
+ 4.303e-04±1.287e-05
377
+ Sigma
378
+ 9.346e-03±9.969e-06
379
+ 0.8
380
+ ents
381
+ 0.4
382
+ 0.2
383
+ 0
384
+ /x10~3
385
+ 60
386
+ 40
387
+ 20
388
+ 0
389
+ 20
390
+ 40
391
+ 60
392
+ Residualsinthex-view(mmX103
393
+ Entries
394
+ 542808
395
+ 1.2
396
+ Mean
397
+ 3.268e-04
398
+ RMS
399
+ 1.050e-02
400
+ x? / ndf
401
+ 1.044e+04/2379
402
+ Constant
403
+ 1.140e+03±1.981e+00
404
+ Mean
405
+ 3.287e-04± 1.271e-05
406
+ Sigma
407
+ 0.8
408
+ 9.229e-03±9.775e-06
409
+ ents
410
+ 0.4
411
+ 0.2
412
+ /x10~3
413
+ 0
414
+ 60
415
+ 40
416
+ 20
417
+ 0
418
+ 20
419
+ 40
420
+ 60
421
+ Residuals in the y-view (mm)Figure 5. Distributions of the direction cosines of the electron tracks in the silicon detector and in the beam
422
+ telescope in the alignment run.
423
+ telescope. We also see two peaks, at 12 and 18 clusters respectively, which include less than 1% of
424
+ the total number of events, and which likely correspond to double and triple electron tracks.
425
+ The clusters in the detectors of the beam telescope are used to reconstruct the tracks of the
426
+ beam particles in the telescope. To select events with single electron (positron) tracks, we require
427
+ less than 10 clusters in the beam telescope. Candidate tracks are built by selecting all the possible
428
+ cluster combinations with only one cluster per plane of the telescope. The clusters of each candidate
429
+ track are then fitted with a straight line and the 𝜒2 of the fit is evaluated. The track with the best 𝜒2
430
+ is then selected.
431
+ Once the track of the radiating particle in the beam telescope is reconstructed, we evaluate the
432
+ coordinates (𝑥𝑡𝑟𝑎𝑐𝑘, 𝑦𝑡𝑟𝑎𝑐𝑘) of its intersection with the upstream silicon pixel sensor. Then, if more
433
+ clusters are found in the sensor, the cluster nearest to the track is associated to the particle ("particle
434
+ cluster"), while other clusters are associated to possible TR X-rays ("X-ray clusters"). Clearly, if
435
+ only one cluster is found in the silicon pixel sensor, it is associated to the particle and no X-rays are
436
+ detected.
437
+ – 9 –
438
+
439
+ X103
440
+ Entries
441
+ 542808
442
+ Mean 4.254e-03
443
+ 25
444
+ RMS
445
+ 9.283e-04
446
+ 20
447
+ Events
448
+ 15
449
+ 10
450
+ L0
451
+ ×10~3
452
+ -10
453
+ -8
454
+ -6
455
+ 4
456
+ -2
457
+ 0
458
+ 2
459
+ 4
460
+ 6
461
+ 80
462
+ 10
463
+ CxX103
464
+ Entries
465
+ 542808
466
+ 30
467
+ Mean -1.903e-03
468
+ RMS
469
+ 8.606e-04
470
+ 25
471
+ 20
472
+ Events
473
+ 15
474
+ 10
475
+ LO
476
+ 0
477
+ /×10~3
478
+ -10
479
+ -8
480
+ -6
481
+ -4
482
+ 2
483
+ 0
484
+ 2
485
+ 4
486
+ 9
487
+ 8
488
+ 10
489
+ CyX103
490
+ Entries
491
+ 542808
492
+ Mean 1.160e-05
493
+ 30
494
+ RMS4.175e-06
495
+ 25
496
+ 20
497
+ Events
498
+ 15
499
+ 10
500
+ L0
501
+ 0
502
+ ×10~6
503
+ 0
504
+ 5
505
+ 10
506
+ 15
507
+ 20
508
+ 25
509
+ 30
510
+ 35
511
+ 40
512
+ 45
513
+ 50
514
+ 1-CzFigure 6. Distribution of the total number of clusters in the beam telescope for all the runs performed with
515
+ electrons crossing the EXTRA radiator, placed at a distance of 88.9 cm from the silicon pixel sensor.
516
+ 5
517
+ Results
518
+ In Figs. 8, 9 and 10 the results obtained in the runs with the EXTRA radiator are summarized. The
519
+ plots in each figure correspond to the configurations with the silicon detector placed at the distances
520
+ of 40.5 cm, 88 cm and 132 cm from the radiator respectively. The plots are built selecting events
521
+ with the particle cluster inside a square of a 3 × 3 mm2 area, in the centre of the TimePix3 detector.
522
+ All the distributions shown in the above plots are normalized to the total number of selected events.
523
+ The top panels of each figure show the distributions of the relative positions of the TR X-
524
+ rays (evaluated from the X-ray clusters) with respect to the radiating electron (evaluated from the
525
+ particle cluster). As expected, TR photons tend to accumulate in rings centered on the position of
526
+ the radiating particle and the number of photons per electron increases with the beam momentum
527
+ (and consequently with the Lorentz factor of the radiating particles).
528
+ The central panels show the distributions of the TR X-ray energies as a function of their
529
+ angular separation from the radiating particle. Most X-rays are emitted at angles 𝜃 ≲ 2 mrad from
530
+ the radiating particle, with energies peaked at energies < 10 keV. A second peak of X-rays emitted
531
+ at angles ∼ 3.5 mrad and with the same energies as the first peak can also be seen, and it becomes
532
+ more evident as the beam momentum increases.
533
+ Finally, the bottom panels show the energy distributions of the absorbed TR X-rays compared
534
+ with the distributions of the energies deposited by the parent electrons in the TimePix3 detector.
535
+ As discussed in Sec. 4.1, the energy losses of the electrons follow Landau distributions with a most
536
+ probable value of 25.4 keV, while X-ray energies are peaked at less than 10 keV. We see that the
537
+ area of the X-ray energy spectra increases with increasing electron momentum. This behaviour is
538
+ – 10 –
539
+
540
+ Entries7541667
541
+ Mean
542
+ 6.177
543
+ RMS
544
+ 1.049
545
+ 10
546
+ 10~3
547
+ 10-4
548
+ 0
549
+ 20
550
+ Numberofclusters inthebeamtelescopeFigure 7. Distribution of the distances of the "particle clusters" from the track in the silicon sensor for the
551
+ runs performed with electrons crossing the EXTRA radiator, placed at a distance of 88.9 cm from the silicon
552
+ pixel sensor.
553
+ expected since the spectra are normalized to the total number of electrons and the TR yield increases
554
+ with the Lorentz factor of the radiating particle.
555
+ A summary of the results obtained in all the configurations explored is shown in Fig. 11.
556
+ The average number of detected TR X-rays per electron is shown as a function of the beam
557
+ momentum. We see that for all configurations the number of detected photons increases with the
558
+ beam momentum and saturates above 4 GeV/c. This behavior is expected, since the threshold
559
+ Lorentz factor for all radiators is 𝛾𝑡ℎ𝑟 ≃ 103 and the saturation Lorentz factors are in the range
560
+ 4÷5×103. Comparing the results obtained with the EXTRA radiator in the different configurations
561
+ we see that the average number of detected TR X-rays decreases when the radiator-detector distance
562
+ is increased. The increase of the distance causes an increase of the X-ray absorption in the air gap
563
+ between the radiator and the detector, which is not compensated by the lower minimum detectable
564
+ angle between the photons and the radiating particles. We remark here that the results shown in
565
+ Fig. 11 referred to the CERN radiator have been obtained from a joint analysis of the data samples
566
+ collected with both the electron and positron beams (see Tab. 2). This choice is motivated by the
567
+ fact that the separate analyses of the electron and positron data samples yield the same results. This
568
+ feature was expected, since the properties of TR are independent of the sign of the charge of the
569
+ radiating particle.
570
+ The experimental results shown in Fig. 11 are compared with the predictions obtained by
571
+ folding the TR yield, evaluated with the theoretical formulae for regular radiators [4, 21] with the
572
+ X-ray absorption probabilities in the air gap between the radiator and the TimePix3 detector and in
573
+ – 11 –
574
+
575
+ X10~3
576
+ Entries7541668
577
+ 25
578
+ Mean
579
+ 0.0408
580
+ RMS
581
+ 0.0645
582
+ 20
583
+ Fractionofevents
584
+ 15
585
+ 10
586
+ 5
587
+ 0
588
+ 0.1
589
+ 0.2
590
+ 0.3
591
+ 0.4
592
+ 0.5
593
+ 0.6
594
+ 0.7
595
+ 0.8
596
+ 0.9
597
+ 1
598
+ Distance betweenthe track and theparticle cluster (mm)Figure 8.
599
+ Summary of the results obtained in the runs with the EXTRA radiator at 40.5 cm from the
600
+ TimpePix3 detector. Top panel: distribution of the relative positions of the TR photons (X-ray clusters) with
601
+ respect to the electrons (particle clusters); middle panel: distribution of X-ray energies as a function of their
602
+ angular separation from the electrons; bottom panel: electron and X-ray energy distributions.
603
+ – 12 –
604
+
605
+ EXTRA radiator, d = 40.5 cm
606
+ 10
607
+ Ypart(mm)
608
+ >
609
+ 6Gevc
610
+ 2
611
+ 0
612
+ X- Xpart (mm)EXTRA radiator,d = 40.5 cm
613
+ 50
614
+ Gevic
615
+ 2Gevic
616
+ =3GeV/c
617
+ 40
618
+ 30
619
+ /Electron
620
+ (keV)
621
+ 20
622
+ Energy
623
+ Photons/
624
+ 10
625
+ 0
626
+ 50
627
+ Photon
628
+ 5Gev
629
+ =6Gev
630
+ 40
631
+ 30
632
+ 20
633
+ 10
634
+ 0
635
+ 2
636
+ 4
637
+ 6
638
+ 8
639
+ 0
640
+ 2
641
+ 4
642
+ 6
643
+ 8
644
+ 0
645
+ 2
646
+ 4
647
+ 6
648
+ 8
649
+ Electron-Photonangularseparation(mradEXTRA radiator, d = 40.5 cm
650
+ 0.12
651
+ p = 1 GeV/c
652
+ p = 2 GeV/c
653
+ p = 3 GeV/c
654
+ Electron
655
+ Electron
656
+ Electron
657
+ 0.10
658
+ Photons
659
+ Photons
660
+ Photons
661
+ 0.08
662
+ 0.06
663
+ Entries
664
+ 0.04
665
+ 0.02
666
+ of
667
+ Fraction
668
+ 0.00
669
+ 0.12
670
+ p = 4 GeV/c
671
+ p = 5 GeV/c
672
+ p = 6 GeV/c
673
+ Electron
674
+ Electron
675
+ Electron
676
+ 0.10
677
+ Photons
678
+ Photons
679
+ Photons
680
+ 0.08
681
+ 0.06
682
+ 0.04
683
+ 0.02
684
+ 0.00
685
+ 0
686
+ 20
687
+ 40
688
+ 60
689
+ 80
690
+ 1000
691
+ 20
692
+ 40
693
+ 60
694
+ 80
695
+ 100 0
696
+ 20
697
+ 40
698
+ 60
699
+ 80
700
+ 100
701
+ Energy (keV)Figure 9. Summary of the results obtained in the runs with the EXTRA radiator at 88 cm from the TimpePix3
702
+ detector. Top panel: distribution of the relative positions of the TR photons (X-ray clusters) with respect to
703
+ the electrons (particle clusters); middle panel: distribution of X-ray energies as a function of their angular
704
+ separation from the electrons; bottom panel: electron and X-ray energy distributions.
705
+ – 13 –
706
+
707
+ EXTRA radiator, d = 88 cm
708
+ =
709
+ Gevlo
710
+ =
711
+ 2GeVIc
712
+ 3GeVIc
713
+ 10-3
714
+ Photons/Electron
715
+ 2
716
+ =4 GeV/c
717
+ =
718
+ 5GeVic
719
+ 6GeV/c
720
+ -
721
+ 10-5
722
+ 0
723
+ 2
724
+ 2
725
+ 0
726
+ 1
727
+ 2
728
+ -2
729
+ 2
730
+ 1
731
+ 2
732
+ X - Xpart (mm)EXTRA radiator, d = 88 cm
733
+ 50
734
+ 1 GeV/o
735
+ 2Gev/o
736
+ =3GeV/o
737
+ 40
738
+ 30
739
+ 10
740
+ lectror
741
+ 20
742
+ 10
743
+ -
744
+ E
745
+ Energy
746
+ 10
747
+ itons/
748
+ 0
749
+ Phot
750
+ 50
751
+ Photon
752
+ p=4GeV/c
753
+ of
754
+ 40
755
+ 10-5
756
+ er
757
+ lumbe
758
+ 30
759
+ 10-6之
760
+ 20
761
+ 10
762
+ 0
763
+ 2
764
+ 2
765
+ 6
766
+ 8
767
+ 0
768
+ 4
769
+ 6
770
+ 8EXTRA radiator, d = 88 cm
771
+ 0.12
772
+ p = 1 GeV/c
773
+ p = 2 GeV/c
774
+ p = 3 GeV/c
775
+ Electron
776
+ Electron
777
+ Electron
778
+ 0.10
779
+ Photons
780
+ Photons
781
+ Photons
782
+ 0.08
783
+ 0.06
784
+ Entries
785
+ 0.04
786
+ 0.02
787
+ of
788
+ Fraction
789
+ 0.00
790
+ 0.12
791
+ p = 4 GeV/c
792
+ p= 5 GeV/c
793
+ p = 6 GeV/c
794
+ Electron
795
+ Electron
796
+ Electron
797
+ 0.10
798
+ Photons
799
+ Photons
800
+ Photons
801
+ 0.08
802
+ 0.06
803
+ 0.04
804
+ 0.02
805
+ 0.00
806
+ 0
807
+ 20
808
+ 40
809
+ 60
810
+ 80
811
+ 1000
812
+ 20
813
+ 40
814
+ 60
815
+ 80
816
+ 100 0
817
+ 20
818
+ 40
819
+ 60
820
+ 80
821
+ 100
822
+ Energy (keV)Figure 10. Summary of the results obtained in the runs with the EXTRA radiator at 132 cm from the
823
+ TimpePix3 detector. Top panel: distribution of the relative positions of the TR photons (X-ray clusters) with
824
+ respect to the electrons (particle clusters); middle panel: distribution of X-ray energies as a function of their
825
+ angular separation from the electrons; bottom panel: electron and X-ray energy distributions.
826
+ – 14 –
827
+
828
+ EXTRA radiator, d = 132 cm
829
+ Gew
830
+ p = 2 GeV/c
831
+ =3GeV/C
832
+ 10
833
+ ()d
834
+ >
835
+ =4GeV/C
836
+ p=5GeV/c
837
+ -
838
+ 0
839
+ 0
840
+ 1
841
+ 0
842
+ 1
843
+ 2
844
+ -2
845
+ -1
846
+ 0
847
+ 1
848
+ 2
849
+ X - Xpart (mm)EXTRA radiator, d = 132 cm
850
+ 50
851
+ =2GeV/o
852
+ 3Gev/c
853
+ 40
854
+ 30
855
+ 10
856
+ lectron
857
+ 20
858
+ Energy
859
+ 10
860
+ Photons
861
+ S
862
+ 50
863
+ Photon
864
+ 40
865
+ Jumber
866
+ 30
867
+ 10~5之
868
+ 20
869
+ 10
870
+ 1
871
+ 0
872
+ 2
873
+ 4
874
+ 6
875
+ 8
876
+ 0
877
+ 2
878
+ 4
879
+ 6
880
+ 0
881
+ 2
882
+ 4
883
+ 8
884
+ Electron-Photonangularseparation(mradEXTRA radiator, d = 132 cm
885
+ 0.12
886
+ p = 1 GeV/c
887
+ p = 2 GeV/c
888
+ p = 3 GeV/c
889
+ Electron
890
+ Electron
891
+ Electron
892
+ 0.10
893
+ Photons
894
+ Photons
895
+ Photons
896
+ 0.08
897
+ 0.06
898
+ Entries
899
+ 0.04
900
+ 0.02
901
+ of
902
+ Fraction
903
+ 0.00
904
+ 0.12
905
+ p = 4 GeV/c
906
+ p= 5 GeV/c
907
+ Electron
908
+ Electron
909
+ 0.10
910
+ Photons
911
+ Photons
912
+ 0.08
913
+ 0.06
914
+ 0.04
915
+ 0.02
916
+ 0.00
917
+ 0
918
+ 20
919
+ 40
920
+ 60
921
+ 80
922
+ 1000
923
+ 20
924
+ 40
925
+ 60
926
+ 80
927
+ 100 0
928
+ 20
929
+ 40
930
+ 60
931
+ 80
932
+ 100
933
+ Energy (keV)Figure 11. Average number of TR photons as a function of electron beam momentum for the three radiator
934
+ types and for the different distances from the TimpePix3 detector. The dashed lines show the predictions
935
+ for the different configurations. The results obtained in a run without radiator and in two runs with dummy
936
+ radiators are also shown.
937
+ the silicon layer of the detector. The theoretical curves seem to be in a reasonable agreement with
938
+ the experimental results.
939
+ Finally, we have performed some control runs to check our results.
940
+ A run with 5 GeV/c
941
+ electrons without any radiator was performed to evaluate the possible contamination to the detected
942
+ TR signal from bremsstrahlung photons produced in the upstream materials and accompanying
943
+ the beam particles and the possible contamination from noisy pixels. In this run we found about
944
+ 0.03 X-rays per electron; in addition, since all X-ray clusters are found very close to the particle
945
+ cluster, the contamination from noisy pixels can be considered negligible. We also performed two
946
+ additional runs with 6 GeV/c electrons, in which we replaced the radiator with some "dummy"
947
+ radiators: in particular, we used a set of paper towels, which were arranged in a stack simulating
948
+ a regular radiator, and a piece of sponge, which simulates an irregular radiator1. In both cases we
949
+ observed a TR signal of about 0.17 X-rays per electron.
950
+ 6
951
+ Conclusions
952
+ In the framework of the BL4S competition we have designed and implemented an experiment to
953
+ measure the TR emitted by fast electrons and positrons crossing different kind of radiators. The
954
+ 1Irregular radiators made of foams or fiber mats are sometimes used in TRDs.
955
+ – 15 –
956
+
957
+ 1.2
958
+ Photons
959
+ EXTRA 40.5 cm
960
+ CERN 88.4 cm
961
+ EXTRA 88.0 cm
962
+ No Radiator
963
+ 1.0
964
+ EXTRA132cm
965
+ Towels 88.4cm
966
+ INFN88.9cm
967
+ Sponge 88.4 cm
968
+ TR
969
+ 0.8
970
+ 0.6
971
+ 0.4
972
+ Average
973
+ 0.2
974
+ 0.0
975
+ 0
976
+ 1
977
+ 2
978
+ 3
979
+ 4
980
+ 5
981
+ 6
982
+ Electronmomentum(GeY/c)measurement has been performed at the DESY II Test Beam Facility area TB21, using electrons and
983
+ positron beams with momenta up to 6 GeV/c. We have measured the energy spectra and the angular
984
+ distribution of the TR X-rays using a 100 𝜇m thick pixel silicon detector, with a pitch of 55 𝜇m.
985
+ The experimental results are well reproduced by the theoretical curves obtained from standard TR
986
+ models.
987
+ BL4S has offered the students the chance to be actively involved in all the aspects of an
988
+ experimental research: during the preparation of the proposal, they have learned how to design
989
+ an experimental setup, optimizing the detectors available for the measurement; after their proposal
990
+ was selected, they have been involved in the design and in the assembly of their own radiator; then,
991
+ at DESY, they had the chance to run a real beam test; finally, they have taken part to the analysis of
992
+ the data collected in the test. However, the most important educational result of this experience is
993
+ that the students learned how to apply the scientific approach not only in the field of research, but
994
+ also to the solution of everyday life challenges.
995
+ Acknowledgments
996
+ The members of the EXTRA team thank the CERN and DESY support scientists, the beamline
997
+ scientists, the volunteers and the BL4S organisers who helped them during the preparation and the
998
+ implementation of their experiments. All the scientists involved in the competition dedicated a lot
999
+ of their time to answer all the questions the students had, giving them precious advises for their
1000
+ future career. The team was really pleased to find such wonderful people, who showed them what
1001
+ unconditional love for science really means.
1002
+ A big thank to the Teomizli team from Mexico, the other winning team of the BL4S 2021.
1003
+ Meeting peers from the other side of the world and work with them as a unique team of scientists
1004
+ has been an enriching opportunity.
1005
+ Beamline for Schools is an education and outreach project funded by the CERN & Society
1006
+ Foundation and supported by individual donors, foundations and companies. In 2021, the project
1007
+ was funded by the Wilhelm and Else Heraeus Foundation. Additional contributions have been
1008
+ received from the Arconic Foundation, Amgen Switzerland AG, and the Ernest Solvay Fund
1009
+ managed by the King Baudouin Foundation.
1010
+ The EXTRA team also acknowledges financial support from CERN and DESY for their
1011
+ participation to the beam test campaign.
1012
+ The EXTRA team thanks B. Fanti, I. Iusco, D. Ricchiuti and all the personnel of the Liceo
1013
+ Scientifico “A. Scacchi” for their support to the project activities.
1014
+ References
1015
+ [1] Sarah Aretz, Cristóvão Beirão da Cruz e Silva, Markus Joos, Paul Schütze, and Marcel Stanitzki. An
1016
+ Overview of the CERN Beamline for Schools Competition. The Physics Educator, 02(01):2050001,
1017
+ 2020.
1018
+ [2] R. Diener, J. Dreyling-Eschweiler, H. Ehrlichmann, I.M. Gregor, U. Kötz, U. Krämer, N. Meyners,
1019
+ N. Potylitsina-Kube, A. Schütz, P. Schütze, and M. Stanitzki. The DESY II test beam facility. Nuclear
1020
+ Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
1021
+ Associated Equipment, 922:265–286, 2019.
1022
+ – 16 –
1023
+
1024
+ [3] V. L. Ginzburg and I. M. Frank. Radiation of a uniformly moving electron due to its transition from
1025
+ one medium into another. J. Phys. (USSR), 9:353–362, 1945.
1026
+ [4] X. Artru, G. B. Yodh, and G. Mennessier. Practical Theory of the Multilayered Transition Radiation
1027
+ Detector. Phys. Rev. D, 12:1289, 1975.
1028
+ [5] P.A. Zyla et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020. and 2021 update.
1029
+ [6] J. Alozy et al. Identification of particles with Lorentz factor up to 104 with Transition Radiation
1030
+ Detectors based on micro-strip silicon detectors. Nucl. Instrum. Meth. A, 927:1–13, 2019.
1031
+ [7] J. Alozy et al. Studies of the spectral and angular distributions of transition radiation using a silicon
1032
+ pixel sensor on a Timepix3 chip. Nucl. Instrum. Meth. A, 961:163681, 2020.
1033
+ [8] F. Dachs et al. Transition radiation measurements with a Si and a GaAs pixel sensor on a Timepix3
1034
+ chip. Nucl. Instrum. Methods Phys. Res. A, 958:162037, 2020.
1035
+ [9] J. Alozy et al. Registration of the transition radiation with GaAs detector: Data/MC comparison. J.
1036
+ Phys. Conf. Ser., 1690(1):012041, 2020.
1037
+ [10] A. A. Savchenko et al. Fine structure of angular distribution of x-ray transition radiation from
1038
+ multilayered radiator in Geant4. JINST, 15(06):C06024, 2020.
1039
+ [11] Michael Albrow. A Very Forward Hadron Spectrometer for the LHC and Cosmic Ray Physics. PoS,
1040
+ EDSU2018:048, 2018.
1041
+ [12] Jansen, Hendrik, Spannagel, Simon, Behr, Jörg, Bulgheroni, Antonio, Claus, Gilles, Corrin, Emlyn,
1042
+ Cussans, David, Dreyling-Eschweiler, Jan, Eckstein, Doris, Eichhorn, Thomas, Goffe, Mathieu,
1043
+ Gregor, Ingrid Maria, Haas, Daniel, Muhl, Carsten, Perrey, Hanno, Peschke, Richard, Roloff, Philipp,
1044
+ Rubinskiy, Igor, and Winter, Marc. Performance of the EUDET-type beam telescopes. Eur. Phys. J.
1045
+ Techn. Instrum., 3(1):7, 2016.
1046
+ [13] M. Brigida et al. Beam test results with a reduced scale Silicon Transition Radiation Detector
1047
+ prototype. Nucl. Instrum. Meth. A, 577:519–522, 2007.
1048
+ [14] T Poikela, J Plosila, T Westerlund, M Campbell, M De Gaspari, X Llopart, V Gromov, R Kluit, M van
1049
+ Beuzekom, F Zappon, V Zivkovic, C Brezina, K Desch, Y Fu, and A Kruth. Timepix3: a 65K
1050
+ channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. Journal of
1051
+ Instrumentation, 9(05):C05013–C05013, may 2014.
1052
+ [15] Niloufar Alipour Tehrani. Test-beam measurements and simulation studies of thin pixel sensors for
1053
+ the CLIC vertex detector. PhD thesis, ETH Zurich, Zurich, 2017.
1054
+ [16] Y. Liu, M.S. Amjad, P. Baesso, D. Cussans, J. Dreyling-Eschweiler, R. Ete, I. Gregor, L. Huth,
1055
+ A. Irles, H. Jansen, K. Krueger, J. Kvasnicka, R. Peschke, E. Rossi, A. Rummler, F. Sefkow,
1056
+ M. Stanitzki, M. Wing, and M. Wu. EUDAQ2—A flexible data acquisition software framework for
1057
+ common test beams. Journal of Instrumentation, 14(10):P10033–P10033, oct 2019.
1058
+ [17] P. Baesso, D. Cussans, and J. Goldstein. The AIDA-2020 TLU: a flexible trigger logic unit for test
1059
+ beam facilities. Journal of Instrumentation, 14(09):P09019–P09019, sep 2019.
1060
+ [18] R. Brun and F. Rademakers. ROOT: An object oriented data analysis framework. Nucl. Instrum.
1061
+ Meth. A, 389:81–86, 1997.
1062
+ [19] D. Dannheim, K. Dort, L. Huth, D. Hynds, I. Kremastiotis, J. Kröger, M. Munker, F. Pitters,
1063
+ P. Schütze, S. Spannagel, T. Vanat, and M. Williams. Corryvreckan: a modular 4D track
1064
+ reconstruction and analysis software for test beam data. Journal of Instrumentation, 16(03):P03008,
1065
+ mar 2021.
1066
+ – 17 –
1067
+
1068
+ [20] Hans Bichsel. Straggling in Thin Silicon Detectors. Rev. Mod. Phys., 60:663–699, 1988.
1069
+ [21] C. W. Fabjan and W. Struczinski. Coherent Emission of Transition Radiation in Periodic Radiators.
1070
+ Phys. Lett. B, 57:483–486, 1975.
1071
+ – 18 –
1072
+
INFIT4oBgHgl3EQfYSsB/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
K9AyT4oBgHgl3EQf6foW/content/tmp_files/2301.00821v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
K9AyT4oBgHgl3EQf6foW/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff