diff --git "a/FdAyT4oBgHgl3EQfe_hY/content/tmp_files/load_file.txt" "b/FdAyT4oBgHgl3EQfe_hY/content/tmp_files/load_file.txt" new file mode 100644--- /dev/null +++ "b/FdAyT4oBgHgl3EQfe_hY/content/tmp_files/load_file.txt" @@ -0,0 +1,1223 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf,len=1222 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='00331v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='AG] 1 Jan 2023 Optimality of Curtiss Bound on Poincare Multiplier for Positive Univariate Polynomials Hoon Hong and Brittany Riggs December 31 2022 Abstract Let f be a monic univariate polynomial with non-zero constant term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' We say that f is positive if f(x) is positive over all x ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' If all the coefficients of f are non-negative, then f is trivially positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' In 1888, Poincar´e proved thatf is positive if and only if there exists a monic polynomial g such that all the coefficients of gf are non-negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Such polynomial g is called a Poincar´e multiplier for the positive polynomial f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Of course one hopes to find a multiplier with smallest degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' This naturally raised a challenge: find an upper bound on the smallest degree of multipliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' In 1918, Curtiss provided such a bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Curtiss also showed that the bound is optimal (smallest) when degree of f is 1 or 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' It is easy to show that the bound is not optimal when degree of f is higher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' The Curtiss bound is a simple expression that depends only on the angle (argument) of non-real roots of f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' In this paper, we show that the Curtiss bound is optimal among all the bounds that depends only on the angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' 1 Introduction Let f be a monic univariate polynomial with non-zero constant term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' We say that f is positive if f(x) is positive over all x ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Consider the following small (toy) examples, f1 = x4 + x3 + 10x2 + 2x + 10 f2 = x4 − x3 − 10x2 − 2x + 10 f3 = x4 − x3 + 10x2 − 2x + 10 Note that all the coefficients of f1 are non-negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Thus it is trivial to see that f1 is positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' However f2 and f3 have non-negative coefficients, and thus it is not obvious whether they are positive or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' It turns out that f2 is not positive and f3 is positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' In 1888, Poincar´e [5] proved a general result that implies the following specific claim: f is positive if and only if there exists a monic polynomial g such that all the coefficients of gf are non-negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Such polynomial g is called a Poincar´e multiplier for the positive polynomial f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' For the above examples, we have Since f2 is not positive, there is no a Poincar´e multiplier for f2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Since f3 is positive, there is a Poincar´e multiplier for f3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' For instance, let g = x + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Then gf3 = (x + 1) � x4 − x3 + 10x2 − 2x + 10 � = x5 + 9x3 + 8x2 + 8x + 10 Note that all the coefficients of gf3 are non-negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' 1 Note that there are (infinitely) many Poincar´e multipliers for f3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' For instance, let g = x2 + x + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Then gf3 = � x2 + x + 1 � � x4 − x3 + 10x2 − 2x + 10 � = x6 + 10x4 + 7x3 + 18x2 + 8x + 10 Note that all the coefficients of gf3 are again non-negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Of course one hopes to find a Poincar´e multiplier with optimal (smallest) degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' It turns out that the smallest degree for Poincar´e multipliers for f3 is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' This naturally raised a challenge: find an upper bound on the smallest degree of multipliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' In 1918, Curtiss [3] provided such a bound (See Theorem 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Curtiss also showed that the bound is optimal when degree of f is 1 or 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' It is easy to show that the bound is not optimal when degree of f is higher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' For example, the Curtiss bound for f3 is 2, which is bigger than the optimal degree which is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' It seems that Curtiss bound was forgotten for almost a century.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' In 2010 Avenda˜no [1] (see Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='1), evidently not informed of the Curtiss bound, derived another bound implicitly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Its derivation is very elegant and short, but it turns out that the implied bound is roughly twice the Curtiss bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Boththe Curtiss bound and Avenda˜no bound depend only on the angles (arguments) of non-real roots of f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' The main contribution of this paper is to show that the Curtiss bound is optimal among all the bounds that depends only on the angles of the non-real roots (see Theorem 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' 2 Main Result Let f ∈ R [x] be monic such that ∀ x≥0f (x) > 0, that is, f does not have any non-negative real root.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Definition 1 (Optimal Bound) The optimal degree for f, written as opt (f), is defined by opt (f) = min g∈R[x]\\0 coeff(gf)≥0 deg(g) Theorem 1 (Curtiss Bound 1918[3]) Let r1e±iθ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' , rme±iθm be the non-real roots of f where multiple roots are repeated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Let b (f) = m � i=1 �� π θi � − 2 � Then opt (f) ≤ b (f) and the equality holds if deg f ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Theorem 2 (Main Result: Angle-Based Optimality of Curtiss Bound) We have ∀ θ1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=',θm∈(0,π) ∃ p1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=',pt>0 ∃ r1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=',rm>0 opt (f) = b (f) 3 Proof of Curtiss Bound (Theorem 1) In this section, we will provide an alternative proof for Curtiss’ theorem (Theorem 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' This alternative proof will be based on a new proof strategy that will be found crucial for proving our main result (Theorem 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Let f ∈ R [x] be monic without losing generality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Assume that f does not have any non-negative real roots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' The problem is to find non-zero g ∈ R [x] such that coeffs (gf) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' We will reduce the problem to that of linear algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Let f = anxn + · · · + a0x0 g = bsxs + · · · + b0x0 where an = 1 and bs = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' We first rewrite them using vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Let a = � a0 · · an � b = � b0 · · bs � 2 and let xk = \uf8ee \uf8ef\uf8ef\uf8f0 x0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' xk \uf8f9 \uf8fa\uf8fa\uf8fb Then we can write f and g compactly as f = axn g = bxs Let As = \uf8ee \uf8ef\uf8ef\uf8f0 a0 · · · · an .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' a0 · · · · an \uf8f9 \uf8fa\uf8fa\uf8fb ∈ R(s+1)×(s+n+1) Lemma 3 coeffs (gf) = bAs Proof: Note gf = (bxs) (axn) = b (xsaxn) = b \uf8ee \uf8ef\uf8ef\uf8f0 x0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' xs \uf8f9 \uf8fa\uf8fa\uf8fb � a0 · · an � \uf8ee \uf8ef\uf8ef\uf8f0 x0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' xn \uf8f9 \uf8fa\uf8fa\uf8fb = b \uf8ee \uf8ef\uf8ef\uf8f0 a0 · · · · an .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' a0 · · · · an \uf8f9 \uf8fa\uf8fa\uf8fb \uf8ee \uf8ef\uf8ef\uf8f0 x0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' xs+n \uf8f9 \uf8fa\uf8fa\uf8fb = bAsxs+n Hence coeffs (gf) = bAs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' □ We partition As into two submatrices as As = [Ls|Rs] where Ls = \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8ef\uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 a0 · · an−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' a0 \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fa\uf8fa\uf8fa\uf8fa\uf8fa\uf8fb ∈ R(s+1)×n and Rs = \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8ef\uf8ef\uf8ef\uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 an .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' a0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' a0 · · · · an \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fa\uf8fa\uf8fa\uf8fa\uf8fa\uf8fa\uf8fa\uf8fb ∈ R(s+1)×(s+1) Let c = bRs ∈ R1×(s+1) Ts = R−1 s Ls ∈ R(s+1)×n Lemma 4 coeffs (gf) = c [Ts|I] 3 Proof: Note bAs = b � RsR−1 s � As = (bRs) � R−1 s As � = (bRs) � R−1 s [Ls|Rs] � = (bRs) � R−1 s Ls|R−1 s Rs � = (bRs) � R−1 s Ls|I � = c [Ts|I] where c = bRs and Ts = R−1 s Ls □ Lemma 5 We have ∃ g̸=0, deg(g)≤s coeffs (gf) ≥ 0 ⇐⇒ ConvexHull (Ts) ∩ Rn ≥0 ̸= ∅ where Ts is a viewed as a set of row vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Proof: Note ∃ g̸=0, deg(g)≤s coeffs (gf) ≥ 0 ⇐⇒ ∃ c̸=0 c [Ts|I] ≥ 0 (from Lemma 4) ⇐⇒ ∃ c̸=0 cTs ≥ 0 and c ≥ 0 ⇐⇒ ∃ c≥0, c̸=0 cTs ≥ 0 ⇐⇒ ∃ c��0, c0+···+cs=1 cTs ≥ 0 ⇐⇒ ConvexHull (Ts) ∩ Rn ≥0 ̸= ∅ □ Let f = an n � i=1 (x − αi) Lemma 6 The entries of Ts are given by Tskℓ = −|N| |D| where D = \uf8ee \uf8ef\uf8ef\uf8f0 α0 1 · · α0 n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' αn−1 1 · · αn−1 n \uf8f9 \uf8fa\uf8fa\uf8fb and N is obtained from D by replacing the ℓ-th row with � αk+n 1 · · αk+n n � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Proof: Note xsf = Asxs+n 4 = RsR−1 s Asxs+n = RsR−1 s [Ls|Rs] xs+n = Rs � R−1 s Ls|R−1 s Rs � xs+n = Rs [Ts|I] xs+n = Rs \uf8eb \uf8ec \uf8ec \uf8edTs \uf8ee \uf8ef\uf8ef\uf8f0 x0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' xn−1 \uf8f9 \uf8fa\uf8fa\uf8fb + \uf8ee \uf8ef\uf8ef\uf8f0 xn .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' xs+n \uf8f9 \uf8fa\uf8fa\uf8fb \uf8f6 \uf8f7 \uf8f7 \uf8f8 By evaluating the above on each root, we have \uf8ee \uf8ef\uf8ef\uf8f0 α0 i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' αs i \uf8f9 \uf8fa\uf8fa\uf8fb f (αi) = Rs \uf8eb \uf8ec \uf8ec \uf8edTs \uf8ee \uf8ef\uf8ef\uf8f0 α0 i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' αn−1 i \uf8f9 \uf8fa\uf8fa\uf8fb + \uf8ee \uf8ef\uf8ef\uf8f0 αn i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' αs+n i \uf8f9 \uf8fa\uf8fa\uf8fb \uf8f6 \uf8f7 \uf8f7 \uf8f8 Since f (αi) = 0, we have 0 = Rs \uf8eb \uf8ec \uf8ec \uf8edTs \uf8ee \uf8ef\uf8ef\uf8f0 α0 i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' αn−1 i \uf8f9 \uf8fa\uf8fa\uf8fb + \uf8ee \uf8ef\uf8ef\uf8f0 αn i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' αs+n i \uf8f9 \uf8fa\uf8fa\uf8fb \uf8f6 \uf8f7 \uf8f7 \uf8f8 Since Rs is an invertible matrix, we have 0 = Ts \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 α0 i α1 i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' αn−1 i \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb + \uf8ee \uf8ef\uf8ef\uf8f0 αn i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' αs+n i \uf8f9 \uf8fa\uf8fa\uf8fb Rearranging, Ts \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 α0 i α1 i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' αn−1 i \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb = − \uf8ee \uf8ef\uf8ef\uf8f0 αn i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' αn+s i \uf8f9 \uf8fa\uf8fa\uf8fb Combining the above equations for all the roots, we have Ts \uf8ee \uf8ef\uf8ef\uf8f0 α0 1 · · α0 n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' αn−1 1 · · αn−1 n \uf8f9 \uf8fa\uf8fa\uf8fb = − \uf8ee \uf8ef\uf8ef\uf8f0 αn 1 · · αn n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' αs+n 1 · · αs+n n \uf8f9 \uf8fa\uf8fa\uf8fb By applying Cramer’s rule, we have Tskℓ = −|N| |D| where D = \uf8ee \uf8ef\uf8ef\uf8f0 α0 1 · · α0 n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' αn−1 1 · · αn−1 n \uf8f9 \uf8fa\uf8fa\uf8fb and N is obtained from D by replacing the ℓ-th row with � αk+n 1 · · αk+n n � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' □ 5 Remark 7 Note that Tskℓ does not depend on s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Thus we will often write it as Tkℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Lemma 8 Let f ∈ R[x] be such that deg(f) = 2 without real roots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Let the roots be α1 = reiθ and α2 = re−iθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='Then we have ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='Tk0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='+rk+2 sin (k + 1) θ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='sin θ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='r2 Im(αk+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=') ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='Im(αi) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='Tk1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='−rk+1 sin(k + 2)θ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='sin θ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='− Im(αk+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=') ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='Im(αi) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='Proof: From Lemma 6 we have ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='Tk0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='= − ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='����� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='αk+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='αk+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='α1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='α1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='����� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='����� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='α0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='α0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='α1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='α1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='����� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='= −αk+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='α2 − α1αk+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='α2 − α1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='= −rk+2 +2i sin(k + 1) θ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='−2i sinθ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='= +rk+2 sin (k + 1) θ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='sin θ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='= r2 Im(αk+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=') ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='Im(αi) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='Tk1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='= − ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='α0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='α0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='αk+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='αk+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='α0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='α0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='α1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='α1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='= −αk+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='− αk+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='α2 − α1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='= −rk+1 −2i sin(k + 2)θ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='−2i sinθ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='= −rk+1 sin(k + 2)θ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='sin θ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='= − Im(αk+2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=') ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='Im(αi) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='□ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='Lemma 9 Let f ∈ R[x] be such that deg(f) = 2 without real roots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Let α1 = reiθ and α2 = re−iθ be the roots of f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' s = �π θ � − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Then ∃ g̸=0, deg(g)≤s coeffs (gf) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Proof: Note ∃ g̸=0, deg(g)≤s coeffs (gf) ≥ 0 ⇐⇒ ConvexHull (Ts) ∩ Rn ≥0 ̸= ∅ (from Lemma 5) ⇐= Ts0, Ts1 ≥ 0 ⇐⇒ sin (s + 1) θ ≥ 0 ∧ sin (s + 2) θ ≤ 0 (from Lemma 8) ⇐= 0 < (s + 1)θ ≤ π ∧ π ≤ (s + 2)θ < 2π ⇐⇒ s ≤ π θ − 1 ∧ s ≥ π θ − 2 ⇐⇒ π θ − 2 ≤ s ≤ π θ − 1 ⇐= s = �π θ � − 2 □ Proof: [Proof of Theorem 1] 6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Let f be quadratic with non-real roots re±iθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Note that bc(f) is optimal for any f with π 2 ≤ θ < π since bc(f) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Let 0 < θ < π 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Let g be such that g ̸= 0 and deg(g) = v < s, where s = bc(f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Thus k ≤ v =⇒ k < s =⇒ k < �π θ � − 2 =⇒ k < π θ − 2 (since k ≤ �π θ � − 3) =⇒ (k + 2)θ < π =⇒ sin(k + 2)θ > 0 (since (k + 2)θ > 0) =⇒ −rk+1 sin(k + 2)θ sin θ < 0 ⇐⇒ Tvk1 < 0 ⇐⇒ ConvexHull (Tv) ∩ R2 ≥0 = ∅ ⇐⇒ coeffs (gf) < 0 (by Lemma 5) Hence, opt(f) ̸< s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' By Lemma 9, opt(f) = s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Consider the factorization of f over R into linear and irreducible quadratic factors as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' f = (x + p1) · · · (x + pt) � x2 − 2r1 cos θ1x + r2 1 � · · � x2 − 2rm cos θmx + r2 m � f = l1 · · · lt q1 · · · qm where li = x + pi qi = x2 − 2ri cos θix + r2 i where again −pi stand for negative real roots and ri (cos θi ± i sin θi) stand for the complex conjugate root pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' The coefficients of each li and qi with π 2 ≤ θi < π are non-negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' From Lemma 8, for those qi with 0 < θi < π 2 , there exists non-zero gi ∈ R[x] such that coeffs (gi qi) ≥ 0 and deg(gi) = � π θi � − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Let g = g1 · · · gm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Then coeffs (gf) ≥ 0 and deg(g) = m � i=1 �� π θi � − 2 � = b(f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Hence we have opt (f) ≤ b (f) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' □ 4 Proof of Angle-Based Optimality (Theorem 2) Let f = fπ,p fφ,rφ fθ,rθ fπ,p = � 1≤i≤t (x + pi) where pi > 0 fφ,rφ = � 1≤i≤k π 2 ≤φi<π � x2 − 2rφi cos φi x + r2 φi � where rφi > 0 and π > φ1 ≥ · · · ≥ φk ≥ π 2 7 fθ,rθ = � 1≤i≤ℓ 0<θi< π 2 � x2 − 2rθi cos θi x + r2 θi � where rθi > 0 and π 2 > θ1 ≥ · · · ≥ θℓ > 0 where k + ℓ = m (the number of complex root pairs of f) and 2m + t = n = deg(f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Proof: [Proof of Theorem 2] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' We need to show ∀ π>φ1≥···≥φk≥ π 2 ∀ π 2 >θ1≥···≥θℓ>0 ∃ p1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=',pt>0 ∃ rφ1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=',rφk>0 ∃ rθ1 ,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=',rθℓ>0 opt (f) = b (f) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Let π > φ1 ≥ · · · ≥ φk ≥ π 2 and π 2 > θ1 ≥ · · · ≥ θℓ > 0 be arbitrary but fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' We need to show ∃ p1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=',pt>0 ∃ rφ1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=',rφk>0 ∃ rθ1 ,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=',rθℓ>0 opt (f) = b (f) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' We need to find a witness for p, rφ, rθ such that opt (f) = b (f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' We propose a witness candidate as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' (a) From Lemma 10, for the fixed θ, we have ∃ rθ1 ,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=',rθℓ>0 opt (fθ,rθ) = b (fθ,rθ) (1) (b) From Lemma 15, for the fixed φ and θ, we have ∃ p1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=',pt>0 ∃ rφ1 ,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=',rφk>0 ∀ rθ1 ,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=',rθℓ>0 opt � fπ,p fφ,rφ fθ,rθ � = opt (fθ,rθ) (2) (c) We propose p, rφ, rθ appearing in the above two facts as a witness candidate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' We verify that the proposed candidate is indeed a witness, that is, opt (f) = b (f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Note opt (f) = opt � fπ,p fφ,rφ fθ,rθ � = opt (fθ,rθ) by (2) = b (fθ,rθ) by (1) = b (fπ,p) + b � fφ,rφ � + b (fθ,rθ) since b (fπ,p) = b � fφ,rφ � = 0 = b � fπ,p fφ,rφ fθ,rθ � = b (f) □ 5 Supporting Lemmas for Proof of Theorem 2 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='1 Concerning Irreducible Quadratic Factors with 0 < θ < π 2 Let αi = rieiθi for 1 ≤ i ≤ ℓ 8 αm+i = rie−iθi for 1 ≤ i ≤ ℓ ti = cos θi f = ℓ � i=1 � x2 − 2ritix + r2 i � = ℓ � i=1 (x − αi)(x − αℓ+i) = 2ℓ � i=0 aixi s = b(f) g = xs−1 + bs−2xs−2 + · · · + b1x + b0 ck = coeff(gf, xk) Note that 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' ai = (−1)2ℓ−ie2ℓ−i (α1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' , α2ℓ) where ek (α1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' , α2ℓ) is the elementary symmetric polynomial of degree k in the roots α1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' , α2ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' When ℓ = 0, we define e0 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' ti > 0 since 0 < θi < π 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' Lemma 10 ∀ ℓ≥0 ∀ π 2 >θ1≥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='≥θℓ>0 ∃ rθ1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=',rθℓ>0 opt (fθ,rθ) = b (fθ,rθ) Proof: We need to prove the following claim for every ℓ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=' ∀ π 2 >θ1≥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='≥θℓ>0 ∃ rθ1 ,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=',rθℓ>0 opt (fθ,rθ) = s By Lemma 11, it suffices to show ∀ π 2 >θ1≥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='≥θℓ>0 ∃ rθ1 ,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQfe_hY/content/2301.00331v1.pdf'} +page_content=',rθℓ>0 ∀ g∈R[x] deg(g)=s−1 ∃ 0≤k≤2ℓ+s−1 ck < 0 ⇐⇒ ∀ 0