diff --git a/.gitattributes b/.gitattributes index f8a9ce3d26f1796e86d4f467cee09c9eeb113e5d..cfb88308da0cbebcb5ca0ab32540429efd239f3a 100644 --- a/.gitattributes +++ b/.gitattributes @@ -2577,3 +2577,59 @@ otFMT4oBgHgl3EQf7TEy/content/2301.12463v1.pdf filter=lfs diff=lfs merge=lfs -tex JdFAT4oBgHgl3EQfvB7v/content/2301.08674v1.pdf filter=lfs diff=lfs merge=lfs -text 6tE5T4oBgHgl3EQfPw5R/content/2301.05507v1.pdf filter=lfs diff=lfs merge=lfs -text otFMT4oBgHgl3EQf7TEy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +F9AzT4oBgHgl3EQfi_2P/content/2301.01509v1.pdf filter=lfs diff=lfs merge=lfs -text +6tE5T4oBgHgl3EQfPw5R/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +YNFOT4oBgHgl3EQf9jQ2/content/2301.12970v1.pdf filter=lfs diff=lfs merge=lfs -text +ztFRT4oBgHgl3EQfkDcP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +IdAzT4oBgHgl3EQfU_z6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +_dAyT4oBgHgl3EQfdvdN/content/2301.00307v1.pdf filter=lfs diff=lfs merge=lfs -text +4NE1T4oBgHgl3EQfSgOT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +KNFJT4oBgHgl3EQfwy3r/content/2301.11632v1.pdf filter=lfs diff=lfs merge=lfs -text +YtAzT4oBgHgl3EQfmv2c/content/2301.01569v1.pdf filter=lfs diff=lfs merge=lfs -text +ntE3T4oBgHgl3EQfjAo0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +stE3T4oBgHgl3EQf9Quo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ztFRT4oBgHgl3EQfkDcP/content/2301.13593v1.pdf filter=lfs diff=lfs merge=lfs -text +JdFAT4oBgHgl3EQfvB7v/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +1dFQT4oBgHgl3EQfEjV1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +KNAyT4oBgHgl3EQf6Ppp/content/2301.00818v1.pdf filter=lfs diff=lfs merge=lfs -text +KNFJT4oBgHgl3EQfwy3r/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +vNAzT4oBgHgl3EQfdPyu/content/2301.01418v1.pdf filter=lfs diff=lfs merge=lfs -text +etE3T4oBgHgl3EQffAo5/content/2301.04548v1.pdf filter=lfs diff=lfs merge=lfs -text +atAyT4oBgHgl3EQf9_py/content/2301.00884v1.pdf filter=lfs diff=lfs merge=lfs -text +xtFQT4oBgHgl3EQfAjU_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +x9E4T4oBgHgl3EQfYQwo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +0tE2T4oBgHgl3EQfNAZ6/content/2301.03731v1.pdf filter=lfs diff=lfs merge=lfs -text +XtE2T4oBgHgl3EQfYgfk/content/2301.03856v1.pdf filter=lfs diff=lfs merge=lfs -text +0tE2T4oBgHgl3EQfNAZ6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +HNE3T4oBgHgl3EQfuAs1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +INFJT4oBgHgl3EQfFiwP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +YdE2T4oBgHgl3EQfEQZV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +1dFQT4oBgHgl3EQfEjV1/content/2301.13238v1.pdf filter=lfs diff=lfs merge=lfs -text +i9E4T4oBgHgl3EQfSwzD/content/2301.05002v1.pdf filter=lfs diff=lfs merge=lfs -text +BdAzT4oBgHgl3EQfTfx4/content/2301.01250v1.pdf filter=lfs diff=lfs merge=lfs -text +3dE1T4oBgHgl3EQfAQLV/content/2301.02838v1.pdf filter=lfs diff=lfs merge=lfs -text +HNE3T4oBgHgl3EQfuAs1/content/2301.04680v1.pdf filter=lfs diff=lfs merge=lfs -text +kb_46/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +_dAyT4oBgHgl3EQfRfZA/content/2301.00066v1.pdf filter=lfs diff=lfs merge=lfs -text +1NE0T4oBgHgl3EQfdgAR/content/2301.02376v1.pdf filter=lfs diff=lfs merge=lfs -text +BdAzT4oBgHgl3EQfTfx4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +pNE0T4oBgHgl3EQf9AKq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +dNE2T4oBgHgl3EQfGAZK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +YtAzT4oBgHgl3EQfmv2c/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +kNE3T4oBgHgl3EQfJglg/content/2301.04344v1.pdf filter=lfs diff=lfs merge=lfs -text +YdE1T4oBgHgl3EQfcQQe/content/2301.03181v1.pdf filter=lfs diff=lfs merge=lfs -text +NdFQT4oBgHgl3EQfWTbR/content/2301.13304v1.pdf filter=lfs diff=lfs merge=lfs -text +_dAyT4oBgHgl3EQfRfZA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +HtFIT4oBgHgl3EQfXys9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +YdE1T4oBgHgl3EQfcQQe/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +3dE1T4oBgHgl3EQfAQLV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +M9E4T4oBgHgl3EQf9A55/content/2301.05352v1.pdf filter=lfs diff=lfs merge=lfs -text +_dA0T4oBgHgl3EQfPf96/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ntE3T4oBgHgl3EQfjAo0/content/2301.04584v1.pdf filter=lfs diff=lfs merge=lfs -text +7tE0T4oBgHgl3EQffQCV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +TNFAT4oBgHgl3EQf2R4K/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +S9AzT4oBgHgl3EQfJfsf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +X9FRT4oBgHgl3EQfODd9/content/2301.13512v1.pdf filter=lfs diff=lfs merge=lfs -text +3dE4T4oBgHgl3EQfbAyT/content/2301.05069v1.pdf filter=lfs diff=lfs merge=lfs -text +n9E5T4oBgHgl3EQfjw-t/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +M9E4T4oBgHgl3EQf9A55/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text diff --git a/0tE2T4oBgHgl3EQfNAZ6/content/2301.03731v1.pdf b/0tE2T4oBgHgl3EQfNAZ6/content/2301.03731v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..9333d8360abb7256c1670b3456f71a35df9fd179 --- /dev/null +++ b/0tE2T4oBgHgl3EQfNAZ6/content/2301.03731v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:956c8991803491d00146631264cbeecb0ae4623d5ea5e482084b21cd521d0681 +size 3728778 diff --git a/0tE2T4oBgHgl3EQfNAZ6/vector_store/index.faiss b/0tE2T4oBgHgl3EQfNAZ6/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..e188c9c0dcc97c0e6dea04b538717a7b1213446f --- /dev/null +++ b/0tE2T4oBgHgl3EQfNAZ6/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:59b72a2fd37ad72781f2c49270c5f2384136ca2026da61db52bea1a15c716d5b +size 8454189 diff --git a/0tE2T4oBgHgl3EQfNAZ6/vector_store/index.pkl b/0tE2T4oBgHgl3EQfNAZ6/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..f87357f37d58340357d4ad06f26c3333206e4e7c --- /dev/null +++ b/0tE2T4oBgHgl3EQfNAZ6/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7562496f1e6b033293289ba5b1495c2668f1616413ef8c280692c239b0f21ca5 +size 249671 diff --git a/1NE0T4oBgHgl3EQfdgAR/content/2301.02376v1.pdf b/1NE0T4oBgHgl3EQfdgAR/content/2301.02376v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..67f372a07b286e421ded92c7fc4284e25886d853 --- /dev/null +++ b/1NE0T4oBgHgl3EQfdgAR/content/2301.02376v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6fe1d0176f291a1c898c912d97c9bb2ff87e6af41f06fe5277110f7774e24c46 +size 9737225 diff --git a/1dE1T4oBgHgl3EQfRwNN/content/tmp_files/2301.03056v1.pdf.txt b/1dE1T4oBgHgl3EQfRwNN/content/tmp_files/2301.03056v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..4ab4d58b4429eb11e52f35400e05bcd97a3f4ef8 --- /dev/null +++ b/1dE1T4oBgHgl3EQfRwNN/content/tmp_files/2301.03056v1.pdf.txt @@ -0,0 +1,1743 @@ +The State of Human-centered NLP Technology for Fact-checking +Anubrata Das∗, Houjiang Liu, Venelin Kovatchev and Matthew Lease +aSchool of Information, The University of Texas at Austin, Austin, TX, USA +A R T I C L E I N F O +Keywords: +Natural Language Processing +Misinformation +Disinformation +Explainability +Human-AI Teaming +A B S T R A C T +Misinformation threatens modern society by promoting distrust in science, changing narratives in +public health, heightening social polarization, and disrupting democratic elections and financial +markets, among a myriad of other societal harms. To address this, a growing cadre of professional +fact-checkers and journalists provide high-quality investigations into purported facts. However, +these largely manual efforts have struggled to match the enormous scale of the problem. In +response, a growing body of Natural Language Processing (NLP) technologies have been +proposed for more scalable fact-checking. Despite tremendous growth in such research, however, +practical adoption of NLP technologies for fact-checking still remains in its infancy today. +In this work, we review the capabilities and limitations of the current NLP technologies for +fact-checking. Our particular focus is to further chart the design space for how these technologies +can be harnessed and refined in order to better meet the needs of human fact-checkers. To do +so, we review key aspects of NLP-based fact-checking: task formulation, dataset construction, +modeling, and human-centered strategies, such as explainable models and human-in-the-loop +approaches. Next, we review the efficacy of applying NLP-based fact-checking tools to assist +human fact-checkers. We recommend that future research include collaboration with fact-checker +stakeholders early on in NLP research, as well as incorporation of human-centered design +practices in model development, in order to further guide technology development for human +use and practical adoption. Finally, we advocate for more research on benchmark development +supporting extrinsic evaluation of human-centered fact-checking technologies. +1. Introduction +Misinformation and related issues (disinformation, deceptive news, clickbait, rumours, and information credibility) +increasingly threaten society. While concerns of misinformation existed since the early days of written text (Marcus, +1992), with recent development of social media, the entry barrier for creating and spreading content has never been +lower. Moreover, polarization online drives the spread of misinformation that in turn increases polarization (Cinelli, +Pelicon, Mozetič, Quattrociocchi, Novak and Zollo, 2021a,b; Vicario, Quattrociocchi, Scala and Zollo, 2019). Braking +such a vicious cycle would require addressing the problem of misinformation at its root. +Fields such as journalism (Graves, 2018b; Graves and Amazeen, 2019; Neely-Sardon and Tignor, 2018) and +archival studies (LeBeau, 2017) have extensively studied misinformation, and recent years have seen a significant +growth in fact-checking initiatives to address this problem. Various organizations now focus on fact-checks (e.g., +PolitiFact, Snopes, FactCheck, First Draft, and Full Fact), and organizations such as the International Fact-Checking +Network (IFCN)1 train and provide resources for independent fact-checkers and journalists to further scale expert +fact-checking. +While professional fact-checkers and journalists provide high-quality investigations of purported facts to inform +the public, human effort struggles to match the global Internet scale of the problem. To address this, a growing +body of research has investigated Natural Language Processing (NLP) to fully or partially automate fact-checking +(Guo, Schlichtkrull and Vlachos, 2022; Nakov, Corney, Hasanain, Alam, Elsayed, Barrón-Cedeño, Papotti, Shaar and +Da San Martino, 2021a; Zhou and Zafarani, 2020; Zeng, Abumansour and Zubiaga, 2021; Graves, 2018a). However, +even state-of-the-art NLP technologies still cannot match human capabilities in many areas and remain insufficient +to automate fact-checking in practice. Experts argue (Arnold, 2020; Nakov et al., 2021a) that fact-checking is a +complex process and requires subjective judgement and expertise. While current NLP systems are increasingly better +at addressing simple fact-checking tasks, identifying false claims that are contextual and beyond simple declarative +∗Corresponding author +ORCID(s): 0000-0002-5412-6149 (A. Das); 0000-0003-0983-6202 (H. Liu); 0000-0003-1259-1541 (V. Kovatchev); +0000-0002-0056-2834 (M. Lease) +1https://www.politifact.com/, +https://www.snopes.com/, +https://www.factcheck.org/, +https://firstdraftnews. +org/, https://fullfact.org/, and https://www.poynter.org/ifcn/, respectively. +Anubrata Das et al.: Preprint submitted to Elsevier +Page 1 of 30 +arXiv:2301.03056v1 [cs.CL] 8 Jan 2023 + +The State of Human-centered NLP Technology for Fact-checking +statements remains beyond the reach for fully automated systems (Chen, Sriram, Choi and Durrett, 2022; Fan, Piktus, +Petroni, Wenzek, Saeidi, Vlachos, Bordes and Riedel, 2020). For example, claims buried in conversational systems, +comment threads in social media community, and claims in multimedia contents are particularly challenging for +automated systems. Additionally, most fact-checking practitioners desire NLP tools that are integrated into the existing +fact-checking workflow and reduce latency (Nakov et al., 2021a; Graves, 2018b; Alam, Shaar, Dalvi, Sajjad, Nikolov, +Mubarak, Da San Martino, Abdelali, Durrani, Darwish, Al-Homaid, Zaghouani, Caselli, Danoe, Stolk, Bruntink and +Nakov, 2021b). +In this literature review, we provide the reader with a comprehensive and holistic overview of the current state- +of-the-art challenges and opportunities to more effectively leverage NLP technology in fact-checking. Our objectives +in this work are twofold. First, we cover all aspects of the NLP pipeline for fact checking: +task formulation, dataset +construction, and modeling approaches. Second, we emphasize the human-centered approaches that seek to augment +and accelerate human fact-checking, rather than supplant it. In contrast, prior literature reviews (Zeng et al., 2021; +Guo et al., 2022; Oshikawa, Qian and Wang, 2020) either provide an overview of the existing approaches or capture +the details of only a specific part of the fact-checking pipeline (Kotonya and Toni, 2020a; Hardalov, Arora, Nakov and +Augenstein, 2021; Hanselowski, AvineshP.V., Schiller, Caspelherr, Chaudhuri, Meyer and Gurevych, 2018; Demartini, +Mizzaro and Spina, 2020). +Furthermore, we argue that it is important to extend the review of NLP technologies for fact-checking from +modeling development to the area of Human-Computer Interaction (HCI) because technology design should reflect +user needs so that its development can be better integrated in the real-world use context (Graves, 2018a; Lease, 2020; +Kovatchev, Smith, Lee, Traynor, Aguilera and Devine, 2020; Nakov et al., 2021a; Micallef, Armacost, Memon and +Patil, 2022; Juneja and Mitra, 2022). Specifically, we point the reader towards Section 7 where we propose concrete +directions for future work. +Current challenges are largely due to the relatively early stage of development of the automated fact-checking tech- +nology. Specifically, current studies tend to adopt an intrinsic evaluation of components of the fact-checking pipeline +rather than an end-to-end extrinsic evaluation of the entire fact-checking task. Moreover, component-wise accuracies +may remain below the threshold required for practical adoption. Furthermore, while the research community’s focus +on prediction accuracy has yielded laudable improvements, human factors (e.g., usability, intelligibility, trust) have +garnered far less attention or progress yet are crucial for practical adoption. +Such limitations have implications for future research. First, practical use of NLP technologies for fact-checking +is likely to come from hybrid, human-in-the-loop approaches rather than full automation. Second, as the technology +matures, end-to-end evaluation becomes increasingly important to ensure practical solutions are being developed to +solve the real-world use-case. To this end, new benchmarks that facilitate the extrinsic evaluation of automated fact- +checking applications in practical settings may help drive progress on solutions that can be adopted for use in the wild. +Finally, to craft effective human-in-the-loop systems, more cross-cutting NLP and HCI integration could strengthen +design of fact-checking tools, so that they are accurate, scalable, and usable in practice. Toward this end, it may +be fruitful to collaborate more with stakeholders early on in NLP research and incorporate human-centered design +practices in developing models. +We have written this article with different audiences in mind. For researchers and fact-checkers who are new to +automated fact-checking, this article provides a comprehensive overview of the problem. We discuss the challenges, +the state-of-the-art capabilities, and the opportunities in the field, and we emphasize how machine learning and natural +language processing can be used to combat disinformation. We recommend researchers new to this topic read the +article in its entirety, following the logical structure of sections. Other readers who have more experience in the +field may already be familiar with some of the concepts that we discuss. For them, this paper offers a novel human- +centered perspective of automated fact checking and a discussion on how that perspective can affect system design, +implementation, and evaluation. To facilitate the use of the paper by more experienced readers, we provide a quick +overview of the content covered in each section. +• Section 2 introduces the automated fact-checking pipeline. We provide an overview of the process for human +fact-checkers and for automated solutions. +• Section 3 discusses the task formulation: the goals and formal definitions of different sub-tasks in fact checking. +• Section 4 describes the process of dataset construction, presents the most popular corpora for automated fact +checking, and outlines some limitations of the data. +Anubrata Das et al.: Preprint submitted to Elsevier +Page 2 of 30 + +The State of Human-centered NLP Technology for Fact-checking +Figure 1: Fact-checking pipeline +• Section 5 reviews approaches for automating fact checking. We discuss general NLP capabilities (Section 5.1), +explainable approaches (Section 5.2), and human-in-the-loop (Section 5.3) approaches for fact-checking. +• Section 6 surveys existing tools that apply NLP for fact-checking in a practical, real-world context. We argue +that the human-centered perspective is necessary for the practical adoption of automated solutions. +• Section 7 provides future research directions in the context of human-centered fact checking. We discuss the work +division between human and AI for mixed-initiative fact-checking in Section 7.1. In Section 7.2 we propose a +novel concept for measuring trust and a novel human-centered evaluation of NLP to assist fact-checkers. +• We conclude our literature review with Section 8. +2. Fact-Checking Pipeline +The core idea behind automated fact-checking is enabling AI to reason over available information to determine the +truthfulness of a claim. For successful automation, it is essential first to understand the complex process of journalistic +fact-checking that involves human expertise along with skilled effort towards gathering evidence and synthesizing +the evidence. Additional complexity comes from the need to process heterogeneous sources (e.g., information across +various digital and non-digital sources). Data is also spread across different modalities such as images, videos, tables, +graphs, among others. Moreover, there is a lack of tools that support effective and efficient fact-checking workflows +(Graves, 2018a; Nakov et al., 2021a; Arnold, 2020). +Graves (2017) breaks down the practical fact-checking mechanism for human fact-checkers into multiple steps +such as a) identifying the claims to check, b) tracing false claims, c) consulting experts, and d) sharing the resulting +fact-check. A growing body of AI literature — specifically in NLP — focuses on automating the fact-checking process. +We synthesize several related surveys (Guo et al., 2022; Nakov et al., 2021a; Graves, 2018a; Zeng et al., 2021; +Micallef et al., 2022) and distinguish four typical stages that constitute the automated fact-checking technology pipeline +(illustrated in Figure 1). Note that the pipeline we describe below closely follows the structure of Guo et al. (2022), +though the broader literature is also incorporated within these four stages: +• Claim Detection, Checkworthiness, and Prioritization: Claim detection involves monitoring news and/or +online information for potentially false content to fact-check. One must identify claims that are potentially +falsifiable (e.g., purported facts rather subjective opinions) (Guo et al., 2022; Zeng et al., 2021). Moreover, +because it is impractical to fact-check everything online given limited fact-checking resources (human or +automated), fact checkers must prioritize what to fact-check (Arnold, 2020). NLP researchers have sought to +inform such prioritization by automatically predicting the "checkworthiness" of claims (Nakov et al., 2021a). +Additionally, to avoid repeated work, fact-checkers may consult existing fact-checking databases before judging +the veracity of a new claim (claim matching (Zeng et al., 2021)). We see claim matching as a part of prioritizing +claims, as fact-checkers would prioritize against checking such claims. +• Evidence Retrieval: Once it is clear which claims to fact-check, the next step is to gather relevant, trustworthy +evidence for assessing the claim (Guo et al., 2022; Zeng et al., 2021). +• Veracity Prediction: Given the evidence, it is necessary to assess it to determine the veracity of the claim (Guo +et al., 2022; Zeng et al., 2021). +Anubrata Das et al.: Preprint submitted to Elsevier +Page 3 of 30 + +回田 +β +R.m +Claim detection, +Evidence +Veracity +Checkworthiness, +Explanation +retrieval +prediction +and PrioritizationThe State of Human-centered NLP Technology for Fact-checking +• Explanation: Finally, for human use, one must explain the fact-checking outcome via human-understandable +justification for the model’s determination (Graves, 2018a; Kotonya and Toni, 2020a; Guo et al., 2022). +In the subsequent sections, we discuss each of the tasks above in the context of existing NLP research in automated +fact-checking. Some other steps (for example, detecting propaganda in text, click-bait detection) are also pertinent to +fact-checking but do not directly fit into the stages described above. They are briefly discussed in Section 3.5. +3. Task Formulation for Automated Fact-Checking +Modern Natural Language Processing is largely-data driven. In this article, we distinguish task formulation +(conceptual) vs. dataset construction (implementation activity, given the task definition). That said, the availability +of a suitable dataset or the feasibility of constructing a new dataset can also bear on how tasks are formulated. +3.1. Claim Detection, Checkworthiness, and Prioritization +Fact-checkers and news organizations monitor information sources such as social media (Facebook, Twitter, Reddit, +etc.), political campaigns and speeches, and public addresses from government officials on critical issues (Arnold, +2020; Nakov et al., 2021a). Additional sources include tip-lines on end-to-end encrypted platforms (such as WhatsApp, +Telegram, and Signal) (Kazemi, Garimella, Shahi, Gaffney and Hale, 2021b). The volume of information on various +platforms makes it challenging to efficiently monitor all sources for misinformation. Zeng et al. (2021) define the claim +detection step as identifying, filtering, and prioritizing claims. +To identify claims, social media streams are often monitored for rumors (Guo et al., 2022). A rumour can be +defined as a claim that is unverified and being circulated online (Zubiaga, Aker, Bontcheva, Liakata and Procter, 2018). +Rumours are characterized by the subjectivity of the language and the reach of the content to the users (Qazvinian, +Rosengren, Radev and Mei, 2011). Additionally, metadata related to virality, such as the number of shares (or retweets +and re-posts), likes, or comments are also considered when identifying whether a post is a rumour (Zhang, Cao, Li, +Sheng, Zhong and Shu, 2021a; Gorrell, Kochkina, Liakata, Aker, Zubiaga, Bontcheva and Derczynski, 2019). However, +detecting rumours alone is not sufficient to decide whether a claim needs to be fact-checked. +For each text of interest, the key questions fact-checking systems need to address include: +1. Is there a claim to check? +2. Does the claim contain verifiable information? +3. Is the claim checkworthy? +4. Has a trusted source already fact-checked the claim? +Regarding the first criterion — is there a claim — one might ask whether the claim contains a purported fact or +an opinion (Hassan, Arslan, Li and Tremayne, 2017a). For example, a statement such as “reggae is the most soulful +genre of music” represents personal preference that is not checkable. In contrast, “ won a gold medal in the +Olympics” is checkable by matching to the list of all gold medal winners. +Whether the claim contains verifiable information is more challenging. For example, if a claim can only be verified +by private knowledge or personal experience that is not broadly accessible, then it cannot be checked (Konstantinovskiy, +Price, Babakar and Zubiaga, 2021). For example, if someone claims to have eaten a certain food yesterday, it is probably +impossible to verify beyond their personal testimony. +As this example suggests, the question of whether the claim contains verifiable information depends in large part +on what evidence is available for verification. This, in turn, may not be clear until after evidence retrieval is performed. +In practice fact-checkers may perform some preliminary research, but mostly try to gauge checkworthiness only based +on the claim itself. +In addition, this consideration is only one of many that factors into deciding whether to check a claim. Even a claim +that may appear to be unverifiable may still be of such great public interest that it is worth conducting the fact-check. +Moreover, even if the fact-check is conducted and ultimately indeterminate (i.e., evidence does not exist either to verify +or refute the claim), simply showing that a claim’s veracity cannot be determined may still be a valuable outcome. +A claim is deemed checkworthy if a claim is of significant public interest or has the potential to cause harm (Nakov, +Da San Martino, Elsayed, Barrón-Cedeño, Míguez, Shaar, Alam, Haouari, Hasanain, Babulkov et al., 2021b; Hassan, +Li and Tremayne, 2015). For example, a claim related to the effect of a vaccine on the COVID-19 infection rate is more +relevant to the public interest and hence more checkworthy than a claim about some philosopher’s favorite food. +Anubrata Das et al.: Preprint submitted to Elsevier +Page 4 of 30 + +The State of Human-centered NLP Technology for Fact-checking +Claims, like memes, often appear several times and/or across multiple platforms (in the same form or with +slight modification) (Leskovec, Backstrom and Kleinberg, 2009; Nakov et al., 2021a; Arnold, 2020). Fact-checking +organizations maintain a growing database claims which have already been fact-checked. Thus, detected claims are +compared against databases of already fact-checked claims by trusted organizations (Shaar, Martino, Babulkov and +Nakov, 2020; Shaar, Alam, Da San Martino and Nakov, 2021a). Comparing new claims against such databases helps +to avoid duplicating work on previously fact-checked claims. This step is also known as claim matching (Zeng et al., +2021). +Reports from practitioners argue that if a claim is not checked within the first few hours, a late fact-check +does not have much impact on changing the ongoing misinformation narrative (Nakov et al., 2021a; Arnold, 2020). +Moreover, limited resources for fact-checking make it crucial for organizations to prioritize the claims to be checked +(Borel, 2016). Claims can be prioritized based on their checkworthiness (Nakov, Da San Martino, Barrón-Cedeño, +Zaghouani, Míguez, Alam, Caselli, Kutlu, Strub and Mandl, 2022; Nakov et al., 2021b). Nakov et al. (2022) note that +checkworthiness is determined based on factors such as +1. How urgently a claim needs to be checked? +2. How much harm can a claim cause (Alam et al., 2021b; Alam, Dalvi, Shaar, Durrani, Mubarak, Nikolov, +Da San Martino, Abdelali, Sajjad, Darwish and Nakov, 2021a; Shaar, Hasanain, Hamdan, Ali, Haouari, Nikolov, +Kutlu, Kartal, Alam, Da San Martino, Barrón-Cedeño, Míguez, Beltrán, Elsayed and Nakov, 2021b)? +3. Would the claim require attention from policy makers for addressing the underlying issue? +Note that estimating harms is quite challenging, especially without first having a thorough understanding and measures +of harm caused by misinformationNeumann, De-Arteaga and Fazelpour (2022). +The spread of a claim on social media provides another potential signal for identifying public interest (Arnold, +2020). In the spirit of doing “the greatest good for the greatest number”, viral claims might be prioritized highly because +any false information in them has the potential to negatively impact a large number of people. On the other hand, since +fairness considerations motivate equal protections for all people, we cannot serve only the majority at the expense of +minority groups (Ekstrand, Das, Burke, Diaz et al., 2022; Neumann et al., 2022). Moreover, such minority groups may +be more vulnerable, motivating greater protections, and may be disproportionately impacted by mis/disinformation +(Guo et al., 2022). See Section 3.6 for additional discussion. +3.2. Evidence Retrieval +Some sub-tasks in automated fact-checking can be performed without the presence of explicit evidence. For +example, the linguistic properties of the text can be used to determine whether it is machine-generated (Wang, 2017; +Rashkin, Choi, Jang, Volkova and Choi, 2017). However, assessing assessing claim veracity without evidence is clearly +more challenging (Schuster, Schuster, Shah and Barzilay, 2020). +Provenance of a claim can also signal information quality; known unreliable source or distribution channels are +often repeat offenders in spreading false information2. Such analysis of provenance can be further complicated when +content is systematically propagated by multiple sources (twitter misinformation bots) (Jones, 2019). +It is typically assumed that fact-checking requires gathering of reliable and trustworthy evidence that provides +information to reason about the claim (Graves, 2018a; Li, Gao, Meng, Li, Su, Zhao, Fan and Han, 2016). In some +cases, multiple aspects of a claim needs to be checked. A fact-checker would then decompose such a claim into distinct +questions and gather relevant evidence for the question (Borel, 2016; Chen et al., 2022). From an information retrieval +(IR) perspective, we can conceptualize each of those questions as an “information need” for which the fact-checker must +formulate one or more queries to a search engine (Bendersky, Metzler and Croft, 2012) in order to retrieve necessary +evidence. +Evidence can be found across many modalities, including text, tables, knowledge graphs, images, and videos. +Various metadata can also provide evidence and are sometimes required to assess the claim. Examples include context +needed to disambiguate claim terms, or background of the individual or organization from whom the claim originated. +Retrieving relevant evidence also depends on the following questions (Singh, Das, Li and Lease, 2021): +1. Is there sufficient evidence available related to a claim? +2. Is it accessible or available in the public domain? +3. Is it in a format that can be read and processed? +2https://disinformationindex.org/ +Anubrata Das et al.: Preprint submitted to Elsevier +Page 5 of 30 + +The State of Human-centered NLP Technology for Fact-checking +As noted earlier in Section 3.1, the preceding claim detection task involves assessing whether a claim contains verifiable +information; this depends in part on what evidence exists to be retrieved, which is not actually known until evidence +retrieval is performed. Having now reached this evidence retrieval step, we indeed discover whether sufficient evidence +exists to support or refute the claim. +Additionally, evidence should be trustworthy, reputable (Nguyen, Kharosekar, Lease and Wallace, 2018b; Lease, +2018), and unbiased (Chen, Khashabi, Yin, Callison-Burch and Roth, 2019a). +Once evidence is retrieved, stance detection assesses the degree to which the evidence supports or refutes the +claim (Nguyen, Kharosekar, Krishnan, Krishnan, Tate, Wallace and Lease, 2018a; Ferreira and Vlachos, 2016; Popat, +Mukherjee, Yates and Weikum, 2018). Stance detection is typically formulated as a classification task (or ordinal +regression) over each piece of retrieved evidence. Note that some works formulate stance detection as an independent +task (Hanselowski et al., 2018; Hardalov et al., 2021). +3.3. Veracity Prediction +Given a claim and gathered evidence, veracity prediction involves reasoning over the collected evidence and the +claim. Veracity prediction can be formulated as a binary classification task (i.e., true vs. false) (Popat et al., 2018; +Nakashole and Mitchell, 2014; Potthast, KIESELJ et al., 2018), or as a fine-grained, multi-class task following the +journalistic fact-checking practices (Augenstein, Lioma, Wang, Lima, Hansen, Hansen and Simonsen, 2019; Shu, +Mahudeswaran, Wang, Lee and Liu, 2020; Wang, 2017). In some cases, there may not be enough information available +to determine the veracity of a claim (Thorne, Vlachos, Christodoulopoulos and Mittal, 2018). +Note that fact-checking is potentially a recursive process because retrieved evidence may itself need to be fact- +checked before it can be trusted and acted upon (Graves, 2018a). This is also consistent with broader educational +practices in information literacy3 in which readers are similarly encouraged to evaluate the quality of information +they consume. Such assessment of information reliability can naturally integrate with the veracity prediction task in +factoring in the reliability of the evidence along with its stance (Nguyen et al., 2018b; Guo et al., 2022). +3.4. Explaining Veracity Prediction +While a social media platform might use automated veracity predictions in deciding whether to automatically block +or demote content, the use of fact-checking technology often involves a human-in-the-loop, whether it is a platform +moderator, a journalist, or an end-user. When we consider such human-centered use of fact-checking technologies, +providing an automated veracity prediction without justifying the answer can cause a system to be ignored or distrusted, +or even reinforce mistaken human beliefs in false claims (the “backfire effect” (Lewandowsky, Ecker, Seifert, Schwarz +and Cook, 2012)). Explanations and justifications are especially important given the noticeable drop in performance of +state-of-the-art NLP systems when facing adversarial examples (Kovatchev, Chatterjee, Govindarajan, Chen, Choi, +Chronis, Das, Erk, Lease, Li et al., 2022). Consequently, automated fact-checking systems intended for human- +consumption should seek to explain their veracity predictions in a similar manner to that of existing journalistic +fact-checking practices (Uscinski, 2015). A brief point to make is that much of the explanation research has focused +on explanations for researchers and engineers engaged in system development (types of explanations, methods of +generating them, and evaluation regimens). In contrast,we emphasize here explanations for system users. +Various types of explanations can be provided, such as through +1. evidence attribution +2. explaining the decision-making process for a fact-check +3. summarizing the evidence +4. case-based explanations +Evidence attribution is the process of identifying evidence or a specific aspect of the evidence (such as paragraphs, +sentences, or even tokens of interest) (Thorne et al., 2018; Popat et al., 2018; Shu, Cui, Wang, Lee and Liu, 2019; Lu +and Li, 2020). Furthermore, the relative importance of the evidence can also justify the fact-checking outcome (Nguyen +et al., 2018a). Alternatively, a set of rules or interactions to break down parts of the decision-making process can also +serve as an explanation (Gad-Elrab, Stepanova, Urbani and Weikum, 2019; Nguyen et al., 2018b). Such formulation +focuses more on how the evidence is processed to arrive at a decision. Explaining the veracity can also be formulated +as a summarization problem over the gathered evidence to explain a fact-check (Atanasova, Simonsen, Lioma and +Augenstein, 2020a; Kotonya and Toni, 2020b). Finally, case-based explanations can provide the user with similar, +human-labeled instances (Das, Gupta, Kovatchev, Lease and Li, 2022). +3https://en.wikipedia.org/wiki/Information_literacy +Anubrata Das et al.: Preprint submitted to Elsevier +Page 6 of 30 + +The State of Human-centered NLP Technology for Fact-checking +3.5. Related Tasks +In addition to tasks that are considered central to the automated fact-checking pipeline, some additional tasks bear +mentioning as related and complementary to the fact-checking enterprise. Examples of such tasks include propaganda +detection (Da San Martino, Cresci, Barrón-Cedeño, Yu, Pietro and Nakov, 2020), clickbait detection (Potthast, Köpsel, +Stein and Hagen, 2016), and argument mining (Lawrence and Reed, 2020). Furthermore, some tasks can be formulated +independent of the fact-checking pipeline and utilized later to improve individual fact-checking sub-tasks. For example, +predicting the virality of social media content (Jain, Garg and Jain, 2021) can help improve claim detection and claim +checkworthiness. Similarly, network analysis on fake news propagation (Shao, Ciampaglia, Flammini and Menczer, +2016) can help in analyzing provenance. +With an eye toward building more human-centered AI approaches, there are also some tasks that could be applied +to help automate parts of the fact-checking process. For example, claim detection might be improved via an URL +recommendation engine for content that might need fact-checking (Vo and Lee, 2018). Additionally, fact-checkers +could benefit from a predicted score for claim difficulty (Singh et al., 2021). In terms of evidence retrieval and +veracity prediction, one might generate fact-checking briefs to aid inexpert fact-checkers (Fan et al., 2020). Instead +of summarizing the evidence in general (Section 3.4), one might instead summarize with the specific goal of decision +support (Hsu and Tan, 2021). +3.6. Key Challenges +Most work in automated fact-checking has been done on veracity prediction, and to a lesser extent, on explanation +generation. Recently, we have seen more attention directed towards claim detection and checkworthiness. In contrast, +work on evidence retrieval remains less developed. +Claim Detection Guo et al. (2022) points out several sources of biases in the claim check-worthiness task. Claims +could be of variable interest to different social groups. Additionally, claims that might cause more harm to marginalized +groups compared to the general population may not get enough attention. Ideally, models identifying check-worthiness +need to overcome any possible disparate impact. +Similar concerns appear in the report by Full Fact (Arnold, 2020). One of the criteria for selecting a claim for fact- +checking across several organizations is “Could the claim threaten democratic processes or minority groups?” However, +such criterion may be at odds with the concerns of virality. Fact-checking organizations often monitor virality metrics +to decide which claims to fact-check (Arnold, 2020; Nakov et al., 2021a). Nevertheless, if a false claim is targeted +towards an ethnic minority, such claims may not cross the virality thresholds. +Prioritizing which claims to fact-check requires attention to various demographic traits: content creators, readers, +and subject matter. Claim check-worthiness dataset design can thus benefit from consideration of demographics. +Evidence Retrieval Evidence retrieval has been largely neglected in the automated fact-checking NLP literature. It +is often assumed that evidence is already available, or, coarse-grained evidence is gathered from putting the claims into +a search engine (Popat et al., 2018; Nguyen et al., 2018a). However, Hasanain and Elsayed (2022) show in their study +that search engines optimized for relevance seldom retrieve evidence most useful for veracity prediction. Although +retrieving credible information has been studied thoroughly in IR (Clarke, Rizvi, Smucker, Maistro and Zuccon, +2020a), more work is needed that is focused on retrieving evidence for veracity assessment (Lease, 2018; Clarke, +Rizvi, Smucker, Maistro and Zuccon, 2020b). +Veracity Prediction and Explanation A critical challenge for automated systems is to reason over multiple sources +of evidence while also taking source reputation into account. Additionally, explaining a complex reasoning process is +a non-trivial task. The notion of model explanations itself is polysemous and evolving in general, not to mention in the +context of fact checking. As explainable NLP develops, automated fact-checking tasks also need to evolve and provide +explanations that are accessible to human stakeholders yet faithful to the underlying model. For example, case-based +explanations are mostly unexplored in automated fact-checking, although working systems have been proposed for +propaganda detection (Das et al., 2022). +In many NLP tasks, such as machine translation or natural language inference, the goal is to build fully-automated, +end-to-end solutions. However, in the context of fact-checking, state-of-the-art limitations suggest the need for humans- +in-the-loop for the forseable future. Given this, automated tooling to support human fact-checkers is crucial. However, +Anubrata Das et al.: Preprint submitted to Elsevier +Page 7 of 30 + +The State of Human-centered NLP Technology for Fact-checking +understanding the fact-checker needs and incorporating those needs in the task formulation has been largely absent +from the automated fact-checking literature, with a few notable exceptions (Nakov et al., 2021a; Demartini et al., 2020). +Future research could benefit from greater involvement of fact-checkers in the NLP research process and shifting goals +from complete automation toward human support. +4. Dataset Construction +Corresponding to task formulation (Section 3), our presentation of fact-checking datasets is also organized around +claims, evidence, veracity prediction, and explanation. Note that not all datasets have all of these components. +4.1. Claim detection and claim check-worthiness +Claim detection datasets typically contain claims and their sources (documents, social media streams, transcripts +from political speeches) (Guo et al., 2022). One form of claim detection is identifying rumours on social media, where +datasets are primarily constructed with text from Twitter (Zubiaga et al., 2018; Qazvinian et al., 2011) and Reddit +(Gorrell et al., 2019; Lillie, Middelboe and Derczynski, 2019). Some works provide the claims in the context they +appeared on social media (Zhang et al., 2021a; Ma, Gao, Mitra, Kwon, Jansen, Wong and Cha, 2016). However, +several studies note that most claim detection datasets do not contain enough context. As the discussion of metadata +in Section 3 suggests, broader context might include: social media reach, virality metrics, the origin of a claim, and +relevant user data (i.e., who posted a claim, how influential they are online, etc.) (Arnold, 2020; Nakov et al., 2021a). +Claim check-worthiness datasets (Nakov et al., 2021b; Shaar et al., 2021b; Barrón-Cedeño, Elsayed, Nakov, +Da San Martino, Hasanain, Suwaileh, Haouari, Babulkov, Hamdan, Nikolov et al., 2020; Atanasova, Barrón-Cedeño, +Elsayed, Suwaileh, Zaghouani, Kyuchukov, Da San Martino and Nakov, 2018; Konstantinovskiy et al., 2021; Hassan +et al., 2015) filter claims from a source (similar to claim detection, sources include social media feeds and political +debate transcripts, among others) by annotating claims based on the checkworthiness criteria (mentioned in the section +3.1). Each claim is given a checkworthiness score to obtain a ranked list. Note that claim detection and checkworthiness +datasets may be expert annotated (Hassan et al., 2015) or crowd annotated (Nakov et al., 2021b; Shaar et al., 2021b; +Barrón-Cedeño et al., 2020; Atanasova et al., 2018; Konstantinovskiy et al., 2021)4. +The datasets discussed above do not capture multi-modal datasets, and few do. One such dataset is r/Fakeddit +(Nakamura, Levy and Wang, 2020). This dataset contains images and associated text content from Reddit as claims. +Misinformation can also spread through multi-modal memes, and tasks such as Facebook (now Meta) Hateful Memes +Challenge (Kiela, Firooz, Mohan, Goswami, Singh, Ringshia and Testuggine, 2020) for hate speech suggest what might +be similarly done for misinformation detection. +4.2. Evidence +Early datasets in fact-checking provide metadata with claims as the only form of evidence. Such metadata include +social media post properties, user information, publication date, source information (Wang, 2017; Potthast et al., 2018). +As discussed earlier in Section 3.2, such metadata does not contain the world knowledge necessary to reason about a +complex claim. To address the above limitations, recent datasets consider external evidence (Guo et al., 2022). +Evidence is collected differently depending upon the problem setup. For artificial claims, evidence is often retrieved +from a single source such as Wikipedia articles (Thorne et al., 2018; Jiang, Bordia, Zhong, Dognin, Singh and Bansal, +2020; Schuster, Fisch and Barzilay, 2021). Domain limited evidence for real-world claims is collected from problem- +specific sources, such as academic articles for scientific claims (Kotonya and Toni, 2020b; Wadden, Lin, Lo, Wang, van +Zuylen, Cohan and Hajishirzi, 2020), or specific evidence listed in fact-checking websites (Vlachos and Riedel, 2014; +Hanselowski, Stab, Schulz, Li and Gurevych, 2019). Open-domain evidence for real-world claims is usually collected +from the web via search engines (Popat et al., 2018; Augenstein et al., 2019). +Recently, there has been more work considering evidence beyond free text. Such formats include structured or semi- +structured forms of evidence. Sources include knowledge bases for structured form of evidence (Shi and Weninger, +2016) and semi-structured evidence from semi-structured knowledge bases (Vlachos and Riedel, 2015), tabular data +(Chen et al., 2019a; Gupta, Mehta, Nokhiz and Srikumar, 2020), and tables within a document (Aly, Guo, Schlichtkrull, +Thorne, Vlachos, Christodoulopoulos, Cocarascu and Mittal, 2021). +Additionally, there are some retrieval-specific datasets that aim at retrieving credible information from search +engines (Clarke et al., 2020b). However, such tasks don’t incorporate claim checking as an explicit task. +4Some of these datasets, such as the CheckThat! datasets, are partially crowd and partially expert annotated. +Anubrata Das et al.: Preprint submitted to Elsevier +Page 8 of 30 + +The State of Human-centered NLP Technology for Fact-checking +4.3. Veracity Prediction +Evidence retrieval and veracity prediction datasets are usually constructed jointly. Note, in some cases, evidence +may be absent from the datasets. Veracity prediction datasets usually do not deal with claim detection or claim +checkworthiness tasks separately. Instead, such datasets contain a set of claims that are either artificially constructed +or collected from the internet. +Artificial claims in veracity prediction datasets are often limited in scope and constructed for natural language +reasoning research (Aly et al., 2021; Thorne et al., 2018; Schuster et al., 2021; Jiang et al., 2020; Chen, Wang, Chen, +Zhang, Wang, Li, Zhou and Wang, 2019b). For example, FEVER (Thorne et al., 2018) and HoVer (Jacovi and Goldberg, +2021) obtain claims from Wikipedia pages. Some datasets also implement subject-predicate-object triplets for fact- +checking against knowledge bases (Kim and Choi, 2020; Shi and Weninger, 2016). +Fact-checking websites are popular sources for creating veracity prediction datasets based on real claims. Several +datasets obtain claims from either a single website or collect claims from many such websites and collate them (Wang, +2017; Hanselowski et al., 2018; Augenstein et al., 2019; Vlachos and Riedel, 2014). Note that such claims are inherently +expert annotated. Other sources of claims are social media (Potthast et al., 2018; Shu, Sliva, Wang, Tang and Liu, +2017), news outlets (Horne, Khedr and Adali, 2018; Gruppi, Horne and Adalı, 2021; Nørregaard, Horne and Adalı, +2019), blogs, discussions in QA forums, or similar user-generated publishing platforms (Mihaylova, Nakov, Màrquez, +Barrón-Cedeño, Mohtarami, Karadzhov and Glass, 2018). +Additionally some fact-checking datasets target domain-specific problems such as scientific literature (Wadden +et al., 2020), climate change (Diggelmann, Boyd-Graber, Bulian, Ciaramita and Leippold, 2020), and public health +(Kotonya and Toni, 2020b). Most datasets are monolingual but recent effort have started to incorporate multi-lingual +claims (Gupta and Srikumar, 2021; Barnabò, Siciliano, Castillo, Leonardi, Nakov, Da San Martino and Silvestri, 2022). +Early datasets focus on a binary veracity prediction - true or false (Mihalcea and Strapparava, 2009). Recent datasets +often adopt an ordinal veracity labeling scheme that mimics fact checkering websites (Vlachos and Riedel, 2014; Wang, +2017; Augenstein et al., 2019). However, every fact-checking website has a different scale for veracity, so datasets +that span across multiple websites come with a normalization problem. While some datasets do not normalize the +labels (Augenstein et al., 2019), some normalize them post-hoc (Kotonya and Toni, 2020a; Gupta and Srikumar, 2021; +Hanselowski et al., 2019). +4.4. Explanation +While an explanation is tied to veracity prediction, only a few datasets explicitly address the problem of explainable +veracity prediction (Atanasova et al., 2020a; Kotonya and Toni, 2020b; Alhindi, Petridis and Muresan, 2018). Broadly +in NLP, often parts of the input is highlighted to provide an explanation for the prediction. This form of explanations +is known as extractive rationale (Zaidan, Eisner and Piatko, 2007; Kutlu, McDonnell, Elsayed and Lease, 2020). +Incorporating the idea of the extractive rationale, some datasets include a sentence from the evidence along with +the label (Thorne et al., 2018; Hanselowski et al., 2018; Wadden et al., 2020; Schuster et al., 2021). Although such +datasets do not explicitly define evidence as a form of explanation in such cases, the line between evidence retrieval and +explanation blurs if the evidence is the explanation. However, explanations are different from evidence in a few ways. +Particularly, explanations need to be concise for user consumption, while evidence can be a collection of documents +or long documents. Explanations are user sensitive. Consequently, evidence alone as a form of explanation might have +some inherent assumption about the user that might not be understandable for different groups of users (e.g., experts +vs. non-experts). +4.5. Challenges +Claims Checkworthiness datasets are highly imbalanced, i.e., the number of checkworthy claims are relatively low +compared to non-checkworthy claims (Williams, Rodrigues and Novak, 2020). Datasets are also not generalizable +due to their limited domain-specific context (Guo et al., 2022). Additionally, while existing datasets cover various +languages such as English, Arabic, Spanish, Bulgarian, and Dutch, they are primarily monolingual. +Consequently, +building multilingual checkworthiness predictors is still challenging. Much of the data in check-worthiness datasets is +not originally intended to be used in classification. The criteria used by different organizations when selecting which +claims to check is often subjective and may not generalize outside of the particular organization. +Some annotation practices can result in artifacts in the dataset. For example, artificially constructed false claims, +such as a negation-based false claim in FEVER, can lead to artifacts in models (Schuster et al., 2021). Models do not +generalize well beyond the dataset because they might overfit to the annotation schema (Bansal, Nushi, Kamar, Lasecki, +Anubrata Das et al.: Preprint submitted to Elsevier +Page 9 of 30 + +The State of Human-centered NLP Technology for Fact-checking +Weld and Horvitz, 2019). One way to identify such blind spots is by using adversarial datasets for fact-checking. Such +a setting is incorporated in FEVER 2.0 (Thorne and Vlachos, 2019). +Datasets constructed for research may not always capture how fact-checkers work in practice. This leads to +limitations in the algorithms built on them. For example, interviews with fact-checkers report that they tend to consider +a combination of contents of the posts and associated virality metrics (indicating reach) during fact-checking (Arnold, +2020). However, most fact-checking datasets do not include virality metrics. +Evidence Retrieval Some datasets have been constructed by using a claim verbatim as a query and taking the +top search results as evidence. However, some queries are better than others for retrieving desired information. +Consequently, greater care might be taken in crafting effective queries or otherwise improving evidence retrieval such +that resulting datasets are more likely to contain quality evidence for veracity prediction. Otherwise, poor quality +evidence becomes a bottleneck for the quality of the models trained at the later stages in the fact-checking pipeline +(Singh et al., 2021). +Veracity Prediction A key challenge in veracity prediction datasets is that the labels are not homogeneous across +fact-checking websites and normalizing might introduce noise. +Explanation Some datasets include entire fact-checking articles as evidence and their summaries as the form of +explanation (Atanasova et al., 2020a; Kotonya and Toni, 2020b). In such cases, “explanation” components assume an +already available fact-checking article. Instead, providing abstractive summaries and explaining the reasoning process +over the evidence would be more valuable. +Data Generation Recent years have seen an increasing interest in the use of data generation and data augmentation +for various NLP tasks (Liu, Swayamdipta, Smith and Choi, 2022; Hartvigsen, Gabriel, Palangi, Sap, Ray and Kamar, +2022; Dhole, Gangal, Gehrmann, Gupta, Li, Mahamood, Mahendiran, Mille, Srivastava, Tan et al., 2021; Kovatchev, +Smith, Lee and Devine, 2021). The use of synthetic data has not been extensively explored in the context of fact- +checking. +5. Automating Fact-checking +NLP research in automated fact-checking has primarily focused on building models for different automated fact- +checking tasks utilizing existing datasets. In the following section, we highlight the broad modeling strategies employed +in the literature, with more detailed discussion related to explainable methods for automated fact-checking. +5.1. General NLP Capabilities +Claim Detection and Checkworthiness While claim detection is usually implemented as a classification task only, +claim checkworthiness is typically implemented both as ranking (Nakov et al., 2021a) and classification task (Zeng +et al., 2021). As discussed earlier in the task formulation Section (3.1), the broad task of claim detection can be +broken down into sub-tasks of identifying claims, filtering duplicate claims, and prioritizing claims based on their +checkworthiness. Another instance of identifying claims is detecting rumors in social media streams. +Some early works in rumor detection focus on feature engineering from available metadata the text itself (Enayet +and El-Beltagy, 2017; Aker, Derczynski and Bontcheva, 2017; Zhou, Jain, Phoha and Zafarani, 2020). More advanced +methods for claim detection involve LSTM and other sequence models (Kochkina, Liakata and Augenstein, 2017). +Such models are better at capturing the context of the text (Zubiaga, Liakata, Procter, Wong Sak Hoi and Tolmie, +2016). Tree-LSTM (Ma, Gao and Wong, 2018) and Hierarchical attention networks (Guo, Cao, Zhang, Guo and Li, +2018) capture the internal structure of the claim or the context in which the claim appears. Additionally, graph neural +network approaches can capture the related social media activities along with the text (Monti, Frasca, Eynard, Mannion +and Bronstein, 2019). +Similarly, early works in claim-checkworthiness utilize support vector machines using textual features and rank +the claims in terms of their priorities (Hassan et al., 2017a). For example, Konstantinovskiy et al. (2021) build a +classification model for checkworthiness by collapsing the labels to checkable vs. non-checkable claim. They build +a logistic regression model that uses word embeddings along with syntax based features (parts of speech tags, and +named entities). Neural methods such as LSTM performed well in earlier checkworthiness shared tasks (Elsayed, +Nakov, Barrón-Cedeño, Hasanain, Suwaileh, Da San Martino and Atanasova, 2019). Additionally, Atanasova, Nakov, +Anubrata Das et al.: Preprint submitted to Elsevier +Page 10 of 30 + +The State of Human-centered NLP Technology for Fact-checking +Màrquez, Barrón-Cedeño, Karadzhov, Mihaylova, Mohtarami and Glass (2019b) show that capturing context helps +with the checkworthiness task as well. Models such as RoBERTa obtained higher performance in the later edition of the +CheckThat! shared task (Williams et al., 2020; Martinez-Rico, Martinez-Romo and Araujo, 2021) for English language +claims. Fine-tuning such models for claim detection tasks has become more prevalent for claim checkworthiness in +other languages as well (Hasanain and Elsayed, 2020; Williams et al., 2020). +Filtering previously fact-checked claims is a relatively new task in this domain. Shaar et al. (2020) propose an +approach using BERT and BM-25 to match claims against fact-checking databases for matching claims with existing +databases. Additionally, fine-tuning RoBERTa on various fact-checking datasets resulted in high performance for +identifying duplicate claims (Bouziane, Perrin, Cluzeau, Mardas and Sadeq, 2020). Furthermore, a combination of +pretrained model Sentence-BERT and re-ranking with LambdaMART performed well for detecting previously fact- +checked claims (Nakov et al., 2021b). +Evidence Retrieval and Veracity Prediction Evidence retrieval and veracity prediction in the pipeline can be +modeled sequentially or jointly. Similar to claim detection and checkworthiness models, early works use stylistic +features and metadata to arrive at veracity prediction without external evidence (Wang, 2017; Rashkin et al., 2017). +Models that include evidence retrieval often use commercial search APIs or some retrieval approach such as TF-IDF, +and BM25 (Thorne et al., 2018). Similar to question-answering models, some works adopt a two-step approach. First +a simpler model (TF-IDF or BM-25) is used at scale and then a more complex model is used for re-ranking after the +initial pruning (Thorne et al., 2018; Nie, Wang and Bansal, 2019; Hanselowski et al., 2019). Additionally, document vs. +passage retrieval, or 2-stage “telescoping” approaches, are adopted where the first stage is retrieving related documents +and the second stage is to retrieve the relevant passage. Two stage approaches are useful for scaling up applications +as the first stage is more efficient than the second stage. For domain specific evidence retrieval, using domain-bound +word embeddings has been shown to be effective (Zeng et al., 2021). +The IR task is not always a part of the process. Instead, it is often assumed that reliable evidence is already available. +While this simplifies the fact-checking task so that researchers can focus on veracity prediction, in practice evidence +retrieval is necessary and cannot be ignored. Moreover, in practice one must contend with noisy (non-relevant), low +quality, and biased search results during inference. +As discussed earlier in Section 3.3, assessing the reliability of gathered evidence may be necessary. If the evidence is +assumed to be trustworthy, then it suffices to detect the stance of each piece of evidence and then aggregate (somehow) +to induce veracity (e.g., perhaps assuming all evidence is equally important and trustworthy). However, often one +must contend with evidence “in the wild” of questionable reliability, in which case assessing the quality (and bias) of +evidence is an important precursor to using it in veracity prediction. +Veracity prediction utilizes textual entailment for inferring veracity over either a single document as evidence +or over multiple documents. Dagan, Dolan, Magnini and Roth (2010) define textual entailment as “deciding, given +two text fragments, whether the meaning of one text is entailed (can be inferred) from another text.” Real-world +applications often require reasoning over multiple documents (Augenstein et al., 2019; Kotonya and Toni, 2020b; +Schuster et al., 2021). Reasoning over multiple documents can be done either by concatenation (Nie et al., 2019) or +weighted aggregation (Nguyen et al., 2018b). Weighted aggregation virtually re-ranks the evidence considered to filter +out the unreliable evidence (Ma, Gao, Joty and Wong, 2019; Pradeep, Ma, Nogueira and Lin, 2021). Some approaches +also use Knowledge Bases as the central repository of all evidence (Shi and Weninger, 2016). However, evidence is +only limited to what is available in the knowledge base (Guo et al., 2022; Zeng et al., 2021). Moreover, a fundamental +limitation of knowledge bases is that not all knowledge fits easily into structured relations. +Recent developments in large language models help extend the knowledge base approach. Fact-checking models +can rely on pretrained models to provide evidence for veracity prediction (Lee, Li, Wang, Yih, Ma and Khabsa, 2020). +However, this approach can encode biases present in the language model (Lee, Bang, Madotto and Fung, 2021). +An alternative approach is to help fact-checkers with downstream tasks by processing evidence. An example of +such work is generating summaries over available evidence using BERT (Fan et al., 2020). +Limitations With the recent development of large, pre-trained language models and deep learning for NLP, we see +a significant improvement across the fact-checking pipeline. With the introduction of FEVER (Thorne et al., 2018; +Thorne, Vlachos, Cocarascu, Christodoulopoulos and Mittal, 2019; Aly et al., 2021) and CheckThat! (Nakov et al., +2021b) we have benchmarks for both artificial and real-life claim detection and verification models. However, even +the state-of-the-art NLP models perform poorly on the benchmarks above. For example, the best performing model on +Anubrata Das et al.: Preprint submitted to Elsevier +Page 11 of 30 + +The State of Human-centered NLP Technology for Fact-checking +FEVER 2018 shared task (Thorne et al., 2018) reports an accuracy of 0.675. Models perform worse on multi-modal +shared task FEVEROUS (Aly et al., 2021): the best performing model reports 0.56 accuracy score6. Similarly, the best +checkworthiness model only achieved an average precision of 0.65 for Arabic claims and 0.224 for English claims in +the CheckThat! 2021 shared task for identifying checkworthiness in tweets (Nakov et al., 2021b). On the other hand, +the best performing model for identifying check-worthy claims in debates reports 0.42 average precision. Surprisingly, +Barrón-Cedeño et al. (2020), the top performing model for checkworthiness detection, report an average precision of +0.806 (Williams et al., 2020). . For the fact-checking task of CheckThat! 2021 (Nakov et al., 2021b), the best performing +model reports a 0.83 macro F1 score. However, the second-best model only reports a 0.50 F1 score. Given this striking +gap in performance between the top system vs. others, it would be valuable for future work to benchmark systems on +additional datasets in order to better assess the generality of these findings. +It is not easy to make a direct comparison between different methods that are evaluated in different settings and +with different datasets (Zeng et al., 2021). Moreover, the pipeline design of automated fact-checking creates potential +bottlenecks, e.g., performance on the veracity prediction task on most datasets is dependent on the claim detection task +performance or the quality of the evidence retrieved. Extensive benchmarks are required to incorporate all of the prior +subtasks in the fact-checking pipeline systematically (Zeng et al., 2021). +Much of AI research is faced with a fundamental trade-off between working with diverse formulations of a problem +and standardized benchmarks for measuring progress. This trade-off also impacts automated fact-checking research. +While there exist benchmarks such as FEVER and the CheckThat!, most models built on those benchmarks may +not generalize well in a practical setting. Abstract and tractable formulations of a problem may help us develop +technologies that facilitate practical adoption. However, practical adoption requires significant engineering effort +beyond the research setting. Ideally, we would like to see automated fact-checking research continue to move toward +increasingly realistic benchmarks while incorporating diverse formulations of the problem. +5.2. Explainable Approaches +Although the terms interpretability and explainability are often used interchangeably, and some times defined to be +so (Molnar, 2020), we distinguish interpretability vs. explainability similar to (Kotonya and Toni, 2020a). Specifically, +interpretability represents methods that provide direct insight into an AI system’s components (such as features and +variables), often requiring some understanding of the specific to the algorithm, and often built for expert use cases +such as model debugging. Explainability represents methods to understand an AI model without referring to the actual +component of the systems. Note that, in the task formulation section, we have also talked about explaining veracity +prediction. The goal of such explanation stems from fact-checker needs to help readers understand the fact-checking +verdict. Therefore, explaining veracity prediction aligns more closely with explainability over interpretability. When +the distinction between explainability vs. interpretability does not matter, we follow Vaughan and Wallach (2020) in +adopting intelligibility (Vaughan and Wallach, 2020) as an umbrella term for both concepts. +Sokol and Flach (2019) propose a desiderata for designing user experience for machine learning applications. +Kotonya and Toni (2020a) extend them in the context of fact-checking and suggest eight properties of intelligibility: +actionable, causal, coherent, context-full, interactive, unbiased or impartial, parsimonious, and chronological. +Additionally, there are three dimensions specifically for explainable methods in NLP (Jacovi and Goldberg, 2020): +1. Readability: are explanations clear? +2. Plausibility: are explanations compelling or persuasive? +3. Faithfulness: are explanations faithful to the model’s actual reasoning process? +In comparison with the available intelligibility methods in NLP (Wiegreffe and Marasovic, 2021), only a few +are applied to existing fact-checking works. Below, we highlight only commonly observed explainable fact-checking +methods (also noted by Kotonya and Toni (2020a)). +Attention-based Intelligibility Despite the debate about attention being a reliable intelligibility method (Jain and +Wallace, 2019; Wiegreffe and Pinter, 2019; Serrano and Smith, 2019; Bibal, Cardon, Alfter, Wilkens, Wang, François +and Watrin, 2022), it remains a popular method in existing deep neural network approaches in fact-checking. Attention- +based explanations are provided in various forms: +1. highlighting tokens in articles (Popat et al., 2018) +5https://fever.ai/2018/task.html +6https://fever.ai/task.html +Anubrata Das et al.: Preprint submitted to Elsevier +Page 12 of 30 + +The State of Human-centered NLP Technology for Fact-checking +2. highlighting salient excerpts from evidence utilizing comments related to the post (Shu et al., 2019) +3. n-gram extraction using self-attention (Yang, Pentyala, Mohseni, Du, Yuan, Linder, Ragan, Ji and Hu, 2019) +4. attention from different sources other than the claim text itself, such as the source of tweets, retweet propagation, +and retweeter properties (Lu and Li, 2020) +Rule discovery as explanations Rule mining is a form of explanation prevalent in knowledge base systems (Gad- +Elrab et al., 2019; Ahmadi, Lee, Papotti and Saeed, 2019). These explanations can be more comprehensive, but as noted +in the previous section, not all statements can be fact-checked via knowledge-based methods due to limitations of the +underlying knowledge-base itself. Some approaches provide general purpose rule mining in an attempt to address this +limitation (Ahmadi, Truong, Dao, Ortona and Papotti, 2020). +Summarization as explanations Both extractive and abstractive summaries can provide explanations for fact- +checking. Atanasova et al. (2020a) provides natural language summaries to explain the fact-checking decision. They +explore two different approaches - explanation generation and veracity prediction as separate tasks, and joint training +of the both. Joint training performs worse than single training. Kotonya and Toni (2020b) combine abstractive and +extractive approaches to provide a novel summarization approach. Brand, Roitero, Soprano, Rahimi and Demartini +(2018) show jointly training prediction and explanation generation with encoder-decoder models such as BART (Lewis, +Liu, Goyal, Ghazvininejad, Mohamed, Levy, Stoyanov and Zettlemoyer, 2020) results in explanations that help the +crowd to perform better veracity assessment. +Counterfactuals and adversarial methods Adversarial attacks on opaque models help to identify any blind-spots, +biases and discover data artifacts in models (Ribeiro, Wu, Guestrin and Singh, 2020). Shared task FEVER 2.0 (Thorne +et al., 2019) asked participants to devise methods for generating adversarial claims to identify weaknesses in the fact- +checking methods. Natural language generation models such as GPT-3 can assist in formulating adversarial claims. +More control over the generation can come from manipulating the input to natural language generation methods +and constraining the generated text within original vocabulary (Niewiński, Pszona and Janicka, 2019). Atanasova, +Wright and Augenstein (2020b) generate claims with n-grams inserted into the input text. Thorne and Vlachos (2019) +experiment with several adversarial methods such as rule-based adversary, semantically equivalent adversarial rules +(or SEARS) (Ribeiro, Singh and Guestrin, 2018), negation, and paraphrasing-based adversary. Adversarial attacks +are evaluated based on the potency (correctness) of the example and reduction in system performance. While methods +such as SEARS and paraphrasing hurt the system performance, hand-crafted adversarial examples have higher potency +score. +Interpretable methods (non-BlackBox) Some fact-checking works use a white-box or inherently interpretable +model for fact-checking. Nguyen et al. (2018b,a) utilize a probabilistic graphical model and build an interactive +interpretable model for fact-checking where users are allowed to directly override model decisions. Kotonya, +Spooner, Magazzeni and Toni (2021) propose an interpretable graph neural network for interpretable fact-checking +on FEVEROUS dataset (Aly et al., 2021). +Limitations Intelligible methods in NLP and specifically within fact-checking are still in their infancy. Analysis of +Kotonya and Toni (2020a) shows that most methods do not fulfill the desiderata mentioned earlier in this section. +Specifically, they find that none of the existing models meet the criteria of being actionable, causal, and chronological. +They also highlight that no existing method explicitly analyzes whether explanations are impartial. Some forms +of explanations, such as rule-based triplets, are unbiased as they do not contain sentences or contain fragments of +information (Kotonya and Toni, 2020a). +Some explainable methods address a specific simplified formulation of the task. For example, Kotonya and Toni +(2020b); Atanasova et al. (2020a) both assume that expert-written fact-checking articles already exist. They provide +explanations as summaries of the fact-checking article. However, in practice, a fact-checking system would not have +access to such an article for an unknown claim. +In the case of automated fact-checking, most intelligible methods focus on explaining the outcome rather than +describing the process to arrive at the outcome (Kotonya and Toni, 2020a). Moreover, all of the tasks in the fact- +checking pipeline have not received equal attention for explainable methods. Kotonya and Toni (2020a) also argue +that automatic fact-checking may benefit from explainable methods that provide insight into how outcomes of earlier +sub-task in the fact-checking pipeline impact the outcome of later subtasks. +Anubrata Das et al.: Preprint submitted to Elsevier +Page 13 of 30 + +The State of Human-centered NLP Technology for Fact-checking +Most explainable NLP works evaluate explanation quality instead of explanation utility or faithfulness. Jacovi +and Goldberg (2020) argue for a thorough faithfulness evaluation for explainable models. For example, even though +attention-based explanations may provide quality explanations, they may not necessarily be faithful. Moreover, expla- +nation utility requires separate evaluation by measuring whether explanations improve both i) human understanding +of the model (Hase and Bansal, 2020) and ii) human effectiveness of the downstream task (Nakov et al., 2021a). +Additionally, most intelligible methods establish only one-way communication from the model to humans. Instead, +explanations might improve the model and human performance by establishing a bidirectional feedback loop. +5.3. Human-in-the-loop Approaches +Human-in-the-loop (HITL) approaches can help scale automated solutions while utilizing human intelligence for +complex tasks. There are different ways of applying HITL methods, e.g., delegating sub-tasks to crowd workers +(Demartini, Trushkowsky, Kraska, Franklin and Berkeley, 2013; Demartini, Difallah and Cudré-Mauroux, 2012; +Sarasua, Simperl and Noy, 2012), active learning (Settles, 2009; Zhang, Lease and Wallace, 2017), interactive machine +learning (Amershi, Cakmak, Knox and Kulesza, 2014; Joachims and Radlinski, 2007), and decision support systems +where humans make the final decision based on model outcome and explanations (Zanzotto, 2019). +While HITL approaches in artificial intelligence are prevalent, only a few recent works employ such approaches +in fact-checking. HITL approaches are predominantly more present in the veracity prediction task than other parts of +the pipeline. For example, Demartini et al. (2020) propose a HITL framework for combating online misinformation. +However, they only consider hybrid approaches for two sub-tasks in the fact-checking pipeline: a) claim check- +worthiness and b) truthfulness judgment (same as veracity prediction). Below, we discuss the existing HITL approaches +by how the system leverages human effort for each sub-task in the fact-checking pipeline. +Claim Detection, Checkworthiness, and Prioritization Social media streams are often monitored for rumors as +a part of the claim detection task (Guo et al., 2022). Farinneya, Abdollah Pour, Hamidian and Diab (2021) apply an +active learning-based approach at the claim detection stage for identifying rumors on social media. In-domain data is +crucial for traditional supervised methods to perform well for rumor detection (Ahsan, Kumari and Sharma, 2019), but +in real-world scenarios, sufficient in-domain labeled data may not be available in the early stages of development. A +semi-supervised approach such as active learning is beneficial for achieving high performance with fewer data points. +Empirical results shows that Tweet-BERT, along with the least confidence-based sample selection approach, performs +on par with supervised approaches using far less labeled data (Farinneya et al., 2021). +Similarly, Tschiatschek, Singla, Gomez Rodriguez, Merchant and Krause (2018) propose a HITL approach that +aims to automatically aggregate user flags and recommend a small subset of the flagged content for expert fact-checking. +Their Bayesian inference-based approach jointly learns to detect fake news and identify the accuracy of user flags over +time. One strength of this approach is that the algorithm improves over time in identifying users’ flagging accuracy. +Consequently, over time this algorithm’s performance improves. This approach is also robust against spammers. By +running the model on publicly available Facebook data where a majority of the users are adversarial, experiments show +that their algorithm still performs well. +Duke’s Tech & Check team implemented HITL at the claim check-worthiness layer (Adair and Stencel, 2020). To +avoid flagging false check-worthy claims, a human expert would sort claims detected by ClaimBuster (Hassan, Zhang, +Arslan, Caraballo, Jimenez, Gawsane, Hasan, Joseph, Kulkarni, Nayak et al., 2017b), filter out the ones deemed more +important for fact-checkers, and email them to several organizations. In essence, this approach helped fact-checkers +prioritize the claims to check through an additional level of filtering. Currently, several published fact-checks on +PolitiFact were first alerted by the emails from Tech & Check. +Note that the CheckThat! (Nakov et al., 2021b; Shaar et al., 2021b; Barrón-Cedeño et al., 2020; Atanasova, Nakov, +Karadzhov, Mohtarami and Da San Martino, 2019a) is a popular shared task for claim detection, check-worthiness, and +prioritization tasks. However such shared tasks often have no submissions that employs HITL methodologies. Shared +tasks for HITL approaches could encourage more solutions that can complement the limitations of model-only based +approaches. +Evidence Retrieval and Veracity Prediction Most work in HITL fact-checking caters to veracity prediction, and +only a few consider evidence retrieval as a separate task. While there is a body of literature on HITL approaches in +information retrieval (Chen and Jain, 2013; Demartini, 2015), we know of no work in that direction for fact-checking. +Anubrata Das et al.: Preprint submitted to Elsevier +Page 14 of 30 + +The State of Human-centered NLP Technology for Fact-checking +Shabani, Charlesworth, Sokhn and Schuldt (2021) leverage HITL approaches for providing feedback about claim +source, author, message, and spelling (SAMS). Annotators answer four yes/no questions about whether the article has +a source, an author, a clear and unbiased message, and any spelling mistake. Furthermore, this work integrates the +features provided by humans in a machine learning pipeline, which resulted in a 7.1% accuracy increase. However, +the evaluation is performed on a small dataset with claims related to Covid-19. It is unclear if this approach would +generalize outside of the domain. Moreover, further human effort can be reduced in this work by automating spell- +check and grammar-check. SAMS could be quite limited in real life situations as most carefully crafted misinformation +often looks like real news. Model generated fake news can successfully fool annotators (Zellers, Holtzman, Rashkin, +Bisk, Farhadi, Roesner and Choi, 2020), and thus SAMS might also fail to flag such fake news. +Qu, Barbera, Roitero, Mizzaro, Spina and Demartini (2021a) and Qu, Roitero, Mizzaro, Spina and Demartini +(2021b) provide an understanding of how human and machine confidence scores can be leveraged to build HITL +approaches for fact-checking. They consider explicit self-reported annotator confidence and compute implicit con- +fidence based on standard deviation among ten crowd workers. Model confidence is obtained from bootstrapping +(Efron and Tibshirani, 1985) ten different versions of the model and then computing standard deviation over the scores +returned by the soft-max layer. Their evaluation shows that explicit crowd and model confidence are poor indicators +of accurate classification decisions. Although the crowd and the model make different mistakes, there is no clear +signal that confidence is related to accuracy. However, they show that implicit crowd confidence can be a useful +signal for identifying when to engage experts to collect labels. A more recent study shows that a politically balanced +crowd of ten is correlated with the average rating of three fact-checkers (Allen, Arechar, Pennycook and Rand, 2020). +Gold, Kovatchev and Zesch (2019) also find that annotations by a crowd of ten correlate with the judgments of three +annotators for textual entailment, which is utilized by veracity prediction models. +A series of studies show that the crowd workers can reliably identify misinformation (Roitero, Soprano, Fan, Spina, +Mizzaro and Demartini, 2020a; Roitero, Soprano, Portelli, Spina, Della Mea, Serra, Mizzaro and Demartini, 2020b; +Soprano, Roitero, La Barbera, Ceolin, Spina, Mizzaro and Demartini, 2021). Furthermore, Roitero et al. (2020b) show +that crowd workers not only can identify false claims but also can retrieve proper evidence to justify their annotation. +One weakness of this study is that it only asks users to provide one URL as evidence. However, in practice, fact- +checking might need reasoning over multiple sources of information. Although these studies do not propose novel +HITL solutions, they provide sufficient empirical evidence and insights about where crowd workers can be engaged +reliably in the fact-checking pipeline. +Nguyen et al. (2018b) propose joint modeling of crowd annotations and machine learning to detect the veracity of +textual claims. The key strength of the model is that it assumes all annotators can make mistakes, which is a possibility +as fact-checking is a difficult task. Another strength is that this model allows users to import their knowledge into the +system. Moreover, this HITL approach can collect on-demand stance labels from the crowd and incorporate them in +veracity prediction. Empirical evaluation shows that this approach achieves strong predictive performance. A follow-up +study provides an interactive HITL tool for fact-checking (Nguyen et al., 2018a). +Nguyen, Weidlich, Yin, Zheng, Nguyen and Nguyen (2020) propose a HITL system to minimise user effort and cost. +Users validate algorithmic predictions but do so at a minimal cost by only validating the most-beneficial predictions +for improving the system. This system provides a guided interaction to the users and incrementally gets better as users +engage with it. +It is important to note that research on crowdsourcing veracity judgment is at an early stage. Different factors such +as demographics, political leaning, criteria for determining the expertise of the assessors (Bhuiyan, Zhang, Sehat and +Mitra, 2020), cognitive factors (Kaufman, Haupt and Dow, 2022), and even the rating scale (La Barbera, Roitero, +Demartini, Mizzaro and Spina, 2020) led to different levels of alignment with expert ratings. Bhuiyan et al. (2020) +outline research directions for designing better crowd processes specific to different types of misinformation for the +successful utilization of crowd workers. +Explaining Veracity Prediction HITL systems in fact-checking often use veracity explanations to correct model +errors. As discussed earlier, Nguyen et al. (2018a) provides an interpretable model that allows users to impart their +knowledge when the model is wrong. Empirical evaluation shows that users could impart their knowledge into the +system. Similarly, Zhang, Rudra and Anand (2021b) propose a method that collects user feedback from explanations. +Note that this method explains veracity prediction outcomes based on the evidence retrieved and their stance. Users +provide feedback in terms of stance and relevance of the retrieved evidence. The proposed approach employs lifelong +Anubrata Das et al.: Preprint submitted to Elsevier +Page 15 of 30 + +The State of Human-centered NLP Technology for Fact-checking +learning which enables the system to improve over time. Currently there is no empirical evaluation of this system to +identify the effectiveness of this approach. +Although natural language generation models are getting increasingly better (Radford, Wu, Child, Luan, Amodei, +Sutskever et al., 2019), generating abstractive fact-checking explanations is still in its infancy (Kotonya and Toni, +2020b). HITL methods could be leveraged to write reports justifying fact-checking explanations. +Limitations After reviewing existing HITL approaches across different fact-checking tasks, we also list out several +limitations as follow. First, some HITL approaches adopt several interpretable models to integrate human input, but +the resulting models do not perform as well as the state-of-the-art deep learning models (Nguyen et al., 2018b,a). +Farinneya et al. (2021) apply HITL approaches to scale up rumor detection from a limited amount of annotated data. +Although it performs well to generalize the algorithm for a new topic in a few-shot manner, one of the weaknesses +is that data from other domains or topics causes a high variance in model performance. Consequently, in-domain +model performance might degrade when out-of-domain data is introduced in model training. This issue may hinder the +model’s generalizability in practice, especially where a clear demarcation between topic domains may not be possible. +More importantly, there is a lack of empirical studies on how to apply HITL approaches of fact-checking for +practical adoption. Although HITL approaches provide a mechanism to engage human in the process of modeling +development, several human factors, such as usability, intelligibility, and trust, become important to consider when +applying this method in the real-world use case. Fact-checking is a time-sensitive task and requires expertise to process +complex information over multiple sources (Graves, 2017). Fact-checkers and policy makers are often skeptical about +any automated or semi-autoamted solutions as this type of research requires human creativity and expertise (Arnold, +2020; Micallef et al., 2022). Therefore, more empirical evidence needs to be found to assess the effectiveness of +applying different HITL approaches to automated fact-checking. +6. Existing Tools for Fact-checking +In the previous section, we reviewed the details of current NLP technologies for fact-checking. Subsequently, +we extend our review of automated fact-checking to the HCI literature and discuss existing practices of applying fact- +checking into real-world tools that assist human fact-checkers. In brief, there is a lack of holistic review of fact-checking +tools from a human-centered perspective. Additionally, we found that the articulation of work between human labor and +AI tools is still opaque in this field. Research questions include but are not limited to: 1) how can NLP tools facilitate +human work in different fact-checking tasks? 2) how can we incorporate user needs and leverage human expertise to +inform the design of automated fact-checking? +In this section, we examine current real-world tools that apply NLP technologies in different stages of fact-checking +and clarify the main use cases of these tools. We argue that more research concerning human factors for building +automated fact-checking, such as user research, human-centered design, and usability studies, should be conducted to +improve the practical adoption of automated fact-checking. These studies help us identify the design space of applying +explainable and HITL approaches for real-world NLP technologies. +6.1. Claim Detection and Prioritization +The first step in claim detection is sourcing content to possibly check. On end-to-end encrypted platforms, such +as WhatsApp, Telegram, and Signal, crowdsourcing-based tip-lines play a vital role in identifying suspicious content +that is not otherwise accessible (Kazemi et al., 2021b). As another example, Check from Meedan 7, a tip-line service +tool, also helps fact-checkers monitor fake news for in-house social media. User flagging of suspect content on social +media platforms such as Facebook is also a valuable signal for identifying such content, and crowdsourcing initiatives +like Twitter’s BirdWatch can further help triage and prioritize claims for further investigation. +In the stage of finding and choosing claims to check, fact-checkers assess the fact-checking related quality of a +claim and decide whether to fact-check it (Graves, 2017; Micallef et al., 2022). NLP models in claim detection, claim +matching, and check-worthiness are useful to assist the above decision-making process. However, integrating them +into real-world tools that help fact-checkers prioritize what to check requires more personalized effort. Graves (2018a) +points out that it is important to design the aforementioned models to cater to fact-checker organizational interests, +stakeholder needs, and changing news trends. +7https://meedan.com/check +Anubrata Das et al.: Preprint submitted to Elsevier +Page 16 of 30 + +The State of Human-centered NLP Technology for Fact-checking +As one of the fact-checking qualities of a claim, checkability can be objectively analyzed by whether a claim +contains one or more purported facts that can be verified (Section 3.1). Fact-checkers find it useful to apply models +that identify checkable claims to their existing workflow because the model helps them filter irrelevant content and +claims that are uncheckable when they are choosing claims to check (Arnold, 2020). ClaimBuster, one of the well- +known claim detection tools, is built to find checkable claims from a large scale of text content (Hassan et al., 2017a). +Claim detection can also be integrated into speech recognition tools to spot claims from live speech (Adair, 2020). +Additionally, if a claim has already been fact-checked, fact-checkers can skip it and prioritize claims that have +not been checked. As a relatively new NLP task, claim matching has been integrated into some current off-the-shelf +search engines or fact-checking tools to help fact-checkers find previously fact-checked claims. For example, Google +Fact Check Explorer8 can retrieve previously fact-checked claims by matching similar fact-check content to user input +queries. Similarly, with Meedan’s Check, if users send a tip with fake news that has been previously fact-checked, the +tool further helps fact-checkers retrieve the previous fact-check and send it to users. +Whether or not to fact-check a claim depends on an organization’s goals and interests. Tools built for claim detection +need to take such interests into account. For example, Full Fact developed a claim detection system that classifies +claims into different categories, such as quantity, predictions, correlation or causation, personal experience, and laws +or rules of operations (Konstantinovskiy et al., 2021). The claim categories are designed by their fact-checkers to cater +to their needs of fact-checking UK political news in a live fact-checking situation. Identifying certain claims, such as +quantity, correlation or causation, might be particularly useful for fact-checkers to evaluate the credibility of politician +statements and claims. The system also helps tailor fact-checkers’ downstream tasks, such as fact-check assignments +and automated verification for statistical claims (Nakov et al., 2021a). +Fact-checkers also use social media monitoring tools to find claims to check, such as CrowdTangle, TweetDeck, and +Facebook’s (unnamed) fact-checking tool, but those tools are not very effective to detect checkable claims. Some fact- +checkers reported that only roughly 30% of claims flagged by Facebook’s fact-checking tool were actually checkable +(Arnold, 2020). A low hanging fruit is to integrate claim detection models into these social media monitoring tools so +that it is easier for fact-checkers to identify claims that are both viral and checkable. Additionally, these tools should +enable fact-checkers to locate certain figures, institutions, or agencies according to their fact-checking interests and +stakeholder needs so that these tools can better identify and prioritize truly check-worthy claims. An important question +in implementing those systems is how to measure the virality of a claim and its change over time. +It would also be useful to integrate veracity prediction into previous fact-checking tools because fact-checkers +may pay the most attention to claims9 that are suspect and uncertain (since obviously true or false claims likely do +not require a fact-check). However, information or data points that are used to give such predictions should also be +provided to fact-checkers. If sources, evidence, propagation patterns, or other contextual information that models use +to predict claim veracity can be explained clearly for fact-checkers, they can also triage these indicators to prioritize +claims more holistically. +6.2. Tools for Evidence Retrieval +After finding and prioritizing which claim to check, fact-checkers investigate claims following three main activities: +1) decomposing claims, 2) finding evidence, and 3) tracing the provenance of claims and their spread. Note that these +three activities are intertwined with each other by using different information-seeking tools in the fact-checking process. +Fact-checkers search for evidence by decomposing claims into sub questions. Evidence found while investigating a +claim may further modify or add to the sub-questions (Singh et al., 2021). By iteratively investigating claims via +online search, fact-checkers reconstruct the formation and the spread of a claim to assess its truth (Graves, 2017). In +this section, we discuss the utility of existing information-seeking tools, including off-the-shelf search engines and +domain-specific databases, that assist fact-checkers in each activity. +Claim decomposition is not a specific activity that qualitative researchers have reported or analyzed in their fact- +checking studies, but we can find more details from where fact-checking organizations describe their methodology10 +and how fact-checkers approach complex claims in their fact-checks11. Claim decomposition refers to how fact- +checkers interpret ambiguous terms of a claim and set the fact-checking boundaries to find evidence. Decomposing +8https://toolbox.google.com/factcheck/explorer +9https://www.factcheck.org/our-process/ +10https://leadstories.com/how-we-work.html +11https://www.factcheck.org/2021/10/oecd-data-conflict-with-bidens-educational-attainment-claim/ In this fact- +check, fact-checkers decompose what President Biden mean by “advanced economies” and “young people”. The approach of defining these two +terms directly influence their fact-checking results. +Anubrata Das et al.: Preprint submitted to Elsevier +Page 17 of 30 + +The State of Human-centered NLP Technology for Fact-checking +claims effectively requires sensitive curiosity and news judgments for fact-checkers that are cultivated through years +of practice. Unfortunately, we are not aware of any existing tools that facilitate this process. +Traditional methodology to decompose claims is to ask sub-questions. Recent NLP studies simulate this process +by formulating it as a question-answering task (Fan et al., 2020; Chen et al., 2022). Researchers extract justifications +from existing fact-checks and crowdsource sub-questions to decompose the claim. For automated-fact-checking, this +NLP task might be very beneficial to improve the performance of evidence retrieval by auto-decomposing claims into +smaller checkable queries (Chen et al., 2022). Although it is difficult for NLP to match the abilities of professional +fact-checkers, it might help scale up the traditional, human fact-checking process. It could also help the public, new +fact-checkers, or journalists to more effectively investigate complex claims and search for evidence. +How fact-checkers find evidence is usually a domain-specific reporting process, contacting experts or looking for +specific documents from reliable sources (Graves, 2017; Micallef et al., 2022). Instead of conducting random searches +online, most fact-checkers include a list of reliable sources in which to look for evidence. Tools that are designed for +searching domain datasets can also help fact-checkers to find evidence. For example, Li, Fang, Lou, Li and Zhang +(2021) built an analytical search engine for retrieving the COVID-19 news data and summarizing it in an easy to +digest, tabular format. The system can decompose analytical queries into structured entities and extract quantitative +facts from news data. Furthermore, if evidence retrieval is accurate enough for in-domain datasets, the system can +take a leap further to auto-verify domain-related claims. We provide more detailed use cases of veracity prediction in +Section 6.3. +Fact-checkers mainly use off-the-shelf search engines, such as Google, Bing, etc., to trace a claim’s origin from +publicly accessible documents (Beers, Haughey, Melinda, Arif and Starbird, 2020; Arnold, 2020). Other digital +datasets, such as LexisNexis and InternetArchive, are also useful for fact-checkers to trace claim origin. To capture the +formation and change of a claim, search engines should not only filter unrelated content, but also retrieve both topically +and evidentially relevant content. Hasanain and Elsayed (2021) report that most topically relevant pages retrieved from +Google do not contain evidential information, such as statistics, quotes, entities, or other types of facts. Additionally, +most built-in search engines in social media platforms, such as Twitter and Facebook, only filter “spreadable” content +not “credible” content (Alsmadi, Alazzam and AlRamahi, 2021). +Furthermore, these off-the-shelf search engines do not support multilingual search, so it is difficult for fact-checkers +to trace claims if they are translated from other languages (Graves, 2017; Nakov et al., 2021a). NLP researchers have +started to use multilingual embedding models to represent claim-related text in different languages and match existing +fact-checks (Kazemi, Gaffney, Garimella and Hale, 2021a). This work not only helps fact-checkers find previously +fact-checked claims more easily from other languages, but also to examine how the claim is transformed and reshaped +by the media in different languages and socio-political contexts. +6.3. Domain-specific Tools for Claim Verification +As discussed in Sections 3.2 and 3.3, most verification prediction models are grounded on the collected evidence +and the claim. To build an end-to-end claim verification system, NLP developers need to construct domain-specific +datasets incorporating both claims and evidence. Different from complex claims that contain multiple arguments and +require decomposition, claims that have simple linguistic structure with purported evidence or contain statistical facts +can be automatically verified (Nakov et al., 2021a). +Karagiannis, Saeed, Papotti and Trummer (2020) built CoronaCheck, a search engine that can directly verify Covid- +19 related statistical claims by retrieving official data curated by experts (Dong, Du and Gardner, 2020). Full Fact +(The Poynter Institute, 2021) also took a similar approach to verify statistical macroeconomic claims by retrieving +evidence from UK parliamentary reports and national statistics. Additionally, Wadden et al. (2020) built a scientific +claim verification pipeline by using abstracts that contain evidence to verify a given scientific claim. +However, pitfalls still exist if fact-checkers use these domain-specific verification tools in practice. For example, the +CoronaCheck tool cannot check the claim “The Delta variant causes more death than the Alpha variant” simply because +the database does not contain fine-grained death statistics for Covid variants. Additionally, checking a statistical or +scientific claim might only be a part of the process of checking a more complex claim, which requires fact-checkers +to contextualize the veracity of previous statistical or scientific checks. In general, domain-specific tools are clearly +valuable to use when available, though in practice they are often incomplete and insufficient on their own to check +complex claims. +Anubrata Das et al.: Preprint submitted to Elsevier +Page 18 of 30 + +The State of Human-centered NLP Technology for Fact-checking +7. Discussion +In this review, we have 1) horizontally outlined the research of applying NLP technologies for fact-checking from +the beginning of task formulation to the end of tools adoption; as well as 2) vertically discussing the capabilities and +limitations of NLP for each step of a fact-checking pipeline. We perceive a lack of research that bridges both to assist +fact-checkers. Explainable and HITL approaches leverage both human and computational intelligence from a human- +centered perspective, but there is a need to provide actionable guides to utilize both methods for designing useful +fact-checking tools. In this section, we propose several research directions to explore the design space of applying +NLP technologies to assist fact-checkers. +7.1. Distributing Work between Human and AI for Mixed-initiative Fact-checking +The practice of fact-checking has already become a type of complex and distributed computer-mediated work +(Graves, 2018a). Although Graves (2017) breaks down a traditional journalist fact-checking pipeline into five steps, +the real situation of fact-checking a claim is more complicated (Juneja and Mitra, 2022). Various AI tools are adopted +dynamically and diversely by fact-checkers to complete different fact-checking tasks (Arnold, 2020; Beers et al., 2020; +Micallef et al., 2022). +Researchers and practitioners increasingly believe that future fact-checking should be a mixed-initiative practice +in which humans perform specific tasks while machines take over others (Nguyen et al., 2018a; Lease, 2020; Nakov +et al., 2021a). To embed such hybrid and dynamic human-machine collaborations into existing fact-checking workflow, +the task arrangement between human and AI need to be articulated clearly by understanding the expected outcomes +and criteria for each. Furthermore, designing a mixed-initiative tool for different fact-checking tasks requires a more +fine-grained level of task definition for human and AI (Lease, 2018, 2020). In Section 5.3, we discuss several studies +highlighting the role of humans in the fact-checking workflow, e.g., a) human experts select check-worthy claims from +claim detection tools (Hassan et al., 2017b) and deliver them to fact-checkers, b) ask crowd workers to judge reliable +claims sources (Shabani et al., 2021), or c) flag potential misinformation (Roitero et al., 2020b) to improve veracity +prediction. All of the above human activities are examples of micro-tasks within a mixed-initiative fact-checking +process. +Prior work in crowdsourcing has shown that it is possible to effectively break down the academic research process +and utilize crowd workers to partake in smaller research tasks (Vaish, Davis and Bernstein, 2015; Vaish, Gaikwad, +Kovacs, Veit, Krishna, Arrieta Ibarra, Simoiu, Wilber, Belongie, Goel et al., 2017). Given this evidence, we can +also break down sub-tasks of a traditional fact-checking process into more fine-grained tasks. Therefore, key research +questions include: a) How can we design these micro-tasks to facilitate each sub-task of fact-checking, and b) What +are the appropriate roles for human and AI in different micro-tasks? +To effectively orchestrate human and AI work, researchers need to understand the respective roles of human and AI, +and how they will interact with one another, because it will directly affect whether humans decide to take AI advice +(Cimolino and Graham, 2022). Usually, if AI aims to assist high-stake decision-making tasks, such as recidivism +prediction (Veale, Van Kleek and Binns, 2018) and medical treatments (Cai, Winter, Steiner, Wilcox and Terry, 2019), +considerations of risk and trust will be important factors for people to adopt such AI assistants (Lai, Chen, Liao, +Smith-Renner and Tan, 2021). In the context of fact-checking, if AI directly predicts the verdict of a claim, fact- +checkers may be naturally skeptical about how the AI makes such a prediction (Arnold, 2020). On the other hand, if +AI only helps to filter claims that are uncheckable, such as opinions and personal experience, fact-checkers may be +more willing to use such automation with less concern about how AI achieves it. Deciding whether a claim is true or +false is a high-stake decision-making task for fact-checkers, while filtering uncheckable claims is a less important but +tedious task that fact-checkers want automation to help with. Therefore, the extent of human acceptance of AI varies +according to how humans assess the task assigned to AI, resulting in different human factors, such as trust, transparency, +and fairness. Researchers need to specify or decompose these human factors into different key variables that can be +measured during the model development process. Given a deep understanding of the task relationship between human +and AI, researchers can then ask further research questions on how to apply an explainable approach, or employ a +HITL system vs. automated solutions, to conduct fact-checking. Here we list out several specific research topics that +contain mixed-initiative tasks, including: a) assessing claim difficulty leveraging crowd workers, b) breaking down a +claim into a multi-hop reasoning task and engaging the crowd to find information relevant to the sub-claims, and c) +designing micro-tasks to parse a large number of documents retrieved by web search to identify sources that contain +the evidence needed for veracity prediction. +Anubrata Das et al.: Preprint submitted to Elsevier +Page 19 of 30 + +The State of Human-centered NLP Technology for Fact-checking +7.2. Human-centered Evaluation of NLP Technology for Fact-Checkers +We begin this section by proposing key metrics from human factors for evaluating systems (i.e., what to measure +and how to measure them): accuracy, time, model understanding, and trust (Section 7.2.1). Following this, we further +propose a template for an experimental protocol for human-centered evaluations in fact-checking (Section 7.2.2). +7.2.1. Metrics +Accuracy Most fact-checking user studies assume task accuracy as the primary user goal (Nguyen et al., 2018a; +Mohseni, Yang, Pentyala, Du, Liu, Lupfer, Hu, Ji and Ragan, 2021). Whereas non-expert users (i.e., social media users +or other form of content consumers) might be most interested in the veracity outcome along with justification, fact- +checkers often want to use automation and manual effort interchangeably in their workflow (Arnold, 2020; Nakov et al., +2021a). Thus, we need a more fine-grained approach towards measuring accuracy beyond the final veracity prediction +accuracy. For fine-grained accuracy evaluation, it is also crucial to capture fact-checker accuracy, particularly for the +sub-tasks for which they use the fact-checking tool. +With the assumption that “ground truth” exists for all of the sub-tasks in the fact-checking pipeline, accuracy can +be computed by comparing user answers with the ground truth. Note that measuring sub-task level accuracy is trickier +than end-to-end fact-checking accuracy. Sub-task level accuracy can be captured by conducting separate experiments +for each sub-task. Suppose the point of interest is to understand user performance for detecting claim-checkworthiness. +In that case, we will need to collect additional data specific to the claim-checkworthiness task. +In some cases, it is possible to merge multiple sub-tasks for evaluation purposes. For example, Miranda, Nogueira, +Mendes, Vlachos, Secker, Garrett, Mitchel and Marinho (2019) evaluate the effectiveness of their tool with journalists +by capturing the following two key variables: a) the relevance of retrieved evidence, and b) the accuracy of the predicted +stance. This method provides essential insight into evidence retrieval, stance detection, and the final fact-checking task. +Depending on the tool, the exact detail of this metric will require specific changes according to tool affordances. +Note that both time and accuracy measures need to control for claim properties. For example, if a claim has been +previously fact-checked, it would take less time to fact-check such claims. On the other hand, a new claim that is more +difficult to assess would require more time. +Model Understanding Fact-checkers want to understand the tools they use. For example, Arnold (2020) pointed +out that fact-checkers expressed a need for understanding CrowdTangle’s algorithm for detecting viral content on +various social media platforms. Similarly, Nakov et al. (2021a) observed a need for increased system transparency in +the fact-checking tools used by different organizations. Lease (2018) argues that transparency is equally important for +non-expert users to understand the underlying system and make an informed judgement. Although this is not a key +variable related to user performance, it is important for practical adoption. +To measure understanding, users could be asked to self-report their level of understanding on a Likert-scale. +However, simply asking participants if they understand the algorithm is not a sufficient metric. For example, it does not +indicate whether participants will be able to simulate tool behavior (Hase and Bansal, 2020). We suggest the following +steps for measuring model understanding based on prior work (Cheng, Wang, Zhang, O’Connell, Gray, Harper and +Zhu, 2019). +1. Decision Prediction. To capture users’ holistic understanding of a tool, users could be provided claims and +asked the following: “What label would the tool assign to this claim?” +2. Alternative Prediction. Capturing how changes in the input influence the output can also measure understand- +ing, e.g., by asking users how the tool would assign a label to a claim when input parts are changed. Imagine a +tool that showed the users the evidence it has considered to arrive at a veracity conclusion. Now, if certain pieces +of evidence were swapped, how would that be reflected in the model prediction? +Trust For practical adoption, trust in a fact-checking tool is crucial across all user groups. While model understanding +is often positively correlated with trust, understanding alone may not suffice to establish trust. In this domain, fact- +checkers and journalists may have less trust in algorithmic tools (Arnold, 2020). On the other hand, there is also the risk +of over-trust, or users blindly following model predictions (Nguyen et al., 2018a; Mohseni et al., 2021). To maximize +the tool effectiveness, we would want users to neither dismiss all model predictions out of hand (complete skepticism) +nor blindly follow all model predictions (complete faith). Instead, it is important to calibrate user trust for the most +effective tool usage. We suggest measuring a notion of calibrated trust (Lee and See, 2004): how often users abide by +correct model decisions and override erroneous model decisions. +Anubrata Das et al.: Preprint submitted to Elsevier +Page 20 of 30 + +The State of Human-centered NLP Technology for Fact-checking +Both +Model +User +Neither +User Prediction +Correct +Incorrect +Correct +Incorrect +Model +Prediction +Figure 2: Confusion Matrix for User Predictions vs. Model Predictions with respect to ground truth (gold). We assume +model predictions are provided to the user, who then decides whether to accept or reject the model prediction. The top-left +quadrant (Both) covers cases where users correctly follow model predictions. The top-right quadrant (Model) denotes the +cases where the model is correct but users mistakenly reject the model decisions. The bottom-left quadrant User denotes +the cases where users correctly reject erroneous model predictions. The bottom-right quadrant Neither denotes the cases +where users incorrectly accept erroneous model predictions. Quantifying user vs. model predictions in this manner enables +measurement of calibrated trust: how often users abide by correct model decisions and override erroneous model decisions. +To measure calibrated trust, we imagine a confusion matrix shown in Figure 2. The rows denote correct vs. incorrect +model predictions while the columns denote correct vs. incorrect user predictions. A user who blindly followed all +model predictions would have their behavior entirely captured by the main (primary) diagonal, whereas a user who +skeptically rejected all model predictions would have their behavior captured entirely in the secondary diagonal. The +ideal user’s behavior would be entirely captured in the first column: accepting all correct model predictions and rejecting +all incorrect model predictions. To promote effective human-AI teaming, AI tools should assist their human users in +developing strong calibrated trust to appropriately trust and distrust model predictions as each case merits. +Beyond calibrated trust, one could also measure quantitative trust by adopting methodologies from the human- +machine trust literature (Lee and Moray, 1992). For example, Cheng et al. (2019) adapted prior work into a 7-point +Likert scale. A similar scale can be reused for evaluating trust in a fact-checking tool. For example, we can create five +different Likert-scales to measure the agreement (or disagreement) of users with the following statements: +• I understand the fact-checking tool. +• I can predict how the tool will behave. +• I have faith that the tool would be able to cope with the different fact-checking task. +• I trust the decisions made by the tool. +• I can count on the tool to provide reliable fact-checking decisions. +Additional factors Individual differences among users might result in substantial variation in experimental outcomes. +For example, varying technical literacy (Cheng et al., 2019), any prior knowledge about the claims, and users’ political +leaning (Thornhill, Meeus, Peperkamp and Berendt, 2019) might influence user performance on the task while using +fact-checking tools. Thus it is valuable to capture these factors in study design. For example: +1. Technical Literacy: Users’ familiarity with popular technology tools (e.g, recommendation engines, spam +detectors) and their programming experience (Cheng et al., 2019) as well as familiarity with existing fact- +checking tools. +2. Media Literacy: Users’ familiarity with 1) the fact-checking process, and 2) fact-checks from popular +organizations such as PolitiFact and FactCheck.Org. +3. Demographics: Users’ education level, gender, age, and political leaning. +Quantitative measures alone are not sufficient as they do not capture certain nuances about how effectively a tool +integrates into a fact-checker’s workflow. For example, even if users understand and trust the working principle of a +Anubrata Das et al.: Preprint submitted to Elsevier +Page 21 of 30 + +The State of Human-centered NLP Technology for Fact-checking +tool, it is unclear why they do so. Hence, users might be asked a few open-ended questions at the end of the study to +gather qualitative insights. Such questions could include: +1. Describe your understanding of the tool. Do any specific aspects of its design seem to assist or detract from your +understanding of how it works? +2. Why do you trust or not trust the tool? +3. Would you use this tool beyond this study, and if so, in what capacity? +7.2.2. Experimental Protocol +One strategy to capture the aforementioned metrics is to design a mixed-methods study. Here we outline the +template for such a study. Imagine the goal were to measure the user performance for fact-checking using a new tool +(let’s call it tool A) compared to an existing tool (tool B). Fact-checking tasks in the real world might be influenced by +user priors about the claims being checked. Thus, a within-subject study protocol may be more appropriate to account +for such priors (Shi, Bhattacharya, Das, Lease and Gwizdka, 2022). +1. Pre-task: Users would first be asked to fact-check a set of claims. To do so, first a user would be asked to leverage +a pre-existing tool B at this stage. Tool B can be replaced with different baselines, depending on the particular +use case, ranging from simple web-search by non-expert users to proprietary tools used by fact-checkers and +journalists. Users would be asked to think aloud at this stage. +2. Learning: At this stage users would familiarize themselves with the new tool (tool A). Users would need to +fact-check a different set of claims from the first one. Ground truth would also accessible to the user to form a +prior about what kind of mistakes a tool might make. Claims here would be selected at random to reflect tool +capabilities. Moreover, tool performance metrics would be given to the users as additional information. Users +would be encouraged to ask questions about the tool at this stage. +3. Prediction: Users would now be asked to fact-check the same claims from step-1 above but this time they are +asked to leverage the tool A. Users would be asked to think out loud through this stage. Users could simply guess +the answers and achieve a high accuracy score. Thus, claims selected for stages (1) & (3) would be a balanced +set of claims with an equal distribution of true positive, true negative, false positive, and false negative samples. +This idea is adopted from prior work (Hase and Bansal, 2020). +4. Post-task survey: Users would now be asked to take a small survey for capturing trust, understanding, technical +literacy, media literacy, and demographic information. +5. Post-task interview: Upon completion of these steps, users would be interviewed with open-ended questions to +gather insights about their understanding and trust in the system. +The measures and study protocol could be useful in the context of evaluating any new fact-checking system compared to +an existing system or practices. Specifics might vary depending on the target user group and the tool’s intended purpose. +Above we use the whole fact-checking pipeline to illustrate our experimental protocol. However this technique can be +applied to other sub-tasks of automated fact checking, granted that we have the ground truth of the outcome for that +sub-task. For example, let us assume a new claim detection tool has been proposed that takes claims from a tip-line +(Kazemi et al., 2021b). Currently, fact-checkers use an existing claim-matching algorithm to filter out the already +fact-checked claim. Now, if we replace tool B above with the existing claim-matching algorithm and tool A with the +proposed claim detection tool, we can utilize the protocol mentioned above. In conclusion, one could evaluate how +users perform for claim detection tasks using the new tool compared to the existing ones in terms of their accuracy, +time, understanding, and trust. +While we have proposed an ideal, extensive version of an evaluation protocol for evaluating new fact-checking tools, +note that the actual protocol used in practice could be tailored according to the time required from the participants and +the cost of conducting the experiment. +8. Conclusion +This review highlights the practices and development of the state-of-the-art in using NLP for automated fact- +checking, emphasizing both the advances and the limitations of existing task formulation, dataset construction, and +modeling approaches. We partially discuss existing practices of applying these NLP tasks into real-world tools that +assist human fact-checkers. In recent years we have seen significant progress in automated fact-checking using NLP. +Anubrata Das et al.: Preprint submitted to Elsevier +Page 22 of 30 + +The State of Human-centered NLP Technology for Fact-checking +A broad range of tasks, datasets, and modeling approaches have been introduced in different parts of the fact-checking +pipeline. Moreover, with recent developments in transformers and large language models, the model accuracy has +improved across tasks. However, even state-of-the-art models on existing benchmarks — such as FEVER and CLEF! +— may not yet be ready for practical adoption and deployment. +To address these limitations, we advocate development of hybrid, HITL systems for fact-checking. As a starting +point, we may wish to reorient the goals of existing NLP tasks from full automation towards decision support. In +contrast with fully-automated systems, hybrid systems instead involve humans-in-the-loop and facilitate human-AI +teaming (Bansal et al., 2019; Bansal, Wu, Zhou, Fok, Nushi, Kamar, Ribeiro and Weld, 2021b; Bansal, Nushi, Kamar, +Horvitz and Weld, 2021a). Such use of hybrid systems can help a) scale-up human decision making; b) augment +machine learning capabilities with human accuracy; and c) mitigate unintended consequences from machine errors. +Additionally, we need new benchmarks and evaluation practices that can measure how automated and hybrid systems +can improve downstream human accuracy (Smeros, Castillo and Aberer, 2021; Fan et al., 2020) and efficiency in +fact-checking. +Acknowledgements +This research was supported in part by the Knight Foundation, the Micron Foundation, Wipro, and by Good +Systems12, a UT Austin Grand Challenge to develop responsible AI technologies. The statements made herein are +solely the opinions of the authors and do not reflect the views of the sponsoring agencies. +References +Adair, +B., +2020. +Squash +report +card: +Improvements +during +State +of +the +Union +... +and +how +hu- +mans +will +make +our +AI +smarter +- +Duke +Reporters’ +Lab. +URL: +https://reporterslab.org/ +squash-report-card-improvements-during-state-of-the-union-and-how-humans-will-make-our-ai-smarter/. +Adair, B., Stencel, M., 2020. A lesson in automated journalism: Bring back the humans | nieman journalism lab. https://www.niemanlab.org/ +2020/07/a-lesson-in-automated-journalism-bring-back-the-humans/. (Accessed on 02/08/2022). +Ahmadi, N., Lee, J., Papotti, P., Saeed, M., 2019. Explainable fact checking with probabilistic answer set programming, in: Conference on Truth +and Trust Online. +Ahmadi, N., Truong, T.T.D., Dao, L.H.M., Ortona, S., Papotti, P., 2020. Rulehub: A public corpus of rules for knowledge graphs. Journal of Data +and Information Quality (JDIQ) 12, 1–22. +Ahsan, M., Kumari, M., Sharma, T., 2019. Detection of context-varying rumors on twitter through deep learning. Int. J. Adv. Sci. Technol 128, +45–58. +Aker, A., Derczynski, L., Bontcheva, K., 2017. Simple open stance classification for rumour analysis, in: Proceedings of the International Conference +Recent Advances in Natural Language Processing, RANLP 2017, pp. 31–39. +Alam, F., Dalvi, F., Shaar, S., Durrani, N., Mubarak, H., Nikolov, A., Da San Martino, G., Abdelali, A., Sajjad, H., Darwish, K., Nakov, P., 2021a. +Fighting the covid-19 infodemic in social media: A holistic perspective and a call to arms, in: ICWSM. +Alam, F., Shaar, S., Dalvi, F., Sajjad, H., Nikolov, A., Mubarak, H., Da San Martino, G., Abdelali, A., Durrani, N., Darwish, K., Al-Homaid, A., +Zaghouani, W., Caselli, T., Danoe, G., Stolk, F., Bruntink, B., Nakov, P., 2021b. Fighting the COVID-19 infodemic: Modeling the perspective of +journalists, fact-checkers, social media platforms, policy makers, and the society, in: Findings of the Association for Computational Linguistics: +EMNLP 2021, Association for Computational Linguistics, Punta Cana, Dominican Republic. pp. 611–649. URL: https://aclanthology. +org/2021.findings-emnlp.56, doi:10.18653/v1/2021.findings-emnlp.56. +Alhindi, T., Petridis, S., Muresan, S., 2018. Where is your evidence: Improving fact-checking by justification modeling. +Allen, J., Arechar, A.A., Pennycook, G., Rand, D.G., 2020. +Scaling up fact-checking using the wisdom of crowds. +Preprint at https://doi. +org/10.31234/osf. io/9qdza . +Alsmadi, I., Alazzam, I., AlRamahi, M.A., 2021. An ontological analysis of misinformation in online social networks URL: http://arxiv.org/ +abs/2102.11362, doi:10.48550/arxiv.2102.11362, arXiv:2102.11362. +Aly, R., Guo, Z., Schlichtkrull, M.S., Thorne, J., Vlachos, A., Christodoulopoulos, C., Cocarascu, O., Mittal, A., 2021. Feverous: Fact extraction +and verification over unstructured and structured information, in: Thirty-fifth Conference on Neural Information Processing Systems Datasets +and Benchmarks Track (Round 1). +Amershi, S., Cakmak, M., Knox, W.B., Kulesza, T., 2014. Power to the people: The role of humans in interactive machine learning. Ai Magazine +35, 105–120. +Arnold, P., 2020. The challenges of online fact checking: how technology can (and can’t) help - full fact. https://fullfact.org/blog/2020/ +dec/the-challenges-of-online-fact-checking-how-technology-can-and-cant-help/. (Accessed on 09/11/2021). +Atanasova, P., Barrón-Cedeño, A., Elsayed, T., Suwaileh, R., Zaghouani, W., Kyuchukov, S., Da San Martino, G., Nakov, P., 2018. Overview +of the clef-2018 checkthat! lab on automatic identification and verification of political claims. task 1: Check-worthiness. +arXiv preprint +arXiv:1808.05542 . +12http://goodsystems.utexas.edu/ +Anubrata Das et al.: Preprint submitted to Elsevier +Page 23 of 30 + +The State of Human-centered NLP Technology for Fact-checking +Atanasova, P., Nakov, P., Karadzhov, G., Mohtarami, M., Da San Martino, G., 2019a. +Overview of the clef-2019 checkthat! lab: Automatic +identification and verification of claims. task 1: Check-worthiness. CLEF (Working Notes) 2380. +Atanasova, P., Nakov, P., Màrquez, L., Barrón-Cedeño, A., Karadzhov, G., Mihaylova, T., Mohtarami, M., Glass, J., 2019b. Automatic fact-checking +using context and discourse information. Journal of Data and Information Quality (JDIQ) 11, 1–27. +Atanasova, P., Simonsen, J.G., Lioma, C., Augenstein, I., 2020a. Generating fact checking explanations, in: ACL. +Atanasova, P., Wright, D., Augenstein, I., 2020b. Generating label cohesive and well-formed adversarial claims, in: Proceedings of the 2020 +Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 3168–3177. +Augenstein, I., Lioma, C., Wang, D., Lima, L.C., Hansen, C., Hansen, C., Simonsen, J., 2019. Multifc: A real-world multi-domain dataset for +evidence-based fact checking of claims, in: EMNLP. +Bansal, G., Nushi, B., Kamar, E., Horvitz, E., Weld, D.S., 2021a. Is the most accurate ai the best teammate? optimizing ai for teamwork, in: +Proceedings of the AAAI Conference on Artificial Intelligence, pp. 11405–11414. +Bansal, G., Nushi, B., Kamar, E., Lasecki, W.S., Weld, D.S., Horvitz, E., 2019. Beyond accuracy: The role of mental models in human-ai team +performance, in: Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, pp. 2–11. +Bansal, G., Wu, T., Zhou, J., Fok, R., Nushi, B., Kamar, E., Ribeiro, M.T., Weld, D., 2021b. Does the whole exceed its parts? the effect of ai +explanations on complementary team performance, in: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pp. +1–16. +Barnabò, G., Siciliano, F., Castillo, C., Leonardi, S., Nakov, P., Da San Martino, G., Silvestri, F., 2022. Fbmultilingmisinfo: Challenging large-scale +multilingual benchmark for misinformation detection, in: 2022 International Joint Conference on Neural Networks (IJCNN), IEEE. pp. 1–8. +Barrón-Cedeño, A., Elsayed, T., Nakov, P., Da San Martino, G., Hasanain, M., Suwaileh, R., Haouari, F., Babulkov, N., Hamdan, B., Nikolov, A., +et al., 2020. Overview of checkthat! 2020: Automatic identification and verification of claims in social media, in: International Conference of +the Cross-Language Evaluation Forum for European Languages, Springer. pp. 215–236. +Beers, A., Haughey, Melinda, M., Arif, A., Starbird, K., 2020. +Examining the digital toolsets of journalists reporting on disinformation, in: +Proceedings of Computation + Journalism 2020 (C+J ’20). ACM, New York, NY, USA,., p. 5. URL: https://cpb-us-w2.wpmucdn.com/ +express.northeastern.edu/dist/d/53/files/2020/02/CJ_2020_paper_50.pdf. +Bendersky, M., Metzler, D., Croft, W.B., 2012. Effective query formulation with multiple information sources, in: Proceedings of the fifth ACM +international conference on Web search and data mining, pp. 443–452. +Bhuiyan, M.M., Zhang, A.X., Sehat, C.M., Mitra, T., 2020. Investigating differences in crowdsourced news credibility assessment: Raters, tasks, +and expert criteria. Proceedings of the ACM on Human-Computer Interaction 4, 1–26. +Bibal, A., Cardon, R., Alfter, D., Wilkens, R., Wang, X., François, T., Watrin, P., 2022. Is attention explanation? an introduction to the debate, +in: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for +Computational Linguistics, Dublin, Ireland. pp. 3889–3900. URL: https://aclanthology.org/2022.acl-long.269, doi:10.18653/ +v1/2022.acl-long.269. +Borel, B., 2016. The Chicago guide to fact-checking. University of Chicago Press. +Bouziane, M., Perrin, H., Cluzeau, A., Mardas, J., Sadeq, A., 2020. Team buster. ai at checkthat! 2020 insights and recommendations to improve +fact-checking., in: CLEF (Working Notes). +Brand, E., Roitero, K., Soprano, M., Rahimi, A., Demartini, G., 2018. A neural model to jointly predict and explain truthfulness of statements. +ACM Journal of Data and Information Quality (JDIQ) . +Cai, C.J., Winter, S., Steiner, D., Wilcox, L., Terry, M., 2019. " hello ai": uncovering the onboarding needs of medical practitioners for human-ai +collaborative decision-making. Proceedings of the ACM on Human-computer Interaction 3, 1–24. +Chen, E., Jain, A., 2013. Improving twitter search with real-time human computation. Engineering Blog 8, 2013. +Chen, J., Sriram, A., Choi, E., Durrett, G., 2022. +Generating Literal and Implied Subquestions to Fact-check Complex Claims URL: http: +//arxiv.org/abs/2205.06938, arXiv:2205.06938. +Chen, S., Khashabi, D., Yin, W., Callison-Burch, C., Roth, D., 2019a. Seeing things from a different angle:discovering diverse perspectives about +claims, in: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human +Language Technologies, Volume 1 (Long and Short Papers), Association for Computational Linguistics, Minneapolis, Minnesota. pp. 542–557. +URL: https://aclanthology.org/N19-1053, doi:10.18653/v1/N19-1053. +Chen, W., Wang, H., Chen, J., Zhang, Y., Wang, H., Li, S., Zhou, X., Wang, W.Y., 2019b. Tabfact: A large-scale dataset for table-based fact +verification, in: International Conference on Learning Representations. +Cheng, H.F., Wang, R., Zhang, Z., O’Connell, F., Gray, T., Harper, F.M., Zhu, H., 2019. Explaining decision-making algorithms through ui: +Strategies to help non-expert stakeholders, in: Proceedings of the 2019 chi conference on human factors in computing systems, pp. 1–12. +Cimolino, G., Graham, T.N., 2022. Two heads are better than one: A dimension space for unifying human and artificial intelligence in shared +control, in: CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery, New York, NY, USA. URL: +https://doi.org/10.1145/3491102.3517610, doi:10.1145/3491102.3517610. +Cinelli, M., Pelicon, A., Mozetič, I., Quattrociocchi, W., Novak, P.K., Zollo, F., 2021a. Dynamics of online hate and misinformation. Scientific +reports 11, 1–12. +Cinelli, M., Pelicon, A., Mozetič, I., Quattrociocchi, W., Novak, P.K., Zollo, F., 2021b. Online hate: Behavioural dynamics and relationship with +misinformation. arXiv preprint arXiv:2105.14005 . +Clarke, C.L., Rizvi, S., Smucker, M.D., Maistro, M., Zuccon, G., 2020a. Overview of the trec 2020 health misinformation track, in: TREC. +Clarke, C.L., Rizvi, S., Smucker, M.D., Maistro, M., Zuccon, G., 2020b. Overview of the trec 2020 health misinformation track, in: TREC. +Da San Martino, G., Cresci, S., Barrón-Cedeño, A., Yu, S., Pietro, R.D., Nakov, P., 2020. A survey on computational propaganda detection, in: +IJCAI. +Dagan, I., Dolan, B., Magnini, B., Roth, D., 2010. Recognizing textual entailment: Rational, evaluation and approaches–erratum. Natural Language +Engineering 16, 105–105. +Anubrata Das et al.: Preprint submitted to Elsevier +Page 24 of 30 + +The State of Human-centered NLP Technology for Fact-checking +Das, A., Gupta, C., Kovatchev, V., Lease, M., Li, J.J., 2022. Prototex: Explaining model decisions with prototype tensors, in: Proceedings of the +60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2986–2997. +Demartini, G., 2015. Hybrid human–machine information systems: Challenges and opportunities. Computer Networks 90, 5–13. +Demartini, G., Difallah, D.E., Cudré-Mauroux, P., 2012. Zencrowd: leveraging probabilistic reasoning and crowdsourcing techniques for large-scale +entity linking, in: Proceedings of the 21st international conference on World Wide Web, pp. 469–478. +Demartini, G., Mizzaro, S., Spina, D., 2020. +Human-in-the-loop artificial intelligence for fighting online misinformation: Challenges and +opportunities. The Bulletin of the Technical Committee on Data Engineering 43. +Demartini, G., Trushkowsky, B., Kraska, T., Franklin, M.J., Berkeley, U., 2013. Crowdq: Crowdsourced query understanding., in: CIDR. +Dhole, K.D., Gangal, V., Gehrmann, S., Gupta, A., Li, Z., Mahamood, S., Mahendiran, A., Mille, S., Srivastava, A., Tan, S., et al., 2021. Nl- +augmenter: A framework for task-sensitive natural language augmentation. arXiv preprint arXiv:2112.02721 . +Diggelmann, T., Boyd-Graber, J., Bulian, J., Ciaramita, M., Leippold, M., 2020. Climate-fever: A dataset for verification of real-world climate +claims . +Dong, E., Du, H., Gardner, L., 2020. An interactive web-based dashboard to track covid-19 in real time. The Lancet infectious diseases 20, 533–534. +Efron, B., Tibshirani, R., 1985. The bootstrap method for assessing statistical accuracy. Behaviormetrika 12, 1–35. +Ekstrand, M.D., Das, A., Burke, R., Diaz, F., et al., 2022. Fairness in information access systems. Foundations and Trends® in Information Retrieval +16, 1–177. +Elsayed, T., Nakov, P., Barrón-Cedeño, A., Hasanain, M., Suwaileh, R., Da San Martino, G., Atanasova, P., 2019. Overview of the clef-2019 +checkthat! lab: automatic identification and verification of claims, in: International Conference of the Cross-Language Evaluation Forum for +European Languages, Springer. pp. 301–321. +Enayet, O., El-Beltagy, S.R., 2017. NileTMRG at SemEval-2017 task 8: Determining rumour and veracity support for rumours on Twitter., in: +Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), Association for Computational Linguistics, Vancouver, +Canada. pp. 470–474. URL: https://aclanthology.org/S17-2082, doi:10.18653/v1/S17-2082. +Fan, A., Piktus, A., Petroni, F., Wenzek, G., Saeidi, M., Vlachos, A., Bordes, A., Riedel, S., 2020. Generating fact checking briefs, in: Proceedings +of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, Online. +pp. 7147–7161. URL: https://aclanthology.org/2020.emnlp-main.580, doi:10.18653/v1/2020.emnlp-main.580. +Farinneya, P., Abdollah Pour, M.M., Hamidian, S., Diab, M., 2021. Active learning for rumor identification on social media, in: Findings of the +Association for Computational Linguistics: EMNLP 2021, Association for Computational Linguistics, Punta Cana, Dominican Republic. pp. +4556–4565. URL: https://aclanthology.org/2021.findings-emnlp.387, doi:10.18653/v1/2021.findings-emnlp.387. +Ferreira, W., Vlachos, A., 2016. Emergent: a novel data-set for stance classification, in: NAACL. +Gad-Elrab, M.H., Stepanova, D., Urbani, J., Weikum, G., 2019. Exfakt: A framework for explaining facts over knowledge graphs and text, in: +Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 87–95. +Gold, D., Kovatchev, V., Zesch, T., 2019. Annotating and analyzing the interactions between meaning relations, in: Proceedings of the 13th Linguistic +Annotation Workshop, pp. 26–36. +Gorrell, G., Kochkina, E., Liakata, M., Aker, A., Zubiaga, A., Bontcheva, K., Derczynski, L., 2019. Semeval-2019 task 7: Rumoureval, determining +rumour veracity and support for rumours, in: Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 845–854. +Graves, D., 2018a. Understanding the promise and limits of automated fact-checking . +Graves, L., 2017. Anatomy of a fact check: Objective practice and the contested epistemology of fact checking. Communication, Culture & Critique +10, 518–537. +Graves, L., 2018b. Boundaries not drawn: Mapping the institutional roots of the global fact-checking movement. Journalism Studies 19, 613–631. +Graves, L., Amazeen, M.A., 2019. Fact-checking as idea and practice in journalism, in: Oxford Research Encyclopedia of Communication. +Gruppi, M., Horne, B.D., Adalı, S., 2021. Nela-gt-2020: A large multi-labelled news dataset for the study of misinformation in news articles. arXiv +preprint arXiv:2102.04567 . +Guo, H., Cao, J., Zhang, Y., Guo, J., Li, J., 2018. Rumor detection with hierarchical social attention network, in: Proceedings of the 27th ACM +International Conference on Information and Knowledge Management, pp. 943–951. +Guo, Z., Schlichtkrull, M., Vlachos, A., 2022. +A Survey on Automated Fact-Checking. +Transactions of the Association +for Computational Linguistics 10, 178–206. +URL: https://doi.org/10.1162/tacl_a_00454, doi:10.1162/tacl_a_00454, +arXiv:https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00454/1987018/tacl_a_00454.pdf. +Gupta, A., Srikumar, V., 2021. X-fact: A new benchmark dataset for multilingual fact checking, in: ACL/IJCNLP. +Gupta, V., Mehta, M., Nokhiz, P., Srikumar, V., 2020. +INFOTABS: Inference on tables as semi-structured data, in: Proceedings of the 58th +Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Online. pp. 2309–2324. URL: +https://aclanthology.org/2020.acl-main.210, doi:10.18653/v1/2020.acl-main.210. +Hanselowski, A., AvineshP.V., S., Schiller, B., Caspelherr, F., Chaudhuri, D., Meyer, C.M., Gurevych, I., 2018. A retrospective analysis of the fake +news challenge stance-detection task, in: COLING. +Hanselowski, A., Stab, C., Schulz, C., Li, Z., Gurevych, I., 2019. A richly annotated corpus for different tasks in automated fact-checking, in: +Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL), pp. 493–503. +Hardalov, M., Arora, A., Nakov, P., Augenstein, I., 2021. +A survey on stance detection for mis- and disinformation identification. +ArXiv +abs/2103.00242. +Hartvigsen, T., Gabriel, S., Palangi, H., Sap, M., Ray, D., Kamar, E., 2022. ToxiGen: A large-scale machine-generated dataset for adversarial and +implicit hate speech detection, in: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long +Papers), Association for Computational Linguistics, Dublin, Ireland. pp. 3309–3326. URL: https://aclanthology.org/2022.acl-long. +234, doi:10.18653/v1/2022.acl-long.234. +Hasanain, M., Elsayed, T., 2020. bigir at checkthat! 2020: Multilingual bert for ranking arabic tweets by check-worthiness., in: CLEF (Working +Notes). +Anubrata Das et al.: Preprint submitted to Elsevier +Page 25 of 30 + +The State of Human-centered NLP Technology for Fact-checking +Hasanain, M., Elsayed, T., 2021. Studying effectiveness of Web search for fact checking. Journal of the Association for Information Science and +Technology URL: https://onlinelibrary.wiley.com/doi/full/10.1002/asi.24577https://onlinelibrary.wiley.com/doi/ +abs/10.1002/asi.24577https://asistdl.onlinelibrary.wiley.com/doi/10.1002/asi.24577, doi:10.1002/asi.24577. +Hasanain, M., Elsayed, T., 2022. Studying effectiveness of web search for fact checking. Journal of the Association for Information Science and +Technology 73, 738–751. +Hase, P., Bansal, M., 2020. Evaluating explainable ai: Which algorithmic explanations help users predict model behavior?, in: ACL. +Hassan, N., Arslan, F., Li, C., Tremayne, M., 2017a. Toward automated fact-checking: Detecting check-worthy factual claims by claimbuster, in: +Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1803–1812. +Hassan, N., Li, C., Tremayne, M., 2015. Detecting check-worthy factual claims in presidential debates, in: Proceedings of the 24th acm international +on conference on information and knowledge management, pp. 1835–1838. +Hassan, N., Zhang, G., Arslan, F., Caraballo, J., Jimenez, D., Gawsane, S., Hasan, S., Joseph, M., Kulkarni, A., Nayak, A.K., et al., 2017b. +Claimbuster: The first-ever end-to-end fact-checking system. Proceedings of the VLDB Endowment 10, 1945–1948. +Horne, B.D., Khedr, S., Adali, S., 2018. Sampling the news producers: A large news and feature data set for the study of the complex media +landscape, in: Twelfth International AAAI Conference on Web and Social Media. +Hsu, C.C., Tan, C., 2021. Decision-focused summarization, in: Proceedings of the 2021 Conference on Empirical Methods in Natural Language +Processing, pp. 117–132. +Jacovi, A., Goldberg, Y., 2020. Towards faithfully interpretable NLP systems: How should we define and evaluate faithfulness?, in: Proceedings of +the 58th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Online. pp. 4198–4205. +URL: https://aclanthology.org/2020.acl-main.386, doi:10.18653/v1/2020.acl-main.386. +Jacovi, A., Goldberg, Y., 2021. +Aligning Faithful Interpretations with their Social Attribution. +Transactions of the Associa- +tion for Computational Linguistics 9, 294–310. +URL: https://doi.org/10.1162/tacl_a_00367, doi:10.1162/tacl_a_00367, +arXiv:https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00367/1923972/tacl_a_00367.pdf. +Jain, K., Garg, A., Jain, S., 2021. Reconstructing diffusion model for virality detection in news spread networks, in: Research Anthology on Fake +News, Political Warfare, and Combatting the Spread of Misinformation. IGI Global, pp. 98–111. +Jain, S., Wallace, B.C., 2019. Attention is not explanation, in: Proceedings of the 2019 Conference of the North American Chapter of the Association +for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 3543–3556. +Jiang, Y., Bordia, S., Zhong, Z., Dognin, C., Singh, M., Bansal, M., 2020. Hover: A dataset for many-hop fact extraction and claim verification, in: +Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, pp. 3441–3460. +Joachims, T., Radlinski, F., 2007. Search engines that learn from implicit feedback. Computer 40, 34–40. +Jones, M.O., 2019. +The gulf information war| propaganda, fake news, and fake trends: The weaponization of twitter bots in the gulf crisis. +International journal of communication 13, 27. +Juneja, P., Mitra, T., 2022. Human and technological infrastructures of fact-checking. arXiv preprint arXiv:2205.10894 . +Karagiannis, G., Saeed, M., Papotti, P., Trummer, I., 2020. Scrutinizer: A mixed-initiative approach to large-scale, data-driven claim verification. +Proc. VLDB Endow. 13, 2508–2521. URL: https://doi.org/10.14778/3407790.3407841, doi:10.14778/3407790.3407841. +Kaufman, R.A., Haupt, M.R., Dow, S.P., 2022. Who’s in the crowd matters: Cognitive factors and beliefs predict misinformation assessment +accuracy. Proceedings of the ACM on Human-Computer Interaction 6, 1–18. +Kazemi, A., Gaffney, D., Garimella, K., Hale, S.A., 2021a. Claim matching beyond english to scale global fact-checking. ACL-IJCNLP 2021 +- 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language +Processing, Proceedings of the Conference , 4504–4517URL: http://arxiv.org/abs/2106.00853, doi:10.18653/v1/2021.acl-long. +347, arXiv:2106.00853. +Kazemi, A., Garimella, K., Shahi, G.K., Gaffney, D., Hale, S.A., 2021b. Tiplines to combat misinformation on encrypted platforms: A case study +of the 2019 indian election on whatsapp. ArXiv abs/2106.04726. +Kiela, D., Firooz, H., Mohan, A., Goswami, V., Singh, A., Ringshia, P., Testuggine, D., 2020. +The hateful memes challenge: Detecting +hate speech in multimodal memes, in: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (Eds.), Advances in Neural Infor- +mation Processing Systems, Curran Associates, Inc.. pp. 2611–2624. +URL: https://proceedings.neurips.cc/paper/2020/file/ +1b84c4cee2b8b3d823b30e2d604b1878-Paper.pdf. +Kim, J., Choi, K.S., 2020. +Unsupervised fact checking by counter-weighted positive and negative evidential paths in a knowledge graph, in: +Proceedings of the 28th International Conference on Computational Linguistics, pp. 1677–1686. +Kochkina, E., Liakata, M., Augenstein, I., 2017. Turing at SemEval-2017 task 8: Sequential approach to rumour stance classification with branch- +LSTM, in: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), Association for Computational Linguistics, +Vancouver, Canada. pp. 475–480. URL: https://aclanthology.org/S17-2083, doi:10.18653/v1/S17-2083. +Konstantinovskiy, L., Price, O., Babakar, M., Zubiaga, A., 2021. Toward automated factchecking: Developing an annotation schema and benchmark +for consistent automated claim detection. Digital Threats: Research and Practice 2, 1–16. +Kotonya, N., Spooner, T., Magazzeni, D., Toni, F., 2021. Graph reasoning with context-aware linearization for interpretable fact extraction and +verification, in: Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER), Association for Computational Linguistics, +Dominican Republic. pp. 21–30. URL: https://aclanthology.org/2021.fever-1.3, doi:10.18653/v1/2021.fever-1.3. +Kotonya, N., Toni, F., 2020a. Explainable automated fact-checking: A survey, in: COLING. +Kotonya, N., Toni, F., 2020b. Explainable automated fact-checking for public health claims, in: EMNLP. +Kovatchev, V., Chatterjee, T., Govindarajan, V.S., Chen, J., Choi, E., Chronis, G., Das, A., Erk, K., Lease, M., Li, J.J., et al., 2022. longhorns at +dadc 2022: How many linguists does it take to fool a question answering model? a systematic approach to adversarial attacks., in: Proceedings +of the First Workshop on Dynamic Adversarial Data Collection, pp. 41–52. +Kovatchev, V., Smith, P., Lee, M., Devine, R., 2021. Can vectors read minds better than experts? comparing data augmentation strategies for the +automated scoring of children’s mindreading ability, in: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics +Anubrata Das et al.: Preprint submitted to Elsevier +Page 26 of 30 + +The State of Human-centered NLP Technology for Fact-checking +and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1196–1206. +Kovatchev, V., Smith, P., Lee, M., Traynor, I.G., Aguilera, I.L., Devine, R., 2020. “what is on your mind?” automated scoring of mindreading in +childhood and early adolescence, in: Proceedings of the 28th International Conference on Computational Linguistics, pp. 6217–6228. +Kutlu, M., McDonnell, T., Elsayed, T., Lease, M., 2020. Annotator rationales for labeling tasks in crowdsourcing. Journal of Artificial Intelligence +Research 69, 143–189. +La Barbera, D., Roitero, K., Demartini, G., Mizzaro, S., Spina, D., 2020. Crowdsourcing truthfulness: The impact of judgment scale and assessor +bias. Advances in Information Retrieval 12036, 207. +Lai, V., Chen, C., Liao, Q.V., Smith-Renner, A., Tan, C., 2021. Towards a science of human-ai decision making: A survey of empirical studies. +arXiv preprint arXiv:2112.11471 . +Lawrence, J., Reed, C., 2020. Argument mining: A survey. Computational Linguistics 45, 765–818. +Lease, M., 2018. Fact checking and information retrieval., in: DESIRES, pp. 97–98. +Lease, M., 2020. Designing human-ai partnerships to combat misinfomation . +LeBeau, C., 2017. Entitled to the facts: A fact-checking role for librarians. Reference and User Services Quarterly 57, 76–78. +Lee, J., Moray, N., 1992. Trust, control strategies and allocation of function in human-machine systems. Ergonomics 35, 1243–1270. +Lee, J.D., See, K.A., 2004. Trust in automation: designing for appropriate reliance. Human Factors 46, 50–80. +Lee, N., Bang, Y., Madotto, A., Fung, P., 2021. Towards few-shot fact-checking via perplexity, in: Proceedings of the 2021 Conference of the North +American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics, +Online. pp. 1971–1981. URL: https://aclanthology.org/2021.naacl-main.158, doi:10.18653/v1/2021.naacl-main.158. +Lee, N., Li, B.Z., Wang, S., Yih, W.t., Ma, H., Khabsa, M., 2020. Language models as fact checkers?, in: Proceedings of the Third Workshop on +Fact Extraction and VERification (FEVER), Association for Computational Linguistics, Online. pp. 36–41. URL: https://aclanthology. +org/2020.fever-1.5, doi:10.18653/v1/2020.fever-1.5. +Leskovec, J., Backstrom, L., Kleinberg, J., 2009. Meme-tracking and the dynamics of the news cycle, in: Proceedings of the 15th ACM SIGKDD +international conference on Knowledge discovery and data mining, pp. 497–506. +Lewandowsky, S., Ecker, U.K., Seifert, C.M., Schwarz, N., Cook, J., 2012. Misinformation and its correction: Continued influence and successful +debiasing. Psychological science in the public interest 13, 106–131. +Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., Zettlemoyer, L., 2020. +Bart: Denoising sequence- +to-sequence pre-training for natural language generation, translation, and comprehension, in: Proceedings of the 58th Annual Meeting of the +Association for Computational Linguistics, pp. 7871–7880. +Li, T., Fang, L., Lou, J.G., Li, Z., Zhang, D., 2021. AnaSearch: Extract, Retrieve and Visualize Structured Results from Unstructured Text for +Analytical Queries. WSDM 2021 - Proceedings of the 14th ACM International Conference on Web Search and Data Mining , 906–909URL: +https://doi.org/10.1145/3437963.3441694, doi:10.1145/3437963.3441694. +Li, Y., Gao, J., Meng, C., Li, Q., Su, L., Zhao, B., Fan, W., Han, J., 2016. A survey on truth discovery. ACM Sigkdd Explorations Newsletter 17, +1–16. +Lillie, A.E., Middelboe, E.R., Derczynski, L., 2019. Joint rumour stance and veracity prediction, in: Proceedings of the 22nd Nordic Conference +on Computational Linguistics, pp. 208–221. +Liu, A., Swayamdipta, S., Smith, N.A., Choi, Y., 2022. Wanli: Worker and ai collaboration for natural language inference dataset creation. +Lu, Y.J., Li, C.T., 2020. Gcan: Graph-aware co-attention networks for explainable fake news detection on social media, in: Proceedings of the 58th +Annual Meeting of the Association for Computational Linguistics, pp. 505–514. +Ma, J., Gao, W., Joty, S., Wong, K.F., 2019. Sentence-level evidence embedding for claim verification with hierarchical attention networks, in: +Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Florence, +Italy. pp. 2561–2571. URL: https://aclanthology.org/P19-1244, doi:10.18653/v1/P19-1244. +Ma, J., Gao, W., Mitra, P., Kwon, S., Jansen, B.J., Wong, K.F., Cha, M., 2016. Detecting rumors from microblogs with recurrent neural networks, +in: IJCAI. +Ma, J., Gao, W., Wong, K.F., 2018. Rumor detection on Twitter with tree-structured recursive neural networks, in: Proceedings of the 56th Annual +Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Melbourne, +Australia. pp. 1980–1989. URL: https://aclanthology.org/P18-1184, doi:10.18653/v1/P18-1184. +Marcus, J., 1992. Mesoamerican writing systems: Propaganda, myth, and history in four ancient civilizations. Princeton University Press Princeton. +Martinez-Rico, J., Martinez-Romo, J., Araujo, L., 2021. L.: Nlp&ir@ uned at checkthat! 2021: check-worthiness estimation and fake news detection +using transformer models. Faggioli et al.[33] . +Micallef, N., Armacost, V., Memon, N., Patil, S., 2022. True or False: Studying the Work Practices of Professional Fact-Checkers. Proceedings of +the ACM on Human-Computer Interaction 6, 1–44. URL: https://doi.org/10.1145/3512974, doi:10.1145/3512974. +Mihalcea, R., Strapparava, C., 2009. The lie detector: Explorations in the automatic recognition of deceptive language, in: Proceedings of the +ACL-IJCNLP 2009 Conference Short Papers, Association for Computational Linguistics, Suntec, Singapore. pp. 309–312. +URL: https: +//aclanthology.org/P09-2078. +Mihaylova, T., Nakov, P., Màrquez, L., Barrón-Cedeño, A., Mohtarami, M., Karadzhov, G., Glass, J., 2018. Fact checking in community forums, +in: Thirty-Second AAAI Conference on Artificial Intelligence. +Miranda, S., Nogueira, D., Mendes, A., Vlachos, A., Secker, A., Garrett, R., Mitchel, J., Marinho, Z., 2019. Automated fact checking in the news +room, in: The World Wide Web Conference, pp. 3579–3583. +Mohseni, S., Yang, F., Pentyala, S., Du, M., Liu, Y., Lupfer, N., Hu, X., Ji, S., Ragan, E., 2021. Machine learning explanations to prevent overtrust +in fake news detection, in: Proceedings of the International AAAI Conference on Web and Social Media, pp. 421–431. +Molnar, C., 2020. Interpretable machine learning. Lulu. com. +Monti, F., Frasca, F., Eynard, D., Mannion, D., Bronstein, M.M., 2019. Fake news detection on social media using geometric deep learning. arXiv +preprint arXiv:1902.06673 . +Anubrata Das et al.: Preprint submitted to Elsevier +Page 27 of 30 + +The State of Human-centered NLP Technology for Fact-checking +Nakamura, K., Levy, S., Wang, W.Y., 2020. Fakeddit: A new multimodal benchmark dataset for fine-grained fake news detection, in: Proceedings of +the 12th Language Resources and Evaluation Conference, European Language Resources Association, Marseille, France. pp. 6149–6157. URL: +https://aclanthology.org/2020.lrec-1.755. +Nakashole, N., Mitchell, T., 2014. +Language-aware truth assessment of fact candidates, in: Proceedings of the 52nd Annual Meeting of the +Association for Computational Linguistics (Volume 1: Long Papers), pp. 1009–1019. +Nakov, P., Corney, D., Hasanain, M., Alam, F., Elsayed, T., Barrón-Cedeño, A., Papotti, P., Shaar, S., Da San Martino, G., 2021a. Automated +fact-checking for assisting human fact-checkers, in: IJCAI. +Nakov, P., Da San Martino, G., Barrón-Cedeño, A., Zaghouani, W., Míguez, R., Alam, F., Caselli, T., Kutlu, M., Strub, J.M., Mandl, T., 2022. +Checkthat! lab on fighting the covid-19 infodemic and fake news detection (proposal for a clef-2022 lab). +Nakov, P., Da San Martino, G., Elsayed, T., Barrón-Cedeño, A., Míguez, R., Shaar, S., Alam, F., Haouari, F., Hasanain, M., Babulkov, N., et al., +2021b. The clef-2021 checkthat! lab on detecting check-worthy claims, previously fact-checked claims, and fake news, in: ECIR (2). +Neely-Sardon, A., Tignor, M., 2018. Focus on the facts: A news and information literacy instructional program. The Reference Librarian 59, +108–121. +Neumann, T., De-Arteaga, M., Fazelpour, S., 2022. Justice in misinformation detection systems: An analysis of algorithms, stakeholders, and +potential harms, in: 2022 ACM Conference on Fairness, Accountability, and Transparency, Association for Computing Machinery, New York, +NY, USA. p. 1504–1515. URL: https://doi.org/10.1145/3531146.3533205, doi:10.1145/3531146.3533205. +Nguyen, A.T., Kharosekar, A., Krishnan, S., Krishnan, S., Tate, E., Wallace, B.C., Lease, M., 2018a. Believe it or not: Designing a human-ai +partnership for mixed-initiative fact-checking, in: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, +pp. 189–199. +Nguyen, A.T., Kharosekar, A., Lease, M., Wallace, B.C., 2018b. +An interpretable joint graphical model for fact-checking from crowds, in: +Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), pp. 1511–1518. URL: ../papers/nguyen-aaai18. +pdf. +Nguyen, T.T., Weidlich, M., Yin, H., Zheng, B., Nguyen, Q.H., Nguyen, Q.V.H., 2020. Factcatch: Incremental pay-as-you-go fact checking with +minimal user effort, in: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, +pp. 2165–2168. +Nie, Y., Wang, S., Bansal, M., 2019. Revealing the importance of semantic retrieval for machine reading at scale, in: Proceedings of the 2019 +Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing +(EMNLP-IJCNLP), Association for Computational Linguistics, Hong Kong, China. pp. 2553–2566. URL: https://aclanthology.org/ +D19-1258, doi:10.18653/v1/D19-1258. +Niewiński, P., Pszona, M., Janicka, M., 2019. Gem: Generative enhanced model for adversarial attacks, in: Proceedings of the Second Workshop +on Fact Extraction and VERification (FEVER), pp. 20–26. +Nørregaard, J., Horne, B.D., Adalı, S., 2019. Nela-gt-2018: A large multi-labelled news dataset for the study of misinformation in news articles, in: +Proceedings of the international AAAI conference on web and social media, pp. 630–638. +Oshikawa, R., Qian, J., Wang, W.Y., 2020. A survey on natural language processing for fake news detection, in: LREC. +Popat, K., Mukherjee, S., Yates, A., Weikum, G., 2018. Declare: Debunking fake news and false claims using evidence-aware deep learning, in: +Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 22–32. +Potthast, M., KIESELJ, R., et al., 2018. A stylometric inquiryintohyperpartisanandfakenews. Procofthe 56thAnnual Meetingofthe Associationfor- +Computational Linguistics. Stroudsburg, PA: ACL 231240. +Potthast, M., Köpsel, S., Stein, B., Hagen, M., 2016. Clickbait detection, in: European Conference on Information Retrieval, Springer. pp. 810–817. +Pradeep, R., Ma, X., Nogueira, R., Lin, J., 2021. +Scientific claim verification with VerT5erini, in: Proceedings of the 12th International +Workshop on Health Text Mining and Information Analysis, Association for Computational Linguistics, online. pp. 94–103. URL: https: +//aclanthology.org/2021.louhi-1.11. +Qazvinian, V., Rosengren, E., Radev, D., Mei, Q., 2011. Rumor has it: Identifying misinformation in microblogs, in: Proceedings of the 2011 +Conference on Empirical Methods in Natural Language Processing, pp. 1589–1599. +Qu, Y., Barbera, D.L., Roitero, K., Mizzaro, S., Spina, D., Demartini, G., 2021a. Combining human and machine confidence in truthfulness +assessment. ACM Journal of Data and Information Quality (JDIQ) . +Qu, Y., Roitero, K., Mizzaro, S., Spina, D., Demartini, G., 2021b. Human-in-the-loop systems for truthfulness: A study of human and machine +confidence . +Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al., 2019. Language models are unsupervised multitask learners. OpenAI +blog 1, 9. +Rashkin, H., Choi, E., Jang, J.Y., Volkova, S., Choi, Y., 2017. Truth of varying shades: Analyzing language in fake news and political fact-checking, +in: Proceedings of the 2017 conference on empirical methods in natural language processing, pp. 2931–2937. +Ribeiro, M.T., Singh, S., Guestrin, C., 2018. Semantically equivalent adversarial rules for debugging nlp models, in: Proceedings of the 56th Annual +Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 856–865. +Ribeiro, M.T., Wu, T., Guestrin, C., Singh, S., 2020. Beyond accuracy: Behavioral testing of nlp models with checklist, in: Proceedings of the 58th +Annual Meeting of the Association for Computational Linguistics, pp. 4902–4912. +Roitero, K., Soprano, M., Fan, S., Spina, D., Mizzaro, S., Demartini, G., 2020a. Can the crowd identify misinformation objectively? the effects of +judgment scale and assessor’s background, in: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in +Information Retrieval, pp. 439–448. +Roitero, K., Soprano, M., Portelli, B., Spina, D., Della Mea, V., Serra, G., Mizzaro, S., Demartini, G., 2020b. The covid-19 infodemic: Can the crowd +judge recent misinformation objectively?, in: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, +pp. 1305–1314. +Anubrata Das et al.: Preprint submitted to Elsevier +Page 28 of 30 + +The State of Human-centered NLP Technology for Fact-checking +Sarasua, C., Simperl, E., Noy, N.F., 2012. +Crowdmap: Crowdsourcing ontology alignment with microtasks, in: International semantic web +conference, Springer. pp. 525–541. +Schuster, T., Fisch, A., Barzilay, R., 2021. Get your vitamin C! robust fact verification with contrastive evidence, in: Proceedings of the 2021 +Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for +Computational Linguistics, Online. pp. 624–643. URL: https://aclanthology.org/2021.naacl-main.52, doi:10.18653/v1/2021. +naacl-main.52. +Schuster, T., Schuster, R., Shah, D.J., Barzilay, R., 2020. The limitations of stylometry for detecting machine-generated fake news. Computational +Linguistics 46, 499–510. +Serrano, S., Smith, N.A., 2019. Is attention interpretable?, in: Proceedings of the 57th Annual Meeting of the Association for Computational +Linguistics, pp. 2931–2951. +Settles, B., 2009. Active learning literature survey . +Shaar, S., Alam, F., Da San Martino, G., Nakov, P., 2021a. Assisting the human fact-checkers: Detecting all previously fact-checked claims in a +document. arXiv preprint arXiv:2109.07410 . +Shaar, S., Hasanain, M., Hamdan, B., Ali, Z.S., Haouari, F., Nikolov, A., Kutlu, M., Kartal, Y.S., Alam, F., Da San Martino, G., Barrón-Cedeño, A., +Míguez, R., Beltrán, J., Elsayed, T., Nakov, P., 2021b. Overview of the clef-2021 checkthat! lab task 1 on check-worthiness estimation in tweets +and political debates, in: CLEF. +Shaar, S., Martino, G.D.S., Babulkov, N., Nakov, P., 2020. That is a known lie: Detecting previously fact-checked claims, in: ACL. +Shabani, S., Charlesworth, Z., Sokhn, M., Schuldt, H., 2021. Sams: Human-in-the-loop approach to combat the sharing of digital misinformation, +in: CEUR Workshop Proc. +Shao, C., Ciampaglia, G.L., Flammini, A., Menczer, F., 2016. Hoaxy: A platform for tracking online misinformation, in: Proceedings of the 25th +international conference companion on world wide web, pp. 745–750. +Shi, B., Weninger, T., 2016. Discriminative predicate path mining for fact checking in knowledge graphs. Knowledge-based systems 104, 123–133. +Shi, L., Bhattacharya, N., Das, A., Lease, M., Gwizdka, J., 2022. The Effects of Interactive AI Design on User Behavior: An Eye-tracking Study of +Fact-checking COVID-19 Claims, in: Proceedings of the 7th ACM SIGIR Conference on Human Information, Interaction and Retrieval (CHIIR). +URL: https://utexas.box.com/v/shi-chiir2022. +Shu, K., Cui, L., Wang, S., Lee, D., Liu, H., 2019. defend: Explainable fake news detection, in: Proceedings of the 25th ACM SIGKDD international +conference on knowledge discovery & data mining, pp. 395–405. +Shu, K., Mahudeswaran, D., Wang, S., Lee, D., Liu, H., 2020. Fakenewsnet: A data repository with news content, social context, and spatiotemporal +information for studying fake news on social media. Big data 8 3, 171–188. +Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H., 2017. Fake news detection on social media: A data mining perspective. ACM SIGKDD explorations +newsletter 19, 22–36. +Singh, P., Das, A., Li, J.J., Lease, M., 2021. The case for claim difficulty assessment in automatic fact checking. arXiv preprint arXiv:2109.09689 . +Smeros, P., Castillo, C., Aberer, K., 2021. +Sciclops: Detecting and contextualizing scientific claims for assisting manual fact-checking, in: +Proceedings of the 30th ACM International Conference on Information & Knowledge Management (CIKM). +Sokol, K., Flach, P., 2019. Desiderata for interpretability: explaining decision tree predictions with counterfactuals, in: Proceedings of the AAAI +Conference on Artificial Intelligence, pp. 10035–10036. +Soprano, M., Roitero, K., La Barbera, D., Ceolin, D., Spina, D., Mizzaro, S., Demartini, G., 2021. +The many dimensions of truthfulness: +Crowdsourcing misinformation assessments on a multidimensional scale. Information Processing & Management 58, 102710. +The Poynter Institute, 2021. Global Fact 8 Pre-recorded Segment 4. URL: https://www.youtube.com/watch?v=gOhPKDaeQxI&t=770s. +Thorne, J., Vlachos, A., 2019. Adversarial attacks against fact extraction and verification. arXiv preprint arXiv:1903.05543 . +Thorne, J., Vlachos, A., Christodoulopoulos, C., Mittal, A., 2018. Fever: a large-scale dataset for fact extraction and verification, in: Proceedings of +the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume +1 (Long Papers), pp. 809–819. +Thorne, J., Vlachos, A., Cocarascu, O., Christodoulopoulos, C., Mittal, A., 2019. The fever2. 0 shared task, in: Proceedings of the Second Workshop +on Fact Extraction and VERification (FEVER), pp. 1–6. +Thornhill, C., Meeus, Q., Peperkamp, J., Berendt, B., 2019. A digital nudge to counter confirmation bias. Frontiers in big data 2, 11. +Tschiatschek, S., Singla, A., Gomez Rodriguez, M., Merchant, A., Krause, A., 2018. Fake news detection in social networks via crowd signals, in: +Companion Proceedings of the The Web Conference 2018, pp. 517–524. +Uscinski, J.E., 2015. The epistemology of fact checking (is still naìve): Rejoinder to amazeen. Critical Review 27, 243–252. +Vaish, R., Davis, J., Bernstein, M., 2015. Crowdsourcing the research process. Collective Intelligence 3. +Vaish, R., Gaikwad, S.N.S., Kovacs, G., Veit, A., Krishna, R., Arrieta Ibarra, I., Simoiu, C., Wilber, M., Belongie, S., Goel, S., et al., 2017. Crowd +research: Open and scalable university laboratories, in: Proceedings of the 30th Annual ACM Symposium on User Interface Software and +Technology, pp. 829–843. +Vaughan, J.W., Wallach, H., 2020. A human-centered agenda for intelligible machine learning. Machines We Trust: Getting Along with Artificial +Intelligence . +Veale, M., Van Kleek, M., Binns, R., 2018. Fairness and accountability design needs for algorithmic support in high-stakes public sector decision- +making, in: Proceedings of the 2018 chi conference on human factors in computing systems, pp. 1–14. +Vicario, M.D., Quattrociocchi, W., Scala, A., Zollo, F., 2019. Polarization and fake news: Early warning of potential misinformation targets. ACM +Transactions on the Web (TWEB) 13, 1–22. +Vlachos, A., Riedel, S., 2014. Fact checking: Task definition and dataset construction, in: Proceedings of the ACL 2014 workshop on language +technologies and computational social science, pp. 18–22. +Vlachos, A., Riedel, S., 2015. Identification and verification of simple claims about statistical properties, in: Proceedings of the 2015 Conference +on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Lisbon, Portugal. pp. 2596–2601. URL: +Anubrata Das et al.: Preprint submitted to Elsevier +Page 29 of 30 + +The State of Human-centered NLP Technology for Fact-checking +https://aclanthology.org/D15-1312, doi:10.18653/v1/D15-1312. +Vo, N., Lee, K., 2018. The rise of guardians: Fact-checking url recommendation to combat fake news, in: The 41st International ACM SIGIR +Conference on Research & Development in Information Retrieval, pp. 275–284. +Wadden, D., Lin, S., Lo, K., Wang, L.L., van Zuylen, M., Cohan, A., Hajishirzi, H., 2020. Fact or fiction: Verifying scientific claims, in: Proceedings +of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 7534–7550. +Wang, W.Y., 2017. "liar, liar pants on fire": A new benchmark dataset for fake news detection, in: ACL. +Wiegreffe, S., Marasovic, A., 2021. +Teach me to explain: A review of datasets for explainable natural language processing, in: Vanschoren, +J., Yeung, S. (Eds.), Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks. +URL: https: +//datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/698d51a19d8a121ce581499d7b701668-Paper-round1. +pdf. +Wiegreffe, S., Pinter, Y., 2019. Attention is not not explanation, in: Proceedings of the 2019 Conference on Empirical Methods in Natural Language +Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 11–20. +Williams, E., Rodrigues, P., Novak, V., 2020. Accenture at checkthat! 2020: If you say so: Post-hoc fact-checking of claims using transformer-based +models. arXiv preprint arXiv:2009.02431 . +Yang, F., Pentyala, S.K., Mohseni, S., Du, M., Yuan, H., Linder, R., Ragan, E.D., Ji, S., Hu, X., 2019. Xfake: Explainable fake news detector with +visualizations, in: The World Wide Web Conference, pp. 3600–3604. +Zaidan, O., Eisner, J., Piatko, C., 2007. Using “annotator rationales” to improve machine learning for text categorization, in: Human language +technologies 2007: The conference of the North American chapter of the association for computational linguistics; proceedings of the main +conference, pp. 260–267. +Zanzotto, F.M., 2019. Human-in-the-loop artificial intelligence. Journal of Artificial Intelligence Research 64, 243–252. +Zellers, R., Holtzman, A., Rashkin, H., Bisk, Y., Farhadi, A., Roesner, F., Choi, Y., 2020. Defending against neural fake news. Neurips . +Zeng, X., Abumansour, A.S., Zubiaga, A., 2021. Automated fact-checking: A survey. Language and Linguistics Compass 15, e12438. +Zhang, X., Cao, J., Li, X., Sheng, Q., Zhong, L., Shu, K., 2021a. Mining dual emotion for fake news detection, in: Proceedings of the Web Conference +2021, pp. 3465–3476. +Zhang, Y., Lease, M., Wallace, B., 2017. Active discriminative text representation learning, in: Proceedings of the AAAI Conference on Artificial +Intelligence. +Zhang, Z., Rudra, K., Anand, A., 2021b. Faxplainac: A fact-checking tool based on explainable models with human correction in the loop, in: +Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 4823–4827. +Zhou, X., Jain, A., Phoha, V.V., Zafarani, R., 2020. Fake news early detection: A theory-driven model. Digital Threats: Research and Practice 1, +1–25. +Zhou, X., Zafarani, R., 2020. A survey of fake news: Fundamental theories, detection methods, and opportunities. ACM Computing Surveys +(CSUR) 53, 1–40. +Zubiaga, A., Aker, A., Bontcheva, K., Liakata, M., Procter, R., 2018. Detection and resolution of rumours in social media: A survey. ACM +Computing Surveys (CSUR) 51, 1–36. +Zubiaga, A., Liakata, M., Procter, R., Wong Sak Hoi, G., Tolmie, P., 2016. Analysing how people orient to and spread rumours in social media by +looking at conversational threads. PloS one 11, e0150989. +Anubrata Das et al.: Preprint submitted to Elsevier +Page 30 of 30 + diff --git a/1dE1T4oBgHgl3EQfRwNN/content/tmp_files/load_file.txt b/1dE1T4oBgHgl3EQfRwNN/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..d67ae5edd0558c460124ed1aeaf56c072da99f93 --- /dev/null +++ b/1dE1T4oBgHgl3EQfRwNN/content/tmp_files/load_file.txt @@ -0,0 +1,3275 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf,len=3274 +page_content='The State of Human-centered NLP Technology for Fact-checking Anubrata Das∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Houjiang Liu,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Venelin Kovatchev and Matthew Lease aSchool of Information,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The University of Texas at Austin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Austin,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' TX,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' USA A R T I C L E I N F O Keywords: Natural Language Processing Misinformation Disinformation Explainability Human-AI Teaming A B S T R A C T Misinformation threatens modern society by promoting distrust in science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' changing narratives in public health,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' heightening social polarization,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' and disrupting democratic elections and financial markets,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' among a myriad of other societal harms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' To address this, a growing cadre of professional fact-checkers and journalists provide high-quality investigations into purported facts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, these largely manual efforts have struggled to match the enormous scale of the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In response, a growing body of Natural Language Processing (NLP) technologies have been proposed for more scalable fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Despite tremendous growth in such research, however, practical adoption of NLP technologies for fact-checking still remains in its infancy today.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In this work, we review the capabilities and limitations of the current NLP technologies for fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Our particular focus is to further chart the design space for how these technologies can be harnessed and refined in order to better meet the needs of human fact-checkers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' To do so, we review key aspects of NLP-based fact-checking: task formulation, dataset construction, modeling, and human-centered strategies, such as explainable models and human-in-the-loop approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Next, we review the efficacy of applying NLP-based fact-checking tools to assist human fact-checkers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' We recommend that future research include collaboration with fact-checker stakeholders early on in NLP research, as well as incorporation of human-centered design practices in model development, in order to further guide technology development for human use and practical adoption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Finally, we advocate for more research on benchmark development supporting extrinsic evaluation of human-centered fact-checking technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Introduction Misinformation and related issues (disinformation, deceptive news, clickbait, rumours, and information credibility) increasingly threaten society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' While concerns of misinformation existed since the early days of written text (Marcus, 1992), with recent development of social media, the entry barrier for creating and spreading content has never been lower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Moreover, polarization online drives the spread of misinformation that in turn increases polarization (Cinelli, Pelicon, Mozetič, Quattrociocchi, Novak and Zollo, 2021a,b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Vicario, Quattrociocchi, Scala and Zollo, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Braking such a vicious cycle would require addressing the problem of misinformation at its root.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fields such as journalism (Graves, 2018b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Graves and Amazeen, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Neely-Sardon and Tignor, 2018) and archival studies (LeBeau, 2017) have extensively studied misinformation, and recent years have seen a significant growth in fact-checking initiatives to address this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Various organizations now focus on fact-checks (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', PolitiFact, Snopes, FactCheck, First Draft, and Full Fact), and organizations such as the International Fact-Checking Network (IFCN)1 train and provide resources for independent fact-checkers and journalists to further scale expert fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' While professional fact-checkers and journalists provide high-quality investigations of purported facts to inform the public, human effort struggles to match the global Internet scale of the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' To address this, a growing body of research has investigated Natural Language Processing (NLP) to fully or partially automate fact-checking (Guo, Schlichtkrull and Vlachos, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nakov, Corney, Hasanain, Alam, Elsayed, Barrón-Cedeño, Papotti, Shaar and Da San Martino, 2021a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zhou and Zafarani, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zeng, Abumansour and Zubiaga, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Graves, 2018a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, even state-of-the-art NLP technologies still cannot match human capabilities in many areas and remain insufficient to automate fact-checking in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Experts argue (Arnold, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a) that fact-checking is a complex process and requires subjective judgement and expertise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' While current NLP systems are increasingly better at addressing simple fact-checking tasks, identifying false claims that are contextual and beyond simple declarative ∗Corresponding author ORCID(s): 0000-0002-5412-6149 (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Das);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 0000-0003-0983-6202 (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Liu);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 0000-0003-1259-1541 (V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kovatchev);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 0000-0002-0056-2834 (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Lease) 1https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='politifact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='com/, https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='snopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='com/, https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='factcheck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/, https://firstdraftnews.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' org/, https://fullfact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/, and https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='poynter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/ifcn/, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 1 of 30 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='03056v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='CL] 8 Jan 2023 The State of Human-centered NLP Technology for Fact-checking statements remains beyond the reach for fully automated systems (Chen, Sriram, Choi and Durrett, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fan, Piktus, Petroni, Wenzek, Saeidi, Vlachos, Bordes and Riedel, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, claims buried in conversational systems, comment threads in social media community, and claims in multimedia contents are particularly challenging for automated systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, most fact-checking practitioners desire NLP tools that are integrated into the existing fact-checking workflow and reduce latency (Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Graves, 2018b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Alam, Shaar, Dalvi, Sajjad, Nikolov, Mubarak, Da San Martino, Abdelali, Durrani, Darwish, Al-Homaid, Zaghouani, Caselli, Danoe, Stolk, Bruntink and Nakov, 2021b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In this literature review, we provide the reader with a comprehensive and holistic overview of the current state- of-the-art challenges and opportunities to more effectively leverage NLP technology in fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Our objectives in this work are twofold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' First, we cover all aspects of the NLP pipeline for fact checking: task formulation, dataset construction, and modeling approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Second, we emphasize the human-centered approaches that seek to augment and accelerate human fact-checking, rather than supplant it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In contrast, prior literature reviews (Zeng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Oshikawa, Qian and Wang, 2020) either provide an overview of the existing approaches or capture the details of only a specific part of the fact-checking pipeline (Kotonya and Toni, 2020a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hardalov, Arora, Nakov and Augenstein, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hanselowski, AvineshP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Schiller, Caspelherr, Chaudhuri, Meyer and Gurevych, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Demartini, Mizzaro and Spina, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Furthermore, we argue that it is important to extend the review of NLP technologies for fact-checking from modeling development to the area of Human-Computer Interaction (HCI) because technology design should reflect user needs so that its development can be better integrated in the real-world use context (Graves, 2018a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Lease, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kovatchev, Smith, Lee, Traynor, Aguilera and Devine, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Micallef, Armacost, Memon and Patil, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Juneja and Mitra, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Specifically, we point the reader towards Section 7 where we propose concrete directions for future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Current challenges are largely due to the relatively early stage of development of the automated fact-checking tech- nology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Specifically, current studies tend to adopt an intrinsic evaluation of components of the fact-checking pipeline rather than an end-to-end extrinsic evaluation of the entire fact-checking task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Moreover, component-wise accuracies may remain below the threshold required for practical adoption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Furthermore, while the research community’s focus on prediction accuracy has yielded laudable improvements, human factors (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', usability, intelligibility, trust) have garnered far less attention or progress yet are crucial for practical adoption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Such limitations have implications for future research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' First, practical use of NLP technologies for fact-checking is likely to come from hybrid, human-in-the-loop approaches rather than full automation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Second, as the technology matures, end-to-end evaluation becomes increasingly important to ensure practical solutions are being developed to solve the real-world use-case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' To this end, new benchmarks that facilitate the extrinsic evaluation of automated fact- checking applications in practical settings may help drive progress on solutions that can be adopted for use in the wild.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Finally, to craft effective human-in-the-loop systems, more cross-cutting NLP and HCI integration could strengthen design of fact-checking tools, so that they are accurate, scalable, and usable in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Toward this end, it may be fruitful to collaborate more with stakeholders early on in NLP research and incorporate human-centered design practices in developing models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' We have written this article with different audiences in mind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For researchers and fact-checkers who are new to automated fact-checking, this article provides a comprehensive overview of the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' We discuss the challenges, the state-of-the-art capabilities, and the opportunities in the field, and we emphasize how machine learning and natural language processing can be used to combat disinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' We recommend researchers new to this topic read the article in its entirety, following the logical structure of sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Other readers who have more experience in the field may already be familiar with some of the concepts that we discuss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For them, this paper offers a novel human- centered perspective of automated fact checking and a discussion on how that perspective can affect system design, implementation, and evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' To facilitate the use of the paper by more experienced readers, we provide a quick overview of the content covered in each section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Section 2 introduces the automated fact-checking pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' We provide an overview of the process for human fact-checkers and for automated solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Section 3 discusses the task formulation: the goals and formal definitions of different sub-tasks in fact checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Section 4 describes the process of dataset construction, presents the most popular corpora for automated fact checking, and outlines some limitations of the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 2 of 30 The State of Human-centered NLP Technology for Fact-checking Figure 1: Fact-checking pipeline Section 5 reviews approaches for automating fact checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' We discuss general NLP capabilities (Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1), explainable approaches (Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='2), and human-in-the-loop (Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='3) approaches for fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Section 6 surveys existing tools that apply NLP for fact-checking in a practical, real-world context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' We argue that the human-centered perspective is necessary for the practical adoption of automated solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Section 7 provides future research directions in the context of human-centered fact checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' We discuss the work division between human and AI for mixed-initiative fact-checking in Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='2 we propose a novel concept for measuring trust and a novel human-centered evaluation of NLP to assist fact-checkers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' We conclude our literature review with Section 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fact-Checking Pipeline The core idea behind automated fact-checking is enabling AI to reason over available information to determine the truthfulness of a claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For successful automation, it is essential first to understand the complex process of journalistic fact-checking that involves human expertise along with skilled effort towards gathering evidence and synthesizing the evidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additional complexity comes from the need to process heterogeneous sources (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', information across various digital and non-digital sources).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Data is also spread across different modalities such as images, videos, tables, graphs, among others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Moreover, there is a lack of tools that support effective and efficient fact-checking workflows (Graves, 2018a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Arnold, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Graves (2017) breaks down the practical fact-checking mechanism for human fact-checkers into multiple steps such as a) identifying the claims to check, b) tracing false claims, c) consulting experts, and d) sharing the resulting fact-check.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A growing body of AI literature — specifically in NLP — focuses on automating the fact-checking process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' We synthesize several related surveys (Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Graves, 2018a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zeng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Micallef et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022) and distinguish four typical stages that constitute the automated fact-checking technology pipeline (illustrated in Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Note that the pipeline we describe below closely follows the structure of Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (2022), though the broader literature is also incorporated within these four stages: Claim Detection, Checkworthiness, and Prioritization: Claim detection involves monitoring news and/or online information for potentially false content to fact-check.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' One must identify claims that are potentially falsifiable (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', purported facts rather subjective opinions) (Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zeng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Moreover, because it is impractical to fact-check everything online given limited fact-checking resources (human or automated), fact checkers must prioritize what to fact-check (Arnold, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' NLP researchers have sought to inform such prioritization by automatically predicting the "checkworthiness" of claims (Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, to avoid repeated work, fact-checkers may consult existing fact-checking databases before judging the veracity of a new claim (claim matching (Zeng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' We see claim matching as a part of prioritizing claims, as fact-checkers would prioritize against checking such claims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Evidence Retrieval: Once it is clear which claims to fact-check, the next step is to gather relevant, trustworthy evidence for assessing the claim (Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zeng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Veracity Prediction: Given the evidence, it is necessary to assess it to determine the veracity of the claim (Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zeng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 3 of 30 回田 β R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='m Claim detection, Evidence Veracity Checkworthiness, Explanation retrieval prediction and PrioritizationThe State of Human-centered NLP Technology for Fact-checking Explanation: Finally, for human use, one must explain the fact-checking outcome via human-understandable justification for the model’s determination (Graves, 2018a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kotonya and Toni, 2020a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In the subsequent sections, we discuss each of the tasks above in the context of existing NLP research in automated fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Some other steps (for example, detecting propaganda in text, click-bait detection) are also pertinent to fact-checking but do not directly fit into the stages described above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' They are briefly discussed in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Task Formulation for Automated Fact-Checking Modern Natural Language Processing is largely-data driven.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In this article, we distinguish task formulation (conceptual) vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' dataset construction (implementation activity, given the task definition).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' That said, the availability of a suitable dataset or the feasibility of constructing a new dataset can also bear on how tasks are formulated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Claim Detection, Checkworthiness, and Prioritization Fact-checkers and news organizations monitor information sources such as social media (Facebook, Twitter, Reddit, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' ), political campaigns and speeches, and public addresses from government officials on critical issues (Arnold, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additional sources include tip-lines on end-to-end encrypted platforms (such as WhatsApp, Telegram, and Signal) (Kazemi, Garimella, Shahi, Gaffney and Hale, 2021b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The volume of information on various platforms makes it challenging to efficiently monitor all sources for misinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zeng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (2021) define the claim detection step as identifying, filtering, and prioritizing claims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' To identify claims, social media streams are often monitored for rumors (Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A rumour can be defined as a claim that is unverified and being circulated online (Zubiaga, Aker, Bontcheva, Liakata and Procter, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Rumours are characterized by the subjectivity of the language and the reach of the content to the users (Qazvinian, Rosengren, Radev and Mei, 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, metadata related to virality, such as the number of shares (or retweets and re-posts), likes, or comments are also considered when identifying whether a post is a rumour (Zhang, Cao, Li, Sheng, Zhong and Shu, 2021a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Gorrell, Kochkina, Liakata, Aker, Zubiaga, Bontcheva and Derczynski, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, detecting rumours alone is not sufficient to decide whether a claim needs to be fact-checked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For each text of interest, the key questions fact-checking systems need to address include: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Is there a claim to check?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Does the claim contain verifiable information?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Is the claim checkworthy?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Has a trusted source already fact-checked the claim?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Regarding the first criterion — is there a claim — one might ask whether the claim contains a purported fact or an opinion (Hassan, Arslan, Li and Tremayne, 2017a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, a statement such as “reggae is the most soulful genre of music” represents personal preference that is not checkable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In contrast, “ won a gold medal in the Olympics” is checkable by matching to the list of all gold medal winners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Whether the claim contains verifiable information is more challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, if a claim can only be verified by private knowledge or personal experience that is not broadly accessible, then it cannot be checked (Konstantinovskiy, Price, Babakar and Zubiaga, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, if someone claims to have eaten a certain food yesterday, it is probably impossible to verify beyond their personal testimony.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' As this example suggests, the question of whether the claim contains verifiable information depends in large part on what evidence is available for verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' This, in turn, may not be clear until after evidence retrieval is performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In practice fact-checkers may perform some preliminary research, but mostly try to gauge checkworthiness only based on the claim itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In addition, this consideration is only one of many that factors into deciding whether to check a claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Even a claim that may appear to be unverifiable may still be of such great public interest that it is worth conducting the fact-check.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Moreover, even if the fact-check is conducted and ultimately indeterminate (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', evidence does not exist either to verify or refute the claim), simply showing that a claim’s veracity cannot be determined may still be a valuable outcome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A claim is deemed checkworthy if a claim is of significant public interest or has the potential to cause harm (Nakov, Da San Martino, Elsayed, Barrón-Cedeño, Míguez, Shaar, Alam, Haouari, Hasanain, Babulkov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hassan, Li and Tremayne, 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, a claim related to the effect of a vaccine on the COVID-19 infection rate is more relevant to the public interest and hence more checkworthy than a claim about some philosopher’s favorite food.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 4 of 30 The State of Human-centered NLP Technology for Fact-checking Claims, like memes, often appear several times and/or across multiple platforms (in the same form or with slight modification) (Leskovec, Backstrom and Kleinberg, 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Arnold, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fact-checking organizations maintain a growing database claims which have already been fact-checked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Thus, detected claims are compared against databases of already fact-checked claims by trusted organizations (Shaar, Martino, Babulkov and Nakov, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shaar, Alam, Da San Martino and Nakov, 2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Comparing new claims against such databases helps to avoid duplicating work on previously fact-checked claims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' This step is also known as claim matching (Zeng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Reports from practitioners argue that if a claim is not checked within the first few hours, a late fact-check does not have much impact on changing the ongoing misinformation narrative (Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Arnold, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Moreover, limited resources for fact-checking make it crucial for organizations to prioritize the claims to be checked (Borel, 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Claims can be prioritized based on their checkworthiness (Nakov, Da San Martino, Barrón-Cedeño, Zaghouani, Míguez, Alam, Caselli, Kutlu, Strub and Mandl, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (2022) note that checkworthiness is determined based on factors such as 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' How urgently a claim needs to be checked?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' How much harm can a claim cause (Alam et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Alam, Dalvi, Shaar, Durrani, Mubarak, Nikolov, Da San Martino, Abdelali, Sajjad, Darwish and Nakov, 2021a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shaar, Hasanain, Hamdan, Ali, Haouari, Nikolov, Kutlu, Kartal, Alam, Da San Martino, Barrón-Cedeño, Míguez, Beltrán, Elsayed and Nakov, 2021b)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Would the claim require attention from policy makers for addressing the underlying issue?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Note that estimating harms is quite challenging, especially without first having a thorough understanding and measures of harm caused by misinformationNeumann, De-Arteaga and Fazelpour (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The spread of a claim on social media provides another potential signal for identifying public interest (Arnold, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In the spirit of doing “the greatest good for the greatest number”, viral claims might be prioritized highly because any false information in them has the potential to negatively impact a large number of people.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' On the other hand, since fairness considerations motivate equal protections for all people, we cannot serve only the majority at the expense of minority groups (Ekstrand, Das, Burke, Diaz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Neumann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Moreover, such minority groups may be more vulnerable, motivating greater protections, and may be disproportionately impacted by mis/disinformation (Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' See Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='6 for additional discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Evidence Retrieval Some sub-tasks in automated fact-checking can be performed without the presence of explicit evidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, the linguistic properties of the text can be used to determine whether it is machine-generated (Wang, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Rashkin, Choi, Jang, Volkova and Choi, 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, assessing assessing claim veracity without evidence is clearly more challenging (Schuster, Schuster, Shah and Barzilay, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Provenance of a claim can also signal information quality;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' known unreliable source or distribution channels are often repeat offenders in spreading false information2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Such analysis of provenance can be further complicated when content is systematically propagated by multiple sources (twitter misinformation bots) (Jones, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' It is typically assumed that fact-checking requires gathering of reliable and trustworthy evidence that provides information to reason about the claim (Graves, 2018a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Li, Gao, Meng, Li, Su, Zhao, Fan and Han, 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In some cases, multiple aspects of a claim needs to be checked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A fact-checker would then decompose such a claim into distinct questions and gather relevant evidence for the question (Borel, 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' From an information retrieval (IR) perspective, we can conceptualize each of those questions as an “information need” for which the fact-checker must formulate one or more queries to a search engine (Bendersky, Metzler and Croft, 2012) in order to retrieve necessary evidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Evidence can be found across many modalities, including text, tables, knowledge graphs, images, and videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Various metadata can also provide evidence and are sometimes required to assess the claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Examples include context needed to disambiguate claim terms, or background of the individual or organization from whom the claim originated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Retrieving relevant evidence also depends on the following questions (Singh, Das, Li and Lease, 2021): 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Is there sufficient evidence available related to a claim?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Is it accessible or available in the public domain?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Is it in a format that can be read and processed?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2https://disinformationindex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/ Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 5 of 30 The State of Human-centered NLP Technology for Fact-checking As noted earlier in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1, the preceding claim detection task involves assessing whether a claim contains verifiable information;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' this depends in part on what evidence exists to be retrieved, which is not actually known until evidence retrieval is performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Having now reached this evidence retrieval step, we indeed discover whether sufficient evidence exists to support or refute the claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, evidence should be trustworthy, reputable (Nguyen, Kharosekar, Lease and Wallace, 2018b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Lease, 2018), and unbiased (Chen, Khashabi, Yin, Callison-Burch and Roth, 2019a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Once evidence is retrieved, stance detection assesses the degree to which the evidence supports or refutes the claim (Nguyen, Kharosekar, Krishnan, Krishnan, Tate, Wallace and Lease, 2018a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Ferreira and Vlachos, 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Popat, Mukherjee, Yates and Weikum, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Stance detection is typically formulated as a classification task (or ordinal regression) over each piece of retrieved evidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Note that some works formulate stance detection as an independent task (Hanselowski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hardalov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Veracity Prediction Given a claim and gathered evidence, veracity prediction involves reasoning over the collected evidence and the claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Veracity prediction can be formulated as a binary classification task (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', true vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' false) (Popat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nakashole and Mitchell, 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Potthast, KIESELJ et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018), or as a fine-grained, multi-class task following the journalistic fact-checking practices (Augenstein, Lioma, Wang, Lima, Hansen, Hansen and Simonsen, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shu, Mahudeswaran, Wang, Lee and Liu, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Wang, 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In some cases, there may not be enough information available to determine the veracity of a claim (Thorne, Vlachos, Christodoulopoulos and Mittal, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Note that fact-checking is potentially a recursive process because retrieved evidence may itself need to be fact- checked before it can be trusted and acted upon (Graves, 2018a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' This is also consistent with broader educational practices in information literacy3 in which readers are similarly encouraged to evaluate the quality of information they consume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Such assessment of information reliability can naturally integrate with the veracity prediction task in factoring in the reliability of the evidence along with its stance (Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Explaining Veracity Prediction While a social media platform might use automated veracity predictions in deciding whether to automatically block or demote content, the use of fact-checking technology often involves a human-in-the-loop, whether it is a platform moderator, a journalist, or an end-user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' When we consider such human-centered use of fact-checking technologies, providing an automated veracity prediction without justifying the answer can cause a system to be ignored or distrusted, or even reinforce mistaken human beliefs in false claims (the “backfire effect” (Lewandowsky, Ecker, Seifert, Schwarz and Cook, 2012)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Explanations and justifications are especially important given the noticeable drop in performance of state-of-the-art NLP systems when facing adversarial examples (Kovatchev, Chatterjee, Govindarajan, Chen, Choi, Chronis, Das, Erk, Lease, Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Consequently, automated fact-checking systems intended for human- consumption should seek to explain their veracity predictions in a similar manner to that of existing journalistic fact-checking practices (Uscinski, 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A brief point to make is that much of the explanation research has focused on explanations for researchers and engineers engaged in system development (types of explanations, methods of generating them, and evaluation regimens).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In contrast,we emphasize here explanations for system users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Various types of explanations can be provided, such as through 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' evidence attribution 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' explaining the decision-making process for a fact-check 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' summarizing the evidence 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' case-based explanations Evidence attribution is the process of identifying evidence or a specific aspect of the evidence (such as paragraphs, sentences, or even tokens of interest) (Thorne et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Popat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shu, Cui, Wang, Lee and Liu, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Lu and Li, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Furthermore, the relative importance of the evidence can also justify the fact-checking outcome (Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Alternatively, a set of rules or interactions to break down parts of the decision-making process can also serve as an explanation (Gad-Elrab, Stepanova, Urbani and Weikum, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Such formulation focuses more on how the evidence is processed to arrive at a decision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Explaining the veracity can also be formulated as a summarization problem over the gathered evidence to explain a fact-check (Atanasova, Simonsen, Lioma and Augenstein, 2020a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kotonya and Toni, 2020b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Finally, case-based explanations can provide the user with similar, human-labeled instances (Das, Gupta, Kovatchev, Lease and Li, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3https://en.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='wikipedia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/wiki/Information_literacy Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 6 of 30 The State of Human-centered NLP Technology for Fact-checking 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Related Tasks In addition to tasks that are considered central to the automated fact-checking pipeline, some additional tasks bear mentioning as related and complementary to the fact-checking enterprise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Examples of such tasks include propaganda detection (Da San Martino, Cresci, Barrón-Cedeño, Yu, Pietro and Nakov, 2020), clickbait detection (Potthast, Köpsel, Stein and Hagen, 2016), and argument mining (Lawrence and Reed, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Furthermore, some tasks can be formulated independent of the fact-checking pipeline and utilized later to improve individual fact-checking sub-tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, predicting the virality of social media content (Jain, Garg and Jain, 2021) can help improve claim detection and claim checkworthiness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Similarly, network analysis on fake news propagation (Shao, Ciampaglia, Flammini and Menczer, 2016) can help in analyzing provenance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' With an eye toward building more human-centered AI approaches, there are also some tasks that could be applied to help automate parts of the fact-checking process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, claim detection might be improved via an URL recommendation engine for content that might need fact-checking (Vo and Lee, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, fact-checkers could benefit from a predicted score for claim difficulty (Singh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In terms of evidence retrieval and veracity prediction, one might generate fact-checking briefs to aid inexpert fact-checkers (Fan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Instead of summarizing the evidence in general (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='4), one might instead summarize with the specific goal of decision support (Hsu and Tan, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Key Challenges Most work in automated fact-checking has been done on veracity prediction, and to a lesser extent, on explanation generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Recently, we have seen more attention directed towards claim detection and checkworthiness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In contrast, work on evidence retrieval remains less developed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Claim Detection Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (2022) points out several sources of biases in the claim check-worthiness task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Claims could be of variable interest to different social groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, claims that might cause more harm to marginalized groups compared to the general population may not get enough attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Ideally, models identifying check-worthiness need to overcome any possible disparate impact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Similar concerns appear in the report by Full Fact (Arnold, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' One of the criteria for selecting a claim for fact- checking across several organizations is “Could the claim threaten democratic processes or minority groups?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, such criterion may be at odds with the concerns of virality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fact-checking organizations often monitor virality metrics to decide which claims to fact-check (Arnold, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nevertheless, if a false claim is targeted towards an ethnic minority, such claims may not cross the virality thresholds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Prioritizing which claims to fact-check requires attention to various demographic traits: content creators, readers, and subject matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Claim check-worthiness dataset design can thus benefit from consideration of demographics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Evidence Retrieval Evidence retrieval has been largely neglected in the automated fact-checking NLP literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' It is often assumed that evidence is already available, or, coarse-grained evidence is gathered from putting the claims into a search engine (Popat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, Hasanain and Elsayed (2022) show in their study that search engines optimized for relevance seldom retrieve evidence most useful for veracity prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Although retrieving credible information has been studied thoroughly in IR (Clarke, Rizvi, Smucker, Maistro and Zuccon, 2020a), more work is needed that is focused on retrieving evidence for veracity assessment (Lease, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Clarke, Rizvi, Smucker, Maistro and Zuccon, 2020b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Veracity Prediction and Explanation A critical challenge for automated systems is to reason over multiple sources of evidence while also taking source reputation into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, explaining a complex reasoning process is a non-trivial task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The notion of model explanations itself is polysemous and evolving in general, not to mention in the context of fact checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' As explainable NLP develops, automated fact-checking tasks also need to evolve and provide explanations that are accessible to human stakeholders yet faithful to the underlying model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, case-based explanations are mostly unexplored in automated fact-checking, although working systems have been proposed for propaganda detection (Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In many NLP tasks, such as machine translation or natural language inference, the goal is to build fully-automated, end-to-end solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, in the context of fact-checking, state-of-the-art limitations suggest the need for humans- in-the-loop for the forseable future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Given this, automated tooling to support human fact-checkers is crucial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 7 of 30 The State of Human-centered NLP Technology for Fact-checking understanding the fact-checker needs and incorporating those needs in the task formulation has been largely absent from the automated fact-checking literature, with a few notable exceptions (Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Demartini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Future research could benefit from greater involvement of fact-checkers in the NLP research process and shifting goals from complete automation toward human support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Dataset Construction Corresponding to task formulation (Section 3), our presentation of fact-checking datasets is also organized around claims, evidence, veracity prediction, and explanation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Note that not all datasets have all of these components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Claim detection and claim check-worthiness Claim detection datasets typically contain claims and their sources (documents, social media streams, transcripts from political speeches) (Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' One form of claim detection is identifying rumours on social media, where datasets are primarily constructed with text from Twitter (Zubiaga et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Qazvinian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2011) and Reddit (Gorrell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Lillie, Middelboe and Derczynski, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Some works provide the claims in the context they appeared on social media (Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Ma, Gao, Mitra, Kwon, Jansen, Wong and Cha, 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, several studies note that most claim detection datasets do not contain enough context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' As the discussion of metadata in Section 3 suggests, broader context might include: social media reach, virality metrics, the origin of a claim, and relevant user data (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', who posted a claim, how influential they are online, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=') (Arnold, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Claim check-worthiness datasets (Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shaar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Barrón-Cedeño, Elsayed, Nakov, Da San Martino, Hasanain, Suwaileh, Haouari, Babulkov, Hamdan, Nikolov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Atanasova, Barrón-Cedeño, Elsayed, Suwaileh, Zaghouani, Kyuchukov, Da San Martino and Nakov, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Konstantinovskiy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hassan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2015) filter claims from a source (similar to claim detection, sources include social media feeds and political debate transcripts, among others) by annotating claims based on the checkworthiness criteria (mentioned in the section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Each claim is given a checkworthiness score to obtain a ranked list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Note that claim detection and checkworthiness datasets may be expert annotated (Hassan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2015) or crowd annotated (Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shaar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Barrón-Cedeño et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Atanasova et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Konstantinovskiy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021)4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The datasets discussed above do not capture multi-modal datasets, and few do.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' One such dataset is r/Fakeddit (Nakamura, Levy and Wang, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' This dataset contains images and associated text content from Reddit as claims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Misinformation can also spread through multi-modal memes, and tasks such as Facebook (now Meta) Hateful Memes Challenge (Kiela, Firooz, Mohan, Goswami, Singh, Ringshia and Testuggine, 2020) for hate speech suggest what might be similarly done for misinformation detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Evidence Early datasets in fact-checking provide metadata with claims as the only form of evidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Such metadata include social media post properties, user information, publication date, source information (Wang, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Potthast et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' As discussed earlier in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='2, such metadata does not contain the world knowledge necessary to reason about a complex claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' To address the above limitations, recent datasets consider external evidence (Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Evidence is collected differently depending upon the problem setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For artificial claims, evidence is often retrieved from a single source such as Wikipedia articles (Thorne et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Jiang, Bordia, Zhong, Dognin, Singh and Bansal, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Schuster, Fisch and Barzilay, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Domain limited evidence for real-world claims is collected from problem- specific sources, such as academic articles for scientific claims (Kotonya and Toni, 2020b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Wadden, Lin, Lo, Wang, van Zuylen, Cohan and Hajishirzi, 2020), or specific evidence listed in fact-checking websites (Vlachos and Riedel, 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hanselowski, Stab, Schulz, Li and Gurevych, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Open-domain evidence for real-world claims is usually collected from the web via search engines (Popat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Augenstein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Recently, there has been more work considering evidence beyond free text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Such formats include structured or semi- structured forms of evidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Sources include knowledge bases for structured form of evidence (Shi and Weninger, 2016) and semi-structured evidence from semi-structured knowledge bases (Vlachos and Riedel, 2015), tabular data (Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Gupta, Mehta, Nokhiz and Srikumar, 2020), and tables within a document (Aly, Guo, Schlichtkrull, Thorne, Vlachos, Christodoulopoulos, Cocarascu and Mittal, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, there are some retrieval-specific datasets that aim at retrieving credible information from search engines (Clarke et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, such tasks don’t incorporate claim checking as an explicit task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 4Some of these datasets, such as the CheckThat!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' datasets, are partially crowd and partially expert annotated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 8 of 30 The State of Human-centered NLP Technology for Fact-checking 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Veracity Prediction Evidence retrieval and veracity prediction datasets are usually constructed jointly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Note, in some cases, evidence may be absent from the datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Veracity prediction datasets usually do not deal with claim detection or claim checkworthiness tasks separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Instead, such datasets contain a set of claims that are either artificially constructed or collected from the internet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Artificial claims in veracity prediction datasets are often limited in scope and constructed for natural language reasoning research (Aly et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Thorne et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Schuster et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Chen, Wang, Chen, Zhang, Wang, Li, Zhou and Wang, 2019b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, FEVER (Thorne et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018) and HoVer (Jacovi and Goldberg, 2021) obtain claims from Wikipedia pages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Some datasets also implement subject-predicate-object triplets for fact- checking against knowledge bases (Kim and Choi, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shi and Weninger, 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fact-checking websites are popular sources for creating veracity prediction datasets based on real claims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Several datasets obtain claims from either a single website or collect claims from many such websites and collate them (Wang, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hanselowski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Augenstein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Vlachos and Riedel, 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Note that such claims are inherently expert annotated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Other sources of claims are social media (Potthast et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shu, Sliva, Wang, Tang and Liu, 2017), news outlets (Horne, Khedr and Adali, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Gruppi, Horne and Adalı, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nørregaard, Horne and Adalı, 2019), blogs, discussions in QA forums, or similar user-generated publishing platforms (Mihaylova, Nakov, Màrquez, Barrón-Cedeño, Mohtarami, Karadzhov and Glass, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally some fact-checking datasets target domain-specific problems such as scientific literature (Wadden et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020), climate change (Diggelmann, Boyd-Graber, Bulian, Ciaramita and Leippold, 2020), and public health (Kotonya and Toni, 2020b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Most datasets are monolingual but recent effort have started to incorporate multi-lingual claims (Gupta and Srikumar, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Barnabò, Siciliano, Castillo, Leonardi, Nakov, Da San Martino and Silvestri, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Early datasets focus on a binary veracity prediction - true or false (Mihalcea and Strapparava, 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Recent datasets often adopt an ordinal veracity labeling scheme that mimics fact checkering websites (Vlachos and Riedel, 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Wang, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Augenstein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, every fact-checking website has a different scale for veracity, so datasets that span across multiple websites come with a normalization problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' While some datasets do not normalize the labels (Augenstein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019), some normalize them post-hoc (Kotonya and Toni, 2020a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Gupta and Srikumar, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hanselowski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Explanation While an explanation is tied to veracity prediction, only a few datasets explicitly address the problem of explainable veracity prediction (Atanasova et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kotonya and Toni, 2020b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Alhindi, Petridis and Muresan, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Broadly in NLP, often parts of the input is highlighted to provide an explanation for the prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' This form of explanations is known as extractive rationale (Zaidan, Eisner and Piatko, 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kutlu, McDonnell, Elsayed and Lease, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Incorporating the idea of the extractive rationale, some datasets include a sentence from the evidence along with the label (Thorne et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hanselowski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Wadden et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Schuster et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Although such datasets do not explicitly define evidence as a form of explanation in such cases, the line between evidence retrieval and explanation blurs if the evidence is the explanation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, explanations are different from evidence in a few ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Particularly, explanations need to be concise for user consumption, while evidence can be a collection of documents or long documents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Explanations are user sensitive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Consequently, evidence alone as a form of explanation might have some inherent assumption about the user that might not be understandable for different groups of users (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', experts vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' non-experts).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Challenges Claims Checkworthiness datasets are highly imbalanced, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', the number of checkworthy claims are relatively low compared to non-checkworthy claims (Williams, Rodrigues and Novak, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Datasets are also not generalizable due to their limited domain-specific context (Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, while existing datasets cover various languages such as English, Arabic, Spanish, Bulgarian, and Dutch, they are primarily monolingual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Consequently, building multilingual checkworthiness predictors is still challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Much of the data in check-worthiness datasets is not originally intended to be used in classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The criteria used by different organizations when selecting which claims to check is often subjective and may not generalize outside of the particular organization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Some annotation practices can result in artifacts in the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, artificially constructed false claims, such as a negation-based false claim in FEVER, can lead to artifacts in models (Schuster et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Models do not generalize well beyond the dataset because they might overfit to the annotation schema (Bansal, Nushi, Kamar, Lasecki, Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 9 of 30 The State of Human-centered NLP Technology for Fact-checking Weld and Horvitz, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' One way to identify such blind spots is by using adversarial datasets for fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Such a setting is incorporated in FEVER 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='0 (Thorne and Vlachos, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Datasets constructed for research may not always capture how fact-checkers work in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' This leads to limitations in the algorithms built on them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, interviews with fact-checkers report that they tend to consider a combination of contents of the posts and associated virality metrics (indicating reach) during fact-checking (Arnold, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, most fact-checking datasets do not include virality metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Evidence Retrieval Some datasets have been constructed by using a claim verbatim as a query and taking the top search results as evidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, some queries are better than others for retrieving desired information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Consequently, greater care might be taken in crafting effective queries or otherwise improving evidence retrieval such that resulting datasets are more likely to contain quality evidence for veracity prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Otherwise, poor quality evidence becomes a bottleneck for the quality of the models trained at the later stages in the fact-checking pipeline (Singh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Veracity Prediction A key challenge in veracity prediction datasets is that the labels are not homogeneous across fact-checking websites and normalizing might introduce noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Explanation Some datasets include entire fact-checking articles as evidence and their summaries as the form of explanation (Atanasova et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kotonya and Toni, 2020b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In such cases, “explanation” components assume an already available fact-checking article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Instead, providing abstractive summaries and explaining the reasoning process over the evidence would be more valuable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Data Generation Recent years have seen an increasing interest in the use of data generation and data augmentation for various NLP tasks (Liu, Swayamdipta, Smith and Choi, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hartvigsen, Gabriel, Palangi, Sap, Ray and Kamar, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Dhole, Gangal, Gehrmann, Gupta, Li, Mahamood, Mahendiran, Mille, Srivastava, Tan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kovatchev, Smith, Lee and Devine, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The use of synthetic data has not been extensively explored in the context of fact- checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Automating Fact-checking NLP research in automated fact-checking has primarily focused on building models for different automated fact- checking tasks utilizing existing datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In the following section, we highlight the broad modeling strategies employed in the literature, with more detailed discussion related to explainable methods for automated fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' General NLP Capabilities Claim Detection and Checkworthiness While claim detection is usually implemented as a classification task only, claim checkworthiness is typically implemented both as ranking (Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a) and classification task (Zeng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' As discussed earlier in the task formulation Section (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1), the broad task of claim detection can be broken down into sub-tasks of identifying claims, filtering duplicate claims, and prioritizing claims based on their checkworthiness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Another instance of identifying claims is detecting rumors in social media streams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Some early works in rumor detection focus on feature engineering from available metadata the text itself (Enayet and El-Beltagy, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Aker, Derczynski and Bontcheva, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zhou, Jain, Phoha and Zafarani, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' More advanced methods for claim detection involve LSTM and other sequence models (Kochkina, Liakata and Augenstein, 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Such models are better at capturing the context of the text (Zubiaga, Liakata, Procter, Wong Sak Hoi and Tolmie, 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Tree-LSTM (Ma, Gao and Wong, 2018) and Hierarchical attention networks (Guo, Cao, Zhang, Guo and Li, 2018) capture the internal structure of the claim or the context in which the claim appears.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, graph neural network approaches can capture the related social media activities along with the text (Monti, Frasca, Eynard, Mannion and Bronstein, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Similarly, early works in claim-checkworthiness utilize support vector machines using textual features and rank the claims in terms of their priorities (Hassan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2017a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, Konstantinovskiy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (2021) build a classification model for checkworthiness by collapsing the labels to checkable vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' non-checkable claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' They build a logistic regression model that uses word embeddings along with syntax based features (parts of speech tags, and named entities).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Neural methods such as LSTM performed well in earlier checkworthiness shared tasks (Elsayed, Nakov, Barrón-Cedeño, Hasanain, Suwaileh, Da San Martino and Atanasova, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, Atanasova, Nakov, Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 10 of 30 The State of Human-centered NLP Technology for Fact-checking Màrquez, Barrón-Cedeño, Karadzhov, Mihaylova, Mohtarami and Glass (2019b) show that capturing context helps with the checkworthiness task as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Models such as RoBERTa obtained higher performance in the later edition of the CheckThat!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' shared task (Williams et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Martinez-Rico, Martinez-Romo and Araujo, 2021) for English language claims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fine-tuning such models for claim detection tasks has become more prevalent for claim checkworthiness in other languages as well (Hasanain and Elsayed, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Williams et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Filtering previously fact-checked claims is a relatively new task in this domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shaar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (2020) propose an approach using BERT and BM-25 to match claims against fact-checking databases for matching claims with existing databases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, fine-tuning RoBERTa on various fact-checking datasets resulted in high performance for identifying duplicate claims (Bouziane, Perrin, Cluzeau, Mardas and Sadeq, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Furthermore, a combination of pretrained model Sentence-BERT and re-ranking with LambdaMART performed well for detecting previously fact- checked claims (Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Evidence Retrieval and Veracity Prediction Evidence retrieval and veracity prediction in the pipeline can be modeled sequentially or jointly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Similar to claim detection and checkworthiness models, early works use stylistic features and metadata to arrive at veracity prediction without external evidence (Wang, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Rashkin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Models that include evidence retrieval often use commercial search APIs or some retrieval approach such as TF-IDF, and BM25 (Thorne et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Similar to question-answering models, some works adopt a two-step approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' First a simpler model (TF-IDF or BM-25) is used at scale and then a more complex model is used for re-ranking after the initial pruning (Thorne et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nie, Wang and Bansal, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hanselowski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, document vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' passage retrieval, or 2-stage “telescoping” approaches, are adopted where the first stage is retrieving related documents and the second stage is to retrieve the relevant passage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Two stage approaches are useful for scaling up applications as the first stage is more efficient than the second stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For domain specific evidence retrieval, using domain-bound word embeddings has been shown to be effective (Zeng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The IR task is not always a part of the process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Instead, it is often assumed that reliable evidence is already available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' While this simplifies the fact-checking task so that researchers can focus on veracity prediction, in practice evidence retrieval is necessary and cannot be ignored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Moreover, in practice one must contend with noisy (non-relevant), low quality, and biased search results during inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' As discussed earlier in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='3, assessing the reliability of gathered evidence may be necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' If the evidence is assumed to be trustworthy, then it suffices to detect the stance of each piece of evidence and then aggregate (somehow) to induce veracity (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', perhaps assuming all evidence is equally important and trustworthy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, often one must contend with evidence “in the wild” of questionable reliability, in which case assessing the quality (and bias) of evidence is an important precursor to using it in veracity prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Veracity prediction utilizes textual entailment for inferring veracity over either a single document as evidence or over multiple documents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Dagan, Dolan, Magnini and Roth (2010) define textual entailment as “deciding, given two text fragments, whether the meaning of one text is entailed (can be inferred) from another text.” Real-world applications often require reasoning over multiple documents (Augenstein et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kotonya and Toni, 2020b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Schuster et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Reasoning over multiple documents can be done either by concatenation (Nie et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019) or weighted aggregation (Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Weighted aggregation virtually re-ranks the evidence considered to filter out the unreliable evidence (Ma, Gao, Joty and Wong, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Pradeep, Ma, Nogueira and Lin, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Some approaches also use Knowledge Bases as the central repository of all evidence (Shi and Weninger, 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, evidence is only limited to what is available in the knowledge base (Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zeng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Moreover, a fundamental limitation of knowledge bases is that not all knowledge fits easily into structured relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Recent developments in large language models help extend the knowledge base approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fact-checking models can rely on pretrained models to provide evidence for veracity prediction (Lee, Li, Wang, Yih, Ma and Khabsa, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, this approach can encode biases present in the language model (Lee, Bang, Madotto and Fung, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' An alternative approach is to help fact-checkers with downstream tasks by processing evidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' An example of such work is generating summaries over available evidence using BERT (Fan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Limitations With the recent development of large, pre-trained language models and deep learning for NLP, we see a significant improvement across the fact-checking pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' With the introduction of FEVER (Thorne et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Thorne, Vlachos, Cocarascu, Christodoulopoulos and Mittal, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Aly et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021) and CheckThat!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b) we have benchmarks for both artificial and real-life claim detection and verification models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, even the state-of-the-art NLP models perform poorly on the benchmarks above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, the best performing model on Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 11 of 30 The State of Human-centered NLP Technology for Fact-checking FEVER 2018 shared task (Thorne et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018) reports an accuracy of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='675.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Models perform worse on multi-modal shared task FEVEROUS (Aly et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021): the best performing model reports 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='56 accuracy score6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Similarly, the best checkworthiness model only achieved an average precision of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='65 for Arabic claims and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='224 for English claims in the CheckThat!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2021 shared task for identifying checkworthiness in tweets (Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' On the other hand, the best performing model for identifying check-worthy claims in debates reports 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='42 average precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Surprisingly, Barrón-Cedeño et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (2020), the top performing model for checkworthiness detection, report an average precision of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='806 (Williams et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For the fact-checking task of CheckThat!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2021 (Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b), the best performing model reports a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='83 macro F1 score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, the second-best model only reports a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='50 F1 score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Given this striking gap in performance between the top system vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' others, it would be valuable for future work to benchmark systems on additional datasets in order to better assess the generality of these findings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' It is not easy to make a direct comparison between different methods that are evaluated in different settings and with different datasets (Zeng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Moreover, the pipeline design of automated fact-checking creates potential bottlenecks, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', performance on the veracity prediction task on most datasets is dependent on the claim detection task performance or the quality of the evidence retrieved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Extensive benchmarks are required to incorporate all of the prior subtasks in the fact-checking pipeline systematically (Zeng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Much of AI research is faced with a fundamental trade-off between working with diverse formulations of a problem and standardized benchmarks for measuring progress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' This trade-off also impacts automated fact-checking research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' While there exist benchmarks such as FEVER and the CheckThat!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', most models built on those benchmarks may not generalize well in a practical setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Abstract and tractable formulations of a problem may help us develop technologies that facilitate practical adoption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, practical adoption requires significant engineering effort beyond the research setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Ideally, we would like to see automated fact-checking research continue to move toward increasingly realistic benchmarks while incorporating diverse formulations of the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Explainable Approaches Although the terms interpretability and explainability are often used interchangeably, and some times defined to be so (Molnar, 2020), we distinguish interpretability vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' explainability similar to (Kotonya and Toni, 2020a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Specifically, interpretability represents methods that provide direct insight into an AI system’s components (such as features and variables), often requiring some understanding of the specific to the algorithm, and often built for expert use cases such as model debugging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Explainability represents methods to understand an AI model without referring to the actual component of the systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Note that, in the task formulation section, we have also talked about explaining veracity prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The goal of such explanation stems from fact-checker needs to help readers understand the fact-checking verdict.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Therefore, explaining veracity prediction aligns more closely with explainability over interpretability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' When the distinction between explainability vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' interpretability does not matter, we follow Vaughan and Wallach (2020) in adopting intelligibility (Vaughan and Wallach, 2020) as an umbrella term for both concepts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Sokol and Flach (2019) propose a desiderata for designing user experience for machine learning applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kotonya and Toni (2020a) extend them in the context of fact-checking and suggest eight properties of intelligibility: actionable, causal, coherent, context-full, interactive, unbiased or impartial, parsimonious, and chronological.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, there are three dimensions specifically for explainable methods in NLP (Jacovi and Goldberg, 2020): 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Readability: are explanations clear?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Plausibility: are explanations compelling or persuasive?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Faithfulness: are explanations faithful to the model’s actual reasoning process?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In comparison with the available intelligibility methods in NLP (Wiegreffe and Marasovic, 2021), only a few are applied to existing fact-checking works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Below, we highlight only commonly observed explainable fact-checking methods (also noted by Kotonya and Toni (2020a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Attention-based Intelligibility Despite the debate about attention being a reliable intelligibility method (Jain and Wallace, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Wiegreffe and Pinter, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Serrano and Smith, 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Bibal, Cardon, Alfter, Wilkens, Wang, François and Watrin, 2022), it remains a popular method in existing deep neural network approaches in fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Attention- based explanations are provided in various forms: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' highlighting tokens in articles (Popat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018) 5https://fever.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='ai/2018/task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='html 6https://fever.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='ai/task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='html Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 12 of 30 The State of Human-centered NLP Technology for Fact-checking 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' highlighting salient excerpts from evidence utilizing comments related to the post (Shu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' n-gram extraction using self-attention (Yang, Pentyala, Mohseni, Du, Yuan, Linder, Ragan, Ji and Hu, 2019) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' attention from different sources other than the claim text itself, such as the source of tweets, retweet propagation, and retweeter properties (Lu and Li, 2020) Rule discovery as explanations Rule mining is a form of explanation prevalent in knowledge base systems (Gad- Elrab et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Ahmadi, Lee, Papotti and Saeed, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' These explanations can be more comprehensive, but as noted in the previous section, not all statements can be fact-checked via knowledge-based methods due to limitations of the underlying knowledge-base itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Some approaches provide general purpose rule mining in an attempt to address this limitation (Ahmadi, Truong, Dao, Ortona and Papotti, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Summarization as explanations Both extractive and abstractive summaries can provide explanations for fact- checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Atanasova et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (2020a) provides natural language summaries to explain the fact-checking decision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' They explore two different approaches - explanation generation and veracity prediction as separate tasks, and joint training of the both.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Joint training performs worse than single training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kotonya and Toni (2020b) combine abstractive and extractive approaches to provide a novel summarization approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Brand, Roitero, Soprano, Rahimi and Demartini (2018) show jointly training prediction and explanation generation with encoder-decoder models such as BART (Lewis, Liu, Goyal, Ghazvininejad, Mohamed, Levy, Stoyanov and Zettlemoyer, 2020) results in explanations that help the crowd to perform better veracity assessment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Counterfactuals and adversarial methods Adversarial attacks on opaque models help to identify any blind-spots, biases and discover data artifacts in models (Ribeiro, Wu, Guestrin and Singh, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shared task FEVER 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='0 (Thorne et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019) asked participants to devise methods for generating adversarial claims to identify weaknesses in the fact- checking methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Natural language generation models such as GPT-3 can assist in formulating adversarial claims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' More control over the generation can come from manipulating the input to natural language generation methods and constraining the generated text within original vocabulary (Niewiński, Pszona and Janicka, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Atanasova, Wright and Augenstein (2020b) generate claims with n-grams inserted into the input text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Thorne and Vlachos (2019) experiment with several adversarial methods such as rule-based adversary, semantically equivalent adversarial rules (or SEARS) (Ribeiro, Singh and Guestrin, 2018), negation, and paraphrasing-based adversary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Adversarial attacks are evaluated based on the potency (correctness) of the example and reduction in system performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' While methods such as SEARS and paraphrasing hurt the system performance, hand-crafted adversarial examples have higher potency score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Interpretable methods (non-BlackBox) Some fact-checking works use a white-box or inherently interpretable model for fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (2018b,a) utilize a probabilistic graphical model and build an interactive interpretable model for fact-checking where users are allowed to directly override model decisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kotonya, Spooner, Magazzeni and Toni (2021) propose an interpretable graph neural network for interpretable fact-checking on FEVEROUS dataset (Aly et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Limitations Intelligible methods in NLP and specifically within fact-checking are still in their infancy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Analysis of Kotonya and Toni (2020a) shows that most methods do not fulfill the desiderata mentioned earlier in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Specifically, they find that none of the existing models meet the criteria of being actionable, causal, and chronological.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' They also highlight that no existing method explicitly analyzes whether explanations are impartial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Some forms of explanations, such as rule-based triplets, are unbiased as they do not contain sentences or contain fragments of information (Kotonya and Toni, 2020a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Some explainable methods address a specific simplified formulation of the task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, Kotonya and Toni (2020b);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Atanasova et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (2020a) both assume that expert-written fact-checking articles already exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' They provide explanations as summaries of the fact-checking article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, in practice, a fact-checking system would not have access to such an article for an unknown claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In the case of automated fact-checking, most intelligible methods focus on explaining the outcome rather than describing the process to arrive at the outcome (Kotonya and Toni, 2020a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Moreover, all of the tasks in the fact- checking pipeline have not received equal attention for explainable methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kotonya and Toni (2020a) also argue that automatic fact-checking may benefit from explainable methods that provide insight into how outcomes of earlier sub-task in the fact-checking pipeline impact the outcome of later subtasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 13 of 30 The State of Human-centered NLP Technology for Fact-checking Most explainable NLP works evaluate explanation quality instead of explanation utility or faithfulness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Jacovi and Goldberg (2020) argue for a thorough faithfulness evaluation for explainable models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, even though attention-based explanations may provide quality explanations, they may not necessarily be faithful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Moreover, expla- nation utility requires separate evaluation by measuring whether explanations improve both i) human understanding of the model (Hase and Bansal, 2020) and ii) human effectiveness of the downstream task (Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, most intelligible methods establish only one-way communication from the model to humans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Instead, explanations might improve the model and human performance by establishing a bidirectional feedback loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Human-in-the-loop Approaches Human-in-the-loop (HITL) approaches can help scale automated solutions while utilizing human intelligence for complex tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' There are different ways of applying HITL methods, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', delegating sub-tasks to crowd workers (Demartini, Trushkowsky, Kraska, Franklin and Berkeley, 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Demartini, Difallah and Cudré-Mauroux, 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Sarasua, Simperl and Noy, 2012), active learning (Settles, 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zhang, Lease and Wallace, 2017), interactive machine learning (Amershi, Cakmak, Knox and Kulesza, 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Joachims and Radlinski, 2007), and decision support systems where humans make the final decision based on model outcome and explanations (Zanzotto, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' While HITL approaches in artificial intelligence are prevalent, only a few recent works employ such approaches in fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' HITL approaches are predominantly more present in the veracity prediction task than other parts of the pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, Demartini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (2020) propose a HITL framework for combating online misinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, they only consider hybrid approaches for two sub-tasks in the fact-checking pipeline: a) claim check- worthiness and b) truthfulness judgment (same as veracity prediction).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Below, we discuss the existing HITL approaches by how the system leverages human effort for each sub-task in the fact-checking pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Claim Detection, Checkworthiness, and Prioritization Social media streams are often monitored for rumors as a part of the claim detection task (Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Farinneya, Abdollah Pour, Hamidian and Diab (2021) apply an active learning-based approach at the claim detection stage for identifying rumors on social media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In-domain data is crucial for traditional supervised methods to perform well for rumor detection (Ahsan, Kumari and Sharma, 2019), but in real-world scenarios, sufficient in-domain labeled data may not be available in the early stages of development.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A semi-supervised approach such as active learning is beneficial for achieving high performance with fewer data points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Empirical results shows that Tweet-BERT, along with the least confidence-based sample selection approach, performs on par with supervised approaches using far less labeled data (Farinneya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Similarly, Tschiatschek, Singla, Gomez Rodriguez, Merchant and Krause (2018) propose a HITL approach that aims to automatically aggregate user flags and recommend a small subset of the flagged content for expert fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Their Bayesian inference-based approach jointly learns to detect fake news and identify the accuracy of user flags over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' One strength of this approach is that the algorithm improves over time in identifying users’ flagging accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Consequently, over time this algorithm’s performance improves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' This approach is also robust against spammers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' By running the model on publicly available Facebook data where a majority of the users are adversarial, experiments show that their algorithm still performs well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Duke’s Tech & Check team implemented HITL at the claim check-worthiness layer (Adair and Stencel, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' To avoid flagging false check-worthy claims, a human expert would sort claims detected by ClaimBuster (Hassan, Zhang, Arslan, Caraballo, Jimenez, Gawsane, Hasan, Joseph, Kulkarni, Nayak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2017b), filter out the ones deemed more important for fact-checkers, and email them to several organizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In essence, this approach helped fact-checkers prioritize the claims to check through an additional level of filtering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Currently, several published fact-checks on PolitiFact were first alerted by the emails from Tech & Check.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Note that the CheckThat!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shaar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Barrón-Cedeño et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Atanasova, Nakov, Karadzhov, Mohtarami and Da San Martino, 2019a) is a popular shared task for claim detection, check-worthiness, and prioritization tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However such shared tasks often have no submissions that employs HITL methodologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shared tasks for HITL approaches could encourage more solutions that can complement the limitations of model-only based approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Evidence Retrieval and Veracity Prediction Most work in HITL fact-checking caters to veracity prediction, and only a few consider evidence retrieval as a separate task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' While there is a body of literature on HITL approaches in information retrieval (Chen and Jain, 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Demartini, 2015), we know of no work in that direction for fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 14 of 30 The State of Human-centered NLP Technology for Fact-checking Shabani, Charlesworth, Sokhn and Schuldt (2021) leverage HITL approaches for providing feedback about claim source, author, message, and spelling (SAMS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Annotators answer four yes/no questions about whether the article has a source, an author, a clear and unbiased message, and any spelling mistake.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Furthermore, this work integrates the features provided by humans in a machine learning pipeline, which resulted in a 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1% accuracy increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, the evaluation is performed on a small dataset with claims related to Covid-19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' It is unclear if this approach would generalize outside of the domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Moreover, further human effort can be reduced in this work by automating spell- check and grammar-check.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' SAMS could be quite limited in real life situations as most carefully crafted misinformation often looks like real news.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Model generated fake news can successfully fool annotators (Zellers, Holtzman, Rashkin, Bisk, Farhadi, Roesner and Choi, 2020), and thus SAMS might also fail to flag such fake news.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Qu, Barbera, Roitero, Mizzaro, Spina and Demartini (2021a) and Qu, Roitero, Mizzaro, Spina and Demartini (2021b) provide an understanding of how human and machine confidence scores can be leveraged to build HITL approaches for fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' They consider explicit self-reported annotator confidence and compute implicit con- fidence based on standard deviation among ten crowd workers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Model confidence is obtained from bootstrapping (Efron and Tibshirani, 1985) ten different versions of the model and then computing standard deviation over the scores returned by the soft-max layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Their evaluation shows that explicit crowd and model confidence are poor indicators of accurate classification decisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Although the crowd and the model make different mistakes, there is no clear signal that confidence is related to accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, they show that implicit crowd confidence can be a useful signal for identifying when to engage experts to collect labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A more recent study shows that a politically balanced crowd of ten is correlated with the average rating of three fact-checkers (Allen, Arechar, Pennycook and Rand, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Gold, Kovatchev and Zesch (2019) also find that annotations by a crowd of ten correlate with the judgments of three annotators for textual entailment, which is utilized by veracity prediction models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A series of studies show that the crowd workers can reliably identify misinformation (Roitero, Soprano, Fan, Spina, Mizzaro and Demartini, 2020a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Roitero, Soprano, Portelli, Spina, Della Mea, Serra, Mizzaro and Demartini, 2020b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Soprano, Roitero, La Barbera, Ceolin, Spina, Mizzaro and Demartini, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Furthermore, Roitero et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (2020b) show that crowd workers not only can identify false claims but also can retrieve proper evidence to justify their annotation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' One weakness of this study is that it only asks users to provide one URL as evidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, in practice, fact- checking might need reasoning over multiple sources of information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Although these studies do not propose novel HITL solutions, they provide sufficient empirical evidence and insights about where crowd workers can be engaged reliably in the fact-checking pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (2018b) propose joint modeling of crowd annotations and machine learning to detect the veracity of textual claims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The key strength of the model is that it assumes all annotators can make mistakes, which is a possibility as fact-checking is a difficult task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Another strength is that this model allows users to import their knowledge into the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Moreover, this HITL approach can collect on-demand stance labels from the crowd and incorporate them in veracity prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Empirical evaluation shows that this approach achieves strong predictive performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A follow-up study provides an interactive HITL tool for fact-checking (Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nguyen, Weidlich, Yin, Zheng, Nguyen and Nguyen (2020) propose a HITL system to minimise user effort and cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Users validate algorithmic predictions but do so at a minimal cost by only validating the most-beneficial predictions for improving the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' This system provides a guided interaction to the users and incrementally gets better as users engage with it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' It is important to note that research on crowdsourcing veracity judgment is at an early stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Different factors such as demographics, political leaning, criteria for determining the expertise of the assessors (Bhuiyan, Zhang, Sehat and Mitra, 2020), cognitive factors (Kaufman, Haupt and Dow, 2022), and even the rating scale (La Barbera, Roitero, Demartini, Mizzaro and Spina, 2020) led to different levels of alignment with expert ratings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Bhuiyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (2020) outline research directions for designing better crowd processes specific to different types of misinformation for the successful utilization of crowd workers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Explaining Veracity Prediction HITL systems in fact-checking often use veracity explanations to correct model errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' As discussed earlier, Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (2018a) provides an interpretable model that allows users to impart their knowledge when the model is wrong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Empirical evaluation shows that users could impart their knowledge into the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Similarly, Zhang, Rudra and Anand (2021b) propose a method that collects user feedback from explanations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Note that this method explains veracity prediction outcomes based on the evidence retrieved and their stance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Users provide feedback in terms of stance and relevance of the retrieved evidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The proposed approach employs lifelong Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 15 of 30 The State of Human-centered NLP Technology for Fact-checking learning which enables the system to improve over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Currently there is no empirical evaluation of this system to identify the effectiveness of this approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Although natural language generation models are getting increasingly better (Radford, Wu, Child, Luan, Amodei, Sutskever et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019), generating abstractive fact-checking explanations is still in its infancy (Kotonya and Toni, 2020b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' HITL methods could be leveraged to write reports justifying fact-checking explanations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Limitations After reviewing existing HITL approaches across different fact-checking tasks, we also list out several limitations as follow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' First, some HITL approaches adopt several interpretable models to integrate human input, but the resulting models do not perform as well as the state-of-the-art deep learning models (Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018b,a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Farinneya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (2021) apply HITL approaches to scale up rumor detection from a limited amount of annotated data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Although it performs well to generalize the algorithm for a new topic in a few-shot manner, one of the weaknesses is that data from other domains or topics causes a high variance in model performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Consequently, in-domain model performance might degrade when out-of-domain data is introduced in model training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' This issue may hinder the model’s generalizability in practice, especially where a clear demarcation between topic domains may not be possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' More importantly, there is a lack of empirical studies on how to apply HITL approaches of fact-checking for practical adoption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Although HITL approaches provide a mechanism to engage human in the process of modeling development, several human factors, such as usability, intelligibility, and trust, become important to consider when applying this method in the real-world use case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fact-checking is a time-sensitive task and requires expertise to process complex information over multiple sources (Graves, 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fact-checkers and policy makers are often skeptical about any automated or semi-autoamted solutions as this type of research requires human creativity and expertise (Arnold, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Micallef et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Therefore, more empirical evidence needs to be found to assess the effectiveness of applying different HITL approaches to automated fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Existing Tools for Fact-checking In the previous section, we reviewed the details of current NLP technologies for fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Subsequently, we extend our review of automated fact-checking to the HCI literature and discuss existing practices of applying fact- checking into real-world tools that assist human fact-checkers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In brief, there is a lack of holistic review of fact-checking tools from a human-centered perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, we found that the articulation of work between human labor and AI tools is still opaque in this field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Research questions include but are not limited to: 1) how can NLP tools facilitate human work in different fact-checking tasks?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2) how can we incorporate user needs and leverage human expertise to inform the design of automated fact-checking?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In this section, we examine current real-world tools that apply NLP technologies in different stages of fact-checking and clarify the main use cases of these tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' We argue that more research concerning human factors for building automated fact-checking, such as user research, human-centered design, and usability studies, should be conducted to improve the practical adoption of automated fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' These studies help us identify the design space of applying explainable and HITL approaches for real-world NLP technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Claim Detection and Prioritization The first step in claim detection is sourcing content to possibly check.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' On end-to-end encrypted platforms, such as WhatsApp, Telegram, and Signal, crowdsourcing-based tip-lines play a vital role in identifying suspicious content that is not otherwise accessible (Kazemi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' As another example, Check from Meedan 7, a tip-line service tool, also helps fact-checkers monitor fake news for in-house social media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' User flagging of suspect content on social media platforms such as Facebook is also a valuable signal for identifying such content, and crowdsourcing initiatives like Twitter’s BirdWatch can further help triage and prioritize claims for further investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In the stage of finding and choosing claims to check, fact-checkers assess the fact-checking related quality of a claim and decide whether to fact-check it (Graves, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Micallef et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' NLP models in claim detection, claim matching, and check-worthiness are useful to assist the above decision-making process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, integrating them into real-world tools that help fact-checkers prioritize what to check requires more personalized effort.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Graves (2018a) points out that it is important to design the aforementioned models to cater to fact-checker organizational interests, stakeholder needs, and changing news trends.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 7https://meedan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='com/check Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 16 of 30 The State of Human-centered NLP Technology for Fact-checking As one of the fact-checking qualities of a claim, checkability can be objectively analyzed by whether a claim contains one or more purported facts that can be verified (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fact-checkers find it useful to apply models that identify checkable claims to their existing workflow because the model helps them filter irrelevant content and claims that are uncheckable when they are choosing claims to check (Arnold, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' ClaimBuster, one of the well- known claim detection tools, is built to find checkable claims from a large scale of text content (Hassan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2017a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Claim detection can also be integrated into speech recognition tools to spot claims from live speech (Adair, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, if a claim has already been fact-checked, fact-checkers can skip it and prioritize claims that have not been checked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' As a relatively new NLP task, claim matching has been integrated into some current off-the-shelf search engines or fact-checking tools to help fact-checkers find previously fact-checked claims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, Google Fact Check Explorer8 can retrieve previously fact-checked claims by matching similar fact-check content to user input queries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Similarly, with Meedan’s Check, if users send a tip with fake news that has been previously fact-checked, the tool further helps fact-checkers retrieve the previous fact-check and send it to users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Whether or not to fact-check a claim depends on an organization’s goals and interests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Tools built for claim detection need to take such interests into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, Full Fact developed a claim detection system that classifies claims into different categories, such as quantity, predictions, correlation or causation, personal experience, and laws or rules of operations (Konstantinovskiy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The claim categories are designed by their fact-checkers to cater to their needs of fact-checking UK political news in a live fact-checking situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Identifying certain claims, such as quantity, correlation or causation, might be particularly useful for fact-checkers to evaluate the credibility of politician statements and claims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The system also helps tailor fact-checkers’ downstream tasks, such as fact-check assignments and automated verification for statistical claims (Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fact-checkers also use social media monitoring tools to find claims to check, such as CrowdTangle, TweetDeck, and Facebook’s (unnamed) fact-checking tool, but those tools are not very effective to detect checkable claims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Some fact- checkers reported that only roughly 30% of claims flagged by Facebook’s fact-checking tool were actually checkable (Arnold, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A low hanging fruit is to integrate claim detection models into these social media monitoring tools so that it is easier for fact-checkers to identify claims that are both viral and checkable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, these tools should enable fact-checkers to locate certain figures, institutions, or agencies according to their fact-checking interests and stakeholder needs so that these tools can better identify and prioritize truly check-worthy claims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' An important question in implementing those systems is how to measure the virality of a claim and its change over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' It would also be useful to integrate veracity prediction into previous fact-checking tools because fact-checkers may pay the most attention to claims9 that are suspect and uncertain (since obviously true or false claims likely do not require a fact-check).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, information or data points that are used to give such predictions should also be provided to fact-checkers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' If sources, evidence, propagation patterns, or other contextual information that models use to predict claim veracity can be explained clearly for fact-checkers, they can also triage these indicators to prioritize claims more holistically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Tools for Evidence Retrieval After finding and prioritizing which claim to check, fact-checkers investigate claims following three main activities: 1) decomposing claims, 2) finding evidence, and 3) tracing the provenance of claims and their spread.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Note that these three activities are intertwined with each other by using different information-seeking tools in the fact-checking process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fact-checkers search for evidence by decomposing claims into sub questions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Evidence found while investigating a claim may further modify or add to the sub-questions (Singh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' By iteratively investigating claims via online search, fact-checkers reconstruct the formation and the spread of a claim to assess its truth (Graves, 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In this section, we discuss the utility of existing information-seeking tools, including off-the-shelf search engines and domain-specific databases, that assist fact-checkers in each activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Claim decomposition is not a specific activity that qualitative researchers have reported or analyzed in their fact- checking studies, but we can find more details from where fact-checking organizations describe their methodology10 and how fact-checkers approach complex claims in their fact-checks11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Claim decomposition refers to how fact- checkers interpret ambiguous terms of a claim and set the fact-checking boundaries to find evidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Decomposing 8https://toolbox.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='google.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='com/factcheck/explorer 9https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='factcheck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/our-process/ 10https://leadstories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='com/how-we-work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='html 11https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='factcheck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/2021/10/oecd-data-conflict-with-bidens-educational-attainment-claim/ In this fact- check, fact-checkers decompose what President Biden mean by “advanced economies” and “young people”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The approach of defining these two terms directly influence their fact-checking results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 17 of 30 The State of Human-centered NLP Technology for Fact-checking claims effectively requires sensitive curiosity and news judgments for fact-checkers that are cultivated through years of practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Unfortunately, we are not aware of any existing tools that facilitate this process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Traditional methodology to decompose claims is to ask sub-questions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Recent NLP studies simulate this process by formulating it as a question-answering task (Fan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Researchers extract justifications from existing fact-checks and crowdsource sub-questions to decompose the claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For automated-fact-checking, this NLP task might be very beneficial to improve the performance of evidence retrieval by auto-decomposing claims into smaller checkable queries (Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Although it is difficult for NLP to match the abilities of professional fact-checkers, it might help scale up the traditional, human fact-checking process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' It could also help the public, new fact-checkers, or journalists to more effectively investigate complex claims and search for evidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' How fact-checkers find evidence is usually a domain-specific reporting process, contacting experts or looking for specific documents from reliable sources (Graves, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Micallef et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Instead of conducting random searches online, most fact-checkers include a list of reliable sources in which to look for evidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Tools that are designed for searching domain datasets can also help fact-checkers to find evidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, Li, Fang, Lou, Li and Zhang (2021) built an analytical search engine for retrieving the COVID-19 news data and summarizing it in an easy to digest, tabular format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The system can decompose analytical queries into structured entities and extract quantitative facts from news data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Furthermore, if evidence retrieval is accurate enough for in-domain datasets, the system can take a leap further to auto-verify domain-related claims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' We provide more detailed use cases of veracity prediction in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fact-checkers mainly use off-the-shelf search engines, such as Google, Bing, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', to trace a claim’s origin from publicly accessible documents (Beers, Haughey, Melinda, Arif and Starbird, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Arnold, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Other digital datasets, such as LexisNexis and InternetArchive, are also useful for fact-checkers to trace claim origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' To capture the formation and change of a claim, search engines should not only filter unrelated content, but also retrieve both topically and evidentially relevant content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hasanain and Elsayed (2021) report that most topically relevant pages retrieved from Google do not contain evidential information, such as statistics, quotes, entities, or other types of facts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, most built-in search engines in social media platforms, such as Twitter and Facebook, only filter “spreadable” content not “credible” content (Alsmadi, Alazzam and AlRamahi, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Furthermore, these off-the-shelf search engines do not support multilingual search, so it is difficult for fact-checkers to trace claims if they are translated from other languages (Graves, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' NLP researchers have started to use multilingual embedding models to represent claim-related text in different languages and match existing fact-checks (Kazemi, Gaffney, Garimella and Hale, 2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' This work not only helps fact-checkers find previously fact-checked claims more easily from other languages, but also to examine how the claim is transformed and reshaped by the media in different languages and socio-political contexts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Domain-specific Tools for Claim Verification As discussed in Sections 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='2 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='3, most verification prediction models are grounded on the collected evidence and the claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' To build an end-to-end claim verification system, NLP developers need to construct domain-specific datasets incorporating both claims and evidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Different from complex claims that contain multiple arguments and require decomposition, claims that have simple linguistic structure with purported evidence or contain statistical facts can be automatically verified (Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Karagiannis, Saeed, Papotti and Trummer (2020) built CoronaCheck, a search engine that can directly verify Covid- 19 related statistical claims by retrieving official data curated by experts (Dong, Du and Gardner, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Full Fact (The Poynter Institute, 2021) also took a similar approach to verify statistical macroeconomic claims by retrieving evidence from UK parliamentary reports and national statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, Wadden et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (2020) built a scientific claim verification pipeline by using abstracts that contain evidence to verify a given scientific claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, pitfalls still exist if fact-checkers use these domain-specific verification tools in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, the CoronaCheck tool cannot check the claim “The Delta variant causes more death than the Alpha variant” simply because the database does not contain fine-grained death statistics for Covid variants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, checking a statistical or scientific claim might only be a part of the process of checking a more complex claim, which requires fact-checkers to contextualize the veracity of previous statistical or scientific checks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In general, domain-specific tools are clearly valuable to use when available, though in practice they are often incomplete and insufficient on their own to check complex claims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 18 of 30 The State of Human-centered NLP Technology for Fact-checking 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Discussion In this review, we have 1) horizontally outlined the research of applying NLP technologies for fact-checking from the beginning of task formulation to the end of tools adoption;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' as well as 2) vertically discussing the capabilities and limitations of NLP for each step of a fact-checking pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' We perceive a lack of research that bridges both to assist fact-checkers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Explainable and HITL approaches leverage both human and computational intelligence from a human- centered perspective, but there is a need to provide actionable guides to utilize both methods for designing useful fact-checking tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In this section, we propose several research directions to explore the design space of applying NLP technologies to assist fact-checkers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Distributing Work between Human and AI for Mixed-initiative Fact-checking The practice of fact-checking has already become a type of complex and distributed computer-mediated work (Graves, 2018a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Although Graves (2017) breaks down a traditional journalist fact-checking pipeline into five steps, the real situation of fact-checking a claim is more complicated (Juneja and Mitra, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Various AI tools are adopted dynamically and diversely by fact-checkers to complete different fact-checking tasks (Arnold, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Beers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Micallef et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Researchers and practitioners increasingly believe that future fact-checking should be a mixed-initiative practice in which humans perform specific tasks while machines take over others (Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Lease, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' To embed such hybrid and dynamic human-machine collaborations into existing fact-checking workflow, the task arrangement between human and AI need to be articulated clearly by understanding the expected outcomes and criteria for each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Furthermore, designing a mixed-initiative tool for different fact-checking tasks requires a more fine-grained level of task definition for human and AI (Lease, 2018, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='3, we discuss several studies highlighting the role of humans in the fact-checking workflow, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', a) human experts select check-worthy claims from claim detection tools (Hassan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2017b) and deliver them to fact-checkers, b) ask crowd workers to judge reliable claims sources (Shabani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021), or c) flag potential misinformation (Roitero et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020b) to improve veracity prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' All of the above human activities are examples of micro-tasks within a mixed-initiative fact-checking process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Prior work in crowdsourcing has shown that it is possible to effectively break down the academic research process and utilize crowd workers to partake in smaller research tasks (Vaish, Davis and Bernstein, 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Vaish, Gaikwad, Kovacs, Veit, Krishna, Arrieta Ibarra, Simoiu, Wilber, Belongie, Goel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Given this evidence, we can also break down sub-tasks of a traditional fact-checking process into more fine-grained tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Therefore, key research questions include: a) How can we design these micro-tasks to facilitate each sub-task of fact-checking, and b) What are the appropriate roles for human and AI in different micro-tasks?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' To effectively orchestrate human and AI work, researchers need to understand the respective roles of human and AI, and how they will interact with one another, because it will directly affect whether humans decide to take AI advice (Cimolino and Graham, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Usually, if AI aims to assist high-stake decision-making tasks, such as recidivism prediction (Veale, Van Kleek and Binns, 2018) and medical treatments (Cai, Winter, Steiner, Wilcox and Terry, 2019), considerations of risk and trust will be important factors for people to adopt such AI assistants (Lai, Chen, Liao, Smith-Renner and Tan, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In the context of fact-checking, if AI directly predicts the verdict of a claim, fact- checkers may be naturally skeptical about how the AI makes such a prediction (Arnold, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' On the other hand, if AI only helps to filter claims that are uncheckable, such as opinions and personal experience, fact-checkers may be more willing to use such automation with less concern about how AI achieves it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Deciding whether a claim is true or false is a high-stake decision-making task for fact-checkers, while filtering uncheckable claims is a less important but tedious task that fact-checkers want automation to help with.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Therefore, the extent of human acceptance of AI varies according to how humans assess the task assigned to AI, resulting in different human factors, such as trust, transparency, and fairness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Researchers need to specify or decompose these human factors into different key variables that can be measured during the model development process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Given a deep understanding of the task relationship between human and AI, researchers can then ask further research questions on how to apply an explainable approach, or employ a HITL system vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' automated solutions, to conduct fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Here we list out several specific research topics that contain mixed-initiative tasks, including: a) assessing claim difficulty leveraging crowd workers, b) breaking down a claim into a multi-hop reasoning task and engaging the crowd to find information relevant to the sub-claims, and c) designing micro-tasks to parse a large number of documents retrieved by web search to identify sources that contain the evidence needed for veracity prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 19 of 30 The State of Human-centered NLP Technology for Fact-checking 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Human-centered Evaluation of NLP Technology for Fact-Checkers We begin this section by proposing key metrics from human factors for evaluating systems (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', what to measure and how to measure them): accuracy, time, model understanding, and trust (Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Following this, we further propose a template for an experimental protocol for human-centered evaluations in fact-checking (Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Metrics Accuracy Most fact-checking user studies assume task accuracy as the primary user goal (Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Mohseni, Yang, Pentyala, Du, Liu, Lupfer, Hu, Ji and Ragan, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Whereas non-expert users (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', social media users or other form of content consumers) might be most interested in the veracity outcome along with justification, fact- checkers often want to use automation and manual effort interchangeably in their workflow (Arnold, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Thus, we need a more fine-grained approach towards measuring accuracy beyond the final veracity prediction accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For fine-grained accuracy evaluation, it is also crucial to capture fact-checker accuracy, particularly for the sub-tasks for which they use the fact-checking tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' With the assumption that “ground truth” exists for all of the sub-tasks in the fact-checking pipeline, accuracy can be computed by comparing user answers with the ground truth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Note that measuring sub-task level accuracy is trickier than end-to-end fact-checking accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Sub-task level accuracy can be captured by conducting separate experiments for each sub-task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Suppose the point of interest is to understand user performance for detecting claim-checkworthiness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In that case, we will need to collect additional data specific to the claim-checkworthiness task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In some cases, it is possible to merge multiple sub-tasks for evaluation purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, Miranda, Nogueira, Mendes, Vlachos, Secker, Garrett, Mitchel and Marinho (2019) evaluate the effectiveness of their tool with journalists by capturing the following two key variables: a) the relevance of retrieved evidence, and b) the accuracy of the predicted stance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' This method provides essential insight into evidence retrieval, stance detection, and the final fact-checking task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Depending on the tool, the exact detail of this metric will require specific changes according to tool affordances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Note that both time and accuracy measures need to control for claim properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, if a claim has been previously fact-checked, it would take less time to fact-check such claims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' On the other hand, a new claim that is more difficult to assess would require more time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Model Understanding Fact-checkers want to understand the tools they use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, Arnold (2020) pointed out that fact-checkers expressed a need for understanding CrowdTangle’s algorithm for detecting viral content on various social media platforms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Similarly, Nakov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (2021a) observed a need for increased system transparency in the fact-checking tools used by different organizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Lease (2018) argues that transparency is equally important for non-expert users to understand the underlying system and make an informed judgement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Although this is not a key variable related to user performance, it is important for practical adoption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' To measure understanding, users could be asked to self-report their level of understanding on a Likert-scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, simply asking participants if they understand the algorithm is not a sufficient metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, it does not indicate whether participants will be able to simulate tool behavior (Hase and Bansal, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' We suggest the following steps for measuring model understanding based on prior work (Cheng, Wang, Zhang, O’Connell, Gray, Harper and Zhu, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Decision Prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' To capture users’ holistic understanding of a tool, users could be provided claims and asked the following: “What label would the tool assign to this claim?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Alternative Prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Capturing how changes in the input influence the output can also measure understand- ing, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', by asking users how the tool would assign a label to a claim when input parts are changed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Imagine a tool that showed the users the evidence it has considered to arrive at a veracity conclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Now, if certain pieces of evidence were swapped, how would that be reflected in the model prediction?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Trust For practical adoption, trust in a fact-checking tool is crucial across all user groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' While model understanding is often positively correlated with trust, understanding alone may not suffice to establish trust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In this domain, fact- checkers and journalists may have less trust in algorithmic tools (Arnold, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' On the other hand, there is also the risk of over-trust, or users blindly following model predictions (Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Mohseni et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' To maximize the tool effectiveness, we would want users to neither dismiss all model predictions out of hand (complete skepticism) nor blindly follow all model predictions (complete faith).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Instead, it is important to calibrate user trust for the most effective tool usage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' We suggest measuring a notion of calibrated trust (Lee and See, 2004): how often users abide by correct model decisions and override erroneous model decisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 20 of 30 The State of Human-centered NLP Technology for Fact-checking Both Model User Neither User Prediction Correct Incorrect Correct Incorrect Model Prediction Figure 2: Confusion Matrix for User Predictions vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Model Predictions with respect to ground truth (gold).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' We assume model predictions are provided to the user, who then decides whether to accept or reject the model prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The top-left quadrant (Both) covers cases where users correctly follow model predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The top-right quadrant (Model) denotes the cases where the model is correct but users mistakenly reject the model decisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The bottom-left quadrant User denotes the cases where users correctly reject erroneous model predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The bottom-right quadrant Neither denotes the cases where users incorrectly accept erroneous model predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Quantifying user vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' model predictions in this manner enables measurement of calibrated trust: how often users abide by correct model decisions and override erroneous model decisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' To measure calibrated trust, we imagine a confusion matrix shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The rows denote correct vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' incorrect model predictions while the columns denote correct vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' incorrect user predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A user who blindly followed all model predictions would have their behavior entirely captured by the main (primary) diagonal, whereas a user who skeptically rejected all model predictions would have their behavior captured entirely in the secondary diagonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The ideal user’s behavior would be entirely captured in the first column: accepting all correct model predictions and rejecting all incorrect model predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' To promote effective human-AI teaming, AI tools should assist their human users in developing strong calibrated trust to appropriately trust and distrust model predictions as each case merits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Beyond calibrated trust, one could also measure quantitative trust by adopting methodologies from the human- machine trust literature (Lee and Moray, 1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, Cheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (2019) adapted prior work into a 7-point Likert scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A similar scale can be reused for evaluating trust in a fact-checking tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, we can create five different Likert-scales to measure the agreement (or disagreement) of users with the following statements: I understand the fact-checking tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' I can predict how the tool will behave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' I have faith that the tool would be able to cope with the different fact-checking task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' I trust the decisions made by the tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' I can count on the tool to provide reliable fact-checking decisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additional factors Individual differences among users might result in substantial variation in experimental outcomes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, varying technical literacy (Cheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019), any prior knowledge about the claims, and users’ political leaning (Thornhill, Meeus, Peperkamp and Berendt, 2019) might influence user performance on the task while using fact-checking tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Thus it is valuable to capture these factors in study design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Technical Literacy: Users’ familiarity with popular technology tools (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='g, recommendation engines, spam detectors) and their programming experience (Cheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019) as well as familiarity with existing fact- checking tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Media Literacy: Users’ familiarity with 1) the fact-checking process, and 2) fact-checks from popular organizations such as PolitiFact and FactCheck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='Org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Demographics: Users’ education level, gender, age, and political leaning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Quantitative measures alone are not sufficient as they do not capture certain nuances about how effectively a tool integrates into a fact-checker’s workflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, even if users understand and trust the working principle of a Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 21 of 30 The State of Human-centered NLP Technology for Fact-checking tool, it is unclear why they do so.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hence, users might be asked a few open-ended questions at the end of the study to gather qualitative insights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Such questions could include: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Describe your understanding of the tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Do any specific aspects of its design seem to assist or detract from your understanding of how it works?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Why do you trust or not trust the tool?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Would you use this tool beyond this study, and if so, in what capacity?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Experimental Protocol One strategy to capture the aforementioned metrics is to design a mixed-methods study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Here we outline the template for such a study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Imagine the goal were to measure the user performance for fact-checking using a new tool (let’s call it tool A) compared to an existing tool (tool B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fact-checking tasks in the real world might be influenced by user priors about the claims being checked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Thus, a within-subject study protocol may be more appropriate to account for such priors (Shi, Bhattacharya, Das, Lease and Gwizdka, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Pre-task: Users would first be asked to fact-check a set of claims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' To do so, first a user would be asked to leverage a pre-existing tool B at this stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Tool B can be replaced with different baselines, depending on the particular use case, ranging from simple web-search by non-expert users to proprietary tools used by fact-checkers and journalists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Users would be asked to think aloud at this stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Learning: At this stage users would familiarize themselves with the new tool (tool A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Users would need to fact-check a different set of claims from the first one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Ground truth would also accessible to the user to form a prior about what kind of mistakes a tool might make.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Claims here would be selected at random to reflect tool capabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Moreover, tool performance metrics would be given to the users as additional information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Users would be encouraged to ask questions about the tool at this stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Prediction: Users would now be asked to fact-check the same claims from step-1 above but this time they are asked to leverage the tool A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Users would be asked to think out loud through this stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Users could simply guess the answers and achieve a high accuracy score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Thus, claims selected for stages (1) & (3) would be a balanced set of claims with an equal distribution of true positive, true negative, false positive, and false negative samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' This idea is adopted from prior work (Hase and Bansal, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Post-task survey: Users would now be asked to take a small survey for capturing trust, understanding, technical literacy, media literacy, and demographic information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Post-task interview: Upon completion of these steps, users would be interviewed with open-ended questions to gather insights about their understanding and trust in the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The measures and study protocol could be useful in the context of evaluating any new fact-checking system compared to an existing system or practices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Specifics might vary depending on the target user group and the tool’s intended purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Above we use the whole fact-checking pipeline to illustrate our experimental protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However this technique can be applied to other sub-tasks of automated fact checking, granted that we have the ground truth of the outcome for that sub-task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' For example, let us assume a new claim detection tool has been proposed that takes claims from a tip-line (Kazemi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Currently, fact-checkers use an existing claim-matching algorithm to filter out the already fact-checked claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Now, if we replace tool B above with the existing claim-matching algorithm and tool A with the proposed claim detection tool, we can utilize the protocol mentioned above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In conclusion, one could evaluate how users perform for claim detection tasks using the new tool compared to the existing ones in terms of their accuracy, time, understanding, and trust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' While we have proposed an ideal, extensive version of an evaluation protocol for evaluating new fact-checking tools, note that the actual protocol used in practice could be tailored according to the time required from the participants and the cost of conducting the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Conclusion This review highlights the practices and development of the state-of-the-art in using NLP for automated fact- checking, emphasizing both the advances and the limitations of existing task formulation, dataset construction, and modeling approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' We partially discuss existing practices of applying these NLP tasks into real-world tools that assist human fact-checkers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In recent years we have seen significant progress in automated fact-checking using NLP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 22 of 30 The State of Human-centered NLP Technology for Fact-checking A broad range of tasks, datasets, and modeling approaches have been introduced in different parts of the fact-checking pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Moreover, with recent developments in transformers and large language models, the model accuracy has improved across tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' However, even state-of-the-art models on existing benchmarks — such as FEVER and CLEF!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' — may not yet be ready for practical adoption and deployment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' To address these limitations, we advocate development of hybrid, HITL systems for fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' As a starting point, we may wish to reorient the goals of existing NLP tasks from full automation towards decision support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' In contrast with fully-automated systems, hybrid systems instead involve humans-in-the-loop and facilitate human-AI teaming (Bansal et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Bansal, Wu, Zhou, Fok, Nushi, Kamar, Ribeiro and Weld, 2021b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Bansal, Nushi, Kamar, Horvitz and Weld, 2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Such use of hybrid systems can help a) scale-up human decision making;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' b) augment machine learning capabilities with human accuracy;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' and c) mitigate unintended consequences from machine errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Additionally, we need new benchmarks and evaluation practices that can measure how automated and hybrid systems can improve downstream human accuracy (Smeros, Castillo and Aberer, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020) and efficiency in fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Acknowledgements This research was supported in part by the Knight Foundation, the Micron Foundation, Wipro, and by Good Systems12, a UT Austin Grand Challenge to develop responsible AI technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The statements made herein are solely the opinions of the authors and do not reflect the views of the sponsoring agencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' References Adair, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Squash report card: Improvements during State of the Union .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' and how hu- mans will make our AI smarter Duke Reporters’ Lab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://reporterslab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/ squash-report-card-improvements-during-state-of-the-union-and-how-humans-will-make-our-ai-smarter/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Adair, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Stencel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A lesson in automated journalism: Bring back the humans | nieman journalism lab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='niemanlab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/ 2020/07/a-lesson-in-automated-journalism-bring-back-the-humans/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (Accessed on 02/08/2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Ahmadi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Papotti, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Saeed, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Explainable fact checking with probabilistic answer set programming, in: Conference on Truth and Trust Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Ahmadi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Truong, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Dao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Ortona, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Papotti, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Rulehub: A public corpus of rules for knowledge graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Journal of Data and Information Quality (JDIQ) 12, 1–22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Ahsan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Kumari, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Sharma, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Detection of context-varying rumors on twitter through deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Technol 128, 45–58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Aker, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Derczynski, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Bontcheva, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Simple open stance classification for rumour analysis, in: Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 31–39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Alam, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Dalvi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Shaar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Durrani, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mubarak, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nikolov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Da San Martino, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Abdelali, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Sajjad, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Darwish, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nakov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fighting the covid-19 infodemic in social media: A holistic perspective and a call to arms, in: ICWSM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Alam, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Shaar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Dalvi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Sajjad, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nikolov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mubarak, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Da San Martino, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Abdelali, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Durrani, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Darwish, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Al-Homaid, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zaghouani, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Caselli, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Danoe, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Stolk, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Bruntink, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nakov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fighting the COVID-19 infodemic: Modeling the perspective of journalists, fact-checkers, social media platforms, policy makers, and the society, in: Findings of the Association for Computational Linguistics: EMNLP 2021, Association for Computational Linguistics, Punta Cana, Dominican Republic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 611–649.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' org/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='findings-emnlp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='56, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='18653/v1/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='findings-emnlp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Alhindi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Petridis, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Muresan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Where is your evidence: Improving fact-checking by justification modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Allen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Arechar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Pennycook, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Rand, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Scaling up fact-checking using the wisdom of crowds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Preprint at https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='31234/osf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' io/9qdza .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Alsmadi, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Alazzam, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', AlRamahi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' An ontological analysis of misinformation in online social networks URL: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/ abs/2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='11362, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='48550/arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='11362, arXiv:2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='11362.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Aly, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Guo, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Schlichtkrull, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Thorne, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Vlachos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Christodoulopoulos, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Cocarascu, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mittal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Feverous: Fact extraction and verification over unstructured and structured information, in: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Amershi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Cakmak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Knox, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Kulesza, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Power to the people: The role of humans in interactive machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Ai Magazine 35, 105–120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Arnold, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The challenges of online fact checking: how technology can (and can’t) help - full fact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' https://fullfact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/blog/2020/ dec/the-challenges-of-online-fact-checking-how-technology-can-and-cant-help/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (Accessed on 09/11/2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Atanasova, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Barrón-Cedeño, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Elsayed, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Suwaileh, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zaghouani, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Kyuchukov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Da San Martino, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nakov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Overview of the clef-2018 checkthat!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' lab on automatic identification and verification of political claims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' task 1: Check-worthiness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' arXiv preprint arXiv:1808.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='05542 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 12http://goodsystems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='utexas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='edu/ Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 23 of 30 The State of Human-centered NLP Technology for Fact-checking Atanasova, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nakov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Karadzhov, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mohtarami, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Da San Martino, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Overview of the clef-2019 checkthat!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' lab: Automatic identification and verification of claims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' task 1: Check-worthiness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' CLEF (Working Notes) 2380.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Atanasova, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nakov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Màrquez, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Barrón-Cedeño, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Karadzhov, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mihaylova, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mohtarami, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Glass, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Automatic fact-checking using context and discourse information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Journal of Data and Information Quality (JDIQ) 11, 1–27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Atanasova, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Simonsen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lioma, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Augenstein, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Generating fact checking explanations, in: ACL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Atanasova, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wright, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Augenstein, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Generating label cohesive and well-formed adversarial claims, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3168–3177.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Augenstein, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lioma, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lima, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Hansen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Hansen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Simonsen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Multifc: A real-world multi-domain dataset for evidence-based fact checking of claims, in: EMNLP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Bansal, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nushi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Kamar, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Horvitz, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Weld, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Is the most accurate ai the best teammate?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' optimizing ai for teamwork, in: Proceedings of the AAAI Conference on Artificial Intelligence, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 11405–11414.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Bansal, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nushi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Kamar, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lasecki, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Weld, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Horvitz, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Beyond accuracy: The role of mental models in human-ai team performance, in: Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2–11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Bansal, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zhou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Fok, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nushi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Kamar, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Ribeiro, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Weld, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Does the whole exceed its parts?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' the effect of ai explanations on complementary team performance, in: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 1–16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Barnabò, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Siciliano, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Castillo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Leonardi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nakov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Da San Martino, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Silvestri, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fbmultilingmisinfo: Challenging large-scale multilingual benchmark for misinformation detection, in: 2022 International Joint Conference on Neural Networks (IJCNN), IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 1–8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Barrón-Cedeño, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Elsayed, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nakov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Da San Martino, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Hasanain, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Suwaileh, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Haouari, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Babulkov, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Hamdan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nikolov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Overview of checkthat!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2020: Automatic identification and verification of claims in social media, in: International Conference of the Cross-Language Evaluation Forum for European Languages, Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 215–236.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Beers, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Haughey, Melinda, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Arif, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Starbird, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Examining the digital toolsets of journalists reporting on disinformation, in: Proceedings of Computation + Journalism 2020 (C+J ’20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' ACM, New York, NY, USA,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://cpb-us-w2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='wpmucdn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='com/ express.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='northeastern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='edu/dist/d/53/files/2020/02/CJ_2020_paper_50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Bendersky, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Metzler, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Croft, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Effective query formulation with multiple information sources, in: Proceedings of the fifth ACM international conference on Web search and data mining, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 443–452.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Bhuiyan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zhang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Sehat, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mitra, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Investigating differences in crowdsourced news credibility assessment: Raters, tasks, and expert criteria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Proceedings of the ACM on Human-Computer Interaction 4, 1–26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Bibal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Cardon, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Alfter, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wilkens, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', François, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Watrin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Is attention explanation?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' an introduction to the debate, in: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Dublin, Ireland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3889–3900.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='acl-long.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='269, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='18653/ v1/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='acl-long.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='269.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Borel, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The Chicago guide to fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' University of Chicago Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Bouziane, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Perrin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Cluzeau, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mardas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Sadeq, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Team buster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' ai at checkthat!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2020 insights and recommendations to improve fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', in: CLEF (Working Notes).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Brand, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Roitero, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Soprano, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Rahimi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Demartini, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A neural model to jointly predict and explain truthfulness of statements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' ACM Journal of Data and Information Quality (JDIQ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Cai, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Winter, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Steiner, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wilcox, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Terry, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' " hello ai": uncovering the onboarding needs of medical practitioners for human-ai collaborative decision-making.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Proceedings of the ACM on Human-computer Interaction 3, 1–24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Chen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Jain, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Improving twitter search with real-time human computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Engineering Blog 8, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Chen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Sriram, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Choi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Durrett, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Generating Literal and Implied Subquestions to Fact-check Complex Claims URL: http: //arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/abs/2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='06938, arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='06938.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Chen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Khashabi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Yin, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Callison-Burch, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Roth, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Seeing things from a different angle:discovering diverse perspectives about claims, in: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Association for Computational Linguistics, Minneapolis, Minnesota.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 542–557.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/N19-1053, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='18653/v1/N19-1053.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Chen, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Chen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zhou, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Tabfact: A large-scale dataset for table-based fact verification, in: International Conference on Learning Representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Cheng, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', O’Connell, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Gray, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Harper, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zhu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Explaining decision-making algorithms through ui: Strategies to help non-expert stakeholders, in: Proceedings of the 2019 chi conference on human factors in computing systems, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 1–12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Cimolino, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Graham, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Two heads are better than one: A dimension space for unifying human and artificial intelligence in shared control, in: CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery, New York, NY, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1145/3491102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='3517610, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1145/3491102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='3517610.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Cinelli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Pelicon, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mozetič, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Quattrociocchi, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Novak, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zollo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Dynamics of online hate and misinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Scientific reports 11, 1–12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Cinelli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Pelicon, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mozetič, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Quattrociocchi, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Novak, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zollo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Online hate: Behavioural dynamics and relationship with misinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' arXiv preprint arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='14005 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Clarke, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Rizvi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Smucker, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Maistro, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zuccon, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Overview of the trec 2020 health misinformation track, in: TREC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Clarke, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Rizvi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Smucker, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Maistro, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zuccon, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Overview of the trec 2020 health misinformation track, in: TREC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Da San Martino, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Cresci, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Barrón-Cedeño, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Yu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Pietro, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nakov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A survey on computational propaganda detection, in: IJCAI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Dagan, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Dolan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Magnini, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Roth, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Recognizing textual entailment: Rational, evaluation and approaches–erratum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Natural Language Engineering 16, 105–105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 24 of 30 The State of Human-centered NLP Technology for Fact-checking Das, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Gupta, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Kovatchev, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lease, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Prototex: Explaining model decisions with prototype tensors, in: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2986–2997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Demartini, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hybrid human–machine information systems: Challenges and opportunities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Computer Networks 90, 5–13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Demartini, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Difallah, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Cudré-Mauroux, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zencrowd: leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking, in: Proceedings of the 21st international conference on World Wide Web, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 469–478.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Demartini, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mizzaro, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Spina, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Human-in-the-loop artificial intelligence for fighting online misinformation: Challenges and opportunities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The Bulletin of the Technical Committee on Data Engineering 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Demartini, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Trushkowsky, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Kraska, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Franklin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Berkeley, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Crowdq: Crowdsourced query understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', in: CIDR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Dhole, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Gangal, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Gehrmann, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Gupta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mahamood, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mahendiran, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mille, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Srivastava, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Tan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nl- augmenter: A framework for task-sensitive natural language augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' arXiv preprint arXiv:2112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='02721 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Diggelmann, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Boyd-Graber, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Bulian, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Ciaramita, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Leippold, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Climate-fever: A dataset for verification of real-world climate claims .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Dong, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Du, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Gardner, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' An interactive web-based dashboard to track covid-19 in real time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The Lancet infectious diseases 20, 533–534.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Efron, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Tibshirani, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The bootstrap method for assessing statistical accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Behaviormetrika 12, 1–35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Ekstrand, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Das, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Burke, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Diaz, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fairness in information access systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Foundations and Trends® in Information Retrieval 16, 1–177.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Elsayed, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nakov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Barrón-Cedeño, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Hasanain, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Suwaileh, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Da San Martino, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Atanasova, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Overview of the clef-2019 checkthat!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' lab: automatic identification and verification of claims, in: International Conference of the Cross-Language Evaluation Forum for European Languages, Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 301–321.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Enayet, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', El-Beltagy, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' NileTMRG at SemEval-2017 task 8: Determining rumour and veracity support for rumours on Twitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', in: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), Association for Computational Linguistics, Vancouver, Canada.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 470–474.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/S17-2082, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='18653/v1/S17-2082.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Piktus, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Petroni, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wenzek, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Saeidi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Vlachos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Bordes, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Riedel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Generating fact checking briefs, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 7147–7161.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='emnlp-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='580, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='emnlp-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='580.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Farinneya, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Abdollah Pour, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Hamidian, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Diab, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Active learning for rumor identification on social media, in: Findings of the Association for Computational Linguistics: EMNLP 2021, Association for Computational Linguistics, Punta Cana, Dominican Republic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 4556–4565.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='findings-emnlp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='387, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='18653/v1/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='findings-emnlp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='387.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Ferreira, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Vlachos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Emergent: a novel data-set for stance classification, in: NAACL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Gad-Elrab, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Stepanova, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Urbani, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Weikum, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Exfakt: A framework for explaining facts over knowledge graphs and text, in: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 87–95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Gold, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Kovatchev, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zesch, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Annotating and analyzing the interactions between meaning relations, in: Proceedings of the 13th Linguistic Annotation Workshop, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 26–36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Gorrell, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Kochkina, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Liakata, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Aker, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zubiaga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Bontcheva, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Derczynski, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Semeval-2019 task 7: Rumoureval, determining rumour veracity and support for rumours, in: Proceedings of the 13th International Workshop on Semantic Evaluation, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 845–854.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Graves, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Understanding the promise and limits of automated fact-checking .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Graves, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Anatomy of a fact check: Objective practice and the contested epistemology of fact checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Communication, Culture & Critique 10, 518–537.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Graves, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Boundaries not drawn: Mapping the institutional roots of the global fact-checking movement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Journalism Studies 19, 613–631.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Graves, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Amazeen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fact-checking as idea and practice in journalism, in: Oxford Research Encyclopedia of Communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Gruppi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Horne, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Adalı, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nela-gt-2020: A large multi-labelled news dataset for the study of misinformation in news articles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' arXiv preprint arXiv:2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='04567 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Guo, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Cao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Guo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Rumor detection with hierarchical social attention network, in: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 943–951.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Guo, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Schlichtkrull, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Vlachos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A Survey on Automated Fact-Checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Transactions of the Association for Computational Linguistics 10, 178–206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1162/tacl_a_00454, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1162/tacl_a_00454, arXiv:https://direct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='mit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='edu/tacl/article-pdf/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1162/tacl_a_00454/1987018/tacl_a_00454.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Gupta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Srikumar, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' X-fact: A new benchmark dataset for multilingual fact checking, in: ACL/IJCNLP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Gupta, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mehta, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nokhiz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Srikumar, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' INFOTABS: Inference on tables as semi-structured data, in: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2309–2324.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='acl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='210, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='acl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hanselowski, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', AvineshP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Schiller, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Caspelherr, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Chaudhuri, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Meyer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Gurevych, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A retrospective analysis of the fake news challenge stance-detection task, in: COLING.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hanselowski, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Stab, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Schulz, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Gurevych, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A richly annotated corpus for different tasks in automated fact-checking, in: Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 493–503.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hardalov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Arora, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nakov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Augenstein, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A survey on stance detection for mis- and disinformation identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' ArXiv abs/2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='00242.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hartvigsen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Gabriel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Palangi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Sap, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Ray, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Kamar, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' ToxiGen: A large-scale machine-generated dataset for adversarial and implicit hate speech detection, in: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Dublin, Ireland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3309–3326.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='acl-long.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 234, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='18653/v1/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='acl-long.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='234.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hasanain, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Elsayed, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' bigir at checkthat!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2020: Multilingual bert for ranking arabic tweets by check-worthiness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', in: CLEF (Working Notes).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 25 of 30 The State of Human-centered NLP Technology for Fact-checking Hasanain, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Elsayed, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Studying effectiveness of Web search for fact checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Journal of the Association for Information Science and Technology URL: https://onlinelibrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='wiley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='com/doi/full/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1002/asi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='24577https://onlinelibrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='wiley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='com/doi/ abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1002/asi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='24577https://asistdl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='onlinelibrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='wiley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='com/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1002/asi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='24577, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1002/asi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='24577.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hasanain, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Elsayed, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Studying effectiveness of web search for fact checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Journal of the Association for Information Science and Technology 73, 738–751.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hase, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Bansal, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Evaluating explainable ai: Which algorithmic explanations help users predict model behavior?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', in: ACL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hassan, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Arslan, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Tremayne, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2017a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Toward automated fact-checking: Detecting check-worthy factual claims by claimbuster, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 1803–1812.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hassan, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Tremayne, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Detecting check-worthy factual claims in presidential debates, in: Proceedings of the 24th acm international on conference on information and knowledge management, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 1835–1838.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hassan, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zhang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Arslan, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Caraballo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Jimenez, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Gawsane, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Hasan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Joseph, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Kulkarni, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nayak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2017b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Claimbuster: The first-ever end-to-end fact-checking system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Proceedings of the VLDB Endowment 10, 1945–1948.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Horne, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Khedr, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Adali, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Sampling the news producers: A large news and feature data set for the study of the complex media landscape, in: Twelfth International AAAI Conference on Web and Social Media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hsu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Tan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Decision-focused summarization, in: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 117–132.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Jacovi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Goldberg, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Towards faithfully interpretable NLP systems: How should we define and evaluate faithfulness?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', in: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 4198–4205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='acl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='386, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='acl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='386.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Jacovi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Goldberg, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Aligning Faithful Interpretations with their Social Attribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Transactions of the Associa- tion for Computational Linguistics 9, 294–310.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1162/tacl_a_00367, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1162/tacl_a_00367, arXiv:https://direct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='mit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='edu/tacl/article-pdf/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1162/tacl_a_00367/1923972/tacl_a_00367.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Jain, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Garg, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Jain, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Reconstructing diffusion model for virality detection in news spread networks, in: Research Anthology on Fake News, Political Warfare, and Combatting the Spread of Misinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' IGI Global, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 98–111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Jain, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wallace, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Attention is not explanation, in: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3543–3556.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Jiang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Bordia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zhong, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Dognin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Singh, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Bansal, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hover: A dataset for many-hop fact extraction and claim verification, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3441–3460.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Joachims, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Radlinski, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Search engines that learn from implicit feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Computer 40, 34–40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Jones, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The gulf information war| propaganda, fake news, and fake trends: The weaponization of twitter bots in the gulf crisis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' International journal of communication 13, 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Juneja, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mitra, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Human and technological infrastructures of fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='10894 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Karagiannis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Saeed, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Papotti, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Trummer, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Scrutinizer: A mixed-initiative approach to large-scale, data-driven claim verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' VLDB Endow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 13, 2508–2521.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='14778/3407790.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='3407841, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='14778/3407790.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='3407841.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kaufman, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Haupt, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Dow, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Who’s in the crowd matters: Cognitive factors and beliefs predict misinformation assessment accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Proceedings of the ACM on Human-Computer Interaction 6, 1–18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kazemi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Gaffney, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Garimella, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Hale, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Claim matching beyond english to scale global fact-checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' ACL-IJCNLP 2021 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Proceedings of the Conference , 4504–4517URL: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/abs/2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='00853, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='18653/v1/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='acl-long.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 347, arXiv:2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='00853.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kazemi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Garimella, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Shahi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Gaffney, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Hale, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Tiplines to combat misinformation on encrypted platforms: A case study of the 2019 indian election on whatsapp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' ArXiv abs/2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='04726.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kiela, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Firooz, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mohan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Goswami, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Singh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Ringshia, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Testuggine, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The hateful memes challenge: Detecting hate speech in multimodal memes, in: Larochelle, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Ranzato, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Hadsell, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Balcan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' ), Advances in Neural Infor- mation Processing Systems, Curran Associates, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='. pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2611–2624.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='neurips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='cc/paper/2020/file/ 1b84c4cee2b8b3d823b30e2d604b1878-Paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Choi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Unsupervised fact checking by counter-weighted positive and negative evidential paths in a knowledge graph, in: Proceedings of the 28th International Conference on Computational Linguistics, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 1677–1686.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kochkina, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Liakata, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Augenstein, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Turing at SemEval-2017 task 8: Sequential approach to rumour stance classification with branch- LSTM, in: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), Association for Computational Linguistics, Vancouver, Canada.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 475–480.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/S17-2083, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='18653/v1/S17-2083.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Konstantinovskiy, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Price, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Babakar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zubiaga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Toward automated factchecking: Developing an annotation schema and benchmark for consistent automated claim detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Digital Threats: Research and Practice 2, 1–16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kotonya, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Spooner, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Magazzeni, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Toni, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Graph reasoning with context-aware linearization for interpretable fact extraction and verification, in: Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER), Association for Computational Linguistics, Dominican Republic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 21–30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='fever-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='3, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='18653/v1/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='fever-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kotonya, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Toni, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Explainable automated fact-checking: A survey, in: COLING.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kotonya, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Toni, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Explainable automated fact-checking for public health claims, in: EMNLP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kovatchev, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Chatterjee, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Govindarajan, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Chen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Choi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Chronis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Das, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Erk, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lease, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' longhorns at dadc 2022: How many linguists does it take to fool a question answering model?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' a systematic approach to adversarial attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', in: Proceedings of the First Workshop on Dynamic Adversarial Data Collection, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 41–52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kovatchev, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Smith, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Devine, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Can vectors read minds better than experts?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' comparing data augmentation strategies for the automated scoring of children’s mindreading ability, in: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 26 of 30 The State of Human-centered NLP Technology for Fact-checking and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 1196–1206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kovatchev, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Smith, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Traynor, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Aguilera, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Devine, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' “what is on your mind?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' automated scoring of mindreading in childhood and early adolescence, in: Proceedings of the 28th International Conference on Computational Linguistics, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 6217–6228.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Kutlu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', McDonnell, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Elsayed, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lease, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Annotator rationales for labeling tasks in crowdsourcing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Journal of Artificial Intelligence Research 69, 143–189.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' La Barbera, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Roitero, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Demartini, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mizzaro, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Spina, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Crowdsourcing truthfulness: The impact of judgment scale and assessor bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Advances in Information Retrieval 12036, 207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Lai, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Chen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Liao, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Smith-Renner, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Tan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Towards a science of human-ai decision making: A survey of empirical studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' arXiv preprint arXiv:2112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='11471 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Lawrence, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Reed, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Argument mining: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Computational Linguistics 45, 765–818.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Lease, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fact checking and information retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', in: DESIRES, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 97–98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Lease, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Designing human-ai partnerships to combat misinfomation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' LeBeau, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Entitled to the facts: A fact-checking role for librarians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Reference and User Services Quarterly 57, 76–78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Moray, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Trust, control strategies and allocation of function in human-machine systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Ergonomics 35, 1243–1270.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', See, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Trust in automation: designing for appropriate reliance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Human Factors 46, 50–80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Lee, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Bang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Madotto, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Fung, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Towards few-shot fact-checking via perplexity, in: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 1971–1981.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='naacl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='158, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='18653/v1/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='naacl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Lee, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Li, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Yih, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Ma, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Khabsa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Language models as fact checkers?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', in: Proceedings of the Third Workshop on Fact Extraction and VERification (FEVER), Association for Computational Linguistics, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 36–41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' org/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='fever-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='5, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='18653/v1/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='fever-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Leskovec, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Backstrom, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Kleinberg, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Meme-tracking and the dynamics of the news cycle, in: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 497–506.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Lewandowsky, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Ecker, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Seifert, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Schwarz, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Cook, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Misinformation and its correction: Continued influence and successful debiasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Psychological science in the public interest 13, 106–131.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Lewis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Goyal, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Ghazvininejad, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mohamed, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Levy, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Stoyanov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zettlemoyer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Bart: Denoising sequence- to-sequence pre-training for natural language generation, translation, and comprehension, in: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 7871–7880.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Li, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Fang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' AnaSearch: Extract, Retrieve and Visualize Structured Results from Unstructured Text for Analytical Queries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' WSDM 2021 - Proceedings of the 14th ACM International Conference on Web Search and Data Mining , 906–909URL: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1145/3437963.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='3441694, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1145/3437963.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='3441694.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Gao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Meng, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Li, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Su, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zhao, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Fan, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Han, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A survey on truth discovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' ACM Sigkdd Explorations Newsletter 17, 1–16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Lillie, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Middelboe, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Derczynski, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Joint rumour stance and veracity prediction, in: Proceedings of the 22nd Nordic Conference on Computational Linguistics, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 208–221.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Liu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Swayamdipta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Smith, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Choi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Wanli: Worker and ai collaboration for natural language inference dataset creation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Lu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Gcan: Graph-aware co-attention networks for explainable fake news detection on social media, in: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 505–514.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Ma, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Gao, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Joty, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wong, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Sentence-level evidence embedding for claim verification with hierarchical attention networks, in: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Florence, Italy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2561–2571.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/P19-1244, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='18653/v1/P19-1244.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Ma, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Gao, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mitra, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Kwon, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Jansen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wong, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Cha, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Detecting rumors from microblogs with recurrent neural networks, in: IJCAI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Ma, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Gao, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wong, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Rumor detection on Twitter with tree-structured recursive neural networks, in: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Melbourne, Australia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 1980–1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/P18-1184, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='18653/v1/P18-1184.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Marcus, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Mesoamerican writing systems: Propaganda, myth, and history in four ancient civilizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Princeton University Press Princeton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Martinez-Rico, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Martinez-Romo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Araujo, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=': Nlp&ir@ uned at checkthat!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2021: check-worthiness estimation and fake news detection using transformer models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Faggioli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' [33] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Micallef, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Armacost, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Memon, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Patil, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' True or False: Studying the Work Practices of Professional Fact-Checkers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Proceedings of the ACM on Human-Computer Interaction 6, 1–44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1145/3512974, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1145/3512974.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Mihalcea, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Strapparava, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The lie detector: Explorations in the automatic recognition of deceptive language, in: Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, Association for Computational Linguistics, Suntec, Singapore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 309–312.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https: //aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/P09-2078.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Mihaylova, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nakov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Màrquez, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Barrón-Cedeño, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mohtarami, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Karadzhov, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Glass, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fact checking in community forums, in: Thirty-Second AAAI Conference on Artificial Intelligence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Miranda, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nogueira, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mendes, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Vlachos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Secker, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Garrett, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mitchel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Marinho, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Automated fact checking in the news room, in: The World Wide Web Conference, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3579–3583.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Mohseni, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Yang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Pentyala, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Du, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lupfer, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Hu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Ji, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Ragan, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Machine learning explanations to prevent overtrust in fake news detection, in: Proceedings of the International AAAI Conference on Web and Social Media, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 421–431.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Molnar, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Interpretable machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Lulu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' com.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Monti, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Frasca, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Eynard, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mannion, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Bronstein, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fake news detection on social media using geometric deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' arXiv preprint arXiv:1902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='06673 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 27 of 30 The State of Human-centered NLP Technology for Fact-checking Nakamura, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Levy, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fakeddit: A new multimodal benchmark dataset for fine-grained fake news detection, in: Proceedings of the 12th Language Resources and Evaluation Conference, European Language Resources Association, Marseille, France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 6149–6157.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='lrec-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='755.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nakashole, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mitchell, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Language-aware truth assessment of fact candidates, in: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 1009–1019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nakov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Corney, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Hasanain, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Alam, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Elsayed, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Barrón-Cedeño, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Papotti, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Shaar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Da San Martino, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Automated fact-checking for assisting human fact-checkers, in: IJCAI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nakov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Da San Martino, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Barrón-Cedeño, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zaghouani, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Míguez, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Alam, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Caselli, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Kutlu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Strub, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mandl, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Checkthat!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' lab on fighting the covid-19 infodemic and fake news detection (proposal for a clef-2022 lab).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nakov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Da San Martino, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Elsayed, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Barrón-Cedeño, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Míguez, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Shaar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Alam, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Haouari, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Hasanain, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Babulkov, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The clef-2021 checkthat!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' lab on detecting check-worthy claims, previously fact-checked claims, and fake news, in: ECIR (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Neely-Sardon, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Tignor, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Focus on the facts: A news and information literacy instructional program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The Reference Librarian 59, 108–121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Neumann, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', De-Arteaga, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Fazelpour, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Justice in misinformation detection systems: An analysis of algorithms, stakeholders, and potential harms, in: 2022 ACM Conference on Fairness, Accountability, and Transparency, Association for Computing Machinery, New York, NY, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 1504–1515.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1145/3531146.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='3533205, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='1145/3531146.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='3533205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nguyen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Kharosekar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Krishnan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Krishnan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Tate, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wallace, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lease, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Believe it or not: Designing a human-ai partnership for mixed-initiative fact-checking, in: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 189–199.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nguyen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Kharosekar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lease, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wallace, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' An interpretable joint graphical model for fact-checking from crowds, in: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 1511–1518.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='./papers/nguyen-aaai18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nguyen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Weidlich, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Yin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zheng, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nguyen, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nguyen, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Factcatch: Incremental pay-as-you-go fact checking with minimal user effort, in: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2165–2168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nie, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Bansal, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Revealing the importance of semantic retrieval for machine reading at scale, in: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Association for Computational Linguistics, Hong Kong, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2553–2566.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/ D19-1258, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='18653/v1/D19-1258.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Niewiński, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Pszona, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Janicka, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Gem: Generative enhanced model for adversarial attacks, in: Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 20–26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nørregaard, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Horne, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Adalı, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Nela-gt-2018: A large multi-labelled news dataset for the study of misinformation in news articles, in: Proceedings of the international AAAI conference on web and social media, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 630–638.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Oshikawa, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Qian, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A survey on natural language processing for fake news detection, in: LREC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Popat, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mukherjee, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Yates, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Weikum, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Declare: Debunking fake news and false claims using evidence-aware deep learning, in: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 22–32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Potthast, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', KIESELJ, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A stylometric inquiryintohyperpartisanandfakenews.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Procofthe 56thAnnual Meetingofthe Associationfor- Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Stroudsburg, PA: ACL 231240.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Potthast, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Köpsel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Stein, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Hagen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Clickbait detection, in: European Conference on Information Retrieval, Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 810–817.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Pradeep, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Ma, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nogueira, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Scientific claim verification with VerT5erini, in: Proceedings of the 12th International Workshop on Health Text Mining and Information Analysis, Association for Computational Linguistics, online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 94–103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https: //aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='louhi-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Qazvinian, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Rosengren, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Radev, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mei, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Rumor has it: Identifying misinformation in microblogs, in: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 1589–1599.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Qu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Barbera, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Roitero, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mizzaro, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Spina, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Demartini, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Combining human and machine confidence in truthfulness assessment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' ACM Journal of Data and Information Quality (JDIQ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Qu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Roitero, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mizzaro, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Spina, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Demartini, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Human-in-the-loop systems for truthfulness: A study of human and machine confidence .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Radford, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Child, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Luan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Amodei, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Sutskever, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Language models are unsupervised multitask learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' OpenAI blog 1, 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Rashkin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Choi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Jang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Volkova, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Choi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Truth of varying shades: Analyzing language in fake news and political fact-checking, in: Proceedings of the 2017 conference on empirical methods in natural language processing, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2931–2937.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Ribeiro, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Singh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Guestrin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Semantically equivalent adversarial rules for debugging nlp models, in: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 856–865.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Ribeiro, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Guestrin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Singh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Beyond accuracy: Behavioral testing of nlp models with checklist, in: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 4902–4912.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Roitero, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Soprano, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Fan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Spina, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mizzaro, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Demartini, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Can the crowd identify misinformation objectively?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' the effects of judgment scale and assessor’s background, in: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 439–448.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Roitero, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Soprano, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Portelli, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Spina, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Della Mea, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Serra, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mizzaro, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Demartini, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The covid-19 infodemic: Can the crowd judge recent misinformation objectively?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', in: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 1305–1314.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 28 of 30 The State of Human-centered NLP Technology for Fact-checking Sarasua, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Simperl, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Noy, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Crowdmap: Crowdsourcing ontology alignment with microtasks, in: International semantic web conference, Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 525–541.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Schuster, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Fisch, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Barzilay, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Get your vitamin C!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' robust fact verification with contrastive evidence, in: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 624–643.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='naacl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='52, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='18653/v1/2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' naacl-main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Schuster, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Schuster, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Shah, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Barzilay, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The limitations of stylometry for detecting machine-generated fake news.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Computational Linguistics 46, 499–510.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Serrano, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Smith, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Is attention interpretable?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', in: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2931–2951.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Settles, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Active learning literature survey .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shaar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Alam, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Da San Martino, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nakov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Assisting the human fact-checkers: Detecting all previously fact-checked claims in a document.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' arXiv preprint arXiv:2109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='07410 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shaar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Hasanain, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Hamdan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Ali, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Haouari, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nikolov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Kutlu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Kartal, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Alam, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Da San Martino, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Barrón-Cedeño, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Míguez, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Beltrán, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Elsayed, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nakov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Overview of the clef-2021 checkthat!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' lab task 1 on check-worthiness estimation in tweets and political debates, in: CLEF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shaar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Martino, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Babulkov, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Nakov, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' That is a known lie: Detecting previously fact-checked claims, in: ACL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shabani, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Charlesworth, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Sokhn, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Schuldt, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Sams: Human-in-the-loop approach to combat the sharing of digital misinformation, in: CEUR Workshop Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shao, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Ciampaglia, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Flammini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Menczer, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Hoaxy: A platform for tracking online misinformation, in: Proceedings of the 25th international conference companion on world wide web, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 745–750.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Weninger, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Discriminative predicate path mining for fact checking in knowledge graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Knowledge-based systems 104, 123–133.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Bhattacharya, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Das, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lease, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Gwizdka, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The Effects of Interactive AI Design on User Behavior: An Eye-tracking Study of Fact-checking COVID-19 Claims, in: Proceedings of the 7th ACM SIGIR Conference on Human Information, Interaction and Retrieval (CHIIR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://utexas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='box.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='com/v/shi-chiir2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Cui, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lee, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Liu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' defend: Explainable fake news detection, in: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 395–405.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mahudeswaran, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lee, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Liu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fakenewsnet: A data repository with news content, social context, and spatiotemporal information for studying fake news on social media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Big data 8 3, 171–188.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Shu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Sliva, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Tang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Liu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fake news detection on social media: A data mining perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' ACM SIGKDD explorations newsletter 19, 22–36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Singh, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Das, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lease, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The case for claim difficulty assessment in automatic fact checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' arXiv preprint arXiv:2109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='09689 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Smeros, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Castillo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Aberer, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Sciclops: Detecting and contextualizing scientific claims for assisting manual fact-checking, in: Proceedings of the 30th ACM International Conference on Information & Knowledge Management (CIKM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Sokol, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Flach, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Desiderata for interpretability: explaining decision tree predictions with counterfactuals, in: Proceedings of the AAAI Conference on Artificial Intelligence, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 10035–10036.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Soprano, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Roitero, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', La Barbera, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Ceolin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Spina, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mizzaro, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Demartini, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The many dimensions of truthfulness: Crowdsourcing misinformation assessments on a multidimensional scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Information Processing & Management 58, 102710.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The Poynter Institute, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Global Fact 8 Pre-recorded Segment 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='youtube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='com/watch?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='v=gOhPKDaeQxI&t=770s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Thorne, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Vlachos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Adversarial attacks against fact extraction and verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' arXiv preprint arXiv:1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='05543 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Thorne, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Vlachos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Christodoulopoulos, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mittal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fever: a large-scale dataset for fact extraction and verification, in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 809–819.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Thorne, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Vlachos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Cocarascu, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Christodoulopoulos, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mittal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The fever2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 0 shared task, in: Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Thornhill, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Meeus, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Peperkamp, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Berendt, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A digital nudge to counter confirmation bias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Frontiers in big data 2, 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Tschiatschek, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Singla, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Gomez Rodriguez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Merchant, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Krause, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fake news detection in social networks via crowd signals, in: Companion Proceedings of the The Web Conference 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 517–524.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Uscinski, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The epistemology of fact checking (is still naìve): Rejoinder to amazeen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Critical Review 27, 243–252.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Vaish, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Davis, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Bernstein, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Crowdsourcing the research process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Collective Intelligence 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Vaish, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Gaikwad, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Kovacs, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Veit, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Krishna, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Arrieta Ibarra, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Simoiu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wilber, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Belongie, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Goel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Crowd research: Open and scalable university laboratories, in: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 829–843.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Vaughan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wallach, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A human-centered agenda for intelligible machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Machines We Trust: Getting Along with Artificial Intelligence .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Veale, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Van Kleek, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Binns, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fairness and accountability design needs for algorithmic support in high-stakes public sector decision- making, in: Proceedings of the 2018 chi conference on human factors in computing systems, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 1–14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Vicario, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Quattrociocchi, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Scala, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zollo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Polarization and fake news: Early warning of potential misinformation targets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' ACM Transactions on the Web (TWEB) 13, 1–22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Vlachos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Riedel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fact checking: Task definition and dataset construction, in: Proceedings of the ACL 2014 workshop on language technologies and computational social science, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 18–22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Vlachos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Riedel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Identification and verification of simple claims about statistical properties, in: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Lisbon, Portugal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2596–2601.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 29 of 30 The State of Human-centered NLP Technology for Fact-checking https://aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='org/D15-1312, doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='18653/v1/D15-1312.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Vo, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lee, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' The rise of guardians: Fact-checking url recommendation to combat fake news, in: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 275–284.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Wadden, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', van Zuylen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Cohan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Hajishirzi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fact or fiction: Verifying scientific claims, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 7534–7550.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' "liar, liar pants on fire": A new benchmark dataset for fake news detection, in: ACL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Wiegreffe, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Marasovic, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Teach me to explain: A review of datasets for explainable natural language processing, in: Vanschoren, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Yeung, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' (Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' ), Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' URL: https: //datasets-benchmarks-proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='neurips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='cc/paper/2021/file/698d51a19d8a121ce581499d7b701668-Paper-round1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Wiegreffe, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Pinter, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Attention is not not explanation, in: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 11–20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Williams, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Rodrigues, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Novak, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Accenture at checkthat!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 2020: If you say so: Post-hoc fact-checking of claims using transformer-based models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' arXiv preprint arXiv:2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='02431 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Yang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Pentyala, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Mohseni, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Du, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Yuan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Linder, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Ragan, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Ji, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Hu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Xfake: Explainable fake news detector with visualizations, in: The World Wide Web Conference, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3600–3604.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zaidan, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Eisner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Piatko, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Using “annotator rationales” to improve machine learning for text categorization, in: Human language technologies 2007: The conference of the North American chapter of the association for computational linguistics;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' proceedings of the main conference, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 260–267.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zanzotto, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Human-in-the-loop artificial intelligence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Journal of Artificial Intelligence Research 64, 243–252.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zellers, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Holtzman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Rashkin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Bisk, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Farhadi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Roesner, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Choi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Defending against neural fake news.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Neurips .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zeng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Abumansour, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zubiaga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Automated fact-checking: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Language and Linguistics Compass 15, e12438.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zhang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Cao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Sheng, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zhong, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Shu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Mining dual emotion for fake news detection, in: Proceedings of the Web Conference 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 3465–3476.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Lease, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wallace, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Active discriminative text representation learning, in: Proceedings of the AAAI Conference on Artificial Intelligence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Rudra, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Anand, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2021b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Faxplainac: A fact-checking tool based on explainable models with human correction in the loop, in: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' 4823–4827.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zhou, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Jain, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Phoha, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zafarani, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Fake news early detection: A theory-driven model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Digital Threats: Research and Practice 1, 1–25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zhou, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Zafarani, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' A survey of fake news: Fundamental theories, detection methods, and opportunities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' ACM Computing Surveys (CSUR) 53, 1–40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zubiaga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Aker, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Bontcheva, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Liakata, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Procter, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Detection and resolution of rumours in social media: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' ACM Computing Surveys (CSUR) 51, 1–36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Zubiaga, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Liakata, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Procter, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Wong Sak Hoi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', Tolmie, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=', 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Analysing how people orient to and spread rumours in social media by looking at conversational threads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' PloS one 11, e0150989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' Anubrata Das et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} +page_content=' : Preprint submitted to Elsevier Page 30 of 30' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dE1T4oBgHgl3EQfRwNN/content/2301.03056v1.pdf'} diff --git a/1dFQT4oBgHgl3EQfEjV1/content/2301.13238v1.pdf b/1dFQT4oBgHgl3EQfEjV1/content/2301.13238v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..3a81e820b82524c760a3027ae46de8366850a567 --- /dev/null +++ b/1dFQT4oBgHgl3EQfEjV1/content/2301.13238v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7353a08540c0739c53790c24a3b792e485198afb8251f1c81c01f6fb45987296 +size 2156805 diff --git a/1dFQT4oBgHgl3EQfEjV1/vector_store/index.faiss b/1dFQT4oBgHgl3EQfEjV1/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..df19e8d6d74f3285c8459517e5ba743b05617b70 --- /dev/null +++ b/1dFQT4oBgHgl3EQfEjV1/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7e6cc031260e980661b204291664edb6faa5918c2ebb614815847eb606ad6bf4 +size 7405613 diff --git a/1dFQT4oBgHgl3EQfEjV1/vector_store/index.pkl b/1dFQT4oBgHgl3EQfEjV1/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..464db68b064d7a2bb11c5f554b3384cdc03723c7 --- /dev/null +++ b/1dFQT4oBgHgl3EQfEjV1/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:26dca59b394389c4d0dbf777388a807a85934b3e01453cd20e5e23466752996c +size 274641 diff --git a/1tE3T4oBgHgl3EQfngpH/content/tmp_files/2301.04625v1.pdf.txt b/1tE3T4oBgHgl3EQfngpH/content/tmp_files/2301.04625v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..790717c95c53cb0cbc2c63b7b8904620505b5a84 --- /dev/null +++ b/1tE3T4oBgHgl3EQfngpH/content/tmp_files/2301.04625v1.pdf.txt @@ -0,0 +1,1109 @@ +Multivariate Regression via Enhanced +Response Envelope: Envelope Regularization +and Double Descent +Oh-Ran Kwon and Hui Zou +School of Statistics, University of Minnesota +Abstract +The envelope model provides substantial efficiency gains over the standard multi- +variate linear regression by identifying the material part of the response to the model +and by excluding the immaterial part. In this paper, we propose the enhanced response +envelope by incorporating a novel envelope regularization term in its formulation. It is +shown that the enhanced response envelope can yield better prediction risk than the +original envelope estimator. The enhanced response envelope naturally handles high- +dimensional data for which the original response envelope is not serviceable without +necessary remedies. In an asymptotic high-dimensional regime where the ratio of the +number of predictors over the number of samples converges to a non-zero constant, we +characterize the risk function and reveal an interesting double descent phenomenon for +the first time for the envelope model. A simulation study confirms our main theoret- +ical findings. Simulations and real data applications demonstrate that the enhanced +response envelope does have significantly improved prediction performance over the +original envelope method. +Keywords: Double descent, Envelope model, High-dimension asymptotics, Prediction, Reg- +ularization +1 +arXiv:2301.04625v1 [stat.ME] 11 Jan 2023 + +1 +Introduction +The envelope model first introduced by Cook et al. (2010) is a modern approach to estimat- +ing an unknown regression coefficient matrix β ∈ Rr×p in multivariate linear regression of +the response vector y ∈ Rr on the predictors x ∈ Rp. It was shown by Cook et al. (2010) that +the envelope estimator of β results in substantial efficiency gains relative to the standard +maximum likelihood estimator of β. The gains arise by identifying the part of the response +vector that is material to the regression and by excluding the immaterial part in the estima- +tion. The original envelope model has been later extended to the envelope model based on +excluding immaterial parts of the predictors to the regression by Cook et al. (2013). Cook +et al. (2013) then established the connection between the latter envelope model and partial +least squares, providing a statistical understanding of partial least squares algorithms. +The success of the envelope models and their theories motivated some authors to propose +new envelope models by applying or extending the core idea of envelope modeling to various +statistical models. The two most common are the response envelope models and the predictor +envelope models. The response envelope models (predictor envelope models) achieve estima- +tion and prediction gains by eliminating the variability arising from the immaterial part of +the responses (predictors) that is invariant to the changes in the predictors (responses). Pa- +pers on response envelope models include the original envelope model (Cook et al., 2010), the +partial envelope model (Su and Cook, 2011), the scaled response envelope model (Cook and +Su, 2013), the reduced-rank envelope model (Cook et al., 2015), the sparse envelope model +(Su et al., 2016), the Bayesian envelope model (Khare et al., 2017), the tensor response enve- +lope model (Li and Zhang, 2017), the envelope model for matrix variate regression (Ding and +Cook, 2018), and the spatial envelope model for spatially correlated data (Rekabdarkolaee +et al., 2020). Papers on predictor envelope models include the envelope model for predictor +reduction (Cook et al., 2013), the envelope model for generalized linear models and Cox’s +proportional hazard model (Cook and Zhang, 2015a), the scaled predictor envelope model +(Cook and Su, 2016), the envelope quantile regression model (Ding et al., 2020), the envelope +model for the censored quantile regression (Zhao et al., 2022), tensor envelope partial least +squares regression (Zhang and Li, 2017), and envelope-based sparse partial least squares +regression (Zhu and Su, 2020). For a comprehensive review of the envelope models, readers +2 + +are referred to Cook (2018). +High-dimensional data have become common in many fields. It is only natural to consider +the performance of the envelope model under high dimensions. The likelihood-based method +to estimate β under both the response/predictor envelope model is not serviceable for high- +dimensional data because the likelihood-based method requires the inversion of the sample +covariance matrix of predictors. Hence, one has to find effective ways to mitigate this issue. +For the predictor envelope model, its connection to partial least squares provides one solution. +Partial least squares (De Jong, 1993) can be used for estimating β for the predictor envelope +model (Cook et al., 2013). The partial least squares algorithm is an iterative moment-based +algorithm involving the sample covariance of predictors and the sample covariance between +the response vector and predictors, which does not require inversion of the sample covariance +matrix of predictors. In addition, the algorithm provides the root-n consistent estimator of β +in the predictor envelope model with the number of predictors fixed (Chun and Kele¸s, 2010; +Cook et al., 2013) and can yield accurate prediction in the asymptotic high-dimensional +regime when the response is univariate (Cook and Forzani, 2019). Motivated by this, Zhu and +Su (2020) introduced envelope-based sparse partial least squares and showed the consistency +of the estimator for the sparse predictor envelope model. Zhang and Li (2017) proposed a +tensor envelope partial least squares algorithm, which provides the consistent estimator for +the tensor predictor envelope model. Another way to apply predictor envelope models for +high-dimensional data is by selecting the principal components of predictors and then using +likelihood-based estimation on the principal components. This simple remedy is adapted by +Rimal et al. (2019) to compare the prediction performance of the likelihood-based predictor +envelope method, principal component regression, and partial least squares regression for +high-dimensional data. Their extensive numerical study showed that this simple remedy +produced better prediction performance than principal component regression and partial +least squares regression. The impact of high dimensions is more severe for the response +envelope. There is far less work on making the response envelope model serviceable for high- +dimensional data. The Bayesian approach for the response envelope model (Khare et al., +2017) can handle high-dimensional data. The sparse envelope model (Su et al., 2016) which +performs variable selection on the responses can handle data with the sample size smaller +3 + +than the number of responses, but still requires the number of predictors smaller than the +number of sample size. +In this paper, we propose the enhanced response envelope for high-dimensional data by +incorporating a novel envelope regularization term in its formulation. The envelope regu- +larization term respects the fundamental idea of the original envelope model by considering +the presence of the material and immaterial parts of the response in the model. The en- +hancements are twofold. First, our enhanced response envelope estimator can handle both +low- and high-dimensional data, while the original envelope estimator can only handle low- +dimensional data where the sample size n is smaller than the number of predictors p. From +the connection between the original envelope estimator and the enhanced response envelope +estimator in low-dimension, we extend the definition of the original envelope estimator to +high-dimensional data by considering the limiting case of the enhanced response envelope es- +timator with a vanishing regularization parameter; see the discussion in Section 2.3. Second, +we prove that the enhanced response envelope can reduce the prediction risk relative to the +original envelope for all values of n and p. Moreover, we study the asymptotics of the predic- +tion risk for the original envelope estimator and the enhanced response envelope estimator +when both n, p → ∞ and their ratio converges to a nonzero constant p/n → γ ∈ (0, ∞). +This kind of asymptotic regime has been considered in high-dimensional machine learning +theory (El Karoui, 2018; Dobriban and Wager, 2018; Liang and Rakhlin, 2020; Hastie et al., +2022) for analyzing the behavior of prediction risk of certain predictive models. We derive an +interesting asymptotic prediction risk curve for the envelope estimator. The risk increases as +γ increases, and then decreases after γ > 1. This phenomenon is known as the double descent +phenomenon in the machine learning literature. Although the double descent phenomenon +has been observed for neural networks and ridgeless regression (Belkin et al., 2019; Hastie +et al., 2022), this is the first time that such a phenomenon is shown for the envelope models. +The rest of the paper is organized as follows. We review the original envelope model +and the corresponding envelope estimator in Section 2.1. In Section 2.2, we introduce a +new regularization term called the envelope regularization based on which we propose the +enhanced response envelope in section 2.3. The enhanced response envelope estimator nat- +urally provides a definition for the envelope estimator when p > n. Section 2.4 describes +4 + +how to implement this new method in practice. In Section 3.1, we prove that the enhanced +response envelope can yield better prediction risk than the original envelope for any (n, p) +pair. Considering n, p → ∞ and p/n → γ ∈ (0, ∞), we derive the limiting prediction risk +result of the original envelope and the enhanced response envelope in Section 3.2. This result +along with our simulation study in Section 4 verify the double descent phenomenon. Real +data analyses are presented in Section 5. Proofs of theorems are provided in Appendix A. +2 +Enhanced response envelope +2.1 +Review of envelope model +Envelope model +Let us begin with the classical multivariate linear regression model of a +response vector y ∈ Rr given a predictor vector x ∈ Rp: +y = βx + ε, ε ∼ N(0, Σ), +(1) +where ε is the error vector with a positive definite Σ and independent to x. β ∈ Rr×p is +an unknown matrix of regression coefficients and x ∼ Px where Px is a distribution on Rp +such that E(x) = 0 and Cov(x) = Σx. We omit an intercept by assuming E(y) = 0 for easy +communication. +The envelope model allows for the possibility that there is a part of the response vector +that is unaffected by changes in the predictor vector. Specifically, let E ⊆ Rr be a subspace +such that for all x1 and x2, +(i) QEy|(x = x1) ∼ QEy|(x = x2) and (ii) PEy ⊥⊥ QEy|x, +(2) +where PE is the projection onto E and QE = I − PE. Condition (i) states that the marginal +distribution of QEy is invariant to changes in x. Condition (ii) says that QEy does not +affect PEy if x is provided. Conditions together imply that PE includes the relevant depen- +dency information of y on x (the material part) while QE is the irrelevant information (the +immaterial part). +Let B = span(β). The conditions in (2) hold if and only if +span(β) = B ⊆ E and Σ = PEΣPE + QEΣQE. +(3) +5 + +The definition of an envelope introduced by Cook et al. (2007, 2010) formalizes the smallest +subspace satisfying the conditions in (2) using the equivalence relation of (2) and (3). The +envelope is defined as the intersection of all subspaces E satisfying (3) and is denoted by +EΣ,B, Σ-envelope of B. +The envelope model arises by parameterizing the multivariate linear model in terms of +the envelope EΣ,B. The parameterization is as follows. Let u = dim(EΣ,B), Γ ∈ Rr×u be any +semi-orthogonal basis matrix for EΣ,B, and Γ0 ∈ Rr×(r−u) is any semi-orthogonal basis matrix +for the orthogonal complement of EΣ,B. Then the multivariate linear model can be written +as +y = Γηx + ε, ε ∼ N(0, ΓΩΓT + Γ0Ω0ΓT +0 ), +(4) +where β = Γη with η ∈ Ru×p, and Ω ∈ Rr×r and Ω0 ∈ R(r−u)×(r−u) are symmetric positive +definite matrices. Model (4) is called the envelope model. +Envelope estimator The parameters in the envelope model are estimated by maximizing +the likelihood function from model (4). Assume that p+r < n and u is the dimension u of the +envelope. SX = n−1XTX, SY = n−1YTY, SY,X = n−1YTX, and SY|X = SY−SY,XS−1 +X SX,Y, +where Y ∈ Rn×r has rows yT +i and X ∈ Rn×p has rows xT +i . +The envelope estimator of β is determined as +ˆEΣ,B = span{arg +min +G∈Gr(r,u)(log |GTSY|XG| + log |GTS−1 +Y G|)}, +(5) +where Gr(r, u) = {G ∈ Rr×u : G is a semi-orthogonal matrix}. Define ˆΓ as any semi- +orthogonal basis matrix for ˆEΣ,B and let ˆΓ0 be any semi-orthogonal basis matrix for the +orthogonal complement of ˆEΣ,B. The estimator of β is given by +ˆβ = ˆΓˆΓTSY,XS−1 +X , +(6) +and Σ is estimated by ˆΣ = ˆΓ ˆΩˆΓ + ˆΓT +0 ˆΩ0ˆΓ0 where +ˆΩ = ˆΓTSY|XˆΓ, +ˆΩ0 = ˆΓT +0 SY ˆΓ0, +(7) +2.2 +Envelope regularization +In this section, we introduce the envelope regularization term that respects the fundamental +idea in the envelope model by considering the presence of material and immaterial parts, +6 + +PEΣ,By and QEΣ,By, in the regression. +We define the envelope regularization term as +ρ(η, Ω) = tr(ηTΩ−1η). +(8) +The envelope model distinguishes between PEΣ,By and QEΣ,By in the estimation process. +The log-likelihood function of the envelope model is decomposed into two log-likelihood +functions. One is the log-likelihood function for the multivariate regression of ΓTy on x, +ΓTy = ηx+ΓTε where ΓTε ∼ N(0, Ω). The other is the log-likelihood function for the zero- +mean model of ΓT +0 y, ΓT +0 y = ΓT +0 ε where ΓT +0 ε ∼ N(0, Ω0). The envelope regularization term +(8) is the function of η and Ω, the parameters in the likelihood for the material part of the +envelope model. The envelope regularization term (8) can be seen as imposing the Frobenius +norm regularization on the coefficient after standardizing the material part of the regression +to have uncorrelated errors, Ω−1/2ΓTy = Ω−1/2ηx + Ω−1/2ΓTε where Ω−1/2ΓTε ∼ N(0, I). +We emphasize that the envelope regularization is different from the ridge regularization. +While the ridge regularization ∥β∥2 +F is the quadratic function of β, the envelope regulariza- +tion is not because the components of Ω are not fixed values. The envelope regularization is +the function of both η and Ω, and thus is optimized over η and Ω simultaneously, as shown +in the next subsection. +2.3 +The proposed estimator +We only assume that r ≤ n but p is allowed to be bigger than n. The log-likelihood function +under the envelope model (4) is +Lu(η, EΣ,B, Ω, Ω0) = − (nr/2) log(2π) − (n/2) log |ΓΩΓT + Γ0Ω0ΓT +0 | +− (1/2) +n +� +i=1 +(yi − Γηxi)T(ΓΩΓT + Γ0Ω0ΓT +0 )−1(yi − Γηxi). +By incorporating the envelope regularization term ρ given in the last subsection, we propose +the following enhanced response envelope estimator via penalized maximum likelihood: +arg max{Lu(η, EΣ,B, Ω, Ω0) − n +2λ · ρ(η, Ω)}, +(9) +where λ > 0 serves as a regularization parameter. +7 + +Let SX = n−1XTX, SY = n−1YTY, SY,X = n−1YTX, Sλ +X = SX + λI and Sλ +Y|X = +SY − SY,X(Sλ +X)−1SX,Y. After some basic calculations, (9) can be expressed as +ˆEΣ,B(λ) = span{arg +min +G∈Gr(r,u)(log |GTSλ +Y|XG| + log |GTS−1 +Y G|)}, +(10) +where Gr(r, u) = {G ∈ Rr×u : G is a semi-orthogonal matrix}. Let ˆΓλ be any semi-orthogonal +basis matrix for ˆEΣ,B(λ) and ˆΓ0,λ be any semi-orthogonal basis matrix for the orthogonal +complement of ˆEΣ,B(λ). The enhanced envelope estimator of β is given by +ˆβ(λ) = ˆΓλˆΓT +λSY,X(Sλ +X)−1 +(11) +and Σ is estimated by ˆΣ(λ) = ˆΓλ ˆΩ(λ)ˆΓλ + ˆΓT +0,λ ˆΩ0(λ)ˆΓ0,λ where +ˆΩ(λ) = ˆΓT +λSλ +Y|XˆΓλ, +ˆΩ0(λ) = ˆΓT +0,λSY ˆΓ0,λ, +(12) +The enhanced response envelope estimator can naturally handle the case where p ≥ n−r, +while the original envelope estimator (5) does not. Motivated by the definition of ridgeless +regression (Hastie et al., 2022), we can consider taking the limit of the enhanced response +envelope estimator with λ → 0+: +ˆEΣ,B = span{arg +min +G∈Gr(r,u)( lim +λ→0+ log |GTSλ +Y|XG| + log |GTS−1 +Y G|)}, +ˆβ = lim +λ→0+ ˆβ(λ) +(13) +We take (13) as the definition of envelope estimator. Obviously, when p < n−r, this extended +definition recovers the original envelope estimator (5). This definition enables the use of the +envelope estimator when p ≥ n−r, without altering the definition of the original envelope +estimator (5) when p < n−r. In practice, we implement (13) by computing the enhanced +response envelope estimator (10) with a very small value of λ such as 10−8. +As the enhanced response envelope estimator (9) has flexibility on λ, the enhanced re- +sponse envelope estimator with an appropriate choice of λ can yield better prediction risk +compared to the envelope estimator, which is discussed in Section 3. We discuss the Grass- +mannian manifold optimization required in (10) in the next subsection. +2.4 +Implementation +Suppose that the dimension u is specified and λ is given. Our proposed estimator ˆEΣ,B(λ) +for EΣ(B) requires the optimization over the Grassmannian G(u, r). Such a computation +8 + +problem exists for the original envelope model as well. So far, the best-known algorithm for +solving envelope models is the algorithm introduced by Cook et al. (2016). Thus, we employ +their algorithm to compute ˆEΣ,B(λ) in (10). Note that we standardize X so that each column +has a mean of 0 and a standard deviation of 1 before fitting any model. +In practice, the tuning parameter λ and the dimension u of the envelope are unknown. We +use the cross-validation method to choose (u, λ). For the original envelope, u can be selected +by using AIC, BIC, LRT or cross-validation. BIC and LRT may be preferred as shown by +simulations in Su and Cook (2013). Because the enhanced response envelope model has an +additional tuning parameter λ, we propose to use cross-validation to find the best tuning +parameter combination of u and λ. +We have implemented the enhanced response envelope method in R and the code is +available upon request. +3 +Theory +In this section, we show that the enhanced response envelope can reduce the prediction risk +over the envelope for any (n, p) pair. We then consider the asymptotic setting when n, p → ∞ +p/n → γ ∈ (0, ∞). This asymptotic regime has been considered in the literature (El Karoui, +2018; Dobriban and Wager, 2018; Liang and Rakhlin, 2020; Hastie et al., 2022) for analyzing +the behavior of prediction risk of certain predictive models. +In our discussion, we consider the case where EΣ(B) is known, which has been assumed +in the existing envelope papers to understand the core mechanism of envelope methodologies +(Cook et al., 2013; Cook and Zhang, 2015a,b). +3.1 +Reduction in prediction risk +Consider a test point xnew ∼ Px. For an estimator ˆβ, we define the prediction risk as +R( ˆβ|X) = E[∥ ˆβxnew − βxnew∥2|X]. +Note that this definition has the bias-variance decomposition, +R( ˆβ|X) = ∥bias(vec( ˆβ)|X)∥2 + tr{Var(vec( ˆβ)|X)}. +9 + +Let Γ be a semi-orthogonal basis matrix for EΣ,B. Following the discussion in Section 2.3, +we take (13) as the definition of the envelope estimator ˆβΓ . The prediction risk of ˆβΓ is +R( ˆβΓ|X) = vecT(β)[ΠXΣxΠX ⊗ Ir]vec(β) +� +�� +� +bias2 ++ tr(Ω) +n +tr(S+ +XΣx) +� +�� +� +var +, +where ΠX = Ip − S+ +XSX. +The prediction risk of the enhanced response envelope estimator ˆβΓ(λ) is +R( ˆβΓ(λ)|X) = E[∥ ˆβΓ(λ)xnew − βxnew∥2|X] += λ2vecT(β)[(SX + λI)−1Σx(SX + λI)−1 ⊗ Ir]vec(β) +� +�� +� +bias2 ++ tr(Ω) +n +tr(ΣxSX(SX + λI)−2) +� +�� +� +var +. +(14) +Theorem 1 shows that using the envelope regularization always improves the prediction +risk of the envelope model. +Theorem 1. There always exists a λ > 0 such that R( ˆβΓ(λ)|X) < R( ˆβΓ|X). +3.2 +Limiting prediction risk and double descent phenomenon +The asymptotics of the envelope model are well-established in the case where n diverges +while p is fixed (Cook et al., 2010), while not in a high-dimensional asymptotic setup. In +this section, we examine the limiting risk of both the enhanced response envelope estimator +and the envelope estimator in the high-dimensional asymptotic regime where n, p → ∞ with +p/n → γ ∈ (0, ∞). The number of response variables r is fixed. This kind of asymptotic +regime has been considered in high-dimensional machine learning theory (El Karoui, 2018; +Dobriban and Wager, 2018; Liang and Rakhlin, 2020; Hastie et al., 2022) for analyzing the +behavior of prediction risk of certain predictive models. +Let x = Σ1/2 +x x∗, where E(x∗) = 0 and Cov(x∗) = Ip. Then the envelope model (4) of y +on x can be expressed as the envelope model of y on x∗: +y = Γηx + ε = Γη∗x∗ + ε, +where η∗ = ηΣ1/2 and ε ∼ N(0, ΓΩΓT + Γ0Ω0ΓT +0 ). We take advantage of the invariance +property of the envelope model in the analysis. Considering the envelope on (y, x∗) amounts +to assuming the covariance of the predictor is Ip. +10 + +0 +2 +4 +6 +8 +0 +5 +10 +15 +20 +25 +γ +Limiting prediction risk +Envelope +Enhanced response envelope +Figure 1: The limiting prediction risks of the enhanced response envelope with λ∗ = +tr(Ω)γ/c2 (gray solid line) and the envelope (black solid line), illustrating Theorem 2 when +tr(Ω) = 10 and tr(βTβ) = 10. +Theorem 2. Assume that x has a bounded 4th moment and that tr(ηTη) = c2 for all n, p. +Then as n, p → ∞, such that p/n → γ ∈ (0, ∞), almost surely, +R( ˆβΓ|X) → +� +� +� +� +� +tr(Ω) +γ +1−γ +for γ < 1 +c2(1 − 1 +γ) + tr(Ω) +1 +γ−1 +for γ > 1, +and +R( ˆβΓ(λ∗)|X) → tr(Ω)γm(−λ∗), +where λ∗ = tr(Ω)γ/c2 and m(z) = +1−γ−z−√ +(1−γ−z)2−4γz +(2γz) +. +Figure 1 visualizes the limiting prediction risk curves in Theorem 2. It plots the limiting +risks of envelope (black solid line) and the enhanced response envelope with λ∗ = tr(Ω)γ/c2 +(dark-gray solid line), when tr(Ω) = 10 and tr(ηTη) = 10. +We have four remarks from Theorem 2. The limiting risk of envelope increases before +γ = 1 and then decreases after γ = 1. The double descent phenomenon has been observed in +popular methods such as neural networks, kernel machines and ridgeless regression (Belkin +et al., 2019; Hastie et al., 2022), but this is the first time that such a result is established +11 + +in the envelope literature. Second, the enhanced response envelope estimator always has a +better asymptotic prediction risk than the envelope estimator (for any c2, tr(Ω), and γ). +Third, in Theorem 1, we show the existence of a λ that gives a smaller prediction risk of +the enhanced response envelope than the envelope estimator. In an asymptotic regime, we +specify such a λ value: λ∗ = tr(Ω)γ/c2. Lastly, the gap between two limiting prediction risks, +limn,p→∞ R( ˆβΓ|X) and n,p→∞R( ˆβΓ(λ∗)|X), increases as γ increases from 0 to 1. It is easy to +see as +1 +1−γ > m(−λ∗), 0 < γ < 1. +4 +Simulation +In this section, we use simulations to compare the performance of the enhanced response +envelope estimator and the envelope estimator in terms of the prediction risk, E[∥ ˆβxnew − +βxnew∥2|X] = tr[( ˆβ − β)Cov(xnew)( ˆβ − β)T]. In addition, we use simulations to have a +numeric illustration of the double descent phenomenon to confirm the asymptotic theory. +We consider a setting where yi ∈ R3 is generated from the model +yi = βxi + εi, εi ∼ N(0, Σ), i = 1, . . . , n, +and xi ∈ Rp is generated independently from xi ∼ N(0, Σx(ρ)) where (i, j)th element of +Σx(ρ) ∈ Rp×p is ρ|i−j|. The covariance matrix Σ is set using three orthonormal vectors and +has eigenvalues 10, 8 and 2. The columns of Γ are the second and third eigenvectors of Σ. +Each component of ˜η ∈ R2×p is generated from the standard normal distribution. We then +set η = +√ +10 · ˜η/∥˜η∥F. In this setting, tr(ηTη) = 10, tr(Ω) = 10, and tr(Ω0) = 10. We +assume that dim(EΣ,B) = 2 is known. +Prediction risk comparison +In this simulation, we try different combinations of n, p +and ρ where n ∈ {50, 90, 200, 500}, p/n ∈ {0.1, 0.8, 1.2} and ρ ∈ {0, 0.8}. We compare the +prediction risk of the enhanced response envelope estimator to three different estimators: the +envelope estimator, multivariate linear regression, and multivariate ridge regression. +For the enhanced response envelope and the multivariate ridge regression, we perform +ten-fold cross-validation on simulated data to select λ among equally spaced 100 candidate +λ-values in the scale of logarithm base 10. We compute the envelope estimator for data +12 + +with n ≤ p−r by taking a very small value of λ = 10−8 in the enhanced response envelope +estimator. We fit multivariate regression model to n < p data by taking a tiny value of +λ = 10−8 in the multivariate ridge regression. We then calculate the prediction risk. This +process is repeated 100 times. +In Table 1, we report the prediction risk averaged over 100 replications. First, we see that +the prediction risks from the enhanced response envelope are consistently smaller than the +envelope, as indicated in Theorem 1. Second, the enhanced response envelope consistently +gives smaller prediction risks compared to the multivariate ridge regression. When u = r, the +enhanced response envelope model reduces to the multivariate ridge regression. Therefore, +the prediction risk of the enhanced envelope model can be smaller than that of multivariate +ridge regression as long as tr(Ω0) > 0. +Double descent confirmation +This simulation is designed to support Theorem 2 and +to illustrate the double descent phenomenon in the envelope model. We set n ∈ {200, 2000} +and ρ = 0. p/n varies from 0.1 to 8. We compute the envelope and the enhanced response +envelope with setting λ∗ = tr(Ω)p/(nc2) = p/n on simulated data. We then calculate the +prediction risk for each estimator. Again, we fit n ≤ p−r data to the envelope estimator by +taking a very small value of λ = 10−8 in the enhanced response envelope estimator. +Figure 2 displays the prediction risks from n = 2000 with various p values. The gray +rectangle points denote the prediction risk for the enhanced response envelope estimator. The +black triangle points are the prediction risk for the envelope estimator. We see a fascinating +double descent prediction risk curve for the envelope model, as discussed in Theorem 2. Also, +the enhanced response envelope gives a smaller prediction risk across the entire range of p/n. +Figure 3 plots the prediction risk curves from n = 200. We see that Figure 3 exhibits the +same messages for the much smaller sample size. Although Theorem 2 is established when +considering EΣ,B is known, we did not use this information in the actual estimation in the +simulation study, yet the core message of Theorem 2 is confirmed by the simulation. +13 + +n +p +Enhanced +envelope +Envelope +Multivariate +linear reg +Multivariate +ridge reg +Example 1: p/n = 0.1, ρ = 0 +50 +5 +1.31 (0.11) +1.40 (0.12) +2.39 (0.17) +2.04 (0.12) +90 +9 +1.24 (0.08) +1.41 (0.10) +2.33 (0.13) +1.92 (0.09) +200 +20 +1.16 (0.04) +1.26 (0.05) +2.31 (0.05) +1.93 (0.04) +500 +50 +1.06 (0.03) +1.18 (0.03) +2.28 (0.04) +1.85 (0.04) +Example 2: p/n = 0.8, ρ = 0 +50 +40 +6.73 (0.18) +60.89 (5.80) +104.45 (7.09) +7.16 (0.11) +90 +72 +6.44 (0.14) +55.10 (2.93) +94.81 (3.24) +7.05 (0.08) +200 +160 +5.86 (0.10) +42.50 (0.99) +81.33 (1.63) +6.91 (0.06) +500 +400 +5.67 (0.04) +40.61 (0.85) +79.17 (1.11) +6.89 (0.03) +Example 3: p/n = 1.2, ρ = 0 +50 +60 +8.02 (0.23) +33.70 (1.33) +93.79 (3.83) +8.08 (0.11) +90 +108 +7.58 (0.13) +41.01 (1.36) +94.38 (3.60) +7.98 (0.07) +200 +240 +7.02 (0.07) +47.91 (1.18) +99.94 (2.83) +7.82 (0.04) +500 +600 +6.78 (0.04) +50.43 (0.91) +103.33 (1.55) +7.75 (0.03) +Example 4: p/n = 0.1, ρ = 0.8 +50 +5 +1.76 (0.11) +1.98 (0.19) +2.39 (0.17) +1.84 (0.07) +90 +9 +1.02 (0.05) +1.40 (0.08) +2.33 (0.13) +1.45 (0.06) +200 +20 +0.90 (0.03) +1.30 (0.04) +2.31 (0.05) +1.31 (0.03) +500 +50 +0.78 (0.02) +1.19 (0.03) +2.28 (0.04) +1.22 (0.02) +Example 5: p/n = 0.8, ρ = 0.8 +50 +40 +4.16 (0.17) +62.50 (6.34) +104.45 (7.09) +4.76 (0.12) +90 +72 +3.78 (0.15) +55.14 (2.85) +94.81 (3.24) +4.63 (0.10) +200 +160 +3.32 (0.05) +42.40 (0.99) +81.33 (1.63) +4.28 (0.05) +500 +400 +3.09 (0.03) +40.69 (0.87) +79.17 (1.11) +4.05 (0.03) +Example 6: p/n = 1.2, ρ = 0.8 +50 +60 +5.24 (0.23) +36.43 (1.12) +104.17 (4.37) +5.80 (0.14) +90 +108 +4.41 (0.12) +44.84 (1.68) +103.01 (4.03) +5.16 (0.09) +200 +240 +4.05 (0.07) +51.46 (1.30) +109.34 (3.17) +4.98 (0.06) +500 +600 +3.86 (0.03) +54.21 (0.98) +112.62 (1.71) +4.82 (0.03) +Table 1: Prediction risk, averaged over 100 replications. The standard error is given in paren- +theses. For n ≤ p−r data, we compute the envelope by taking a very small value of λ = 10−8 +in the enhanced response envelope; see the definition of the envelope estimator (13) in Sec- +tion 2.3. For n < p data, we fit the multivariate regression model by taking a tiny value of +λ = 10−8 in the multivariate ridge regression. +14 + +0 +2 +4 +6 +8 +0 +5 +10 +15 +20 +25 +p/n +Prediction risk +Envelope +Enhanced response envelope +Figure 2: Prediction risk of the envelope and the enhanced response envelope with λ∗ = +tr(Ω)p/(nc2), when n = 2000 and p varies. For n ≤ p−r data, we fit the envelope by taking +a very small value of λ = 10−8 in the enhanced response envelope estimator; see the definition +of the envelope estimator (13) in Section 2.3. +5 +Real data +In this section, we use two real datasets to illustrate the enhanced response envelope esti- +mator. We use air pollution data in which the number of samples is bigger than the number +of predictors (n > p) in the next subsection. In Subsection 5.2, we analyze near-infrared +spectroscopy data in which the number of predictors is much bigger than the number of +predictors (p ≫ n). +We compare the prediction performance of the enhanced response envelope estimator to +the envelope estimator, multivariate regression, and multivariate ridge regression. +5.1 +Air pollution data +The air pollution data are available and obtained directly from Table 1.5 of Johnson et al. +(2002). The response vector y ∈ R5 consists of atmospheric concentrations of CO, NO, NO2, +O3, and HC, recorded at noon in the Los Angeles area on 42 different days. The two predictors +15 + +0 +2 +4 +6 +8 +0 +5 +10 +15 +20 +25 +p/n +Prediction risk +Envelope +Enhanced response envelope +Figure 3: Prediction risk of the envelope and the enhanced response envelope with λ∗ = +tr(Ω)p/(nc2), when n = 200 and p varies. For n ≤ p−r data, we fit the envelope by taking a +very small value of λ = 10−8 in the enhanced response envelope estimator; see the definition +of the envelope estimator (13) in Section 2.3. +are wind speed and solar radiation. This data were analyzed in Cook (2018) to illustrate the +effectiveness of the original envelope model compared to the standard multivariate regression +model. They showed that the asymptotic standard errors of estimated components of β +from the envelope model are significantly reduced compared to those from the standard +multivariate regression model. We use the data to predict atmospheric concentrations from +wind speed and solar radiation and compare the prediction performance of the enhanced +response envelope estimator to the envelope estimator, the standard multivariate regression, +and multivariate ridge regression. +To compare the prediction performance, we borrow the nested cross validation idea +(Wang and Zou, 2021; Bates et al., 2021), in which an inner cross-validation is performed +to tune a model and an outer cross-validation is performed to provide a prediction error of +the tuned model. We adopt the leave-one-out cross-validation (LOOCV) procedure for the +outer loop because the LOOCV error is an unbiased estimator of the generalization error +of the tuned model and is shown to have nice performance compared to other methods for +16 + +Enhanced +envelope +Envelope +Multivariate +linear reg +Multivariate +ridge reg +Error +8.859 +8.951 +9.192 +9.124 +Table 2: Air pollution data: prediction error of the enhanced response envelope method, +the original envelope method, the multivariate linear regression, and the multivariate ridge +regression. +estimating generalization errors (Wang and Zou, 2021). +We take the ith observation out from the data and set the remaining n−1 observations +as the training set to fit and tune models. We standardize X of the training set so that each +column has a mean of 0 and a standard deviation of 1. We perform ten-fold cross-validation +to select (u, λ) from a fine grid of u ∈ {0, . . . , 5} and 20 equally spaced candidate λ-values +in the scale of logarithm base 10 for the enhanced response envelope. For the envelope, +we perform ten-fold cross-validation to choose u from {0, . . . , 5}. For the multivariate ridge +model, ten-fold cross-validation is performed to select λ from 20 equally spaced λ-values in +the scale of logarithm base 10. The ith observation we take out at the beginning is set as +the test set. We standardize xi of the test set using the mean and standard deviation of the +training data. We then calculate the squared prediction error, ∥yi − ˆβ(−i)xi∥2 +2/r, where ˆβ(−i) +is the estimated regression coefficient derived from the training set. We repeat this process +for i = 1, . . . , n and report �n +i=1 ∥yi − ˆβ(−i)xi∥2 +2/(nr) in Table 2. We see that the enhanced +response envelope estimator gives the smallest prediction error among all competitors. +5.2 +Near-infrared spectroscopy data of fresh cattle manure +Near-infrared spectroscopy data of cattle manure were collected by Gog´e et al. (2021). The +data are available in the Data INRAE Repository at https://doi.org/10.15454/JIGO8R. This +data contain 73 cattle manure samples that were analyzed by near-infrared spectroscopy +using a NIRFlex device. Near-infrared spectra were recorded every 2 nm from 1100 to 2498 +nm on fresh homogenized samples. In addition, the cattle manure samples were analyzed +for three chemical properties: the amount of dry matter, magnesium oxide, and potassium +17 + +Enhanced +envelope +Envelope +Multivariate +linear reg +Multivariate +ridge reg +Error +0.437 +0.460 +0.692 +0.492 +Table 3: Near-infrared spectroscopy data: prediction error from the enhanced response enve- +lope method, the envelope method, the multivariate linear regression, and the multivariate +ridge regression. We compute the envelope estimator by taking a very small value of λ = 10−8 +in the enhanced response envelope estimator; see the definition of the envelope estimator +(13) in Section 2.3. We fit the multivariate regression model by taking a very small value of +λ = 10−8 in the multivariate ridge regression. +oxide. We use the data of 62 cattle manure samples which have no missing values. We +standardize each chemical property to have a sample mean of 0 and a standard deviation of +1. In our analysis, we consider the multivariate linear model, where xi ∈ R700 is the vector +of near-infrared spectroscopy measurements and yi ∈ R3 is the vector of three chemical +measurements to predict the three chemical properties from the absorbance spectra. +In Table 3, we report the prediction error which is calculated using the same procedure +described in the previous subsection, except that u is chosen from {0, . . . , 3}. Again, We see +that the enhanced response envelope estimator has the smallest prediction error among all +competitors. +6 +Discussion +In this paper, we have developed a novel envelope regularization function which is used to +define the enhanced envelope estimator. We have shown that the enhanced envelope estimator +is indeed better than the un-regularized envelope estimator in prediction. The asymptotic +analysis of the risk function of envelope reveals, for the first time in the envelope literature, +an interesting double descent phenomenon. The numeric examples in this work also suggest +that the enhanced response envelope estimator is a promising new tool for multivariate +regression. +18 + +Although this paper is focused on the case where the number of responses (r) is less +than the number of samples and the number of predictors, it is interesting to consider the +case when r → ∞ in ultrahigh-dimensional problems. Su et al. (2016) studied the response +envelope for r → ∞ but p is fixed. When both p, r > n and diverge, there are additional +technical issues to be addressed. For example, we may need another penalty term to handle +the issues caused by the large r in the model. This direction of research will be investigated +in a separate paper. +References +Bai, Z., Miao, B., and Pan, G. (2007), “On asymptotics of eigenvectors of large sample +covariance matrix,” The Annals of Probability, 35, 1532–1572. +Bai, Z.-D. and Yin, Y.-Q. (2008), “Limit of the smallest eigenvalue of a large dimensional +sample covariance matrix,” in Advances In Statistics, World Scientific, pp. 108–127. +Bates, S., Hastie, T., and Tibshirani, R. (2021), “Cross-validation: what does it estimate and +how well does it do it?” arXiv preprint arXiv:2104.00673. +Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2019), “Reconciling modern machine-learning +practice and the classical bias–variance trade-off,” Proceedings of the National Academy +of Sciences, 116, 15849–15854. +Chun, H. and Kele¸s, S. (2010), “Sparse partial least squares regression for simultaneous +dimension reduction and variable selection,” Journal of the Royal Statistical Society: Series +B (Statistical Methodology), 72, 3–25. +Cook, R. (2018), An Introduction to Envelopes: Dimension Reduction for Efficient Estima- +tion in Multivariate Statistics, Wiley Series in Probability and Statistics, Wiley. +Cook, R. D. and Forzani, L. (2019), “Partial least squares prediction in high-dimensional +regression,” The Annals of Statistics, 47, 884–908. +Cook, R. D., Forzani, L., and Su, Z. (2016), “A note on fast envelope estimation,” Journal +of Multivariate Analysis, 150, 42–54. +19 + +Cook, R. D., Forzani, L., and Zhang, X. (2015), “Envelopes and reduced-rank regression,” +Biometrika, 102, 439–456. +Cook, R. D., Helland, I., and Su, Z. (2013), “Envelopes and partial least squares regression,” +Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75, 851–877. +Cook, R. D., Li, B., and Chiaromonte, F. (2007), “Dimension reduction in regression without +matrix inversion,” Biometrika, 94, 569–584. +— (2010), “Envelope models for parsimonious and efficient multivariate linear regression,” +Statistica Sinica, 927–960. +Cook, R. D. and Su, Z. (2013), “Scaled envelopes: scale-invariant and efficient estimation in +multivariate linear regression,” Biometrika, 100, 939–954. +— (2016), “Scaled predictor envelopes and partial least-squares regression,” Technometrics, +58, 155–165. +Cook, R. D. and Zhang, X. (2015a), “Foundations for envelope models and methods,” Journal +of the American Statistical Association, 110, 599–611. +— (2015b), “Simultaneous envelopes for multivariate linear regression,” Technometrics, 57, +11–25. +De Jong, S. (1993), “SIMPLS: an alternative approach to partial least squares regression,” +Chemometrics and intelligent laboratory systems, 18, 251–263. +Ding, S. and Cook, R. D. (2018), “Matrix variate regressions and envelope models,” Journal +of the Royal Statistical Society: Series B (Statistical Methodology), 80, 387–408. +Ding, S., Su, Z., Zhu, G., and Wang, L. (2020), “Envelope quantile regression,” Statistica +Sinica. +Dobriban, E. and Wager, S. (2018), “High-dimensional asymptotics of prediction: Ridge +regression and classification,” The Annals of Statistics, 46, 247–279. +20 + +El Karoui, N. (2018), “On the impact of predictor geometry on the performance on high- +dimensional ridge-regularized generalized robust regression estimators,” Probability Theory +and Related Fields, 170, 95–175. +Gog´e, F., Thuri`es, L., Fouad, Y., Damay, N., Davrieux, F., Moussard, G., Le Roux, C., +Trupin-Maudemain, S., Val´e, M., and Morvan, T. (2021), “Dataset of chemical and near- +infrared spectroscopy measurements of fresh and dried poultry and cattle manure,” Data +in Brief, 34, 106647. +Hastie, T., Montanari, A., Rosset, S., and Tibshirani, R. J. (2022), “Surprises in high- +dimensional ridgeless least squares interpolation,” The Annals of Statistics, 50, 949–986. +Johnson, R. A., Wichern, D. W., et al. (2002), Applied multivariate statistical analysis, vol. 5, +Prentice hall Upper Saddle River, NJ. +Khare, K., Pal, S., and Su, Z. (2017), “A bayesian approach for envelope models,” The +Annals of Statistics, 196–222. +Li, L. and Zhang, X. (2017), “Parsimonious tensor response regression,” Journal of the +American Statistical Association, 112, 1131–1146. +Liang, T. and Rakhlin, A. (2020), “Just Interpolate: Kernel “Ridgeless” Regression can +generalize,” Annals of Statistics, 48, 1329–1347. +Rekabdarkolaee, H. M., Wang, Q., Naji, Z., and Fuente, M. (2020), “NEW PARSIMONIOUS +MULTIVARIATE SPATIAL MODEL,” Statistica Sinica, 30, 1583–1604. +Rimal, R., Almøy, T., and Sæbø, S. (2019), “Comparison of multi-response prediction meth- +ods,” Chemometrics and Intelligent Laboratory Systems, 190, 10–21. +Su, Z. and Cook, R. D. (2011), “Partial envelopes for efficient estimation in multivariate +linear regression,” Biometrika, 98, 133–146. +— (2013), “Estimation of multivariate means with heteroscedastic errors using envelope +models,” Statistica Sinica, 213–230. +21 + +Su, Z., Zhu, G., Chen, X., and Yang, Y. (2016), “Sparse envelope model: efficient estimation +and response variable selection in multivariate linear regression,” Biometrika, 103, 579– +593. +Wang, B. and Zou, H. (2021), “Honest leave-one-out cross-validation for estimating post- +tuning generalization error,” Stat, 10, e413. +Zhang, X. and Li, L. (2017), “Tensor envelope partial least-squares regression,” Technomet- +rics, 59, 426–436. +Zhao, Y., Van Keilegom, I., and Ding, S. (2022), “Envelopes for censored quantile regression,” +Scandinavian Journal of Statistics. +Zhu, G. and Su, Z. (2020), “Envelope-based sparse partial least squares,” The Annals of +Statistics, 48, 161–182. +A +Proofs of Theorems +A.1 +Proof of Theorem 1 +Note that +R( ˆβΓ(λ)|X) = λ2tr(β(SX + λI)−1Σx(SX + λI)−1βT) + tr(Ω) +n +tr(ΣxSX(SX + λI)−2). +Therefore, we have +∂ +∂λR( ˆβΓ(λ)|X) += 2λ · tr(βSX(SX + λI)−2Σx(SX + λI)−1βT) − 2tr(Ω) +n +tr(ΣxSX(SX + λI)−3) +≤ +p +� +i=1 +� +2λ · σi(βTβ) − 2tr(Ω) +n +� +σi(ΣxSX(SX + λI)−3), +where σi(M) denotes the i-th largest eigenvalue of M. The inequality above comes from Von +Neumann’s trace inequality. +22 + +Since +∂ +∂λR( ˆβΓ(λ)|X) < 0 if λ < tr(Ω)/(nσ1 +� +βTβ) +� +, R( ˆβΓ(λ)|X) is a monotonically +decreasing function if 0 ≤ λ ≤ tr(Ω)/(nσ1 +� +βTβ) +� +. Therefore, we have +R( ˆβΓ(λ)|X) < tr(Ω) +n +tr(ΣxS+ +X), +when 0 < λ < tr(Ω)/(nσ1 +� +βTβ) +� +. Since +tr(Ω) +n +tr(ΣxS+ +X) ≤ R( ˆβΓ|X), +we prove the theorem. +A.2 +Proof of Theorem 2 +Our analyses of limiting prediction risk follow that of Hastie et al. (2022). +As Σx = I, +R( ˆβΓ|X) = vecT(β)[ΠX ⊗ Ir]vec(β) + tr(Ω) +n +tr(S+ +X), +R( ˆβΓ(λ)|X) = λ2tr(β(SX + λI)−2βT) + tr(Ω) +n +tr(SX(SX + λI)−2), +where ΠX = Ip − S+ +XSX. +A.2.1 +Proof for envelope estimator when γ < 1 +Let us consider the case where p/n → γ ∈ (0, 1). From Theorem 1 of Bai and Yin (2008), +σmin(SX) ≥ (1 − √γ)2/2 and σmax(SX) ≤ 2(1 + √γ)2 almost surely for all sufficiently large +n. Therefore, in this case, SX is invertible and the bias term of R( ˆβΓ|X) is 0, almost surely. +The variance term of R( ˆβΓ|X) is +tr(Ω) +n +tr(S+ +X) = p · tr(Ω) +n +� 1 +sdFSX(s), +where FSX(s) is the spectral measure of SX. By the Marchenko-Pastur theorem, which says +that FSX → Fγ, and the Portmanteau theorem, +� 2(1+√γ)2/ +(1−√γ)2/2 +1 +sdFSX(s) → +� 2(1+√γ)2/ +(1−√γ)2/2 +1 +sdFγ(s) = +� 1 +sdFγ(s). +23 + +The equality is because the support of Fγ is [(1 − √γ)2, (1 + √γ)2]. We can also remove the +upper and lower limits of integration on the left-hand side by Theorem 1 of Bai and Yin +(2008). Thus, combining above results, we arrive at +R( ˆβΓ|X) → γ · tr(Ω) +� 1 +sdFγ(s). +The Stieltjes transformation of Fγ is given by +m(z) = +� +1 +s − zdFγ(s) = (1 − γ − z) − +� +(1 − γ − z)2 − 4γz) +2γz +, +for any real z < 0. By taking the limit z → 0−, the proof is completed. +A.2.2 +Proof for envelope estimator when γ > 1 +The variance term of R( ˆβΓ|X) is +tr(Ω) +n +tr(S+ +X) = tr(Ω) +n +tr((XXT/n)+) = tr(Ω) +p +tr((XXT/p)+). +Considering n/p → τ = 1/γ < 1, by the same arguments from the proof above, we conclude +that +tr(Ω) +n +tr(S+ +X) → tr(Ω) +1 +γ − 1. +Let β = [bT +1 . . . bT +r ]. The bias term is +vecT(β)[ΠX ⊗ Ir]vec(β) = +r +� +i=1 +bT +i ΠXbi = +r +� +i=1 +lim +z→0+ zbT +i (SX + zI)−1bi. +From Theorem 1 of Bai et al. (2007), we have that +zbT +i (SX + zI)−1bi → z +� +1 +s + zFγ(s) = z∥bi∥2m(−z) a.s., +for any i = 1, . . . , r. We further have that +r +� +i=1 +zbT +i (SX + zI)−1bi → zc2m(−z) a.s. +By the Arzela-Ascoli theorem and the Moore-Osgood theorem, we exchange limits and +arrive at +lim +z→0+ +r +� +i=1 +zbT +i (SX + zI)−1bi → c2 lim +z→0+ zm(−z) = c2(1 − 1/γ) a.s. +Combining the variance and the bias terms, we complete the proof. +24 + +A.2.3 +Proof for enhanced envelope estimator +We use the similar techniques from the envelope estimator for both variance and bias terms. +The variance term of R( ˆβΓ(λ)) becomes +tr(Ω) +n +tr(SX(SX + λI)−2) → γtr(Ω) +� +s +(s + λ)2Fγ(s). +Let gn,λ(η) = λ · tr(β(SX + λ(1 + η)I)−1βT), η ∈ [−1/2, 1/2]. The bias term of R( ˆβΓ(λ)) +is +λ2tr(β(SX + λI)−2βT) = − ∂ +∂ηgn(λ, 0). +Because +gn,λ(η) → λc2m(−λ(1 + η)) = λc2 +� +1 +s + λ(1 + η)dFγ(s), +and derivative and limit are exchangeable, we have that +λ2tr(β(SX + λI)−2βT) → λ2c2 +� +1 +(s + λ)2dFγ(s). +We can conclude that, +R( ˆβΓ(λ)) → +� λ2c2 + s · γtr(Ω) +(s + λ)2 +Fγ(s). +The right-hand side is minimized at λ∗ = γtr(Ω)/c2. In such case, the right-hand side +becomes γtr(Ω) · m(−λ∗). +25 + diff --git a/3dE1T4oBgHgl3EQfAQLV/content/2301.02838v1.pdf b/3dE1T4oBgHgl3EQfAQLV/content/2301.02838v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..f62c9d8a4332a050c5263aa28bc5a87ee4f50d66 --- /dev/null +++ b/3dE1T4oBgHgl3EQfAQLV/content/2301.02838v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e0837ed0c3df524e38a21a6954f002c1272b36ef37b480000a4c7a0ef52176cb +size 231226 diff --git a/3dE1T4oBgHgl3EQfAQLV/vector_store/index.faiss b/3dE1T4oBgHgl3EQfAQLV/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..976c7e9e7c9d9cae4b8185a0df29dff0f273b98f --- /dev/null +++ b/3dE1T4oBgHgl3EQfAQLV/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:798d6c2a760bf034eee02c0dd046c4d72187e3f9cc4ccd0c8c294484c79645d3 +size 6225965 diff --git a/3dE1T4oBgHgl3EQfAQLV/vector_store/index.pkl b/3dE1T4oBgHgl3EQfAQLV/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..a027293bc83fb1d9ff3864617f3a4245ac6c9781 --- /dev/null +++ b/3dE1T4oBgHgl3EQfAQLV/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fb50a5434f2e85fd7042880ed69c6fa83d21dd9a79ceb50059878e231a8a5650 +size 182460 diff --git a/3dE4T4oBgHgl3EQfbAyT/content/2301.05069v1.pdf b/3dE4T4oBgHgl3EQfbAyT/content/2301.05069v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..878364a5bd8cb6430eecca1fee1de4bd6ce2c4ef --- /dev/null +++ b/3dE4T4oBgHgl3EQfbAyT/content/2301.05069v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fd9e808758fb729a8ab4490b0704b38c81a0bfb39c68b5139c49de5e1462d328 +size 126906 diff --git a/3dE4T4oBgHgl3EQfbAyT/vector_store/index.pkl b/3dE4T4oBgHgl3EQfbAyT/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..138a343bff834f4096618b29cae26c04580a00e9 --- /dev/null +++ b/3dE4T4oBgHgl3EQfbAyT/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:08bdf721dd42755b1bd53d508f34b35a151b92e588f9d7b03d52262f142ceab0 +size 72302 diff --git a/4NE1T4oBgHgl3EQfSgOT/vector_store/index.faiss b/4NE1T4oBgHgl3EQfSgOT/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..ebb9715309e25d007484c66b862acd2de9d3ae27 --- /dev/null +++ b/4NE1T4oBgHgl3EQfSgOT/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:45e44ee5aaa29576abe2a1cfcccea1737d79adccedcc04a075d6413b337c9e1d +size 2949165 diff --git a/5dE1T4oBgHgl3EQfTAM3/content/tmp_files/2301.03072v1.pdf.txt b/5dE1T4oBgHgl3EQfTAM3/content/tmp_files/2301.03072v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..bb9e7609144ea7d026f8b06558bedda395ede5dc --- /dev/null +++ b/5dE1T4oBgHgl3EQfTAM3/content/tmp_files/2301.03072v1.pdf.txt @@ -0,0 +1,1624 @@ +Bipartite unique-neighbour expanders via Ramanujan graphs +Ron Asherov and Irit Dinur∗ +Weizmann Institute, Rehovot, Israel +Abstract +We construct an infinite family of bounded-degree bipartite unique-neighbour expander graphs with +arbitrarily unbalanced sides. Although weaker than the lossless expanders constructed by Capalbo et +al., our construction is simpler and may be closer to be implementable in practice due to the smaller +constants. We construct these graphs by composing bipartite Ramanujan graphs with a fixed-size gadget +in a way that generalizes the construction of unique neighbour expanders by Alon and Capalbo. For +the analysis of our construction we prove a strong upper bound on average degrees in small induced +subgraphs of bipartite Ramanujan graphs. Our bound generalizes Kahale’s average degree bound to +bipartite Ramanujan graphs, and may be of independent interest. Surprisingly, our bound strongly relies +on the exact Ramanujan-ness of the graph and is not known to hold for nearly-Ramanujan graphs. +1 +Introduction +An infinite family Gn = (Ln ⊔ Rn, En) of (c, d)-biregular graphs with |Ln| + |Rn| → ∞ is called a unique +neighbour expander family if there exists δ > 0 such that for every n and every set of left side vertices S ⊆ Ln +of size |S| ≤ δ|Ln| there exists a unique neighbour of S in Gn, namely a vertex in Rn that is connected to +exactly one vertex in S. We only require that sets of left vertices have unique neighbours, and arbitrarily +small right side sets may have no unique neighbour. +Alon and Capalbo [AC02] construct several explicit families of unique neighbour expanders, via an elegant +composition of a Ramanujan graph and a gadget. They construct three families of general (non-bipartite) +graphs in which all small sets have unique neighbours, and one family of slightly unbalanced bipartite graphs +where small sets on the left have unique neighbors on the right. In their construction the left side is 22/21 +times bigger than the right side. The more imbalanced the graph, the harder it is for small left hand side +sets to expand into the right hand side. Capalbo et. al. [Cap+02] construct arbitrarily unbalanced bipar- +tite graphs that are lossless expanders, a notion strictly stronger than unique neighbour expansion. Their +construction is based on a sequence of somewhat involved composition steps using randomness conductors. +Our main theorem is an efficient construction of an infinite family of bipartite unique neighbour expanders +for any constant imbalance α, and any sufficiently large left-regularity degrees of a specific form: +Theorem 1. There is a function ˆq : N × R → N such that for every integer c0 > 5 and real number α > 1, +if q > ˆq(c0, α) is a prime power and αc0(q + 1) is an integer, then there is a polynomial-time construction of +an infinite family of (c0(q + 1), αc0(q + 1))-biregular unique neighbour expanders. +The theorem is proven in Section 6.2, and provides a way to compute ˆq(c0, α). Here are some computed +values of ˆq(c0, α) for several values of c0, α. +∗Irit Dinur acknowledges support by ERC grant 772839 and ISF grant 2073/21. +1 +arXiv:2301.03072v1 [math.CO] 8 Jan 2023 + +c0 +α +ˆq(c0, α) +10 +2 +18907 +35 +2 +1492 +100 +100 +136051 +100 +1.01 +1135 +Notice that ˆq(co, α) increases with α, reflecting the fact that constructions with larger α (namely, more +imbalanced sides) are harder to come by, and require larger degrees. +The construction uses an infinite family of bipartite Ramanujan graphs, namely graphs whose non- +trivial spectrum is contained in the spectrum of the (c, d)-biregular tree (see Preliminaries for details). We +construct the unique neighbour expander family by taking a family of bipartite Ramanujan graphs and +combining them with a fixed size graph (“gadget”), with a good unique neighbour property (small sets have +unique neighbours), whose existence is shown via the probabilistic method (Lemma 11). The combination +is done as follows. We first place a copy of the gadget for every right side vertex of the Ramanujan graph. +The vertex is replaced by the right side of the gadget, and its neighbours are identified with the left side of +the gadget. The gadget is used to route the neighbours of each left side vertex in the Ramanujan graph to +its neighbours in the product graph. +Expansion in the product graph comes from unique neighbour expansion of the gadget together with +low degree vertices in the Ramanujan graph. Sufficiently low degree vertices are guaranteed to exist thanks +to the following (new) bound on the average degree of induced subgraphs of bipartite Ramanujan graphs, +which may be of independent interest. +Theorem 2. Let G = (L ⊔ R, E) be a (c, d)-biregular Ramanujan graph, and let ε > 0. Then there exists +δ > 0, that depends only on ε, c, d, such that for every S ⊂ L of size |S| ≤ δ|L|, the set N(S) ⊆ R of the +neighbours of S satisfies +c|S| +|N(S)| ≤ 1 + (1 + ε) +� +d − 1 +c − 1 . +The theorem shows that every small set on the left side admits neighbours on the right side with low degree +in the induced subgraph. The proof involves recursive analysis of non-backtracking paths. Interestingly, the +recursion has a nice solution only when the graph is Ramanujan. It is unclear whether this method can be +extended to “nearly-Ramanujan” graphs. +Combining the average degree upper bound with the gadget, the low-degree right-side vertices in the +Ramanujan graph imply a small set of left-side vertices in the gadget; this set will have a unique neighbour +in the gadget, which gives (via Lemma 12) a unique neighbour in the constructed graph. +Even though Ramanujan graphs are the best spectral expanders one can hope for, an efficient construc- +tion of Ramanujan graphs (be them bipartite or not) does not immediately imply that we can construct +unique neighbour expanders. In the d-regular case, Kahale shows ([Kah95, Thm 5.2]) that there are nearly- +Ramanujan graphs with expansion at most d/2, which is not enough for unique neighbour expansion. In fact, +recently Kamber and Kaufman [KK22] proved that some Ramanujan graphs strongly fail to have unique +neighbour expansion, by giving explicit constructions of arbitrarily small sets that do not admit a unique +neighbour. +As mentioned, the graph product we define requires a fixed size gadget, whose proof of existence is not +constructive. In principle, such a gadget could be found by exhaustive search since we are working in a +constant size search space. The gadget’s size in our construction is at least cubic in q, so exhaustive search +is impractical for even small values of q. Unfortunately we know of no efficient construction of a gadget with +the required parameters. It is possible that the graph sampling method present in [AK19] can be used to +construct fixed size gadgets more efficiently. +The rest of this work is organized as follows. In Section 2 we survey some of the uses of unique neighbour +expanders, and mention known constructions of such graphs. Section 3 provides basic definitions and results. +Our main technical tool, that asserts the low induced degree in bipartite Ramanujan graph, is stated and +proven in Section 4. We prove the existence of a fixed-size gadget with good unique neighbour expansion +2 + +properties in Section 5. In Section 6 we define the way we use the Ramanujan graphs and the gadget to +construct bipartite unique neighbour expanders, and by that prove Theorem 1. +2 +Related work +One of the prominent uses of bipartite expanders in general and bipartite unique neighbour expanders in +particular, and the motivation for this work, is the construction of error correcting codes. The works of +Tanner [Tan81] and later Sipser and Spielman [SS96] construct linear error correcting codes C(B, C0) from +a bipartite graph B and a smaller linear code C0. It is shown that under some assumptions on the code C0 +and the expansion properties of the bipartite graph B, the resulting code has good distance. This gives a +way to take a family of graphs and transform it into a family of codes. Our work describes a construction +that, in a sense, goes the other way around: given two bipartite graphs, B and B0, we view B0 as a parity +check graph1 of the base code C0, and B plays the role of the underlying graph of a Tanner code C(B, C0). +Our output graph is just the parity check graph of C(B, C0). We give full details of this graph product in +Section 6.1. +In [DSW06; BV09] it is shown that codes constructed on top of unique neighbour expanders are weakly +smooth and can be used to construct robustly testable codes. But the uses of unique neighbour expanders are +not limited to error correcting codes: for example, such graphs may be used in the context of non-blocking +networks, where it is required to connect several input-output terminals via paths in a non-intersecting +fashion. Arora et al. [ALM96] use graphs with expansion beyond the d/2 barrier to establish the existence +of unique neighbours in the graph, which are useful in finding input-output paths in the online settings. +Roughly speaking, when routing a set of input-output pairs, the algorithm can use all unique neighbours +freely since they are guaranteed not to interfere with any other paths. +Pippenger [Pip93] uses explicit +constructions of spectral expanders in order to solve a similar problem, in the case where the route planning +is computed locally. There the spectral expansion of a graph is proven to imply a combinatorial expansion, +in a similar way to our Theorem 2. +Another use for unique neigbhour expanders is for load-balancing problems, such as the token distribution +problem described in [PU89], and the similar pebble distribution problem, briefly discussed in [AC02]. In +the latter, pebbles are placed arbitrarily on vertices of a graph, and need to be distributed via edges of the +graph such that no vertex has more than one pebble. Given that the total number of pebbles is small and +that the graph has the unique neighbour property, we have an efficient parallel algorithm for redistributing +the pebbles. +Alon and Capalbo [AC02] construct several families of unique neighbour expanders, one of them is a +family of bipartite graphs whose left side is 22/21 times bigger than the right side. Similar to the construction +presented at this work, each graph in the constructed family is a combination of a Ramanujan graph and a +fixed graph. These graphs are not (bi-)regular but their degrees are bounded by a constant. Becker [Bec16] +uses a different family of 8-regular Ramanujan graphs in order to construct a family of (non-bipartite) unique +neighbour expanders, with the additional property that each graph in the family is a Cayley graph. +A different approach to constructing bipartite graphs uses randomness conductors. Randomness conduc- +tors are functions that receive a bitstring with some entropy (according to some measure of entropy), and a +uniformly random bitstring, and output a bitstring, with certain guarantees on its entropy. Some conduc- +tors can be constructed explicitly via a spectral method, and Capalbo et al. [Cap+02] combine them in a +zig-zag-like fashion in order to construct an infinite family of bipartite lossless expanders, namely bipartite +graphs with fixed left-regularity c where small enough sets contained in the left side have at least c(1 − ε) +neighbours on the right side. These graphs are trivially unique neighbour expanders, since a simple counting +argument shows that if a set expands by a factor of more than c/2, then it has unique neighbours. +1This is a bipartite graph whose incidence structure is given by the parity check matrix. +3 + +3 +Preliminaries +3.1 +Expander graphs +In this work we deal with undirected graphs, that may contain multiple edges between two vertices, but do +not contain self-loops. For a graph G and a subset of its vertices S we denote by NG(S) the neighbourhood +of S, namely all vertices adjacent to some vertex in S. When the graph in discussion is obvious, we may +omit it and write N(S). We say that v is a unique neighbour of S if there is a unique u ∈ S that is adjacent +to v. +Let (Gn) be a series of graphs with the number of vertices growing to infinity. There are several well +studied notions of expansion in graph families; we note some of them. +1. Vertex expansion. (Gn) is a (δ, α)-vertex expander if for every n and any subset S ⊆ VGn, if |S| ≤ δ|VGN | +we have that |NGN (S)| ≥ α|S|. +2. Edge expansion. (Gn) is a (δ, α)-edge expander if for every n and any subset S ⊆ VGn, if |S| ≤ δ|VGN | +we have that at least an α-fraction of the edges with one endpoint in S have their other endpoint +outside of S. +3. Spectral expansion. Assume that (Gn) are all d-regular, and let An be the adjacency operator associated +with Gn, so An is indexed by vertices of Gn and (An)uv counts how many edges there are between +u and v in Gn. Let λ1 ≥ . . . ≥ λVn be its spectrum. It can be seen that λ1 = d. Then (Gn) is a +λ-spectral expander if for all n and i ̸= 1 we have |λi| ≤ λ. +4. Unique neighbour expansion. (Gn) is a δ-unique neighbour expander if for every n, any subset S ⊆ VGn +of size at most δ|VGN | has a unique neighbour. +These definitions apply to bipartite graphs Gn = (Ln ⊔ Rn, En) as well, with the exception that we usually +consider sets contained in the left side only, and require that Ln/Rn is a constant, normally greater than +1. In this case we note that edge expansion is meaningless (since all edges leaving the left side enter the +right side), and if a bipartite graph is (c, d)-biregular, namely if all left-side vertices have degree c and all +right-side vertices have degree d, then the largest eigenvalue of the associated adjacency operator is +√ +cd. +It can be seen that for d-regular graphs, the best spectral expansion we can hope for is α = 2 +√ +d − 1. +These graphs are known as Ramanujan graphs. +3.2 +Bipartite Ramanujan graphs +Ramanujan graphs have the best spectral gap [Nil91], and their non-trivial eigenvalues are contained in the +spectrum of the infinite d-regular tree Td. Similarly, in the bipartite case, Biregular Ramanujan graphs are +defined via their relation to the infinite biregular trees: the infinite (c, d)-biregular tree Tc,d, for d > c, has +the spectrum +λ ∈ spec(Tc,d) ⇔ |λ| ∈ {0} ∪ +�√ +d − 1 − +√ +c − 1, +√ +d − 1 + +√ +c − 1 +� +(see, e.g., [GM88], [LS96].) We therefore say that a finite (c, d)-biregular graph is bipartite Ramanujan if its +nontrivial eigenvalues lie in this set. That means that every eigenvalue λ of a bipartite Ramanujan graph +belongs to one of these classes: +1. Trivial: λ = ± +√ +cd, with eigenvectors fixed on either sides, or λ = 0; +2. λ ∈ [ +√ +d − 1 − √c − 1, +√ +d − 1 + √c − 1] are the nontrivial positive eigenvalues; +3. λ ∈ [−√c − 1 − +√ +d − 1, √c − 1 − +√ +d − 1] are the nontrivial negative eigenvalues. Note that since the +graph is bipartite, λ is an eigenvalue if and only if −λ is an eigenvalue. +4 + +By an extension of the Alon-Boppana bound, given in [FL96], this is the best spectral gap we can hope for, +at least as far as upper bounds for |λ| are concerned. We note that unlike the d-regular case, we require a +lower bound to |λ| too, which is essential for our proof. +While there is a vast literature on the construction of d-regular Ramanujan graph (most prominently +[LPS88] and [Mar88]), less is known about bipartite Ramanujan graphs. In 2014 Marcus et al. [MSS13] +proved the existence of biregular graphs with one-sided spectral graphs that resemble the Ramanujan bounds: +these graphs satisfy the one-sided inequality only, namely |λ| ≤ +√ +d − 1 + √c − 1 for every nontrivial eigen- +value λ. Gribinski et al. [GM21] showed a polynomial-time construction of such graphs, for every degrees +(d, kd) for any integers d, k. These graphs do not suffice for our analysis, since we make explicit use of the +lower bound |λ| ≥ +√ +d − 1 − √c − 1 too. +In 2021 Brito et al. [BDH22] proved that a random biregular graph is nearly Ramanujan with high +probability. Interestingly, and unlike other works in this field, our proof strongly relies on the graph to be +exactly Ramanujan, so we cannot use those constructions either. +We use an explicit construction of bipartite Ramanujan graphs (with both bounds on non-trivial eigen- +values) given by Ballantine et al.: +Theorem 3 ([Bal+15]). For every prime power q, there exists an explicit construction of a (q + 1, q3 + 1)- +biregular Ramanujan graph. +4 +Vertex expansion in biregular Ramanujan graphs +Our main technical tool is the following theorem showing that bipartite Ramanujan graphs exhibit excellent +left-to-right expansion. We restate the theorem for convenience. +Theorem 2. Let G = (L ⊔ R, E) be a (c, d)-biregular Ramanujan graph, and let ε > 0. Then there exists +δ > 0, that depends only on ε, c, d, such that for every S ⊂ L of size |S| ≤ δ|L|, the set N(S) ⊆ R of the +neighbours of S satisfies +c|S| +|N(S)| ≤ 1 + (1 + ε) +� +d − 1 +c − 1 . +We note that the quantity on the left hand side of the inequality can be interpreted as follows. Look +at the bipartite graph induced by taking the vertices S on the left and N(S) on the right. Since every left +vertex has c outgoing edges, the total number of edges in the induced subgraph is c|S|. This means that +the expression on the left hand side of the inequality is exactly the average degree of the right side of the +induced subgraph. Interestingly, the bound in this theorem is strictly stronger than what we would get from +just applying the expander mixing lemma which amounts to +c|S| +|N(S)| ≤ (1 + ε) · +� +1 + d − 1 +c − 1 + 2 +� +d − 1 +c − 1 +� +. +See Claim 4 for details. The fact that we improve upon the expander mixing lemma is perhaps not surprising +since our analysis is based on enumerating non-backtracking paths, and not just on magnitude of the second +largest eigenvalue. We also use lower bounds on the magnitude of all nontrivial eigenvalues, whereas the +expander mixing lemma uses just upper bounds. +4.1 +Comparison to known bounds +As noted above, Theorem 2 is an improvement of the bound that the expander mixing lemma gives in similar +settings, which only uses the one-sided inequality |λ| ≤ +√ +d − 1 + √c − 1. For reference, we state and prove +the expander mixing lemma for bipartite Ramanujan graphs. +5 + +Claim 4 (Expander mixing lemma for bipartite Ramanujan graphs). Let G = (L⊔R, E) be a (c, d)-biregular +Ramanujan graph, and let ε > 0. Then there exists δ > 0 such that for every S ⊆ L of size |S| ≤ δ|L|, the +neighbourhood of S satisfies +c|S| +|N(S)| ≤ (1 + ε) +� +1 + d − 1 +c − 1 + 2 +√ +d − 1 +√c − 1 +� +. +Proof. The expander mixing lemma for biregular graphs says that for every S ⊆ L, T ⊆ R we have +���� +|e(S, T)| +|E| +− |S| +|L| · |T| +|R| +���� ≤ +λ +√ +cd +� +|S| +|L| · |T| +|R| +where λ is the second largest eigenvalue of G (see, e.g., [Hae95]). It is clarified that we consider the spectrum +of G as an adjacency operator, so the largest eigenvalue is +√ +cd. +Picking T = N(S) means all edges coming out from S are in the cut, namely |e(S, T)| = c|S|. Plugging +that in gives +���� +c|S| +c|L| − |S| +|L| · |N(S)| +|R| +���� ≤ +λ +√ +cd +� +|S| +|L| · |N(S)| +|R| +. +Multiplying both sides by |L| +|S| gives +����1 − |N(S)| +|R| +���� ≤ +λ +√ +cd +� +|S| +|L| · |N(S)| +|R| +· |L| +|S| = +λ +√ +cd +� +|N(S)| +|R| +· |L| +|S| = +λ +√ +cd +� +|N(S)| +|S| +· +� +d +c = λ +c +� +|N(S)| +|S| +(1) +where we also used the fact that |E| = c|L| = d|R|. +Let us assume that |S| = α|L|. Then we can upper bound |N(S)| by +|N(S)| ≤ c|S| = αc|L| = αd|R| +and so we have +1 − |N(S)| +|R| +≥ 1 − dα|R| +|R| += 1 − dα. +We square (1) and plug in the last inequality to get +(1 − dα)2 ≤ λ2 +c · |N(S)| +c|S| . +Recall that G is bipartite Ramanujan, so |λ| ≤ +√ +d − 1 + √c − 1. Use that and rearrange: +c|S| +|N(S)| ≤ λ2 +c (1 − dα)−2 +≤ d − 1 + c − 1 + 2 +√ +d − 1√c − 1 +c +(1 − dα)−2 +≤ d − 1 + c − 1 + 2 +√ +d − 1√c − 1 +c − 1 +(1 − dα)−2 += +� +1 + d − 1 +c − 1 + 2 +√ +d − 1 +√c − 1 +� +(1 − dα)−2. +The claim is proven by noting that there is some δ > 0 such that (1 − dα)−2 ≤ 1 + ε for every α < δ, namely +whenever |S| ≤ δ|L|. +6 + +Kahale proved ([Kah95, Thm 4.2]) that in d-regular Ramanujan graphs (not necessarily bipartite), small +induced subgraphs have average degree at most 1 + +√ +d − 1. Interestingly, this result can be deduced almost +immediately from Theorem 2. This is due to the following lemma, proven in Appendix A, which asserts that +the edge-vertex incidence graph (see [SS96]) of a d-regular Ramanujan graph is a (2, d)-biregular Ramanujan +graph: +Lemma 5. Let G be a d-regular Ramanujan graph, and G′ its edge-vertex incidence graph. Then G′ is a +(2, d)-biregular Ramanujan graph. +We state and prove Kahale’s bound, but we will not use it in our construction. +Corollary 6. Let G = (VG, EG) be a d-regular Ramanujan graph, and let ε > 0. Then there exists δ > 0 +such that for every induced subgraph S with at most δ|VG| vertices, the average degree of S is at most +dS := 2|ES| +|VS| ≤ 1 + (1 + ε) +√ +d − 1. +Proof. Let G = (VG, EG) be a d-regular Ramanujan graph and ε > 0. We define G′ = (LG′ ⊔ RG′, EG′) as +the edge-vertex incidence graph, namely LG′ = EG, RG′ = VG, and for every edge e = {u, v} in G we have +the two edges {e, u} and {e, v} in G′. Since the degree of every vertex in G is d, and since every edge has +two endpoints, we have that G′ is a (2, d)-biregular graph. Lemma 5 asserts that G′ is Ramanujan in the +bipartite sense. By Theorem 2, there exists δ > 0 such that if T ⊆ LG′ is of size at most δ|LG′|, then +2|T| +|NG′(T)| ≤ 1 + (1 + ε) +√ +d − 1. +A subgraph S = (VS, ES) of G satisfies that ES is a subset of left-side vertices in G′, VS is a subset of +right-side vertices in G′, and VS = NG′(ES) (because if an edge is in the subgraph then both of its endpoints +are in the subgraph, and we assume that the subgraph does not contain an isolated vertex). Therefore, if ES +is sufficiently small, namely if |ES| ≤ δ|LG′| = δ|EG|, then by Theorem 2 the average degree of NG′(ES) = VS +is bounded by 1 + (1 + ε) +√ +d − 1. +We add that if we wish to find a bound the number of vertices, we note that |ES| ≤ d +2|VS|. So every +induced subgraph with no more than +2 +dδ|EG| = δ|VG| vertices will satisfy the required average degree +bound. +4.2 +Proof of Theorem 2 +Theorem 2 is proven by enumerating non-backtracking paths. A non-backtracking path of length ℓ is a +sequence of edges ((s(ei), t(ei)))ℓ +i=1 such that for every i, t(ei) = s(ei+1) and s(ei) ̸= t(ei+1). +For a bipartite graph G and a subset S of left side vertices we define Mℓ(S) to be the number of all non- +backtracking paths whose all left-side vertices are in S, and Mℓ(S, G) to be the number of non-backtracking +paths whose first and last left-side vertices are in S. Clearly Mℓ(S) ≤ Mℓ(S, G), as paths of the latter type +may leave S ⊔N(S) (before re-entering S at the last step). We use a lower bound on Mℓ(S) due to [Kam19]: +Lemma 7. For every undirected bipartite graph G = (LG ⊔ RG, EG) and integer l it holds that +Mℓ(LG) ≥ |EG| +�� +( ¯dL − 1)( ¯dR − 1) +�ℓ−1 +where ¯dL, ¯dR are the average degrees of the left and right sides of G respectively. +We state and prove an upper bound on Mℓ(S, G): +7 + +Lemma 8. Let G be a (c, d)-biregular Ramanujan graph with n vertices on the left side, and S a subset of +the left side. Then for every integer ℓ: +M2ℓ(S, G) ≤ |S| +� +(2 + +√ +d − 1)ℓ + 2 +� +(c − 1)ℓ/2(d − 1)ℓ/2 +provided that S is small enough: +|S|(c − 1)ℓ/2(d − 1)ℓ/2 ≤ n. +(2) +Before proving the upper bound, we show how these bounds can be combined to obtain Theorem 2. +Proof of Theorem 2. Let ℓ be an integer to be determined later, S ⊆ L a sufficiently small subset (where +sufficiently smalls means (2)). Denote by N(S) ⊆ R the neighbours of S. The subgraph induced on S ∪N(S) +has c|S| edges, with left degrees all c and average right degree ¯dR = +c|S| +|N(S)|. +Chaining the inequalities in Lemma 7 and Lemma 8, we have +c|S| +� +(c − 1)( ¯dR − 1) +� 2ℓ−1 +2 +≤ M2ℓ(S) ≤ M2ℓ(S, VG) ≤ |S| · +� +(2 + +√ +d − 1)ℓ + 2 +� +· (c − 1)ℓ/2(d − 1)ℓ/2. +Simplifying, we get, +c(c − 1)ℓ− 1 +2 ( ¯dR − 1)ℓ− 1 +2 ≤ +� +(2 + +√ +d − 1)ℓ + 2 +� +· (c − 1)ℓ/2 · (d − 1)ℓ/2 +( ¯dR − 1)ℓ− 1 +2 ≤ +� +(2 + +√ +d − 1)ℓ + 2 +� √c − 1 +c +�� +d − 1 +c − 1 +�ℓ +¯dR − 1 ≤ +� +� +� +� +� +(2 + +√ +d − 1)ℓ + 2 +� √c − 1 +� ¯d − 1 +c +� +�� +� +⋆ +� +� +� +� +1/ℓ +· +� +d − 1 +c − 1 +Since ¯d ≤ d, we have that ⋆ = O(ℓ), so ⋆1/ℓ = O(1), hence for a fixed ε > 0 there exists a constant ℓ (that +depends only on ε, c, d) such that ⋆1/ℓ ≤ 1 + ε; this ℓ determines, via inequality (2), a fixed δ such that +whenever |S| ≤ δn we have +¯dR ≤ 1 + (1 + ε) +� +d − 1 +c − 1 . +We proceed to prove Lemma 8. +For a bipartite graph G = (LG ⊔ RG, EG) and an integer ℓ, we define ALL +ℓ +, ALR +ℓ +, ARL +ℓ +, ARR +ℓ +as operators +corresponding to non-backtracking paths of length ℓ, i.e. +ALL +ℓ +: L2(LG) → L2(LG) +, +(ALL +ℓ +f)(x) = +� +(e1,...,eℓ),t(eℓ)=x,s(e1),t(eℓ)∈LG +f(s(e1)) +with the summation over all non-backtracking paths of length ℓ, and similarly for the other operators. +Let M be the operator corresponding to a single step from the right side G to the left side of G, namely +M has |RG| rows and |LG| columns, with Muv counting the number of edges between u ∈ RG and v ∈ LG +in G. Then the following recursive formulae hold for every integer ℓ > 1: +M ⊤ALL +ℓ += ARL +ℓ+1 + (d − 1)ARL +ℓ−1 +M ⊤ALR +ℓ += ARR +ℓ+1 + (d − 1)ARR +ℓ−1 +MARL +ℓ += ALL +ℓ+1 + (c − 1)ALL +ℓ−1 +MARR +ℓ += ALR +ℓ+1 + (c − 1)ALR +ℓ−1 +8 + +The first formula is explained as follows. +Every non-backtracking path from R to L of length ℓ + 1 is +composed of a non-backtracking path from L to L of length ℓ plus an extra step (that’s the M ⊤ALL +ℓ +factor.) +The opposite is true, except for paths counted in M ⊤ALL +ℓ +that do backtrack, namely those made of a non- +backtracking path of length ℓ − 1, and walking back and forth along the same edge. There are d − 1 ways to +choose that edge (since it cannot be the one that was last in the path of length ℓ − 1, otherwise it wouldn’t +be counted in M ⊤ALL +ℓ +), so we need to subtract (d − 1)ARL +ℓ−1. The rest of the equations are explained in an +analog way. +Due to symmetry we have: +(ALL +ℓ +)⊤ = ALL +ℓ +, +(ARR +ℓ +)⊤ = ARR +ℓ +, +(ALR +ℓ +)⊤ = ARL +ℓ +And since the graph is bipartite we have: +ALR +2ℓ = 0 +, +ARL +2ℓ = 0 +ALL +2ℓ+1 = 0 +, +ARR +2ℓ+1 = 0 +These equations yield a recursive formula for ALL +ℓ +, with the following initial conditions: +ALL +2 += MM ⊤ − cI +ALL +4 += MM ⊤ALL +2 +− (c − 1 + d − 1)ALL +2 +− c(d − 1)I +MM ⊤ALL +ℓ += ALL +ℓ+2 + ((c − 1) + (d − 1))ALL +ℓ ++ (c − 1)(d − 1)ALL +ℓ−2 +, +∀ℓ ≥ 4 +(3) +The following lemma, proven in Appendix A, suggests a way to find a non-recursive formula for ALL +2ℓ , given +such linear recursive relations with fixed coefficients. +Lemma 9. Let (xn) be a series defined via a second order linear recurrence with fixed coefficients A, B ∈ C: +xn = Axn−1 + Bxn−2 +Assume λ1 ̸= λ2 are (real or complex) roots of the characteristic polynomial λ2 − Aλ − B. Then there are +α, β ∈ C, that depend on the initial conditions x0, x1, such that +xn = αλn +1 + βλn +2 +for every n ≥ 0. +If the characteristic polynomial has a single root λ of multiplicity 2, then there are α, β ∈ C such that +xn = αλn + βnλn +for every n ≥ 0. +We use the lemma to bound the eigenvalues of ALL +2ℓ given bounds on the spectrum of the biregular graph. +Lemma 10. Let G be a (c, d)-biregular graph. Then there is a sequence of polynomials with integer coeffi- +cients (pℓ(x)) such that for every eigenpair (λ, v) of G, pℓ(λ2) is an eigenvalue of ALL +2ℓ , and moreover, for +every λ ∈ R, if +|λ| ∈ {0} ∪ [ +√ +d − 1 − +√ +c − 1, +√ +d − 1 + +√ +c − 1] +(4) +then +|pℓ(λ2)| ≤ (2 + +√ +d − 1)ℓ(c − 1)ℓ/2(d − 1)ℓ/2. +(5) +9 + +Proof. The recursive formulae proven above (3) suggest that there is a series of polynomials pn(x) with +integer coefficients such that ALL +2n = pn(MM ⊤). Note that the graph’s adjacency matrix is +AG = +� 0 +M +M ⊤ +0 +� +And so, if (λ, v) is an eigenpair of G, then (λ2, v) is an eigenpair of +A2 +G = +�MM ⊤ +0 +0 +M ⊤M +� +. +This shows that pℓ(λ2) is an eigenvalue of ALL +2ℓ whenever λ is an eigenvalue of G. The converse is also true. +The formulae (3) can be transformed so as to convey that pn(x) satisfies these equations: +p1(x) = x − c +, +p2(x) = x2 + (2 − 2c − d)x + c(c − 1) +xpn(x) = pn+1(x) + (c − 1 + d − 1)pn(x) + (c − 1)(d − 1)pn−1(x) +for all n > 1. Setting n = 1 gives an equation involving p0(x), p1(x), p2(x). We can solve this equation for +p0(x) and get a simpler description of the initial conditions: +p0(x) = +c +c − 1 +, +p1(x) = x − c +(6) +xpn(x) = pn+1(x) + (c − 1 + d − 1)pn(x) + (c − 1)(d − 1)pn−1(x) +(7) +for all n > 0. +We fix some t that satisfies (4), namely such that +|t| ∈ {0} ∪ [ +√ +d − 1 − +√ +c − 1, +√ +d − 1 + +√ +c − 1]. +We first deal with the case where |t| ∈ ( +√ +d − 1 − √c − 1, +√ +d − 1 + √c − 1), and later we will consider the +edge cases where t is one of the endpoints of the segment or 0. Let us write x = t2. We have that for this +fixed x, the series (pn(x))n satisfies a second order linear recurrence with fixed coefficients. Using Lemma 9, +we conclude that there are functions α(x), λ1(x), β(x), λ2(x) that depend only on x, c and d, such that +pn(x) = α(x)(λ1(x))n + β(x)(λ2(x))n +(8) +for every n. +In order to find λ1, λ2 we solve for λ the characteristic polynomial, namely the following quadratic +equation derived from (7): +xλ = λ2 + (c − 1 + d − 1)λ + (c − 1)(d − 1) +To obtain +λ1,2(x) = x − (c − 1) − (d − 1) ± +� +∆(x) +2 +where +∆(x) = x2 − 2x((c − 1) + (d − 1)) + (c − d)2. +(9) +Using the initial values for p0(x), p1(x) from (6), and plugging back into (8) we get the equations +c +c − 1 = α(x)(λ1(x))0 + β(x)(λ2(x))0 = α(x) + β(x) +x − c = α(x)(λ1(x))1 + β(x)(λ2(x))1 = α(x)λ1(x) + β(x)λ2(x) +10 + +whose solution is +α(x) = (c − 1)x − (c − 1)2 − (c − 1) + (c − 1)(d − 1) + (c − 1) +� +∆(x) − x + d − 1 + +� +∆(x) +2(c − 1) +� +∆(x) +β(x) = +c +c − 1 − α(x). +We check when ∆(x) = 0 by solving (9) for x: +x1,2 = 2((c − 1) + (d − 1)) ± +� +4(c − 1 + d − 1)2 − 4(c − d)2 +2 += (c − 1 + d − 1) ± +� +(c + d)2 − 4(c + d) + 4 − (c − d)2 += (c − 1 + d − 1) ± +� +c2 + 2cd + d2 − 4c − 4d + 4 − c2 + 2cd − d2 += (c − 1 + d − 1) ± +√ +4cd − 4c − 4d + 4 += (c − 1 + d − 1) ± 2 +√ +c − 1 +√ +d − 1 += ( +√ +d − 1 ± +√ +c − 1)2 +We see that ∆(x) is quadratic in x and has roots at ( +√ +d − 1 ± √c − 1)2. This gives a nice factorization of +∆(x): +∆(x) = x2 − 2x((c − 1) + (d − 1)) + (c − d)2 += +� +x − +�√ +d − 1 + +√ +c − 1 +�2� � +x − +�√ +d − 1 − +√ +c − 1 +�2� +Recall that for the x we fixed we have √x = t ∈ ( +√ +d − 1 − √c − 1, +√ +d − 1 + √c − 1), so the first term in the +product is negative and the second term is positive, so ∆ < 0, and so λ1,2 are complex numbers (conjugate +to one another), with magnitude +|λ1,2|2 = (x − (c − 1) − (d − 1))2 − ∆(x) +4 += x2 − 2x((c − 1) + (d − 1)) + (c − 1 + d − 1)2 − (x2 − 2x((c − 1) + (d − 1)) + (c − d)2) +4 += (c + d − 2)2 − (c − d)2 +4 += (c − 1)(d − 1) +(10) +A very similar calculation shows that α, β are conjugates with magnitude +|α|2 = |β|2 = +x(x − cd) +∆(x) · (c − 1) +This finishes the proof for all such x’s: +|pℓ(x)| = |α(x)λℓ +1 + β(x)λℓ +2| ≤ |α(x)λℓ +1| + |β(x)λℓ +2| += |α(x)||λ1|ℓ + |β(x)||λ2|ℓ += 2 +� +x(x − cd) +∆(x) · (c − 1)(c − 1)ℓ/2(d − 1)ℓ/2 +We keep in mind that x is fixed, so the expression is smaller than (2 + +√ +d − 1) · ℓ · (c − 1)ℓ/2(d − 1)ℓ/2 for +large enough ℓ. +We are left with the cases x = t2 for t = 0, +√ +d − 1 ± √c − 1: +11 + +1. t = 0. We use the same methods and find that the characteristic polynomial is +λ2 + (c − 1 + d − 1)λ + (c − 1)(d − 1) +whose roots are +λ1 = −(c − 1) +, +λ2 = −(d − 1). +Using the initial conditions (p0(0) = c/(c − 1), p1(0) = −c) we obtain +α(0) = +c +c − 1 +, +β(0) = 0 +and using the fact that c < d we get +|pℓ(0)| = |α(0)λℓ +1 + β(0)λℓ +2| += +c +c − 1(c − 1)ℓ +< 2l(c − 1)ℓ/2(c − 1)ℓ/2 +< 2l(c − 1)ℓ/2(d − 1)ℓ/2. +2. t = +√ +d − 1 + √c − 1. Then x = t2 = ( +√ +d − 1 + √c − 1)2 = d − 1 + c − 1 + 2 +√ +d − 1√c − 1, and the +characteristic polynomial has a single root of multiplicity 2, namely +λ = x − (c − 1) − (d − 1) +2 += +√ +d − 1 +√ +c − 1. +The solution, therefore, takes the form +pn(x) = (α(x) + nβ(x))(c − 1)n/2(d − 1)n/2. +Using the initial values we get +α(x) = +c +c − 1 +, +β(x) = +x − c +√ +d − 1√c − 1 − +c +c − 1 = 2 + +d − 2 +√ +d − 1√c − 1 − +c +c − 1. +1 < +c +c−1 ≤ 2 so β(x) ≤ +√ +d − 1 + 1, and in total we get +|pℓ(x)| = |α(x) + ℓβ(x)|(c − 1)ℓ/2(d − 1)ℓ/2 +≤ +����� +1 +ℓ · +c +c − 1 +���� + |β(x)| +� +ℓ(c − 1)ℓ/2(d − 1)ℓ/2 +≤ +� +2 + +√ +d − 1 +� +ℓ(c − 1)ℓ/2(d − 1)ℓ/2 +For sufficiently large ℓ. +3. t = +√ +d − 1 − √c − 1. We get x = t2 = d − 1 + c − 1 − 2 +√ +d − 1√c − 1, and the rest follows the same +calculations as in the previous case. +Bounds on the spectrum of ALL +2ℓ give bounds on the number of non-backtracking paths completely con- +tained in a small set, hence gives Lemma 8. +12 + +Proof of Lemma 8. Recall that M2ℓ(S, G) counts the number of non-backtracking paths of length 2ℓ that +start and end in S, so by the definition of the ALL +n +operatore, we have M2ℓ(S, G) = ⟨ALL +2ℓ 1S, 1S⟩. +We note that ALL +2ℓ 1L = c(c − 1)ℓ−1(d − 1)ℓ1L, because every non-backtracking path starting at a given +vertex is made of picking the first left-to-right edge (we have c such edges to pick from), and then alternating +between picking any of the d or c edges adjacent to the current vertex, except for the edge we picked to get +to it. +Write 1S = +|S| +n 1L + r, with r ⊥ 1L, and ∥r∥2 +2 ≤ ∥1S∥2 +2 = |S|. Since the graph is Ramanujan, the +nontrivial eigenvalues in its spectral decomposition have their absolute value in the set {0} ∪ [ +√ +d − 1 − +√c − 1, +√ +d − 1 + √c − 1]. +We only care about the nontrivial eigenvalues because r ⊥ 1L, hence in the +writing of r in the orthogonal basis made of eigenvectors, only eigenvectors with nontrivial eigenvalues +appear. We use Lemma 10 to get +⟨ALL +2ℓ r, r⟩ ≤ (2 + +√ +d − 1)ℓ(c − 1)ℓ/2(d − 1)ℓ/2 · ∥r∥2 +2 . +Combine everything to get +M2ℓ(S, G) = ⟨ALL +2ℓ 1S, 1S⟩ = +� +ALL +2ℓ +|S| +n 1L + r, |S| +n 1L + r +� += |S|2 +n2 ⟨ALL +2ℓ 1L, 1L⟩ + ⟨ALL +2ℓ r, r⟩ += |S|2 +n2 · c(c − 1)ℓ−1(d − 1)ℓ⟨1L, 1L⟩ + ⟨ALL +2ℓ r, r⟩ +≤ |S|2 +n c(c − 1)ℓ−1(d − 1)ℓ + (2 + +√ +d − 1)ℓ(c − 1)ℓ/2(d − 1)ℓ/2 ∥r∥2 +2 +≤ |S| +�|S| · c · (c − 1)ℓ/2(d − 1)ℓ/2 +n(c − 1) ++ (2 + +√ +d − 1)ℓ +� +(c − 1)ℓ/2(d − 1)ℓ/2 +≤ |S| +� +c +c − 1 + (2 + +√ +d − 1)ℓ +� +(c − 1)ℓ/2(d − 1)ℓ/2 +≤ |S| +� +(2 + +√ +d − 1)ℓ + 2 +� +(c − 1)ℓ/2(d − 1)ℓ/2 +5 +Random gadget +In this section we prove the existence of bipartite graphs such that every small set of left-side vertices has +a unique neighbour on the right side. We draw a random biregular graph from a similar distribution as in +[Pip77], and use techniques similiar to [Vad+12, Thm 4.4]. +Lemma 11. For every integers L, R, c, d with Lc = Rd, L > R, c > 3, if k is an integer that satisfies the +inequality +k +c−3 +2 +≤ +1 +2Le · +� R +3ec +� c−1 +2 +then there is a (c, d)-biregular graph with sides [L] and [R] such that every set of left vertices of size at most +k has a unique neighbour. +We draw a random (c, d)-biregular graph in the following way: fix L vertices on the left side and R +vertices on the right side (cL = dR), write c copies of each left-side vertex and d copies of each right-side +vertex, and connect them via a uniformly random matching. That is, pick a uniformly random permutation +π : L × [c] → R × [d], and for every u ∈ L, v ∈ R, i ∈ [c], j ∈ [d], if π(u, i) = (v, j), then add (u, v) as an edge. +Note that we allow multiple edges between two vertices (if there are several i, j satisfying π(u, i) = (v, j)). +13 + +Let G be a random bipartite graph with L vertices on the left side and R vertices on the right side drawn +from said distribution. Let A be a subset of left vertices of size k. We note that if A expands by at least +(c + 1)/2, then, by a simple counting argument, A has a unique neighbour. It is therefore sufficient to find +the probability that A expands by at least (c + 1)/2. +Let us fix an arbitary ordering of the ck edges leaving A, and denote it e1, . . . , eck. We say that ei is a +repeat if it touches a previously covered vertex, that is, if its right endpoint is contained in the set of right +endpoints of the set e1, . . . , ei−1. We note that if A does not expand by at least (c + 1)/2, then, again by a +simple counting argument, there are at least (c − 1)k/2 repeats. This is because the number of repeats and +the size of the set of the neighbours of A add up to the number of edges leaving A, namely ck. +We note that for every i, ei is a repeat if it touches one of i − 1 or less previously covered vertices. This +means that Pr[ei is a repeat] ≤ i−1 +R < ck +R . Moreover, if we condition on the event that some of the first i − 1 +edges are also repeats, then the probability that ei is a repeat may only decrease, since it means that there +are less “forbidden” endpoints. We conclude that for every set of l edges: +Pr[ei1, . . . , eil are repeats] = +l� +j=1 +Pr[eij is a repeat | ei1, . . . eij−1 are repeats] < +�ck +R +�l +. +If A expands too little, then there are many repeats. We can use it to bound the probability that A has +no unqiue neighbour: +Pr[A has no unique neighbour] ≤ Pr[A expands by < (c + 1)/2] +≤ Pr[there are at least (c − 1)k/2 repeats] +≤ +� +i1,...,i(c−1)k/2∈( +ck +(c−1)k/2) +Pr[{ei1, . . . , ei(c−1)k/2} are repeats] +< +� ck +c−1 +2 k +� +· +�ck +R +� c−1 +2 k +And by a union bound over the possible choices of A: +Pr[∃ “bad” A of size k] ≤ +�L +k +� +· Pr[A expands by < (c + 1)/2] +≤ +�L +k +� +· +� ck +c−1 +2 k +� +· +�ck +R +� c−1 +2 k +≤ +�Le +k +�k +· +� cke +c−1 +2 k +� c−1 +2 k +· +�ck +R +� c−1 +2 k += +� +Le +k · +� 2ce +c − 1 · ck +R +� c−1 +2 �k +≤ +� +Le +k · +�3eck +R +� c−1 +2 �k +(11) +Where the last inequality follows from assuming that c ≥ 3 so +2c +c−1 ≤ 3. +We are now ready to prove Lemma 11. +Proof of Lemma 11. Let us draw a (c, d)-biregular graph G = ([L] ⊔ [R], E) from the distribution described +above. Let k be an integer satsifying (11). Using a union bound and the inequality in (11), we have (where +14 + +probability is taken over the choice of G): +Pr[∃ “bad” A ⊆ [L] of size ≤ k] = +k +� +a=1 +Pr[∃ “bad” A ⊆ [L] of size a] +≤ +k +� +a=1 +� +Le +a · +�3eca +R +� c−1 +2 �a +< +∞ +� +a=1 +� +Le +k · +�3eck +R +� c−1 +2 �a += +∞ +� +a=1 +� +k +c−1 +3 +· Le · +�3ec +R +� c−1 +2 �a +≤ +∞ +� +a=1 +�1 +2 +�a +< 1. +We see that with strictly positive probability, a random graph has no “bad” subsets of size ≤ k, hence there +exists a graph with the desired unique neighbour property. +6 +Construction +6.1 +Routed product definition +Let us begin with a brief coding theory motivation. An error-correcting code is often given via an m × n +parity check matrix H, so that C = Ker H ⊆ {0, 1}n. The matrix H can be visualized as a bipartite graph, +called the parity check graph, with n left and m right vertices, and an edge i ∼ j whenever H(j, i) ̸= 0. A +Tanner code is defined given a bipartite graph B and a base code C0 = Ker H0 [Tan81]. One way to view +the routed product is through the point of view of codes. Consider the parity check graph B0 of H0 and +define the routed product of B and B0 to be simply the parity check graph of the Tanner code C(B, C0). +Here is a more detailed and combinatorial definition of the routed product without mention of codes. +Let G = (L ⊔ R, E) be a (c, d)-biregular graph and G0 = (L0 ⊔ R0, E0) a (c0, d0)-biregular graph. +We +think of G as a big graph (in practice, an infinite family of Ramanujan graphs), and G0 as a fixed size graph +(gadget). Assume that |L0| = d, and let us think of the edges of G as a function E : R × [d] → L which +maps a right side vertex v and an index i to the ith neighbour of v in G. +We can define the routed product graph G′ = G ◦ G0 as the bipartite graph whose left side is L, right +side is the cartesian product R × R0, and the set of edges is +E′ = {(E(v, i), (v, j)) : v ∈ R, i ∈ [d], j ∈ [R0], (i, j) ∈ E0}. +That is, we write R0 copies of each vertex in R, and every right side vertex v in the big graph G and an +edge (i, j) in the small gadget G0 gives an edge between the ith neighbour of v in G, and the jth vertex of +the copy of G0 assigned to v in G′. Otherwise put, we use G0 to route every edge of the big graph G to c0 +edges in the product graph G′. +More precisely, for every v ∈ R, the bipartite subgraph of G′ whose left side is NG(v) and right side +is (v, ·) is isomorphic to G0. This means that, roughly speaking, unique neighbours are inherited from the +small graph to the product graph: +Lemma 12. Let S ⊆ L, v ∈ NG(S). Define S′ = {i : E(v, i) ∈ S} ⊆ [d] as the indexed neighbours of v in +S. If S′, as a set of vertices in the gadget G0, has a unique neighbour j ∈ R0 in G0, then (v, j) is a unique +neighbour of S in the product graph G′. +The proof is immediate while staring at Fig. 1, but for the sake of completion it is given in Appendix A. +15 + +Figure 1: An example of a bipartite graph G (dashed, red), a small gadget G0 (dotted, green), and the +routed product G′ = G ◦ G0 (solid, blue). The set S ⊆ L has a neighbour v ∈ R, and so S is associated with +a set S′ of left side vertices of the copy of G0 associated with v. Since (i′, j) is the only edge connecting j +to S′ in G0, we have that (v, j) is a unique neighbour of S in G′. +16 + +S6.2 +Proof of Theorem 1 +Let q be a prime power, c0 an integer, and α > 1. Assume that αc0(q + 1) is an integer. We construct an +infinite family of (c0(q + 1), αc0(q + 1))-biregular graphs with the unique neighbour property under some +assumptions specified below. +Denote c = q + 1 and d = q3 + 1. By Theorem 3 there is an efficient construction of an infinite family +of (c, d)-biregular Ramanujan graphs (Gn). Let G0 = (L0 ⊔ R0, E0) be a gadget: a c0-left-regular bipartite +graph with |L0| = d = q3 + 1 vertices on the left side and R0 vertices on the right side, such that every +left-side set of sufficiently small size admits a unique neighbour on the right side, where “sufficiently small” +here means the bound given in Lemma 11. For the constructed graph to have the left side α times bigger +than the right side, we set R0 = +d +αc = +q3+1 +α(q+1). +We define G′ +n = Gn ◦ G0 as the routed product of Gn and G0. For the rest of this (short) proof let us +suppress n from the notation, for convenience. +Let ε < 1 +q. By Theorem 2, there exists δ > 0 such that for every S ⊆ L of size at most δ|L|, the “average +right degree” ¯dS, namely the average of the degrees of vertices in NG(S) in the induced subgraph S ⊔NG(S), +is bounded: +¯dS := +c|S| +|NG(S)| ≤ 1 + (1 + ε) +� +d − 1 +c − 1 . +We show that such S has a unique neighbour in G′. +We note that d−1 +c−1 = q2, so since ε < 1 +q we have a vertex v ∈ R of “degree” at most q + 1 in G, that is, the +set S′ ⊆ [d] of v’s neighbours in S is of size at most q + 1. By Lemma 12, if S′, as a set of left-side vertices +in G0, has a unique neighbour j in G0, then our original set S has a unique neighbour (v, j) in G. +It remains to choose the parameters in a way that all left-side sets of size at most q + 1 have a unique +neighbour in G0. By Lemma 11, we need to have: +(q + 1) +c0−3 +2 +≤ +1 +2(q3 + 1)e · +� +� +q3+1 +α(q+1) +3ec0 +� +� +c0−1 +2 +. +(12) +The LHS is O(q +c0−3 +2 ) and RHS is Θ(qc0−4), so if c0 > 5 then for sufficiently large q the construction gives a +unique neighbour expander. That is, there exists some ˆq(c0, α) such that if q > ˆq then (12) holds, hence we +constructed a bipartite unique neighbour expander as promised in Theorem 1. +7 +Future work +The main pitfall of our approach is the non-constructive nature of the gadget. Theoretically since the gadget +has constant size this is no issue. However, exhaustive search is impractical even for small values of q. This +is because the gadget’s size is cubic in q so the search space is of size exponential in q3. A natural question +would be whether it is possible to construct such a gadget in an efficient way, since that would lead to the +whole unique neighbour expander family to be constructible in practice. For the bipartite Ramanujan family +chosen in our work (the one by Ballantine et al. [Bal+15]) we ask the following. +Question 13. For which prime power q and real number α ≥ 1 can one construct efficiently a biregular +graph with left side q3 + 1, right side +q3+1 +α(q+1), such that every left side set of size at most q + 1 has a unique +neighbour? +We note that the fixed size graph given in [AC02, Lemma 4.3] is a good gadget (for α = 22/21 and the +edge-vertex incidence graphs of a 44-regular Ramanujan graph family), and indeed these graphs can be used +to construct bipartite unique neighbour expanders. +Since we prove that a random gadget is, with non-negligble probability, good for our construction, it +may be interesting to construct such gadget by simply drawing random gadgets and testing whether they +are good. Since drawing is simple, we are left with the task of testing. We therefore ask: +17 + +Question 14. Given a bipartite graph, can one efficiently find the smallest nonempty set of left-side vertices +that has no unique neighbours? +We currently know of no better way than just enumerating all left-side sets, which is exponential in the +size of the graph, hence impractical. We refer to [AK19] for an interesting approach to testing expansion of +random graphs. +The methods presented in this work are not limited to the (q+1, q3 +1)-biregular Ramanujan family. We +can therefore ask the question the other way around – find a gadget (by sampling or any other way), and see +whether we can efficiently construct a bipartite Ramanujan family that will make it work, i.e. that would +allow us to rewrite the proof of Theorem 1. This emphasizes the well-known natural question of constructing +Ramanujan graphs with arbitrary degrees, specifically in the bipartite and biregular setting, +Question 15. For which integers c < d can one construct efficiently an infinite family of (c, d)-biregular +Ramanujan graphs? +We note that our construction is far from “right-side unique neighbour expansion,” as the complete right +side of a single gadget is a constant-size set with no unique neighbours on the left. We wonder whether it is +possible to construct a bipartite graph where all small size sets (be them contained in either sides, or both) +have unique neighbours. +18 + +References +[AC02] +Noga Alon and Michael Capalbo. “Explicit unique-neighbor expanders”. In: The 43rd Annual +IEEE Symposium on Foundations of Computer Science, 2002. Proceedings. IEEE. 2002, pp. 73– +79. +[AK19] +Benny Applebaum and Eliran Kachlon. “Sampling graphs without forbidden subgraphs and un- +balanced expanders with negligible error”. In: 2019 IEEE 60th Annual Symposium on Foundations +of Computer Science (FOCS). IEEE. 2019, pp. 171–179. +[ALM96] +Sanjeev Arora, Frank Thomson Leighton, and Bruce M Maggs. “On-line algorithms for path +selection in a nonblocking network”. In: SIAM Journal on Computing 25.3 (1996), pp. 600–625. +[Bal+15] +Cristina Ballantine, Brooke Feigon, Radhika Ganapathy, Janne Kool, Kathrin Maurischat, and +Amy Wooding. “Explicit construction of Ramanujan bigraphs”. In: Women in numbers europe. +Springer, 2015, pp. 1–16. +[BDH22] +Gerandy Brito, Ioana Dumitriu, and Kameron Decker Harris. “Spectral gap in random bipartite +biregular graphs and applications”. In: Combinatorics, Probability and Computing 31.2 (2022), +pp. 229–267. +[Bec16] +Oren Becker. “Symmetric unique neighbor expanders and good LDPC codes”. In: Discrete Applied +Mathematics 211 (2016), pp. 211–216. issn: 0166-218X. doi: https://doi.org/10.1016/ +j.dam.2016.04.022. url: https://www.sciencedirect.com/science/article/pii/ +S0166218X16301810. +[BV09] +Eli Ben-Sasson and Michael Viderman. “Tensor products of weakly smooth codes are robust”. +In: Theory of Computing 5.1 (2009), pp. 239–255. +[Cap+02] +Michael Capalbo, Omer Reingold, Salil Vadhan, and Avi Wigderson. “Randomness conductors +and constant-degree expansion beyond the degree/2 barrier”. In: Proceedings of the 34th Annual +ACM Symposium on Theory of Computing. 2002, pp. 659–668. +[DSW06] +Irit Dinur, Madhu Sudan, and Avi Wigderson. “Robust local testability of tensor products of +LDPC codes”. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms +and Techniques. Springer, 2006, pp. 304–315. +[FL96] +Keqin Feng and Wen-Ch’ing Winnie Li. “Spectra of hypergraphs and applications”. In: Journal +of number theory 60.1 (1996), pp. 1–22. +[GM21] +Aurelien Gribinski and Adam W Marcus. “Existence and polynomial time construction of bireg- +ular, bipartite Ramanujan graphs of all degrees”. In: arXiv preprint arXiv:2108.02534 (2021). +[GM88] +Chris D Godsil and Bojan Mohar. “Walk generating functions and spectral measures of infinite +graphs”. In: Linear Algebra and its Applications 107 (1988), pp. 191–206. +[Hae95] +Willem H Haemers. “Interlacing eigenvalues and graphs”. In: Linear Algebra and its applications +226 (1995), pp. 593–616. +[Kah95] +Nabil Kahale. “Eigenvalues and expansion of regular graphs”. In: Journal of the ACM (JACM) +42.5 (1995), pp. 1091–1106. +[Kam19] +Amitay Kamber. Lp Expander Graphs. 2019. arXiv: 1609.04433 [math.CO]. +[KK22] +Amitay Kamber and Tali Kaufman. “Combinatorics via closed orbits: number theoretic Ramanu- +jan graphs are not unique neighbor expanders”. In: Proceedings of the 54th Annual ACM SIGACT +Symposium on Theory of Computing. 2022, pp. 426–435. +[LPS88] +Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. “Ramanujan graphs”. In: Combinatorica +8.3 (1988), pp. 261–277. +[LS96] +Wen-Ch’ing Winnie Li and Patrick Solé. “Spectra of Regular Graphs and Hypergraphs and +Orthogonal Polynomials”. In: European Journal of Combinatorics 17.5 (1996), pp. 461–477. doi: +https://doi.org/10.1006/eujc.1996.0040. +19 + +[Mar88] +G. A. Margulis. “Explicit group-theoretical constructions of combinatorial schemes and their +application to the design of expanders and concentrators”. In: Problemy peredachi informatsii +24.1 (1988), pp. 51–60. +[MSS13] +Adam Marcus, Daniel A Spielman, and Nikhil Srivastava. “Interlacing families I: Bipartite Ra- +manujan graphs of all degrees”. In: 2013 IEEE 54th Annual Symposium on Foundations of com- +puter science. IEEE. 2013, pp. 529–537. +[Nil91] +Alon Nilli. “On the second eigenvalue of a graph”. In: Discrete Mathematics 91.2 (1991), pp. 207– +210. +[Pip77] +Nicholas Pippenger. “Superconcentrators”. In: SIAM Journal on Computing 6.2 (1977), pp. 298– +304. +[Pip93] +Nicholas Pippenger. “Self-routing superconcentrators”. In: Proceedings of the twenty-fifth annual +ACM symposium on Theory of Computing. 1993, pp. 355–361. +[PU89] +David Peleg and Eli Upfal. “The token distribution problem”. In: SIAM journal on computing +18.2 (1989), pp. 229–243. +[SS96] +Michael Sipser and Daniel A Spielman. “Expander codes”. In: IEEE transactions on Information +Theory 42.6 (1996), pp. 1710–1722. +[Tan81] +R Tanner. “A recursive approach to low complexity codes”. In: IEEE Transactions on information +theory 27.5 (1981), pp. 533–547. +[Vad+12] +Salil P Vadhan et al. “Pseudorandomness”. In: Foundations and Trends in Theoretical Computer +Science 7.1–3 (2012). +20 + +8 +Appendix A +We restate and prove the lemmas we used throughout the work. +Lemma 5. Let G be a d-regular Ramanujan graph, and G′ its edge-vertex incidence graph. Then G′ is a +(2, d)-biregular Ramanujan graph. +Proof. Let G = (V, E) a d-regular Ramanujan graph. The adjacency matrix of G′ is A = +� 0 +M +M ⊤ +0 +� +where +M has |E| rows, each containing two 1’s, and |V | columns, each containing d 1’s. Let v be an eigenvector of +A with eigenvalue λ; then v is an eigenvector of A2 with eigenvalue λ2. We note that +A2 = +� +MM ⊤ +0 +0 +M ⊤M +� +so it suffices to consider the spectrum of M ⊤M, which is essentially the operator corresponding to a walk +from a vertex of G to an edge that touches it and back to one of its endpoints (possibly the same vertex we +started at). +For every v ∈ V , there are d ways to walk from it to an edge and then back to v; all other legal paths +correspond to picking an edge touching v. We conclude that M ⊤M = dI + A, so every eigenvalue λ of G′ +satisfies λ2 = d + σ where σ is an eigenvalue of G. +The lemma is proven by noting that |σ| ≤ 2 +√ +d − 1 (since G is Ramanujan), so +d − 2 +√ +d − 1 ≤ λ2 ≤ d + 2 +√ +d − 1 +The terms on the extreme sides of the inequality can be verified to be ( +√ +d − 1 ± 1)2 so we get |λ| ∈ +[ +√ +d − 1 − 1, +√ +d − 1 + 1], as needed (recall that in G′ the left-regularity is c = 2 so √c − 1 = 1). +Lemma 9. Let (xn) be a series defined via a second order linear recurrence with fixed coefficients A, B ∈ C: +xn = Axn−1 + Bxn−2 +Assume λ1 ̸= λ2 are (real or complex) roots of the characteristic polynomial λ2 − Aλ − B. Then there are +α, β ∈ C, that depend on the initial conditions x0, x1, such that +xn = αλn +1 + βλn +2 +for every n ≥ 0. +If the characteristic polynomial has a single root λ of multiplicity 2, then there are α, β ∈ C such that +xn = αλn + βnλn +for every n ≥ 0. +Proof. We note that for every n ≥ 2 we have +� xn +xn−1 +� += +�Axn−1 + Bxn−2 +xn−1 +� += +�A +B +1 +0 +� �xn−1 +xn−2 +� +Denote the 2 × 2 matrix by D, so by induction, +� xn +xn−1 +� += Dn +�x1 +x0 +� +Let us diagonalize D. The characteristic polyonmial is +pD(λ) = det(λI − D) = +���� +λ − A +−B +−1 +λ +���� = λ(λ − A) − B = λ2 − Aλ − B +21 + +If pD(λ) has two distinct roots λ1, λ2, then the matrix is diagonalizable; that means that there exists a 2 × 2 +matrix M such that D = M · diag{λ1, λ2} · M −1. We get: +� xn +xn−1 +� += M +�λ1 +0 +0 +λ2 +�n +M −1 +�x1 +x0 +� += M +�λn +1 +0 +0 +λn +2 +� +M −1 +�x1 +x0 +� +We can compute M, M −1 explicitly, multiple the matrices and get α, β ∈ C such that xn = αλn +1 + βλn +2 as +required. +Otherwise, if pD(λ) has a single root λ of multiplicity 2, then we can find its Jordan form, i.e. find M +such that +D = M +�λ +1 +0 +λ +� +M −1 +Dn = M +�λ +1 +0 +λ +�n +M −1 = M +�λn +nλn−1 +0 +λn +� +M −1 +Where the last equality follows from a simple induction. +Similarly, we get +� xn +xn−1 +� += M +�λ +1 +0 +λ +�n +M −1 +�x1 +x0 +� += M +�λn +nλn−1 +0 +λn +� +M −1 +�x1 +x0 +� +And again we can find α, β ∈ C as required. +For the following lemma we remind that G = (L ⊔ R, E) is a (c, d)-biregular graph, G0 = (L0 ⊔ R0, E0) is +a (c0, d0)-biregular graph, and G′ = G ◦ G0 is the routed product of G and G0. Recall that the edges of G′ +are (E(v, i), (v, j)) when v ∈ R is a right side vertex of G, i ∈ [d], E(v, i) is the ith neighbour of v according +to G, and (i, j) ∈ E0. +Lemma 12. Let S ⊆ L, v ∈ NG(S). Define S′ = {i : E(v, i) ∈ S} ⊆ [d] as the indexed neighbours of v in +S. If S′, as a set of vertices in the gadget G0, has a unique neighbour j ∈ R0 in G0, then (v, j) is a unique +neighbour of S in the product graph G′. +Proof. Assume that i′ ∈ S′ is the unique neighbour of j in G0. By the definition of the routed product +we have that (E(v, i′), (v, j)) is an edge in G. Since i′ ∈ S′ we have that E(v, i′) ∈ S, so indeed (v, j) is +a neighbour of S in G′. It is therefore remaining to show that it is unique, i.e. that E(v, i′) is the only +neighbour of (v, j) in S. +The neighbours of (v, j) in G are E(v, i) for every i such that (i, j) ∈ E0. If E(v, i) ∈ S, then by the +definition of S′ we have that i ∈ S′, so i is a neighbour of j in E0. But we know that j is a unique neighbour +of S′ in E0, so we must have that i = i′, and indeed (v, j) is a unique neighbour of S in G′. +22 + diff --git a/5dE1T4oBgHgl3EQfTAM3/content/tmp_files/load_file.txt b/5dE1T4oBgHgl3EQfTAM3/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..fbbec8c623b2bfeca53a5adaa04564aefebad0ed --- /dev/null +++ b/5dE1T4oBgHgl3EQfTAM3/content/tmp_files/load_file.txt @@ -0,0 +1,612 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf,len=611 +page_content='Bipartite unique-neighbour expanders via Ramanujan graphs Ron Asherov and Irit Dinur∗ Weizmann Institute, Rehovot, Israel Abstract We construct an infinite family of bounded-degree bipartite unique-neighbour expander graphs with arbitrarily unbalanced sides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Although weaker than the lossless expanders constructed by Capalbo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=', our construction is simpler and may be closer to be implementable in practice due to the smaller constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We construct these graphs by composing bipartite Ramanujan graphs with a fixed-size gadget in a way that generalizes the construction of unique neighbour expanders by Alon and Capalbo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' For the analysis of our construction we prove a strong upper bound on average degrees in small induced subgraphs of bipartite Ramanujan graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Our bound generalizes Kahale’s average degree bound to bipartite Ramanujan graphs, and may be of independent interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Surprisingly, our bound strongly relies on the exact Ramanujan-ness of the graph and is not known to hold for nearly-Ramanujan graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 1 Introduction An infinite family Gn = (Ln ⊔ Rn, En) of (c, d)-biregular graphs with |Ln| + |Rn| → ∞ is called a unique neighbour expander family if there exists δ > 0 such that for every n and every set of left side vertices S ⊆ Ln of size |S| ≤ δ|Ln| there exists a unique neighbour of S in Gn, namely a vertex in Rn that is connected to exactly one vertex in S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We only require that sets of left vertices have unique neighbours, and arbitrarily small right side sets may have no unique neighbour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Alon and Capalbo [AC02] construct several explicit families of unique neighbour expanders, via an elegant composition of a Ramanujan graph and a gadget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' They construct three families of general (non-bipartite) graphs in which all small sets have unique neighbours, and one family of slightly unbalanced bipartite graphs where small sets on the left have unique neighbors on the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In their construction the left side is 22/21 times bigger than the right side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The more imbalanced the graph, the harder it is for small left hand side sets to expand into the right hand side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Capalbo et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [Cap+02] construct arbitrarily unbalanced bipar- tite graphs that are lossless expanders, a notion strictly stronger than unique neighbour expansion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Their construction is based on a sequence of somewhat involved composition steps using randomness conductors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Our main theorem is an efficient construction of an infinite family of bipartite unique neighbour expanders for any constant imbalance α, and any sufficiently large left-regularity degrees of a specific form: Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' There is a function ˆq : N × R → N such that for every integer c0 > 5 and real number α > 1, if q > ˆq(c0, α) is a prime power and αc0(q + 1) is an integer, then there is a polynomial-time construction of an infinite family of (c0(q + 1), αc0(q + 1))-biregular unique neighbour expanders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The theorem is proven in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='2, and provides a way to compute ˆq(c0, α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Here are some computed values of ˆq(c0, α) for several values of c0, α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' ∗Irit Dinur acknowledges support by ERC grant 772839 and ISF grant 2073/21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='03072v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='CO] 8 Jan 2023 c0 α ˆq(c0, α) 10 2 18907 35 2 1492 100 100 136051 100 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='01 1135 Notice that ˆq(co, α) increases with α, reflecting the fact that constructions with larger α (namely, more imbalanced sides) are harder to come by, and require larger degrees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The construction uses an infinite family of bipartite Ramanujan graphs, namely graphs whose non- trivial spectrum is contained in the spectrum of the (c, d)-biregular tree (see Preliminaries for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We construct the unique neighbour expander family by taking a family of bipartite Ramanujan graphs and combining them with a fixed size graph (“gadget”), with a good unique neighbour property (small sets have unique neighbours), whose existence is shown via the probabilistic method (Lemma 11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The combination is done as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We first place a copy of the gadget for every right side vertex of the Ramanujan graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The vertex is replaced by the right side of the gadget, and its neighbours are identified with the left side of the gadget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The gadget is used to route the neighbours of each left side vertex in the Ramanujan graph to its neighbours in the product graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Expansion in the product graph comes from unique neighbour expansion of the gadget together with low degree vertices in the Ramanujan graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Sufficiently low degree vertices are guaranteed to exist thanks to the following (new) bound on the average degree of induced subgraphs of bipartite Ramanujan graphs, which may be of independent interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let G = (L ⊔ R, E) be a (c, d)-biregular Ramanujan graph, and let ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Then there exists δ > 0, that depends only on ε, c, d, such that for every S ⊂ L of size |S| ≤ δ|L|, the set N(S) ⊆ R of the neighbours of S satisfies c|S| |N(S)| ≤ 1 + (1 + ε) � d − 1 c − 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The theorem shows that every small set on the left side admits neighbours on the right side with low degree in the induced subgraph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The proof involves recursive analysis of non-backtracking paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Interestingly, the recursion has a nice solution only when the graph is Ramanujan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' It is unclear whether this method can be extended to “nearly-Ramanujan” graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Combining the average degree upper bound with the gadget, the low-degree right-side vertices in the Ramanujan graph imply a small set of left-side vertices in the gadget;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' this set will have a unique neighbour in the gadget, which gives (via Lemma 12) a unique neighbour in the constructed graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Even though Ramanujan graphs are the best spectral expanders one can hope for, an efficient construc- tion of Ramanujan graphs (be them bipartite or not) does not immediately imply that we can construct unique neighbour expanders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In the d-regular case, Kahale shows ([Kah95, Thm 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='2]) that there are nearly- Ramanujan graphs with expansion at most d/2, which is not enough for unique neighbour expansion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In fact, recently Kamber and Kaufman [KK22] proved that some Ramanujan graphs strongly fail to have unique neighbour expansion, by giving explicit constructions of arbitrarily small sets that do not admit a unique neighbour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' As mentioned, the graph product we define requires a fixed size gadget, whose proof of existence is not constructive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In principle, such a gadget could be found by exhaustive search since we are working in a constant size search space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The gadget’s size in our construction is at least cubic in q, so exhaustive search is impractical for even small values of q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Unfortunately we know of no efficient construction of a gadget with the required parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' It is possible that the graph sampling method present in [AK19] can be used to construct fixed size gadgets more efficiently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The rest of this work is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In Section 2 we survey some of the uses of unique neighbour expanders, and mention known constructions of such graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Section 3 provides basic definitions and results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Our main technical tool, that asserts the low induced degree in bipartite Ramanujan graph, is stated and proven in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We prove the existence of a fixed-size gadget with good unique neighbour expansion 2 properties in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In Section 6 we define the way we use the Ramanujan graphs and the gadget to construct bipartite unique neighbour expanders, and by that prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 2 Related work One of the prominent uses of bipartite expanders in general and bipartite unique neighbour expanders in particular, and the motivation for this work, is the construction of error correcting codes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The works of Tanner [Tan81] and later Sipser and Spielman [SS96] construct linear error correcting codes C(B, C0) from a bipartite graph B and a smaller linear code C0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' It is shown that under some assumptions on the code C0 and the expansion properties of the bipartite graph B, the resulting code has good distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' This gives a way to take a family of graphs and transform it into a family of codes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Our work describes a construction that, in a sense, goes the other way around: given two bipartite graphs, B and B0, we view B0 as a parity check graph1 of the base code C0, and B plays the role of the underlying graph of a Tanner code C(B, C0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Our output graph is just the parity check graph of C(B, C0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We give full details of this graph product in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In [DSW06;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' BV09] it is shown that codes constructed on top of unique neighbour expanders are weakly smooth and can be used to construct robustly testable codes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' But the uses of unique neighbour expanders are not limited to error correcting codes: for example, such graphs may be used in the context of non-blocking networks, where it is required to connect several input-output terminals via paths in a non-intersecting fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Arora et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [ALM96] use graphs with expansion beyond the d/2 barrier to establish the existence of unique neighbours in the graph, which are useful in finding input-output paths in the online settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Roughly speaking, when routing a set of input-output pairs, the algorithm can use all unique neighbours freely since they are guaranteed not to interfere with any other paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Pippenger [Pip93] uses explicit constructions of spectral expanders in order to solve a similar problem, in the case where the route planning is computed locally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' There the spectral expansion of a graph is proven to imply a combinatorial expansion, in a similar way to our Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Another use for unique neigbhour expanders is for load-balancing problems, such as the token distribution problem described in [PU89], and the similar pebble distribution problem, briefly discussed in [AC02].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In the latter, pebbles are placed arbitrarily on vertices of a graph, and need to be distributed via edges of the graph such that no vertex has more than one pebble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Given that the total number of pebbles is small and that the graph has the unique neighbour property, we have an efficient parallel algorithm for redistributing the pebbles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Alon and Capalbo [AC02] construct several families of unique neighbour expanders, one of them is a family of bipartite graphs whose left side is 22/21 times bigger than the right side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Similar to the construction presented at this work, each graph in the constructed family is a combination of a Ramanujan graph and a fixed graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' These graphs are not (bi-)regular but their degrees are bounded by a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Becker [Bec16] uses a different family of 8-regular Ramanujan graphs in order to construct a family of (non-bipartite) unique neighbour expanders, with the additional property that each graph in the family is a Cayley graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' A different approach to constructing bipartite graphs uses randomness conductors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Randomness conduc- tors are functions that receive a bitstring with some entropy (according to some measure of entropy), and a uniformly random bitstring, and output a bitstring, with certain guarantees on its entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Some conduc- tors can be constructed explicitly via a spectral method, and Capalbo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [Cap+02] combine them in a zig-zag-like fashion in order to construct an infinite family of bipartite lossless expanders, namely bipartite graphs with fixed left-regularity c where small enough sets contained in the left side have at least c(1 − ε) neighbours on the right side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' These graphs are trivially unique neighbour expanders, since a simple counting argument shows that if a set expands by a factor of more than c/2, then it has unique neighbours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 1This is a bipartite graph whose incidence structure is given by the parity check matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 3 3 Preliminaries 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='1 Expander graphs In this work we deal with undirected graphs, that may contain multiple edges between two vertices, but do not contain self-loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' For a graph G and a subset of its vertices S we denote by NG(S) the neighbourhood of S, namely all vertices adjacent to some vertex in S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' When the graph in discussion is obvious, we may omit it and write N(S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We say that v is a unique neighbour of S if there is a unique u ∈ S that is adjacent to v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let (Gn) be a series of graphs with the number of vertices growing to infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' There are several well studied notions of expansion in graph families;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' we note some of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Vertex expansion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' (Gn) is a (δ, α)-vertex expander if for every n and any subset S ⊆ VGn, if |S| ≤ δ|VGN | we have that |NGN (S)| ≥ α|S|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Edge expansion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' (Gn) is a (δ, α)-edge expander if for every n and any subset S ⊆ VGn, if |S| ≤ δ|VGN | we have that at least an α-fraction of the edges with one endpoint in S have their other endpoint outside of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Spectral expansion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Assume that (Gn) are all d-regular, and let An be the adjacency operator associated with Gn, so An is indexed by vertices of Gn and (An)uv counts how many edges there are between u and v in Gn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let λ1 ≥ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' ≥ λVn be its spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' It can be seen that λ1 = d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Then (Gn) is a λ-spectral expander if for all n and i ̸= 1 we have |λi| ≤ λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Unique neighbour expansion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' (Gn) is a δ-unique neighbour expander if for every n, any subset S ⊆ VGn of size at most δ|VGN | has a unique neighbour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' These definitions apply to bipartite graphs Gn = (Ln ⊔ Rn, En) as well, with the exception that we usually consider sets contained in the left side only, and require that Ln/Rn is a constant, normally greater than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In this case we note that edge expansion is meaningless (since all edges leaving the left side enter the right side), and if a bipartite graph is (c, d)-biregular, namely if all left-side vertices have degree c and all right-side vertices have degree d, then the largest eigenvalue of the associated adjacency operator is √ cd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' It can be seen that for d-regular graphs, the best spectral expansion we can hope for is α = 2 √ d − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' These graphs are known as Ramanujan graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='2 Bipartite Ramanujan graphs Ramanujan graphs have the best spectral gap [Nil91], and their non-trivial eigenvalues are contained in the spectrum of the infinite d-regular tree Td.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Similarly, in the bipartite case, Biregular Ramanujan graphs are defined via their relation to the infinite biregular trees: the infinite (c, d)-biregular tree Tc,d, for d > c, has the spectrum λ ∈ spec(Tc,d) ⇔ |λ| ∈ {0} ∪ �√ d − 1 − √ c − 1, √ d − 1 + √ c − 1 � (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=', [GM88], [LS96].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=') We therefore say that a finite (c, d)-biregular graph is bipartite Ramanujan if its nontrivial eigenvalues lie in this set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' That means that every eigenvalue λ of a bipartite Ramanujan graph belongs to one of these classes: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Trivial: λ = ± √ cd, with eigenvectors fixed on either sides, or λ = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' λ ∈ [ √ d − 1 − √c − 1, √ d − 1 + √c − 1] are the nontrivial positive eigenvalues;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' λ ∈ [−√c − 1 − √ d − 1, √c − 1 − √ d − 1] are the nontrivial negative eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Note that since the graph is bipartite, λ is an eigenvalue if and only if −λ is an eigenvalue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 4 By an extension of the Alon-Boppana bound, given in [FL96], this is the best spectral gap we can hope for, at least as far as upper bounds for |λ| are concerned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We note that unlike the d-regular case, we require a lower bound to |λ| too, which is essential for our proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' While there is a vast literature on the construction of d-regular Ramanujan graph (most prominently [LPS88] and [Mar88]), less is known about bipartite Ramanujan graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In 2014 Marcus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [MSS13] proved the existence of biregular graphs with one-sided spectral graphs that resemble the Ramanujan bounds: these graphs satisfy the one-sided inequality only, namely |λ| ≤ √ d − 1 + √c − 1 for every nontrivial eigen- value λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Gribinski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [GM21] showed a polynomial-time construction of such graphs, for every degrees (d, kd) for any integers d, k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' These graphs do not suffice for our analysis, since we make explicit use of the lower bound |λ| ≥ √ d − 1 − √c − 1 too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In 2021 Brito et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [BDH22] proved that a random biregular graph is nearly Ramanujan with high probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Interestingly, and unlike other works in this field, our proof strongly relies on the graph to be exactly Ramanujan, so we cannot use those constructions either.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We use an explicit construction of bipartite Ramanujan graphs (with both bounds on non-trivial eigen- values) given by Ballantine et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' : Theorem 3 ([Bal+15]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' For every prime power q, there exists an explicit construction of a (q + 1, q3 + 1)- biregular Ramanujan graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 4 Vertex expansion in biregular Ramanujan graphs Our main technical tool is the following theorem showing that bipartite Ramanujan graphs exhibit excellent left-to-right expansion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We restate the theorem for convenience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let G = (L ⊔ R, E) be a (c, d)-biregular Ramanujan graph, and let ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Then there exists δ > 0, that depends only on ε, c, d, such that for every S ⊂ L of size |S| ≤ δ|L|, the set N(S) ⊆ R of the neighbours of S satisfies c|S| |N(S)| ≤ 1 + (1 + ε) � d − 1 c − 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We note that the quantity on the left hand side of the inequality can be interpreted as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Look at the bipartite graph induced by taking the vertices S on the left and N(S) on the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Since every left vertex has c outgoing edges, the total number of edges in the induced subgraph is c|S|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' This means that the expression on the left hand side of the inequality is exactly the average degree of the right side of the induced subgraph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Interestingly, the bound in this theorem is strictly stronger than what we would get from just applying the expander mixing lemma which amounts to c|S| |N(S)| ≤ (1 + ε) · � 1 + d − 1 c − 1 + 2 � d − 1 c − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' See Claim 4 for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The fact that we improve upon the expander mixing lemma is perhaps not surprising since our analysis is based on enumerating non-backtracking paths, and not just on magnitude of the second largest eigenvalue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We also use lower bounds on the magnitude of all nontrivial eigenvalues, whereas the expander mixing lemma uses just upper bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='1 Comparison to known bounds As noted above, Theorem 2 is an improvement of the bound that the expander mixing lemma gives in similar settings, which only uses the one-sided inequality |λ| ≤ √ d − 1 + √c − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' For reference, we state and prove the expander mixing lemma for bipartite Ramanujan graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 5 Claim 4 (Expander mixing lemma for bipartite Ramanujan graphs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let G = (L⊔R, E) be a (c, d)-biregular Ramanujan graph, and let ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Then there exists δ > 0 such that for every S ⊆ L of size |S| ≤ δ|L|, the neighbourhood of S satisfies c|S| |N(S)| ≤ (1 + ε) � 1 + d − 1 c − 1 + 2 √ d − 1 √c − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The expander mixing lemma for biregular graphs says that for every S ⊆ L, T ⊆ R we have ���� |e(S, T)| |E| − |S| |L| · |T| |R| ���� ≤ λ √ cd � |S| |L| · |T| |R| where λ is the second largest eigenvalue of G (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=', [Hae95]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' It is clarified that we consider the spectrum of G as an adjacency operator, so the largest eigenvalue is √ cd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Picking T = N(S) means all edges coming out from S are in the cut, namely |e(S, T)| = c|S|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Plugging that in gives ���� c|S| c|L| − |S| |L| · |N(S)| |R| ���� ≤ λ √ cd � |S| |L| · |N(S)| |R| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Multiplying both sides by |L| |S| gives ����1 − |N(S)| |R| ���� ≤ λ √ cd � |S| |L| · |N(S)| |R| |L| |S| = λ √ cd � |N(S)| |R| |L| |S| = λ √ cd � |N(S)| |S| � d c = λ c � |N(S)| |S| (1) where we also used the fact that |E| = c|L| = d|R|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let us assume that |S| = α|L|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Then we can upper bound |N(S)| by |N(S)| ≤ c|S| = αc|L| = αd|R| and so we have 1 − |N(S)| |R| ≥ 1 − dα|R| |R| = 1 − dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We square (1) and plug in the last inequality to get (1 − dα)2 ≤ λ2 c · |N(S)| c|S| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Recall that G is bipartite Ramanujan, so |λ| ≤ √ d − 1 + √c − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Use that and rearrange: c|S| |N(S)| ≤ λ2 c (1 − dα)−2 ≤ d − 1 + c − 1 + 2 √ d − 1√c − 1 c (1 − dα)−2 ≤ d − 1 + c − 1 + 2 √ d − 1√c − 1 c − 1 (1 − dα)−2 = � 1 + d − 1 c − 1 + 2 √ d − 1 √c − 1 � (1 − dα)−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The claim is proven by noting that there is some δ > 0 such that (1 − dα)−2 ≤ 1 + ε for every α < δ, namely whenever |S| ≤ δ|L|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 6 Kahale proved ([Kah95, Thm 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='2]) that in d-regular Ramanujan graphs (not necessarily bipartite), small induced subgraphs have average degree at most 1 + √ d − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Interestingly, this result can be deduced almost immediately from Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' This is due to the following lemma, proven in Appendix A, which asserts that the edge-vertex incidence graph (see [SS96]) of a d-regular Ramanujan graph is a (2, d)-biregular Ramanujan graph: Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let G be a d-regular Ramanujan graph, and G′ its edge-vertex incidence graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Then G′ is a (2, d)-biregular Ramanujan graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We state and prove Kahale’s bound, but we will not use it in our construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let G = (VG, EG) be a d-regular Ramanujan graph, and let ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Then there exists δ > 0 such that for every induced subgraph S with at most δ|VG| vertices, the average degree of S is at most dS := 2|ES| |VS| ≤ 1 + (1 + ε) √ d − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let G = (VG, EG) be a d-regular Ramanujan graph and ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We define G′ = (LG′ ⊔ RG′, EG′) as the edge-vertex incidence graph, namely LG′ = EG, RG′ = VG, and for every edge e = {u, v} in G we have the two edges {e, u} and {e, v} in G′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Since the degree of every vertex in G is d, and since every edge has two endpoints, we have that G′ is a (2, d)-biregular graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Lemma 5 asserts that G′ is Ramanujan in the bipartite sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' By Theorem 2, there exists δ > 0 such that if T ⊆ LG′ is of size at most δ|LG′|, then 2|T| |NG′(T)| ≤ 1 + (1 + ε) √ d − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' A subgraph S = (VS, ES) of G satisfies that ES is a subset of left-side vertices in G′, VS is a subset of right-side vertices in G′, and VS = NG′(ES) (because if an edge is in the subgraph then both of its endpoints are in the subgraph, and we assume that the subgraph does not contain an isolated vertex).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Therefore, if ES is sufficiently small, namely if |ES| ≤ δ|LG′| = δ|EG|, then by Theorem 2 the average degree of NG′(ES) = VS is bounded by 1 + (1 + ε) √ d − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We add that if we wish to find a bound the number of vertices, we note that |ES| ≤ d 2|VS|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' So every induced subgraph with no more than 2 dδ|EG| = δ|VG| vertices will satisfy the required average degree bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='2 Proof of Theorem 2 Theorem 2 is proven by enumerating non-backtracking paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' A non-backtracking path of length ℓ is a sequence of edges ((s(ei), t(ei)))ℓ i=1 such that for every i, t(ei) = s(ei+1) and s(ei) ̸= t(ei+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' For a bipartite graph G and a subset S of left side vertices we define Mℓ(S) to be the number of all non- backtracking paths whose all left-side vertices are in S, and Mℓ(S, G) to be the number of non-backtracking paths whose first and last left-side vertices are in S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Clearly Mℓ(S) ≤ Mℓ(S, G), as paths of the latter type may leave S ⊔N(S) (before re-entering S at the last step).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We use a lower bound on Mℓ(S) due to [Kam19]: Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' For every undirected bipartite graph G = (LG ⊔ RG, EG) and integer l it holds that Mℓ(LG) ≥ |EG| �� ( ¯dL − 1)( ¯dR − 1) �ℓ−1 where ¯dL, ¯dR are the average degrees of the left and right sides of G respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We state and prove an upper bound on Mℓ(S, G): 7 Lemma 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let G be a (c, d)-biregular Ramanujan graph with n vertices on the left side, and S a subset of the left side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Then for every integer ℓ: M2ℓ(S, G) ≤ |S| � (2 + √ d − 1)ℓ + 2 � (c − 1)ℓ/2(d − 1)ℓ/2 provided that S is small enough: |S|(c − 1)ℓ/2(d − 1)ℓ/2 ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' (2) Before proving the upper bound, we show how these bounds can be combined to obtain Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let ℓ be an integer to be determined later, S ⊆ L a sufficiently small subset (where sufficiently smalls means (2)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Denote by N(S) ⊆ R the neighbours of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The subgraph induced on S ∪N(S) has c|S| edges, with left degrees all c and average right degree ¯dR = c|S| |N(S)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Chaining the inequalities in Lemma 7 and Lemma 8, we have c|S| � (c − 1)( ¯dR − 1) � 2ℓ−1 2 ≤ M2ℓ(S) ≤ M2ℓ(S, VG) ≤ |S| · � (2 + √ d − 1)ℓ + 2 � (c − 1)ℓ/2(d − 1)ℓ/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Simplifying, we get, c(c − 1)ℓ− 1 2 ( ¯dR − 1)ℓ− 1 2 ≤ � (2 + √ d − 1)ℓ + 2 � (c − 1)ℓ/2 · (d − 1)ℓ/2 ( ¯dR − 1)ℓ− 1 2 ≤ � (2 + √ d − 1)ℓ + 2 � √c − 1 c �� d − 1 c − 1 �ℓ ¯dR − 1 ≤ � � � � � (2 + √ d − 1)ℓ + 2 � √c − 1 � ¯d − 1 c � �� � ⋆ � � � � 1/ℓ � d − 1 c − 1 Since ¯d ≤ d, we have that ⋆ = O(ℓ), so ⋆1/ℓ = O(1), hence for a fixed ε > 0 there exists a constant ℓ (that depends only on ε, c, d) such that ⋆1/ℓ ≤ 1 + ε;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' this ℓ determines, via inequality (2), a fixed δ such that whenever |S| ≤ δn we have ¯dR ≤ 1 + (1 + ε) � d − 1 c − 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We proceed to prove Lemma 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' For a bipartite graph G = (LG ⊔ RG, EG) and an integer ℓ, we define ALL ℓ , ALR ℓ , ARL ℓ , ARR ℓ as operators corresponding to non-backtracking paths of length ℓ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' ALL ℓ : L2(LG) → L2(LG) , (ALL ℓ f)(x) = � (e1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=',eℓ),t(eℓ)=x,s(e1),t(eℓ)∈LG f(s(e1)) with the summation over all non-backtracking paths of length ℓ, and similarly for the other operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let M be the operator corresponding to a single step from the right side G to the left side of G, namely M has |RG| rows and |LG| columns, with Muv counting the number of edges between u ∈ RG and v ∈ LG in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Then the following recursive formulae hold for every integer ℓ > 1: M ⊤ALL ℓ = ARL ℓ+1 + (d − 1)ARL ℓ−1 M ⊤ALR ℓ = ARR ℓ+1 + (d − 1)ARR ℓ−1 MARL ℓ = ALL ℓ+1 + (c − 1)ALL ℓ−1 MARR ℓ = ALR ℓ+1 + (c − 1)ALR ℓ−1 8 The first formula is explained as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Every non-backtracking path from R to L of length ℓ + 1 is composed of a non-backtracking path from L to L of length ℓ plus an extra step (that’s the M ⊤ALL ℓ factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=') The opposite is true, except for paths counted in M ⊤ALL ℓ that do backtrack, namely those made of a non- backtracking path of length ℓ − 1, and walking back and forth along the same edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' There are d − 1 ways to choose that edge (since it cannot be the one that was last in the path of length ℓ − 1, otherwise it wouldn’t be counted in M ⊤ALL ℓ ), so we need to subtract (d − 1)ARL ℓ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The rest of the equations are explained in an analog way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Due to symmetry we have: (ALL ℓ )⊤ = ALL ℓ ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' (ARR ℓ )⊤ = ARR ℓ ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' (ALR ℓ )⊤ = ARL ℓ And since the graph is bipartite we have: ALR 2ℓ = 0 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' ARL 2ℓ = 0 ALL 2ℓ+1 = 0 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' ARR 2ℓ+1 = 0 These equations yield a recursive formula for ALL ℓ ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' with the following initial conditions: ALL 2 = MM ⊤ − cI ALL 4 = MM ⊤ALL 2 − (c − 1 + d − 1)ALL 2 − c(d − 1)I MM ⊤ALL ℓ = ALL ℓ+2 + ((c − 1) + (d − 1))ALL ℓ + (c − 1)(d − 1)ALL ℓ−2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' ∀ℓ ≥ 4 (3) The following lemma,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' proven in Appendix A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' suggests a way to find a non-recursive formula for ALL 2ℓ ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' given such linear recursive relations with fixed coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Lemma 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let (xn) be a series defined via a second order linear recurrence with fixed coefficients A, B ∈ C: xn = Axn−1 + Bxn−2 Assume λ1 ̸= λ2 are (real or complex) roots of the characteristic polynomial λ2 − Aλ − B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Then there are α, β ∈ C, that depend on the initial conditions x0, x1, such that xn = αλn 1 + βλn 2 for every n ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' If the characteristic polynomial has a single root λ of multiplicity 2, then there are α, β ∈ C such that xn = αλn + βnλn for every n ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We use the lemma to bound the eigenvalues of ALL 2ℓ given bounds on the spectrum of the biregular graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Lemma 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let G be a (c, d)-biregular graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Then there is a sequence of polynomials with integer coeffi- cients (pℓ(x)) such that for every eigenpair (λ, v) of G, pℓ(λ2) is an eigenvalue of ALL 2ℓ , and moreover, for every λ ∈ R, if |λ| ∈ {0} ∪ [ √ d − 1 − √ c − 1, √ d − 1 + √ c − 1] (4) then |pℓ(λ2)| ≤ (2 + √ d − 1)ℓ(c − 1)ℓ/2(d − 1)ℓ/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' (5) 9 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The recursive formulae proven above (3) suggest that there is a series of polynomials pn(x) with integer coefficients such that ALL 2n = pn(MM ⊤).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Note that the graph’s adjacency matrix is AG = � 0 M M ⊤ 0 � And so, if (λ, v) is an eigenpair of G, then (λ2, v) is an eigenpair of A2 G = �MM ⊤ 0 0 M ⊤M � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' This shows that pℓ(λ2) is an eigenvalue of ALL 2ℓ whenever λ is an eigenvalue of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The converse is also true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The formulae (3) can be transformed so as to convey that pn(x) satisfies these equations: p1(x) = x − c , p2(x) = x2 + (2 − 2c − d)x + c(c − 1) xpn(x) = pn+1(x) + (c − 1 + d − 1)pn(x) + (c − 1)(d − 1)pn−1(x) for all n > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Setting n = 1 gives an equation involving p0(x), p1(x), p2(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We can solve this equation for p0(x) and get a simpler description of the initial conditions: p0(x) = c c − 1 , p1(x) = x − c (6) xpn(x) = pn+1(x) + (c − 1 + d − 1)pn(x) + (c − 1)(d − 1)pn−1(x) (7) for all n > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We fix some t that satisfies (4), namely such that |t| ∈ {0} ∪ [ √ d − 1 − √ c − 1, √ d − 1 + √ c − 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We first deal with the case where |t| ∈ ( √ d − 1 − √c − 1, √ d − 1 + √c − 1), and later we will consider the edge cases where t is one of the endpoints of the segment or 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let us write x = t2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We have that for this fixed x, the series (pn(x))n satisfies a second order linear recurrence with fixed coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Using Lemma 9, we conclude that there are functions α(x), λ1(x), β(x), λ2(x) that depend only on x, c and d, such that pn(x) = α(x)(λ1(x))n + β(x)(λ2(x))n (8) for every n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In order to find λ1, λ2 we solve for λ the characteristic polynomial, namely the following quadratic equation derived from (7): xλ = λ2 + (c − 1 + d − 1)λ + (c − 1)(d − 1) To obtain λ1,2(x) = x − (c − 1) − (d − 1) ± � ∆(x) 2 where ∆(x) = x2 − 2x((c − 1) + (d − 1)) + (c − d)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' (9) Using the initial values for p0(x), p1(x) from (6), and plugging back into (8) we get the equations c c − 1 = α(x)(λ1(x))0 + β(x)(λ2(x))0 = α(x) + β(x) x − c = α(x)(λ1(x))1 + β(x)(λ2(x))1 = α(x)λ1(x) + β(x)λ2(x) 10 whose solution is α(x) = (c − 1)x − (c − 1)2 − (c − 1) + (c − 1)(d − 1) + (c − 1) � ∆(x) − x + d − 1 + � ∆(x) 2(c − 1) � ∆(x) β(x) = c c − 1 − α(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We check when ∆(x) = 0 by solving (9) for x: x1,2 = 2((c − 1) + (d − 1)) ± � 4(c − 1 + d − 1)2 − 4(c − d)2 2 = (c − 1 + d − 1) ± � (c + d)2 − 4(c + d) + 4 − (c − d)2 = (c − 1 + d − 1) ± � c2 + 2cd + d2 − 4c − 4d + 4 − c2 + 2cd − d2 = (c − 1 + d − 1) ± √ 4cd − 4c − 4d + 4 = (c − 1 + d − 1) ± 2 √ c − 1 √ d − 1 = ( √ d − 1 ± √ c − 1)2 We see that ∆(x) is quadratic in x and has roots at ( √ d − 1 ± √c − 1)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' This gives a nice factorization of ∆(x): ∆(x) = x2 − 2x((c − 1) + (d − 1)) + (c − d)2 = � x − �√ d − 1 + √ c − 1 �2� � x − �√ d − 1 − √ c − 1 �2� Recall that for the x we fixed we have √x = t ∈ ( √ d − 1 − √c − 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' √ d − 1 + √c − 1),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' so the first term in the product is negative and the second term is positive,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' so ∆ < 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' and so λ1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='2 are complex numbers (conjugate to one another),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' with magnitude |λ1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='2|2 = (x − (c − 1) − (d − 1))2 − ∆(x) 4 = x2 − 2x((c − 1) + (d − 1)) + (c − 1 + d − 1)2 − (x2 − 2x((c − 1) + (d − 1)) + (c − d)2) 4 = (c + d − 2)2 − (c − d)2 4 = (c − 1)(d − 1) (10) A very similar calculation shows that α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' β are conjugates with magnitude |α|2 = |β|2 = x(x − cd) ∆(x) · (c − 1) This finishes the proof for all such x’s: |pℓ(x)| = |α(x)λℓ 1 + β(x)λℓ 2| ≤ |α(x)λℓ 1| + |β(x)λℓ 2| = |α(x)||λ1|ℓ + |β(x)||λ2|ℓ = 2 � x(x − cd) ∆(x) · (c − 1)(c − 1)ℓ/2(d − 1)ℓ/2 We keep in mind that x is fixed,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' so the expression is smaller than (2 + √ d − 1) · ℓ · (c − 1)ℓ/2(d − 1)ℓ/2 for large enough ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We are left with the cases x = t2 for t = 0, √ d − 1 ± √c − 1: 11 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We use the same methods and find that the characteristic polynomial is λ2 + (c − 1 + d − 1)λ + (c − 1)(d − 1) whose roots are λ1 = −(c − 1) , λ2 = −(d − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Using the initial conditions (p0(0) = c/(c − 1), p1(0) = −c) we obtain α(0) = c c − 1 , β(0) = 0 and using the fact that c < d we get |pℓ(0)| = |α(0)λℓ 1 + β(0)λℓ 2| = c c − 1(c − 1)ℓ < 2l(c − 1)ℓ/2(c − 1)ℓ/2 < 2l(c − 1)ℓ/2(d − 1)ℓ/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' t = √ d − 1 + √c − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Then x = t2 = ( √ d − 1 + √c − 1)2 = d − 1 + c − 1 + 2 √ d − 1√c − 1, and the characteristic polynomial has a single root of multiplicity 2, namely λ = x − (c − 1) − (d − 1) 2 = √ d − 1 √ c − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The solution, therefore, takes the form pn(x) = (α(x) + nβ(x))(c − 1)n/2(d − 1)n/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Using the initial values we get α(x) = c c − 1 , β(x) = x − c √ d − 1√c − 1 − c c − 1 = 2 + d − 2 √ d − 1√c − 1 − c c − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 1 < c c−1 ≤ 2 so β(x) ≤ √ d − 1 + 1, and in total we get |pℓ(x)| = |α(x) + ℓβ(x)|(c − 1)ℓ/2(d − 1)ℓ/2 ≤ ����� 1 ℓ · c c − 1 ���� + |β(x)| � ℓ(c − 1)ℓ/2(d − 1)ℓ/2 ≤ � 2 + √ d − 1 � ℓ(c − 1)ℓ/2(d − 1)ℓ/2 For sufficiently large ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' t = √ d − 1 − √c − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We get x = t2 = d − 1 + c − 1 − 2 √ d − 1√c − 1, and the rest follows the same calculations as in the previous case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Bounds on the spectrum of ALL 2ℓ give bounds on the number of non-backtracking paths completely con- tained in a small set, hence gives Lemma 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 12 Proof of Lemma 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Recall that M2ℓ(S, G) counts the number of non-backtracking paths of length 2ℓ that start and end in S, so by the definition of the ALL n operatore, we have M2ℓ(S, G) = ⟨ALL 2ℓ 1S, 1S⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We note that ALL 2ℓ 1L = c(c − 1)ℓ−1(d − 1)ℓ1L, because every non-backtracking path starting at a given vertex is made of picking the first left-to-right edge (we have c such edges to pick from), and then alternating between picking any of the d or c edges adjacent to the current vertex, except for the edge we picked to get to it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Write 1S = |S| n 1L + r, with r ⊥ 1L, and ∥r∥2 2 ≤ ∥1S∥2 2 = |S|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Since the graph is Ramanujan, the nontrivial eigenvalues in its spectral decomposition have their absolute value in the set {0} ∪ [ √ d − 1 − √c − 1, √ d − 1 + √c − 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We only care about the nontrivial eigenvalues because r ⊥ 1L, hence in the writing of r in the orthogonal basis made of eigenvectors, only eigenvectors with nontrivial eigenvalues appear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We use Lemma 10 to get ⟨ALL 2ℓ r, r⟩ ≤ (2 + √ d − 1)ℓ(c − 1)ℓ/2(d − 1)ℓ/2 · ∥r∥2 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Combine everything to get M2ℓ(S,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' G) = ⟨ALL 2ℓ 1S,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 1S⟩ = � ALL 2ℓ |S| n 1L + r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' |S| n 1L + r � = |S|2 n2 ⟨ALL 2ℓ 1L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 1L⟩ + ⟨ALL 2ℓ r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' r⟩ = |S|2 n2 · c(c − 1)ℓ−1(d − 1)ℓ⟨1L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 1L⟩ + ⟨ALL 2ℓ r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' r⟩ ≤ |S|2 n c(c − 1)ℓ−1(d − 1)ℓ + (2 + √ d − 1)ℓ(c − 1)ℓ/2(d − 1)ℓ/2 ∥r∥2 2 ≤ |S| �|S| · c · (c − 1)ℓ/2(d − 1)ℓ/2 n(c − 1) + (2 + √ d − 1)ℓ � (c − 1)ℓ/2(d − 1)ℓ/2 ≤ |S| � c c − 1 + (2 + √ d − 1)ℓ � (c − 1)ℓ/2(d − 1)ℓ/2 ≤ |S| � (2 + √ d − 1)ℓ + 2 � (c − 1)ℓ/2(d − 1)ℓ/2 5 Random gadget In this section we prove the existence of bipartite graphs such that every small set of left-side vertices has a unique neighbour on the right side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We draw a random biregular graph from a similar distribution as in [Pip77], and use techniques similiar to [Vad+12, Thm 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Lemma 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' For every integers L, R, c, d with Lc = Rd, L > R, c > 3, if k is an integer that satisfies the inequality k c−3 2 ≤ 1 2Le · � R 3ec � c−1 2 then there is a (c, d)-biregular graph with sides [L] and [R] such that every set of left vertices of size at most k has a unique neighbour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We draw a random (c, d)-biregular graph in the following way: fix L vertices on the left side and R vertices on the right side (cL = dR), write c copies of each left-side vertex and d copies of each right-side vertex, and connect them via a uniformly random matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' That is, pick a uniformly random permutation π : L × [c] → R × [d], and for every u ∈ L, v ∈ R, i ∈ [c], j ∈ [d], if π(u, i) = (v, j), then add (u, v) as an edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Note that we allow multiple edges between two vertices (if there are several i, j satisfying π(u, i) = (v, j)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 13 Let G be a random bipartite graph with L vertices on the left side and R vertices on the right side drawn from said distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let A be a subset of left vertices of size k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We note that if A expands by at least (c + 1)/2, then, by a simple counting argument, A has a unique neighbour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' It is therefore sufficient to find the probability that A expands by at least (c + 1)/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let us fix an arbitary ordering of the ck edges leaving A, and denote it e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' , eck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We say that ei is a repeat if it touches a previously covered vertex, that is, if its right endpoint is contained in the set of right endpoints of the set e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' , ei−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We note that if A does not expand by at least (c + 1)/2, then, again by a simple counting argument, there are at least (c − 1)k/2 repeats.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' This is because the number of repeats and the size of the set of the neighbours of A add up to the number of edges leaving A, namely ck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We note that for every i, ei is a repeat if it touches one of i − 1 or less previously covered vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' This means that Pr[ei is a repeat] ≤ i−1 R < ck R .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Moreover, if we condition on the event that some of the first i − 1 edges are also repeats, then the probability that ei is a repeat may only decrease, since it means that there are less “forbidden” endpoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We conclude that for every set of l edges: Pr[ei1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' , eil are repeats] = l� j=1 Pr[eij is a repeat | ei1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' eij−1 are repeats] < �ck R �l .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' If A expands too little, then there are many repeats.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We can use it to bound the probability that A has no unqiue neighbour: Pr[A has no unique neighbour] ≤ Pr[A expands by < (c + 1)/2] ≤ Pr[there are at least (c − 1)k/2 repeats] ≤ � i1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=',i(c−1)k/2∈( ck (c−1)k/2) Pr[{ei1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' , ei(c−1)k/2} are repeats] < � ck c−1 2 k � �ck R � c−1 2 k And by a union bound over the possible choices of A: Pr[∃ “bad” A of size k] ≤ �L k � Pr[A expands by < (c + 1)/2] ≤ �L k � � ck c−1 2 k � �ck R � c−1 2 k ≤ �Le k �k � cke c−1 2 k � c−1 2 k �ck R � c−1 2 k = � Le k · � 2ce c − 1 · ck R � c−1 2 �k ≤ � Le k · �3eck R � c−1 2 �k (11) Where the last inequality follows from assuming that c ≥ 3 so 2c c−1 ≤ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We are now ready to prove Lemma 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Proof of Lemma 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let us draw a (c, d)-biregular graph G = ([L] ⊔ [R], E) from the distribution described above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let k be an integer satsifying (11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Using a union bound and the inequality in (11), we have (where 14 probability is taken over the choice of G): Pr[∃ “bad” A ⊆ [L] of size ≤ k] = k � a=1 Pr[∃ “bad” A ⊆ [L] of size a] ≤ k � a=1 � Le a · �3eca R � c−1 2 �a < ∞ � a=1 � Le k · �3eck R � c−1 2 �a = ∞ � a=1 � k c−1 3 Le · �3ec R � c−1 2 �a ≤ ∞ � a=1 �1 2 �a < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We see that with strictly positive probability, a random graph has no “bad” subsets of size ≤ k, hence there exists a graph with the desired unique neighbour property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 6 Construction 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='1 Routed product definition Let us begin with a brief coding theory motivation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' An error-correcting code is often given via an m × n parity check matrix H, so that C = Ker H ⊆ {0, 1}n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The matrix H can be visualized as a bipartite graph, called the parity check graph, with n left and m right vertices, and an edge i ∼ j whenever H(j, i) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' A Tanner code is defined given a bipartite graph B and a base code C0 = Ker H0 [Tan81].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' One way to view the routed product is through the point of view of codes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Consider the parity check graph B0 of H0 and define the routed product of B and B0 to be simply the parity check graph of the Tanner code C(B, C0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Here is a more detailed and combinatorial definition of the routed product without mention of codes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let G = (L ⊔ R, E) be a (c, d)-biregular graph and G0 = (L0 ⊔ R0, E0) a (c0, d0)-biregular graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We think of G as a big graph (in practice, an infinite family of Ramanujan graphs), and G0 as a fixed size graph (gadget).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Assume that |L0| = d, and let us think of the edges of G as a function E : R × [d] → L which maps a right side vertex v and an index i to the ith neighbour of v in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We can define the routed product graph G′ = G ◦ G0 as the bipartite graph whose left side is L, right side is the cartesian product R × R0, and the set of edges is E′ = {(E(v, i), (v, j)) : v ∈ R, i ∈ [d], j ∈ [R0], (i, j) ∈ E0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' That is, we write R0 copies of each vertex in R, and every right side vertex v in the big graph G and an edge (i, j) in the small gadget G0 gives an edge between the ith neighbour of v in G, and the jth vertex of the copy of G0 assigned to v in G′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Otherwise put, we use G0 to route every edge of the big graph G to c0 edges in the product graph G′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' More precisely, for every v ∈ R, the bipartite subgraph of G′ whose left side is NG(v) and right side is (v, ·) is isomorphic to G0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' This means that, roughly speaking, unique neighbours are inherited from the small graph to the product graph: Lemma 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let S ⊆ L, v ∈ NG(S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Define S′ = {i : E(v, i) ∈ S} ⊆ [d] as the indexed neighbours of v in S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' If S′, as a set of vertices in the gadget G0, has a unique neighbour j ∈ R0 in G0, then (v, j) is a unique neighbour of S in the product graph G′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The proof is immediate while staring at Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 1, but for the sake of completion it is given in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 15 Figure 1: An example of a bipartite graph G (dashed, red), a small gadget G0 (dotted, green), and the routed product G′ = G ◦ G0 (solid, blue).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The set S ⊆ L has a neighbour v ∈ R, and so S is associated with a set S′ of left side vertices of the copy of G0 associated with v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Since (i′, j) is the only edge connecting j to S′ in G0, we have that (v, j) is a unique neighbour of S in G′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 16 S6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='2 Proof of Theorem 1 Let q be a prime power, c0 an integer, and α > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Assume that αc0(q + 1) is an integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We construct an infinite family of (c0(q + 1), αc0(q + 1))-biregular graphs with the unique neighbour property under some assumptions specified below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Denote c = q + 1 and d = q3 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' By Theorem 3 there is an efficient construction of an infinite family of (c, d)-biregular Ramanujan graphs (Gn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let G0 = (L0 ⊔ R0, E0) be a gadget: a c0-left-regular bipartite graph with |L0| = d = q3 + 1 vertices on the left side and R0 vertices on the right side, such that every left-side set of sufficiently small size admits a unique neighbour on the right side, where “sufficiently small” here means the bound given in Lemma 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' For the constructed graph to have the left side α times bigger than the right side, we set R0 = d αc = q3+1 α(q+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We define G′ n = Gn ◦ G0 as the routed product of Gn and G0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' For the rest of this (short) proof let us suppress n from the notation, for convenience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let ε < 1 q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' By Theorem 2, there exists δ > 0 such that for every S ⊆ L of size at most δ|L|, the “average right degree” ¯dS, namely the average of the degrees of vertices in NG(S) in the induced subgraph S ⊔NG(S), is bounded: ¯dS := c|S| |NG(S)| ≤ 1 + (1 + ε) � d − 1 c − 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We show that such S has a unique neighbour in G′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We note that d−1 c−1 = q2, so since ε < 1 q we have a vertex v ∈ R of “degree” at most q + 1 in G, that is, the set S′ ⊆ [d] of v’s neighbours in S is of size at most q + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' By Lemma 12, if S′, as a set of left-side vertices in G0, has a unique neighbour j in G0, then our original set S has a unique neighbour (v, j) in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' It remains to choose the parameters in a way that all left-side sets of size at most q + 1 have a unique neighbour in G0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' By Lemma 11, we need to have: (q + 1) c0−3 2 ≤ 1 2(q3 + 1)e · � � q3+1 α(q+1) 3ec0 � � c0−1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' (12) The LHS is O(q c0−3 2 ) and RHS is Θ(qc0−4), so if c0 > 5 then for sufficiently large q the construction gives a unique neighbour expander.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' That is, there exists some ˆq(c0, α) such that if q > ˆq then (12) holds, hence we constructed a bipartite unique neighbour expander as promised in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 7 Future work The main pitfall of our approach is the non-constructive nature of the gadget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Theoretically since the gadget has constant size this is no issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' However, exhaustive search is impractical even for small values of q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' This is because the gadget’s size is cubic in q so the search space is of size exponential in q3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' A natural question would be whether it is possible to construct such a gadget in an efficient way, since that would lead to the whole unique neighbour expander family to be constructible in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' For the bipartite Ramanujan family chosen in our work (the one by Ballantine et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [Bal+15]) we ask the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Question 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' For which prime power q and real number α ≥ 1 can one construct efficiently a biregular graph with left side q3 + 1, right side q3+1 α(q+1), such that every left side set of size at most q + 1 has a unique neighbour?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We note that the fixed size graph given in [AC02, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='3] is a good gadget (for α = 22/21 and the edge-vertex incidence graphs of a 44-regular Ramanujan graph family), and indeed these graphs can be used to construct bipartite unique neighbour expanders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Since we prove that a random gadget is, with non-negligble probability, good for our construction, it may be interesting to construct such gadget by simply drawing random gadgets and testing whether they are good.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Since drawing is simple, we are left with the task of testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We therefore ask: 17 Question 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Given a bipartite graph, can one efficiently find the smallest nonempty set of left-side vertices that has no unique neighbours?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We currently know of no better way than just enumerating all left-side sets, which is exponential in the size of the graph, hence impractical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We refer to [AK19] for an interesting approach to testing expansion of random graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The methods presented in this work are not limited to the (q+1, q3 +1)-biregular Ramanujan family.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We can therefore ask the question the other way around – find a gadget (by sampling or any other way), and see whether we can efficiently construct a bipartite Ramanujan family that will make it work, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' that would allow us to rewrite the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' This emphasizes the well-known natural question of constructing Ramanujan graphs with arbitrary degrees, specifically in the bipartite and biregular setting, Question 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' For which integers c < d can one construct efficiently an infinite family of (c, d)-biregular Ramanujan graphs?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We note that our construction is far from “right-side unique neighbour expansion,” as the complete right side of a single gadget is a constant-size set with no unique neighbours on the left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We wonder whether it is possible to construct a bipartite graph where all small size sets (be them contained in either sides, or both) have unique neighbours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 18 References [AC02] Noga Alon and Michael Capalbo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Explicit unique-neighbor expanders”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 2002, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 73– 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [AK19] Benny Applebaum and Eliran Kachlon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Sampling graphs without forbidden subgraphs and un- balanced expanders with negligible error”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 171–179.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [ALM96] Sanjeev Arora, Frank Thomson Leighton, and Bruce M Maggs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “On-line algorithms for path selection in a nonblocking network”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: SIAM Journal on Computing 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='3 (1996), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 600–625.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [Bal+15] Cristina Ballantine, Brooke Feigon, Radhika Ganapathy, Janne Kool, Kathrin Maurischat, and Amy Wooding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Explicit construction of Ramanujan bigraphs”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: Women in numbers europe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Springer, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 1–16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [BDH22] Gerandy Brito, Ioana Dumitriu, and Kameron Decker Harris.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Spectral gap in random bipartite biregular graphs and applications”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: Combinatorics, Probability and Computing 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='2 (2022), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 229–267.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [Bec16] Oren Becker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Symmetric unique neighbor expanders and good LDPC codes”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: Discrete Applied Mathematics 211 (2016), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 211–216.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' issn: 0166-218X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' doi: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='1016/ j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='dam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' url: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='com/science/article/pii/ S0166218X16301810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [BV09] Eli Ben-Sasson and Michael Viderman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Tensor products of weakly smooth codes are robust”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: Theory of Computing 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='1 (2009), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 239–255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [Cap+02] Michael Capalbo, Omer Reingold, Salil Vadhan, and Avi Wigderson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Randomness conductors and constant-degree expansion beyond the degree/2 barrier”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 2002, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 659–668.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [DSW06] Irit Dinur, Madhu Sudan, and Avi Wigderson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Robust local testability of tensor products of LDPC codes”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: Approximation, Randomization, and Combinatorial Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Algorithms and Techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Springer, 2006, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 304–315.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [FL96] Keqin Feng and Wen-Ch’ing Winnie Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Spectra of hypergraphs and applications”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: Journal of number theory 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='1 (1996), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 1–22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [GM21] Aurelien Gribinski and Adam W Marcus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Existence and polynomial time construction of bireg- ular, bipartite Ramanujan graphs of all degrees”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: arXiv preprint arXiv:2108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='02534 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [GM88] Chris D Godsil and Bojan Mohar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Walk generating functions and spectral measures of infinite graphs”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: Linear Algebra and its Applications 107 (1988), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 191–206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [Hae95] Willem H Haemers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Interlacing eigenvalues and graphs”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: Linear Algebra and its applications 226 (1995), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 593–616.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [Kah95] Nabil Kahale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Eigenvalues and expansion of regular graphs”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: Journal of the ACM (JACM) 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='5 (1995), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 1091–1106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [Kam19] Amitay Kamber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Lp Expander Graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' arXiv: 1609.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='04433 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='CO].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [KK22] Amitay Kamber and Tali Kaufman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Combinatorics via closed orbits: number theoretic Ramanu- jan graphs are not unique neighbor expanders”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 426–435.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [LPS88] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Ramanujan graphs”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: Combinatorica 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='3 (1988), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 261–277.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [LS96] Wen-Ch’ing Winnie Li and Patrick Solé.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Spectra of Regular Graphs and Hypergraphs and Orthogonal Polynomials”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: European Journal of Combinatorics 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='5 (1996), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 461–477.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' doi: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='1006/eujc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='0040.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 19 [Mar88] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Margulis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Explicit group-theoretical constructions of combinatorial schemes and their application to the design of expanders and concentrators”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: Problemy peredachi informatsii 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='1 (1988), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 51–60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [MSS13] Adam Marcus, Daniel A Spielman, and Nikhil Srivastava.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Interlacing families I: Bipartite Ra- manujan graphs of all degrees”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: 2013 IEEE 54th Annual Symposium on Foundations of com- puter science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 2013, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 529–537.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [Nil91] Alon Nilli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “On the second eigenvalue of a graph”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: Discrete Mathematics 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='2 (1991), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 207– 210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [Pip77] Nicholas Pippenger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Superconcentrators”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: SIAM Journal on Computing 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='2 (1977), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 298– 304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [Pip93] Nicholas Pippenger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Self-routing superconcentrators”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 1993, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 355–361.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [PU89] David Peleg and Eli Upfal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “The token distribution problem”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: SIAM journal on computing 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='2 (1989), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 229–243.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [SS96] Michael Sipser and Daniel A Spielman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Expander codes”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: IEEE transactions on Information Theory 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='6 (1996), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 1710–1722.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [Tan81] R Tanner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “A recursive approach to low complexity codes”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: IEEE Transactions on information theory 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='5 (1981), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 533–547.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' [Vad+12] Salil P Vadhan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' “Pseudorandomness”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' In: Foundations and Trends in Theoretical Computer Science 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='1–3 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 20 8 Appendix A We restate and prove the lemmas we used throughout the work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let G be a d-regular Ramanujan graph, and G′ its edge-vertex incidence graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Then G′ is a (2, d)-biregular Ramanujan graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let G = (V, E) a d-regular Ramanujan graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The adjacency matrix of G′ is A = � 0 M M ⊤ 0 � where M has |E| rows, each containing two 1’s, and |V | columns, each containing d 1’s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let v be an eigenvector of A with eigenvalue λ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' then v is an eigenvector of A2 with eigenvalue λ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We note that A2 = � MM ⊤ 0 0 M ⊤M � so it suffices to consider the spectrum of M ⊤M, which is essentially the operator corresponding to a walk from a vertex of G to an edge that touches it and back to one of its endpoints (possibly the same vertex we started at).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' For every v ∈ V , there are d ways to walk from it to an edge and then back to v;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' all other legal paths correspond to picking an edge touching v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We conclude that M ⊤M = dI + A, so every eigenvalue λ of G′ satisfies λ2 = d + σ where σ is an eigenvalue of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The lemma is proven by noting that |σ| ≤ 2 √ d − 1 (since G is Ramanujan), so d − 2 √ d − 1 ≤ λ2 ≤ d + 2 √ d − 1 The terms on the extreme sides of the inequality can be verified to be ( √ d − 1 ± 1)2 so we get |λ| ∈ [ √ d − 1 − 1, √ d − 1 + 1], as needed (recall that in G′ the left-regularity is c = 2 so √c − 1 = 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Lemma 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let (xn) be a series defined via a second order linear recurrence with fixed coefficients A, B ∈ C: xn = Axn−1 + Bxn−2 Assume λ1 ̸= λ2 are (real or complex) roots of the characteristic polynomial λ2 − Aλ − B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Then there are α, β ∈ C, that depend on the initial conditions x0, x1, such that xn = αλn 1 + βλn 2 for every n ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' If the characteristic polynomial has a single root λ of multiplicity 2, then there are α, β ∈ C such that xn = αλn + βnλn for every n ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We note that for every n ≥ 2 we have � xn xn−1 � = �Axn−1 + Bxn−2 xn−1 � = �A B 1 0 � �xn−1 xn−2 � Denote the 2 × 2 matrix by D, so by induction, � xn xn−1 � = Dn �x1 x0 � Let us diagonalize D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The characteristic polyonmial is pD(λ) = det(λI − D) = ���� λ − A −B −1 λ ���� = λ(λ − A) − B = λ2 − Aλ − B 21 If pD(λ) has two distinct roots λ1, λ2, then the matrix is diagonalizable;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' that means that there exists a 2 × 2 matrix M such that D = M · diag{λ1, λ2} · M −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' We get: � xn xn−1 � = M �λ1 0 0 λ2 �n M −1 �x1 x0 � = M �λn 1 0 0 λn 2 � M −1 �x1 x0 � We can compute M, M −1 explicitly, multiple the matrices and get α, β ∈ C such that xn = αλn 1 + βλn 2 as required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Otherwise, if pD(λ) has a single root λ of multiplicity 2, then we can find its Jordan form, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' find M such that D = M �λ 1 0 λ � M −1 Dn = M �λ 1 0 λ �n M −1 = M �λn nλn−1 0 λn � M −1 Where the last equality follows from a simple induction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Similarly, we get � xn xn−1 � = M �λ 1 0 λ �n M −1 �x1 x0 � = M �λn nλn−1 0 λn � M −1 �x1 x0 � And again we can find α, β ∈ C as required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' For the following lemma we remind that G = (L ⊔ R, E) is a (c, d)-biregular graph, G0 = (L0 ⊔ R0, E0) is a (c0, d0)-biregular graph, and G′ = G ◦ G0 is the routed product of G and G0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Recall that the edges of G′ are (E(v, i), (v, j)) when v ∈ R is a right side vertex of G, i ∈ [d], E(v, i) is the ith neighbour of v according to G, and (i, j) ∈ E0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Lemma 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Let S ⊆ L, v ∈ NG(S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Define S′ = {i : E(v, i) ∈ S} ⊆ [d] as the indexed neighbours of v in S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' If S′, as a set of vertices in the gadget G0, has a unique neighbour j ∈ R0 in G0, then (v, j) is a unique neighbour of S in the product graph G′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Assume that i′ ∈ S′ is the unique neighbour of j in G0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' By the definition of the routed product we have that (E(v, i′), (v, j)) is an edge in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' Since i′ ∈ S′ we have that E(v, i′) ∈ S, so indeed (v, j) is a neighbour of S in G′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' It is therefore remaining to show that it is unique, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' that E(v, i′) is the only neighbour of (v, j) in S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' The neighbours of (v, j) in G are E(v, i) for every i such that (i, j) ∈ E0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' If E(v, i) ∈ S, then by the definition of S′ we have that i ∈ S′, so i is a neighbour of j in E0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' But we know that j is a unique neighbour of S′ in E0, so we must have that i = i′, and indeed (v, j) is a unique neighbour of S in G′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} +page_content=' 22' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dE1T4oBgHgl3EQfTAM3/content/2301.03072v1.pdf'} diff --git a/6tE5T4oBgHgl3EQfPw5R/vector_store/index.faiss b/6tE5T4oBgHgl3EQfPw5R/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..82351c750f015ff91bb9c238d9e849c670c847c2 --- /dev/null +++ b/6tE5T4oBgHgl3EQfPw5R/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0aa089410482e3b8e239c4daeb154da00b1f938224a1aedb6fbe20459d0d0d98 +size 1703981 diff --git a/79AzT4oBgHgl3EQfE_pK/vector_store/index.pkl b/79AzT4oBgHgl3EQfE_pK/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..1cb4ab7165fde968c8970371fbc166c87a419726 --- /dev/null +++ b/79AzT4oBgHgl3EQfE_pK/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8afa56797092ba656ec64adcbbcd3831cf73ba77c257e8369657e932f20aa5fc +size 133263 diff --git a/7NE2T4oBgHgl3EQfkwf2/content/tmp_files/2301.03983v1.pdf.txt b/7NE2T4oBgHgl3EQfkwf2/content/tmp_files/2301.03983v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..7f060f791bc5d4d303b1ea92bcbdc78c6e9e30a8 --- /dev/null +++ b/7NE2T4oBgHgl3EQfkwf2/content/tmp_files/2301.03983v1.pdf.txt @@ -0,0 +1,862 @@ +arXiv:2301.03983v1 [cs.IT] 10 Jan 2023 +On the Performance of Dual RIS-assisted V2I +Communication under Nakagami-m Fading +Mohd Hamza Naim Shaikh, Khaled Rabie◦, Xingwang Li#, Theodoros Tsiftsis†, and Galymzhan Nauryzbayev +School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan City, 010000, Kazakhstan +◦Department of Engineering, Manchester Metropolitan University, Manchester, M15 6BH, UK +#School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China +†Department of Informatics & Telecommunications, University of Thessaly, Greece; +†School of Intelligent Systems Science and Engineering, Jinan University, China +Email: {hamza.shaikh, galymzhan.nauryzbayev}@nu.edu.kz, ◦k.rabie@mmu.ac.uk, +#lixingwang@hpu.edu.cn, †tsiftsis@ieee.org +Abstract—Vehicle-to-everything (V2X) connectivity in 5G-and- +beyond communication networks supports the futuristic intelligent +transportation system (ITS) by allowing vehicles to intelligently +connect with everything. The advent of reconfigurable intelligent +surfaces (RISs) has led to realizing the true potential of V2X +communication. In this work, we propose a dual RIS-based +vehicle-to-infrastructure (V2I) communication scheme. Following +that, the performance of the proposed communication scheme +is evaluated in terms of deriving the closed-form expressions +for outage probability, spectral efficiency and energy efficiency. +Finally, the analytical findings are corroborated with simulations +which illustrate the superiority of the RIS-assisted vehicular +networks. +Keywords— Reconfigurable intelligent surface (RIS), dual RIS, +energy efficiency, spectral efficiency, vehicular communication. +I. INTRODUCTION +As a key enabler for intelligent transportation systems (ITSs), +vehicle-to-everything (V2X) communication has sparked a re- +newed interest in the research community. V2X encompasses +a wide range of wireless technologies such as vehicle-to- +pedestrian (V2P), vehicle-to-infrastructure (V2I), and vehicle- +to-vehicle (V2V). Additionally, it also includes the vehicu- +lar communications with vulnerable road users (VRUs), grid +(V2G), network (V2N) and cloud (V2C) [1]. The V2X com- +munications will be a critical component of the futuristic +connected and self-driving cars, envisioned and enabled by +the sixth-generation (6G) wireless technologies. Furthermore, +the V2X communications will also enhance and transform +the quality-of-service (QoS) in terms of unparalleled user +experience, ultra-high road safety and air quality improvement. +In addition, a slew of advanced applications will also be +supported like platooning, trajectory alignments, exchanging +sensor data and high precision maps, and so on [2]. Thanks to +the enhanced capabilities of 6G, vehicles will receive accurate +safety information, intelligent traffic management support, and +innovative infotainment features. Thus, the 6G services will be +used to create a fully automated, autonomous, and ubiquitously +connected vehicular network [3]. +Recently, reconfigurable intelligent surfaces (RISs) have +emerged as a breakthrough technology that offers a great deal +in terms of wireless communication [4]. Inherently, RIS is a +software-defined artificial structure made up of a large number +of scattering passive elements, termed as reflecting units (RUs). +These RUs are capable to adjust the electromagnetic (EM) +properties of a reflected wave that is incident on them. Thus, +RIS can use not only this ability to boost the received signal’s +power, but also the capability to create an additional reflective +link to mitigate the impact of blockages. With the large number +of RUs, RISs are particularly known to have large spectral and +energy efficiency [5]. As a result, RIS may be used to improve +the quality of vehicular communication through establishing +a low-cost, highly energy efficient indirect line-of-sight (LoS) +communications [6]. +In [7], the authors investigated the outage performance for +RIS-assisted vehicular communication networks. Likewise, the +secrecy outage performance of RIS-aided vehicular communi- +cations has been studied in [8]. RISs were also investigated for +detecting VRUs such as cyclists, pedestrians and wheelchair +users [9]. Specifically, the authors utilized RISs for enhancing +the radar visibility for VRUs. Further, in [10], the authors +provided a optimization framework for resource allocation +in the RIS-aided vehicular communications. Specifically, they +jointly optimized the power allocation, RIS reflection coeffi- +cients and spectrum allocation for different QoS requirements +of the V2V and V2I communication links. Likewise, in [11], +the authors discussed a system model where RSU leverages RIS +to connect the dark zones, i.e., areas blocked due by obstacles. +Moreover, a comprehensive overview on the recent advances +in 6G vehicular networks was provided in [12, 13], where the +authors also described various open challenges and possible +research directions. +Motivated by the above, in this work, we investigate the +performance of a dual RIS-assisted V2I communication net- +work scenario. Specifically, the proposed scenario considers the +uplink transmission where the vehicle is communicating with +the base station. To enhance the communication capabilities, the +vehicle is supported through two RISs which create a virtual +line-of-sight (LoS) link, which, otherwise, was inherently non- +LoS (NLoS). The major contributions can be summarized as +• Explicitly, we invoked the central limit theorem (CLT) to +characterize the received signal-to-noise ratio (SNR) for + +Vehicle-to-Vehicle (V2V) +Vehicle-to-Infrastructure (V2I) +Fig. 1. Schematic for the considered dual RIS-aided V2I communication. +the proposed dual RIS case. Further, based on this, we +derived the closed-form expression for outage probability. +• Further, we derived the closed-form expressions for the +upper and lower bounds of SE and EE of the proposed +dual RIS-assisted V2I communication scenario. +• Finally, as a performance benchmark, the proposed sce- +nario is compared with the single RIS-assisted V2I com- +munication and with RIS V2I communication. The results +show the superiority of the proposed scenario of dual RIS- +assisted V2I over the single RIS-assisted V2I communi- +cation case. +II. SYSTEM MODEL +As illustrated in Fig. 1, in this work, we consider a V2I +communication model, wherein the vehicular user (V) tries to +communicate with a nearby base station (BS). Apart from the +direct cellular link, a reflected path through RISs is considered +to support this uplink transmission. In particular, we consider +a dual RIS-assisted uplink V2I transmission with two RISs, +one each placed near V and BS both, respectively. For the two +RISs, the number of RUs is assumed to be M1 and M2 for +RIS-1 and RIS-2, respectively, while keeping the total number +of RUs unchanged, i.e., M1+M2 = N, where N is the number +of RUs in large RIS for the single RIS scenario, which is the +benchmark for comparison. Thus, based on RIS, the following +scenarios are considered in this work +• Dual RIS-assisted Transmission (DRAT): In DRAT, the +transmission takes place only through the two RISs and +the reflected link, as shown in Fig. 1. +• Single RIS-assisted Transmission (SRAT): In SRAT, the +transmission takes place through single large RIS which +is placed near to BS. +• Direct Cellular Transmission (DCT): In DCT, V commu- +nicates with BS directly without utilizing RISs. Thus, the +transmission is inherently NLoS and experiences a higher +pathloss exponent. This would also serve as the baseline +scheme for the performance comparison of the above two +cases. +A. Channel Model +The channels between V-to-RIS-1 and RIS-2-to-BS can +be modeled as deterministic LOS channels as the distances +are small and the probability of having LoS is very high. +However, the distance between RIS-1 and RIS-2 is large and +thus the small scale fading for the channel between the ith +element of RIS-1 and the jth element of RIS-2, denoted by +hRR +ij , is modeled through Nakagami-m fading. Hence, for +i = {1, 2, . . ., M1} and j = {1, 2, . . ., M2}. Further, the +distances related to the V-to-RIS-1, RIS-1-to-RIS-2 and RIS-2- +to-BS links are represented by d1, dRR and d2, respectively. +B. Received Signal Model +The received base-band signal at BS, denoted by r, for the +dual RIS-aided transmission case can be expressed as +r = +� +B Pt +��M1 +i=1 +�M2 +j=1 ejφ(1) +i hRR +ij ejφ(2) +j +� +s + No, +(1) +where Pt is the transmit power constraint at V, B is the distance- +dependent pathloss, s ∼ CN (0, 1) is the transmitted symbol, +and No ∼ CN +� +0, σ2� +is the additive white Gaussian noise +(AWGN). Further, φ1 and φ2 are the phase of the V-to-RIS1 +and RIS2-to-BS channels. Further, for a link distance d, B at +the carrier frequency of 3 GHz can be given by [14] +B(d) [dB] = +� +−37.5 − 22 log10(d/1 m) +if LOS, +−35.1 − 36.7 log10(d/1 m) +if NLOS. +(2) +Likewise, instantaneous SNR at BS can be formulated as +γ = +���� +�M1 +i=1 +�M2 +j=1 δije +j +� +φ(1) +i ++φ(2) +j +−ϕij +����� +2 +B Pt +σ2 +, +(3) +where δij and ϕij denote the amplitude and phase of hRR +ij . +1) RIS Reflection Parameters: Now, SNR at BS can be +maximized through adjusting the phase at RISs to cancel +the resultant phase, i.e., φ(1) +i ++ φ(2) +j +− ϕij = 0, for i = +{1, 2, . . ., M1} and j = {1, 2, . . ., M2}. Thus, by substituting +ϕij = φ(1) +i ++ φ(2) +j , ∀i, j, the received signal power at BS can +be maximized. Consequently, maximized SNR corresponding +to the optimal phase can be given as +γmax = +����M1 +i=1 +�M2 +j=1 δij +��� +2 +B Pt +σ2 += A2B Pt +σ2 += A2 B ¯γ, +(4) +where A2 = +��� +�M1 +i=1 +�M2 +j=1 δij +��� +2 +is the cascaded channel gain +provided by RISs, and ¯γ = Pt/σ2 is transmit SNR. +Likewise, proceeding in the similar way, for the SRAT +scenario, maximized SNR at BS can be given as1 +ˆγmax = +��N +i=1 βi +�2 +¯γ = B2¯γ, +(5) +where βi is the amplitude of a channel between RIS and +V, denoted by hRU +i +, i.e., hRU +i += βie−jϕi, and B2 is the +corresponding channel gain provided by single RIS. +1For the SRAT scenario, the analysis is similar. Thus, the detailed description +is omitted for the sake of brevity. In particular, for SRAT, large RIS with N +RUs is present near BS, where N = M1 + M2. Likewise, the RIS-to-BS link +is also modeled as Nakagami-m fading with the rest of the parameters being +the same, as in DRAT, like transmit power constraint at V, etc. + +III. PERFORMANCE ANALYSIS +This section initially evaluates SNR for the dual RIS-aided +V2I scenario. Utilizing the SNR expressions formulated earlier, +the outage probability, SE and EE are derived. +A. Statistical Characterization of the Dual RIS Channel Gain +Now utilizing CLT for M +≫ 1, A = �M1 +i=1 +�M2 +j=1 δij +can be approximated through a Gaussian distribution, i.e., +A ∼ N(µy, σ2 +y) [15], with a probability density function (PDF) +given by +fA(y) = + + + +1 +√ +2πσ2 +A exp +� +−(y−µA)2 +2σ2 +A +� +, +if y > 0, +0, +if y = 0, +(6) +where µA = �M1 +i=1 +�M2 +j=1 µij, σ2 +A = �M1 +i=1 +�M2 +j=1 σ2 +ij. Here, +µij and σ2 +ij are the mean and variance of the random variable +δij, which follows the Nakagami-m distribution. Hence, µij = +Γ(m1+ 1 +2 ) +Γ(m1) +�� Ωm1 +m1 +� +and σ2 +ij = Ωm1 +� +1 − +1 +m1 +� +Γ(m1+ 1 +2 ) +Γ(m1) +�2� +, +for all i = {1, . . . , M1} and j = {1, . . ., M2}. +Likewise the cumulative distribution function (CDF) of A +can be derived from its PDF as +FA(y)= +� y +−∞ +fA(y)dy = +� +1−Q +� +y−µA +σ2 +A +� +, +if y > 0, +0, +if y = 0. +(7) +B. Outage Probability +The normalized instantaneous rate, denoted by Rin, for the +DRAT scenario can be formulated from (4) and expressed as +Rin = log2 (1 + γmax) = log2 +� +1 + A2¯γ +� +. +(8) +Now, the end-to-end outage from V to BS via RIS, denoted by +Pout, can be defined in terms of a rate threshold, Rth, as +Pout = Pr [Rin < Rth] = Pr +� +log2 +� +1 + A2¯γ +� +< Rth +� += Pr + +A < +� +2Rth − 1 +¯γ + + = Pr [A < Υth] , +(9) +where Υth = +� +2Rth −1 +¯γ +. Thus, the closed-form expression of +the outage probability DRAT can be evaluated as +Pout = +� Υth +0 +fA(y)dy, +=FA (Υth) = 1 − Q +�Υth − µA +σ2 +A +� +. +(10) +C. Spectral Efficiency +SE for the DRAT scenario can be defined from (8) as +SE =E [Rin] = E +� +log2 +� +1 + A2 B ¯γ +�� +, += +� ∞ +0 +log2 +� +1 + y2 B ¯γ +� +fA(y)dy. +(11) +The exact derivation of the integral in (11) is mathematically +intractable, and thus a closed-form expression may not be +derived. Hence, we resort to approximate SE with tight upper +and lower bounds by invoking Jensen’s inequality. +1) Upper Bound: Applying Jensen’s inequality, we define +the upper bound for SE as SEu, where SE ≤ SEu. Now, +SEu can be evaluated from (11) as +SEu = log2 +� +1 + ¯γ B E +� +A2�� +, +(12) +and expressed as +SEu = log2 [1 + ¯γ B M1M2 Ωm1 +× +� +1 + (M1 M2 − 1) +m1 +�Γ(m1 + 1 +2) +Γ(m1) +�2�� +. +(13) +Evaluation of Upper Bound: In (12), E +� +A2� +can be evaluated +utilizing the relation Var [X] = E +� +X2� +− (E [X])2 as +E +� +A2� +=Var [A] + (E [A])2 = σ2 +A + µ2 +A. +(14) +After substituting the values of µ2 +A and σ2 +A in (12), the upper +bound for DRAT-based SE can be evaluated. +2) Lower Bound: Likewise, we define the lower bound for +SE as SEl, where SE ≥ SEl. Now, SEl can again be be +defined from (11) as +SEl = log2 +� +1 + +¯γ B +E +� 1 +A2 +� +� +, +(15) +and expressed as given in (16), on the top of next page. +Evaluation of Lower Bound: In (15), the expectation +E +� +1/A2� +can be solved utilizing the Taylor series expansion +and approximated as [15] +E +� 1 +A2 +� +≈ +1 +E [A2] + Var +� +A2� +[E [A2]]3 . +(17) +Since the statistical characteristics of A is known to be Gaussian +distributed (as discussed earlier in subsection A), A2 will +follow a non-central chi-square distribution. Thus, the mean +and variance of A2 can be expressed as +Var +� +A2� += 2 σ2 +A +� +σ2 +A + 2 µ2 +A +� +, +(18) +E +� +A2� += σ2 +A + µ2 +A, +(19) +respectively. Thus, utilizing these expressions and substituting +the values of µ2 +A and σ2 +A, the lower bound for SE of the DRAT +scenario can be evaluated. +3) Approximation for Large M: We define SE as approx- +imate SE (ASE) for large M1 and M2. Now, with the upper +and lower bounds of SE of the DRAT scenario, exact SE lies +in-between and can be expressed as +SEl ≤ SE ≤ SEu. +(20) +However, for larger M1 and M2, i.e., M1, M2 ≫ 1, both SEl +and SEu converge to SE. Thus, ASE can be given as +SE = log2 +� +1 + ¯γ B M 2 +1 M 2 +2 Ωm1 +m1 +�Γ(m1 + 1 +2) +Γ(m1) +�2� +. +(21) +It can be noted from (21) that, through utilizing dual RIS, +the fourth order channel gain can be realized, i.e., M 2 +1 M 2 +2 , +whereas, for single RIS, the maximum channel gain is of the +second order, i.e., N 2. + +SEl = log2 + +1 + ¯γ B +M1M2 Ωm1 +� +1 + (M1 M2−1) +m1 +� Γ(m1+ 1 +2 ) +Γ(m1) +�2�3 +2 +� +1 + (2M1 M2−1) +m1 +� Γ(m1+ 1 +2 ) +Γ(m1) +�2� � +1 − +1 +m1 +� Γ(m1+ 1 +2 ) +Γ(m1) +�2� ++ +� +1 + (M1 M2−1) +m1 +� Γ(m1+ 1 +2 ) +Γ(m1) +�2�2 + + +(16) +TABLE I +SIMULATION PARAMETERS +Parameter +Simulation Values +Circuit Power +PBS=10 dBm, PU=10 dBm [5] +Fading Parameter for DRAT +m1= 10 +Fading Parameter for Direct Links +m3= 1 +RIS Power Consumption +PRE = 10 dBm [5] +HPA Power Consumption Factor +α = 1.2 +Noise Floor +σ2 = -120 dBm +D. Energy Efficiency +Now, EE of the dual RIS-aided system is defined as the +ratio of SE over the total power consumed and can be ex- +pressed as EE = +SE +Ptot , where Ptot denotes the total power +consumed, which consists of the transmit power, the circuit +power consumption at BS and V, and the power consumed at +RIS. Considering all the power consumed, the EE in can be +expressed +EE = +SE +(1 + ξ)Pt + P c +V + (M1 + M2)P c +RIS + P c +BS +, +(22) +where P c +RIS denotes the power utilized by each RU, ξ = +1 +ω +and ω is the drain efficiency of HPA. Likewise, P c +V , i.e., the +power consumed in other circuit components excluding HPA at +V and P c +BS is the circuit power consumption at BS. +This completes the analytical derivation of the outage, SE, +and EE for DRAT of the uplink of V2I communication. +IV. SIMULATION RESULTS +This section discusses and presents the simulation results for +the performance of the dual RIS-assisted V2I communication. +Further, the results for the SRAT and DCT scenarios are +presented for the sake of comparison. The distances between +V-to-RIS1, RIS1-to-RIS2 and RIS2-to-BS are assumed to be +5, 100 and 5 meters, respectively. Similarly for the simulation +purpose, M = M1 = M2 and N is taken as to be N = 2 M, +in order to maintain the fairness in the comparison. The rest of +the simulation parameters are summarized in Table I. +Fig. 2 shows the SE performance for the DRAT scenario, +where the solid lines without marker points show the exact +(simulation) performance of DRAT, whereas the markers show +the analytically derived upper and lower bounds on SE. Ad- +ditionally, ASE for large M is also plotted. The simulation +verifies that the derived upper and lower bounds are quite +tight as the analytically derived bounds are remarkably close +to the actual performance. Further, it can also be noted that +the difference between exact SE and ASE (as shown in (21)) +diminishes as M increases. For instance, at M = 10 and +0 +5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +SNR (dB) +0 +2 +4 +6 +8 +10 +12 +14 +16 +18 +20 +SE (bps/Hz) +Sim +UB +LB +Approx +M = 10, 20, 50, 100 +Fig. 2. SE with respect to ¯γ for different M of the proposed DRAT scenario. +0 +500 +1000 +1500 +2000 +2500 +M +0 +5 +10 +15 +20 +25 +SE (bps/Hz) +DRAT +SRAT +DCT +Fig. 3. SE with respect to M for the proposed DRAT scenario. +0 +2 +4 +6 +8 +10 +12 +14 +16 +18 +20 +SNR (dB) +10-6 +10-5 +10-4 +10-3 +10-2 +10-1 +100 +Outage +Rth=5 +Rth=7.5 +Rth=10 +Fig. 4. Outage with respect to Pt for different rate thresholds for DRAT. +¯γ = 30 dB, SE is 1.5037 bps/Hz whereas SE is 1.5034 +bps/Hz; however, at M = 50 and ¯γ = 15 dB, SE is 5.2201 +whereas SE is 5.2200 bps/Hz. Thus, it shows that the bounds +are quite accurate and near to the exact simulation value. +Fig. 3 shows the SE results for the DRAT scenario, and +compares them with the SRAT and DCT scenarios. Specifically, +it shows SE for a varying number of RUs. The following +observations can be easily inferred from this plot: 1) Apart +from smaller M, SE of DRAT is always better than SE of the +SRAT scheme due to the fourth order gain provided by dual +RIS. This can also be inferred from the analytical evaluation in +(31). 2) Due to the multiplicative pathloss, for less number of +RUs, i.e., smaller M, the DCT scenario may provide better SE +performance than the RIS-reflected link for both DRAT and + +0 +500 +1000 +1500 +2000 +2500 +M +0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +EE (bits/Hz/Joule) +DRAT +SRAT +DCT +(a) EE with respect to M, here Pt = 10 dBm. +0 +5 +10 +15 +20 +25 +30 +SNR (dB) +0 +0.5 +1 +1.5 +EE (bits/Hz/Joule) +DRAT +SRAT +DCT +(b) EE with respect to SNR, here M = 1000. +Fig. 5. EE comparison for DRAT with respect to the SRAT and DCT scenarios. +SRAT scenarios. However, as the number of RUs increases, +the RIS-based scenarios outperform DCT. 3) Similar to single +RIS, dual RIS-based DRAT also suffers from the multiplicative +effect of pathloss. Thus, for smaller RUs, the SRAT scenario +shows better SE than the DRAT one. 4) As the number of RUs +increases sufficiently, DRAT outperforms SRAT significantly. +Fig. 4 shows the outage probability of the DRAT scenario for +three different rate thresholds, i.e., Rth = {5, 7.5, 10} bps/Hz. +As evident from the result, the outage can be improved either +through increasing the transmit power or the number of RUs. +Since, the transmit power at BS is usually constrained, RIS +provides an alternate to improve the outage through increasing +RUs, instead of increasing the transmit power. Thus, to circum- +vent the power constraint, the number of RUs at RIS can be +scaled accordingly. +Fig. 5 shows the EE results of the DRAT scenario, the EE +plots of the SRAT and DCT scenarios are also plotted here +for comparison. Specifically, in Fig. 5(a), the performance is +with respect to M, while in Fig. 5(b), the EE curve is plotted +against SNR. It can be observed that, for large M, the DRAT +scenario is the most energy-efficient. Although, for smaller M, +single RIS provides better EE; this is due to the fact that the +received signal of the dual RIS-reflected link suffers from the +multiplicative pathloss that can be mitigated by by large M. +From the above results on SE and EE, it can be easily inferred +that the proposed DRAT scheme outperforms SRAT in terms of +both SE as well as EE. Similarly, the above results also show +that, for a fixed rate requirement, DRAT requires lower transmit +power and hence is more energy efficient. +V. CONCLUSION +V2X has opened up a slew of novel possibilities in the +wireless vehicular communication arena, but its potential for +enabling true ITS has yet to be explored completely, despite +its significant importance in the safety of autonomous driving. +In this work, we have envisioned the integration of RIS into +vehicular networks to realize the true potential in enhancing the +performance of the V2I communication. Specifically, we have +evaluated the performance of a dual-RIS assisted V2I uplink +communication scenario in terms of the outage probability, SE +and EE. Novel closed-form expressions are derived and verified +through the extensive numerical simulations. The results show +a significant gain in the performance can be achieved through +the proposed RIS scenario. +VI. ACKNOWLEDGEMENT +This work was supported by the Nazarbayev University CRP +Grant no. 11022021CRP1513. +REFERENCES +[1] J. Wang, K. Zhu, and E. Hossain, “Green internet of vehicles (IoV) in the +6G era: Toward sustainable vehicular communications and networking,” +IEEE Trans. Green Commun. Netw., vol. 6, no. 1, pp. 391–423, Mar. +2022. +[2] Y. Cao, S. Xu, J. Liu, and N. Kato, “Toward smart and secure V2X +communication in 5G and beyond: A UAV-enabled aerial intelligent +reflecting surface solution,” IEEE Veh. Tech. Mag., 2022. +[3] X. Cheng, Z. Huang, and S. Chen, “Vehicular communication channel +measurement, modelling, and application for beyond 5G and 6G,” IET +Commun., vol. 14, no. 19, pp. 3303–3311, 2020. +[4] Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent reflecting +surface-aided wireless communications: A tutorial,” IEEE Trans. Com- +mun., vol. 69, no. 5, pp. 3313–3351, May 2021. +[5] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, +“Reconfigurable intelligent surfaces for energy efficiency in wireless +communication,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. +4157–4170, Aug. 2019. +[6] M. A. Javed et al., “Reliable communications for cybertwin driven 6G +IoVs using intelligent reflecting surfaces,” IEEE Trans. Ind. Info., 2022. +[7] J. Wang et al., “Outage analysis for intelligent reflecting surface assisted +vehicular communication networks,” in IEEE Global Commun. Conf., +2020, pp. 1–6. +[8] Y. Ai et al., “Secure vehicular communications through reconfigurable +intelligent surfaces,” IEEE Trans. Veh. Tech., vol. 70, no. 7, pp. 7272– +7276, Jul. 2021. +[9] S. K. Dehkordi and G. Caire, “Reconfigurable propagation environment +for enhancing vulnerable road users’ visibility to automotive radar,” in +IEEE Intelligent Veh. Symp. (IV), 2021, pp. 1523–1528. +[10] Y. Chen et al., “Resource allocation for intelligent reflecting surface aided +vehicular communications,” IEEE Trans. Veh. Tech., vol. 69, no. 10, pp. +12 321–12 326, Oct. 2020. +[11] A. Al-Hilo et al., “Reconfigurable intelligent surface enabled vehicular +communication: Joint user scheduling and passive beamforming,” IEEE +Trans. Veh. Tech., vol. 71, no. 3, pp. 2333–2345, Mar. 2022. +[12] M. +Noor-A-Rahim +et +al., +“6G +for +vehicle-to-everything +(V2X) +communications: Enabling technologies, challenges, and opportunities,” +2020. [Online]. Available: https://arxiv.org/abs/2012.07753 +[13] Y. Zhu et al., “Intelligent reflecting surface-aided vehicular networks +toward 6G: Vision, proposal, and future directions,” IEEE Veh. Tech. +Mag., vol. 16, no. 4, pp. 48–56, Dec. 2021. +[14] E. Bjornson, O. Ozdogan, and E. G. Larsson, “Intelligent reflecting +surface versus decode-and-forward: How large surfaces are needed to +beat relaying?” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 244– +248, 2020. +[15] D. Kudathanthirige, D. Gunasinghe, and G. Amarasuriya, “Performance +analysis of intelligent reflective surfaces for wireless communication,” in +IEEE Int. Conf. Commun. (ICC), 2020, pp. 1–6. + diff --git a/7NE2T4oBgHgl3EQfkwf2/content/tmp_files/load_file.txt b/7NE2T4oBgHgl3EQfkwf2/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..e72ba41fdeb2cfc69584f42b376ce42136617d84 --- /dev/null +++ b/7NE2T4oBgHgl3EQfkwf2/content/tmp_files/load_file.txt @@ -0,0 +1,395 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf,len=394 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='03983v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='IT] 10 Jan 2023 On the Performance of Dual RIS-assisted V2I Communication under Nakagami-m Fading Mohd Hamza Naim Shaikh,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Khaled Rabie◦,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Xingwang Li#,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Theodoros Tsiftsis†,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' and Galymzhan Nauryzbayev School of Engineering and Digital Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Nazarbayev University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Nur-Sultan City,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 010000,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Kazakhstan Department of Engineering,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Manchester Metropolitan University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Manchester,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' M15 6BH,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' UK #School of Physics and Electronic Information Engineering,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Henan Polytechnic University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Jiaozuo 454000,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' China †Department of Informatics & Telecommunications,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' University of Thessaly,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Greece;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' †School of Intelligent Systems Science and Engineering, Jinan University, China Email: {hamza.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='shaikh, galymzhan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='nauryzbayev}@nu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='kz, ◦k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='rabie@mmu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='uk, #lixingwang@hpu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='cn, †tsiftsis@ieee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='org Abstract—Vehicle-to-everything (V2X) connectivity in 5G-and- beyond communication networks supports the futuristic intelligent transportation system (ITS) by allowing vehicles to intelligently connect with everything.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' The advent of reconfigurable intelligent surfaces (RISs) has led to realizing the true potential of V2X communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' In this work, we propose a dual RIS-based vehicle-to-infrastructure (V2I) communication scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Following that, the performance of the proposed communication scheme is evaluated in terms of deriving the closed-form expressions for outage probability, spectral efficiency and energy efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Finally, the analytical findings are corroborated with simulations which illustrate the superiority of the RIS-assisted vehicular networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Keywords— Reconfigurable intelligent surface (RIS), dual RIS, energy efficiency, spectral efficiency, vehicular communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' INTRODUCTION As a key enabler for intelligent transportation systems (ITSs), vehicle-to-everything (V2X) communication has sparked a re- newed interest in the research community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' V2X encompasses a wide range of wireless technologies such as vehicle-to- pedestrian (V2P), vehicle-to-infrastructure (V2I), and vehicle- to-vehicle (V2V).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Additionally, it also includes the vehicu- lar communications with vulnerable road users (VRUs), grid (V2G), network (V2N) and cloud (V2C) [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' The V2X com- munications will be a critical component of the futuristic connected and self-driving cars, envisioned and enabled by the sixth-generation (6G) wireless technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Furthermore, the V2X communications will also enhance and transform the quality-of-service (QoS) in terms of unparalleled user experience, ultra-high road safety and air quality improvement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' In addition, a slew of advanced applications will also be supported like platooning, trajectory alignments, exchanging sensor data and high precision maps, and so on [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Thanks to the enhanced capabilities of 6G, vehicles will receive accurate safety information, intelligent traffic management support, and innovative infotainment features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Thus, the 6G services will be used to create a fully automated, autonomous, and ubiquitously connected vehicular network [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Recently, reconfigurable intelligent surfaces (RISs) have emerged as a breakthrough technology that offers a great deal in terms of wireless communication [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Inherently, RIS is a software-defined artificial structure made up of a large number of scattering passive elements, termed as reflecting units (RUs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' These RUs are capable to adjust the electromagnetic (EM) properties of a reflected wave that is incident on them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Thus, RIS can use not only this ability to boost the received signal’s power, but also the capability to create an additional reflective link to mitigate the impact of blockages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' With the large number of RUs, RISs are particularly known to have large spectral and energy efficiency [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' As a result, RIS may be used to improve the quality of vehicular communication through establishing a low-cost, highly energy efficient indirect line-of-sight (LoS) communications [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' In [7], the authors investigated the outage performance for RIS-assisted vehicular communication networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Likewise, the secrecy outage performance of RIS-aided vehicular communi- cations has been studied in [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' RISs were also investigated for detecting VRUs such as cyclists, pedestrians and wheelchair users [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Specifically, the authors utilized RISs for enhancing the radar visibility for VRUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Further, in [10], the authors provided a optimization framework for resource allocation in the RIS-aided vehicular communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Specifically, they jointly optimized the power allocation, RIS reflection coeffi- cients and spectrum allocation for different QoS requirements of the V2V and V2I communication links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Likewise, in [11], the authors discussed a system model where RSU leverages RIS to connect the dark zones, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', areas blocked due by obstacles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Moreover, a comprehensive overview on the recent advances in 6G vehicular networks was provided in [12, 13], where the authors also described various open challenges and possible research directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Motivated by the above, in this work, we investigate the performance of a dual RIS-assisted V2I communication net- work scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Specifically, the proposed scenario considers the uplink transmission where the vehicle is communicating with the base station.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' To enhance the communication capabilities, the vehicle is supported through two RISs which create a virtual line-of-sight (LoS) link, which, otherwise, was inherently non- LoS (NLoS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' The major contributions can be summarized as Explicitly, we invoked the central limit theorem (CLT) to characterize the received signal-to-noise ratio (SNR) for Vehicle-to-Vehicle (V2V) Vehicle-to-Infrastructure (V2I) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Schematic for the considered dual RIS-aided V2I communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' the proposed dual RIS case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Further, based on this, we derived the closed-form expression for outage probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Further, we derived the closed-form expressions for the upper and lower bounds of SE and EE of the proposed dual RIS-assisted V2I communication scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Finally, as a performance benchmark, the proposed sce- nario is compared with the single RIS-assisted V2I com- munication and with RIS V2I communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' The results show the superiority of the proposed scenario of dual RIS- assisted V2I over the single RIS-assisted V2I communi- cation case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' SYSTEM MODEL As illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 1, in this work, we consider a V2I communication model, wherein the vehicular user (V) tries to communicate with a nearby base station (BS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Apart from the direct cellular link, a reflected path through RISs is considered to support this uplink transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' In particular, we consider a dual RIS-assisted uplink V2I transmission with two RISs, one each placed near V and BS both, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' For the two RISs, the number of RUs is assumed to be M1 and M2 for RIS-1 and RIS-2, respectively, while keeping the total number of RUs unchanged, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', M1+M2 = N, where N is the number of RUs in large RIS for the single RIS scenario, which is the benchmark for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Thus, based on RIS, the following scenarios are considered in this work Dual RIS-assisted Transmission (DRAT): In DRAT, the transmission takes place only through the two RISs and the reflected link, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Single RIS-assisted Transmission (SRAT): In SRAT, the transmission takes place through single large RIS which is placed near to BS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Direct Cellular Transmission (DCT): In DCT, V commu- nicates with BS directly without utilizing RISs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Thus, the transmission is inherently NLoS and experiences a higher pathloss exponent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' This would also serve as the baseline scheme for the performance comparison of the above two cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Channel Model The channels between V-to-RIS-1 and RIS-2-to-BS can be modeled as deterministic LOS channels as the distances are small and the probability of having LoS is very high.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' However, the distance between RIS-1 and RIS-2 is large and thus the small scale fading for the channel between the ith element of RIS-1 and the jth element of RIS-2, denoted by hRR ij , is modeled through Nakagami-m fading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Hence, for i = {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', M1} and j = {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', M2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Further, the distances related to the V-to-RIS-1, RIS-1-to-RIS-2 and RIS-2- to-BS links are represented by d1, dRR and d2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Received Signal Model The received base-band signal at BS, denoted by r, for the dual RIS-aided transmission case can be expressed as r = � B Pt ��M1 i=1 �M2 j=1 ejφ(1) i hRR ij ejφ(2) j � s + No, (1) where Pt is the transmit power constraint at V, B is the distance- dependent pathloss, s ∼ CN (0, 1) is the transmitted symbol, and No ∼ CN � 0, σ2� is the additive white Gaussian noise (AWGN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Further, φ1 and φ2 are the phase of the V-to-RIS1 and RIS2-to-BS channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Further, for a link distance d, B at the carrier frequency of 3 GHz can be given by [14] B(d) [dB] = � −37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='5 − 22 log10(d/1 m) if LOS, −35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='1 − 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='7 log10(d/1 m) if NLOS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' (2) Likewise, instantaneous SNR at BS can be formulated as γ = ���� �M1 i=1 �M2 j=1 δije j � φ(1) i +φ(2) j −ϕij ����� 2 B Pt σ2 , (3) where δij and ϕij denote the amplitude and phase of hRR ij .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 1) RIS Reflection Parameters: Now, SNR at BS can be maximized through adjusting the phase at RISs to cancel the resultant phase, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', φ(1) i + φ(2) j − ϕij = 0, for i = {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', M1} and j = {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', M2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Thus, by substituting ϕij = φ(1) i + φ(2) j , ∀i, j, the received signal power at BS can be maximized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Consequently, maximized SNR corresponding to the optimal phase can be given as γmax = ����M1 i=1 �M2 j=1 δij ��� 2 B Pt σ2 = A2B Pt σ2 = A2 B ¯γ, (4) where A2 = ��� �M1 i=1 �M2 j=1 δij ��� 2 is the cascaded channel gain provided by RISs, and ¯γ = Pt/σ2 is transmit SNR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Likewise, proceeding in the similar way, for the SRAT scenario, maximized SNR at BS can be given as1 ˆγmax = ��N i=1 βi �2 ¯γ = B2¯γ, (5) where βi is the amplitude of a channel between RIS and V, denoted by hRU i , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', hRU i = βie−jϕi, and B2 is the corresponding channel gain provided by single RIS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 1For the SRAT scenario, the analysis is similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Thus, the detailed description is omitted for the sake of brevity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' In particular, for SRAT, large RIS with N RUs is present near BS, where N = M1 + M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Likewise, the RIS-to-BS link is also modeled as Nakagami-m fading with the rest of the parameters being the same, as in DRAT, like transmit power constraint at V, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' PERFORMANCE ANALYSIS This section initially evaluates SNR for the dual RIS-aided V2I scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Utilizing the SNR expressions formulated earlier, the outage probability, SE and EE are derived.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Statistical Characterization of the Dual RIS Channel Gain Now utilizing CLT for M ≫ 1, A = �M1 i=1 �M2 j=1 δij can be approximated through a Gaussian distribution, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', A ∼ N(µy, σ2 y) [15], with a probability density function (PDF) given by fA(y) = \uf8f1 \uf8f2 \uf8f3 1 √ 2πσ2 A exp � −(y−µA)2 2σ2 A � , if y > 0, 0, if y = 0, (6) where µA = �M1 i=1 �M2 j=1 µij, σ2 A = �M1 i=1 �M2 j=1 σ2 ij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Here, µij and σ2 ij are the mean and variance of the random variable δij, which follows the Nakagami-m distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Hence, µij = Γ(m1+ 1 2 ) Γ(m1) �� Ωm1 m1 � and σ2 ij = Ωm1 � 1 − 1 m1 � Γ(m1+ 1 2 ) Γ(m1) �2� , for all i = {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' , M1} and j = {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', M2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Likewise the cumulative distribution function (CDF) of A can be derived from its PDF as FA(y)= � y −∞ fA(y)dy = � 1−Q � y−µA σ2 A � , if y > 0, 0, if y = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' (7) B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Outage Probability The normalized instantaneous rate, denoted by Rin, for the DRAT scenario can be formulated from (4) and expressed as Rin = log2 (1 + γmax) = log2 � 1 + A2¯γ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' (8) Now, the end-to-end outage from V to BS via RIS, denoted by Pout, can be defined in terms of a rate threshold, Rth, as Pout = Pr [Rin < Rth] = Pr � log2 � 1 + A2¯γ � < Rth � = Pr \uf8ee \uf8f0A < � 2Rth − 1 ¯γ \uf8f9 \uf8fb = Pr [A < Υth] , (9) where Υth = � 2Rth −1 ¯γ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Thus, the closed-form expression of the outage probability DRAT can be evaluated as Pout = � Υth 0 fA(y)dy, =FA (Υth) = 1 − Q �Υth − µA σ2 A � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' (10) C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Spectral Efficiency SE for the DRAT scenario can be defined from (8) as SE =E [Rin] = E � log2 � 1 + A2 B ¯γ �� , = � ∞ 0 log2 � 1 + y2 B ¯γ � fA(y)dy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' (11) The exact derivation of the integral in (11) is mathematically intractable, and thus a closed-form expression may not be derived.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Hence, we resort to approximate SE with tight upper and lower bounds by invoking Jensen’s inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 1) Upper Bound: Applying Jensen’s inequality, we define the upper bound for SE as SEu, where SE ≤ SEu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Now, SEu can be evaluated from (11) as SEu = log2 � 1 + ¯γ B E � A2�� , (12) and expressed as SEu = log2 [1 + ¯γ B M1M2 Ωm1 × � 1 + (M1 M2 − 1) m1 �Γ(m1 + 1 2) Γ(m1) �2�� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' (13) Evaluation of Upper Bound: In (12), E � A2� can be evaluated utilizing the relation Var [X] = E � X2� − (E [X])2 as E � A2� =Var [A] + (E [A])2 = σ2 A + µ2 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' (14) After substituting the values of µ2 A and σ2 A in (12), the upper bound for DRAT-based SE can be evaluated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 2) Lower Bound: Likewise, we define the lower bound for SE as SEl, where SE ≥ SEl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Now, SEl can again be be defined from (11) as SEl = log2 � 1 + ¯γ B E � 1 A2 � � , (15) and expressed as given in (16), on the top of next page.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Evaluation of Lower Bound: In (15), the expectation E � 1/A2� can be solved utilizing the Taylor series expansion and approximated as [15] E � 1 A2 � ≈ 1 E [A2] + Var � A2� [E [A2]]3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' (17) Since the statistical characteristics of A is known to be Gaussian distributed (as discussed earlier in subsection A), A2 will follow a non-central chi-square distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Thus, the mean and variance of A2 can be expressed as Var � A2� = 2 σ2 A � σ2 A + 2 µ2 A � , (18) E � A2� = σ2 A + µ2 A, (19) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Thus, utilizing these expressions and substituting the values of µ2 A and σ2 A, the lower bound for SE of the DRAT scenario can be evaluated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 3) Approximation for Large M: We define SE as approx- imate SE (ASE) for large M1 and M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Now, with the upper and lower bounds of SE of the DRAT scenario, exact SE lies in-between and can be expressed as SEl ≤ SE ≤ SEu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' (20) However, for larger M1 and M2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', M1, M2 ≫ 1, both SEl and SEu converge to SE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Thus, ASE can be given as SE = log2 � 1 + ¯γ B M 2 1 M 2 2 Ωm1 m1 �Γ(m1 + 1 2) Γ(m1) �2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' (21) It can be noted from (21) that, through utilizing dual RIS, the fourth order channel gain can be realized, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', M 2 1 M 2 2 , whereas, for single RIS, the maximum channel gain is of the second order, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', N 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' SEl = log2 \uf8ee \uf8ef\uf8ef\uf8ef\uf8f01 + ¯γ B M1M2 Ωm1 � 1 + (M1 M2−1) m1 � Γ(m1+ 1 2 ) Γ(m1) �2�3 2 � 1 + (2M1 M2−1) m1 � Γ(m1+ 1 2 ) Γ(m1) �2� � 1 − 1 m1 � Γ(m1+ 1 2 ) Γ(m1) �2� + � 1 + (M1 M2−1) m1 � Γ(m1+ 1 2 ) Γ(m1) �2�2 \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fb (16) TABLE I SIMULATION PARAMETERS Parameter Simulation Values Circuit Power PBS=10 dBm,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' PU=10 dBm [5] Fading Parameter for DRAT m1= 10 Fading Parameter for Direct Links m3= 1 RIS Power Consumption PRE = 10 dBm [5] HPA Power Consumption Factor α = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='2 Noise Floor σ2 = -120 dBm D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Energy Efficiency Now, EE of the dual RIS-aided system is defined as the ratio of SE over the total power consumed and can be ex- pressed as EE = SE Ptot , where Ptot denotes the total power consumed, which consists of the transmit power, the circuit power consumption at BS and V, and the power consumed at RIS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Considering all the power consumed, the EE in can be expressed EE = SE (1 + ξ)Pt + P c V + (M1 + M2)P c RIS + P c BS , (22) where P c RIS denotes the power utilized by each RU, ξ = 1 ω and ω is the drain efficiency of HPA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Likewise, P c V , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', the power consumed in other circuit components excluding HPA at V and P c BS is the circuit power consumption at BS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' This completes the analytical derivation of the outage, SE, and EE for DRAT of the uplink of V2I communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' SIMULATION RESULTS This section discusses and presents the simulation results for the performance of the dual RIS-assisted V2I communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Further, the results for the SRAT and DCT scenarios are presented for the sake of comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' The distances between V-to-RIS1, RIS1-to-RIS2 and RIS2-to-BS are assumed to be 5, 100 and 5 meters, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Similarly for the simulation purpose, M = M1 = M2 and N is taken as to be N = 2 M, in order to maintain the fairness in the comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' The rest of the simulation parameters are summarized in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 2 shows the SE performance for the DRAT scenario, where the solid lines without marker points show the exact (simulation) performance of DRAT, whereas the markers show the analytically derived upper and lower bounds on SE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Ad- ditionally, ASE for large M is also plotted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' The simulation verifies that the derived upper and lower bounds are quite tight as the analytically derived bounds are remarkably close to the actual performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Further, it can also be noted that the difference between exact SE and ASE (as shown in (21)) diminishes as M increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' For instance, at M = 10 and 0 5 10 15 20 25 30 35 40 45 50 SNR (dB) 0 2 4 6 8 10 12 14 16 18 20 SE (bps/Hz) Sim UB LB Approx M = 10, 20, 50, 100 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' SE with respect to ¯γ for different M of the proposed DRAT scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 0 500 1000 1500 2000 2500 M 0 5 10 15 20 25 SE (bps/Hz) DRAT SRAT DCT Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' SE with respect to M for the proposed DRAT scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 0 2 4 6 8 10 12 14 16 18 20 SNR (dB) 10-6 10-5 10-4 10-3 10-2 10-1 100 Outage Rth=5 Rth=7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='5 Rth=10 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Outage with respect to Pt for different rate thresholds for DRAT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' ¯γ = 30 dB, SE is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='5037 bps/Hz whereas SE is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='5034 bps/Hz;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' however, at M = 50 and ¯γ = 15 dB, SE is 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='2201 whereas SE is 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='2200 bps/Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Thus, it shows that the bounds are quite accurate and near to the exact simulation value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 3 shows the SE results for the DRAT scenario, and compares them with the SRAT and DCT scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Specifically, it shows SE for a varying number of RUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' The following observations can be easily inferred from this plot: 1) Apart from smaller M, SE of DRAT is always better than SE of the SRAT scheme due to the fourth order gain provided by dual RIS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' This can also be inferred from the analytical evaluation in (31).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 2) Due to the multiplicative pathloss, for less number of RUs, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', smaller M, the DCT scenario may provide better SE performance than the RIS-reflected link for both DRAT and 0 500 1000 1500 2000 2500 M 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='7 EE (bits/Hz/Joule) DRAT SRAT DCT (a) EE with respect to M, here Pt = 10 dBm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 0 5 10 15 20 25 30 SNR (dB) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='5 EE (bits/Hz/Joule) DRAT SRAT DCT (b) EE with respect to SNR, here M = 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' EE comparison for DRAT with respect to the SRAT and DCT scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' SRAT scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' However, as the number of RUs increases, the RIS-based scenarios outperform DCT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 3) Similar to single RIS, dual RIS-based DRAT also suffers from the multiplicative effect of pathloss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Thus, for smaller RUs, the SRAT scenario shows better SE than the DRAT one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 4) As the number of RUs increases sufficiently, DRAT outperforms SRAT significantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 4 shows the outage probability of the DRAT scenario for three different rate thresholds, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', Rth = {5, 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='5, 10} bps/Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' As evident from the result, the outage can be improved either through increasing the transmit power or the number of RUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Since, the transmit power at BS is usually constrained, RIS provides an alternate to improve the outage through increasing RUs, instead of increasing the transmit power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Thus, to circum- vent the power constraint, the number of RUs at RIS can be scaled accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 5 shows the EE results of the DRAT scenario, the EE plots of the SRAT and DCT scenarios are also plotted here for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Specifically, in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 5(a), the performance is with respect to M, while in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 5(b), the EE curve is plotted against SNR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' It can be observed that, for large M, the DRAT scenario is the most energy-efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Although, for smaller M, single RIS provides better EE;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' this is due to the fact that the received signal of the dual RIS-reflected link suffers from the multiplicative pathloss that can be mitigated by by large M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' From the above results on SE and EE, it can be easily inferred that the proposed DRAT scheme outperforms SRAT in terms of both SE as well as EE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Similarly, the above results also show that, for a fixed rate requirement, DRAT requires lower transmit power and hence is more energy efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' CONCLUSION V2X has opened up a slew of novel possibilities in the wireless vehicular communication arena, but its potential for enabling true ITS has yet to be explored completely, despite its significant importance in the safety of autonomous driving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' In this work, we have envisioned the integration of RIS into vehicular networks to realize the true potential in enhancing the performance of the V2I communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Specifically, we have evaluated the performance of a dual-RIS assisted V2I uplink communication scenario in terms of the outage probability, SE and EE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Novel closed-form expressions are derived and verified through the extensive numerical simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' The results show a significant gain in the performance can be achieved through the proposed RIS scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' ACKNOWLEDGEMENT This work was supported by the Nazarbayev University CRP Grant no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 11022021CRP1513.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' REFERENCES [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Wang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Zhu, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Hossain, “Green internet of vehicles (IoV) in the 6G era: Toward sustainable vehicular communications and networking,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Green Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Netw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 6, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 391–423, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' [2] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Cao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Xu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Liu, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Kato, “Toward smart and secure V2X communication in 5G and beyond: A UAV-enabled aerial intelligent reflecting surface solution,” IEEE Veh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' [3] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Cheng, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Huang, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Chen, “Vehicular communication channel measurement, modelling, and application for beyond 5G and 6G,” IET Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 14, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 19, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 3303–3311, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' [4] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Wu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Zhang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Zheng, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' You, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Zhang, “Intelligent reflecting surface-aided wireless communications: A tutorial,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Com- mun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 69, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 3313–3351, May 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' [5] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Huang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Zappone, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Alexandropoulos, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Debbah, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Yuen, “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 18, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 4157–4170, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Javed et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', “Reliable communications for cybertwin driven 6G IoVs using intelligent reflecting surfaces,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Ind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Info.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', “Outage analysis for intelligent reflecting surface assisted vehicular communication networks,” in IEEE Global Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' [8] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Ai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', “Secure vehicular communications through reconfigurable intelligent surfaces,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Veh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 70, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 7272– 7276, Jul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Dehkordi and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Caire, “Reconfigurable propagation environment for enhancing vulnerable road users’ visibility to automotive radar,” in IEEE Intelligent Veh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Symp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' (IV), 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 1523–1528.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' [10] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', “Resource allocation for intelligent reflecting surface aided vehicular communications,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Veh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 69, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 12 321–12 326, Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Al-Hilo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', “Reconfigurable intelligent surface enabled vehicular communication: Joint user scheduling and passive beamforming,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Veh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 71, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 2333–2345, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Noor-A-Rahim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', “6G for vehicle-to-everything (V2X) communications: Enabling technologies, challenges, and opportunities,” 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Available: https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='org/abs/2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content='07753 [13] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Zhu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', “Intelligent reflecting surface-aided vehicular networks toward 6G: Vision, proposal, and future directions,” IEEE Veh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 16, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 48–56, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' [14] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Bjornson, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Ozdogan, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Larsson, “Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' IEEE Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 9, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 244– 248, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' [15] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Kudathanthirige, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Gunasinghe, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Amarasuriya, “Performance analysis of intelligent reflective surfaces for wireless communication,” in IEEE Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' (ICC), 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} +page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE2T4oBgHgl3EQfkwf2/content/2301.03983v1.pdf'} diff --git a/7tE0T4oBgHgl3EQffQCV/vector_store/index.faiss b/7tE0T4oBgHgl3EQffQCV/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..59e335e1620f4336d493d4d4312af62d4ba29174 --- /dev/null +++ b/7tE0T4oBgHgl3EQffQCV/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8369595ea6c4ab58f336b2984fe71df4fc2dc632d60ab4826cf38f0bf14178fb +size 5505069 diff --git a/7tE0T4oBgHgl3EQffQCV/vector_store/index.pkl b/7tE0T4oBgHgl3EQffQCV/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..96f4c0aa1e0c6ee8d7d364f09037fb8d41c64d31 --- /dev/null +++ b/7tE0T4oBgHgl3EQffQCV/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6adccef6ed621617cec8c0ccb7c8d1203fc77eb0ab63d61ca7b321fed8ab8372 +size 192388 diff --git a/8dAzT4oBgHgl3EQfSPuZ/vector_store/index.pkl b/8dAzT4oBgHgl3EQfSPuZ/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..da8038d0b4c90ba371c50de6d165985b4578b373 --- /dev/null +++ b/8dAzT4oBgHgl3EQfSPuZ/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:98b695a693e02b9c52b02dfe40c931b50d1b31815f87afcd6b12e39b66186e87 +size 161506 diff --git a/9dAzT4oBgHgl3EQfSfu4/content/tmp_files/2301.01234v1.pdf.txt b/9dAzT4oBgHgl3EQfSfu4/content/tmp_files/2301.01234v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..67b15bff010cb6335b2cfb65f483e4dddff7005d --- /dev/null +++ b/9dAzT4oBgHgl3EQfSfu4/content/tmp_files/2301.01234v1.pdf.txt @@ -0,0 +1,855 @@ +AmbieGen: A Search-based Framework for Autonomous +Systems Testing +Dmytro Humeniuk, Foutse Khomh, Giuliano Antoniol +Polytechnique Montr´eal, 2500 Chemin de Polytechnique, QC H3T 1J4, Montr´eal, +Canada +Abstract +Thorough testing of safety-critical autonomous systems, such as self-driving +cars, autonomous robots, and drones, is essential for detecting potential fail- +ures before deployment. One crucial testing stage is model-in-the-loop test- +ing, where the system model is evaluated by executing various scenarios in +a simulator. However, the search space of possible parameters defining these +test scenarios is vast, and simulating all combinations is computationally in- +feasible. To address this challenge, we introduce AmbieGen, a search-based +test case generation framework for autonomous systems. +AmbieGen uses +evolutionary search to identify the most critical scenarios for a given system, +and has a modular architecture that allows for the addition of new systems +under test, algorithms, and search operators. Currently, AmbieGen supports +test case generation for autonomous robots and autonomous car lane keep- +ing assist systems. In this paper, we provide a high-level overview of the +framework’s architecture and demonstrate its practical use cases. +Keywords: +evolutionary search, autonomous systems, self driving cars, +autonomous robots, neural network testing +Metadata +The project metadata is presented in Table 1. +1. Motivation and significance +Autonomous systems, including autonomous vehicles, robots, or drones +can provide a number of benefits such as driving assistance, high-risk zone +Preprint submitted to Science of Computer Programming +January 4, 2023 +arXiv:2301.01234v1 [cs.RO] 1 Jan 2023 + +Nr. +Code metadata description +Please fill in this column +C1 +Current code version +v0.1.0 +C2 +Permanent link to code/repository +used for this code version +For +example: +https://github. +com/swat-lab-optimization/ +AmbieGen-tool +C3 +Permanent +link +to +Reproducible +Capsule +https://codeocean.com/ +capsule/1741442/tree +C4 +Legal Code License +MIT license (MIT) +C5 +Code versioning system used +git +C6 +Software code languages, tools, and +services used +python +C7 +Compilation requirements, operat- +ing environments and dependencies +indicated in requirements.txt +C8 +If available, link to developer docu- +mentation/manual +https://github.com/ +swat-lab-optimization/ +AmbieGen-tool/blob/master/ +README.md +C9 +Support email for questions +dmytro.humeniuk@polymtl.ca +Table 1: Code metadata (mandatory) +exploration, and aid in rescue operations. At the same time, these are safety- +critical systems and it is very important to ensure they are robust to unseen +environments and conditions. This can be done by thorough testing prior +to their deployment. Typically, at the initial development stages model-in- +the-loop testing is performed [1], where the system is tested in a simulation +environment. Given the complexity of autonomous systems, the number of +potential test scenarios is vast and exhaustive execution is not feasible. For +example, an autonomous vehicle scenario could involve a variety of param- +eters such as road topology, the movement and behavior of other vehicles +and pedestrians, traffic signs, weather conditions, etc. We surmise that in +order to identify the most critical scenarios for a given system, application +of search algorithms is necessary. +In this work, we propose AmbieGen, a search based framework for gen- +erating adversarial test scenarios for autonomous systems. +By leveraging +evolutionary search AmbieGen allows to find challenging and diverse test +scenarios. +2 + +The problem of identifying critical scenarios for a system has been ad- +dressed in several previous works on falsifying temporal logic requirements +of cyber-physical systems, such as S-Taliro [2], Breach [3], and ARIsTEO [4]. +These works typically consider falsifying a model of the system that takes a +set of input signals and produces a set of output signals. +In our work, we focus on testing autonomous systems for which the input +signals are complex and may include data from various sensors and cameras. +Generating a valid combination of falsifying input signals (such as lidar read- +ings and RGB camera readings) directly would be challenging. Therefore, +we propose a method for generating test cases that specify a virtual environ- +ment for the autonomous system, rather than the input signals. The input +signals are generated in the virtual environment during simulation based on +the actions of the autonomous agent. +Several approaches have been proposed for generating virtual environ- +ments for testing autonomous driving and robotics systems, including As- +Fault [5], Frenetic [6], DeepJanus [7], DeepHyperion [8] and others presented +at the SBST 2021 [9] and SBST 2022 [10] tool competitions. +The tool we present in this paper, AmbieGen, is the winner of SBST 2022 +tool competition. It could produce the biggest number of diverse fault reveal- +ing scenarios for an autonomous vehicle lane keeping assist system (LKAS) +given a limited time budget. More details about the search algorithm im- +plementation can be found in our research paper [11]. In our work we have +shown that the simplified model of the system can be effective in guiding the +search for producing the test scenarios for the full, simulator based, model +of the system. +Our framework can be used for further research in the search algorithms, +search operator and fitness function design for autonomous systems adver- +sarial testing. We built the framework to be modular, and thus easily cus- +tomizable. By referring to project documentation as well as the example +implementations we provide, researchers can specify their own test scenario +generation problems, fitness functions, crossover and mutation operators. +This tool is developed in Python and can be easily run as a python package. +More instructions and examples are provided in the AmbieGen repository. +2. Software description +In this work, we present AmbieGen, an open-source Python framework +that utilizes evolutionary search for the generation of test scenarios for au- +3 + +tonomous systems. Currently, AmbieGen supports the creation of test sce- +narios for lane keeping assist systems (LKAS) in autonomous vehicles and +for autonomous robots navigating a closed room with obstacles. +The test scenarios for LKAS in vehicles are designed to challenge the +system with various road topologies, while the scenarios for autonomous +robots involve navigating a closed room with obstacles. +Examples of the +generated scenarios can be seen in Figure 1. +Figure 1: An example of the test case for LKAS system (a) and an autonomous robot (b). +The x-axis represents the map length in meters, and the y-axis represents the map width +in meters. +2.1. Software architecture +This subsection provides a detailed description of the software imple- +mentation of AmbieGen. The key components of AmbieGen are illustrated +in Figure 2, which are common components for implementing evolutionary +search. We use the Pymoo framework [12] to implement the search algo- +rithms. The most important modules and classes are outlined below: +• Solution - this is one of the most important classes, which contains all +the necessary attributes and functions needed to represent the candi- +date solution of the algorithm. It should contain a scenario attribute +with the list of test case parameters, function for fitness evaluation, +novelty calculation, as well as, optionally, image generation. +4 + +200 +a +40 +b +口 +Ci +■ +35- +■ +■ +■ +30 +■ +25 +Robotpath +20- +Walls +V +国 +15 - +■ +■ +口 +■ +10 +5 +■ +■ +fo +0 +0 +5 +10 +15 +20 +25 +200 +30 +35 +40Figure 2: AmbieGen architecture +• Sampling - this is the class for initial population generation. At the +output it provides N instances of the Solution class, with the initial- +ized scenario attribute, defining the test scenario. Typically the test +scenario is represented by a two dimensional array, randomly initial- +ized based on the minimum and maximum values of the test case pa- +rameters, defined in the configuration file. Each column of the array +corresponds to some part of the environment. More information about +the representation of the test scenarios that we used can be found in +the repository page as well as in our research article. +• Problem - in this class, we define the logic for evaluating the fitness +of each solution. For single-objective search (using GA), we specify +the fitness function for evaluating the scenario fault revealing power. +For two-objective search (using NSGA-II), we define two objectives: +fault revealing power and novelty calculation. The novelty objective +is calculated as the average novelty of a given test scenario relative to +the 5 solutions with the highest fault revealing power fitness. If the +problem has any constraints, such as a minimum required fitness value, +they should also be specified in this class. +• TC to environment - this is a function to transform the test case (TC) +encoded as a 2D array of parameters, to the input format suitable for +the system model. For example, for the LKAS problem, the model +input is a list of the 2D coordinates of points, defining the road topol- +ogy. The test case itself is represented as a sequence of transformations +5 + +Pymoo +post_processing() +Sampling +Solution object 1 +TC to environment () ++gen_randomscenario() +Solution object 2 +Problem +fitness evaluation () +Solution object 3 +Solution +Crossover ++map_size +Solution object 4 +configuration file ++scenario +Mutation ++fitness eval() +Population size +Solution object N +Numberofgenerations ++novelty eval() +Crossover/mutationrate ++build image() +TCparameterranges +Folderto save resultsneeded to perform to obtain the points. For the autonomous robot the +test scenario is represented as a sequence of parameters describing the +2D map with obstacles. The TC to environment module is used to +create a 2D bitmap from the given parameters. The bitmap is given +as the input to the autonomous robot model, which runs a planning +algorithm to find the shortest path between the start and goal location. +• fitness evaluation - a function to calculate the fitness i.e fault revealing +power of the scenario. It takes the output of the TC to environment +function as the input and execute the system model. It collects the +data about the model behaviour during execution and computes the +fitness score. For the LKAS system, the fitness is defined by the biggest +deviation from the lane center and for the autonomous robot - by the +length of the path to reach the goal. +• Crossover - in this class the crossover operator is defined. Currently +we are using a one point crossover, which can be applied to fixed and +variable length solutions. +• Mutation - in this class the mutation operator is implemented. We +have 2 types of mutations: exchange and change of variable. In ex- +change mutation, two randomly selected columns of the test case are +exchanged. In the case of the road topology, it would correspond to +exchanging the positions of two random road segments. In change of +variable mutation, a randomly selected parameter value in the test case +matrix is changed. In the road topology example it could correspond +to the change of the length of one of the straight road segments. +• post processing - The post-processing module of our framework includes +several functions for handling the test suite and its metadata. +The +function get test suite() retrieves the test suite, get stats() retrieves +metadata such as fitness and novelty scores, and save tcs images() +saves the images of the test cases. The size of the test suite, denoted +as T, can be specified in the configuration file. In our experiments, T +was typically set to 30, representing the best solutions found by the +algorithm. +Metadata for the test suite includes the fitness of the top T solutions, +their novelty (calculated as the average novelty between all pairs of +scenarios in the test suite), and the convergence (best solution fitness +6 + +found at each epoch). +The post-processing module also includes a +compare.py script for comparing the results of different algorithms, +using the collected metadata to generate convergence plots and fitness +and diversity boxplots. +• configuration file - finally we have a configuration file, where the pa- +rameters of the algorithm, such as: the population size, the number +of generations, crossover/mutation rate, and the test suite size are de- +fined. Users should also specify the allowable ranges for the test case +parameters and the paths for saving the resulting test suite and its +metadata. +Currently, when adding a new problem, one should provide the implemen- +tation of each of the modules as well as the TC to environment and fitness +evaluation functions. We are working on reducing the number of additional +implementations needed. Our framework includes the implementation of all +the modules for the LKAS and autonomous robot test case generation prob- +lems. +2.2. Software functionalities +AmbieGen public version 0.1.0 as presented in this paper offers the fol- +lowing major functionalities: +• Autonomous vehicle LKAS system testing: generating scenarios, rep- +resented as a list of 2D coordinates defining the road topology. +• Autonomous robot testing: generating scenarios, represented as the 2D +bitmap, defining obstacle locations in a fixed sized map. +• Search-based generation: our framework provides options for search- +based test suite generation, including random search, single-objective +genetic algorithm (GA), and two-objective genetic algorithm (NSGA- +II). The search algorithms are implemented using the Pymoo frame- +work [12], and can be easily extended to support additional algorithms +supported by Pymoo with minor modifications. +The single-objective GA optimizes the test suite for scenario fault re- +vealing power, while the two-objective NSGA-II optimizes for both +fault revealing power and diversity. +As demonstrated in our previ- +ous work [11], the two-objective algorithm allows to produce a more +diverse set of test scenarios compared to the single-objective search. +7 + +• Experiment data tracking: AmbieGen tracks the results of each ex- +periment and saves them in a user-defined location. The saved data +includes the T (as determined by the user) best test scenarios identified +based on their fitness or crowding distance, as well as their associated +metadata such as fitness, average diversity, and visualizations. This +allows for easy analysis and comparison of the results of different ex- +periments. +2.3. Use cases of the software +In this subsection we provide an illustrative example of how to use Am- +bieGen to generate test cases for an autonomous robot planning algorithm +testing. Suppose we want to perform 30 runs of the NSGA-II algorithm with +150 individuals and 200 generations to evaluate this configuration. We want +to save the generated test cases, their illustrations as well as their metadata, +such as fitness and diversity. Below you can see the configuration file entries +with the parameters we chose for the genetic algorithm and well as the path +to save the experiment results: +ga = {" pop_size ": 150, "n_gen ": 200, "mut_rate ": 0.4, "cross_rate ": 0.9, +" test_suite_size ": 30 } +files = {" stats_path ": "stats", "tcs_path ": "tcs", "images_path ": images "} +Now we are ready to start the test case generation. We can launch Am- +bieGen with the following command and parameters: +python +optimize.py --problem =" robot" --algo =" nsga2" --runs =30 \\ +--save_results=True +The search will start and you could see some printouts, such as in Fig. 3 with +the current number of generation (n gen), number of evaluations (n eval), +constraint violation (cv min), number of non-dominant solution for NSGA- +II algorithm (n nds) and the best solution found (f opt) for GA algorithm. +More details about the printed information can be found on the Pymoo page +(https://pymoo.org/interface/display.html). +After a successful run, you will see the confirmation about the run exe- +cution time, saved test cases, their metadata and the images, as in Fig. 4 +In Fig. 5 you can see examples of the metadata saved, such as the algo- +rithm convergence 5a (the best fitness value at each generation in the format +”evaluation number”: best fitness found), the fitness of the test cases in the +test suite as well as their average diversity i.e., novelty 5b. Novelty is cal- +culated as the average diversity of all of the pairs of the test cases in the +8 + +Figure 3: Printouts during the search +Figure 4: Successful run confirmation +test suite. In Fig. 6 we show an example of the test case images saved for a +particular run. +(a) Scenario fitness convergence +(b) Final test suite fitness and diversity +Figure 5: Metadata for the generated scenarios +Finally, let us suppose we also want to run a random search with the same +evaluation budget to be able to compare the performance of our configuration +of NSGA-II algorithm to some baseline. We can run the random search by +9 + +01:0602.320 INFO +started test generation,writing logs to file: logs.txt +-12-9101:0602,320INFO +Running the optimization +2-12-9801:0602,321INFO +Problem: robot,Algorithm:nsga2,Runs number:3e,Saving the results:True +2-12-9101:06.02,343INFO +Executing run o: +2-12-9101:06:02344INFO +Using random seed:1753925990 +n_gen +n_eval +innds +cvmin +cv_avg +eps +indicator +1 +150 +1 +5.474517E+01 +8.330072E+91 +2 +300 +1 +4.684567E+01 +7.742613E+01 +3 +450 +1 +4.436039E+01 +7.231653E+01 +4 +600 +工 +3.167410E+01 +6.692135E+01 +5 +750 +1 +7.8751083190 +6.161694E+0103:21:13,072INFO +Execution time,6909.677314 sec +,088INFO +Test suite of 3o test scenarios generated +$,103INFO +Thehighest fitnessfound:224.994949 +3:211L3,103INFO +Average diversity:0.720751 +03:21:25,148INFO +Stats savedas stats nsga231-12-2022-stats.json +03:21:25,157INFO +Stats saved asstats nsga231-12-2022-conv.json +3:21:25,361INFO +Test cases saved as tcs nsga2l31-12-2022-tcs.json +03:21:53,871INFO +Images saved in tc images nsga2 +21:53,871INFO +Images saved in tcimagesnsga2rung":f +"158":97.81219330881972 +200":99.59797974644661 +"250":99.59797974644661, +"300":186.18376618487352, +"350":186.18376618407352, +"480":106.18376618407352, +"450:107.25483399593897, +"500":107.25483399593897, +"550":130.56854249492375, +"600":130.56854249492375, +"650":130.56854249492375, +"700":130.56854249492375, +"888"130.56854249492375 +"850": +130.56854249492375, +"900":rune":f +"fitness":[ +198.7106781186548 +171.8538238691624, +192.02438661763966, +194.46803743153552, +190.36753236814718, +211.88225099390866, +209.88225099390866, +194.85281374238588, +168.71067811865476, +191.8822509939086, +181.15432893255073, +183.39696961967007 +novelty":0.23096571372433472 +runi"Figure 6: Images of the generated scenarios +executing the following command: +python +optimize.py --problem =" robot" --algo =" random" --runs =30 \\ +--save_results=True +The random search will be run and the metadata saved, as in the previous +case. Now we can compare the results produced by the two different search +algorithms via executing the following command: +python +compare.py --stats_path =" stats_nsga2" " stats_random" \\ +--stats_names "NSGA -II" "Random" +In the stats path argument we specify the paths of the metadata for the +runs we wish to compare and in the stats names the names we assign for the +runs. +In Fig.7 and Fig. 8 we can see examples of the outputs produced by the +compare.py script. Fig. 7a shows the fitness and Fig. 7b the diversity of the +scenarios in the test suites produced over the specified number of runs. Fig. +8 shows the best values found by the compared search algorithms over the +generations. +3. Illustrative examples +In this section, we present the summarized results of several test genera- +tion case studies using the AmbieGen tool. The full results can be found in +our research paper [11] and the SBST 2022 competition report [10]. +We conducted a case study on an autonomous robot with an obstacle +avoidance algorithm based on nearness diagrams [13]. The robot model was +a Pioneer 3-AT equipped with a SICK LMS200 laser with a sensing range +of 10 meters. The simulations were run in the Player/Stage simulator [14]. +10 + +2022-10-15-images_fin_rob +Vruno +o.png +1.png +2.png +Test case fitenss 198.7106781186548 +3.png +Robotpathm +质4.png +Walls +35 +5.png +6.png +30 +7.png +25 +8.png +9.png +U +20 +10.png +U +15 +11.png +U +10 +12.png +U +13.png +U +5 +14.png +U +15.png +U +0 +5 +10 +15 +20 +30 +35 +40(a) Scenario fitness +(b) Scenario diversity +Figure 7: Evaluating the NSGA-II algorithm for autonomous robot test case generation +Figure 8: Comparing the convergence of NSGA-II and random search for autonomous +robot case study +You can see an illustration of the simulation environment in Fig. 9a. We +used AmbieGen to generate diverse maps with obstacles to test the robot’s +performance. We identified several scenarios in which the robot became stuck +and failed to reach its goal location. An example of such a scenario can be +found in the following video: Video. +To evaluate the effectiveness of our tool, we allocated a two-hour budget +for AmbieGen to generate test scenarios. The generated scenarios were then +passed to the simulator and executed. We repeated the experiment 30 times, +using both the NSGA-II and random search configurations of AmbieGen. +The average number of failures detected is shown in Fig. 9b. On average, +11 + +220 +NSGA-II +Random +200 +180 +Fitness +160 +140 +120 +100 +80 +0 +20 +40 +60 +80 +100 +120 +140 +Numberofgenerations250 +200 +itness +.150 +左 100 +50 +0 +Random +NSGA-II +Algorithm0.8 +0.6 +Novelty +0.4 +0.2 +0.0 +Random +NSGA-II +AlgorithmAmbieGen detected 9 failures in two hours, compared to 2 failures for random +search +(a) Executing autonomous robot scenario in the Play- +er/Stage simulator +(b) The number of failures revealed by AmbieGen for +the robot case study +Figure 9: Using AmbieGen for testing autonomous robot navigation algorithm +In the second case study, we evaluated the performance of our test gener- +ation tool on an autonomous vehicle lane keeping assist system (LKAS) using +the BeamNg simulator [15]. We used the AmbieGen tool to generate diverse, +fault-revealing road topologies, which were then simulated in the BeamNg +environment (shown in Fig. 10a). During the simulations, we identified a +number of scenarios in which the vehicle left its lane (an example of which +can be seen in the video at Video). +We ran our tool for a time budget of 2 hours, using the SBST22 compe- +tition code pipeline. The failure criterion for the LKAS system was defined +as more than 85% of the car’s area leaving the lane. The driving agent had +a maximum speed of 70 Km/h. We compared the results of AmbieGen’s +NSGA-II configuration, Random Search configuration, and the Frenetic tool +[6], which was also given a 2-hour time budget for test generation. +As shown in Fig. 10b, out of 30 runs, AmbieGen and Frenetic on average +produced almost the same number of failures (14), while Random Search +produced an average of 9 failures. +The obtained results suggest that AmbieGen could effectively identify +failures in the autonomous systems under test. +4. Impact +Autonomous systems testing is an important area of research, and finding +test scenarios that reveal a diverse range of system failures within a limited +12 + +25 +faults +20 +15 +Revealed +10 +5 +0 +AmbieGen +RandomSearch +Generationmethod(a) Executing the LKAS scenario in the BeamNg sim- +ulator +(b) The number of failures revealed by AmbieGen for +the LKAS case study +Figure 10: Using AmbieGen to test autonomous vehicle LKAS model +time and evaluation budget is a significant challenge [16]. One of the common +solutions is to use evolutionary search to guide the sampling towards more +challenging scenarios [5, 7]. These search based techniques allow to identify +potential failures and improve the overall reliability of the system. +AmbieGen is a test generation tool that uses evolutionary search to gen- +erate test scenarios for autonomous systems. Its modular design allows for +customization of the initial population generation function, fitness evaluation +function, search operators (such as crossover and mutation), and the search +algorithm itself. Out of the box, AmbieGen supports testing of autonomous +robots and vehicle LKAS systems, and additional systems can be added using +the provided implementations as examples. +AmbieGen is a valuable resource for research on search-based test case +generation for autonomous systems. Its built-in modules enable easy com- +parison of different search algorithms and their modifications, based on the +quality and diversity of the generated solutions, as well as the convergence +of the algorithm over time. +AmbieGen can help answer research questions that are not frequently +discussed in the literature, such as: +• To what extent the diversity preservation technique A helps improve +the diversity of the test suite? The importance of the diversity in test +case generation is extensively discussed in the work of Klikovits et al. +[17]. +• To what extent does the search operator A helps improve the conver- +gence over the operator B? To what extent the algorithm A outperforms +13 + +30 +25 +ults +20 +led +15 +veal +Rev +10 +5 +0 +AmbieGen +Frenetic +RandomSearch +Generationmethodthe algorithm B for the test case generation? Improvements to the base- +line genetic algorithms implementations can lead to better results, as +discussed by Abdessalem et al. [18], where multi-objective population- +based search algorithms and decision tree classification were combined. +• What fitness criteria are more relevant for guiding the system towards +fault revealing scenarios? This question includes the comparison of the +single, multi-objective based search as well surrogate model assisted +search. +AmbieGen can also be useful in the pursuit of actively studied research ques- +tions, where the fault revealing test case generation is required, such as: +transferability of failures from simulation to the real world [19], autonomous +system failure prediction [20], test case prioritization [21] and others. +AmbieGen has proven its effectiveness in fault revealing by winning this +year’s edition of the SBST 2022 cyber-physical testing tool competition. Our +submission is described in the following article [22] and is available at the fol- +lowing link https://github.com/dgumenyuk/tool-competition-av. +We +have always kept our tool open sourced and we expect more people to start +using it. We welcome all the contributions for expanding our framework. +5. Conclusions +In this paper, we present the AmbieGen framework for search based test +case generation for autonomous systems, in its public version 0.1.0. +We +briefly outline the motivation for developing this framework, its workflow and +main functionalities. We also provide illustrative examples for using the tool +for autonomous vehicle lane keeping assist system testing and autonomous +robot obstacle avoiding algorithm testing. +The main features of our tool +include: +• modular architecture, which allows researchers to easily modify the +existing modules, such as initial population generation, crossover, mu- +tation, fitness function as well as introduce new problems and run ex- +periments; +• we provide implementations of test case generation for two systems +under test: autonomous vehicle LKAS system and autonomous robot; +this implementation includes three search algorithms: random search, +14 + +single objective genetic algorithm and a two-objective NSGA-II genetic +algorithm; +• our framework is built to be compatible with Pymoo framework [12], +allowing to fully benefit from the Pymoo framework features, such as +high number of implemented algorithms in Pymoo. +6. Future Plans +Our framework currently includes the implementation of two test case +generation problems, as well as three algorithms (random search, GA, NSGA- +II) for generating test cases. The fitness function is calculated based on a +simplified model of the system, and test scenarios are represented as 2D +arrays, with each column describing a discrete aspect of the scenario. In the +future, we plan to expand the capabilities of our framework to include: +• new algorithms, especially the ones based on the quality-diversity search +[23] +• new test case generation problems, for instance more complex test sce- +narios that include moving pedestrians, other vehicles and traffic signs; +• new fitness functions e.g based on surrogate models of the system under +test, as in the work of Ramakrishna et al. [24], functions based on +neuron coverage [25] and surprise adequacy [26] dedicated to testing +systems containing neural networks; +• add new problem representations, supporting popular scenario specifi- +cation languages such as SCENIC [27]; +• add an integration with popular simulators, for instance CARLA [28] +or LGSVL [29]. This will allow to directly evaluate the system model +with the generated scenarios. Also the feedback from the simulators +could be incorporated in fitness functions for guiding the test scenario +sampling. +Acknowledgements +This work is partly funded by the by the Fonds de Recherche du Qu´ebec +(FRQ), the Natural Sciences and Engineering Research Council of Canada +(NSERC), and the Canadian Institute for Advanced Research (CIFAR). +15 + +References +[1] D. Bruggner, A. Hegde, F. S. Acerbo, D. Gulati, T. D. Son, Model in the +loop testing and validation of embedded autonomous driving algorithms, +in: 2021 IEEE Intelligent Vehicles Symposium (IV), IEEE, 2021, pp. +136–141. +[2] Y. Annpureddy, C. Liu, G. Fainekos, S. Sankaranarayanan, S-taliro: A +tool for temporal logic falsification for hybrid systems, in: International +Conference on Tools and Algorithms for the Construction and Analysis +of Systems, Springer, 2011, pp. 254–257. +[3] A. Donz´e, Breach, a toolbox for verification and parameter synthesis +of hybrid systems, in: International Conference on Computer Aided +Verification, Springer, 2010, pp. 167–170. +[4] C. Menghi, S. Nejati, L. Briand, Y. I. Parache, Approximation- +refinement testing of compute-intensive cyber-physical models: An ap- +proach based on system identification, in: 2020 IEEE/ACM 42nd Inter- +national Conference on Software Engineering (ICSE), IEEE, 2020, pp. +372–384. +[5] A. Gambi, M. Mueller, G. Fraser, Automatically testing self-driving cars +with search-based procedural content generation, in: Proceedings of the +28th ACM SIGSOFT International Symposium on Software Testing and +Analysis, IEEE, 2019, pp. 318–328. +[6] E. Castellano, A. Cetinkaya, C. H. Thanh, S. Klikovits, X. Zhang, P. Ar- +caini, Frenetic at the sbst 2021 tool competition, in: 2021 IEEE/ACM +14th International Workshop on Search-Based Software Testing (SBST), +IEEE, 2021, pp. 36–37. +[7] V. Riccio, P. Tonella, Model-based exploration of the frontier of be- +haviours for deep learning system testing, in: Proceedings of the 28th +ACM Joint Meeting on European Software Engineering Conference and +Symposium on the Foundations of Software Engineering, 2020, pp. 876– +888. +[8] T. Zohdinasab, V. Riccio, A. Gambi, P. Tonella, Deephyperion: explor- +ing the feature space of deep learning-based systems through illumina- +16 + +tion search, in: Proceedings of the 30th ACM SIGSOFT International +Symposium on Software Testing and Analysis, 2021, pp. 79–90. +[9] S. Panichella, A. Gambi, F. Zampetti, V. Riccio, Sbst tool competition +2021, in: 2021 IEEE/ACM 14th International Workshop on Search- +Based Software Testing (SBST), IEEE, 2021, pp. 20–27. +[10] A. Gambi, G. Jahangirova, V. Riccio, F. Zampetti, Sbst tool competition +2022, in: 2022 IEEE/ACM 15th International Workshop on Search- +Based Software Testing (SBST), IEEE, 2022, pp. 25–32. +[11] D. Humeniuk, F. Khomh, G. Antoniol, A search-based framework for +automatic generation of testing environments for cyber–physical sys- +tems, Information and Software Technology 149 (2022) 106936. doi: +https://doi.org/10.1016/j.infsof.2022.106936. +[12] J. Blank, K. Deb, pymoo: Multi-objective optimization in python, IEEE +Access 8 (2020) 89497–89509. +[13] J. Minguez, L. Montano, Nearness diagram (nd) navigation: collision +avoidance in troublesome scenarios, IEEE Transactions on Robotics and +Automation 20 (1) (2004) 45–59. +[14] M. Kranz, R. B. Rusu, A. Maldonado, M. Beetz, A. Schmidt, A play- +er/stage system for context-aware intelligent environments, Proceedings +of UbiSys 6 (8) (2006) 17–21. +[15] BeamNG.tech, Beamng gmbh. (2021). +URL https://www.beamng.gmbh/research +[16] W. Ding, C. Xu, M. Arief, H. Lin, B. Li, D. Zhao, A survey on +safety-critical driving scenario generation – a methodological perspec- +tive (2022). doi:10.48550/ARXIV.2202.02215. +URL https://arxiv.org/abs/2202.02215 +[17] S. Klikovits, V. Riccio, E. Castellano, A. Cetinkaya, A. Gambi, P. Ar- +caini, Does road diversity really matter in testing automated driving +systems?–a registered report, arXiv preprint arXiv:2209.05947 (2022). +[18] R. B. Abdessalem, S. Nejati, L. C. Briand, T. Stifter, Testing vision- +based control systems using learnable evolutionary algorithms, in: 2018 +17 + +IEEE/ACM 40th International Conference on Software Engineering +(ICSE), IEEE, 2018, pp. 1016–1026. +[19] A. Stocco, B. Pulfer, P. Tonella, Mind the gap! a study on the transfer- +ability of virtual vs physical-world testing of autonomous driving sys- +tems, IEEE Transactions on Software Engineering (2022). +[20] A. Stocco, P. Tonella, Confidence-driven weighted retraining for pre- +dicting safety-critical failures in autonomous driving systems, Journal +of Software: Evolution and Process (2021) e2386. +[21] A. Arrieta, P. Valle, J. A. Agirre, G. Sagardui, Some seeds are strong: +Seeding strategies for search-based test case selection, ACM Transac- +tions on Software Engineering and Methodology (2022). +[22] D. Humeniuk, G. Antoniol, F. Khomh, Ambiegen tool at the sbst 2022 +tool competition, in: 2022 IEEE/ACM 15th International Workshop on +Search-Based Software Testing (SBST), IEEE, 2022, pp. 43–46. +[23] J. K. Pugh, L. B. Soros, K. O. Stanley, Quality diversity: A new frontier +for evolutionary computation, Frontiers in Robotics and AI (2016) 40. +[24] S. Ramakrishna, B. Luo, Y. Barve, G. Karsai, A. Dubey, Risk-aware +scene sampling for dynamic assurance of autonomous systems, in: 2022 +IEEE International Conference on Assured Autonomy (ICAA), IEEE, +2022, pp. 107–116. +[25] K. Pei, Y. Cao, J. Yang, S. Jana, Deepxplore: Automated whitebox +testing of deep learning systems, in: proceedings of the 26th Symposium +on Operating Systems Principles, 2017, pp. 1–18. +[26] J. Kim, R. Feldt, S. Yoo, Guiding deep learning system testing using +surprise adequacy, in: 2019 IEEE/ACM 41st International Conference +on Software Engineering (ICSE), IEEE, 2019, pp. 1039–1049. +[27] D. J. Fremont, E. Kim, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni- +Vincentelli, S. A. Seshia, Scenic: A language for scenario specification +and data generation, Machine Learning (2022) 1–45. +[28] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, V. Koltun, Carla: An +open urban driving simulator, in: Conference on robot learning, PMLR, +2017, pp. 1–16. +18 + +[29] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Moˇzeiko, +E. Boise, G. Uhm, M. Gerow, S. Mehta, et al., Lgsvl simulator: A high +fidelity simulator for autonomous driving, in: 2020 IEEE 23rd Interna- +tional conference on intelligent transportation systems (ITSC), IEEE, +2020, pp. 1–6. +19 + diff --git a/9dAzT4oBgHgl3EQfSfu4/content/tmp_files/load_file.txt b/9dAzT4oBgHgl3EQfSfu4/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..9d4f30c9b30d4aa9fd7d7690138c6019dbb07fcc --- /dev/null +++ b/9dAzT4oBgHgl3EQfSfu4/content/tmp_files/load_file.txt @@ -0,0 +1,519 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf,len=518 +page_content='AmbieGen: A Search-based Framework for Autonomous Systems Testing Dmytro Humeniuk, Foutse Khomh, Giuliano Antoniol Polytechnique Montr´eal, 2500 Chemin de Polytechnique, QC H3T 1J4, Montr´eal, Canada Abstract Thorough testing of safety-critical autonomous systems, such as self-driving cars, autonomous robots, and drones, is essential for detecting potential fail- ures before deployment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' One crucial testing stage is model-in-the-loop test- ing, where the system model is evaluated by executing various scenarios in a simulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' However, the search space of possible parameters defining these test scenarios is vast, and simulating all combinations is computationally in- feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' To address this challenge, we introduce AmbieGen, a search-based test case generation framework for autonomous systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' AmbieGen uses evolutionary search to identify the most critical scenarios for a given system, and has a modular architecture that allows for the addition of new systems under test, algorithms, and search operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Currently, AmbieGen supports test case generation for autonomous robots and autonomous car lane keep- ing assist systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' In this paper, we provide a high-level overview of the framework’s architecture and demonstrate its practical use cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Keywords: evolutionary search, autonomous systems, self driving cars, autonomous robots, neural network testing Metadata The project metadata is presented in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Motivation and significance Autonomous systems, including autonomous vehicles, robots, or drones can provide a number of benefits such as driving assistance, high-risk zone Preprint submitted to Science of Computer Programming January 4, 2023 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='01234v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='RO] 1 Jan 2023 Nr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Code metadata description Please fill in this column C1 Current code version v0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='0 C2 Permanent link to code/repository used for this code version For example: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' com/swat-lab-optimization/ AmbieGen-tool C3 Permanent link to Reproducible Capsule https://codeocean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='com/ capsule/1741442/tree C4 Legal Code License MIT license (MIT) C5 Code versioning system used git C6 Software code languages, tools, and services used python C7 Compilation requirements, operat- ing environments and dependencies indicated in requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='txt C8 If available, link to developer docu- mentation/manual https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='com/ swat-lab-optimization/ AmbieGen-tool/blob/master/ README.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='md C9 Support email for questions dmytro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='humeniuk@polymtl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='ca Table 1: Code metadata (mandatory) exploration, and aid in rescue operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' At the same time, these are safety- critical systems and it is very important to ensure they are robust to unseen environments and conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' This can be done by thorough testing prior to their deployment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Typically, at the initial development stages model-in- the-loop testing is performed [1], where the system is tested in a simulation environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Given the complexity of autonomous systems, the number of potential test scenarios is vast and exhaustive execution is not feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' For example, an autonomous vehicle scenario could involve a variety of param- eters such as road topology, the movement and behavior of other vehicles and pedestrians, traffic signs, weather conditions, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' We surmise that in order to identify the most critical scenarios for a given system, application of search algorithms is necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' In this work, we propose AmbieGen, a search based framework for gen- erating adversarial test scenarios for autonomous systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' By leveraging evolutionary search AmbieGen allows to find challenging and diverse test scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 2 The problem of identifying critical scenarios for a system has been ad- dressed in several previous works on falsifying temporal logic requirements of cyber-physical systems, such as S-Taliro [2], Breach [3], and ARIsTEO [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' These works typically consider falsifying a model of the system that takes a set of input signals and produces a set of output signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' In our work, we focus on testing autonomous systems for which the input signals are complex and may include data from various sensors and cameras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Generating a valid combination of falsifying input signals (such as lidar read- ings and RGB camera readings) directly would be challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Therefore, we propose a method for generating test cases that specify a virtual environ- ment for the autonomous system, rather than the input signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The input signals are generated in the virtual environment during simulation based on the actions of the autonomous agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Several approaches have been proposed for generating virtual environ- ments for testing autonomous driving and robotics systems, including As- Fault [5], Frenetic [6], DeepJanus [7], DeepHyperion [8] and others presented at the SBST 2021 [9] and SBST 2022 [10] tool competitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The tool we present in this paper, AmbieGen, is the winner of SBST 2022 tool competition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' It could produce the biggest number of diverse fault reveal- ing scenarios for an autonomous vehicle lane keeping assist system (LKAS) given a limited time budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' More details about the search algorithm im- plementation can be found in our research paper [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' In our work we have shown that the simplified model of the system can be effective in guiding the search for producing the test scenarios for the full, simulator based, model of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Our framework can be used for further research in the search algorithms, search operator and fitness function design for autonomous systems adver- sarial testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' We built the framework to be modular, and thus easily cus- tomizable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' By referring to project documentation as well as the example implementations we provide, researchers can specify their own test scenario generation problems, fitness functions, crossover and mutation operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' This tool is developed in Python and can be easily run as a python package.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' More instructions and examples are provided in the AmbieGen repository.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Software description In this work, we present AmbieGen, an open-source Python framework that utilizes evolutionary search for the generation of test scenarios for au- 3 tonomous systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Currently, AmbieGen supports the creation of test sce- narios for lane keeping assist systems (LKAS) in autonomous vehicles and for autonomous robots navigating a closed room with obstacles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The test scenarios for LKAS in vehicles are designed to challenge the system with various road topologies, while the scenarios for autonomous robots involve navigating a closed room with obstacles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Examples of the generated scenarios can be seen in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Figure 1: An example of the test case for LKAS system (a) and an autonomous robot (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The x-axis represents the map length in meters, and the y-axis represents the map width in meters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Software architecture This subsection provides a detailed description of the software imple- mentation of AmbieGen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The key components of AmbieGen are illustrated in Figure 2, which are common components for implementing evolutionary search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' We use the Pymoo framework [12] to implement the search algo- rithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The most important modules and classes are outlined below: Solution - this is one of the most important classes, which contains all the necessary attributes and functions needed to represent the candi- date solution of the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' It should contain a scenario attribute with the list of test case parameters, function for fitness evaluation, novelty calculation, as well as, optionally, image generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 4 200 a 40 b 口 Ci ■ 35- ■ ■ ■ 30 ■ 25 Robotpath 20- Walls V 国 15 - ■ ■ 口 ■ 10 5 ■ ■ fo 0 0 5 10 15 20 25 200 30 35 40Figure 2: AmbieGen architecture Sampling - this is the class for initial population generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' At the output it provides N instances of the Solution class, with the initial- ized scenario attribute, defining the test scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Typically the test scenario is represented by a two dimensional array, randomly initial- ized based on the minimum and maximum values of the test case pa- rameters, defined in the configuration file.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Each column of the array corresponds to some part of the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' More information about the representation of the test scenarios that we used can be found in the repository page as well as in our research article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Problem - in this class, we define the logic for evaluating the fitness of each solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' For single-objective search (using GA), we specify the fitness function for evaluating the scenario fault revealing power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' For two-objective search (using NSGA-II), we define two objectives: fault revealing power and novelty calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The novelty objective is calculated as the average novelty of a given test scenario relative to the 5 solutions with the highest fault revealing power fitness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' If the problem has any constraints, such as a minimum required fitness value, they should also be specified in this class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' TC to environment - this is a function to transform the test case (TC) encoded as a 2D array of parameters, to the input format suitable for the system model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' For example, for the LKAS problem, the model input is a list of the 2D coordinates of points, defining the road topol- ogy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The test case itself is represented as a sequence of transformations ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='Pymoo ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='post_processing() ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='Sampling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='Solution object 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='TC to environment () ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='+gen_randomscenario() ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='Solution object 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='Problem ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='fitness evaluation () ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='Solution object 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='Solution ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='Crossover ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='+map_size ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='Solution object 4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='configuration file ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='+scenario ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='Mutation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='+fitness eval() ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='Population size ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='Solution object N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='Numberofgenerations ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='+novelty eval() ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='Crossover/mutationrate ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='+build image() ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='TCparameterranges ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='Folderto save resultsneeded to perform to obtain the points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' For the autonomous robot the test scenario is represented as a sequence of parameters describing the 2D map with obstacles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The TC to environment module is used to create a 2D bitmap from the given parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The bitmap is given as the input to the autonomous robot model, which runs a planning algorithm to find the shortest path between the start and goal location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' fitness evaluation - a function to calculate the fitness i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='e fault revealing power of the scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' It takes the output of the TC to environment function as the input and execute the system model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' It collects the data about the model behaviour during execution and computes the fitness score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' For the LKAS system, the fitness is defined by the biggest deviation from the lane center and for the autonomous robot - by the length of the path to reach the goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Crossover - in this class the crossover operator is defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Currently we are using a one point crossover, which can be applied to fixed and variable length solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Mutation - in this class the mutation operator is implemented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' We have 2 types of mutations: exchange and change of variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' In ex- change mutation, two randomly selected columns of the test case are exchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' In the case of the road topology, it would correspond to exchanging the positions of two random road segments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' In change of variable mutation, a randomly selected parameter value in the test case matrix is changed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' In the road topology example it could correspond to the change of the length of one of the straight road segments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' post processing - The post-processing module of our framework includes several functions for handling the test suite and its metadata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The function get test suite() retrieves the test suite, get stats() retrieves metadata such as fitness and novelty scores, and save tcs images() saves the images of the test cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The size of the test suite, denoted as T, can be specified in the configuration file.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' In our experiments, T was typically set to 30, representing the best solutions found by the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Metadata for the test suite includes the fitness of the top T solutions, their novelty (calculated as the average novelty between all pairs of scenarios in the test suite), and the convergence (best solution fitness 6 found at each epoch).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The post-processing module also includes a compare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='py script for comparing the results of different algorithms, using the collected metadata to generate convergence plots and fitness and diversity boxplots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' configuration file - finally we have a configuration file, where the pa- rameters of the algorithm, such as: the population size, the number of generations, crossover/mutation rate, and the test suite size are de- fined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Users should also specify the allowable ranges for the test case parameters and the paths for saving the resulting test suite and its metadata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Currently, when adding a new problem, one should provide the implemen- tation of each of the modules as well as the TC to environment and fitness evaluation functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' We are working on reducing the number of additional implementations needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Our framework includes the implementation of all the modules for the LKAS and autonomous robot test case generation prob- lems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Software functionalities AmbieGen public version 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='0 as presented in this paper offers the fol- lowing major functionalities: Autonomous vehicle LKAS system testing: generating scenarios, rep- resented as a list of 2D coordinates defining the road topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Autonomous robot testing: generating scenarios, represented as the 2D bitmap, defining obstacle locations in a fixed sized map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Search-based generation: our framework provides options for search- based test suite generation, including random search, single-objective genetic algorithm (GA), and two-objective genetic algorithm (NSGA- II).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The search algorithms are implemented using the Pymoo frame- work [12], and can be easily extended to support additional algorithms supported by Pymoo with minor modifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The single-objective GA optimizes the test suite for scenario fault re- vealing power, while the two-objective NSGA-II optimizes for both fault revealing power and diversity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' As demonstrated in our previ- ous work [11], the two-objective algorithm allows to produce a more diverse set of test scenarios compared to the single-objective search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 7 Experiment data tracking: AmbieGen tracks the results of each ex- periment and saves them in a user-defined location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The saved data includes the T (as determined by the user) best test scenarios identified based on their fitness or crowding distance, as well as their associated metadata such as fitness, average diversity, and visualizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' This allows for easy analysis and comparison of the results of different ex- periments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Use cases of the software In this subsection we provide an illustrative example of how to use Am- bieGen to generate test cases for an autonomous robot planning algorithm testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Suppose we want to perform 30 runs of the NSGA-II algorithm with 150 individuals and 200 generations to evaluate this configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' We want to save the generated test cases, their illustrations as well as their metadata, such as fitness and diversity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Below you can see the configuration file entries with the parameters we chose for the genetic algorithm and well as the path to save the experiment results: ga = {" pop_size ": 150, "n_gen ": 200, "mut_rate ": 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='4, "cross_rate ": 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='9, " test_suite_size ": 30 } files = {" stats_path ": "stats", "tcs_path ": "tcs", "images_path ": images "} Now we are ready to start the test case generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' We can launch Am- bieGen with the following command and parameters: python optimize.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='py --problem =" robot" --algo =" nsga2" --runs =30 \\\\ --save_results=True The search will start and you could see some printouts, such as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 3 with the current number of generation (n gen), number of evaluations (n eval), constraint violation (cv min), number of non-dominant solution for NSGA- II algorithm (n nds) and the best solution found (f opt) for GA algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' More details about the printed information can be found on the Pymoo page (https://pymoo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='org/interface/display.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='html).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' After a successful run, you will see the confirmation about the run exe- cution time, saved test cases, their metadata and the images, as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 4 In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 5 you can see examples of the metadata saved, such as the algo- rithm convergence 5a (the best fitness value at each generation in the format ”evaluation number”: best fitness found), the fitness of the test cases in the test suite as well as their average diversity i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=', novelty 5b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Novelty is cal- culated as the average diversity of all of the pairs of the test cases in the 8 Figure 3: Printouts during the search Figure 4: Successful run confirmation test suite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 6 we show an example of the test case images saved for a particular run.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' (a) Scenario fitness convergence (b) Final test suite fitness and diversity Figure 5: Metadata for the generated scenarios Finally, let us suppose we also want to run a random search with the same evaluation budget to be able to compare the performance of our configuration of NSGA-II algorithm to some baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' We can run the random search by 9 01:0602.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='320 INFO started test generation,writing logs to file: logs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='txt 12-9101:0602,320INFO Running the optimization 2-12-9801:0602,321INFO Problem: robot,Algorithm:nsga2,Runs number:3e,Saving the results:True 2-12-9101:06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='02,343INFO Executing run o: 2-12-9101:06:02344INFO Using random seed:1753925990 n_gen n_eval innds cvmin cv_avg eps indicator 1 150 1 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='474517E+01 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='330072E+91 2 300 1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='684567E+01 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='742613E+01 3 450 1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='436039E+01 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='231653E+01 4 600 工 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='167410E+01 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='692135E+01 5 750 1 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='8751083190 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='161694E+0103:21:13,072INFO Execution time,6909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='677314 sec ,088INFO Test suite of 3o test scenarios generated $,103INFO Thehighest fitnessfound:224.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='994949 3:211L3,103INFO Average diversity:0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='720751 03:21:25,148INFO Stats savedas stats nsga231-12-2022-stats.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='json 03:21:25,157INFO Stats saved asstats nsga231-12-2022-conv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='json 3:21:25,361INFO Test cases saved as tcs nsga2l31-12-2022-tcs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='json 03:21:53,871INFO Images saved in tc images nsga2 21:53,871INFO Images saved in tcimagesnsga2rung":f "158":97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='81219330881972 200":99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='59797974644661 "250":99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='59797974644661, "300":186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='18376618487352, "350":186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='18376618407352, "480":106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='18376618407352, "450:107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='25483399593897, "500":107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='25483399593897, "550":130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='56854249492375, "600":130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='56854249492375, "650":130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='56854249492375, "700":130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='56854249492375, "888"130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='56854249492375 "850": 130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='56854249492375, "900":rune":f "fitness":[ 198.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='7106781186548 171.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='8538238691624, 192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='02438661763966, 194.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='46803743153552, 190.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='36753236814718, 211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='88225099390866, 209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='88225099390866, 194.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='85281374238588, 168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='71067811865476, 191.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='8822509939086, 181.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='15432893255073, 183.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='39696961967007 novelty":0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='23096571372433472 runi"Figure 6: Images of the generated scenarios executing the following command: python optimize.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='py --problem =" robot" --algo =" random" --runs =30 \\\\ --save_results=True The random search will be run and the metadata saved, as in the previous case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Now we can compare the results produced by the two different search algorithms via executing the following command: python compare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='py --stats_path =" stats_nsga2" " stats_random" \\\\ --stats_names "NSGA -II" "Random" In the stats path argument we specify the paths of the metadata for the runs we wish to compare and in the stats names the names we assign for the runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='7 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 8 we can see examples of the outputs produced by the compare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='py script.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 7a shows the fitness and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 7b the diversity of the scenarios in the test suites produced over the specified number of runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 8 shows the best values found by the compared search algorithms over the generations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Illustrative examples In this section, we present the summarized results of several test genera- tion case studies using the AmbieGen tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The full results can be found in our research paper [11] and the SBST 2022 competition report [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' We conducted a case study on an autonomous robot with an obstacle avoidance algorithm based on nearness diagrams [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The robot model was a Pioneer 3-AT equipped with a SICK LMS200 laser with a sensing range of 10 meters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The simulations were run in the Player/Stage simulator [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 10 2022-10-15-images_fin_rob Vruno o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='png 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='png 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='png Test case fitenss 198.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='7106781186548 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='png Robotpathm 质4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='png Walls 35 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='png 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='png 30 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='png 25 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='png 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='png U 20 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='png U 15 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='png U 10 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='png U 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='png U 5 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='png U 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='png U 0 5 10 15 20 30 35 40(a) Scenario fitness (b) Scenario diversity Figure 7: Evaluating the NSGA-II algorithm for autonomous robot test case generation Figure 8: Comparing the convergence of NSGA-II and random search for autonomous robot case study You can see an illustration of the simulation environment in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 9a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' We used AmbieGen to generate diverse maps with obstacles to test the robot’s performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' We identified several scenarios in which the robot became stuck and failed to reach its goal location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' An example of such a scenario can be found in the following video: Video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' To evaluate the effectiveness of our tool, we allocated a two-hour budget for AmbieGen to generate test scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The generated scenarios were then passed to the simulator and executed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' We repeated the experiment 30 times, using both the NSGA-II and random search configurations of AmbieGen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The average number of failures detected is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 9b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' On average, 11 220 NSGA-II Random 200 180 Fitness 160 140 120 100 80 0 20 40 60 80 100 120 140 Numberofgenerations250 200 itness .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='150 左 100 50 0 Random NSGA-II Algorithm0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='6 Novelty 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='0 Random NSGA-II AlgorithmAmbieGen detected 9 failures in two hours,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' compared to 2 failures for random search (a) Executing autonomous robot scenario in the Play- er/Stage simulator (b) The number of failures revealed by AmbieGen for the robot case study Figure 9: Using AmbieGen for testing autonomous robot navigation algorithm In the second case study,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' we evaluated the performance of our test gener- ation tool on an autonomous vehicle lane keeping assist system (LKAS) using the BeamNg simulator [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' We used the AmbieGen tool to generate diverse, fault-revealing road topologies, which were then simulated in the BeamNg environment (shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 10a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' During the simulations, we identified a number of scenarios in which the vehicle left its lane (an example of which can be seen in the video at Video).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' We ran our tool for a time budget of 2 hours, using the SBST22 compe- tition code pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The failure criterion for the LKAS system was defined as more than 85% of the car’s area leaving the lane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The driving agent had a maximum speed of 70 Km/h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' We compared the results of AmbieGen’s NSGA-II configuration, Random Search configuration, and the Frenetic tool [6], which was also given a 2-hour time budget for test generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 10b, out of 30 runs, AmbieGen and Frenetic on average produced almost the same number of failures (14), while Random Search produced an average of 9 failures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The obtained results suggest that AmbieGen could effectively identify failures in the autonomous systems under test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Impact Autonomous systems testing is an important area of research,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' and finding test scenarios that reveal a diverse range of system failures within a limited 12 25 faults 20 15 Revealed 10 5 0 AmbieGen RandomSearch Generationmethod(a) Executing the LKAS scenario in the BeamNg sim- ulator (b) The number of failures revealed by AmbieGen for the LKAS case study Figure 10: Using AmbieGen to test autonomous vehicle LKAS model time and evaluation budget is a significant challenge [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' One of the common solutions is to use evolutionary search to guide the sampling towards more challenging scenarios [5, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' These search based techniques allow to identify potential failures and improve the overall reliability of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' AmbieGen is a test generation tool that uses evolutionary search to gen- erate test scenarios for autonomous systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Its modular design allows for customization of the initial population generation function, fitness evaluation function, search operators (such as crossover and mutation), and the search algorithm itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Out of the box, AmbieGen supports testing of autonomous robots and vehicle LKAS systems, and additional systems can be added using the provided implementations as examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' AmbieGen is a valuable resource for research on search-based test case generation for autonomous systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Its built-in modules enable easy com- parison of different search algorithms and their modifications, based on the quality and diversity of the generated solutions, as well as the convergence of the algorithm over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' AmbieGen can help answer research questions that are not frequently discussed in the literature, such as: To what extent the diversity preservation technique A helps improve the diversity of the test suite?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The importance of the diversity in test case generation is extensively discussed in the work of Klikovits et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' To what extent does the search operator A helps improve the conver- gence over the operator B?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' To what extent the algorithm A outperforms 13 30 25 ults 20 led 15 veal Rev 10 5 0 AmbieGen Frenetic RandomSearch Generationmethodthe algorithm B for the test case generation?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Improvements to the base- line genetic algorithms implementations can lead to better results, as discussed by Abdessalem et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [18], where multi-objective population- based search algorithms and decision tree classification were combined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' What fitness criteria are more relevant for guiding the system towards fault revealing scenarios?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' This question includes the comparison of the single, multi-objective based search as well surrogate model assisted search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' AmbieGen can also be useful in the pursuit of actively studied research ques- tions, where the fault revealing test case generation is required, such as: transferability of failures from simulation to the real world [19], autonomous system failure prediction [20], test case prioritization [21] and others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' AmbieGen has proven its effectiveness in fault revealing by winning this year’s edition of the SBST 2022 cyber-physical testing tool competition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Our submission is described in the following article [22] and is available at the fol- lowing link https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='com/dgumenyuk/tool-competition-av.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' We have always kept our tool open sourced and we expect more people to start using it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' We welcome all the contributions for expanding our framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Conclusions In this paper, we present the AmbieGen framework for search based test case generation for autonomous systems, in its public version 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' We briefly outline the motivation for developing this framework, its workflow and main functionalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' We also provide illustrative examples for using the tool for autonomous vehicle lane keeping assist system testing and autonomous robot obstacle avoiding algorithm testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The main features of our tool include: modular architecture, which allows researchers to easily modify the existing modules, such as initial population generation, crossover, mu- tation, fitness function as well as introduce new problems and run ex- periments;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' we provide implementations of test case generation for two systems under test: autonomous vehicle LKAS system and autonomous robot;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' this implementation includes three search algorithms: random search, 14 single objective genetic algorithm and a two-objective NSGA-II genetic algorithm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' our framework is built to be compatible with Pymoo framework [12], allowing to fully benefit from the Pymoo framework features, such as high number of implemented algorithms in Pymoo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Future Plans Our framework currently includes the implementation of two test case generation problems, as well as three algorithms (random search, GA, NSGA- II) for generating test cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' The fitness function is calculated based on a simplified model of the system, and test scenarios are represented as 2D arrays, with each column describing a discrete aspect of the scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' In the future, we plan to expand the capabilities of our framework to include: new algorithms, especially the ones based on the quality-diversity search [23] new test case generation problems, for instance more complex test sce- narios that include moving pedestrians, other vehicles and traffic signs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' new fitness functions e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='g based on surrogate models of the system under test, as in the work of Ramakrishna et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [24], functions based on neuron coverage [25] and surprise adequacy [26] dedicated to testing systems containing neural networks;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' add new problem representations, supporting popular scenario specifi- cation languages such as SCENIC [27];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' add an integration with popular simulators, for instance CARLA [28] or LGSVL [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' This will allow to directly evaluate the system model with the generated scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Also the feedback from the simulators could be incorporated in fitness functions for guiding the test scenario sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Acknowledgements This work is partly funded by the by the Fonds de Recherche du Qu´ebec (FRQ), the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Canadian Institute for Advanced Research (CIFAR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 15 References [1] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Bruggner, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Hegde, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Acerbo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Gulati, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Son, Model in the loop testing and validation of embedded autonomous driving algorithms, in: 2021 IEEE Intelligent Vehicles Symposium (IV), IEEE, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 136–141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [2] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Annpureddy, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Liu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Fainekos, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Sankaranarayanan, S-taliro: A tool for temporal logic falsification for hybrid systems, in: International Conference on Tools and Algorithms for the Construction and Analysis of Systems, Springer, 2011, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 254–257.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Donz´e, Breach, a toolbox for verification and parameter synthesis of hybrid systems, in: International Conference on Computer Aided Verification, Springer, 2010, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 167–170.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [4] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Menghi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Nejati, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Briand, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Parache, Approximation- refinement testing of compute-intensive cyber-physical models: An ap- proach based on system identification, in: 2020 IEEE/ACM 42nd Inter- national Conference on Software Engineering (ICSE), IEEE, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 372–384.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Gambi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Mueller, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Fraser, Automatically testing self-driving cars with search-based procedural content generation, in: Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, IEEE, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 318–328.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [6] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Castellano, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Cetinkaya, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Thanh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Klikovits, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Zhang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Ar- caini, Frenetic at the sbst 2021 tool competition, in: 2021 IEEE/ACM 14th International Workshop on Search-Based Software Testing (SBST), IEEE, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 36–37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [7] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Riccio, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Tonella, Model-based exploration of the frontier of be- haviours for deep learning system testing, in: Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 876– 888.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [8] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Zohdinasab, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Riccio, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Gambi, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Tonella, Deephyperion: explor- ing the feature space of deep learning-based systems through illumina- 16 tion search, in: Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 79–90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Panichella, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Gambi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Zampetti, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Riccio, Sbst tool competition 2021, in: 2021 IEEE/ACM 14th International Workshop on Search- Based Software Testing (SBST), IEEE, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 20–27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Gambi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Jahangirova, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Riccio, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Zampetti, Sbst tool competition 2022, in: 2022 IEEE/ACM 15th International Workshop on Search- Based Software Testing (SBST), IEEE, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 25–32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [11] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Humeniuk, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Khomh, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Antoniol, A search-based framework for automatic generation of testing environments for cyber–physical sys- tems, Information and Software Technology 149 (2022) 106936.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' doi: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='infsof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='106936.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [12] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Blank, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Deb, pymoo: Multi-objective optimization in python, IEEE Access 8 (2020) 89497–89509.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Minguez, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Montano, Nearness diagram (nd) navigation: collision avoidance in troublesome scenarios, IEEE Transactions on Robotics and Automation 20 (1) (2004) 45–59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [14] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Kranz, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Rusu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Maldonado, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Beetz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Schmidt, A play- er/stage system for context-aware intelligent environments, Proceedings of UbiSys 6 (8) (2006) 17–21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [15] BeamNG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='tech, Beamng gmbh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='beamng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='gmbh/research [16] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Ding, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Xu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Arief, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Lin, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Li, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Zhao, A survey on safety-critical driving scenario generation – a methodological perspec- tive (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='02215.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' URL https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='org/abs/2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='02215 [17] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Klikovits, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Riccio, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Castellano, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Cetinkaya, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Gambi, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Ar- caini, Does road diversity really matter in testing automated driving systems?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='–a registered report, arXiv preprint arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content='05947 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [18] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Abdessalem, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Nejati, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Briand, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Stifter, Testing vision- based control systems using learnable evolutionary algorithms, in: 2018 17 IEEE/ACM 40th International Conference on Software Engineering (ICSE), IEEE, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 1016–1026.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [19] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Stocco, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Pulfer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Tonella, Mind the gap!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' a study on the transfer- ability of virtual vs physical-world testing of autonomous driving sys- tems, IEEE Transactions on Software Engineering (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Stocco, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Tonella, Confidence-driven weighted retraining for pre- dicting safety-critical failures in autonomous driving systems, Journal of Software: Evolution and Process (2021) e2386.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [21] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Arrieta, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Valle, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Agirre, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Sagardui, Some seeds are strong: Seeding strategies for search-based test case selection, ACM Transac- tions on Software Engineering and Methodology (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [22] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Humeniuk, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Antoniol, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Khomh, Ambiegen tool at the sbst 2022 tool competition, in: 2022 IEEE/ACM 15th International Workshop on Search-Based Software Testing (SBST), IEEE, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 43–46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [23] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Pugh, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Soros, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Stanley, Quality diversity: A new frontier for evolutionary computation, Frontiers in Robotics and AI (2016) 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [24] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Ramakrishna, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Luo, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Barve, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Karsai, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Dubey, Risk-aware scene sampling for dynamic assurance of autonomous systems, in: 2022 IEEE International Conference on Assured Autonomy (ICAA), IEEE, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 107–116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [25] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Pei, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Cao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Yang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Jana, Deepxplore: Automated whitebox testing of deep learning systems, in: proceedings of the 26th Symposium on Operating Systems Principles, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 1–18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [26] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Kim, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Feldt, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Yoo, Guiding deep learning system testing using surprise adequacy, in: 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), IEEE, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 1039–1049.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [27] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Fremont, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Kim, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Dreossi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Ghosh, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Yue, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Sangiovanni- Vincentelli, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Seshia, Scenic: A language for scenario specification and data generation, Machine Learning (2022) 1–45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' [28] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Dosovitskiy, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Ros, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Codevilla, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Lopez, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Koltun, Carla: An open urban driving simulator, in: Conference on robot learning, PMLR, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 1–16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 18 [29] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Rong, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Shin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Tabatabaee, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Lu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Lemke, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Moˇzeiko, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Boise, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Uhm, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Gerow, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' Mehta, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=', Lgsvl simulator: A high fidelity simulator for autonomous driving, in: 2020 IEEE 23rd Interna- tional conference on intelligent transportation systems (ITSC), IEEE, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} +page_content=' 19' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAzT4oBgHgl3EQfSfu4/content/2301.01234v1.pdf'} diff --git a/9tE5T4oBgHgl3EQfRQ5h/content/tmp_files/2301.05519v1.pdf.txt b/9tE5T4oBgHgl3EQfRQ5h/content/tmp_files/2301.05519v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..c8f22357719417825e3abba1905f307fc7e64a46 --- /dev/null +++ b/9tE5T4oBgHgl3EQfRQ5h/content/tmp_files/2301.05519v1.pdf.txt @@ -0,0 +1,3293 @@ +Second sound resonators and tweezers as vorticity or velocity +probes : fabrication, model and method +Eric Woillez∗, Jérôme Valentin†and Philippe-E. Roche‡ +Univ. Grenoble Alpes, CNRS, Institut NEEL, F-38042 Grenoble, France +Distributed under a Creative Commons Attribution. +CC-BY | 4.0 International licence +Abstract +An analytical model of second-sound resonators with open-cavity is presented and validated against +simulations and experiments in superfluid helium using a new design of resonators reaching unprecedented +resolution. The model accounts for diffraction, geometrical misalignments and flow through the cavity. It is +validated against simulations and experiments using cavities of aspect ratio of the order of unity operated +up to their 20th resonance in superfluid helium. An important result is that resonators can be optimized +to selectively sense the quantum vortex density carried by the throughflow -as customarily done in the +literature- or alternatively to sense the mean velocity of this throughflow. Two velocity probing methods are +proposed, one taking advantage of geometrical misalignements between the tweezers plates, and another one +by driving the resonator non-linearly, beyond a threshold entailing the self-sustainment of a vortex tangle +within the cavity. +After reviewing several methods, a new mathematical treatment of the resonant signal is proposed, to +properly separate the quantum vorticity from the parasitic signals arising for instance from temperature and +pressure drift. This so-called elliptic method consists in a geometrical projection of the resonance in the +inverse complex plane. Its strength is illustrated over a broad range of operating conditions. +The resonator model and the elliptic method are applied to characterize a new design of second-sound +resonator of high resolution thanks to miniaturization and design optimization. When immersed in a su- +perfluid flow, these so-called +second-sound tweezers provide time-space resolved information like classical +local probes in turbulence, here down to sub-millimeter and sub-millisecond scales. The principle, design +and micro-fabrication of second sound tweezers are detailed, as well as their potential for the exploration of +quantum turbulence +Contents +1 +Introduction to second sound resonators +2 +1.1 +Quantum fluids and second sound +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +2 +1.2 +Generation and detection of second sound waves +. . . . . . . . . . . . . . . . . . . . . . . . . . . +2 +1.3 +From macroscopic second sound sensors to microscopic tweezers . . . . . . . . . . . . . . . . . . . +3 +1.4 +Overview of the manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +4 +2 +Design, fabrication and mode of operation of second sound tweezers +4 +2.1 +Mechanical design +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +4 +2.2 +Second sound detection and generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +7 +2.2.1 +Thermometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +7 +2.2.2 +Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +8 +2.2.3 +Digression on the operation in the non-linear heating regime +. . . . . . . . . . . . . . . . +9 +2.3 +Microfabrication and assembling +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +10 +2.4 +Electric circuit +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +13 +∗present affiliation: CEA-Liten, Grenoble +†present affiliation: Observatoire de Paris - PSL, CNRS, LERMA, F-75014, Paris, France +‡Corresponding author +1 +arXiv:2301.05519v1 [cond-mat.other] 13 Jan 2023 + +3 +Models of second sound resonators +14 +3.1 +Resonant spectrum of second sound resonator: phenomenological aspects +. . . . . . . . . . . . . +15 +3.2 +Analytical approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +15 +3.3 +Numeric algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +19 +3.3.1 +For a backgroud medium at rest +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +19 +3.3.2 +In the presence of a turbulent flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +21 +3.4 +Quantitative predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +22 +3.4.1 +Spectral response of second sound resonators . . . . . . . . . . . . . . . . . . . . . . . . . +23 +3.4.2 +Response with a flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +23 +3.4.3 +Effect of lateral shift of the emitter and receiver plates . . . . . . . . . . . . . . . . . . . . +26 +3.4.4 +Limits of the model +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +27 +3.5 +Quantum vortex or velocity measurements ? +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . +28 +4 +Measurements with second sound tweezers +29 +4.1 +The vortex line density from the attenuation coefficient +. . . . . . . . . . . . . . . . . . . . . . . +30 +4.2 +Analytical method in an idealized case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +32 +4.3 +The elliptic method +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +33 +4.4 +Applications of the elliptic method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +35 +4.4.1 +Suppression of temperature and pressure drifts . . . . . . . . . . . . . . . . . . . . . . . . +35 +4.4.2 +Measure of vortex line density fluctuations +. . . . . . . . . . . . . . . . . . . . . . . . . . +36 +4.4.3 +Filtering the vibration of the plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +38 +4.5 +Velocity measurements +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +38 +5 +Summary and Perspectives +40 +1 +Introduction to second sound resonators +1.1 +Quantum fluids and second sound +Below the so-called lambda transition, liquid 4He enters a quantum state named He-II. This liquid transition +occurs around Tλ ≃ 2.18 K at saturated vapor conditions. According to Tisza and Landau two-fluid model, +the hydrodynamics of He-II can be described as the hydrodynamics of two interpenetrating fluids, called the +superfluid component and the normal fluid component [Bal07, Gri09]. The superfluid density ρs is vanishingly +small right below the transition, and it increases as temperature decreases. The opposite dependence occurs +for the normal fluid density ρn, which becomes vanishingly small in the zero temperature limit. The properties +of both fluids strikingly differ. The superfluid has zero viscosity and zero entropy. Besides, the circulation of +its velocity field is quantized in units of κ = h/m ≃ 0.997.10−7m2/s, where h is Planck constant and m the +atomic mass of 4He. This quantization constrain results in the existence of filamentary vortices of Ångströmic +diameter, later referred to as the superfluid or quantum vortices[Don91]. Contrariwise, the normal fluid follows +a classical viscous dynamics and carries all the entropy of the He-II[Put74, Kha00]. +The existence of distinct velocity fields vs and vn for the superfluid and normal fluid results in the existence +of two independent sound modes in He-II, as can be shown by linearizing the equations of motion [Put74, +Kha00, Don09]. The so-called “first sound” corresponds to a standard acoustic wave : both fluids are oscillating +in phase (vs = vn), producing oscillations of the local pressure and density ρ = ρs + ρn. The “second sound” +corresponds to both fluids oscillating in antiphase without net mass flow (ρsvs = −ρnvn). Hence, the relative +densities of superfluid and normal fluid locally oscillates, as well as entropy and temperature. +1.2 +Generation and detection of second sound waves +Experimentally, two techniques are mostly used to generate and detect second sound: one mechanical and +the other thermal. Alternative techniques not discussed here have been occasionally used, including optical +scattering (e.g. [PGB70]) and acoustic detection above the liquid-vapor interface[LFF47] or in the flow itself +(e.g. [HR76]). +The mechanical technique consists in exciting and sensing a single component of He-II, either its superfluid +one or the normal fluid component. Indeed, a single fluid motion can be viewed as a superposition of a second +sound and a first sound (i.e. an acoustic wave), with an exact compensation of motion for one of the two fluids +at the location of the transducer. Since the first sound velocity is typically one decade larger than the second +second velocity[DB98], most second sound resonances don’t coincide with acoustic resonances. +In practice, +a selective displacement of the superfluid component is achieved in Peshkov transducers. They are made of +a standard acoustic transducer side-by-side with a fixed porous membrane-filter which tiny pores are viscous +dampers for the normal fluid but are transparent (“superleaks”) for the superfluid [Pes48, HL88]. Alternatively, +2 + +Emitter +Receiver +Emitter +Receiver +Flow +Flow +Figure 1: +Left: A macroscopic resonator for second sound, embedded in the sidewall, is used to sense +the averaged flow properties in the shaded region. +Right: Second sound tweezers. In contrast with the +macroscopic design of the left schematics, this miniaturized resonator, positioned within the flow, allows space +and time resolution of the flow variations. +a selective displacement of the normal fluid component is achieved in oscillating superleak transducers. They +are based on a vibrating porous membrane that is coupled to the motion of normal fluid by viscous forces, and +uncoupled to the inviscid superfluid. They can be manufactured by replacing the membrane of a loudspeaker +or microphone by a millipore or a nucleopore sheet [WBF+69, SE70, DLL80]. +The thermal technique to generate and detect second sound consists in forcing second sound by Joule +effect, and detecting it with a thermometer. Depending on the operating range of temperature and practical +considerations, several types of thermometers can be suitable to detect second sound waves. The literature +being vast, we only list a few thermistor materials and bibliographic entry points. Materials with a negative +temperature coefficients1 include carbon in various forms (aquadag paint, fiber, pencil graphite,..) [HVS01], +doped Ge[Sny62], RuOx [YI18], ZrNx/Cernox [YYK97, FS04] and Ge-on-GaAs [MMP+07]. Transition edge +superconductor thermometers are often preferred when large sensitivity or low resistivity is important, for +instance Au2Bi [Not64], PbSn [CR83, RR01], granular Al [CA68, MSS76] and AuSn [Not64, Lag76, BSS83]. +More information on AuSn is provided in section 2.2.1. The second sound tweezers presented in the present +study resorts to this thermal technique, both for generation and detection of second sound2. +1.3 +From macroscopic second sound sensors to microscopic tweezers +In the presence of superfluid vortices, the superfluid and normal fluid experience a viscous mutual coupling +[Don91], which entails a damping of the second sound waves. This attenuation of second sound by vortices +have been extensively used as a tool to explore the properties of He-II flows over the last 60 years[Vin57], in +particular to explore the properties of quantum turbulence (e.g. see [VJSS19]), a field of applications which +as motivated the development of second sound tweezers. For example, mechanical second sound transducers +were successfully used to study the turbulence of He-II in the wake of a grid by groups in Eugene, Prague and +Tallahassee (e.g. see [SNVD02, BVS+14, MG18]). Examples of thermal second sound transducers successfully +used to study turbulence of He-II flows are described in studies by groups from Paris, Tallahassee, Grenoble +and Gainesville (e.g. see [WPHE81, HVS92, RDD+07, YI18]). +A specific type of probe allows very sensitive probing of the density of quantum vortices in He-II flow : +standing-wave second sound resonators. Such a resonator consists in two parallel plates facing each other, one +functionalized with a second sound emitter and the other with a receiver. The emitter excites the cavity at +resonance to benefit from the amplification of the cavity. The characteristics of the standing wave between the +plates provides information on the properties of the fluid and flow between the plates, in particular the density +of vortex lines, which impacts the amplitude of the standing wave. Aside from vortex density measurements, the +second sound can also provide information on the fluid temperature -since the second sound velocity depends +on it- and on the velocity of the background He-II flow when it induces a phase shift or Doppler effect on the +second sound (e.g. see [DL77, WPHE81, WVR21]). +The characteristics listed above for the standard (macroscopic) second sound resonators remain relevant for +their miniaturized version : second sound tweezers. Beside miniaturization, a key specificity of tweezers is their +1Phosphor bronze wire, a positive temperature coefficient thermometer has also been used in the early days [Pes46]. +2In principle, mechanical and thermal techniques could be combined to generate and detect, although we are not aware of any +composite configuration reported in the literature. +3 + +low footprint on the streamlines when positioned in the core of a flow. This key differences between standard and +tweezers resonators are sketched in figure 1. Consequently, standard resonators provide information on averaged +properties of the flow, while tweezers give access to space and time resolved information. Thus, tweezers are local +probes in the same ways as the hot-wire anemometers or cold-wire thermometers used in turbulence studies. +In the present design for tweezers, the thermal actuation technique is preferred to the mechanical actuation +because it makes it easier to respect the constrains of miniaturization and reduced flow blockage. +1.4 +Overview of the manuscript +The following sections cover independent topics, +Section 3 presents a comprehensive modelling of second-sound resonators accounting for plate misalignment, +advection, finite size and near field diffraction. Diffraction, which has been neglected in previous quantitative +models, turns out to be a dominant source of degradation of the quality factor in our case studies. Applications +to the measurement of vortex concentration or velocity are considered. +Section 4 presents existing methods to process the signal from second sound resonators, and their limits. To +circumvent them, we introduce a new general approach, named the elliptic method, based on a mathematical +properties of resonance. This method allows to dynamically separate the amplitude variations of the standing +wave due to variations of vortex density or variations of velocity, from the phase variations (more precisely, from +the acoustical path variations), for instance due to variations of the second sound velocity themselves resulting +from a temperature drift. +Section 2 reports the design, clean-room fabrication and operation of miniaturized second-sound resonators, +named second-sound tweezers. These tweezers allow to probe the throughflow of helium with an unprecedented +spatial and time resolution. +For better clarity, we first present the second-sound tweezers, which allows to illustrate the topics on mod- +elling and method with a challenging practical case. Though we emphasize that the modelling and methods +introduced in this article are general and relevant to second-sound resonator regardless of their size, including +the macroscopic sensors embedded in parallel walls encountered in the literature. +2 +Design, fabrication and mode of operation of second sound tweezers +The core part of second sound tweezers is a stack composed of a heating cantilever and a thermometer cantilever, +separated by a spacer (see Figs. 2 and 3). Heaters and thermometers are cantilevers composed of a baseplate, +an elongated arm and a tip. The baseplate is the thickest part while the tip is the thinnest one. The active +areas, the emitter and receiver plates, are located on the tips. For a given device, heater and thermometer have +strictly the same mechanical structure, the only difference between them being the chemical elements used in +the serpentine electrical path deposited on the tip. Three cantilever types were fabricated in order to allow +assembling of resonators with three different tip sizes (see Fig.4). The tip widths are 1000µm, 500µm and +250µm. +Next subsection 2.1 presents considerations which prevailed in the mechanical design of the second sound +tweezers. The following one (section 2.2) discusses the detection (thermometry) and generation (heating) of +second sound by the tweezers. The last two subsections present the microfabrication techniques (section 2.3) +and the electrical circuitry used to operate the probes (section 2.4). +2.1 +Mechanical design +Resolution. The tweezers space-resolution Lres is set by the largest dimension of its cavity, which can be +either the inter-plates distance D, also called the “gap”, or the side length L of the plates here assumed to be +squared shaped. The present study mostly focuses on cavities with an aspect ratio of order 1, to benefit from +optimal space averaging of the signal at given space-resolution. The tweezers time-resolution τres is set by the +decay-time of a wave bouncing between the plates. In section 3.2, we introduce and validate a simple model +accounting for dissipation in the cavity due to diffraction loss and residual inclination of the plates. An upper +bound for τres is obtained from the diffraction loss term: τres ≃ L2f/bc2 +2, where b ≈ 0.38, c2 is the second sound +velocity and f is the wave frequency which can be approximated as nc2/2D for the nth mode of resonance (see +eq.6). Thus, the tweezers time-resolution due to diffraction loss can be estimated as +τres. ≃ L2f +bc2 +2 +≃ n L2 +Dc2 +The ratio Lres/τres of the space resolution and time resolution defines a characteristic velocity for which +the probe optimally averages the space-time fluctuations. For instance, in cavities of aspect ratio one (D = L) +operated on its nth resonance, the nominal velocity is estimated as c2/n. These estimates show that cavities +4 + +Figure 2: Second sound tweezers, pictured from two angular perspectives. (Left) Probe as seen in the direction +of the mean flow (or nearly so). The second sound cavity is localized at the upper tip of the probe, in the +encircled area. The bend copper wire through the probe is a temporary joystick used for a fine-alignment of +cavity plates under the microscope. The two coaxial cables for heating and thermometry are visible in the +lower left corner of the picture. (Right) The picture insert shows the same probe after some rotation, and after +removal of the joystick, making visible the through-hole across the silicon stack. The two staggered notches +used for thermal confinement of the standing wave in the cavity are clearly apparent. +Tip +Arm +Baseplate +Cantilever with heater + Kapton / Tracks +spacer +Cantilever with thermometer +Tracks / Kapton +Second sound standing wave +Figure 3: Schematic side view of the constitutive stack of second sound tweezers (the pieces are shown sepa- +rated for illustration, their thicknesses are exaggerated). The active areas, the emitter and receiver plates, are +constituents of the tip. +250 µm +500 µm +1000 µm +Figure 4: Top view of the 3 cantilever types. The tips widths are respectively 1000µm, 500µm and 250µm. +Left: Mechanical structures, all parts are silicon made, different thicknesses are represented by different colors. +The baseplate width is 2.5mm for all types. +Right: Electrical path on each tip type. +Yellow areas are +a deposition of TiPt for heaters and AuSn for thermometers. Orange areas are a thick AuPt deposition for +current leads. +5 + +2.5mm +Baseplate +Arm +Tip +10mm +12.5mm +2.5mmwith aspect ratio of order unity are fittingly sized for second-sound-subsonic flow, that is flows with a mean +velocity of few m/s. +Blocking effect. The above considerations on space resolution are relevant if the measured flow is not +altered by the probe support. The present design conforms to the empirical ×10 rule stating that components +of the support that obstruct the flow on a length scale X should be positioned at least 10X away from the +measurement zone. Accordingly, the cavity is at the end of elongated arms and the cantilevers are 25 mm in +length of decreasing thicknesses and widths, as illustrated by the picture of Fig.2 and by Figure 3. The thickness +successive values are around 520µm, 170µm and 20µm while the width decreases from 2.5mm to 145 µm in the +narrowest zone (resp. 275 µm and 500 µm) for cavities with L = 250 µm (resp. L = 500 µm and L = 1000 µm). +Wave confinement. The spatial resolution of tweezers would be degraded if the second sound standing +wave was spreading out of the L × L × D cavity, by reflection between the supporting arms. A design trick was +implemented to confine the standing wave in the cavity region by breaking the mirror symmetry between the +two cantilevers. Thus, as shown in Fig.2, anti-symmetric notches in the tips prevent the second sound to escape +by bouncing away from the cavity, at least in the geometric-optic approximation where diffraction is neglected. +Mechanical resonances. Besides the ×10 rule consideration, these dimensions are chosen such that the +mechanical vibrations of the arm are pushed up to ∼ 1 kHz or above. The fundamental resonance frequency of +the trapezoidal-shaped arm in vacuum was estimated from the analytical formula in [Lob07] (section 1.3.1.1). +f0 = 8.367 +2π +e +t2 +� +ESi(3w2 + w1) +ρSi(49w2 + 215w1) +We find f0 = 2195 Hz (resp. 1889 Hz and 1569 Hz) using the material properties ESi = 140 GPa, ρSi = +2330 kg/m3 and the dimensions of the intermediate section of the arm having thickness e = 172 µm, length +t = 12.5 mm, and width decreasing from w2 = 1.5 mm to w1 = 250 µm (resp. to 500 µm and 1000 µm). An +experimental validation was done at room temperature in air with an arm with w1 = 1000 µm. Its mechanical +vibration frequency spectrum was measured from a photoreceptor detecting a laser beam reflecting of the +arm. The mechanical excitation was provided either by hitting the table supporting the set-up with a small +hammer or by pointing a jet of compressed air toward the arm. In both cases, the fundamental mechanical +resonance frequency was found to be 1215 Hz, in reasonable agreement with the 1569 Hz prediction given the +uncertainty on the Young modulus and deviations from the trapezoidal shape. As discussed in 4.4.3, indirect +measurements of the resonance frequency were done in 1.2 m/s superfluid flow and gave f ≈ 825 Hz, f ≈ 1050 +Hz and an amplitude of vibration smaller than 1 µm. The decrease in frequency compared to room-temperature +measurement is interpreted as mostly due to a fluidic added mass effect[Sad98]. +Deflection of the tips’ ends. The thicknesses of the tweezers parts are such that the mechanical deflection +at the tip endpoint remains significantly lower than the inter-plate distance under typical operating conditions. +The deflection at the tip endpoint can be estimated by considering separately the arm deflection (with +thickness 172µm) and the tip deflection (with thickness 20µm). As a first approximation, both arm and tip +are considered as cantilever beams of uniform width submitted to a uniformly distributed load, and having one +embedded end and one free end. This geometrical approximation overestimates the deflection of the arm, as its +endpoint is narrower than its base, and it underestimates the deflection of the tip, as the notch is ignored. Still, +this is enough to get order-of-magnitude estimates. The load is estimated as the dynamic pressure of a liquid +helium flow impinging the tweezers in transverse direction at a velocity U=0.1 m/s, that is 10% of the typical +longitudinal flow velocity of 1 m/s. The dynamic pressure P is taken as: +P = 1 +2ρU 2 +where the liquid helium density is ρ ≃ 140 kg/m3. According to Euler-Bernouilli beam theory, the free end +deflection δmax of the cantilever is: +δmax = 3 +2 +Pt4 +ESi.e3 +The total deflection (arm and tip) is upper-bounded by considering the sum of the deflection of a 2.5mm +long tip and a 15mm (not 12.5mm) long arm. This way, the small angle generated on the tip by the arm +deflection is taken into account. Using the values t = 15mm (length), e = 172 µm (thickness) and E = 140GPa +(Young modulus), the deflection of the arm endpoint is found to be 75nm. The deflection of the tip endpoint +with t = 2.5mm and e = 20 µm gives a 37nm deflection Thus, the total mechanical deflection of the tweezers +tip due to a steady lateral flow of 0.1 m/s is a fraction of a micron, that is decades smaller than the inter-plate +distance. +The mechanical resonance of the tweezers arm and tip, discussed above, could lead to deflections larger than +the one due to a steady forcing. The amplitude of those mechanical oscillations was measured in a turbulent +He-II flow up to velocities exceeding 1 m/s, taking advantage of the dependence of the second sound resonance +6 + +with respect to the cavity gap. The measured signal will be presented to illustrate the efficiency of the elliptic +projection method in separating the fluctuations of the acoustical path of the cavity and fluctuations of the +bulk attenuation of second sound between plates. The mechanical oscillations of the cavity gap are found to be +typically 0.5 µm (around 1 kHz). As expected, such a deflection is decades lower than the interplate distance +(1.3 mm in this case) and than the second sound wavelength. +Boundary layer. In the presence of a mean flow through the cavity, a velocity boundary layer will develop +along each tweezers plate. In principle, this boundary layer could contribute to the measured signal and therefore +alter the measurement of the incoming flow, for instance by increasing the density of superfluid vortices in the +cavity and therefore second sound attenuation. As illustrated later, the second sound standing wave that settles +between the plates have nodes of velocity near the plates (e.g. see fig. 10 and fig. 16) while the sensitivity +of second sound to vortices arises in antinodal regions of velocity. As long as the boundary layer thickness is +thin enough, say within a fraction of λ/4 (λ = c2/f is the second sound wavelength), it is not expected to alter +significantly the measured signal. +A first requirement for this condition is that the mean flow direction is parallel to the plates so that the flow +penetrates through the cavity with minimal deflection. A consequence is that plates should be widely separated +when operated in flows with undefined or zero mean velocity, such as the core of a mixing layer. +A second requirement is that the plate thickness is much thinner than λ/4. Present plates are 20 microns +thin, to be compared with λ/4 ≃ D/2n for the nth mode of resonance. For instance, with D = 500 µm and +n = 3, the condition 20 ≪ λ/4 ≃ 83 µm is indeed well satisfied. +A third condition regards the downstream development of the boundary layer thickness, which should also +stay well within λ/4. The physics of boundary layers in He-II is ill-understood[SPB17] but existing experiments +(e.g. +see [SHVS99]) suggests that classical hydrodynamics phenomenology could remain valid in the high +temperature limit. +In classical hydrodynamics, the so-called displacement thickness of a laminar “Blasius” +boundary layer at distance L from its origin is given by +δbl = 1.73 +� +Lν +U +where U is the mean velocity far from the boundary layer and ν is the kinematic viscosity of the fluid. In +He-II, several diffusive coefficients could arguably play the role of ν, in particular the quantum of circulation +around a quantum vortex and the kinematic viscosity associated with the dynamics viscosity of the normal fluid +normalized either by the normal fluid density or by the total density. In the temperature range of interest, all +these diffusive coefficients are within one order of magnitude, typ. 10−8 − 10−7m2/s. Taking ν = 3.10−8 m2/s, +L = 1000 µm and U = 0.5 m/s, one finds δbl = 13 µm, and a boundary layer Reynolds number δblU/ν = 217 +consistent with the laminar picture. This thickness estimate, similar in magnitude with the plate thickness, +satisfies the third requirement δbl ≪ λ/4. +2.2 +Second sound detection and generation +2.2.1 +Thermometry +The temperature-sensitive material used in the present study is AuSn, which fulfills two requirements: (1) it +is compatible with the microfabrication process and (2) it can be tuned to become temperature-sensitive over +a range of special interest to quantum turbulence studies[WVR21], from 1.5 K up to the superfluid transition +temperature Tλ ≃ 2.18K in saturated vapor conditions. Surely, other materials would be more appropriate in +other conditions, e.g. Al has been used previously for the tweezers operated around 1.5 K in [RDD+07]. +The gold-tin AuSn thermometer is a metal-superconductor composite material, with superconducting Sn +islands electrically connected by a gold layer. This granular structure is imaged by electronic microscopy in +Fig.5 (right). The temperature dependence phenomenology can be interpreted in a simple way. Indeed, by +proximity effect, the gold in contact with tin behaves as a superconductor over a spatial extent which depends +on temperature : by adjusting the characteristic length scales and thicknesses of the granular pattern, the +temperature response of the material can be tuned. +As a preliminary study, the temperature of the resistance of a 100 squares long AuSn track was tested for +three different tin thicknesses, as illustrated on the left plot of Fig.6. A description of the conduction mechanism +in AuSn is presented in [BSS83]. +In the present study, AuSn layers are deposited by evaporation with successively a small erosion of the +substrate by argon ion bombardment during 20s then the deposition of a 25nm gold layer and a 100nm tin +layer (hypothetic thickness for a planar - not granular - layer). The thermometer is shaped into a meander +deposited by lithographic technique on the tip of tweezers arm, as pictured in Fig.5 (right plot). The total +resistance at superfluid temperatures doesn’t exceed a few hundreds of ohm, a value chosen to be much larger +than the resistance of the leads but small enough to prevent parasitic effect from the leads’ capacitance (typ. +few hundreds of picoFarads) up to the highest frequencies of operation. +7 + +Figure 5: +Left: Tip of tweezers arm as seen from the facing arm. +The thin meander on the top is the +active heater (Pt) or thermometer (AuSn). +The overlap with gold tracks is apparent on the lower part of +the picture Right: Close up picture by electronic microscopy of the AuSn thermometer showing its granular +aspect. Depending on tweezers models (see fig. 8), the width of the AuSn track is 4, 11 or 24 µm +In order to obtain resistance values in this range, the meander length was fixed close to 700 squares for all +tip sizes. According to the tip size, the track width was adapted so as the serpentine shape occupy the whole +available area on the tip. At ambient temperature, the AuSn layer resistance was found to drift from low values +to their final values during a few days (less than one week) after deposition. After this period, the resistance +was found to be stable at least over 6 months. +Figure 6 (right plot) shows a typical AuSn thermometer resistance R(T0) versus temperature T0 for different +direct current I. Regarding the temperature dependence of resistance, the current density is a more determining +parameter than the total current. Thus, the comparison between left and right plots of figure 6 should be done +at constant values of the ratio of current over track width. At low current density (I � 10µA), the sensitivity +exceeds 1 Ω.mK−1. +At larger current densities, the current-induced magnetic field significantly shifts the +superconducting-metal transition to lower temperature and broaden it, allowing to extend the measurement +range down to 1.6 K and below. +In the range of currents explored in Fig. +6, the reduction of sensitivity +in Ω.K−1 at larger current I is more than compensated by the larger sensitivity in V.K−1 units across the +thermistor. Most measurements presented hereafter are done with a polarization of I ≃ 27 µA. +2.2.2 +Heating +The heater consists in a meander of metal deposited by lithographic technique on the tip of a cantilever, alike +the thermometer (see fig. 5 (left)). The same lithographic mask was used, and therefore the meander length is +also close to 700 squares for all the tip sizes. +As can be seen on figures 4 and 5, a buffer zone was designed between the gold tracks and the meander. Into +this zone, the electrical path is wide but the material is the same as in the meander (platinum for heater). The +buffer zone length is approximately 20 squares. This design aims at providing some thermal isolation between +the meander and the gold track. +Numerous resistive materials are suitable, e.g. chrome was used for the tweezers in [RDD+07] and platinum +in [WVR21]. Present data have been obtained with platinum to benefit from the temperature-independence of +its resistivity at superfluid temperatures [PK82], and nevertheless to allow re-use of these miniature heaters as +miniature thermometers or hot-film anemometers in experiments conducted at higher temperatures where Pt +regains temperature dependence [Kem91]. A 5nm titanium layer was deposited prior to platinum as an adhesion +layer. +The thickness of the Pt layer, around 80 nm, was chosen such that the electrical resistance of the heater at +superfluid temperature is around a few hundreds of ohms, like for the thermometer maximum resistance and +for the same reasons. +The heater is driven with a sinusoidal current at frequency f/2. The resulting Joule effect can be decomposed +into a constant mean heating and the sinusoidal heat flux at the frequency f that drives the second sound +resonance. A benefit of this f/2 excitation is that the signal monitored by the thermometer - centered around f +- is not spoiled by spurious sub-harmonic electromagnetic coupling at f/2 from the excitation circuitry. Thus, +no special care is needed to minimize the electromagnetic cross-talk between the electrical tracks of the heater +and the electrical tracks of the thermometer, despite their proximity. +The non-zero mean heating results is a steady thermal flux in He-II, the corresponding entropy being carried +8 + +10μm +2 + +2.2 + +2.4 + +2.6 + +0 + +0.2 + +0.4 + +0.6 + +0.8 + +1 + +Au 25nm + Sn 90nm + +Au 25nm + Sn 100nm + +Au 25nm + Sn 110nm + +T +λ + transition under saturated vapor +R0 / max(R0) +T0 (K) + +1.7 + +1.8 + +1.9 + +2 + +2.1 + +2.2 + +0 + +100 + +200 + +300 + +1 +μ +A +d +c + + 1 +μ +A +a +c + +3 +μ +A +d +c + + 1 +μ +A +a +c + +10 +μ +A +d +c + + 1 +μ +A +a +c + +20 +μ +A +d +c + + 1 +μ +A +a +c + +30 +μ +A +d +c + + 1 +μ +A +a +c +R0 (Ω) +T0 (K) +Figure 6: +Left: Example of temperature and current dependence of AuSn layers with different Sn thicknesses +deposited on a track of width 50µm . The current polarization spans from 1µA up to 1mA. +Right: Tempera- +ture response of the AuSn track of small tweezers for different electrical currents. The thickness of the tin layer +is 100 nm of Tin, and the width of the track is 4µm. The small difference between both plots -when compared +at similar current densities- is compatible with the uncertainty on the layer thicknesses. This good agreement +indicates that AuSn properties are robust to the full fabrication process of the tweezers. No significant aging of +AuSn properties has been noticed over a few years period. +away from the heater in the form of steady normal fluid flow. This outgoing normal flow is balanced by an +opposite steady mass flow of superfluid towards the heater. Such cross-flows are referred to as counterflows in +the quantum fluid literature[Tou82, NF95]. This steady counterflow adds up to a pure second sound generated +by the heater, but -contrary to it- its effects are not amplified by resonance in the cavity. +Quasi-linear vs non-linear regimes. The second sound resonators are operated with standing waves +of low amplitude, say ∼ 100 µK. +In this limit, the amplitude T of the temperature standing wave nearly +responds linearly to the heating power P. For larger heating power, the ratio T/P decreases with P, which is +interpreted as the result of a turbulent transition within the tweezers which fuels a dense tangle of quantum +vortices dissipating the second sound wave3. The crossover from the quasi-linear to non-linear response of T(P) +is illustrated by figure 7 (left plot) for tweezers at 1.6 K in the absence of external flow. In these conditions and +for these tweezers, the transition occurs around P ≃ 1 W/cm2, where P is the total Joule power normalized +by the heating surface. In other conditions, this transition was observed at smaller power densities, but no +systematic study was carried on the threshold value. +2.2.3 +Digression on the operation in the non-linear heating regime +The present study focuses on the linear regime of heating, but a short digression on higher powers allows +uncovering a noteworthy property of non-linear operation and incidentally backing-up the above interpretations +of the nature of the non-linear regime. Figure 7-right displays the amplitude of the (normalized) temperature +standing wave T/P versus P in flows of different mean velocities U and turbulence intensity of few percents. In +the linear regime (P � 1W/cm2 in the conditions of Fig. 7), the plateaus of T/P decreases when U increases. +Following the classical interpretation (see later), the standing wave T is damped by the vortices present in the +external flow, which concentration increases with U. Interestingly, in the non-linear regime (say for P � 2W/cm2 +in Fig. 7), the dependence of T/P versus U is opposite. The interpretation is that the extra damping of the +3In one dataset, a close look at the quasi-linear region in quiescent superfluid around 1.5 K evidenced a small discontinuity of +T/P versus P dependence around P ⋆ ≃ 10−2W/cm2 (not shown), suggesting another flow transition, but this small effect was +not detectable in other datasets. A Reynolds number of this possible transition can be defined with the transverse characteristic +length scale L ≃ 1 mm, the quantum of circulation κ ≃ 0.997.10−7m2/s and the counterflow superfluid velocity towards the +heater vs ≃ 0.3 mm/s (amplification of velocity by the quality factor of the cavity has not been taken into account). One finds +Res = vsL/κ ≃ 3. Critical Reynolds numbers Res of a few units have already been reported to characterize the threshold of +appearance of a few superfluid vortices across the section of pipes that are closed at one of their ends with a heating plug (see +fig. 3 in [BLR17]), a transition referred as the T1-transition in the counterflow literature [Tou82, NF95]. By analogy, this could +suggest that the discontinuity at P ⋆ might be associated with the appearance of a sparse tangle of the quantum vortices near +the heater, which density is expected to increase for larger P. Such vortices would damp the standing wave, but no such effect +has been detected. Indeed, first the observed damping of the standing wave in quiescent He-II can be accounted for by the sole +effect of diffraction (as shown later), which indicates that all the other sources of loss are comparatively small. Second, loss due to +such “counterflow” vortices would make the T(P) dependence sub-linear rather than linear, which is not clearly observed. Since no +quantitative evidence of these vortices could be clearly identified, this effect was not further explored. +9 + +10-1 +100 +P (W/cm2) +0.8 +1 +1.2 +1.4 +1.6 +1.8 +2 +2.2 +T/P (a.u) +0.5 +1 +1.5 +2 +2.5 +3 +3.5 +P (W/cm2) +-1 +0 +1 +2 +3 +X (mK) +-2 +-1 +0 +1 +2 +3 +Y (mK) +10-1 +100 +P (W/cm2) +0.8 +1 +1.2 +1.4 +1.6 +1.8 +2 +2.2 +T/P (a.u) +Overheating +0 +0.2 +0.4 +0.6 +0.8 +1 +U (m/s) +Figure 7: +Left: Normalized amplitude T of the temperature standing wave versus heating power P for +second sound tweezers in a quiescent He-II around 1.6 K. The transition around P = 1 W/cm2 is interpreted +by the development of a self-sustained vortex tangle within the probe. The insert shows the amplitude of the +temperature standing waves in the complex plane for a subset of frequencies belonging to the same second sound +resonance. In this representation, the extra-dissipation associated with the self-sustained vortex tangle results +in a curvature of the iso-frequency radial “lines” revealing the broadening of the resonance. +Right: Same +quantity for second sound tweezers swept by turbulent flows of different mean velocities but similar turbulence +intensity. In the linear regime P � 1 W/cm2, the velocity dependence is opposite to the one in the non-linear +regime, P � 2 W/cm2, demonstrating respectively vortex and velocity sensing by the probe. +standing wave T now mostly results from the vortices generated within the tweezers by the heating itself. This +vortex density decreases at larger U because vortices are more efficiently swept out of the tweezers. In the +non-linear regime, the second-sound tweezers thus behave as a local anemometer. In the linear regime, we will +show that second-sound tweezers can not only behave as vortex probes -as illustrated by Fig.7-right but also as +anemometers through a mechanism discussed later. +2.3 +Microfabrication and assembling +Mechanical and electrical assembly. +The distance between the plates is set by the spacer, composed of one or several micro-machined silicon +elements. Additionally, two Kapton films with golden copper tracks are inserted in contact with the gold tracks +of the heater and thermometer. The cantilevers, Kapton films and spacer elements are stacked on each other +as shown in Fig.3. The resulting assembly is clamped with a standard picture clip, downsized by electro-wire +erosion, and soldered to the head of a mounting screw. An improvement compared to the clamping technique +introduced in [RDD+07] is the possibility to insert a temporary “joystick” through the whole assembly to allow +precise alignment (or offsetting) of the cavity plates under microscope (see Fig.2-a). +All the mechanical structures of cantilevers and spacers are made of silicon. The cantilevers are fabricated +by processing SOI (Silicon On Insulator) substrates by microelectronic techniques. The substrates diameter +is 100mm, the silicon substrate, oxide and device thicknesses are respectively 500µm, 1µm and 20µm. The +substrates are double side polished. The wafers are oxidized so as to form a 100nm thick SiO2 layer on both +sides. Distinct wafers are used to fabricate heaters and thermometers but the process differs only in the metals +used for tips electrical paths. By using a circular symmetry design, 46 cantilevers are made per wafer. +The cantilevers’ fabrication process is presented in table 1. The serpentine electrical path (red color) is +deposited first on the SOI wafer frontside. The deposition is done using standard photolithography, evaporation +and lift-off sequence. The photoresist used is AZ 5214E from Microchemicals GmbH, processed as a negative +photoresist. Depending on the cantilever type, heater or thermometer, two different evaporation sequences are +used: Ti 5nm + Pt 80nm or Au 25nm + Sn 100nm. Evaporation is preceded by in situ wafer surface cleaning by +an argon ions bombardment during 20s. Lift-off is initiated in an acetone bath during 5min and then completed +by ultrasounds during a few tens of seconds. The current leads (orange color) are deposited during a second +photolithography, evaporation and lift-off sequence. The evaporation sequence is Ti 5nm + Au 200nm + Ti +5nm + Pt 50nm. The usage of a platinum layer was found to facilitate lift-off and may also be useful for brazing +purpose. A thin protective resist layer is deposited on frontside in order to protect it during all subsequent +operations on the backside. +10 + +Figure 8: Overview of mask design (the disk diameter is 100mm). +Side +Step +Surface material +Design +Frontside +1. Electrical circuitry fabrication. +TiAuTiPt (orange) +AuSn/TiPt (red) +Backside +2. Aluminum mask fabrication. +Aluminum +Backside +3. Resist mask fabrication. +4. Etching of surface oxide and +silicon. +5. Resist removal. +Photoresist +Backside +6. Etching of surface oxide and +silicon until buried oxide is reached. +7. Etching of buried oxide. +8. Aluminum removal. +Aluminum +Frontside +9. Resist mask fabrication. +10. Etching of surface oxide and +silicon until opening. +Photoresist +Table 1: Cantilevers fabrication process. +11 + +Phase +Deposition +Etch +Sub-phase +Main +Boost +Main +Gas +C4F8: 250 sccm +SF6: 250 sccm +O2: 45 sccm +SF6: 450 sccm +O2: 45 sccm +Duration +2.2 s +2.0 s +5.5 s +Pressure +14 mTor +20 mTor +75 mTor +Coil power +1200 W +1780 W +1780 W +Platen power +20 W +110 W +50 W +Electromagnet current +0 A +0 A +2 A +Platen frequency +RF 13.56 MHz +He backside pressure +10 Tor +Table 2: Bosch process recipe used during deep silicon etching on backside. +The cantilevers 3D structuration starts with a backside deep etching of silicon. Two superimposed etch +masks are fabricated first, one aluminum mask and one photoresist mask deposited over the aluminum one. +The aluminum mask is made in the same way as the frontside electrical paths. A backside alignment is necessary +during photolithography. The aluminum thickness is 120nm. The protective resist layer on frontside had to be +deposited again after lift-off. The resist mask is made by photolithography on the positive AZ4562 photoresist +spin-coated at 4000rpm. The aluminum mask is identical to the resist mask except within the arm area, as +shown in table 1. This area is covered by resist but not by aluminum. Thus, the resist fully covers aluminum. +After the fabrication of both masks, the deep etching is started, with the resist mask protecting both silicon +oxide and aluminum surfaces. The surface oxide is etched first then the solid silicon. The thin oxide layer is +etched by reactive ion etching (RIE) based on SF6 gas. The silicon was etched in a STS HRM deep reactive +ion etching (DRIE) equipment using a recipe based on Bosch process. The recipe is presented on table 2, the +etch duration is 120 cycles. As shown on table 1, a 200µm wide trench is dug from the backside around the +baseplate and arm areas. The tip area is fully exposed to etching as this part was extracted from the device +layer of SOI only. The longer this phase, the thicker the cantilever arm at the end of process. +Following this first etch phase, the resist is removed by an oxygen plasma and the backside surface oxide is +etched into the freshly uncovered arm area. Then, another silicon etch sequence is applied with the remaining +aluminum mask. Its objective was to thin the arm and to reach the buried oxide of SOI in the trench, at the +same time. The same recipe is used, 200 cycles are applied. The Bosch process is interrupted 3 times, every 50 +cycles, in order to apply a 1min oxygen plasma followed by 20s of an isotropic silicon etching recipe (plasma +pressure 75mTor, SF6 flow 450sccm, O2 flow 45sccm, coil power 1780W, platen power 50W). The objective is +to reduce the parasitic effect generated by the passivation layer deposited on arm sidewalls during the first deep +silicon etching sequence. As the arm area is masked during the first silicon etch sequence and unmasked during +the second one, the passivation layer located along the arm edges is released and could generate locally some +irregular micromasking effect. The oxygen plasma is intended to help remove the floating passivation films. The +isotropic silicon etching is intended to cut the silicon pillars generated by micromasking. The final 50 cycles +of the Bosch process recipe end up reaching the SOI buried oxide layer, at the trench bottom, all around the +cantilever (however the oxide should not be reached into the arm area). It is necessary at this step to check that +the buried oxide is fully uncovered by silicon everywhere in the trench bottom and in the tip area. However, +etching cycles should not be applied in excess so as to avoid some mechanical weakening of the wafer. At this +step, the arm thickness has its final value. The buried oxide is then removed by plasma etching. This oxide +is fully removed at the trench bottom and in the tip area. If this layer is not removed, some bending may +occur on the tip at the end of process, due to mechanical stress of oxide. The aluminum mask is removed in +an aluminum etchant solution at 50°C during a few minutes. The frontside protective resist layer is removed +during an acetone cleaning bath. +The 3D cantilever structuration is ended by a third silicon etching made from the frontside. The etch mask +is formed by photolithography on AZ1512HS resist, deposited at 4000rpm. As shown on table 1, the mask +design includes two bridges on the baseplate sides in order to maintain the cantilever after having opened the +trench that surrounds it. The design also includes the tip contour. The frontside thin surface oxide is etched +first, then the silicon of the device layer. The silicon etching is done with specific conditions. Due to the wafer +mechanical weakness at this step, caused by the multiple deep trenches made on the backside, the processed +wafer is layed on and attached to a blank silicon wafer by Kapton tape. This ensemble is loaded into the etching +chamber. As no thermal bridge is present between the two wafers, the recipe is adapted: low RF powers are +used and a 22s idle time is added after each etching cycle (see table 3). The objective is to avoid overheating +during etching. The silicon etch duration is 50 cycles. +After this sequence, the trench around cantilever is fully opened. The resist is removed by a low power oxygen +plasma. Some spacers are fabricated together with the cantilevers but most of them are made separately from +12 + +Phase +Deposition +Etch +Sub-phase +Main +Delay +Boost +Main +Gas +C4F8: 250 sccm +SF6: 250 sccm +O2: 10 sccm +Duration +3 s +2.0 s +5.5 s +22.5 s +Pressure +14 mTor +20 mTor +40 mTor +40 mTor +Coil power +300 W +300 W +300 W +1 W +Platen power +20 W +100 W +50 W +1 W +Electromagnet current +0 A +0 A +2 A +0 A +Platen frequency +RF 13.56 MHz +He backside pressure +10 Tor +Table 3: Bosch process recipe used during deep silicon etching on frontside. +two silicon wafers with thicknesses 300µm and 525µm. These wafers are covered by thin dielectric layers on +both sides. +2.4 +Electric circuit +Figure 9 shows a circuit used for time-resolved measurements with second-sound tweezers, with example values +of resistances and gain. The time-resolved data presented in this paper have been obtained with such a circuit +and using the following equipment. The front-end of the preamplifier is the EPC1-B model by Celian or an SA- +400F3 model by NF when frequencies above 100 kHz are explored. The lock-in amplifier is a LI-5640 by NF or +Model 7280 by SignalRecovery above 100 kHz. In most conditions, its built-in internal generator provides both +the drive of the tweezers heater (at frequency f/2) and the reference frequency to detect the temperature signal +(at frequency f). The acquisition system is built around PXI-4462 analog input cards by National Instrument, +and it records both the in-phase (X) and quadrature (Y ) signal from the analog outputs of the lock-in amplifier. +In occasional conditions, the temperature signal at the lock-in input is buried in a much larger electro- +magnetic parasitic signal at f/2, and it cannot be properly resolved by the limited voltage dynamic range of +the lock-in amplifier. This situation can occur when the tweezers are operated far from a resonance, where +the second sound signal is small, or when the tweezers are operated at very high frequency (say > 100 kHz), +as electromagnetic coupling increases with frequency. The magnitude of this parasitic coupling depends on +the geometrical and electrical specificities of the tweezers and cables. In the range of parameters explored in +the present study, the order of magnitude of the parasitic voltage induced across the thermometer resistor, +normalized by the voltage applied across the heating resistor, is +0.5% × +f/2 +100kHz +Such situations are handle thanks to the differential input of the lock-in amplifier, by removing a signal +mimicking the parasitic one. In such cases, a two-channel waveform generator is used: one channel driving the +heater (at frequency f/2), another channel mimicking the parasitic signal (at frequency f/2, with manually +tuned amplitude and phase shift) and the "sync" output of the generator synchronizing the lock-in demodulation +(at frequency f). The 33612A generator by Agilent is used for this purpose. Alternatively, the compensation +signal can be generated directly from the lock-in internal generator, completed with a simple RC phase shifter +and eventually ratio transformer. +In principle, any positive temperature coefficient thermistor -like AuSn thermometer- that is not well ther- +malized with the fluid can become unstable when driven by a current source. Indeed, an infinitesimal thermistor +fluctuation from T0 to T0 + δT0 entails a resistance variation of δR = ∂R/∂T0.δT0 > 0, leading to an excess of +Joule dissipation δR.I2 for a constant current drive I. Calling Rth is the thermal resistance of the thermistor- +fluid interface, this extra Joule dissipation results in an overheating Rth × δR.I2 which could lead to a thermal +instability. The stability condition is difficult to predict for spatially distributed thermistor deposited on a +Si crystal and immersed in superfluid. Thus, first tests have been done with a voltage polarization, before +validating empirically the stability of our current polarization. +The frequency bandwidth of the measurements is arbitrarily set by the integration time constant of the +lock-in amplifier. In practice, the performance of the circuit are limited by the 0.65 nV/ +√ +Hz input voltage +noise of the EPC1-B pre-amplifier, all other sources of noise being smaller. For a 27 µA current polarization, a +thermometer sensitivity of 0.5 Ω.mK−1, and a 10 Hz or 1000 Hz bandwidth of demodulation, the temperature +resolution Trms is : +Trms = +√ +10.0.65 +0.5 × 27 µK ≃ 150nK for a 10 Hz measurement bandwidth +13 + +300 kΩ +acquisition +system +10 kΩ +400 Ω +Tweezers heater +Reference +clock +9V batteries +quadrature +phase +Optional noise compensation +Low noise AC preamp +(40 - 50 dB) +Lock-in amplifier +(at freq. f ) ++ +- +Freq. f/2, phase φ +r1 +r2 +Freq. f/2 +Tweezers thermometer +(0 - 300 Ω) +R(T0) +Current source (typ 30 µADC) +Figure 9: Example of circuitry for measurements with a high dynamical reserve. +or +Trms = +√ +1000.0.65 +0.5 × 27 +µK ≃ 1.5µK for a 1 kHz measurement bandwidth +These resolutions are sufficient in standard conditions. Indeed, they are respectively 3 and 2 decades smaller +than the typical amplitude of a second sound at resonance, and reaching the same temperature resolution at +significantly larger bandwidth would be useless given the space-time resolution of the probe itself. If needed, +better resolution could nevertheless be achieved with a larger polarization across the thermometer or using a +cryogenic amplifier (e.g. see [DLF+14] and http://cryohemt.com) before being limited by the thermal noise +floor of the thermistor (typ. 0.15 nV/ +√ +Hz for 200 Ω at 2 K). +3 +Models of second sound resonators +The second sound equations within the linear approximation can be written in terms of the temperature fluc- +tuations T and the velocity of the normal component vn as +∂tvn + σρs +ρn +∇T = 0, +(1) +∂tT + σT0 +cp +∇.vn = 0. +with σ the entropy per unit of mass, cp the heat capacity, and ρs , ρn are the densities of the superfluid and +normal components respectively. All along the present section, T0 is the notation for the bath mean temperature +whereas T denotes the temperature fluctuations, with ⟨T⟩ = 0. +We introduce the second sound velocity c2 defined by the relation +c2 +2 = ρs +ρn +σ2T0 +cp +. +(2) +It can be deduced from Eqs. (1) that both the temperature T and the normal velocity vn follow the wave +equation +∂2 +t T − c2 +2∆T = 0. +(3) +We explain in the present section how Eqs. (1-2-3) can be used to build quantitative models of second sound +resonators. We first focus on phenomenological aspects in sec. 3.1. Then, we give analytical approximations in +sec. 3.2 and an accurate numerical model in sec. 3.3. Finally, we discuss the model quantitative predictions in +secs. 3.4 and 3.5. +14 + +Heater +Thermometer +z=0 +z=D +Figure 10: Schematic representation of the second resonant mode of a second sound cavity. The red curve +displays the temperature field at time t = 0, and the blue curve displays the normal fluid velocity vn at time +t = +1 +4f , where f is the excitation frequency. +3.1 +Resonant spectrum of second sound resonator: phenomenological aspects +The basic idea of second sound resonators is to create a second sound resonance between two parallel plates +facing each other. A second sound wave is excited with a first plate, while the magnitude and phase of the +temperature oscillation is recorded with the second plate used as a thermometer (see Fig. 10). For simplicity, +we assume from now on that the second sound wave is excited by a heating, but the whole discussion can be +straightforward extended to nucleopore mechanized resonators. The temperature oscillations within the cavity +are coupled to normal fluid velocity oscillations according to the second sound equations (1). Both components +oscillate in quadrature, which means that they reach their maximal amplitude with a +1 +4f time shift (Fig. 10). +We note jQ = j0e2iπft the periodic component of the heat flux emitted from the heater. +We assume +throughout the present article perfectly insulating plates, which means that the boundary conditions for the +second sound wave are +vn.n = +� +0 +for z = D +jQ +ρσT0 +for z = 0 , +(4) +where n is the unit vector directed inward the cavity and normal to the plates. The second equation in (4) +reflects the fact that the normal component carries all the entropy in the fluid. As illustrated in Fig. 10, +the thermometer plate is a node of the normal velocity oscillation, whereas the normal velocity amplitude only +vanishes on the heater plate in quadrature (t = +1 +4f + n +2f ). According to the first relation in Eq. (1), the boundary +conditions (4) for the normal velocity translate into the following boundary conditions for the temperature field +∇T.n = +� +0 +for z = D +− ρn∂tjQ +ρρsσ2T0 +for z = 0 . +(5) +In particular, the thermometer plate is an antinode for the temperature. +We display in Fig. 11 a typical experimental spectrum of second sound tweezers, that is, the temperature +magnitude averaged over the thermometer plate, as a function of the heating frequency f. The spectrum is +reminiscent of a Fabry–Perot resonator (described in sec. 3.2): it displays very clear resonant peaks almost +equally separated, and a stable non-zero minimum at the non-resonant frequencies. However, the spectrum of +Fig. 11 displays three major characteristics that can be observed for every tweezers spectrum. First, the location +of the resonant frequencies are slightly shifted compared to the standard values fn given by 2πfnD +c2 += nπ, (n ∈ N) +expected for an ideal Fabry–Perot resonator. Only for large mode numbers do the resonant peaks again coincide +with the expected values. Second, the temperature magnitude vanishes in the zero frequency limit, and the +first modes of the spectrum grow linearly with f. In between, the resonant amplitudes saturate and then slowly +decrease at high frequency. +These latter peculiarities of the frequency response were not described in previous references about second +sound resonators. This prompted us to study different models for second sound resonators, including the finite +size effects and near field diffraction phenomena. +We first describe analytical approximations in sec. +3.2, +then we develop in sec. 3.3 a numerical algorithm based on the exact solution of the wave equation (3). The +numerical scheme can be adapted for various types of planar second sound resonators. We then give quantitative +predictions specifically for the response of second sound tweezers without and in the presence of a flow in sec. +3.4 and a summary of the main results in sec. 3.5. +3.2 +Analytical approximations +The starting point to build our model of second sound tweezers is to assume that all zeroth order physical +effects observed with the tweezers are geometrical effects of diffraction. +This means in particular that we +assume perfectly reflecting resonator plates, and we also neglect bulk attenuation of second sound waves when +15 + +0 +10 +20 +30 +40 +50 +60 +70 +f (kHz) +0 +0.2 +0.4 +0.6 +0.8 +1 +T (K) +10-4 +Linear growth of +the first modes +Stable baseline +Decrease at high +frequency +Figure 11: Experimental spectrum of second sound tweezers of lateral size L = 1 mm and gap D ≈ 1.435 mm. +f is the heating frequency, and T is the thermal wave magnitude. The figure displays the main characteristics +of tweezers typical spectrum: first, the resonant frequencies are not located at the values fn given by 2πfnD +c2 += +nπ, (n ∈ N), displayed by the gray vertical lines. The amplitudes of the resonant modes first increases linearly +with f until they saturate and eventually decrease at high frequency. The baseline level only weakly depends +on f. +the fluid is at rest [CR83, RG84]. These assumptions turn to be self-consistent, because the predictions of +the model developed in sec. 3.3 reproduce the main features observed in experiments. We thus start with +the simplest model of a resonant cavity for planar waves, namely the Fabry–Perot model. We then propose +variations of the Fabry–Perot model, taking progressively into account the particular resonator geometry. We +discuss the predictions of these models and their relevance for our second sound tweezers. +The standard Fabry–Perot model +The Fabry–Perot model corresponds to a one-dimensional resonator +composed of two infinite parallel plates separated by a gap D. In that case, the wave Eq. (3) together with the +boundary conditions Eqs. (5) can be solved exactly, for a periodic heating jQ = j0e2iπft . However, as there is +no energy loss between two perfectly insulating and infinite plates, a bulk dissipation has to be introduced by +hand in the model, to balance energy injection from the heater. This can be done with an additional dissipation +coefficient ξ (in m−1). The temperature at the thermometer plate is T(t) = Re +� +Te2iπft� +(where Re is the real +part operator) with the complex wave amplitude T given by +T = +A +sinh +� +i 2πfD +c2 ++ ξD +�, +(6) +with A = − +j0 +ρcpc2 . An illustration of a Fabry–Perot spectrum is displayed in grey in Fig. 14, with ξD = 0.15 +and A = 1. We introduce the wave number k = 2πf +c2 . It can be proved from Eq. (6) that the spectrum maxima +are reached for the values knD = nπ, (n ∈ N), and correspond to constructive interferences in the cavity. The +baseline level is set by the minima reached for the values knD = nπ + π +2 , (n ∈ N), and correspond to destructive +interferences in the cavity. For the simple Fabry–Perot model of Eq. (6), all the resonant peaks have equal +height and are uniformly separated. Therefore, some main features of experimental spectra are missing, an +indication that important other physical effects have to be included in the model. +Second sound resonators embedded in infinite walls +A possible modification of the Fabry–Perot res- +onator is to consider finite-size heater and thermometer of size L embedded in two parallel and infinite walls +facing each other. This geometry is most commonly encountered in the literature. With such a configuration, +16 + +the thermal wave is not a plane wave any more because it is emitted by a finite size heater. The model thus +contains diffraction effects, that the simplest Fabry–Perot resonator do not display. An illustration of the model +setup is displayed in Fig. 12. An exact solution of the wave equation Eq. (3) can be found using the technique +of image source points. Let Σ1 be the heating plate and Σ2 be the thermometer plate, and we assume that the +thermometer is sensitive to the average temperature over Σ2. Then the response of the tweezers is given by +T(t) = Re +� +Te2iπft� +with +T = +ikj0 +2πρcpc2 +1 +L2 +� +Σ2 +d2r2 +� +Σ1 +d2r1G (r2 − r1) , +with the Green function G(r) defined for every vector r in the (x, y) plane +G(r) = 2 ++∞ +� +n=0 +1 +|(2n + 1)Dez + r|e−ik|(2n+1)Dez+r|. +Such a model correctly predicts that the tweezers spectrum vanishes when the heating frequency f goes to zero. +Yet, it does not reproduce the linear increase of the resonant magnitude of the first modes, neither the decrease +of the resonant peaks at large frequency observed in experiments with second sound tweezers. This means that +other effects have to be taken into account to model a fully-immersed open resonant cavity such as non-perfect +plates alignment and energy loss by diffraction outside the cavity when the latter is not embedded in infinite +walls. +Empirically modified Fabry–Perot model +Contrary to a Fabry–Perot resonator composed of infinite +plates, second-sound resonators are built with plates of finite size L, approximately of the same order as the +gap D between them. Those finite size effects are important as they introduce a frequency-dependent energy +diffracted outside the cavity. This mechanism is sketched in Fig. 12. According to standard diffraction theory, +a finite wave initially of size L with a wavelength λ = c2 +f spreads with a typical opening angle given by λ +L. By +this geometrical effect, a part of the wave energy is lost as the wave reaches the other side of the cavity. The +energy loss is roughly proportional to the surface of the wave cross-section that “misses” the reflector (see the +right panel of Fig. 12). Therefore, the fraction of energy lost at the wave reflection is controlled by the ratio +� +L + 2λD +L +�2 − L2 +� +L + 2λD +L +�2 +≈ 4λD +L2 , +(7) +≈ +4 +NF +, +where we have introduced the Fresnel number NF = L2 +λD. +The tweezers plates are mounted at the top of arms of a few millimeters. The perfect parallelism of the plates +is usually not reached for our tweezers, but a small inclination γ of the order of a few degrees can be observed +instead. A relative inclination γ -even small- of both plates creates an additional energy loss mechanism (see +Fig. 13). Intuitively, this second mechanism is controlled by the non-dimensional number +Ni = λ +γL. +(8) +We assume that the Fabry–Perot model (6) can be corrected using the two non-dimensional numbers NF = +L2f +c2D in Eq. +(7) and Ni = +c2 +γfL in Eq. +(8). +More precisely, based on empirical observations, we find that +second-sound tweezers spectra can be accurately represented by the formula +T = +A +sinh +� +i +� +2πfD +c2 +− a c2D +L2f +� ++ b c2D +L2f + c +� +γfL +c2 +�2�, +(9) +where a, b and c are fitting coefficients. As there is no other small parameter in the problem, a reasonable +assumption is to look for coefficients of order one. We find that the values a ≈ 0.95, b ≈ 0.38 and c ≈ 1.3 give +accurate spectra predictions. An illustration of a modified Fabry–Perot spectrum with Eq. (9) is given in Fig. +14. The linear amplitude growth of the first resonant peaks can be interpreted as a progressive focalization of +the wave, and is thus controlled by the Fresnel diffraction number NF in Eq. (12). The shift proportional to +1 +f in peaks frequency positions, observed in the experimental spectra, is also controlled by NF . The decrease +in resonant magnitude for large mode numbers can be interpreted as a wave deflection outside the cavity, after +back and forth propagation between the plates. This latter effect is controlled by the second non-dimensional +number Ni in Eq. (8). +17 + +L +L +D +L +Thermal wave +Figure 12: Representation of the wave dispersion. The energy loss is controlled by the non-dimensional number +λ +L, according to standard diffraction theory. In this section, we discuss both the case of tweezers embedded in +walls, and the case of free tweezers in open space. +Figure 13: Effect of the plates’ inclination γ. Inclination creates an additional energy loss mechanism controlled +by the second non-dimensional number +λ +γL. +18 + +20 +2 +4 +6 +8 +10 +12 +14 +kD +0 +1 +2 +3 +4 +5 +6 +7 +T +inclination +effect +destructive interferences +focalization +of the wave +Figure 14: Analytical models of second-sound tweezers. The grey curve represents the standard Fabry-Perot +spectrum. The blue curve represents the empirical correction of the Fabry-Perot formula using the two non- +dimensional numbers +λ +L and +λ +γL. +The modified spectrum displays the characteristic features of a tweezers +experimental spectrum, as displayed in Fig. 11. +The major interest of the Fabry–Perot model is to offer an analytical expression to fit locally a resonant peak +of second sound resonator spectrum. The local fit of a peak is of particular interest to interpret the experimental +data, as will be explained in sec. 4. Based on Eq. (9), given a measured resonant frequency f0, we will look for +a fitting expression +T = +A +sinh +� +i 2π(f−f0)D +c2 ++ ξ0D +�, +(10) +valid for second sound frequencies f close to f0. In that expression, ξ0 encapsulates the different geometrical +mechanisms responsible for energy loss when the fluid is at rest. A and ξ0 are thus fitting parameters that can +be found easily with the experimental data obtained by varying f in the vicinity of f0. +3.3 +Numeric algorithm +Sec. 3.2 presents a class of models of increasing complexity, still with an analytical solution. Those models +show how all zeroth-order effects observed with second sound resonators can be recovered from geometrical +diffraction effects. However, they do not allow for quantitative predictions of the resonator spectra, nor do +they allow including the effects of a flow. We develop in the present section a numerical algorithm, based on +the exact resolution of the wave equations with the particular tweezers geometry, with and without flow. The +algorithm could be extended to any second sound resonator with a planar geometry. As will become clear in +the following, this numerical model allows going far beyond the approximate models of sec. 3.2. +3.3.1 +For a backgroud medium at rest +The aim of the present section is to build a numerical algorithm to solve the wave equation (3) for a periodic +heating jQ = j0e2iπft. We look for a solution with the ansatz T(r, t) = Re +� +T(r)e2iπft� +. Then, the wave +equation for T is +∆T + k2T = 0, +where we have introduced the wave number k = 2πf +c2 . The boundary conditions are +� +∇T(r).n1 = − ikj0 +ρcpc2 +for r ∈ Σ1 +∇T(r).n2 = 0 +for r ∈ Σ2 +, +(11) +where Σ1 is the heater plate and Σ2 the thermometer plate. The notations are given in Fig. 15. We propose +the method described below, based on the Huyggens–Fresnel principle. The principle states that every point +19 + +of the wave emitter can be considered as a point source. The linearity of the wave equation can then be used +to reconstruct the entire wave by summation of all point source contributions. The Huyggens–Fresnel principle +has been widely used in the context of electromagnetism, for example to compute diffraction patterns produced +by small apertures, or interference patterns... The major difficulty in the context of second sound tweezers is +that none of the standard approximations of electromagnetism can be done, neither the far-field approximation +nor the small wavelength approximation. This explains why numerical resolution is very useful in this context. +We neglect the tweezers arms, which means that both plates are considered as freestanding, infinitely thin +and perfectly insulating plates. We allow a relative inclination γ around the x-axis and a possible relative lateral +shift Xsh of one plate with respect to the other along the x-axis. We assume that the thermometer is sensitive +to the temperature averaged over Σ2. +Let us introduce the Green function +G(r) = 1 +|r|e−ik|r|, +(12) +which is the fundamental solution of the wave equation +∆G + k2G = 4πδ(r). +(13) +Let Σ be one of our two square plates, and U(r′) be a smooth function defined over Σ. We introduce the wave +defined by +T(r) = −1 +2π +� +Σ +G(r − r′)U(r′) d2r′. +(14) +By linearity, T is a solution of Eq. (3), for all r /∈ Σ, because G is a solution. A asymptotic calculation in the +vicinity of Σ then shows that T satisfies the boundary condition +∇T(r).n +−→ +r→r0∈Σ U(r0), +(15) +where n is the unit vector normal to Σ and directed inward the cavity (see Fig. 15). We are going to use Eqs. +(14) and (15) as the two fundamental relations to build our algorithm. We will compute the solution of the +wave equation as an infinite summation of all the emitted and reflected waves in the cavity. +The first wave T 1 is emitted by the heating plate Σ1 and satisfies the first relation in Eq. (11) +∇T 1(r).n1 = − ikj0 +ρcpc2 +for r ∈ Σ1. +Given Eq. (14) and (15), it is clear that the first wave is given by +T 1(r) = +ikj0 +2πρcpc2 +� +Σ1 +G(r − r′) d2r1. +(16) +Then each time a wave denoted T n hits a plate Σ (Σ1 or Σ2), it produces a reflected wave T n+1 to satisfy the +boundary condition +∇ +� +T n(r) + T n+1(r) +� +.n = 0. +(17) +The situation is sketched in the left panel of Fig. (15). If we choose for T n+1 the expression +T n+1(r) = 1 +2π +� +Σ +G(r − r′) +� +∇T n(r′).n +� +d2r′, +(18) +then Eq. (15) shows that Tn+1 satisfies the boundary condition +∇T n+1(r).n +−→ +r→r0∈Σ −∇T n(r0).n, +which is exactly Eq. (17). Eqs. (16) and (18) define our recursive algorithm. Eq. (18) shows that the reflected +wave is generated by the gradient of the incident wave. Practically, the recursive computation of all forth and +back reflected waves thus requires at each step n the computation of ∇T n only on the plates, rather than T n. +For a reflection at (say) Σ1, we have +∇T n+1(r).n2 = −1 +2π +� +Σ1 +G(r − r1) +� +1 +|r − r1| + ik +� +n2. r − r1 +|r − r1| +� +∇T n(r1).n1 +� +d2r1, +(19) +20 + +D +L +Thermometer +L +n2 +Heater +heat flux +n1 +x +y +z +Xsh/2 +Xsh/2 +n +Figure 15: Left: Geometrical setup of the numerical algorithm and notations. Right: Representation of an +incoming and outcoming wave at the nth reflection. +The solution of the wave equation is finally given by the superposition of all waves T n, that is +T(r) = ++∞ +� +n=1 +T n(r), += 1 +2π +� +Σ1 +G(r − r1) ++∞ +� +n=0 +� +∇T 2n+1(r1).n1 +� +d2r1 ++ 1 +2π +� +Σ2 +G(r − r2) ++∞ +� +n=1 +� +∇T 2n(r2).n2 +� +d2r2. +and the thermometer response is given by +� +T +� +Σ2 = 1 +L2 +� +Σ2 +T(r) d2r. +A simulation of the temperature field at t = 0 of the 5th resonant mode of second sound tweezers with aspect +ratio L +D = 0.4, without lateral shift nor inclination of the plates, is displayed in Fig. 16. It can be clearly seen +in particular that the amplitude of the temperature field decreases along the z-axis contrary to a Fabry–Perot +resonator. This symmetry breaking is due to the diffraction effects associated with the finite size of the plates. +A bulk dissipation can be included in the algorithm, for example, to account for quantum vortex lines inside +the cavity. In that case, let ξ be the second-sound attenuation coefficient (in m−1), the wave number k = 2πf +c2 +of the Green function (12) should be replaced by +k = 2πf +c2 +− iξ. +(20) +3.3.2 +In the presence of a turbulent flow +One of the aims of second-sound resonator modelling is to understand their response in the present of a flow +U sweeping the cavity. One effect of the flow is to advect the second sound wave. In the present section, we +explain how the algorithm of sec. 3.3.1 should be modified to account for this effect. We assume in the following +that the inequality |U| < c2 is strictly satisfied, which means that the flow is not supersonic for second sound +waves. +In the presence of a non-zero flow U, the Green function (12) becomes +G(r, t) = +e−2iπft∗ +|r − Ut∗| +� +1 + U +c2 . r−Ut∗ +|r−Ut∗| +�, +(21) +21 + +2mTn+1Figure 16: +Left: Temperature field fluctuations of the 5th resonant mode of second sound tweezers with aspect +ratio L +D = 0.4, and heating power jQ = 0.185 W/cm2, at the bath temperature T0 = 2K. Right: Temperature +field fluctuations for the same conditions with an additional flow of velocity U +c2 = 0.18 directed upward . The +nodes of the temperature standing wave correspond to antinodes of sound sound velocity, and vice-versa. +where t∗ is the time shift corresponding to the signal propagation from the source +|r − Ut∗| = c2t∗. +(22) +In practice, the flow velocity range reached in quantum turbulence experiments is most often much lower than +the second sound velocity, with |U| hardly reaching a few m/s. Most experiments are done in the temperature +range where 10 < c2 < 20 m/s. We thus introduce the small parameter β = |U| +c2 ≪ 1. Similarly to the standard +approximations of electromagnetism, we assume that the effect of β is mostly concentrated in the phase shift +e−2iπft∗ of Eq. (21). We use the approximation |r − Ut∗| +� +1 + U +c2 . r−Ut∗ +|r−Ut∗| +� +≈ |r|, and we solve Eq. (22) to +obtain t∗ to leading order in β. The Green function then becomes +G(r, t) = e−ik|r|Γ(r,U) +|r| +, +(23) +where as previously k = 2πf +c2 +and +Γ (r, U) = 1 − U +c2 +. r +|r|. +The algorithm detailed in sec. 3.3.1 can be applied straightforward with the Green function Eq. (23). In +particular, Eq. (19) becomes +∇T n+1(r).n2 = −1 +2π +� +Σ1 +G (r − r1, U) +�� +1 +|r − r1| + ik +� r − r1 +|r − r1|.n2 − ik U +c2 +.n2 +� � +∇T n.n1 +� +(r1) d2r1. +(24) +A simulation of the temperature field at t = 0 of the 5th resonant mode of second sound tweezers with aspect +ratio +L +D = 0.4, without lateral shift nor inclination, and with a flow of velocity +U +c2 = 0.18, is displayed in the +right panel of Fig. 16. The effect of the flow can be clearly seen with the upward distortion of the antinodes of +the wave, compared to the reference temperature profile without flow displayed in the left panel. +3.4 +Quantitative predictions +We present in this section the quantitative results obtained with the algorithm of sec. 3.3. The algorithm is +specifically run in the configuration of second sound tweezers, but most predictions are relevant for other types +22 + +Thermometer +Thermometer +Heater +Heater +-0.15-0.1 +-0.05 +-0.15 -0.1 -0.05 +0.05 +0.15 +0.05 +0.1 +0.15 +0 +T (mK) +T (mK)of second sound resonators. We first show that the algorithm can quantitatively account for the experimental +spectra. We then use it to predict the response in the presence of a flow and a bulk dissipation in the cavity. +The predictions are systematically compared to experimental results for second sound tweezers. We eventually +display some experimental observations that illustrate the limits of our model. +3.4.1 +Spectral response of second sound resonators +Given a resonator lateral size L, the model of sec. 3.3 has three geometrical parameters : the gap D, the +inclination γ and the lateral shift Xsh (see notations in Fig. 15). We first sketch qualitatively the importance +of those three parameters. +The gap D is the main parameter: it sets the location of the resonant frequencies, and the quality factor of +the resonances at low mode numbers. For second sound tweezers, the value of D can be usually obtained within +a precision of a few micrometers (D is of the order of 1 millimeter). The relative inclination of the plates γ is +responsible for the saturation of the resonant magnitude and its decrease at large mode numbers. It is typically +smaller than a few degrees. Contrary to the gap, only the order of magnitude of γ, not its precise value, can +be determined from the tweezers spectrum. The lateral shift Xsh has very little impact on the spectrum if the +value Xsh +L +remains small enough (we can typically reach Xsh +L +< 0.1 in the tweezers fabrication). However, the +effect of this parameter is of paramount importance to understand open cavity resonators response in a flow +(such as second sound tweezers), and will be investigated in sec. 3.4.2. We consider the case Xsh = 0 in the +present section. The tweezers size L is known from the probe fabrication process. +The method goes as follows: we first find a gap rough estimation �D, for example from the average spacing +between the experimental resonant peaks. Then we can run a simulation for parallel plates (γ = 0), unit gap +D = 1, and aspect ratio L +� +D, in the range 0 < k∗ < nπ (where n is the number of modes to be fitted, and k∗ = kD +is the non-dimensional wave number). This gives a function fL/ � +D(k∗). The experimental spectrum can then +be fitted with the function T(f) = AfL/ � +D( 2πfD +c2 +), where A and D are the two free parameters to be fitted, +provided the experimental value of c2 is known. The high sensitivity of the location of the resonant frequencies +makes this method very accurate to obtain the gap D. +Once D has been found, new simulations have to be run to find the order of magnitude of γ. +As was +previously said, γ controls the saturation and the decrease of the resonant magnitudes for large mode numbers. +Its value can thus be approximated from a fit of the resonant modes with the largest magnitude. A fit of an +experimental tweezers spectrum is displayed in Fig. 17. The values of the fitting parameters for this spectrum +are D = 1.435 ± 0.003 mm and γ = 4.2 ± 0.5 deg. Given the simplicity of the model assumptions, in particular +the assumptions of perfectly insulating and infinitely thin plates without support arms, the agreement with +experimental results is very good. +Interestingly, the resonators can also be used in some conditions as thermometers. Once the gap D is known +with high enough precision, the spectrum can be fitted using c2 as a fitting parameter instead of D. Away from +the second sound plateau of the curve c2(T0) located around 1.65 K, the value of c2 obtained from the spectrum +gives access to the average temperature with a typical accuracy of one mK, simply by inverting the function +c2(T0). +3.4.2 +Response with a flow +Once the characteristics of the resonator have been determined with a background medium at rest, their response +in a flow can be studied using the modified algorithm presented in sec. 3.3.2. We experimentally observe that +the tweezers response is attenuated in the presence of a superfluid helium flow. This attenuation is related to +two physical mechanisms, illustrated in Fig. 18: first, the thermal wave crossing the cavity is damped by the +quantum vortices carried by the flow. This type of damping is usually considered as being proportional to the +density of quantum vortex lines between the plates. Second, the flow mean velocity is responsible for a ballistic +advection of the thermal wave outside the cavity. The thermal wave emitted by the heater partly “misses” the +thermometer plate, and, even if the wave is not attenuated, a decrease of the tweezers’ response will be observed. +Both mechanisms described above exist in experimental superfluid flows, and cannot be observed independently: +once there is a superfluid flow, quantum vortices are created. One key objective is to be able to separate the +attenuation of the experimental signal due to bulk attenuation inside the cavity, from the attenuation due to +ballistic advection of the wave outside the cavity. We will introduce a mathematical procedure to perform such +a separation on a fluctuating signal. +What cannot be experimentally achieved can be simulated with the tweezers model developed in sec. 3.3. +The bulk dissipation can be implemented in the algorithm with a wave number complex part ξ (see Eq. (20)), +and the flow ballistic deflection can be implemented with a non-zero velocity U (see Eqs. (23-24)). Both effects +can be independently studied, setting alternatively ξ or U to zero. We first detail below the respective effects +23 + +0 +10 +20 +30 +40 +50 +60 +70 +f (kHz) +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +T (K) +10-5 +Experimental data +Numerical simulation +Figure 17: Prediction of the second sound tweezers experimental spectrum of Fig. +11 using the numerical +algorithm. The fitting parameters are the gap D, the inclination γ and the total heating power. +Heater +Thermometer +Bulk +dissipation +Heater +Thermometer +Flow +Figure 18: Schematic representation of the two attenuation mechanisms. +The top panel illustrates a bulk +dissipation of the wave, due for example to the presence of quantum vortices. The bottom panel illustrates the +ballistic deflection of the wave by a flow directed parallel to the plates. +24 + +2 +2.2 +2.4 +2.6 +kD +1 +1.5 +2 +2.5 +3 +T +0 +1 +2 +X +-1.5 +-1 +-0.5 +0 +0.5 +1 +1.5 +Y +0 +0.05 +0.1 +0.15 +0.2 +Figure 19: Numerical simulation: collapse of a resonance due to increasing values of the bulk attenuation ξ. +The left panel display the magnitude of the thermal wave as a function of the wavevector k, and the right panel +display the same resonance in the phase-quadrature plane. It can be seen that the bulk attenuation results in +an homothetic collapse of the resonance, that means, without global phase shift. For a given value of k, the +model predicts that attenuation is directed toward the center of the resonant Kennelly circle (red curves of right +panel). +of ξ and U for perfectly aligned plates (Xsh = 0). +Fig. 19 display the result of a numerical simulation for second sound tweezers of aspect ratio L/D = 1, γ = 0 +and increasing values of bulk dissipation in the range 0 < ξD < 0.2. The left panel display the magnitude of the +second resonant mode as a function of the wave number, and the right panel display the same resonant mode in +the phase-quadrature plane. More precisely, if we call T(k) the thermal wave magnitude recorded by the ther- +mometer, and ϕ(k) its phase, the right panel display the curve Y (k) = T(k) sin(ϕ(k)), X(k) = T(k) cos(ϕ(k)). +The resonant curve (Y (k), X(k)) is called in the following the resonant “Kennelly circle”, because the curve is +very close to a circle crossing the origin. It can even be shown that the resonant curve becomes closer to a +perfect circle for increasing resonant quality factors. The major characteristic to be observed in Fig. 19 is that +the collapse of the resonant Kennelly circle due to bulk attenuation is homothetic. It means that the different +curves have no relative phase shift between each other, when the bulk attenuation increases. The red curves +in the right panel display the displacement in the phase-quadrature plane for a fixed value of the wavevector. +The model predicts that the displacement is directed toward the Kennelly circle center, which implies that +the path at fixed wavevector approximately follows a straight line. By comparison, the left panel of Fig. 21 +display an experimental resonance in the phase-quadrature plane, for second sound tweezers of size L = 1 mm in +superfluid Helium at 1.65 K. The global orientation of the resonant Kennelly circles is simply due to a uniform +phase shift introduced by the measurement devices, and should be overlooked. It can be seen that the resonance +collapse with increasing values of the flow velocity follows the predictions of Fig. 19: it is homothetic. The +red paths correspond to the tweezers signal at fixed heating frequency. Those paths follow approximately a +straight line directed to the Kennelly circle center. The slight deviation in the path orientation compared to +the predictions of Fig.19 can be explained by a second sound velocity reduction and will be discussed in sec. 3.4.4. +Fig. 20 display the result of a numerical simulation for second sound tweezers of aspect ratio L/D = 1, +γ = 0, with ξ = 0 and a flow mean velocity 0 < +U +c2 < 0.2. As there is no tweezers lateral shift Xsh = 0, +negative velocities would lead to the same result from symmetry considerations. The figure illustrates the effect +of pure ballistic advection on a resonance in the phase-quadrature plane. First, it can be seen that the collapse +of the resonant Kennelly circle is accompanied by a relative anti-clockwise phase shift of the curves when the +velocity increases. Also, the displacement of the tweezers signal at fixed wavenumber follow the red straight +paths directed anti-clockwise. This type of signal strongly contrasts with the one of Fig. 19 obtained for a +pure bulk attenuation. The prediction of the left panel in Fig. 20 cannot be directly compared to experiments +because, as stated before, a superfluid flow always carries quantum vortices that overwhelm the tweezers signal +for tweezers satisfying Xsh ≈ 0. +25 + +0 +1 +2 +X +-1.5 +-1 +-0.5 +0 +0.5 +1 +1.5 +Y +0 +0.05 +0.1 +0.15 +0.2 +-0.5 +0 +0.5 +1 +1.5 +X +-1 +-0.5 +0 +0.5 +1 +Y +-0.2 +-0.15 +-0.1 +-0.05 +0 +0.05 +0.1 +0.15 +0.2 +U/c2 +Increasing U +-0.2 +0 +0.2 +U/c2 +-0.5 +0 +0.5 +s +s +Figure 20: Numerical simulation: collapse of a resonance due to ballistic deflection of the thermal wave +in the presence of a flow of velocity U, without bulk attenuation (ξ=0). The left panel display the result for +tweezers without lateral shift (Xsh = 0). Contrary to the results of Fig. 19, it can be seen in the present case +that the collapse is associated with a global anti-clockwise phase shift of the resonant Kennelly circle. Each +red curve represents the attenuation at a given value of the wavevector k. The right panel display the result +for tweezers with a strong lateral shift Xsh = 0.5 × L (where L is the tweezers size). Such tweezers are very +sensitive to the velocity U, with both an attenuation of the resonance and a strong clockwise angular shift of +the Kennelly circle. We note s the curvilinear abscissa of the curve obtained at a given value of k (red curve). +The inset displays the function s(U). This shows that, once calibrated, second-sound tweezers can be used as +anemometers. +3.4.3 +Effect of lateral shift of the emitter and receiver plates +We discuss in this section the consequences of a lateral shift, that is Xsh ̸= 0 with the notations of Fig. 15. +Contrary to the previous sections, the present discussion is restricted to second sound tweezers, for which a +lateral shift has major quantitative effects. A lateral shift would not be as important, for example in the case +of wall embedded resonators. +The lateral shift has a marginal effect on the tweezers spectrum when the background fluid is at rest. An +effect only appears in the presence of a nonzero velocity specifically oriented in the shifting direction U = Uex, +because of the mechanism of ballistic advection of the thermal wave by the flow (see the representation of the +mechanism in Fig. 18). The importance of this effect depends on the tweezers aspect ratio, on the reduced +velocity β = U +c2 , and on the lateral shift Xsh. The lateral shift in the plates’ positioning magnifies the signal +component related to ballistic advection. This property opens the opportunity to build second sound tweezers +for which ballistic advection of the wave completely overwhelms bulk attenuation from the quantum vortices, +which means that the tweezers signal is in fact a measure of the velocity component in the shifting direction. +We illustrate this mechanism in Fig. 20. +The right panel displays a numerical simulation of a tweezers resonant mode in the phase-quadrature plane, +for the parameters L +D = 1, γ = 0 and Xsh = 0.5, for positive and negative values of the flow velocity in the range +−0.2 < U +c2 < 0.2. As can be seen at the first sight, the deformation of the resonant curve - that we equivalently +call the “Kennelly circle” - is very different from a deformation due to a bulk attenuation (see Fig. 19). First, +we observe that the deformation can result in an increase of the magnitude of the thermometer signal, when +the velocity is negative. This can be explained in this configuration, because the thermal wave emitted by the +heating plate is redirected toward the thermometer plate: less energy is scattered outside the cavity when the +wave is first emitted by the heater, and the signal magnitude increases. On contrary, the signal magnitude +decreases when the velocity is positive because the flow advects the emitted thermal wave further away from the +thermometer plate and more energy is scattered outside the cavity. Second, the deformation of the Kennelly +circle is associated to a global clockwise rotation, a phenomenon that is not observed for bulk attenuation in Fig. +19. Coming back to Fig. 20, the red curve displays the displacement in the phase-quadrature plane for a fixed +wave frequency value. The displacement follows a very characteristic curved path always directed clockwise. +Let s(U) be the curvilinear abscissa of the red path. Once calibrated, the value of s can be used as a measure +of the flow velocity component in the ex direction. +The right panel of Fig. 21 displays the experimental signal observed with second sound tweezers of size +26 + +0 +0.05 +0.1 +0.15 +X (mK) +-0.05 +0 +0.05 +0.1 +0.15 +Y (mK) +0 +0.2 +0.4 +0.6 +0.8 +1 +U (m/s) +-0.4 +-0.2 +0 +0.2 +X (mK) +-0.1 +0 +0.1 +0.2 +0.3 +0.4 +Y (mK) +0 +0.2 +0.4 +0.6 +0.8 +1 +U (m/s) +Figure 21: Experiment: Collapse of a second sound resonance for increasing values of the flow mean velocity +U, in superfluid Helium at T0 ≈ 1.65 K. The right panel display the result for tweezers of size L = 1 mm and +minor lateral shift Xsh < 0.1×L. The figure shows a homothetic collapse of the resonant Kennelly circle without +global phase shift, as predicted by the model of Fig. 19. The red curves display the displacement in the phase- +quadrature plane at a fixed value of the second sound frequency f. The right panel displays the experimental +data obtained with shifted second sound tweezers with parameters L = 250 µm and Xsh = 0.5 × L. The +figure qualitatively confirms the clockwise angular shift with increasing values of U, predicted by the numerical +simulations of Fig. 20. +L = 250 µm, D = 431 µm and Xsh ≈ 125 µm, for a positive velocity range 0 < U < 1 m/s. The main +characteristics of a ballistic advection signal can be observed: the Kennelly circle are attenuated with a clear +clockwise rotation, and the signal at fixed frequency follows a curved path in the clockwise direction. This is a +strong indication that those type of tweezers can be used as anemometers. The signal fluctuations of those type +of tweezers were recently characterized in a turbulent flow of superfluid helium [WVR21]. It has been shown in +particular that both the signal spectra and its probability distributions indeed display all the characteristics of +that of turbulent velocity fluctuations. +3.4.4 +Limits of the model +Although the model of sec. +3.3 gives excellent experimental predictions, we still observe some unexpected +phenomena with real second sound tweezers. We discuss two of them in this section. +We have seen in secs. 3.4.2 that the thermal wave complex amplitude T(f) can be represented in the phase- +quadrature plane by a curve (X(f), Y (f)) very close to a circle crossing the origin. This osculating circle will +be called in the following the resonant “Kennelly circle”. The wave is damped in the presence of a superfluid +flow, which can be seen in the phase-quadrature plane as a homothetic shrink of the Kennelly circle toward the +origin. Fig. 22 displays an experimental resonance in the phase-quadrature plane, for U = 0 m/s and U = 0.7 +m/s, together with the fitted Kennelly circles. As can be seen in the figure, the resonant curve at U = 0 has +periodic oscillations in and out the Kennelly circle. We call this phenomenon the “daisy effect”. The daisy +effect progressively disappears for increasing values of U, and cannot be seen any more on the resonant curve at +U = 0.7 m/s. We interpret the daisy effect as a secondary resonance in the experimental setup with a typical +acoustic path of a few centimeters. We assume that the flow kicks out the thermal wave from this secondary +resonant path when U is increased. The daisy effect alters the attenuation measurements close to U = 0, and +should be considered with care before assessing the vortex line densities for low mean velocities. +It has been shown in sec. 3.4.2 that the displacement of the tweezers signal in the phase quadrature plane +for a fixed wave frequency, follows a straight line. +We call “attenuation axis” the direction of this straight +path. The model predicts that the attenuation axis should always be directed toward the center of the resonant +Kennelly circle. Fig. 23 displays a zoom on a part of the Kennelly circle at U = 0, together with the signal +displacement at fixed frequency and for increasing flow velocity. It can be seen that the displacement is indeed +a straight line, but not exactly directed toward the Kennelly circle center. An angle between 20° and 30° is +systematically observed between the attenuation axis and the circle center direction (see Fig. 23). Moreover, +the angle is always positive (with the figure convention) and cannot be interpreted as a ballistic advection, +27 + +-8 +-7 +-6 +-5 +-4 +-3 +-2 +-1 +0 +1 +X +10-7 +-3 +-2 +-1 +0 +1 +2 +3 +4 +Y +10-7 +U=0 m/s +U=0.7 m/s +Figure 22: Experimental resonance obtained with a second sound tweezers at 1.98 K, for two values of the He +flow mean velocity U. The blue curve displays a periodic perturbation of the resonance that we refer to as the +“daisy effect”. The circle is a fit of the Kennelly osculating circle for this resonance. This effect is not predicted +by our model, and we interpret it as a secondary resonance in the experimental setup. The daisy effect perturbs +the measurements at low values of U, but it can be seen on the red curve that the effect disappears for higher +values of U. +that would give a negative angle instead. This effect is thus very likely been attributed to a decrease of the +second sound velocity in the presence of the quantum vortices. Whereas a second sound velocity reduction has +previously been observed in the presence of quantum vortices [LV74, Meh74, MLM78], the exact value of this +reduction turns to be difficult to assess in particular experimental conditions. We therefore keep the second +sound velocity reduction as a qualitative explanation, and we do not try to assess quantitative result from the +attenuation axis angle. +3.5 +Quantum vortex or velocity measurements ? +Let us summarize the discussion of sec 3.4. We have shown that second sound resonators are sensitive to two +physical mechanisms. The first one is the thermal wave bulk attenuation inside the tweezers cavity, due to +the quantum vortices. The second one is thermal wave ballistic advection perpendicular to the plates4. Both +mechanisms exist for all the second sound resonators, but depending on their geometry, they can preferentially +be sensitive to the one or the other mechanism. We call selectivity the fraction of the signal due to quantum +vortices or to ballistic advection. Let T (ξ, U) be the probe signal as a function of the bulk attenuation coefficient +ξ (m−1) and flow velocity U(m/s), we define the vortex selectivity as +Rξ = +��T (ξ, 0) − T (0, 0) +�� +��T (ξ, U) − T (0, 0) +��. +(25) +and by symmetry we define the velocity selectivity as +RU = +��T (0, U) − T (0, 0) +�� +��T (ξ, U) − T (0, 0) +��. +(26) +Further investigations in second sound tweezers experiments have shown that the velocity/vortex selectivity +process only weakly depends on the aspect ratio +L +D. +Indeed, for a given resonator lateral size L, ballistic +advection of the wave outside the cavity increases when the gap D increases, but the number of quantum vortex +lines inside the cavity also increases linearly with D. Altogether, both the ballistic advection and the bulk +attenuation due to the quantum vortices have similar dependence with D, that’s why changing the gap has +no significant effect on selectivity. For second sound tweezers, we observe that the selectivity neither depends +strongly on the mean temperature (that controls the superfluid fraction and the second sound velocity). +4Advection of second sound by velocity is illustrated e.g. in [DL77]. +28 + +-3.5 +-3 +-2.5 +-2 +-1.5 +X +10-4 +-2.5 +-2 +-1.5 +Y +10-4 +U=0 m/s +0 90% for a small shift and low mode number, which means that they can be +used for direct quantum vortex measurements. On contrary, small tweezers (L = 250 µm) can reach a velocity +selectivity RU > 90% for large shift or high mode number, and can thus be used as anemometers, as confirmed +by the experiments reported in [WVR21]. +4 +Measurements with second sound tweezers +Second sound tweezers are singular sensors in the sense that they can measure two degrees of freedom at the +same time, whereas most of hydrodynamics sensors only measure one (e.g. Pitot tubes, Cantilevers, Hot wires). +The tweezers record the magnitude and phase of the thermal wave averaged over the thermometer plate. Both +quantities contain physical information about the system. To summarize it shortly, magnitude variations give +information about quantum vortices in the cavity, whereas phase variations give information about the local +mean temperature and pressure. The local mean velocity has an impact on both magnitude and phase, and +will be specifically treated in sec. 4.5. The aim of the following sections is to explain how properly separate +quantum vortices signal from other signal components. +In the following, we call L⊥ the density of projected quantum vortex lines density (projected VLD) +L⊥ = 1 +V +� +V +sin2 θ(l)dl, +(27) +where V is the tweezers cavity volume, l is the curvilinear abscissa along the vortex lines inside the cavity , +θ(l) is the angle between the quantum vortex line and the direction perpendicular to the plates (vector ez). +29 + +Figure 24: Selectivity to quantum vortices or velocity advection for two second sound tweezers, obtained with +numerical simulations. The color code indicates the fraction of the signal due to bulk attenuation by quantum +vortices (see Fig. 18). The selectivity of the tweezers mainly depends on the lateral shift of both plates one +from another, and the resonant mode number excited in the cavity. The left panel shows that large tweezers +(L = 1mm) are mainly sensitive to quantum vortices. Almost pure quantum vortex signal can be achieved +with carefully aligned tweezers excited at low mode numbers (Rξ > 90%). On the reverse, small tweezers +(L = 250µm) are mainly sensitive to the velocity. Almost pure velocity signal can be achieved by shifting the +heater and the thermometer plates and by exciting the cavity at large mode numbers (RU > 90%). The present +simulation was run with a vortex line density L = 2 × 1010 m−2 and U = 1 m/s, in accordance with the typical +values observed in our experiments. +Assuming isotropy of the vortex tangle, the total quantum vortex lines density (VLD) is +L = 3 +2L⊥. +(28) +A second sound wave is damped in the presence of a tangle of quantum vortices. Let ξV LD (in m−1) be +the bulk attenuation coefficient of second sound waves, it has been found[HV56a, HV56b, Tsa62, SP66, MPS84] +that ξV LD is proportional to L⊥ according to the relation +ξV LD = BκL⊥ +4c2 +, +(29) +where B is the first Vinen coefficient and κ ≈ 9.98 × 10−8 m2/s (for 4He) is the quantum of circulation around +one vortex. +Therefore, Eq. (29) shows that a measure of the bulk attenuation coefficient gives access to the projected +VLD defined by Eq. (27). We recall in sec. 4.1 the standard methods to measure the bulk attenuation coefficient +from a second sound resonance, and we propose in sec. 4.3 a new method called “the elliptic method”. We give +in sec. 4.4 some examples to apply the elliptic method to the experimental data. +4.1 +The vortex line density from the attenuation coefficient +We assume that a single second sound resonance can be accurately represented by the following expression (see +Eq. (10)) +T(f) = T 0 +sinh (ξ0D) +sinh +� +i 2π(f−f0)D +c2 ++ (ξ0 + ξV LD)D +�, +(30) +where f0 is the second sound frequency of the local amplitude maximum, D is the resonator gap, c2 is the +second sound velocity, ξ0 is the attenuation coefficient without flow and ξV LD is the additional bulk attenuation +in the presence of quantum vortices given by Eq. (29). ξV LD = 0 without flow. +A standard method to measure ξV LD goes as follows: we fix the second sound frequency at the resonant +value f0, and we measure the thermal wave amplitude with, and without flow. Eq. (30) then shows that ξV LD +is given by +ξV LD = 1 +Dasinh +� T 0 +T(f0) sinh (ξ0D) +� +− ξ0. +(31) +30 + +26p- +0.5 +0.45 +0.4 +0.35 +0.3 +shift +0.25ity / vortex sensitivity -→0.2 +0.15 +Vortex se +0.1 +0.05 +0 +1234567 +modeK velocity sensitiv +ectivity > 90% +89101112131415 +number0.5 +0.45 +Velocity se +0.4 +0.35 +0.3 +shift +0.25ty / vortex sensitivity → +electivity > 90%0.2 +0.15 +0.1 +0.05 +0 +2345678 +modeK velocity sensitiv +910111213141516 +numberFigure 25: Spectral response of tweezers in the SHREK facility, right below the superfluid transition temperature +Tλ, where second sound velocity c2 is very sensitive to temperature (here D ≃ 500 µm and c2 drifts around a +mean value of 5.4 m/s). The frequency axis is adimensionalize using the second sound velocity c2 calculated +from the temperature recorded near the sidewall of the flow. While the temperature of the bath is regulated, +frequency sweeps are repeated half a dozen of times for different turbulent flow conditions flagged by colors. +A systematic drift of resonance frequencies versus flow conditions is observed ; it is interpreted as an under- +estimation of temperature, and therefore over-estimate of c2, due to turbulent dissipation in the core of the flow. +At a given mean flow, some scatter of the resonance frequencies is apparent ; it is interpreted as noise from +the temperature regulation. The elliptic method introduced in section 4.3 allows separating such temperature +artifacts from the attenuation due to second sound attenuation by quantum vortices. +Eq. (31) shows that beside the value of D , that can be determined from a fit of the tweezers spectrum (sec. +3.4), the value of ξ0 has to be accurately measured. This is usually done by the measurement of the resonant +half width. With some algebra manipulations, it can be found from Eq. (30) that the resonant magnitude +satisfies +��T +��2 = +��T 0 +��2 +sinh2 (ξ0D) +sinh2 (ξ0D) + sin2 � +2π(f−f0)D +c2 +�. +(32) +Let ∆f be the frequency half-width defined by the relation +���T(f0 ± ∆f +2 ) +��� +2 += 1 +2 +��T 0 +��2, it can be shown from Eq. +(32) that ξ0 and ∆f are related by +sin +�π∆fD +c2 +� += sinh (ξ0D) . +(33) +We note in particular that the relation (33) can be used to find ξ0 as long as the resonance quality factor is +high enough, that means, for sinh (ξ0D) < 1. The linear approximations of Eqs. (31) and (33) are usually used +when ξ0D ≪ 1, and they give the well-know approximation: +L⊥ ≃ 4π∆f +Bκ +� T 0 +T(f0) − 1 +� +, +(34) +For low quality factor resonances, another method should be used instead of the resonant half width. The +elliptic method presented in sec. 4.3 allows determining ξ0 for resonances of any quality factors. +The main problem of the method presented above is that it implicitly assumes that there is no variation +of the acoustic path value 2πf0D +c2 +during the measurement. In particular, as c2 depends on temperature and +pressure, it means that the experiment should have an excellent temperature and pressure regulation. This can +become increasingly difficult when the second sound derivatives become steep, close to the superfluid transition. +Moreover, measurements in the presence of a flow are necessary done out of equilibrium as the flow dissipates +energy. +As an example, measurements in such conditions are illustrated by figure 25, which shows second +sound resonances measured close to the superfluid transition in the turbulent Von Karman experiment SHREK +[RBD+14]. Furthermore, we observe that a measurement with a non-zero value of ξV LD can be associated with +an acoustic path shift (i.e. a variation of the factor 2πfD +c2 +). The situation is illustrated in the left panel of Fig. +26, where the acoustic path shift leads to an overestimation of the attenuation and an important error on ξV LD. +31 + +0.08 +0.5 +0.4 +0.07 +0.3 +0.06 +0.2 +0.05 +0.1 +/w) +U +-0.1 +0.03 +-0.2 +0.02 +-0.3 +0.01 +-0.4 +0 +-0.5 +2 元 +4元 +6元 +8元 +10元 +12元 +14元 +2元fD/C 21.6 +1.8 +2 +2.2 +2.4 +kD +0 +0.2 +0.4 +0.6 +0.8 +1 +T +First measurement +VLD=0 +Second measurement +VLD=1e-4 +Acoustic +path shift +Attenuation +error +Without +phase shift +With +phase shift +-0.2 +0 +0.2 +0.4 +0.6 +0.8 +1 +1.2 +X +-0.6 +-0.4 +-0.2 +0 +0.2 +0.4 +0.6 +Y +R +r +Figure 26: An illustration of an attenuation measurement. Left: the resonant mode without (blue curve), +and with quantum vortex attenuation (red curve). The figure shows that an acoustic path shift can lead to +an important error in the attenuation measurement. Right: the resonant mode represented in the phase- +quadrature plane together with the fitted Kennelly circle. The figure shows that the acoustic path shift creates +a phase shift θ. Using the phase measurement θ, the maximal magnitude can be recovered using Eq. (37). +Passive and active approaches have been reported in the literature to handle the most common cause of +acoustical path shift during second sound measurement: the temperature drift and its resulting shift of the +resonance frequency. +A passive approach consists in performing a sweep of the second sound frequency, across the resonance curve. +Afterward, with proper modelling of the resonance, the attenuation and the phase shift can be fitted separately, +e.g. as done in [MSS76]. A limit of this approach is its time resolution, that is restricted by the duration of +frequency scan. Another passive approach consists in performing systematic calibration of the full frequency +responses of the resonator in various conditions, and subsequently interpolating measurements obtained at a +fixed working frequency onto this mapping [VBL+17]. +A standard example of active approaches consist in controlling the helium bath temperature. An alternative +or complementary approach consists in controlling the second-sound frequency so that it always matches the +resonance peak, despite possible drift of the temperature. The resonator itself can provide the feedback signal +of these control loops, for example by monitoring the thermometer or locking the phase of the second sound +signal. An even more direct approach has been recently proposed: the resonator is driven by a self-oscillating +circuit, which frequency adapts dynamically to the drift of the second sound velocity [YIE17]. +Below, we introduce two analytical methods to separate phase shift from attenuation. The first method is +relevant for simple cases (sec. 4.2), while the second one has a broader range of validity (sec. 4.3). +4.2 +Analytical method in an idealized case +The acoustic path shift can be corrected using the resonant representation in the phase-quadrature plane. Let +X(f) and Y (f) be respectively the real and imaginary parts of T(f), the curve (X(f), Y (f)) in the phase- +quadrature plane is very close to a circle crossing the origin. It can even be proved (see sec. 4.3) that the +resonant curve converges to a circle when the quality factor increases, or equivalently when ξ0 decreases5. All +along the present article, this limit circle is called the “Kennelly circle”. An illustration of two resonant curves +with their osculating Kennelly circles is displayed in the right panel of Fig. 26. The acoustic path shift translates +in a phase shift θ in the phase-quadrature plane, such that the amplitude of the second measurement (with +ξV LD > 0) does not correspond to the maximal amplitude R of the attenuated resonant peak (see Fig. 26 for +5In this case, the complex amplitude of the nth temperature resonance is often approximated by the Lorentzian formula [VS71, +DLL80] +T(f) ≃ +Tn +1 + iQn f−fn +fn +(35) +where Tn, Qn and fn are the amplitude at resonance, the quality factor and resonance frequency of the mode of interest. To +highlight that this Lorentzian approximation describes a circle in the complex plane X-Y , it can be written as: +T(f) +T n/2 += 1 + eiφ(f) +(36) +where tan φ = 2F/ +� +F 2 − 1 +� +and F = Qn (f − fn) /fn. +32 + +Figure 27: Sequence of five resonances of second sound tweezers at 1.6K. The flow is weakly turbulent: the +velocity standard deviation is a few percents of the mean velocity displayed on the colorbar. The right side plot +illustrates that each resonance can be approximated by a circle in the complex plane. The global phase shift of +the last resonance (lower circle) compared to the others is attributed to a cut-off of the measurement electronics +at high frequency. +the notations). Using the geometric properties of the Kennelly circle, R can be approximately recovered from +the measured amplitude r with +R = +r +cos θ. +(37) +Thus, a modified version of Eq. (31) can be written to find the VLD attenuation coefficient in the presence +of a phase shift +ξV LD = 1 +Dasinh +� T 0 cos θ +T(f0)e−iθ sinh (ξ0D) +� +− ξ0. +(38) +4.3 +The elliptic method +We present in this section an original method to obtain the values of the acoustic path shift and the attenuation +coefficient, from experimental data. The method, that we call the “elliptic method”, is much simpler to imple- +ment, and much more reliable, than the fit of the Kennelly resonant circle and the use of Eq. (38). Besides, the +method can be used for resonances with very low quality factors. +The method comes from the observation that a pair of two ideal consecutive resonances is transformed into +an ellipse with the complex inversion z → 1 +z in the phase-quadrature plane. The inversion is represented in Fig. +28. To prove this assertion, consider the inversion of the classical Fabry–Perot expression Eq. (6) +1 +T = +sinh +� +i 2πfD +c2 ++ ξD +� +A +. +(39) +Expanding the sinh in the previous expression gives +1 +T = cos +�2πfD +c2 +� sinh (ξD) +A ++ i sin +�2πfD +c2 +� cosh (ξD) +A +. +(40) +Finally, let Xl = Re +� +1 +T +� +and Yl = Im +� +1 +T +� +be respectively the real and imaginary parts of Eq. (40), the +coordinates (Xl, Yl) satisfy the equation +� +Xl +sinh (ξD) /A +�2 ++ +� +Yl +cosh (ξD) /A +�2 += 1 +(41) +which is exactly the cartesian equation of an ellipse with semi-major axis a = cosh(ξD) +A +, and semi-minor axis +b = sinh(ξD) +A +. In particular, we note that the attenuation coefficient ξ can be recovered from the ratio of the +semi-major and semi-minor elliptic axes using the formula +ξ = 1 +Datanh +� b +a +� +. +33 + +0.15 +(yu) +0.1 +0.05 +20 +40 +60 +80 +100 +f (kHz)0.1 +2 +0.05 +1 +(mK) +(s/w) +0 +0 +> -0.05 +U +-1 +-0.1 +-2 +-0.15 +-0.1 +0 +0.1 +X (mK)-1 +-0.5 +0 +0.5 +1 +X +-0.5 +0 +0.5 +Y +-2 +0 +2 +X +-4 +-2 +0 +2 +4 +Y +1/z +Figure 28: Transformation of a pair of consecutive resonances to an ellipse using the inversion of the complex +plane z → 1/z. +0.4 +0.6 +0.8 +1 +1.2 +X +-0.2 +0 +0.2 +Y +1/z +acoustic path +axis +acoustic path +axis +attenuation +axis +u +v +attenuation +axis +ul +vl +Figure 29: A resonant mode in the phase-quadrature plane and its elliptic transform, for an ideal Fabry–perot +resonance with ξ0 = 0.2 and 1.95π < kD < 2.05π. +When the quality factor increases (equivalently when ξ decreases) the ellipse is flattened. The limit of infinite +quality factor (ξ → 0) corresponds to two parallel straight lines in the complex plane. +Second sound tweezers resonances are not ideal Fabry–Perot resonances. Yet, we have argued in sec. 3.2 +that a single second sound resonance can be locally fitted by the following Fabry–Perot equation (see also Eq. +(10)) +T = +A +sinh +� +i 2π(f−f0)D +c2 ++ (ξ0 + ξV LD)D +�. +(42) +This in particular means that the resonant curve in the vicinity of its maximal amplitude is transformed into a +part of an ellipse with the complex inversion z → 1 +z . The curve (Xl(f), Yl(f)) is very close to a straight line, for +frequencies f close to the resonant frequency f0. The situation is illustrated in Fig. 29. The figure shows a part +of ideal Fabry–Perot resonances given by Eq. (42), in the range 1.95π < kD < 2.05π (where k = 2πf +c2 ), and for +increasing values of the VLD attenuation coefficient ξV LD. The left panel displays the different resonant curves +close to their maximal amplitudes, in the phase-quadrature plane. Using the complex inversion, those curves +become almost parallel straight lines, as can be seen in the right panel. The transformation of the resonant +Kennelly circles into parallel straight lines has very nice applications that we explain in the following. +In the phase-quadrature plane, a variation of the acoustic path value 2πfD +c2 +corresponds to a displacement +along the Kennelly circle, whereas a variation of the bulk attenuation ξ corresponds to a displacement orthogonal +to the Kennelly circle. The acoustic path direction and the attenuation direction thus form a local orthogonal +basis. Such a basis is displayed by the red arrows in the left panel of Fig. 29. When the reference point where +the basis is defined moves along the Kennelly circle, the basis rotates and the acoustic path and attenuation +axes have to be redefined. This can become a tiresome task while analyzing the experimental data. Fortunately, +the complex inversion is a conformal mapping, which means that it preserves locally the angles: the local basis +composed of the acoustic path and attenuation axes is transformed into an orthogonal basis (see the red arrows +in the right panel of Fig. 29). More precisely, let z0 be the complex position in the phase-quadrature plane, +34 + +and (u, v) be the two complex (unit) vectors defining the local basis at z0, then the local basis (ul, vl) at the +point +1 +z0 is given by +� +� +� +ul += −u |z0|2 +z2 +0 +vl += −v |z0|2 +z2 +0 +. +(43) +The major advantage of defining the local basis (ul, vl) with the elliptic transform, is that it becomes a global +basis: when the reference point +1 +z0 moves because of a change in the acoustic path value or the attenuation +value, the basis is simply translated in the plane but the vectors (ul, vl) do not change. One can find the global +basis (ul, vl) for a given resonance and use it to find the local basis (u, v) at every point in the phase-quadrature +plane. We will see in sec. 4.4.1 how the global basis (ul, vl) can be easily used to suppress temperature and +pressure drifts during second sound attenuation measurements. +We finally explain how the elliptic method can be used to measure the bulk attenuation coefficient ξ0. We +have seen in sec. 4.1 that the standard methods to find ξ0 are based on the measure of the half-width ∆f +and on Eq. (33). As was said previously, the classical method can only be applied to resonances satisfying +(ξ0D) < 1. It is a global method, in the sense that one has to sweep the frequency to measure a large part of +the resonant curve. The method is only accurate provided the resonance does not deviate too much from an +ideal Fabry–Perot resonance, which is often not satisfied for the first modes of second sound tweezers (see for +example the first mode of Fig. 17). The alternative method consists in expanding (Xl, Yl) given by Eq. (41) to +leading order in f − f0 +� +Xl +∼ sinh(ξ0D) +A +, +Yl +∼ 2π(f−f0)D +c2 +cosh(ξ0D) +A +, +(44) +where f0 is the resonant frequency. Using Eq. (44), we get +Yl(f) +Xl(f) ∼ +2πD +tanh (ξ0D) c2 +(f − f0). +(45) +Yl(f) +Xl(f) is proportional to f in the vicinity of f0, with the proportionality factor +2πD +tanh(ξ0D)c2 . The attenuation +coefficient ξ0 can be found by a linear fit of the function Yl +Xl provided D and c2 are known. +4.4 +Applications of the elliptic method +The motivation to develop and use the elliptic method has come from experimental constrains: in a large super- +fluid experiment, it can be very difficult to control the values of mean temperature and pressure. This is even +more the case if the superfluid experiment dissipates energy. One then expects a drift of the thermodynamics +conditions during the measurement. Regarding second sound resonators, the critical parameter is the second +sound velocity c2, because variations lead to uncontrolled acoustic path shifts. The elliptic method has been +designed to easily filter those variations from experimental data. This includes filtering temperature and pres- +sure drifts (sec. 4.4.1) and the vibration of the tweezers arms (sec. 4.4.3), and properly extract the quantum +vortex lines fluctuations (sec. 4.4.2). +4.4.1 +Suppression of temperature and pressure drifts +This section presents an example of the elliptic method implementation for second sound tweezers, to find the +relation between ⟨ξV LD⟩ and the mean velocity U in the presence of a superfluid flow. +As before, we note (X, Y ) the temperature signal obtained from the second sound tweezers in the phase- +quadrature plane, and (Xl, Yl) the cartesian coordinates obtained by the complex inversion given by +� +� +� +Xl += Re +� +1 +X+iY +� +, +Yl += Im +� +1 +X+iY +� +. +(46) +The coordinates (Xl, Yl) will be called “elliptic coordinates” for convenience. Fig. 30 displays experimental data +obtained from second sound tweezers of size L = 1 mm, in a saturated bath at mean temperature T0 ≈ 2.14 K, +and for different mean flow velocities 0 < U < 1.2 m/s. At such a temperature close to the superfluid transition, +it was difficult to regulate the mean temperature and therefore the second sound velocity. Uncontrolled acoustic +path variations can be observed, for example in the red points of Fig. 30. +The first step consists in sweeping the second sound frequency f in the vicinity of the resonant frequency f0. +The data (X, Y ) obtained, displayed by the black curve of the left panel of Fig. 30, form a part of the Kennelly +circle. As explained in sec. 4.3, the elliptic coordinates (Xl, Yl) given by Eq. (46) form a straight line (see the +35 + +0 +0.1 +0.2 +0.3 +X (mK) +-0.05 +0 +0.05 +0.1 +0.15 +0.2 +Y (mK) +2 +4 +6 +8 +-4 +-3 +-2 +-1 +0 +1 +0 +0.2 +0.4 +0.6 +0.8 +1 +1.2 +U (m/s) +Attenuation +axis +ul +vl +Acoustic path +axis +Figure 30: Experiment: measurement of a resonance with second sound tweezers at T0 ≈ 2.14 K, for different +values of the mean flow velocity U. The left panel presents the data in the phase-quadrature plane, and the +right panel presents the same data after the complex inversion. The red points are obtained for a fixed value +f = 6.35 kHz, and sweeping the flow mean velocity between 0 and 1.2 m/s. +right panel of Fig. 30). Using a linear fit, it is then straightforward to obtain the unit vector vl parallel to the +line defining the acoustic path axis, and the orthogonal vector ul defining the attenuation axis. We then call +Zl = (Xl, Yl) the vector of the elliptic coordinates. The attenuation coefficient ξ0 can be found by the relation +(see Eq. (45)) +Zl(f).vl +Zl(f).ul +∼ +2πD +tanh (ξ0D) c2 +(f − f0). +Fig. 30 displays experimental resonant curves obtained for non-zero mean velocities U > 0 , to illustrate the +robustness of the elliptic method. However, we emphasize that only the resonant curve with U = 0 is necessary +to find the global basis (ul, vl) in the plane of elliptic coordinates. +The second step consists in fixing the second sound frequency to f0 and vary the mean velocity U to look +at the resonance attenuation. The experimental data are displayed by the red points in Fig. 30. In can be +seen in the figure that the bulk attenuation is accompanied by a systematic acoustic path deviation as the +mean velocity increases. For mean velocities U ≈ 1 m/s, energy dissipation in the experiment leads to a data +dispersion along the acoustic path direction. To properly recover the mean VLD attenuation coefficient ⟨ξV LD⟩ +, we use the elliptic coordinates Zl = (Xl, Yl) , and we project it on the attenuation axis ul. We get from Eq. +(44) +Zl(U).ul +Zl(0).ul += sinh ((ξ0 + ⟨ξV LD⟩) D) +sinh (ξ0D) +. +And ⟨ξV LD⟩ is then given by +⟨ξV LD⟩ = 1 +Dasinh +�Zl(U).ul +Zl(0).ul +sinh (ξ0D) +� +− ξ0. +(47) +We note that the previous expression remains accurate even if the second sound frequency chosen for the +measurement is close but not exactly equal to the resonant frequency f0. The average VLD attenuation can +then be converted to the average projected vortex line density ⟨L⊥⟩ using Eq. (29). +4.4.2 +Measure of vortex line density fluctuations +Second sound tweezers are designed to directly probe the small scale vortex line density fluctuations, not only +its average value. The method to probe fluctuations slightly differs from the method used to probe the average +value explained in sec. 4.4.1. The average VLD value can be directly computed using the complex inversion of +experimental data, but this is no longer possible for its fluctuations. Indeed, the tweezers signal have different +sources of noise, like e.g. thermal white noise, interfering frequencies, electromagnetic bursts, etc... Those +signals can usually be considered as independent additive noises in the signal data, and easily filtered out or +attenuated by an appropriate post-processing. On the contrary, the complex inversion is a non-linear transfor- +mation. Using the latter on noisy data can lead to an overestimation of the signal fluctuations closest to zero, +36 + +1/z-2 +-1.5 +-1 +-0.5 +X (V) +x 10-6 +-16 +-12 +-8 +-4 +Y (V) +x 10-7 +0 m/s +1.20 m/s +Elliptic transformation +acoustic path axes +attenuation axes +Figure 31: +perturb the additivity of noise sources and make them much more difficult to filter out. We thus choose to +compute the VLD fluctuations only using linear transformations. +The first step is similar to that of sec. 4.4.1. We sweep the second sound frequency f close to the resonant +frequency f0, in order to measure a part of the Kennelly circle. We then transform this Kennelly circle into a +straight line using the complex inversion, and we find the global basis (ul, vl) in the plane of elliptic coordinates. +A fit of the Kennelly circle, and its transformation into a straight line can be seen in Fig. 31. This experimental +step has to be done just before the fluctuations measurement. +We then record the signal fluctuations (X(t), Y (t)), for different values of the flow mean velocity U. Fig. +31 displays the fluctuating signal for U = 0 and U = 1.2 m/s in the form of clouds of data points. It can be in +particular observed that the U = 1.2 m/s data are shifted compared to the U = 0 m/s data because of both +an average attenuation and an acoustic path shift (see sec. 4.4.1). Let us define ⟨Z(t)⟩ = ⟨X(t)⟩ + i ⟨Y (t)⟩ the +average complex position in the phase-quadrature plane, for a given value of U. Following Eq. (43), the local +basis (u, v) of the attenuation and acoustic path axes can be computed from the global elliptic basis (ul, vl) by +� +� +� +u += −ul +⟨Z⟩2 +|⟨Z⟩|2 +v += −vl +⟨Z⟩2 +|⟨Z⟩|2 +. +(48) +Fig. +31 shows that the local basis (u, v) depends on ⟨Z⟩ and thus on the value of U: for different mean +velocities, the bases are rotated from one another. If there is a significant drift of the mean signal value during +the measurement (as can e.g. be observed in Fig. 22), the local basis will also depend on time, with a typical +timescale that should be much larger than the fluctuation timescale. +The acoustic path fluctuations and the attenuation fluctuations can then be recovered using a projection on +the (u, v) basis. More precisely, let x be the average acoustic path value and δξ = ξ − ⟨ξ⟩ be a small fluctuation +of the attenuation coefficient, a leading order expansion of expression Eq. (42) shows that +T ≈ +A +sinh (ix + ⟨ξ⟩ D) − δξ +AD +sinh (ix + ⟨ξ⟩ D) tanh (ix + ⟨ξ⟩ D). +(49) +We then do the approximation ⟨Z⟩ ≈ A/ sinh (ix + (ξ0 + ⟨ξV LD⟩) D) which is equivalent to neglecting non-linear +corrections in Eq. (49). We finally get +δξ(t) = 1 +Du. (Z(t) − ⟨Z⟩) × +���� +tanh (ix + (ξ0 + ⟨ξV LD⟩) D) +⟨Z⟩ +���� , +(50) +where the value of ξ0 can be found with Eq. (45) and ⟨ξV LD⟩ with Eq. (47). +The use of the elliptic method is illustrated by Figure 32, which reports the probability density function of +the fluctuations of the quantum vortex density in a nearly isotropic superfluid turbulent flow The data of this +37 + +0.5 +1 +1.5 +2 +p (arb. shift) +s / +vortex line density fluct. +velocity fluctuations +Figure 32: Example of the probability density function of vortex line density (dashed line) and velocity (contin- +uous line) measured by second sound tweezers in a superfluid turbulent flow [WVR21]. In abscissa, each signal +s is normalized by its mean value < s >. The nearly Gaussian velocity statistics and skewed vorticity statistics +are reminiscent of those in classical turbulence. +plot were reported together with spectra of vorticity fluctuations. For details about the setup and analysis of +these results, see [WVR21]. +4.4.3 +Filtering the vibration of the plates +One possible source of noise for second sound resonator measurement is the vibration of the plates arms whenever +U ̸= 0. The signature of those vibrations can be very clearly identified in the form of two thin peaks in the +fluctuations power spectrum. Those two peaks are located at the two arms resonant frequencies: their exact +values can vary for different tweezers, but we always observe them around f ≈ 1 kHz (see sec. 4.4). +Fortunately, the tweezers arms vibrations correspond to a variation of the gap D, and thus to acoustic path +fluctuations. Fig. 33 display a part of the tweezers fluctuations power spectrum. The fluctuations are projected +along the attenuation axis (blue curve) and along the acoustic path axis (red curve), following the method +presented in sec. 4.4.2. The two peaks located at f ≈ 825 Hz and f ≈ 1050 Hz are identified on the acoustic +path axis fluctuations power spectrum, whereas the same peaks are damped by many orders of magnitude on +the attenuation axis fluctuations. Using the power spectrum of Fig. 33, we can estimate the order of magnitude +of the gap standard deviation. We find +�� +(δD)2� +≈ 0.5 µm, and +� +⟨(δD)2⟩ +D +≈ 4 × 10−4. This confirms that the +arms vibrations have a negligible impact on the measurement. +4.5 +Velocity measurements +As shown in Sec. 3.5, the second sound tweezers geometry can be optimized to sense specifically velocity rather +than vortex density. For this purpose, one trick consists in shifting one plate with respect to the other in the flow +direction. Figure 34 shows three second sound tweezers and one anemometer that is based on the same principle +as Pitot tubes. All sensors are positioned across a nearly isotropic superfluid flow bounded by a cylindrical pipe +-not shown here- (for details on this set-up, see [RCSR17a]). The figure insert is a close view of the tip of the +left-side tweezers, which is dedicated to velocity measurements. This shift of one plate versus the other in the +downstream direction is clearly visible. +The projection of the anemometer-tweezers signal in the complex plane is not performed along orthogonal +axes. These axes are determined with an in-situ calibration, ramping the mean velocity. The complementary +“Pitot tube” signal is used to calibrate the axis in units of m/s. The duration of velocity ramp is chosen to be +much larger than the time resolution of the Pitot tube. +As an illustration, Figure 32 presents the probability density function of the velocity fluctuations measured +by the anemometer tweezers, together with vortex line density fluctuations recorded by the other tweezers during +the same experimental run (see Fig. 34). As expected in nearly homogeneous and isotropic quantum turbulence +[SCLR12], the velocity statistics are close to a Gaussian when probed at scales significantly larger than the +intervortex distance, which is the case here. Velocity spectra derived from the same dataset are reported in +[WVR21]. +38 + +700 +800 +900 +1000 +1100 +f (Hz) +10-18 +10-17 +10-16 +P(f) +attenuation axis fluctuations +acoustic path axis fluctuations +Figure 33: Experiment: a part of second sound tweezers fluctuation power spectrum, with T0 = 1.65 K, +U = 1.2 m/s and for a tweezers gap D = 1.320 mm. The tweezers arms’ resonances can be clearly identified in +the acoustic path fluctuations. +Figure 34: Example of an arrangement of three second sound tweezers dedicated to velocity (x1, left side) and +vorticity (x2, right side) time series acquisitions, together with a miniature total head pressure tube (loosely +labelled "Pitot tube" on the bottom left side of the picture) used for velocity calibration. +All probes are +mounted on a ring connecting two 76mm-inner-diameter coaxial pipes (see Fig.1 of ref. [WVR21]). The insert +is a close-up view of the shifted plates of the anemometer tweezers. +39 + +Thermometer +Flow +Heater +VLD probing +second sound +tweezers +Second sound +tweezers +anemometer +Miniature Pitot +tube5 +Summary and Perspectives +This study has covered three independent topics : the comprehensive analytical modelling of second-sound +resonators with a cavity allowing a throughflow of superfluid (section 3), new mathematical methods to process +the signal provided by such resonators (section 4) and the miniaturization of immersed second-sound resonators +allowing time and/or space resolved flow sensing (section 2). These so-called second-sound tweezers have been +used throughout the manuscript to demonstrate the strength and limits of the modelling and analysis methods. +Two observations remains unexplained: the origin of some noise on the acoustic path length and a second +order oscillations of the resonator spectral response in quiescent 4He, named the “daisy effect” (section 3.4.4). +Fortunately, both effects don’t impair the measurement of the flow vorticity or velocity. +Some results that were not anticipated when this study was initiated, are worth recalling and discussing: +• the possibility to operate tweezers by over-driving the second-sound standing wave beyond an intrinsic +turbulent transition. In this non-linear mode, the probe becomes sensitive to velocity, which is interpreted +as a signature of the sweeping of the local vortex tangle by the outer flow (section 2.2.3). This operating +mode is somehow analogous of hot film and hot wire anemometry in classical fluid, where sensitivity +to velocity is due to the more-or-less pronounced sweeping of the thermal boundary layer around an +overheated thermometer. +• in the linear regime (standing wave of small amplitude), the probe can be sized and operated to be either +mostly sensitive to quantum vortices or mostly sensitive to the velocity of the throughflow (section 3.5). +This prediction is verified experimentally by comparing statistics in turbulent flows (section 4.5). The +spatial and time resolution of tweezers operated as anemometers -both in non-linear and linear mode- +is close or better than the alternative miniaturized anemometers working in He-II, that is hot-wires +[DBM+15, DRS+21], cantilevers[SMR12, RCSR17b], Pitot tubes [SMR12, RCSR17b] and total head- +pressure probes[MT98, WVR21]. +• in the absence of throughflow, the full spectral response of the resonators, and in particular its quality +factors, can be accurately determined simply taking into account the loss by diffraction and misalignment +of the reflecting plates of the cavity. +In other words, the other sources of dissipation have negligible +contributions in the range of conditions explored here. +This is no longer the case in a presence of a +throughflow carrying quantum vortices since the latter can significantly contribute to the total dissipation. +We have not explored experimentally the production and detection of second-sound by mechanical means, +which implies cavity with rough surfaces (e.g. millipore or nucleopore membranes). In this case, the effect +of vortices pinned on the surface may no longer be negligible ; for a discussion see [DLL80]. +• the possibility to sense the variations of the vortex line density or velocity without knowledge on variations +of the second sound velocity (or acoustical path). More generally, the elliptic method allows a mathematical +decoupling of both effects by a projection method in the (inverse) complex plane. This results is of major +practical interest in flows where the second-sound velocity is not accurately controlled due to residual +temperature variations or thermal gradients. This situation can occur for instance in flows sequentially +driven at various levels of forcing (e.g. to explore a Reynolds number dependence), in inhomogeneous +dissipative flows and in flows close to the lambda superfluid transitions where the second-sound velocities +strongly depends of temperature. +Two applications of second-sound tweezers have been illustrated. Measurement within a turbulent boundary +layer (Fig. 25) are possible thanks to the small size of probe, and measurements of time series in the bulk +of quantum turbulent flow (Fig. 32) are possible thanks to both the time and space resolutions of the probe. +Among other applications the probe can map the velocity or the vorticity field of an inhomogeneous flow. A +mapping of vorticity in a counterflow jet has been recently done and will be reported elsewhere. +Another application of tweezers would be to probe simultaneously the temperature fluctuations and those of +either velocity or vorticity, for instance to explore their correlations in turbulent counterflows or even co-flows. +Indeed, the tweezers thermometer provides a direct measurement of temperature in a bandwidth spanning from +zero frequency up to a fraction of the frequency of the second sound standing wave, and this signal could be +acquired without impairing the measurement of the second sound standing wave. Alternating measurements in +the linear and non-linear modes is also interesting to explore locally both velocity and vorticity in a given flow. +A last example of application is to operate a double-tweezers made of a heating plate between two thermometer +plates, or vice-versa. Such a stack can be used to probe joint statistics of vorticity on one side, and velocity on +the other side, or this arrangement can be used alternatively to probe transverse gradient of either vorticity or +velocity. +40 + +Acknowledgements +We warmly thank our colleague Benoît Chabaud for support during cryogenic tests and operation of the TOUPIE +wind-tunnel. We acknowledge and thank the staff of the PTA and Nanofab clean-rooms in Grenoble, where +microfabrication was done. Data of figure 25 have been acquired in the SHREK facility. We thank all the +members of the SHREK collaboration, in particular Michel Bon Mardion and Bernard Rousset for the specific +operation very near the superfluid transition. We acknowledge the indirect but key contribution of A. Elbakyan +regarding the comprehensiveness of the bibliography. +The probe design, fabrication, cryogenic operation and theoretical analysis took place over 7 years, and was +possible thanks to following research grants: ANR Ecouturb grant (ANR-16-CE30-0016), ANR QUTE-HPC +grant (18-CE46-0013- 03) and EU Horizon 2020 Research and Innovation Program "the European Microkelvin +Platform (EMP)" (824109). +This research was funded in part by the Agence nationale de la recherche (ANR). A CC-BY public copyright +license has been applied by the authors to the present document and will be applied to all subsequent versions +up to the Author Accepted Manuscript arising from this submission, in accordance with the grant’s open access +conditions. +References +[Bal07] +S Balibar. The discovery of superfluidity. Journal of Low Temperature Physics, 146(5-6):441–470, +2007. +[BLR17] +J. Bertolaccini, E. Lévèque, and P.-E. Roche. Disproportionate entrance length in superfluid flows +and the puzzle of counterflow instabilities. Phys. Rev. Fluids, 2:123902, 2017. +[BSS83] +H Borner, T Schmeling, and DW Schmidt. Experimental investigations on fast gold-tin metal film +second-sound detectors and their application. J. Low Temp. Phys., 50(5):405–426, 1983. +[BVS+14] +S Babuin, E Varga, L Skrbek, E Lévêque, and P-E Roche. Effective viscosity in quantum turbulence: +A steady-state approach. EPL, 106(2):24006, 2014. +[CA68] +R W. Cohen and B Abeles. Superconductivity in granular aluminum films. Phys. Rev., 168:444–450, +1968. +[CR83] +M J Crooks and B J Robinson. +Technique for determining second sound attenuation near the +superfluid transition in 4he. Review of Scientific Instruments, 54(1):12–15, 1983. +[DB98] +R J Donnelly and C F Barenghi. The observed properties of liquid helium at the saturated vapor +pressure. Journal of physical and chemical reference data, 27(6):1217–1274, 1998. +[DBM+15] D. Durì, C. Baudet, J.-P. Moro, P.-E. Roche, and P. Diribarne. Hot-wire anemometry for superfluid +turbulent coflows. Review of Scientific Instruments, 86(2):025007, 2015. +[DL77] +P E Dimotakis and G A Laguna. Investigations of turbulence in a liquid helium ii counterflow jet. +Physical Review B, 15:5240, Jun 1977. +[DLF+14] +Q. Dong, Y. X. Liang, D. Ferry, A. Cavanna, U. Gennser, L. Couraud, and Y. Jin. Ultra-low noise +high electron mobility transistors for high-impedance and low-frequency deep cryogenic readout +electronics. Applied Physics Letters, 105(1):013504, 2014. +[DLL80] +D D’Humières, A Launay, and Albert Libchaber. +Pinning of vortices in nucleopores. effect on +second-sound resonators. Journal of Low Temperature Physics, 38:207, Jan 1980. +[Don91] +R. J. Donnelly. Quantized Vortices in Helium-II. Cambridge Studies in Low Temperature Physics. +Cambridge University Press, Cambridge, 1991. +[Don09] +Russell J Donnelly. The two-fluid theory and second sound in liquid helium. Phys. Today, 62(10):34– +39, 2009. +[DRS+21] +P. Diribarne, B. Rousset, Y. A. Sergeev, J. Valentin, and P.-E. Roche. Cooling with a subsonic flow +of quantum fluid. Physical Review B, 103(14):144509, 2021. +[FS04] +S Fuzier and Steven W Van Sciver. Use of the bare chip cernox(tm) thermometer for the detection +of second sound in superfluid helium. Cryogenics, 44:211, Mar 2004. +41 + +[Gri09] +A Griffin. New light on the intriguing history of superfluidity in liquid4he. Journal of Physics: +Condensed Matter, 21(16):164220, 2009. +[HL88] +K Henjes and M Liu. Peshkov transducers of second sound. Journal of Low Temperature Physics, +71(1):97–117, 1988. +[HR76] +J Heiserman and I Rudnick. The acoustic modes of superfluid helium in a waveguide partially +packed with superleak. Journal of Low Temperature Physics, 22(5):481–499, 1976. +[HV56a] +H. E Hall and W. F Vinen. The rotation of liquid Helium II. i. experiments on the propagation of +second sound in uniformly rotating Helium II. Proceedings of the Royal Society of London. Series +A, 238:204, Dec 1956. +[HV56b] +H. E Hall and W. F Vinen. The rotation of liquid Helium II. II. the theory of mutual friction in +uniformly rotating helium II. Proceedings of the Royal Society of London. Series A, 238:215, Dec +1956. +[HVS92] +D. S. Holmes and S. W. Van Sciver. Attenuation of second sound in bulk flowing He II. J. Low +Temp. Phys., 87:73–93, 1992. +[HVS01] +D.K. Hilton and S.W. Van Sciver. Techniques for the detection of second sound shock pulses and +induced quantum turbulence in He II. Cryogenics, 41:347–53, 2001. +[Kem91] +R. C. Kemp. The reference function for platinum resistance thermometer interpolation between +13,8033 k and 273,16 k in the international temperature scale of 1990. Metrologia, 28(4):327, 1991. +[Kha00] +I M Khalatnikov. An Introduction to the Theory of Superfluidity. CRC Press, 2000. +[Lag76] +G. Laguna. Photolithographic fabrication of high frequency second sound detectors. Cryogenics, +16(4):241–243, 1976. +[LFF47] +C. T. Lane, Henry A. Fairbank, and William M. Fairbank. Second sound in liquid Helium II. Phys. +Rev., 71:600–605, May 1947. +[Lob07] +N Lobontiu. Dynamics of microelectromechanical systems. Springer, Boston, MA, 2007. +[LV74] +D Lhuillier and F Vidal. Temperature dependence of the second sound velocity reduction in rotating +liquid helium. Journal of Physics C: Solid State Physics, 7(14):L254, 1974. +[Meh74] +J. B Mehl. New effects in the interaction of second sound with superfluid vortex lines. Physical +Review A, 10(2):601, 1974. +[MG18] +B Mastracci and W Guo. An apparatus for generation and quantitative measurement of homoge- +neous isotropic turbulence in he ii. Review of Scientific Instruments, 89(1):015107, 2018. +[MLM78] +RJ Miller, IH Lynall, and JB Mehl. Velocity of second sound and mutual friction in rotating helium +ii. Physical Review B, 17(3):1035, 1978. +[MMP+07] V. F Mitin, PC McDonald, F Pavese, NS Boltovets, VV Kholevchuk, IY Nemish, VV Basanets, +VK Dugaev, PV Sorokin, and RV Konakova. Ge-on-gaas film resistance thermometers for cryogenic +applications. Cryogenics, 47(9-10):474–482, 2007. +[MPS84] +P Mathieu, B Plaçais, and Y Simon. Spatial distribution of vortices and anisotropy of mutual +friction in rotating He II. Physical Review B, 29:2489, Mar 1984. +[MSS76] +P. Mathieu, A. Serra, and Y. Simon. Critical-region measurements of the mutual-friction parameters +in rotating He II. Phys. Rev. B, 14:3753–3761, 1976. +[MT98] +J. Maurer and P. Tabeling. Local investigation of superfluid turbulence. Europhys. Lett., 43(1):29– +34, 1998. +[NF95] +S. K. Nemirovskii and W. Fiszdon. +Chaotic quantized vortices and hydrodynamic processes in +superfluid helium. Rev. Modern Phys., 67:37–84, 1995. +[Not64] +H A Notarys. Megacycle frequency second sound. PhD thesis, California Institute of Technology, +1964. +[Pes46] +V. P. Peshkov. +Determination of the velocity of propagation of the second sound in helium ii. +Journal of Physics (Moscow), 10:389, 1946. +42 + +[Pes48] +VP Peshkov. Propagation of second sound in helium ii. exp. Zh. Eksp. Teor. Fiz., 18:857, 1948. +[PGB70] +R. L St Peters, T. J. Greytak, and G.B. Benedek. Brillouin scattering measurements of the velocity +and attenuation of high frequency sound waves in superfluid helium. +Optics Communications, +1(9):412–416, 1970. +[PK82] +DB Poker and CE Klabunde. Temperature dependence of electrical resistivity of vanadium, plat- +inum, and copper. Physical Review B, 26(12):7012, 1982. +[Put74] +S J Putterman. Superfluid hydrodynamics. Series in low temperature physics, 3, 1974. +[RBD+14] +B. Rousset, P. Bonnay, P. Diribarne, A. Girard, J.M. Poncet, E. Herbert, J. Salort, C Baudet, +B Castaing, L. Chevillard, F. Daviaud, B. Dubrulle, Y. Gagne, M. Gibert, B. Hébral, T. Lehner, P.- +E. Roche, B. Saint-Michel, and M Bon Mardion. Superfluid high Reynolds von Kármán experiment. +Rev. Sci. Instrum., 85:103908, 2014. +[RCSR17a] E Rusaouen, B Chabaud, J Salort, and P-E Roche. Intermittency of quantum turbulence with +superfluid fractions from 0% to 96%. Phys. Fluids, 29(10):105108, 2017. +[RCSR17b] E. Rusaouen, B. Chabaud, J. Salort, and P.-E. Roche. Intermittency of quantum turbulence with +superfluid fractions from 0% to 96%. Phys. Fluids, 29(10):105108, 2017. +[RDD+07] +P-E Roche, Pantxo Diribarne, Thomas Didelot, Olivier Français, Lionel Rousseau, and Hervé +Willaime. Vortex density spectrum of quantum turbulence. EPL (Europhysics Letters), 77(6):66002, +2007. +[RG84] +M. Raui and A. Guenter. Damping of second sound near the superfluid transition of 4he as a +function of pressure. Physical Review B, 30:5116, Nov 1984. +[RR01] +D Rinberg and M L Rappaport. Fiber bolometer and emitter with negligible reflection for second +sound measurements near the lambda-point. Cryogenics, 41(8):557–561, 2001. +[Sad98] +J E Sader. Frequency response of cantilever beams immersed in viscous fluids with applications to +the atomic force microscope. Journal of Applied Physics, 84(1):64–76, 1998. +[SCLR12] +J. Salort, B. Chabaud, E. Lévêque, and P.-E. Roche. Energy cascade and the four-fifths law in +superfluid turbulence. EPL, 97:34006, 2012. +[SE70] +R. A Sherlock and D. O Edwards. +Oscillating superleak second sound transducers. +Rev. Sci. +Instrum., 41:1603, Jan 1970. +[SHVS99] +M.R. Smith, D.K. Hilton, and S. W. Van Sciver. Observed drag crisis on a sphere in flowing He I +and He II. Phys. Fluids, 11:751–3, 1999. +[SMR12] +J. Salort, A. Monfardini, and P.-E. Roche. Cantilever anemometer based on a superconducting +micro-resonator: Application to superfluid turbulence. Rev. Sci. Instrum., 83:125002, 2012. +[SNVD02] +S.R. Stalp, J. J Niemela, W. J. Vinen, and R. J. Donnelly. Dissipation of grid turbulence in helium +II. Phys. Fluids, 14:1377–9, 2002. +[Sny62] +H. A. Snyder. Use of germanium as a second sound receiver. Review of Scientific Instruments, +33(4):467–469, 1962. +[SP66] +H. A. Snyder and Zimri Putney. Angular dependence of mutual friction in rotating Helium II. Phys. +Rev., 150:110, 1966. +[SPB17] +GW Stagg, NG Parker, and CF Barenghi. Superfluid boundary layer. Physical Review Letters, +118(13):135301, 2017. +[Tou82] +J. T. Tough. Superfluid Turbulence, volume 8, chapter 3, pages 133–219. North-Holland Publishing +Company, Amsterdam, 1982. +[Tsa62] +D.S. Tsakadze. (sov. phys. jetp 15 (1962) 681). Zh. Eksp. Teor. Fiz., 42:985, 1962. +[VBL+17] +E Varga, S Babuin, VS L’vov, Anna Pomyalov, and L Skrbek. Transition to quantum turbulence +and streamwise inhomogeneity of vortex tangle in thermal counterflow. Journal of Low Temperature +Physics, 187(5-6):531–537, 2017. +43 + +[Vin57] +W. F Vinen. Mutual friction in a heat current in liquid helium ii. iii. theory of the mutual friction. +Proceedings of the Royal Society of London. Series A, 242:493, Nov 1957. +[VJSS19] +E Varga, MJ Jackson, D Schmoranzer, and L Skrbek. The use of second sound in investigations of +quantum turbulence in He II. J. Low Temp. Phys., 197(3):130–148, 2019. +[VS71] +F Vidal and Y Simon. Ideal second sound resonance in he-ii. Physics Letters A, 36(3):165–166, +1971. +[WBF+69] R. Williams, S.E.A. Beaver, J.C. Fraser, R.S. Kagiwada, and I. Rudnick. The velocity of second +sound near tlambda. Physics Letters A, 29(5):279–280, 1969. +[WPHE81] P. E. Wolf, B. Perrin, J. P. Hulin, and P. Elleaume. Rotating Couette flow of helium II. J. Low +Temp. Phys., 44:569–593, September 1981. +[WVR21] +E Woillez, J Valentin, and P-E Roche. Local measurement of vortex statistics in quantum turbu- +lence. EPL (Europhysics Letters), 134(7):46002, 2021. +[YI18] +J Yang and GG Ihas. Decay of grid turbulence in superfluid helium-4: Mesh dependence. In Journal +of Physics: Conference Series, volume 969, page 012004. IOP Publishing, 2018. +[YIE17] +J. Yang, G. G Ihas, and D. Ekdahl. Second sound tracking system. Review of Scientific Instruments, +88(10):104705, 2017. +[YYK97] +T Yotsuya, M Yoshitake, and T Kodama. Low-temperature thermometer using sputtered zrnx thin +film. Cryogenics, 37(12):817–822, 1997. +44 + diff --git a/9tE5T4oBgHgl3EQfRQ5h/content/tmp_files/load_file.txt b/9tE5T4oBgHgl3EQfRQ5h/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..a386f5330c2edce56c84c4fbca8ec1273267c39b --- /dev/null +++ b/9tE5T4oBgHgl3EQfRQ5h/content/tmp_files/load_file.txt @@ -0,0 +1,3125 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf,len=3124 +page_content='Second sound resonators and tweezers as vorticity or velocity probes : fabrication, model and method Eric Woillez∗, Jérôme Valentin†and Philippe-E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Roche‡ Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Grenoble Alpes, CNRS, Institut NEEL, F-38042 Grenoble, France Distributed under a Creative Commons Attribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' CC-BY | 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='0 International licence Abstract An analytical model of second-sound resonators with open-cavity is presented and validated against simulations and experiments in superfluid helium using a new design of resonators reaching unprecedented resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The model accounts for diffraction, geometrical misalignments and flow through the cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' It is validated against simulations and experiments using cavities of aspect ratio of the order of unity operated up to their 20th resonance in superfluid helium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' An important result is that resonators can be optimized to selectively sense the quantum vortex density carried by the throughflow -as customarily done in the literature- or alternatively to sense the mean velocity of this throughflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Two velocity probing methods are proposed, one taking advantage of geometrical misalignements between the tweezers plates, and another one by driving the resonator non-linearly, beyond a threshold entailing the self-sustainment of a vortex tangle within the cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' After reviewing several methods, a new mathematical treatment of the resonant signal is proposed, to properly separate the quantum vorticity from the parasitic signals arising for instance from temperature and pressure drift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This so-called elliptic method consists in a geometrical projection of the resonance in the inverse complex plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Its strength is illustrated over a broad range of operating conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The resonator model and the elliptic method are applied to characterize a new design of second-sound resonator of high resolution thanks to miniaturization and design optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' When immersed in a su- perfluid flow, these so-called second-sound tweezers provide time-space resolved information like classical local probes in turbulence, here down to sub-millimeter and sub-millisecond scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The principle, design and micro-fabrication of second sound tweezers are detailed, as well as their potential for the exploration of quantum turbulence Contents 1 Introduction to second sound resonators 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 Quantum fluids and second sound .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 Generation and detection of second sound waves .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3 From macroscopic second sound sensors to microscopic tweezers .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 Overview of the manuscript .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 4 2 Design, fabrication and mode of operation of second sound tweezers 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 Mechanical design .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 Second sound detection and generation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 Thermometry .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 Heating .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3 Digression on the operation in the non-linear heating regime .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3 Microfabrication and assembling .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 10 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 Electric circuit .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 13 ∗present affiliation: CEA-Liten, Grenoble †present affiliation: Observatoire de Paris - PSL, CNRS, LERMA, F-75014, Paris, France ‡Corresponding author 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='05519v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='other] 13 Jan 2023 3 Models of second sound resonators 14 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 Resonant spectrum of second sound resonator: phenomenological aspects .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 15 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 Analytical approximations .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 15 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3 Numeric algorithm .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 19 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 For a backgroud medium at rest .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 19 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 In the presence of a turbulent flow .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 21 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 Quantitative predictions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 22 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 Spectral response of second sound resonators .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 23 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 Response with a flow .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 23 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3 Effect of lateral shift of the emitter and receiver plates .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 26 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 Limits of the model .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 27 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 Quantum vortex or velocity measurements ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 28 4 Measurements with second sound tweezers 29 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 The vortex line density from the attenuation coefficient .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 30 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 Analytical method in an idealized case .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 32 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3 The elliptic method .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 33 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 Applications of the elliptic method .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 35 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 Suppression of temperature and pressure drifts .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 35 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 Measure of vortex line density fluctuations .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 36 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3 Filtering the vibration of the plates .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 38 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 Velocity measurements .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 38 5 Summary and Perspectives 40 1 Introduction to second sound resonators 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 Quantum fluids and second sound Below the so-called lambda transition, liquid 4He enters a quantum state named He-II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This liquid transition occurs around Tλ ≃ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='18 K at saturated vapor conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' According to Tisza and Landau two-fluid model, the hydrodynamics of He-II can be described as the hydrodynamics of two interpenetrating fluids, called the superfluid component and the normal fluid component [Bal07, Gri09].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The superfluid density ρs is vanishingly small right below the transition, and it increases as temperature decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The opposite dependence occurs for the normal fluid density ρn, which becomes vanishingly small in the zero temperature limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The properties of both fluids strikingly differ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The superfluid has zero viscosity and zero entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Besides, the circulation of its velocity field is quantized in units of κ = h/m ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='10−7m2/s, where h is Planck constant and m the atomic mass of 4He.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This quantization constrain results in the existence of filamentary vortices of Ångströmic diameter, later referred to as the superfluid or quantum vortices[Don91].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Contrariwise, the normal fluid follows a classical viscous dynamics and carries all the entropy of the He-II[Put74, Kha00].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The existence of distinct velocity fields vs and vn for the superfluid and normal fluid results in the existence of two independent sound modes in He-II, as can be shown by linearizing the equations of motion [Put74, Kha00, Don09].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The so-called “first sound” corresponds to a standard acoustic wave : both fluids are oscillating in phase (vs = vn), producing oscillations of the local pressure and density ρ = ρs + ρn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The “second sound” corresponds to both fluids oscillating in antiphase without net mass flow (ρsvs = −ρnvn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Hence, the relative densities of superfluid and normal fluid locally oscillates, as well as entropy and temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 Generation and detection of second sound waves Experimentally, two techniques are mostly used to generate and detect second sound: one mechanical and the other thermal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Alternative techniques not discussed here have been occasionally used, including optical scattering (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' [PGB70]) and acoustic detection above the liquid-vapor interface[LFF47] or in the flow itself (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' [HR76]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The mechanical technique consists in exciting and sensing a single component of He-II, either its superfluid one or the normal fluid component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Indeed, a single fluid motion can be viewed as a superposition of a second sound and a first sound (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' an acoustic wave), with an exact compensation of motion for one of the two fluids at the location of the transducer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Since the first sound velocity is typically one decade larger than the second second velocity[DB98], most second sound resonances don’t coincide with acoustic resonances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In practice, a selective displacement of the superfluid component is achieved in Peshkov transducers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' They are made of a standard acoustic transducer side-by-side with a fixed porous membrane-filter which tiny pores are viscous dampers for the normal fluid but are transparent (“superleaks”) for the superfluid [Pes48, HL88].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Alternatively, 2 Emitter Receiver Emitter Receiver Flow Flow Figure 1: Left: A macroscopic resonator for second sound, embedded in the sidewall, is used to sense the averaged flow properties in the shaded region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Right: Second sound tweezers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In contrast with the macroscopic design of the left schematics, this miniaturized resonator, positioned within the flow, allows space and time resolution of the flow variations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' a selective displacement of the normal fluid component is achieved in oscillating superleak transducers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' They are based on a vibrating porous membrane that is coupled to the motion of normal fluid by viscous forces, and uncoupled to the inviscid superfluid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' They can be manufactured by replacing the membrane of a loudspeaker or microphone by a millipore or a nucleopore sheet [WBF+69, SE70, DLL80].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The thermal technique to generate and detect second sound consists in forcing second sound by Joule effect, and detecting it with a thermometer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Depending on the operating range of temperature and practical considerations, several types of thermometers can be suitable to detect second sound waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The literature being vast, we only list a few thermistor materials and bibliographic entry points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Materials with a negative temperature coefficients1 include carbon in various forms (aquadag paint, fiber, pencil graphite,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='.) [HVS01], doped Ge[Sny62], RuOx [YI18], ZrNx/Cernox [YYK97, FS04] and Ge-on-GaAs [MMP+07].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Transition edge superconductor thermometers are often preferred when large sensitivity or low resistivity is important, for instance Au2Bi [Not64], PbSn [CR83, RR01], granular Al [CA68, MSS76] and AuSn [Not64, Lag76, BSS83].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' More information on AuSn is provided in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The second sound tweezers presented in the present study resorts to this thermal technique, both for generation and detection of second sound2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3 From macroscopic second sound sensors to microscopic tweezers In the presence of superfluid vortices, the superfluid and normal fluid experience a viscous mutual coupling [Don91], which entails a damping of the second sound waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This attenuation of second sound by vortices have been extensively used as a tool to explore the properties of He-II flows over the last 60 years[Vin57], in particular to explore the properties of quantum turbulence (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' see [VJSS19]), a field of applications which as motivated the development of second sound tweezers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' For example, mechanical second sound transducers were successfully used to study the turbulence of He-II in the wake of a grid by groups in Eugene, Prague and Tallahassee (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' see [SNVD02, BVS+14, MG18]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Examples of thermal second sound transducers successfully used to study turbulence of He-II flows are described in studies by groups from Paris, Tallahassee, Grenoble and Gainesville (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' see [WPHE81, HVS92, RDD+07, YI18]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' A specific type of probe allows very sensitive probing of the density of quantum vortices in He-II flow : standing-wave second sound resonators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Such a resonator consists in two parallel plates facing each other, one functionalized with a second sound emitter and the other with a receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The emitter excites the cavity at resonance to benefit from the amplification of the cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The characteristics of the standing wave between the plates provides information on the properties of the fluid and flow between the plates, in particular the density of vortex lines, which impacts the amplitude of the standing wave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Aside from vortex density measurements, the second sound can also provide information on the fluid temperature -since the second sound velocity depends on it- and on the velocity of the background He-II flow when it induces a phase shift or Doppler effect on the second sound (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' see [DL77, WPHE81, WVR21]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The characteristics listed above for the standard (macroscopic) second sound resonators remain relevant for their miniaturized version : second sound tweezers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Beside miniaturization, a key specificity of tweezers is their 1Phosphor bronze wire, a positive temperature coefficient thermometer has also been used in the early days [Pes46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 2In principle, mechanical and thermal techniques could be combined to generate and detect, although we are not aware of any composite configuration reported in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3 low footprint on the streamlines when positioned in the core of a flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This key differences between standard and tweezers resonators are sketched in figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Consequently, standard resonators provide information on averaged properties of the flow, while tweezers give access to space and time resolved information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Thus, tweezers are local probes in the same ways as the hot-wire anemometers or cold-wire thermometers used in turbulence studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In the present design for tweezers, the thermal actuation technique is preferred to the mechanical actuation because it makes it easier to respect the constrains of miniaturization and reduced flow blockage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 Overview of the manuscript The following sections cover independent topics, Section 3 presents a comprehensive modelling of second-sound resonators accounting for plate misalignment, advection, finite size and near field diffraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Diffraction, which has been neglected in previous quantitative models, turns out to be a dominant source of degradation of the quality factor in our case studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Applications to the measurement of vortex concentration or velocity are considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Section 4 presents existing methods to process the signal from second sound resonators, and their limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' To circumvent them, we introduce a new general approach, named the elliptic method, based on a mathematical properties of resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This method allows to dynamically separate the amplitude variations of the standing wave due to variations of vortex density or variations of velocity, from the phase variations (more precisely, from the acoustical path variations), for instance due to variations of the second sound velocity themselves resulting from a temperature drift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Section 2 reports the design, clean-room fabrication and operation of miniaturized second-sound resonators, named second-sound tweezers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' These tweezers allow to probe the throughflow of helium with an unprecedented spatial and time resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' For better clarity, we first present the second-sound tweezers, which allows to illustrate the topics on mod- elling and method with a challenging practical case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Though we emphasize that the modelling and methods introduced in this article are general and relevant to second-sound resonator regardless of their size, including the macroscopic sensors embedded in parallel walls encountered in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 2 Design, fabrication and mode of operation of second sound tweezers The core part of second sound tweezers is a stack composed of a heating cantilever and a thermometer cantilever, separated by a spacer (see Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 2 and 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Heaters and thermometers are cantilevers composed of a baseplate, an elongated arm and a tip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The baseplate is the thickest part while the tip is the thinnest one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The active areas, the emitter and receiver plates, are located on the tips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' For a given device, heater and thermometer have strictly the same mechanical structure, the only difference between them being the chemical elements used in the serpentine electrical path deposited on the tip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Three cantilever types were fabricated in order to allow assembling of resonators with three different tip sizes (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The tip widths are 1000µm, 500µm and 250µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Next subsection 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 presents considerations which prevailed in the mechanical design of the second sound tweezers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The following one (section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2) discusses the detection (thermometry) and generation (heating) of second sound by the tweezers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The last two subsections present the microfabrication techniques (section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3) and the electrical circuitry used to operate the probes (section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 Mechanical design Resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The tweezers space-resolution Lres is set by the largest dimension of its cavity, which can be either the inter-plates distance D, also called the “gap”, or the side length L of the plates here assumed to be squared shaped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The present study mostly focuses on cavities with an aspect ratio of order 1, to benefit from optimal space averaging of the signal at given space-resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The tweezers time-resolution τres is set by the decay-time of a wave bouncing between the plates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2, we introduce and validate a simple model accounting for dissipation in the cavity due to diffraction loss and residual inclination of the plates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' An upper bound for τres is obtained from the diffraction loss term: τres ≃ L2f/bc2 2, where b ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='38, c2 is the second sound velocity and f is the wave frequency which can be approximated as nc2/2D for the nth mode of resonance (see eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Thus, the tweezers time-resolution due to diffraction loss can be estimated as τres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' ≃ L2f bc2 2 ≃ n L2 Dc2 The ratio Lres/τres of the space resolution and time resolution defines a characteristic velocity for which the probe optimally averages the space-time fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' For instance, in cavities of aspect ratio one (D = L) operated on its nth resonance, the nominal velocity is estimated as c2/n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' These estimates show that cavities 4 Figure 2: Second sound tweezers, pictured from two angular perspectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (Left) Probe as seen in the direction of the mean flow (or nearly so).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The second sound cavity is localized at the upper tip of the probe, in the encircled area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The bend copper wire through the probe is a temporary joystick used for a fine-alignment of cavity plates under the microscope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The two coaxial cables for heating and thermometry are visible in the lower left corner of the picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (Right) The picture insert shows the same probe after some rotation, and after removal of the joystick, making visible the through-hole across the silicon stack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The two staggered notches used for thermal confinement of the standing wave in the cavity are clearly apparent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Tip Arm Baseplate Cantilever with heater Kapton / Tracks spacer Cantilever with thermometer Tracks / Kapton Second sound standing wave Figure 3: Schematic side view of the constitutive stack of second sound tweezers (the pieces are shown sepa- rated for illustration, their thicknesses are exaggerated).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The active areas, the emitter and receiver plates, are constituents of the tip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 250 µm 500 µm 1000 µm Figure 4: Top view of the 3 cantilever types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The tips widths are respectively 1000µm, 500µm and 250µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Left: Mechanical structures, all parts are silicon made, different thicknesses are represented by different colors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The baseplate width is 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5mm for all types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Right: Electrical path on each tip type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Yellow areas are a deposition of TiPt for heaters and AuSn for thermometers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Orange areas are a thick AuPt deposition for current leads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5mm Baseplate Arm Tip 10mm 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5mm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5mmwith aspect ratio of order unity are fittingly sized for second-sound-subsonic flow, that is flows with a mean velocity of few m/s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Blocking effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The above considerations on space resolution are relevant if the measured flow is not altered by the probe support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The present design conforms to the empirical ×10 rule stating that components of the support that obstruct the flow on a length scale X should be positioned at least 10X away from the measurement zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Accordingly, the cavity is at the end of elongated arms and the cantilevers are 25 mm in length of decreasing thicknesses and widths, as illustrated by the picture of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 and by Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The thickness successive values are around 520µm, 170µm and 20µm while the width decreases from 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5mm to 145 µm in the narrowest zone (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 275 µm and 500 µm) for cavities with L = 250 µm (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' L = 500 µm and L = 1000 µm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Wave confinement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The spatial resolution of tweezers would be degraded if the second sound standing wave was spreading out of the L × L × D cavity, by reflection between the supporting arms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' A design trick was implemented to confine the standing wave in the cavity region by breaking the mirror symmetry between the two cantilevers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Thus, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2, anti-symmetric notches in the tips prevent the second sound to escape by bouncing away from the cavity, at least in the geometric-optic approximation where diffraction is neglected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Mechanical resonances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Besides the ×10 rule consideration, these dimensions are chosen such that the mechanical vibrations of the arm are pushed up to ∼ 1 kHz or above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The fundamental resonance frequency of the trapezoidal-shaped arm in vacuum was estimated from the analytical formula in [Lob07] (section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' f0 = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='367 2π e t2 � ESi(3w2 + w1) ρSi(49w2 + 215w1) We find f0 = 2195 Hz (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 1889 Hz and 1569 Hz) using the material properties ESi = 140 GPa, ρSi = 2330 kg/m3 and the dimensions of the intermediate section of the arm having thickness e = 172 µm, length t = 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 mm, and width decreasing from w2 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 mm to w1 = 250 µm (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' to 500 µm and 1000 µm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' An experimental validation was done at room temperature in air with an arm with w1 = 1000 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Its mechanical vibration frequency spectrum was measured from a photoreceptor detecting a laser beam reflecting of the arm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The mechanical excitation was provided either by hitting the table supporting the set-up with a small hammer or by pointing a jet of compressed air toward the arm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In both cases, the fundamental mechanical resonance frequency was found to be 1215 Hz, in reasonable agreement with the 1569 Hz prediction given the uncertainty on the Young modulus and deviations from the trapezoidal shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' As discussed in 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3, indirect measurements of the resonance frequency were done in 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 m/s superfluid flow and gave f ≈ 825 Hz, f ≈ 1050 Hz and an amplitude of vibration smaller than 1 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The decrease in frequency compared to room-temperature measurement is interpreted as mostly due to a fluidic added mass effect[Sad98].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Deflection of the tips’ ends.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The thicknesses of the tweezers parts are such that the mechanical deflection at the tip endpoint remains significantly lower than the inter-plate distance under typical operating conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The deflection at the tip endpoint can be estimated by considering separately the arm deflection (with thickness 172µm) and the tip deflection (with thickness 20µm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' As a first approximation, both arm and tip are considered as cantilever beams of uniform width submitted to a uniformly distributed load, and having one embedded end and one free end.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This geometrical approximation overestimates the deflection of the arm, as its endpoint is narrower than its base, and it underestimates the deflection of the tip, as the notch is ignored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Still, this is enough to get order-of-magnitude estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The load is estimated as the dynamic pressure of a liquid helium flow impinging the tweezers in transverse direction at a velocity U=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 m/s, that is 10% of the typical longitudinal flow velocity of 1 m/s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The dynamic pressure P is taken as: P = 1 2ρU 2 where the liquid helium density is ρ ≃ 140 kg/m3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' According to Euler-Bernouilli beam theory, the free end deflection δmax of the cantilever is: δmax = 3 2 Pt4 ESi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='e3 The total deflection (arm and tip) is upper-bounded by considering the sum of the deflection of a 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5mm long tip and a 15mm (not 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5mm) long arm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This way, the small angle generated on the tip by the arm deflection is taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Using the values t = 15mm (length), e = 172 µm (thickness) and E = 140GPa (Young modulus), the deflection of the arm endpoint is found to be 75nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The deflection of the tip endpoint with t = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5mm and e = 20 µm gives a 37nm deflection Thus, the total mechanical deflection of the tweezers tip due to a steady lateral flow of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 m/s is a fraction of a micron, that is decades smaller than the inter-plate distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The mechanical resonance of the tweezers arm and tip, discussed above, could lead to deflections larger than the one due to a steady forcing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The amplitude of those mechanical oscillations was measured in a turbulent He-II flow up to velocities exceeding 1 m/s, taking advantage of the dependence of the second sound resonance 6 with respect to the cavity gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The measured signal will be presented to illustrate the efficiency of the elliptic projection method in separating the fluctuations of the acoustical path of the cavity and fluctuations of the bulk attenuation of second sound between plates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The mechanical oscillations of the cavity gap are found to be typically 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 µm (around 1 kHz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' As expected, such a deflection is decades lower than the interplate distance (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3 mm in this case) and than the second sound wavelength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Boundary layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In the presence of a mean flow through the cavity, a velocity boundary layer will develop along each tweezers plate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In principle, this boundary layer could contribute to the measured signal and therefore alter the measurement of the incoming flow, for instance by increasing the density of superfluid vortices in the cavity and therefore second sound attenuation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' As illustrated later, the second sound standing wave that settles between the plates have nodes of velocity near the plates (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' see fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 10 and fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 16) while the sensitivity of second sound to vortices arises in antinodal regions of velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' As long as the boundary layer thickness is thin enough, say within a fraction of λ/4 (λ = c2/f is the second sound wavelength), it is not expected to alter significantly the measured signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' A first requirement for this condition is that the mean flow direction is parallel to the plates so that the flow penetrates through the cavity with minimal deflection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' A consequence is that plates should be widely separated when operated in flows with undefined or zero mean velocity, such as the core of a mixing layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' A second requirement is that the plate thickness is much thinner than λ/4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Present plates are 20 microns thin, to be compared with λ/4 ≃ D/2n for the nth mode of resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' For instance, with D = 500 µm and n = 3, the condition 20 ≪ λ/4 ≃ 83 µm is indeed well satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' A third condition regards the downstream development of the boundary layer thickness, which should also stay well within λ/4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The physics of boundary layers in He-II is ill-understood[SPB17] but existing experiments (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' see [SHVS99]) suggests that classical hydrodynamics phenomenology could remain valid in the high temperature limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In classical hydrodynamics, the so-called displacement thickness of a laminar “Blasius” boundary layer at distance L from its origin is given by δbl = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='73 � Lν U where U is the mean velocity far from the boundary layer and ν is the kinematic viscosity of the fluid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In He-II, several diffusive coefficients could arguably play the role of ν, in particular the quantum of circulation around a quantum vortex and the kinematic viscosity associated with the dynamics viscosity of the normal fluid normalized either by the normal fluid density or by the total density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In the temperature range of interest, all these diffusive coefficients are within one order of magnitude, typ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 10−8 − 10−7m2/s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Taking ν = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='10−8 m2/s, L = 1000 µm and U = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 m/s, one finds δbl = 13 µm, and a boundary layer Reynolds number δblU/ν = 217 consistent with the laminar picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This thickness estimate, similar in magnitude with the plate thickness, satisfies the third requirement δbl ≪ λ/4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 Second sound detection and generation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 Thermometry The temperature-sensitive material used in the present study is AuSn, which fulfills two requirements: (1) it is compatible with the microfabrication process and (2) it can be tuned to become temperature-sensitive over a range of special interest to quantum turbulence studies[WVR21], from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 K up to the superfluid transition temperature Tλ ≃ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='18K in saturated vapor conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Surely, other materials would be more appropriate in other conditions, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Al has been used previously for the tweezers operated around 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 K in [RDD+07].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The gold-tin AuSn thermometer is a metal-superconductor composite material, with superconducting Sn islands electrically connected by a gold layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This granular structure is imaged by electronic microscopy in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The temperature dependence phenomenology can be interpreted in a simple way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Indeed, by proximity effect, the gold in contact with tin behaves as a superconductor over a spatial extent which depends on temperature : by adjusting the characteristic length scales and thicknesses of the granular pattern, the temperature response of the material can be tuned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' As a preliminary study, the temperature of the resistance of a 100 squares long AuSn track was tested for three different tin thicknesses, as illustrated on the left plot of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' A description of the conduction mechanism in AuSn is presented in [BSS83].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In the present study, AuSn layers are deposited by evaporation with successively a small erosion of the substrate by argon ion bombardment during 20s then the deposition of a 25nm gold layer and a 100nm tin layer (hypothetic thickness for a planar - not granular - layer).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The thermometer is shaped into a meander deposited by lithographic technique on the tip of tweezers arm, as pictured in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 (right plot).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The total resistance at superfluid temperatures doesn’t exceed a few hundreds of ohm, a value chosen to be much larger than the resistance of the leads but small enough to prevent parasitic effect from the leads’ capacitance (typ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' few hundreds of picoFarads) up to the highest frequencies of operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 7 Figure 5: Left: Tip of tweezers arm as seen from the facing arm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The thin meander on the top is the active heater (Pt) or thermometer (AuSn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The overlap with gold tracks is apparent on the lower part of the picture Right: Close up picture by electronic microscopy of the AuSn thermometer showing its granular aspect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Depending on tweezers models (see fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 8), the width of the AuSn track is 4, 11 or 24 µm In order to obtain resistance values in this range, the meander length was fixed close to 700 squares for all tip sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' According to the tip size, the track width was adapted so as the serpentine shape occupy the whole available area on the tip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' At ambient temperature, the AuSn layer resistance was found to drift from low values to their final values during a few days (less than one week) after deposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' After this period, the resistance was found to be stable at least over 6 months.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Figure 6 (right plot) shows a typical AuSn thermometer resistance R(T0) versus temperature T0 for different direct current I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Regarding the temperature dependence of resistance, the current density is a more determining parameter than the total current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Thus, the comparison between left and right plots of figure 6 should be done at constant values of the ratio of current over track width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' At low current density (I � 10µA), the sensitivity exceeds 1 Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='mK−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' At larger current densities, the current-induced magnetic field significantly shifts the superconducting-metal transition to lower temperature and broaden it, allowing to extend the measurement range down to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='6 K and below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In the range of currents explored in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 6, the reduction of sensitivity in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='K−1 at larger current I is more than compensated by the larger sensitivity in V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='K−1 units across the thermistor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Most measurements presented hereafter are done with a polarization of I ≃ 27 µA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 Heating The heater consists in a meander of metal deposited by lithographic technique on the tip of a cantilever, alike the thermometer (see fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 5 (left)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The same lithographic mask was used, and therefore the meander length is also close to 700 squares for all the tip sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' As can be seen on figures 4 and 5, a buffer zone was designed between the gold tracks and the meander.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Into this zone, the electrical path is wide but the material is the same as in the meander (platinum for heater).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The buffer zone length is approximately 20 squares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This design aims at providing some thermal isolation between the meander and the gold track.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Numerous resistive materials are suitable, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' chrome was used for the tweezers in [RDD+07] and platinum in [WVR21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Present data have been obtained with platinum to benefit from the temperature-independence of its resistivity at superfluid temperatures [PK82], and nevertheless to allow re-use of these miniature heaters as miniature thermometers or hot-film anemometers in experiments conducted at higher temperatures where Pt regains temperature dependence [Kem91].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' A 5nm titanium layer was deposited prior to platinum as an adhesion layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The thickness of the Pt layer, around 80 nm, was chosen such that the electrical resistance of the heater at superfluid temperature is around a few hundreds of ohms, like for the thermometer maximum resistance and for the same reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The heater is driven with a sinusoidal current at frequency f/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The resulting Joule effect can be decomposed into a constant mean heating and the sinusoidal heat flux at the frequency f that drives the second sound resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' A benefit of this f/2 excitation is that the signal monitored by the thermometer - centered around f is not spoiled by spurious sub-harmonic electromagnetic coupling at f/2 from the excitation circuitry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Thus, no special care is needed to minimize the electromagnetic cross-talk between the electrical tracks of the heater and the electrical tracks of the thermometer, despite their proximity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The non-zero mean heating results is a steady thermal flux in He-II, the corresponding entropy being carried 8 10μm 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='6 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='8 1 Au 25nm + Sn 90nm Au 25nm + Sn 100nm Au 25nm + Sn 110nm T λ transition under saturated vapor R0 / max(R0) T0 (K) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='9 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 0 100 200 300 1 μ A d c + 1 μ A a c 3 μ A d c + 1 μ A a c 10 μ A d c + 1 μ A a c 20 μ A d c + 1 μ A a c 30 μ A d c + 1 μ A a c R0 (Ω) T0 (K) Figure 6: Left: Example of temperature and current dependence of AuSn layers with different Sn thicknesses deposited on a track of width 50µm .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The current polarization spans from 1µA up to 1mA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Right: Tempera- ture response of the AuSn track of small tweezers for different electrical currents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The thickness of the tin layer is 100 nm of Tin, and the width of the track is 4µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The small difference between both plots -when compared at similar current densities- is compatible with the uncertainty on the layer thicknesses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This good agreement indicates that AuSn properties are robust to the full fabrication process of the tweezers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' No significant aging of AuSn properties has been noticed over a few years period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' away from the heater in the form of steady normal fluid flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This outgoing normal flow is balanced by an opposite steady mass flow of superfluid towards the heater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Such cross-flows are referred to as counterflows in the quantum fluid literature[Tou82, NF95].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This steady counterflow adds up to a pure second sound generated by the heater, but -contrary to it- its effects are not amplified by resonance in the cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Quasi-linear vs non-linear regimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The second sound resonators are operated with standing waves of low amplitude, say ∼ 100 µK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In this limit, the amplitude T of the temperature standing wave nearly responds linearly to the heating power P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' For larger heating power, the ratio T/P decreases with P, which is interpreted as the result of a turbulent transition within the tweezers which fuels a dense tangle of quantum vortices dissipating the second sound wave3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The crossover from the quasi-linear to non-linear response of T(P) is illustrated by figure 7 (left plot) for tweezers at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='6 K in the absence of external flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In these conditions and for these tweezers, the transition occurs around P ≃ 1 W/cm2, where P is the total Joule power normalized by the heating surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In other conditions, this transition was observed at smaller power densities, but no systematic study was carried on the threshold value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3 Digression on the operation in the non-linear heating regime The present study focuses on the linear regime of heating, but a short digression on higher powers allows uncovering a noteworthy property of non-linear operation and incidentally backing-up the above interpretations of the nature of the non-linear regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Figure 7-right displays the amplitude of the (normalized) temperature standing wave T/P versus P in flows of different mean velocities U and turbulence intensity of few percents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In the linear regime (P � 1W/cm2 in the conditions of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 7), the plateaus of T/P decreases when U increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Following the classical interpretation (see later), the standing wave T is damped by the vortices present in the external flow, which concentration increases with U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Interestingly, in the non-linear regime (say for P � 2W/cm2 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 7), the dependence of T/P versus U is opposite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The interpretation is that the extra damping of the 3In one dataset, a close look at the quasi-linear region in quiescent superfluid around 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 K evidenced a small discontinuity of T/P versus P dependence around P ⋆ ≃ 10−2W/cm2 (not shown), suggesting another flow transition, but this small effect was not detectable in other datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' A Reynolds number of this possible transition can be defined with the transverse characteristic length scale L ≃ 1 mm, the quantum of circulation κ ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='10−7m2/s and the counterflow superfluid velocity towards the heater vs ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3 mm/s (amplification of velocity by the quality factor of the cavity has not been taken into account).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' One finds Res = vsL/κ ≃ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Critical Reynolds numbers Res of a few units have already been reported to characterize the threshold of appearance of a few superfluid vortices across the section of pipes that are closed at one of their ends with a heating plug (see fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3 in [BLR17]), a transition referred as the T1-transition in the counterflow literature [Tou82, NF95].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' By analogy, this could suggest that the discontinuity at P ⋆ might be associated with the appearance of a sparse tangle of the quantum vortices near the heater, which density is expected to increase for larger P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Such vortices would damp the standing wave, but no such effect has been detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Indeed, first the observed damping of the standing wave in quiescent He-II can be accounted for by the sole effect of diffraction (as shown later), which indicates that all the other sources of loss are comparatively small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Second, loss due to such “counterflow” vortices would make the T(P) dependence sub-linear rather than linear, which is not clearly observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Since no quantitative evidence of these vortices could be clearly identified, this effect was not further explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 9 10-1 100 P (W/cm2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='8 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='8 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 T/P (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='u) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 P (W/cm2) 1 0 1 2 3 X (mK) 2 1 0 1 2 3 Y (mK) 10-1 100 P (W/cm2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='8 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='8 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 T/P (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='u) Overheating 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='8 1 U (m/s) Figure 7: Left: Normalized amplitude T of the temperature standing wave versus heating power P for second sound tweezers in a quiescent He-II around 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='6 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The transition around P = 1 W/cm2 is interpreted by the development of a self-sustained vortex tangle within the probe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The insert shows the amplitude of the temperature standing waves in the complex plane for a subset of frequencies belonging to the same second sound resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In this representation, the extra-dissipation associated with the self-sustained vortex tangle results in a curvature of the iso-frequency radial “lines” revealing the broadening of the resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Right: Same quantity for second sound tweezers swept by turbulent flows of different mean velocities but similar turbulence intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In the linear regime P � 1 W/cm2, the velocity dependence is opposite to the one in the non-linear regime, P � 2 W/cm2, demonstrating respectively vortex and velocity sensing by the probe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' standing wave T now mostly results from the vortices generated within the tweezers by the heating itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This vortex density decreases at larger U because vortices are more efficiently swept out of the tweezers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In the non-linear regime, the second-sound tweezers thus behave as a local anemometer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In the linear regime, we will show that second-sound tweezers can not only behave as vortex probes -as illustrated by Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='7-right but also as anemometers through a mechanism discussed later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3 Microfabrication and assembling Mechanical and electrical assembly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The distance between the plates is set by the spacer, composed of one or several micro-machined silicon elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Additionally, two Kapton films with golden copper tracks are inserted in contact with the gold tracks of the heater and thermometer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The cantilevers, Kapton films and spacer elements are stacked on each other as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The resulting assembly is clamped with a standard picture clip, downsized by electro-wire erosion, and soldered to the head of a mounting screw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' An improvement compared to the clamping technique introduced in [RDD+07] is the possibility to insert a temporary “joystick” through the whole assembly to allow precise alignment (or offsetting) of the cavity plates under microscope (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2-a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' All the mechanical structures of cantilevers and spacers are made of silicon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The cantilevers are fabricated by processing SOI (Silicon On Insulator) substrates by microelectronic techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The substrates diameter is 100mm, the silicon substrate, oxide and device thicknesses are respectively 500µm, 1µm and 20µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The substrates are double side polished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The wafers are oxidized so as to form a 100nm thick SiO2 layer on both sides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Distinct wafers are used to fabricate heaters and thermometers but the process differs only in the metals used for tips electrical paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' By using a circular symmetry design, 46 cantilevers are made per wafer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The cantilevers’ fabrication process is presented in table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The serpentine electrical path (red color) is deposited first on the SOI wafer frontside.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The deposition is done using standard photolithography, evaporation and lift-off sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The photoresist used is AZ 5214E from Microchemicals GmbH, processed as a negative photoresist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Depending on the cantilever type, heater or thermometer, two different evaporation sequences are used: Ti 5nm + Pt 80nm or Au 25nm + Sn 100nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Evaporation is preceded by in situ wafer surface cleaning by an argon ions bombardment during 20s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Lift-off is initiated in an acetone bath during 5min and then completed by ultrasounds during a few tens of seconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The current leads (orange color) are deposited during a second photolithography, evaporation and lift-off sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The evaporation sequence is Ti 5nm + Au 200nm + Ti 5nm + Pt 50nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The usage of a platinum layer was found to facilitate lift-off and may also be useful for brazing purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' A thin protective resist layer is deposited on frontside in order to protect it during all subsequent operations on the backside.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 10 Figure 8: Overview of mask design (the disk diameter is 100mm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Side Step Surface material Design Frontside 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Electrical circuitry fabrication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' TiAuTiPt (orange) AuSn/TiPt (red) Backside 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Aluminum mask fabrication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Aluminum Backside 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Resist mask fabrication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Etching of surface oxide and silicon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Resist removal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Photoresist Backside 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Etching of surface oxide and silicon until buried oxide is reached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Etching of buried oxide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Aluminum removal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Aluminum Frontside 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Resist mask fabrication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Etching of surface oxide and silicon until opening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Photoresist Table 1: Cantilevers fabrication process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 11 Phase Deposition Etch Sub-phase Main Boost Main Gas C4F8: 250 sccm SF6: 250 sccm O2: 45 sccm SF6: 450 sccm O2: 45 sccm Duration 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 s 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='0 s 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 s Pressure 14 mTor 20 mTor 75 mTor Coil power 1200 W 1780 W 1780 W Platen power 20 W 110 W 50 W Electromagnet current 0 A 0 A 2 A Platen frequency RF 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='56 MHz He backside pressure 10 Tor Table 2: Bosch process recipe used during deep silicon etching on backside.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The cantilevers 3D structuration starts with a backside deep etching of silicon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Two superimposed etch masks are fabricated first, one aluminum mask and one photoresist mask deposited over the aluminum one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The aluminum mask is made in the same way as the frontside electrical paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' A backside alignment is necessary during photolithography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The aluminum thickness is 120nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The protective resist layer on frontside had to be deposited again after lift-off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The resist mask is made by photolithography on the positive AZ4562 photoresist spin-coated at 4000rpm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The aluminum mask is identical to the resist mask except within the arm area, as shown in table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This area is covered by resist but not by aluminum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Thus, the resist fully covers aluminum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' After the fabrication of both masks, the deep etching is started, with the resist mask protecting both silicon oxide and aluminum surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The surface oxide is etched first then the solid silicon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The thin oxide layer is etched by reactive ion etching (RIE) based on SF6 gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The silicon was etched in a STS HRM deep reactive ion etching (DRIE) equipment using a recipe based on Bosch process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The recipe is presented on table 2, the etch duration is 120 cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' As shown on table 1, a 200µm wide trench is dug from the backside around the baseplate and arm areas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The tip area is fully exposed to etching as this part was extracted from the device layer of SOI only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The longer this phase, the thicker the cantilever arm at the end of process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Following this first etch phase, the resist is removed by an oxygen plasma and the backside surface oxide is etched into the freshly uncovered arm area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Then, another silicon etch sequence is applied with the remaining aluminum mask.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Its objective was to thin the arm and to reach the buried oxide of SOI in the trench, at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The same recipe is used, 200 cycles are applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The Bosch process is interrupted 3 times, every 50 cycles, in order to apply a 1min oxygen plasma followed by 20s of an isotropic silicon etching recipe (plasma pressure 75mTor, SF6 flow 450sccm, O2 flow 45sccm, coil power 1780W, platen power 50W).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The objective is to reduce the parasitic effect generated by the passivation layer deposited on arm sidewalls during the first deep silicon etching sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' As the arm area is masked during the first silicon etch sequence and unmasked during the second one, the passivation layer located along the arm edges is released and could generate locally some irregular micromasking effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The oxygen plasma is intended to help remove the floating passivation films.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The isotropic silicon etching is intended to cut the silicon pillars generated by micromasking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The final 50 cycles of the Bosch process recipe end up reaching the SOI buried oxide layer, at the trench bottom, all around the cantilever (however the oxide should not be reached into the arm area).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' It is necessary at this step to check that the buried oxide is fully uncovered by silicon everywhere in the trench bottom and in the tip area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' However, etching cycles should not be applied in excess so as to avoid some mechanical weakening of the wafer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' At this step, the arm thickness has its final value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The buried oxide is then removed by plasma etching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This oxide is fully removed at the trench bottom and in the tip area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' If this layer is not removed, some bending may occur on the tip at the end of process, due to mechanical stress of oxide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The aluminum mask is removed in an aluminum etchant solution at 50°C during a few minutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The frontside protective resist layer is removed during an acetone cleaning bath.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The 3D cantilever structuration is ended by a third silicon etching made from the frontside.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The etch mask is formed by photolithography on AZ1512HS resist, deposited at 4000rpm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' As shown on table 1, the mask design includes two bridges on the baseplate sides in order to maintain the cantilever after having opened the trench that surrounds it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The design also includes the tip contour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The frontside thin surface oxide is etched first, then the silicon of the device layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The silicon etching is done with specific conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Due to the wafer mechanical weakness at this step, caused by the multiple deep trenches made on the backside, the processed wafer is layed on and attached to a blank silicon wafer by Kapton tape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This ensemble is loaded into the etching chamber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' As no thermal bridge is present between the two wafers, the recipe is adapted: low RF powers are used and a 22s idle time is added after each etching cycle (see table 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The objective is to avoid overheating during etching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The silicon etch duration is 50 cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' After this sequence, the trench around cantilever is fully opened.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The resist is removed by a low power oxygen plasma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Some spacers are fabricated together with the cantilevers but most of them are made separately from 12 Phase Deposition Etch Sub-phase Main Delay Boost Main Gas C4F8: 250 sccm SF6: 250 sccm O2: 10 sccm Duration 3 s 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='0 s 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 s 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 s Pressure 14 mTor 20 mTor 40 mTor 40 mTor Coil power 300 W 300 W 300 W 1 W Platen power 20 W 100 W 50 W 1 W Electromagnet current 0 A 0 A 2 A 0 A Platen frequency RF 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='56 MHz He backside pressure 10 Tor Table 3: Bosch process recipe used during deep silicon etching on frontside.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' two silicon wafers with thicknesses 300µm and 525µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' These wafers are covered by thin dielectric layers on both sides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 Electric circuit Figure 9 shows a circuit used for time-resolved measurements with second-sound tweezers, with example values of resistances and gain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The time-resolved data presented in this paper have been obtained with such a circuit and using the following equipment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The front-end of the preamplifier is the EPC1-B model by Celian or an SA- 400F3 model by NF when frequencies above 100 kHz are explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The lock-in amplifier is a LI-5640 by NF or Model 7280 by SignalRecovery above 100 kHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In most conditions, its built-in internal generator provides both the drive of the tweezers heater (at frequency f/2) and the reference frequency to detect the temperature signal (at frequency f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The acquisition system is built around PXI-4462 analog input cards by National Instrument, and it records both the in-phase (X) and quadrature (Y ) signal from the analog outputs of the lock-in amplifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In occasional conditions, the temperature signal at the lock-in input is buried in a much larger electro- magnetic parasitic signal at f/2, and it cannot be properly resolved by the limited voltage dynamic range of the lock-in amplifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This situation can occur when the tweezers are operated far from a resonance, where the second sound signal is small, or when the tweezers are operated at very high frequency (say > 100 kHz), as electromagnetic coupling increases with frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The magnitude of this parasitic coupling depends on the geometrical and electrical specificities of the tweezers and cables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In the range of parameters explored in the present study, the order of magnitude of the parasitic voltage induced across the thermometer resistor, normalized by the voltage applied across the heating resistor, is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5% × f/2 100kHz Such situations are handle thanks to the differential input of the lock-in amplifier, by removing a signal mimicking the parasitic one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In such cases, a two-channel waveform generator is used: one channel driving the heater (at frequency f/2), another channel mimicking the parasitic signal (at frequency f/2, with manually tuned amplitude and phase shift) and the "sync" output of the generator synchronizing the lock-in demodulation (at frequency f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The 33612A generator by Agilent is used for this purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Alternatively, the compensation signal can be generated directly from the lock-in internal generator, completed with a simple RC phase shifter and eventually ratio transformer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In principle, any positive temperature coefficient thermistor -like AuSn thermometer- that is not well ther- malized with the fluid can become unstable when driven by a current source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Indeed, an infinitesimal thermistor fluctuation from T0 to T0 + δT0 entails a resistance variation of δR = ∂R/∂T0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='δT0 > 0, leading to an excess of Joule dissipation δR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='I2 for a constant current drive I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Calling Rth is the thermal resistance of the thermistor- fluid interface, this extra Joule dissipation results in an overheating Rth × δR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='I2 which could lead to a thermal instability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The stability condition is difficult to predict for spatially distributed thermistor deposited on a Si crystal and immersed in superfluid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Thus, first tests have been done with a voltage polarization, before validating empirically the stability of our current polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The frequency bandwidth of the measurements is arbitrarily set by the integration time constant of the lock-in amplifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In practice, the performance of the circuit are limited by the 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='65 nV/ √ Hz input voltage noise of the EPC1-B pre-amplifier, all other sources of noise being smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' For a 27 µA current polarization, a thermometer sensitivity of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='mK−1, and a 10 Hz or 1000 Hz bandwidth of demodulation, the temperature resolution Trms is : Trms = √ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 × 27 µK ≃ 150nK for a 10 Hz measurement bandwidth 13 300 kΩ acquisition system 10 kΩ 400 Ω Tweezers heater Reference clock 9V batteries quadrature phase Optional noise compensation Low noise AC preamp (40 - 50 dB) Lock-in amplifier (at freq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' f ) + Freq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' f/2, phase φ r1 r2 Freq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' f/2 Tweezers thermometer (0 - 300 Ω) R(T0) Current source (typ 30 µADC) Figure 9: Example of circuitry for measurements with a high dynamical reserve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' or Trms = √ 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 × 27 µK ≃ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5µK for a 1 kHz measurement bandwidth These resolutions are sufficient in standard conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Indeed, they are respectively 3 and 2 decades smaller than the typical amplitude of a second sound at resonance, and reaching the same temperature resolution at significantly larger bandwidth would be useless given the space-time resolution of the probe itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' If needed, better resolution could nevertheless be achieved with a larger polarization across the thermometer or using a cryogenic amplifier (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' see [DLF+14] and http://cryohemt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='com) before being limited by the thermal noise floor of the thermistor (typ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='15 nV/ √ Hz for 200 Ω at 2 K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3 Models of second sound resonators The second sound equations within the linear approximation can be written in terms of the temperature fluc- tuations T and the velocity of the normal component vn as ∂tvn + σρs ρn ∇T = 0, (1) ∂tT + σT0 cp ∇.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='vn = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' with σ the entropy per unit of mass, cp the heat capacity, and ρs , ρn are the densities of the superfluid and normal components respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' All along the present section, T0 is the notation for the bath mean temperature whereas T denotes the temperature fluctuations, with ⟨T⟩ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We introduce the second sound velocity c2 defined by the relation c2 2 = ρs ρn σ2T0 cp .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (2) It can be deduced from Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (1) that both the temperature T and the normal velocity vn follow the wave equation ∂2 t T − c2 2∆T = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (3) We explain in the present section how Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (1-2-3) can be used to build quantitative models of second sound resonators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We first focus on phenomenological aspects in sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Then, we give analytical approximations in sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 and an accurate numerical model in sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Finally, we discuss the model quantitative predictions in secs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 14 Heater Thermometer z=0 z=D Figure 10: Schematic representation of the second resonant mode of a second sound cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The red curve displays the temperature field at time t = 0, and the blue curve displays the normal fluid velocity vn at time t = 1 4f , where f is the excitation frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 Resonant spectrum of second sound resonator: phenomenological aspects The basic idea of second sound resonators is to create a second sound resonance between two parallel plates facing each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' A second sound wave is excited with a first plate, while the magnitude and phase of the temperature oscillation is recorded with the second plate used as a thermometer (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' For simplicity, we assume from now on that the second sound wave is excited by a heating, but the whole discussion can be straightforward extended to nucleopore mechanized resonators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The temperature oscillations within the cavity are coupled to normal fluid velocity oscillations according to the second sound equations (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Both components oscillate in quadrature, which means that they reach their maximal amplitude with a 1 4f time shift (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We note jQ = j0e2iπft the periodic component of the heat flux emitted from the heater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We assume throughout the present article perfectly insulating plates, which means that the boundary conditions for the second sound wave are vn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='n = � 0 for z = D jQ ρσT0 for z = 0 , (4) where n is the unit vector directed inward the cavity and normal to the plates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The second equation in (4) reflects the fact that the normal component carries all the entropy in the fluid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' As illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 10, the thermometer plate is a node of the normal velocity oscillation, whereas the normal velocity amplitude only vanishes on the heater plate in quadrature (t = 1 4f + n 2f ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' According to the first relation in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (1), the boundary conditions (4) for the normal velocity translate into the following boundary conditions for the temperature field ∇T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='n = � 0 for z = D − ρn∂tjQ ρρsσ2T0 for z = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (5) In particular, the thermometer plate is an antinode for the temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We display in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 11 a typical experimental spectrum of second sound tweezers, that is, the temperature magnitude averaged over the thermometer plate, as a function of the heating frequency f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The spectrum is reminiscent of a Fabry–Perot resonator (described in sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2): it displays very clear resonant peaks almost equally separated, and a stable non-zero minimum at the non-resonant frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' However, the spectrum of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 11 displays three major characteristics that can be observed for every tweezers spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' First, the location of the resonant frequencies are slightly shifted compared to the standard values fn given by 2πfnD c2 = nπ, (n ∈ N) expected for an ideal Fabry–Perot resonator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Only for large mode numbers do the resonant peaks again coincide with the expected values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Second, the temperature magnitude vanishes in the zero frequency limit, and the first modes of the spectrum grow linearly with f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In between, the resonant amplitudes saturate and then slowly decrease at high frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' These latter peculiarities of the frequency response were not described in previous references about second sound resonators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This prompted us to study different models for second sound resonators, including the finite size effects and near field diffraction phenomena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We first describe analytical approximations in sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2, then we develop in sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3 a numerical algorithm based on the exact solution of the wave equation (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The numerical scheme can be adapted for various types of planar second sound resonators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We then give quantitative predictions specifically for the response of second sound tweezers without and in the presence of a flow in sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 and a summary of the main results in sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 Analytical approximations The starting point to build our model of second sound tweezers is to assume that all zeroth order physical effects observed with the tweezers are geometrical effects of diffraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This means in particular that we assume perfectly reflecting resonator plates, and we also neglect bulk attenuation of second sound waves when 15 0 10 20 30 40 50 60 70 f (kHz) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='8 1 T (K) 10-4 Linear growth of the first modes Stable baseline Decrease at high frequency Figure 11: Experimental spectrum of second sound tweezers of lateral size L = 1 mm and gap D ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='435 mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' f is the heating frequency, and T is the thermal wave magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The figure displays the main characteristics of tweezers typical spectrum: first, the resonant frequencies are not located at the values fn given by 2πfnD c2 = nπ, (n ∈ N), displayed by the gray vertical lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The amplitudes of the resonant modes first increases linearly with f until they saturate and eventually decrease at high frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The baseline level only weakly depends on f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' the fluid is at rest [CR83, RG84].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' These assumptions turn to be self-consistent, because the predictions of the model developed in sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3 reproduce the main features observed in experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We thus start with the simplest model of a resonant cavity for planar waves, namely the Fabry–Perot model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We then propose variations of the Fabry–Perot model, taking progressively into account the particular resonator geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We discuss the predictions of these models and their relevance for our second sound tweezers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The standard Fabry–Perot model The Fabry–Perot model corresponds to a one-dimensional resonator composed of two infinite parallel plates separated by a gap D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In that case, the wave Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (3) together with the boundary conditions Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (5) can be solved exactly, for a periodic heating jQ = j0e2iπft .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' However, as there is no energy loss between two perfectly insulating and infinite plates, a bulk dissipation has to be introduced by hand in the model, to balance energy injection from the heater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This can be done with an additional dissipation coefficient ξ (in m−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The temperature at the thermometer plate is T(t) = Re � Te2iπft� (where Re is the real part operator) with the complex wave amplitude T given by T = A sinh � i 2πfD c2 + ξD �, (6) with A = − j0 ρcpc2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' An illustration of a Fabry–Perot spectrum is displayed in grey in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 14, with ξD = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='15 and A = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We introduce the wave number k = 2πf c2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' It can be proved from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (6) that the spectrum maxima are reached for the values knD = nπ, (n ∈ N), and correspond to constructive interferences in the cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The baseline level is set by the minima reached for the values knD = nπ + π 2 , (n ∈ N), and correspond to destructive interferences in the cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' For the simple Fabry–Perot model of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (6), all the resonant peaks have equal height and are uniformly separated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Therefore, some main features of experimental spectra are missing, an indication that important other physical effects have to be included in the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Second sound resonators embedded in infinite walls A possible modification of the Fabry–Perot res- onator is to consider finite-size heater and thermometer of size L embedded in two parallel and infinite walls facing each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This geometry is most commonly encountered in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' With such a configuration, 16 the thermal wave is not a plane wave any more because it is emitted by a finite size heater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The model thus contains diffraction effects, that the simplest Fabry–Perot resonator do not display.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' An illustration of the model setup is displayed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' An exact solution of the wave equation Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (3) can be found using the technique of image source points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Let Σ1 be the heating plate and Σ2 be the thermometer plate, and we assume that the thermometer is sensitive to the average temperature over Σ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Then the response of the tweezers is given by T(t) = Re � Te2iπft� with T = ikj0 2πρcpc2 1 L2 � Σ2 d2r2 � Σ1 d2r1G (r2 − r1) , with the Green function G(r) defined for every vector r in the (x, y) plane G(r) = 2 +∞ � n=0 1 |(2n + 1)Dez + r|e−ik|(2n+1)Dez+r|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Such a model correctly predicts that the tweezers spectrum vanishes when the heating frequency f goes to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Yet, it does not reproduce the linear increase of the resonant magnitude of the first modes, neither the decrease of the resonant peaks at large frequency observed in experiments with second sound tweezers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This means that other effects have to be taken into account to model a fully-immersed open resonant cavity such as non-perfect plates alignment and energy loss by diffraction outside the cavity when the latter is not embedded in infinite walls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Empirically modified Fabry–Perot model Contrary to a Fabry–Perot resonator composed of infinite plates, second-sound resonators are built with plates of finite size L, approximately of the same order as the gap D between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Those finite size effects are important as they introduce a frequency-dependent energy diffracted outside the cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This mechanism is sketched in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' According to standard diffraction theory, a finite wave initially of size L with a wavelength λ = c2 f spreads with a typical opening angle given by λ L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' By this geometrical effect, a part of the wave energy is lost as the wave reaches the other side of the cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The energy loss is roughly proportional to the surface of the wave cross-section that “misses” the reflector (see the right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Therefore, the fraction of energy lost at the wave reflection is controlled by the ratio � L + 2λD L �2 − L2 � L + 2λD L �2 ≈ 4λD L2 , (7) ≈ 4 NF , where we have introduced the Fresnel number NF = L2 λD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The tweezers plates are mounted at the top of arms of a few millimeters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The perfect parallelism of the plates is usually not reached for our tweezers, but a small inclination γ of the order of a few degrees can be observed instead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' A relative inclination γ -even small- of both plates creates an additional energy loss mechanism (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Intuitively, this second mechanism is controlled by the non-dimensional number Ni = λ γL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (8) We assume that the Fabry–Perot model (6) can be corrected using the two non-dimensional numbers NF = L2f c2D in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (7) and Ni = c2 γfL in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' More precisely, based on empirical observations, we find that second-sound tweezers spectra can be accurately represented by the formula T = A sinh � i � 2πfD c2 − a c2D L2f � + b c2D L2f + c � γfL c2 �2�, (9) where a, b and c are fitting coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' As there is no other small parameter in the problem, a reasonable assumption is to look for coefficients of order one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We find that the values a ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='95, b ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='38 and c ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3 give accurate spectra predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' An illustration of a modified Fabry–Perot spectrum with Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (9) is given in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The linear amplitude growth of the first resonant peaks can be interpreted as a progressive focalization of the wave, and is thus controlled by the Fresnel diffraction number NF in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The shift proportional to 1 f in peaks frequency positions, observed in the experimental spectra, is also controlled by NF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The decrease in resonant magnitude for large mode numbers can be interpreted as a wave deflection outside the cavity, after back and forth propagation between the plates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This latter effect is controlled by the second non-dimensional number Ni in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 17 L L D L Thermal wave Figure 12: Representation of the wave dispersion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The energy loss is controlled by the non-dimensional number λ L, according to standard diffraction theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In this section, we discuss both the case of tweezers embedded in walls, and the case of free tweezers in open space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Figure 13: Effect of the plates’ inclination γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Inclination creates an additional energy loss mechanism controlled by the second non-dimensional number λ γL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 18 20 2 4 6 8 10 12 14 kD 0 1 2 3 4 5 6 7 T inclination effect destructive interferences focalization of the wave Figure 14: Analytical models of second-sound tweezers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The grey curve represents the standard Fabry-Perot spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The blue curve represents the empirical correction of the Fabry-Perot formula using the two non- dimensional numbers λ L and λ γL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The modified spectrum displays the characteristic features of a tweezers experimental spectrum, as displayed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The major interest of the Fabry–Perot model is to offer an analytical expression to fit locally a resonant peak of second sound resonator spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The local fit of a peak is of particular interest to interpret the experimental data, as will be explained in sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Based on Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (9), given a measured resonant frequency f0, we will look for a fitting expression T = A sinh � i 2π(f−f0)D c2 + ξ0D �, (10) valid for second sound frequencies f close to f0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In that expression, ξ0 encapsulates the different geometrical mechanisms responsible for energy loss when the fluid is at rest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' A and ξ0 are thus fitting parameters that can be found easily with the experimental data obtained by varying f in the vicinity of f0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3 Numeric algorithm Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 presents a class of models of increasing complexity, still with an analytical solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Those models show how all zeroth-order effects observed with second sound resonators can be recovered from geometrical diffraction effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' However, they do not allow for quantitative predictions of the resonator spectra, nor do they allow including the effects of a flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We develop in the present section a numerical algorithm, based on the exact resolution of the wave equations with the particular tweezers geometry, with and without flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The algorithm could be extended to any second sound resonator with a planar geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' As will become clear in the following, this numerical model allows going far beyond the approximate models of sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 For a backgroud medium at rest The aim of the present section is to build a numerical algorithm to solve the wave equation (3) for a periodic heating jQ = j0e2iπft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We look for a solution with the ansatz T(r, t) = Re � T(r)e2iπft� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Then, the wave equation for T is ∆T + k2T = 0, where we have introduced the wave number k = 2πf c2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The boundary conditions are � ∇T(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='n1 = − ikj0 ρcpc2 for r ∈ Σ1 ∇T(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='n2 = 0 for r ∈ Σ2 , (11) where Σ1 is the heater plate and Σ2 the thermometer plate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The notations are given in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We propose the method described below, based on the Huyggens–Fresnel principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The principle states that every point 19 of the wave emitter can be considered as a point source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The linearity of the wave equation can then be used to reconstruct the entire wave by summation of all point source contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The Huyggens–Fresnel principle has been widely used in the context of electromagnetism, for example to compute diffraction patterns produced by small apertures, or interference patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The major difficulty in the context of second sound tweezers is that none of the standard approximations of electromagnetism can be done, neither the far-field approximation nor the small wavelength approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This explains why numerical resolution is very useful in this context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We neglect the tweezers arms, which means that both plates are considered as freestanding, infinitely thin and perfectly insulating plates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We allow a relative inclination γ around the x-axis and a possible relative lateral shift Xsh of one plate with respect to the other along the x-axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We assume that the thermometer is sensitive to the temperature averaged over Σ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Let us introduce the Green function G(r) = 1 |r|e−ik|r|, (12) which is the fundamental solution of the wave equation ∆G + k2G = 4πδ(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (13) Let Σ be one of our two square plates, and U(r′) be a smooth function defined over Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We introduce the wave defined by T(r) = −1 2π � Σ G(r − r′)U(r′) d2r′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (14) By linearity, T is a solution of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (3), for all r /∈ Σ, because G is a solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' A asymptotic calculation in the vicinity of Σ then shows that T satisfies the boundary condition ∇T(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='n −→ r→r0∈Σ U(r0), (15) where n is the unit vector normal to Σ and directed inward the cavity (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We are going to use Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (14) and (15) as the two fundamental relations to build our algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We will compute the solution of the wave equation as an infinite summation of all the emitted and reflected waves in the cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The first wave T 1 is emitted by the heating plate Σ1 and satisfies the first relation in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (11) ∇T 1(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='n1 = − ikj0 ρcpc2 for r ∈ Σ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Given Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (14) and (15), it is clear that the first wave is given by T 1(r) = ikj0 2πρcpc2 � Σ1 G(r − r′) d2r1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (16) Then each time a wave denoted T n hits a plate Σ (Σ1 or Σ2), it produces a reflected wave T n+1 to satisfy the boundary condition ∇ � T n(r) + T n+1(r) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='n = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (17) The situation is sketched in the left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' If we choose for T n+1 the expression T n+1(r) = 1 2π � Σ G(r − r′) � ∇T n(r′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='n � d2r′, (18) then Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (15) shows that Tn+1 satisfies the boundary condition ∇T n+1(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='n −→ r→r0∈Σ −∇T n(r0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='n, which is exactly Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (16) and (18) define our recursive algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (18) shows that the reflected wave is generated by the gradient of the incident wave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Practically, the recursive computation of all forth and back reflected waves thus requires at each step n the computation of ∇T n only on the plates, rather than T n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' For a reflection at (say) Σ1, we have ∇T n+1(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='n2 = −1 2π � Σ1 G(r − r1) � 1 |r − r1| + ik � n2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' r − r1 |r − r1| � ∇T n(r1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='n1 � d2r1, (19) 20 D L Thermometer L n2 Heater heat flux n1 x y z Xsh/2 Xsh/2 n Figure 15: Left: Geometrical setup of the numerical algorithm and notations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Right: Representation of an incoming and outcoming wave at the nth reflection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The solution of the wave equation is finally given by the superposition of all waves T n, that is T(r) = +∞ � n=1 T n(r), = 1 2π � Σ1 G(r − r1) +∞ � n=0 � ∇T 2n+1(r1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='n1 � d2r1 + 1 2π � Σ2 G(r − r2) +∞ � n=1 � ∇T 2n(r2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='n2 � d2r2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' and the thermometer response is given by � T � Σ2 = 1 L2 � Σ2 T(r) d2r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' A simulation of the temperature field at t = 0 of the 5th resonant mode of second sound tweezers with aspect ratio L D = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4, without lateral shift nor inclination of the plates, is displayed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' It can be clearly seen in particular that the amplitude of the temperature field decreases along the z-axis contrary to a Fabry–Perot resonator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This symmetry breaking is due to the diffraction effects associated with the finite size of the plates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' A bulk dissipation can be included in the algorithm, for example, to account for quantum vortex lines inside the cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In that case, let ξ be the second-sound attenuation coefficient (in m−1), the wave number k = 2πf c2 of the Green function (12) should be replaced by k = 2πf c2 − iξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (20) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 In the presence of a turbulent flow One of the aims of second-sound resonator modelling is to understand their response in the present of a flow U sweeping the cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' One effect of the flow is to advect the second sound wave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In the present section, we explain how the algorithm of sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 should be modified to account for this effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We assume in the following that the inequality |U| < c2 is strictly satisfied, which means that the flow is not supersonic for second sound waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In the presence of a non-zero flow U, the Green function (12) becomes G(r, t) = e−2iπft∗ |r − Ut∗| � 1 + U c2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' r−Ut∗ |r−Ut∗| �, (21) 21 2mTn+1Figure 16: Left: Temperature field fluctuations of the 5th resonant mode of second sound tweezers with aspect ratio L D = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4, and heating power jQ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='185 W/cm2, at the bath temperature T0 = 2K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Right: Temperature field fluctuations for the same conditions with an additional flow of velocity U c2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='18 directed upward .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The nodes of the temperature standing wave correspond to antinodes of sound sound velocity, and vice-versa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' where t∗ is the time shift corresponding to the signal propagation from the source |r − Ut∗| = c2t∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (22) In practice, the flow velocity range reached in quantum turbulence experiments is most often much lower than the second sound velocity, with |U| hardly reaching a few m/s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Most experiments are done in the temperature range where 10 < c2 < 20 m/s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We thus introduce the small parameter β = |U| c2 ≪ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Similarly to the standard approximations of electromagnetism, we assume that the effect of β is mostly concentrated in the phase shift e−2iπft∗ of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We use the approximation |r − Ut∗| � 1 + U c2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' r−Ut∗ |r−Ut∗| � ≈ |r|, and we solve Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (22) to obtain t∗ to leading order in β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The Green function then becomes G(r, t) = e−ik|r|Γ(r,U) |r| , (23) where as previously k = 2πf c2 and Γ (r, U) = 1 − U c2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' r |r|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The algorithm detailed in sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 can be applied straightforward with the Green function Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' In particular, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (19) becomes ∇T n+1(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='n2 = −1 2π � Σ1 G (r − r1, U) �� 1 |r − r1| + ik � r − r1 |r − r1|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='n2 − ik U c2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='n2 � � ∇T n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='n1 � (r1) d2r1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (24) A simulation of the temperature field at t = 0 of the 5th resonant mode of second sound tweezers with aspect ratio L D = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4, without lateral shift nor inclination, and with a flow of velocity U c2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='18, is displayed in the right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The effect of the flow can be clearly seen with the upward distortion of the antinodes of the wave, compared to the reference temperature profile without flow displayed in the left panel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 Quantitative predictions We present in this section the quantitative results obtained with the algorithm of sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The algorithm is specifically run in the configuration of second sound tweezers, but most predictions are relevant for other types 22 Thermometer Thermometer Heater Heater 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='15-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='15 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='15 0 T (mK) T (mK)of second sound resonators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We first show that the algorithm can quantitatively account for the experimental spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We then use it to predict the response in the presence of a flow and a bulk dissipation in the cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The predictions are systematically compared to experimental results for second sound tweezers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We eventually display some experimental observations that illustrate the limits of our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 Spectral response of second sound resonators Given a resonator lateral size L, the model of sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3 has three geometrical parameters : the gap D, the inclination γ and the lateral shift Xsh (see notations in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We first sketch qualitatively the importance of those three parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The gap D is the main parameter: it sets the location of the resonant frequencies, and the quality factor of the resonances at low mode numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' For second sound tweezers, the value of D can be usually obtained within a precision of a few micrometers (D is of the order of 1 millimeter).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The relative inclination of the plates γ is responsible for the saturation of the resonant magnitude and its decrease at large mode numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' It is typically smaller than a few degrees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Contrary to the gap, only the order of magnitude of γ, not its precise value, can be determined from the tweezers spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The lateral shift Xsh has very little impact on the spectrum if the value Xsh L remains small enough (we can typically reach Xsh L < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 in the tweezers fabrication).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' However, the effect of this parameter is of paramount importance to understand open cavity resonators response in a flow (such as second sound tweezers), and will be investigated in sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We consider the case Xsh = 0 in the present section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The tweezers size L is known from the probe fabrication process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The method goes as follows: we first find a gap rough estimation �D, for example from the average spacing between the experimental resonant peaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Then we can run a simulation for parallel plates (γ = 0), unit gap D = 1, and aspect ratio L � D, in the range 0 < k∗ < nπ (where n is the number of modes to be fitted, and k∗ = kD is the non-dimensional wave number).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This gives a function fL/ � D(k∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The experimental spectrum can then be fitted with the function T(f) = AfL/ � D( 2πfD c2 ), where A and D are the two free parameters to be fitted, provided the experimental value of c2 is known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The high sensitivity of the location of the resonant frequencies makes this method very accurate to obtain the gap D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Once D has been found, new simulations have to be run to find the order of magnitude of γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' As was previously said, γ controls the saturation and the decrease of the resonant magnitudes for large mode numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Its value can thus be approximated from a fit of the resonant modes with the largest magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' A fit of an experimental tweezers spectrum is displayed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The values of the fitting parameters for this spectrum are D = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='435 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='003 mm and γ = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 deg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Given the simplicity of the model assumptions, in particular the assumptions of perfectly insulating and infinitely thin plates without support arms, the agreement with experimental results is very good.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Interestingly, the resonators can also be used in some conditions as thermometers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Once the gap D is known with high enough precision, the spectrum can be fitted using c2 as a fitting parameter instead of D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Away from the second sound plateau of the curve c2(T0) located around 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='65 K, the value of c2 obtained from the spectrum gives access to the average temperature with a typical accuracy of one mK, simply by inverting the function c2(T0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 Response with a flow Once the characteristics of the resonator have been determined with a background medium at rest, their response in a flow can be studied using the modified algorithm presented in sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We experimentally observe that the tweezers response is attenuated in the presence of a superfluid helium flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This attenuation is related to two physical mechanisms, illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 18: first, the thermal wave crossing the cavity is damped by the quantum vortices carried by the flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This type of damping is usually considered as being proportional to the density of quantum vortex lines between the plates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Second, the flow mean velocity is responsible for a ballistic advection of the thermal wave outside the cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The thermal wave emitted by the heater partly “misses” the thermometer plate, and, even if the wave is not attenuated, a decrease of the tweezers’ response will be observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Both mechanisms described above exist in experimental superfluid flows, and cannot be observed independently: once there is a superfluid flow, quantum vortices are created.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' One key objective is to be able to separate the attenuation of the experimental signal due to bulk attenuation inside the cavity, from the attenuation due to ballistic advection of the wave outside the cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We will introduce a mathematical procedure to perform such a separation on a fluctuating signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' What cannot be experimentally achieved can be simulated with the tweezers model developed in sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The bulk dissipation can be implemented in the algorithm with a wave number complex part ξ (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (20)), and the flow ballistic deflection can be implemented with a non-zero velocity U (see Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (23-24)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Both effects can be independently studied, setting alternatively ξ or U to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We first detail below the respective effects 23 0 10 20 30 40 50 60 70 f (kHz) 0 1 2 3 4 5 6 7 8 9 T (K) 10-5 Experimental data Numerical simulation Figure 17: Prediction of the second sound tweezers experimental spectrum of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 11 using the numerical algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The fitting parameters are the gap D, the inclination γ and the total heating power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Heater Thermometer Bulk dissipation Heater Thermometer Flow Figure 18: Schematic representation of the two attenuation mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The top panel illustrates a bulk dissipation of the wave, due for example to the presence of quantum vortices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The bottom panel illustrates the ballistic deflection of the wave by a flow directed parallel to the plates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 24 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='6 kD 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 3 T 0 1 2 X 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 Y 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 Figure 19: Numerical simulation: collapse of a resonance due to increasing values of the bulk attenuation ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The left panel display the magnitude of the thermal wave as a function of the wavevector k, and the right panel display the same resonance in the phase-quadrature plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' It can be seen that the bulk attenuation results in an homothetic collapse of the resonance, that means, without global phase shift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' For a given value of k, the model predicts that attenuation is directed toward the center of the resonant Kennelly circle (red curves of right panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' of ξ and U for perfectly aligned plates (Xsh = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 19 display the result of a numerical simulation for second sound tweezers of aspect ratio L/D = 1, γ = 0 and increasing values of bulk dissipation in the range 0 < ξD < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The left panel display the magnitude of the second resonant mode as a function of the wave number, and the right panel display the same resonant mode in the phase-quadrature plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' More precisely, if we call T(k) the thermal wave magnitude recorded by the ther- mometer, and ϕ(k) its phase, the right panel display the curve Y (k) = T(k) sin(ϕ(k)), X(k) = T(k) cos(ϕ(k)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The resonant curve (Y (k), X(k)) is called in the following the resonant “Kennelly circle”, because the curve is very close to a circle crossing the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' It can even be shown that the resonant curve becomes closer to a perfect circle for increasing resonant quality factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The major characteristic to be observed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 19 is that the collapse of the resonant Kennelly circle due to bulk attenuation is homothetic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' It means that the different curves have no relative phase shift between each other, when the bulk attenuation increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The red curves in the right panel display the displacement in the phase-quadrature plane for a fixed value of the wavevector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The model predicts that the displacement is directed toward the Kennelly circle center, which implies that the path at fixed wavevector approximately follows a straight line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' By comparison, the left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 21 display an experimental resonance in the phase-quadrature plane, for second sound tweezers of size L = 1 mm in superfluid Helium at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='65 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The global orientation of the resonant Kennelly circles is simply due to a uniform phase shift introduced by the measurement devices, and should be overlooked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' It can be seen that the resonance collapse with increasing values of the flow velocity follows the predictions of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 19: it is homothetic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The red paths correspond to the tweezers signal at fixed heating frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Those paths follow approximately a straight line directed to the Kennelly circle center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The slight deviation in the path orientation compared to the predictions of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='19 can be explained by a second sound velocity reduction and will be discussed in sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 20 display the result of a numerical simulation for second sound tweezers of aspect ratio L/D = 1, γ = 0, with ξ = 0 and a flow mean velocity 0 < U c2 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' As there is no tweezers lateral shift Xsh = 0, negative velocities would lead to the same result from symmetry considerations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The figure illustrates the effect of pure ballistic advection on a resonance in the phase-quadrature plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' First, it can be seen that the collapse of the resonant Kennelly circle is accompanied by a relative anti-clockwise phase shift of the curves when the velocity increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Also, the displacement of the tweezers signal at fixed wavenumber follow the red straight paths directed anti-clockwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This type of signal strongly contrasts with the one of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 19 obtained for a pure bulk attenuation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The prediction of the left panel in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 20 cannot be directly compared to experiments because, as stated before, a superfluid flow always carries quantum vortices that overwhelm the tweezers signal for tweezers satisfying Xsh ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 25 0 1 2 X 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 Y 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 X 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 1 Y 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 U/c2 Increasing U 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 U/c2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 s s Figure 20: Numerical simulation: collapse of a resonance due to ballistic deflection of the thermal wave in the presence of a flow of velocity U, without bulk attenuation (ξ=0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The left panel display the result for tweezers without lateral shift (Xsh = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Contrary to the results of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 19, it can be seen in the present case that the collapse is associated with a global anti-clockwise phase shift of the resonant Kennelly circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Each red curve represents the attenuation at a given value of the wavevector k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The right panel display the result for tweezers with a strong lateral shift Xsh = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 × L (where L is the tweezers size).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Such tweezers are very sensitive to the velocity U, with both an attenuation of the resonance and a strong clockwise angular shift of the Kennelly circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We note s the curvilinear abscissa of the curve obtained at a given value of k (red curve).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The inset displays the function s(U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This shows that, once calibrated, second-sound tweezers can be used as anemometers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3 Effect of lateral shift of the emitter and receiver plates We discuss in this section the consequences of a lateral shift, that is Xsh ̸= 0 with the notations of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Contrary to the previous sections, the present discussion is restricted to second sound tweezers, for which a lateral shift has major quantitative effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' A lateral shift would not be as important, for example in the case of wall embedded resonators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The lateral shift has a marginal effect on the tweezers spectrum when the background fluid is at rest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' An effect only appears in the presence of a nonzero velocity specifically oriented in the shifting direction U = Uex, because of the mechanism of ballistic advection of the thermal wave by the flow (see the representation of the mechanism in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The importance of this effect depends on the tweezers aspect ratio, on the reduced velocity β = U c2 , and on the lateral shift Xsh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The lateral shift in the plates’ positioning magnifies the signal component related to ballistic advection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This property opens the opportunity to build second sound tweezers for which ballistic advection of the wave completely overwhelms bulk attenuation from the quantum vortices, which means that the tweezers signal is in fact a measure of the velocity component in the shifting direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We illustrate this mechanism in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The right panel displays a numerical simulation of a tweezers resonant mode in the phase-quadrature plane, for the parameters L D = 1, γ = 0 and Xsh = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5, for positive and negative values of the flow velocity in the range −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 < U c2 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' As can be seen at the first sight, the deformation of the resonant curve - that we equivalently call the “Kennelly circle” - is very different from a deformation due to a bulk attenuation (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' First, we observe that the deformation can result in an increase of the magnitude of the thermometer signal, when the velocity is negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This can be explained in this configuration, because the thermal wave emitted by the heating plate is redirected toward the thermometer plate: less energy is scattered outside the cavity when the wave is first emitted by the heater, and the signal magnitude increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' On contrary, the signal magnitude decreases when the velocity is positive because the flow advects the emitted thermal wave further away from the thermometer plate and more energy is scattered outside the cavity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Second, the deformation of the Kennelly circle is associated to a global clockwise rotation, a phenomenon that is not observed for bulk attenuation in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Coming back to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 20, the red curve displays the displacement in the phase-quadrature plane for a fixed wave frequency value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The displacement follows a very characteristic curved path always directed clockwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Let s(U) be the curvilinear abscissa of the red path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Once calibrated, the value of s can be used as a measure of the flow velocity component in the ex direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 21 displays the experimental signal observed with second sound tweezers of size 26 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='15 X (mK) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='15 Y (mK) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='8 1 U (m/s) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 X (mK) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 Y (mK) 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='8 1 U (m/s) Figure 21: Experiment: Collapse of a second sound resonance for increasing values of the flow mean velocity U, in superfluid Helium at T0 ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='65 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The right panel display the result for tweezers of size L = 1 mm and minor lateral shift Xsh < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='1×L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The figure shows a homothetic collapse of the resonant Kennelly circle without global phase shift, as predicted by the model of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The red curves display the displacement in the phase- quadrature plane at a fixed value of the second sound frequency f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The right panel displays the experimental data obtained with shifted second sound tweezers with parameters L = 250 µm and Xsh = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 × L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The figure qualitatively confirms the clockwise angular shift with increasing values of U, predicted by the numerical simulations of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' L = 250 µm, D = 431 µm and Xsh ≈ 125 µm, for a positive velocity range 0 < U < 1 m/s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The main characteristics of a ballistic advection signal can be observed: the Kennelly circle are attenuated with a clear clockwise rotation, and the signal at fixed frequency follows a curved path in the clockwise direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This is a strong indication that those type of tweezers can be used as anemometers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The signal fluctuations of those type of tweezers were recently characterized in a turbulent flow of superfluid helium [WVR21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' It has been shown in particular that both the signal spectra and its probability distributions indeed display all the characteristics of that of turbulent velocity fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4 Limits of the model Although the model of sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='3 gives excellent experimental predictions, we still observe some unexpected phenomena with real second sound tweezers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We discuss two of them in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We have seen in secs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 that the thermal wave complex amplitude T(f) can be represented in the phase- quadrature plane by a curve (X(f), Y (f)) very close to a circle crossing the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This osculating circle will be called in the following the resonant “Kennelly circle”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The wave is damped in the presence of a superfluid flow, which can be seen in the phase-quadrature plane as a homothetic shrink of the Kennelly circle toward the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 22 displays an experimental resonance in the phase-quadrature plane, for U = 0 m/s and U = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='7 m/s, together with the fitted Kennelly circles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' As can be seen in the figure, the resonant curve at U = 0 has periodic oscillations in and out the Kennelly circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We call this phenomenon the “daisy effect”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The daisy effect progressively disappears for increasing values of U, and cannot be seen any more on the resonant curve at U = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='7 m/s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We interpret the daisy effect as a secondary resonance in the experimental setup with a typical acoustic path of a few centimeters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We assume that the flow kicks out the thermal wave from this secondary resonant path when U is increased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The daisy effect alters the attenuation measurements close to U = 0, and should be considered with care before assessing the vortex line densities for low mean velocities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' It has been shown in sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='2 that the displacement of the tweezers signal in the phase quadrature plane for a fixed wave frequency, follows a straight line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We call “attenuation axis” the direction of this straight path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The model predicts that the attenuation axis should always be directed toward the center of the resonant Kennelly circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 23 displays a zoom on a part of the Kennelly circle at U = 0, together with the signal displacement at fixed frequency and for increasing flow velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' It can be seen that the displacement is indeed a straight line, but not exactly directed toward the Kennelly circle center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' An angle between 20° and 30° is systematically observed between the attenuation axis and the circle center direction (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Moreover, the angle is always positive (with the figure convention) and cannot be interpreted as a ballistic advection, 27 8 7 6 5 4 3 2 1 0 1 X 10-7 3 2 1 0 1 2 3 4 Y 10-7 U=0 m/s U=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='7 m/s Figure 22: Experimental resonance obtained with a second sound tweezers at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='98 K, for two values of the He flow mean velocity U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The blue curve displays a periodic perturbation of the resonance that we refer to as the “daisy effect”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The circle is a fit of the Kennelly osculating circle for this resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This effect is not predicted by our model, and we interpret it as a secondary resonance in the experimental setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The daisy effect perturbs the measurements at low values of U, but it can be seen on the red curve that the effect disappears for higher values of U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' that would give a negative angle instead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' This effect is thus very likely been attributed to a decrease of the second sound velocity in the presence of the quantum vortices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Whereas a second sound velocity reduction has previously been observed in the presence of quantum vortices [LV74, Meh74, MLM78], the exact value of this reduction turns to be difficult to assess in particular experimental conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We therefore keep the second sound velocity reduction as a qualitative explanation, and we do not try to assess quantitative result from the attenuation axis angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 Quantum vortex or velocity measurements ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Let us summarize the discussion of sec 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We have shown that second sound resonators are sensitive to two physical mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The first one is the thermal wave bulk attenuation inside the tweezers cavity, due to the quantum vortices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' The second one is thermal wave ballistic advection perpendicular to the plates4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Both mechanisms exist for all the second sound resonators, but depending on their geometry, they can preferentially be sensitive to the one or the other mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' We call selectivity the fraction of the signal due to quantum vortices or to ballistic advection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Let T (ξ, U) be the probe signal as a function of the bulk attenuation coefficient ξ (m−1) and flow velocity U(m/s), we define the vortex selectivity as Rξ = ��T (ξ, 0) − T (0, 0) �� ��T (ξ, U) − T (0, 0) ��.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (25) and by symmetry we define the velocity selectivity as RU = ��T (0, U) − T (0, 0) �� ��T (ξ, U) − T (0, 0) ��.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' (26) Further investigations in second sound tweezers experiments have shown that the velocity/vortex selectivity process only weakly depends on the aspect ratio L D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Indeed, for a given resonator lateral size L, ballistic advection of the wave outside the cavity increases when the gap D increases, but the number of quantum vortex lines inside the cavity also increases linearly with D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' Altogether, both the ballistic advection and the bulk attenuation due to the quantum vortices have similar dependence with D, that’s why changing the gap has no significant effect on selectivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' For second sound tweezers, we observe that the selectivity neither depends strongly on the mean temperature (that controls the superfluid fraction and the second sound velocity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 4Advection of second sound by velocity is illustrated e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' in [DL77].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content=' 28 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 X 10-4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tE5T4oBgHgl3EQfRQ5h/content/2301.05519v1.pdf'} +page_content='5 Y 10-4 U=0 m/s 0