"""Multilang Dataset loading script.""" from datasets import DatasetDict, DatasetInfo, BuilderConfig, Version, GeneratorBasedBuilder from datasets import SplitGenerator, Split, Features, Value import os _DESCRIPTION = """ This dataset includes multilingual data for language classification tasks across several languages. """ _CITATION = """\ @InProceedings{huggingface:multilang_dataset, title = {Multilingual Text Dataset}, authors = {Your Name}, year = {2024} } """ _LICENSE = "Your dataset's license here." class MultilangDataset(GeneratorBasedBuilder): """A multilingual text dataset.""" BUILDER_CONFIGS = [ BuilderConfig(name="multilang_dataset", version=Version("1.0.0"), description="Multilingual dataset for text classification."), ] DEFAULT_CONFIG_NAME = "multilang_dataset" # Default configuration name. def _info(self): return DatasetInfo( description=_DESCRIPTION, features=Features({ "Sentence_id": Value("string"), "Text": Value("string"), "class_label": Value("string"), }), supervised_keys=("Text", "class_label"), homepage="https://www.example.com", citation=_CITATION, license=_LICENSE, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # Assumes your dataset is located in "." data_dir = os.path.abspath(".") splits = {"train": Split.TRAIN, "dev": Split.VALIDATION, "dev-test": Split.TEST} return [ SplitGenerator( name=splits[split], gen_kwargs={ "filepath": os.path.join(data_dir, f"{split}.tsv"), "split": splits[split] }, ) for split in splits.keys() ] def _generate_examples(self, filepath, split): """Yields examples.""" with open(filepath, encoding="utf-8") as f: for id_, row in enumerate(f): if id_ == 0: # Optionally skip header continue cols = row.strip().split('\t') yield f"{split}_{id_}", { "sentence_id": cols[0], "sentence": cols[1], "label": cols[2], }