--- license: cc-by-nc-4.0 task_categories: - image-to-3d language: - en tags: - 3d-front - 3d - high-quality - 3d-scene --- # 3D-Front (MIDI-3D) [Github](https://github.com/VAST-AI-Research/MIDI-3D) | [Project Page](https://huanngzh.github.io/MIDI-Page/) | [Paper](https://arxiv.org/abs/2412.03558) | [Original Dataset](https://tianchi.aliyun.com/specials/promotion/alibaba-3d-scene-dataset) ## 1. Dataset Introduction **TL;DR:** This dataset processes [3D-Front](https://tianchi.aliyun.com/specials/promotion/alibaba-3d-scene-dataset) into organized 3d scenes paired with rendered multi-view images and surfaces, which are used in [MIDI-3D](https://github.com/VAST-AI-Research/MIDI-3D). Each scene contains: * 3D models (`.glb`) * Point cloud (`.npy`) * Rendered multi-view images in RGB, depth, normal, with camera information ## 2. Data Extraction ```bash sudo apt-get install git-lfs git lfs install git clone https://huggingface.co/datasets/huanngzh/3D-Front cat 3D-FRONT-SURFACE.part* > 3D-FRONT-SURFACE.tar.gz cat 3D-FRONT-SCENE.part* > 3D-FRONT-SCENE.tar.gz tar -xzvf 3D-FRONT-SURFACE.tar.gz tar -xzvf 3D-FRONT-SCENE.tar.gz tar -xzvf 3D-FRONT-RENDER.tar.gz ``` ## 3. File Structure ```bash 3D-Front ├── 3D-FRONT-RENDER # rendered views │ ├── 0a8d471a-2587-458a-9214-586e003e9cf9 # house │ │ ├── Hallway-1213 # room │ │ ... ├── 3D-FRONT-SCENE # 3d models (glb) │ ├── 0a8d471a-2587-458a-9214-586e003e9cf9 # house │ │ ├── Hallway-1213 # room │ │ │ ├── Table_e9b6f54f-1d29-47bf-ba38-db51856d3aa5_1.glb # object │ │ │ ... ├── 3D-FRONT-SURFACE # point cloud (npy) │ ├── 0a8d471a-2587-458a-9214-586e003e9cf9 # house │ │ ├── Hallway-1213 # room │ │ │ ├── Table_e9b6f54f-1d29-47bf-ba38-db51856d3aa5_1.npy # object │ │ │ ... ├── valid_room_ids.json # scene list ├── valid_furniture_ids.json # object list ├── midi_room_ids.json # scene list (subset used in midi) └── midi_furniture_ids.json # object list (subset used in midi) ``` About `room_ids` and `furniture_ids`: The i-th room in `room_ids` contains the objects whose ids are the i-th list in `furniture_ids`. ## 4. About Train and Test Set MIDI uses **the last 1,000 rooms** in `midi_room_ids.json` as the **testset**, and the others as training set. ## Citation If you find this dataset useful, please cite: ```bash @article{huang2024midi, title={MIDI: Multi-Instance Diffusion for Single Image to 3D Scene Generation}, author={Huang, Zehuan and Guo, Yuan-Chen and An, Xingqiao and Yang, Yunhan and Li, Yangguang and Zou, Zi-Xin and Liang, Ding and Liu, Xihui and Cao, Yan-Pei and Sheng, Lu}, journal={arXiv preprint arXiv:2412.03558}, year={2024} } @inproceedings{fu20213d, title={3d-front: 3d furnished rooms with layouts and semantics}, author={Fu, Huan and Cai, Bowen and Gao, Lin and Zhang, Ling-Xiao and Wang, Jiaming and Li, Cao and Zeng, Qixun and Sun, Chengyue and Jia, Rongfei and Zhao, Binqiang and others}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, pages={10933--10942}, year={2021} } @article{fu20213d, title={3d-future: 3d furniture shape with texture}, author={Fu, Huan and Jia, Rongfei and Gao, Lin and Gong, Mingming and Zhao, Binqiang and Maybank, Steve and Tao, Dacheng}, journal={International Journal of Computer Vision}, pages={1--25}, year={2021}, publisher={Springer} } ``` ## Contact [huangzehuan@buaa.edu.cn](mailto:huangzehuan@buaa.edu.cn)