--- license: mit language: - en task_categories: - zero-shot-image-classification - zero-shot-classification - feature-extraction - image-feature-extraction - tabular-classification - tabular-regression - depth-estimation tags: - tactile - robotics pretty_name: Sensor-Invariant Tactile Represenation size_categories: - 1M renders.zip ``` You can remove the old binaries ```bash rm renders_part_aa renders_part_ab ``` 3. **Unzip the merged file:** ```bash unzip renders.zip -d your_desired_directory ``` ### Real-World Datasets (Classification & Pose Estimation) You can download the classificaiton dataset with ```bash wget https://huggingface.co/datasets/hgupt3/sitr_dataset/resolve/main/classification_dataset.zip ``` and the pose estimation datset with ```bash wget https://huggingface.co/datasets/hgupt3/sitr_dataset/resolve/main/pose_dataset.zip ``` Simply unzip them in your desired directory: ```bash unzip classification_dataset.zip -d your_desired_directory unzip pose_dataset.zip -d your_desired_directory ``` The real-world tactile datasets for classification and pose estimation are provided as separate zip files. Each of these zip files contains two directories: - `train_set/` - `test_set/` --- ## File Structure Below are examples of the directory trees for each dataset type. ### 1. Simulated Tactile Dataset ``` data_root/ ├── sensor_0000/ │ ├── calibration/ # Calibration images │ │ ├── 0000.png # Background image │ │ ├── 0001.png │ │ └── ... │ ├── samples/ # Tactile sample images │ │ ├── 0000.png │ │ ├── 0001.png │ │ └── ... │ ├── dmaps/ # (Optional) Depth maps │ │ ├── 0000.npy │ │ └── ... │ └── norms/ # (Optional) Surface normals │ ├── 0000.npy │ └── ... ├── sensor_0001/ └── ... ``` ### 2. Classification Dataset Each of the `train_set/` and `test_set/` directories follows this structure: ``` train_set/ (or test_set/) ├── sensor_0000/ │ ├── calibration/ # Calibration images │ ├── samples/ # Organized by class │ │ ├── class_0000/ │ │ │ ├── 0000.png │ │ │ └── ... │ │ ├── class_0001/ │ │ │ ├── 0000.png │ │ │ └── ... │ │ └── ... ├── sensor_0001/ └── ... ``` ### 3. Pose Estimation Dataset Similarly, each of the `train_set/` and `test_set/` directories is structured as follows: ``` train_set/ (or test_set/) ├── sensor_0000/ │ ├── calibration/ # Calibration images │ ├── samples/ # Tactile sample images │ │ ├── 0000.png │ │ ├── 0001.png │ │ └── ... │ └── locations/ # Pose/Location data │ ├── 0000.npy │ ├── 0001.npy │ └── ... ├── sensor_0001/ └── ... ``` --- ## Citation If you use this dataset in your research, please cite: ```bibtex @misc{gupta2025sensorinvarianttactilerepresentation, title={Sensor-Invariant Tactile Representation}, author={Harsh Gupta and Yuchen Mo and Shengmiao Jin and Wenzhen Yuan}, year={2025}, eprint={2502.19638}, archivePrefix={arXiv}, primaryClass={cs.RO}, url={https://arxiv.org/abs/2502.19638}, } ``` --- ## License This dataset is licensed under the MIT License. See the LICENSE file for details. If you have any questions or need further clarification, please feel free to reach out.