{"_id": "3", "text": "The rational numbers are dense in the reals$\\,;$ that is, if $a$ and $b$ are real numbers with $a0$, there is an $a_1$ in $[a,x_0)$ such that \\begin{equation} \\label{eq:2.1.22} f(x)<\\beta+\\epsilon\\mbox{\\quad if \\quad} a_1\\le x0$ and $a_1$ is in $[a,x_0),$ then $$ f(\\overline x)>\\beta-\\epsilon\\mbox{\\quad for some }\\overline x\\in[a_1,x_0). $$ \\end{alist}"} {"_id": "22", "text": "If $f$ is continuous on a finite closed interval $[a,b],$ then $f$ is bounded on $[a,b].$"} {"_id": "26", "text": "If $f$ is monotonic and nonconstant on $[a,b],$ then $f$ is continuous on $[a,b]$ if and only if its range $R_f=\\set{f(x)}{x\\in[a,b]}$ is the closed interval with endpoints $f(a)$ and $f(b).$"} {"_id": "27", "text": "Suppose that $f$ is increasing and continuous on $[a,b],$ and let $f(a)=c$ and $f(b)=d.$ Then there is a unique function $g$ defined on $[c,d]$ such that \\begin{equation}\\label{eq:2.2.17} g(f(x))=x,\\quad a\\le x\\le b, \\end{equation} and \\begin{equation}\\label{eq:2.2.18} f(g(y))=y,\\quad c\\le y\\le d. \\end{equation} Moreover$,$ $g$ is continuous and increasing on $[c,d].$"} {"_id": "29", "text": "If $f$ and $g$ are differentiable at $x_0,$ then so are $f+g,$ $f-g,$ and $fg,$ with \\begin{alist} \\item % (a) $(f+g)'(x_0)=f'(x_0)+g'(x_0);$ \\item % (b) $(f-g)'(x_0)=f'(x_0)-g(x_0);$ \\item % (c) $(fg)'(x_0)=f'(x_0)g(x_0)+f(x_0)g'(x_0).$ \\end{alist} The quotient $f/g$ is differentiable at $x_0$ if $g(x_0)\\ne0,$ with \\begin{alist} \\setcounter{lcal}{3} \\item % (d) $\\dst{\\left(\\frac{f}{g}\\right)' (x_0)= \\frac{f'(x_0)g(x_0)-f(x_0)g'(x_0)}{\\left[g(x_0)\\right]^2}}.$ \\end{alist}"} {"_id": "30", "text": "The Chain Rule Suppose that $g$ is differentiable at $x_0$ and $f$ is differentiable at $g(x_0).$ Then the composite function $h=f\\circ g,$ defined by $$ h(x)=f(g(x)), $$ is differentiable at $x_0,$ with $$ h'(x_0)=f'(g(x_0))g'(x_0). $$"} {"_id": "31", "text": "If $f$ is differentiable at a local extreme point $x_0\\in D_{f}^{0},$ then $f'(x_0)=~0.$"} {"_id": "32", "text": "Suppose that $f$ is continuous on the closed interval $[a,b]$ and differentiable on the open interval $(a,b),$ and $f(a)=f(b).$ Then $f'(c)=0$ for some $c$ in the open interval $(a,b).$"} {"_id": "33", "text": "Intermediate Value Theorem for Derivatives Suppose that $f$ is differentiable on $[a,b],$ $f'(a)\\ne f'(b),$ and $\\mu$ is between $f'(a)$ and $f'(b).$ Then $f'(c)=\\mu$ for some $c$ in $(a,b).$"} {"_id": "35", "text": "Mean Value Theorem If $f$ is continuous on the closed interval $[a,b]$ and differentiable on the open interval $(a,b),$ then $$ f'(c)=\\frac{f(b)-f(a)}{ b-a} $$ for some $c$ in $(a,b).$"} {"_id": "39", "text": "Suppose that $f$ and $g$ are differentiable and $g'$ has no zeros on $(a,b).$ Let \\begin{equation}\\label{eq:2.4.1} \\lim_{x\\to b-}f(x)=\\lim_{x\\to b-}g(x)=0 \\end{equation} \\newpage \\noindent or \\begin{equation}\\label{eq:2.4.2} \\lim_{x\\to b-}f(x)=\\pm\\infty\\mbox{\\quad and \\quad} \\lim_{x\\to b-}g(x)=\\pm\\infty, \\end{equation} and suppose that \\begin{equation}\\label{eq:2.4.3} \\lim_{x\\to b-}\\frac{f'(x)}{ g'(x)}=L\\quad\\mbox{$($finite or $\\pm \\infty)$}. \\end{equation} Then \\begin{equation}\\label{eq:2.4.4} \\lim_{x\\to b-}\\frac{f(x)}{ g(x)}=L. \\end{equation}"} {"_id": "43", "text": "Extended Mean Value Theorem Suppose that $f$ is continuous on a finite closed interval $I$ with endpoints $a$ and $b$ $($that is, either $I=(a,b)$ or $I=(b,a)),$ $f^{(n+1)}$ exists on the open interval $I^0,$ and$,$ if $n>0,$ that $f'$, \\dots, $f^{(n)}$ exist and are continuous at $a.$ Then \\begin{equation}\\label{eq:2.5.17} f(b)-\\sum_{r=0}^n\\frac{f^{(r)}(a)}{ r!}(b-a)^r=\\frac{f^{(n+1)}(c)}{(n+1)!} (b-a)^{n+1} \\end{equation} for some $c$ in $I^0.$"} {"_id": "44", "text": "If $f$ is unbounded on $[a,b],$ then $f$ is not integrable on $[a,b].$"} {"_id": "45", "text": "Let $f$ be bounded on $[a,b]$, and let $P$ be a partition of $[a,b].$ Then \\begin{alist} \\item % (a) The upper sum $S(P)$ of $f$ over $P$ is the supremum of the set of all Riemann sums of $f$ over $P.$ \\item % (b) The lower sum $s(P)$ of $f$ over $P$ is the infimum of the set of all Riemann sums of $f$ over $P.$ \\end{alist}"} {"_id": "47", "text": "If $f$ is integrable on $[a,b],$ then $$ \\underline{\\int_a^b}f(x)\\,dx=\\overline{\\int_a^b}f(x)\\,dx=\\int_a^b f(x)\\,dx. $$"} {"_id": "48", "text": "If $f$ is bounded on $[a,b]$ and \\begin{equation} \\label{eq:3.2.16} \\underline{\\int_a^b} f(x)\\,dx=\\overline{\\int_a^b}f(x)\\,dx=L, \\end{equation} then $f$ is integrable on $[a,b]$ and \\begin{equation} \\label{eq:3.2.17} \\int_a^b f(x)\\,dx=L. \\end{equation}"} {"_id": "50", "text": "If $f$ is bounded on $[a,b],$ then $f$ is integrable on $[a,b]$ if and only if for each $\\epsilon>0$ there is a partition $P$ of $[a,b]$ for which \\begin{equation} \\label{eq:3.2.19} S(P)-s(P)<\\epsilon. \\end{equation}"} {"_id": "51", "text": "If $f$ is continuous on $[a,b],$ then $f$ is integrable on $[a,b]$."} {"_id": "52", "text": "If $f$ is monotonic on $[a,b],$ then $f$ is integrable on $[a,b]$."} {"_id": "53", "text": "If $f$ and $g$ are integrable on $[a,b],$ then so is $f+g,$ and \\vskip4pt $$ \\int_a^b (f+g)(x)\\,dx=\\int_a^b f(x)\\,dx+\\int_a^b g(x)\\,dx. $$"} {"_id": "56", "text": "If $f$ and $g$ are integrable on $[a,b]$ and $f(x)\\le g(x)$ for $a\\le x\\le b,$ then \\begin{equation}\\label{eq:3.3.1} \\int_a^b f(x)\\,dx\\le\\int_a^b g(x)\\,dx. \\end{equation}"} {"_id": "57", "text": "If $f$ is integrable on $[a,b],$ then so is $|f|$, and \\begin{equation} \\label{eq:3.3.3} \\left|\\int_a^b f(x)\\,dx\\right|\\le\\int_a^b |f(x)|\\,dx. \\end{equation}"} {"_id": "58", "text": "If $f$ and $g$ are integrable on $[a,b],$ then so is the product $fg.$"} {"_id": "59", "text": "First Mean Value Theorem for Integrals Suppose that $u$ is continuous and $v$ is integrable and nonnegative on $[a,b].$ Then \\begin{equation} \\label{eq:3.3.8} \\int_a^b u(x)v(x)\\,dx=u(c)\\int_a^b v(x)\\,dx \\end{equation} for some $c$ in $[a,b]$."} {"_id": "60", "text": "If $f$ is integrable on $[a,b]$ and $a\\le a_10$ and $f(x)\\ge0$ on some subinterval $[a_1,b)$ of $[a,b),$ and \\begin{equation}\\label{eq:3.4.3} \\lim_{x\\to b-}\\frac{f(x)}{ g(x)}=M. \\end{equation} \\begin{alist} \\item % (a) If $00,$ \\begin{equation}\\label{eq:4.1.16} s_n<\\overline{s}+\\epsilon\\mbox{\\quad for large $n$} \\end{equation} and \\begin{equation}\\label{eq:4.1.17} s_n>\\overline{s}-\\epsilon\\mbox{\\quad for infinitely many $n$}. \\end{equation} \\item % (b) If $\\{s_n\\}$ is bounded below and does not diverge to $\\infty,$ then there is a unique real number $\\underline{s}$ such that$,$ if $\\epsilon >0,$ \\begin{equation}\\label{eq:4.1.18} s_n>\\underline{s}-\\epsilon\\mbox{\\quad for large $n$} \\end{equation} and \\begin{equation}\\label{eq:4.1.19} s_n<\\underline{s}+\\epsilon\\mbox{\\quad for infinitely many $n$}. \\end{equation} \\end{alist}"} {"_id": "87", "text": "Every sequence $\\{s_n\\}$ of real numbers has a unique limit superior$,$ $\\overline{s},$ and a unique limit inferior$,$ $\\underline{s}$, in the extended reals$,$ and \\begin{equation}\\label{eq:4.1.21} \\underline{s}\\le \\overline{s}. \\end{equation}"} {"_id": "88", "text": "If $\\{s_n\\}$ is a sequence of real numbers, then \\begin{equation}\\label{eq:4.1.22} \\lim_{n\\to\\infty} s_n=s \\end{equation} if and only if \\begin{equation}\\label{eq:4.1.23} \\limsup_{n\\to\\infty}s_n=\\liminf_{n\\to\\infty} s_n=s. \\end{equation}"} {"_id": "89", "text": "A sequence $\\{s_n\\}$ of real numbers converges if and only if$,$ for every $\\epsilon>0,$ there is an integer $N$ such that \\begin{equation}\\label{eq:4.1.24} |s_n-s_m|<\\epsilon\\mbox{\\quad if\\quad} m,n\\ge N. \\end{equation}"} {"_id": "91", "text": "If $\\{s_n\\}$ is monotonic and has a subsequence $\\{s_{n_k}\\}$ such that $$ \\lim_{k\\to\\infty} s_{n_k}=s\\quad (-\\infty\\le s\\le\\infty), $$ then $$ \\lim_{n\\to\\infty} s_n=s. $$"} {"_id": "93", "text": "\\vspace*{3pt} \\begin{alist} \\item % (a) If $\\{x_n\\}$ is bounded$,$ then $\\{x_n\\}$ has a convergent subsequence$.$ \\vspace*{3pt} \\item % (b) If $\\{x_n\\}$ is unbounded above$,$ then $\\{x_n\\}$ has a subsequence $\\{x_{n_k}\\}$ such that $$ \\lim_{k\\to\\infty} x_{n_k}=\\infty. $$ \\vspace*{3pt} \\item % (c) If $\\{x_n\\}$ is unbounded below$,$ then $\\{x_n\\}$ has a subsequence $\\{x_{n_k}\\}$ such that $$ \\lim_{k\\to\\infty} x_{n_k}=-\\infty. $$ \\end{alist}"} {"_id": "95", "text": "If $f$ is continuous on a closed interval $[a,b],$ then $f$ is bounded on $[a,b].$"} {"_id": "98", "text": "Cauchy's Convergence Criterion for Series A series $\\sum a_n$ converges if and only if for every $\\epsilon>0$ there is an integer $N$ such that \\begin{equation}\\label{eq:4.3.3} |a_n+a_{n+1}+\\cdots+a_m|<\\epsilon\\mbox{\\quad if\\quad} m\\ge n\\ge N. \\end{equation}"} {"_id": "99", "text": "If $a_n\\ge0$ for $n\\ge k,$ then $\\sum a_n$ converges if its partial sums are bounded$,$ or diverges to $\\infty$ if they are not$.$ These are the only possibilities and$,$ in either case$,$ $$ \\sum_{n=k}^\\infty a_n =\\,\\sup\\set{A_n}{n\\ge k}\\negthickspace, $$ where $$ A_n=a_k+a_{k+1}+\\cdots+a_n,\\quad n\\ge k. $$"} {"_id": "100", "text": "The Comparison Test Suppose that \\begin{equation}\\label{eq:4.3.5} 0\\le a_n\\le b_n,\\quad n\\ge k. \\end{equation} Then \\begin{alist} \\item % (a) $\\sum a_n<\\infty$ if $\\sum b_n<\\infty$$.$ \\item % (b) $\\sum b_n=\\infty$ if $\\sum a_n=\\infty.$ \\end{alist}"} {"_id": "101", "text": "The Integral Test Let \\begin{equation}\\label{eq:4.3.7} c_n=f(n),\\quad n\\ge k, \\end{equation} where $f$ is positive$,$ nonincreasing$,$ and locally integrable on $[k,\\infty).$ Then \\begin{equation}\\label{eq:4.3.8} \\sum c_n<\\infty \\end{equation} if and only if \\begin{equation}\\label{eq:4.3.9} \\int^\\infty_k f(x)\\,dx<\\infty. \\end{equation}"} {"_id": "102", "text": "Suppose that $a_n\\ge0$ and $b_n>0$ for $n\\ge k.$ Then \\begin{alist} \\item % (a) $\\dst{\\sum a_n<\\infty\\mbox{\\quad if\\quad}\\sum b_n< \\infty\\mbox{\\quad and\\quad}\\limsup_{n\\to\\infty} a_n/b_n<\\infty}.$ \\item % (b) $\\dst{\\sum a_n=\\infty\\mbox{\\quad if\\quad}\\sum b_n= \\infty\\mbox{\\quad and\\quad}\\liminf_{n\\to\\infty} a_n/b_n>0}.$ \\end{alist}"} {"_id": "103", "text": "Suppose that $a_n>0,$ $b_n>0,$ and \\begin{equation}\\label{eq:4.3.12} \\frac{a_{n+1}}{ a_n}\\le \\frac{b_{n+1}}{ b_n}. \\end{equation} Then \\begin{alist} \\item % (a) $\\sum a_n<\\infty$ if $\\sum b_n<\\infty.$ \\item % (b) $\\sum b_n=\\infty$ if $\\sum a_n=\\infty.$ \\end{alist}"} {"_id": "104", "text": "The Ratio Test Suppose that $a_n>0$ for $n\\ge k.$ Then \\vspace*{5pt} \\begin{alist} \\vspace*{5pt} \\item % (a) $\\sum a_n<\\infty$ if\\, $\\limsup_{n\\to\\infty} a_{n+1}/a_n<1.$ \\vspace*{5pt} \\item % (b) $\\sum a_n=\\infty$ if\\, $\\liminf_{n\\to\\infty} a_{n+1}/a_n>1.$ \\end{alist} \\vspace*{5pt} \\noindent If \\begin{equation}\\label{eq:4.3.13} \\liminf_{n\\to\\infty}\\frac{a_{n+1}}{ a_n}\\le1\\le \\limsup_{n\\to\\infty}\\frac{a_{n+1}}{ a_n}, \\end{equation} then the test is inconclusive$;$ that is$,$ $\\sum a_n$ may converge or diverge$.$"} {"_id": "105", "text": "Suppose that $a_n>0$ for large $n.$ Let $$ M=\\limsup_{n\\to\\infty} n\\left(\\frac{a_{n+1}}{ a_n}- 1\\right)\\mbox{\\quad and\\quad} m=\\liminf_{n\\to\\infty} n \\left(\\frac{a_{n+1}}{ a_n}-1\\right). $$ Then \\begin{alist} \\item % (a) $\\sum a_n<\\infty$ if $M<-1.$ \\item % (b) $\\sum a_n=\\infty$ if $m>-1.$ \\end{alist} The test is inconclusive if $m\\le-1\\le M.$"} {"_id": "106", "text": "Cauchy's Root Test If $a_n\\ge 0$ for $n\\ge k,$ then \\begin{alist} \\item % (a) $\\sum a_n<\\infty$ if $\\limsup_{n\\to\\infty} a^{1/n}_n<1.$ \\item % (b) $\\sum a_n=\\infty$ if $\\limsup_{n\\to\\infty} a^{1/n}_n>1.$ \\end{alist} The test is inconclusive if $\\limsup_{n\\to\\infty} a^{1/n}_n= 1.$"} {"_id": "108", "text": "Dirichlet's Test for Series The series $\\sum ^\\infty_{n=k} a_nb_n$ converges if $\\lim_{n\\to\\infty} a_n= 0,$ \\begin{equation}\\label{eq:4.3.18} \\sum |a_{n+1}-a_n|<\\infty, \\end{equation} and \\begin{equation}\\label{eq:4.3.19} |b_k+b_{k+1}+\\cdots+b_n|\\le M,\\quad n\\ge k, \\end{equation} for some constant $M.$"} {"_id": "109", "text": "Suppose that $\\sum_{n=k}^\\infty a_n=A,$ where $-\\infty \\le A\\le\\infty.$ Let $\\{n_j\\}_1^\\infty$ be an increasing sequence of integers, with $n_1\\ge k$. Define \\begin{eqnarray*} b_1\\ar=a_k+\\cdots+a_{n_1},\\\\ b_2\\ar=a_{{n_1}+1}+\\cdots+a_{n_2},\\\\ &\\vdots\\\\ b_r\\ar=a_{n_{r-1}+1}+\\cdots+a_{n_r}. \\end{eqnarray*} Then $$ \\sum_{j=1}^\\infty b_{n_j}=A. $$"} {"_id": "110", "text": "If $\\sum_{n=1}^\\infty b_n$ is a rearrangement of an absolutely convergent series $\\sum_{n=1}^\\infty a_n,$ then $\\sum_{n=1}^\\infty b_n$ also converges absolutely$,$ and to the same sum$.$"} {"_id": "112", "text": "Suppose that $\\sum_{n=1}^\\infty a_n$ is conditionally convergent and $\\mu$ and $\\nu$ are arbitrarily given in the extended reals$,$ with $\\mu\\le\\nu.$ Then the terms of $\\sum_{n=1}^\\infty a_n$ can be rearranged to form a series $\\sum_{n=1}^\\infty b_n$ with partial sums $$ B_n=b_1+b_2+\\cdots+b_n,\\quad n\\ge1, $$ such that \\begin{equation}\\label{eq:4.3.25} \\limsup_{n\\to\\infty}B_n=\\nu\\mbox{\\quad and\\quad} \\liminf_{n\\to\\infty}B_n=\\mu. \\end{equation}"} {"_id": "113", "text": "Let $$ \\sum_{n=0}^\\infty a_n=A\\mbox{\\quad and\\quad}\\sum_{n=0}^\\infty b_n=B, $$ where $A$ and $B$ are finite, and at least one term of each series is nonzero. Then $\\sum_{n=0}^\\infty p_n=AB$ for every sequence $\\{p_n\\}$ obtained by ordering the products in $\\eqref{eq:4.3.33}$ if and only if $\\sum a_n$ and $\\sum b_n$ converge absolutely$.$ Moreover$,$ in this case, $\\sum p_n$ converges absolutely$.$"} {"_id": "114", "text": "If $\\sum_{n=0}^\\infty a_n$ and $\\sum_{n=0}^\\infty b_n$ converge absolutely to sums $A$ and $B,$ then the Cauchy product of $\\sum_{n=0}^\\infty a_n$ and $\\sum_{n=0}^\\infty b_n$ converges absolutely to $AB.$"} {"_id": "117", "text": "Cauchy's Uniform Convergence Criterion A sequence of functions $\\{F_n\\}$ converges uniformly on a set $S$ if and only if for each $\\epsilon>0$ there is an integer $N$ such that \\begin{equation} \\label{eq:4.4.2} \\|F_n-F_m\\|_S<\\epsilon\\mbox{\\quad if\\quad} n, m\\ge N. \\end{equation}"} {"_id": "121", "text": "Suppose that $F'_n$ is continuous on $[a,b]$ for all $n\\ge1$ and $\\{F'_n\\}$ converges uniformly on $[a,b].$ Suppose also that $\\{F_n(x_0)\\}$ converges for some $x_0$ in $[a,b].$ Then $\\{F_n\\}$ converges uniformly on $[a,b]$ to a differentiable limit function $F,$ and \\begin{equation} \\label{eq:4.4.11} F'(x)=\\lim_{n\\to\\infty}F'_n(x),\\quad a0$ there is an integer $N$ such that \\vskip0pt \\begin{equation} \\label{eq:4.4.16} \\|f_n+f_{n+1}+\\cdots+f_m\\|_S<\\epsilon\\mbox{\\quad if\\quad} m\\ge n\\ge N. \\end{equation}"} {"_id": "123", "text": "Weierstrass's Test The series $\\sum f_n$ converges uniformly on $S$ if \\begin{equation} \\label{eq:4.4.17} \\|f_n\\|_S\\le M_n,\\quad n\\ge k, \\end{equation} where $\\sum M_n<\\infty.$"} {"_id": "124", "text": "Dirichlet's Test for Uniform Convergence The series $$ \\sum_{n=k}^\\infty f_ng_n $$ converges uniformly on $S$ if $\\{f_n\\}$ converges uniformly to zero on $S,$ $\\sum (f_{n+1}-f_n)$ converges absolutely uniformly on $S,$ and \\begin{equation} \\label{eq:4.4.19} \\|g_k+g_{k+1}+\\cdots+g_n\\|_S\\le M,\\quad n\\ge k, \\end{equation} for some constant $M.$"} {"_id": "128", "text": "In connection with the power series $\\eqref{eq:4.5.1},$ define $R$ in the extended reals by \\begin{equation}\\label{eq:4.5.2} \\frac{1}{ R}=\\limsup_{n\\to\\infty} |a_n|^{1/n}. \\end{equation} In particular$,$ $R=0$ if $\\limsup_{n\\to\\infty} |a_n|^{1/n}= \\infty$, and $R=\\infty$ if $\\limsup_{n\\to\\infty} |a_n|^{1/n}=0.$ Then the power series converges \\begin{alist} \\item % (a) only for $x=x_0$ if $R=0;$ \\item % (b) for all $x$ if $R=\\infty,$ and absolutely uniformly in every bounded set$;$ \\item % (c) for $x$ in $(x_0-R, x_0+R)$ if $0R.$ No general statement can be made concerning convergence at the endpoints $x=x_0+R$ and $x=x_0-R:$ the series may converge absolutely or conditionally at both$,$ converge conditionally at one and diverge at the other$,$ or diverge at both$.$"} {"_id": "129", "text": "The radius of convergence of $\\sum a_n(x-x_0)^n$ is given by $$ \\frac{1}{ R}=\\lim_{n\\to\\infty}\\left|\\frac{a_{n+1}}{a_n}\\right| $$ if the limit exists in the extended reals$.$"} {"_id": "130", "text": "A power series $$ f(x)=\\sum^\\infty_{n=0} a_n(x-x_0)^n $$ \\newpage \\noindent with positive radius of convergence $R$ is continuous and differentiable in its interval of convergence$,$ and its derivative can be obtained by differentiating term by term$;$ that is$,$ \\begin{equation} \\label{eq:4.5.9} f'(x)=\\sum^\\infty_{n=1} na_n(x-x_0)^{n-1}, \\end{equation} which can also be written as \\begin{equation} \\label{eq:4.5.10} f'(x)=\\sum^\\infty_{n=0}(n+1)a_{n+1} (x-x_0)^n. \\end{equation} This series also has radius of convergence $R.$"} {"_id": "131", "text": "A power series $$ f(x)=\\sum_{n=0}^\\infty a_n(x-x_0)^n $$ with positive radius of convergence $R$ has derivatives of all orders in its interval of convergence$,$ which can be obtained by repeated term by term differentiation$;$ thus$,$ \\begin{equation}\\label{eq:4.5.11} f^{(k)}(x)=\\sum^\\infty_{n=k} n(n-1)\\cdots (n-k+1)a_n(x-x_0)^{n-k}. \\end{equation} The radius of convergence of each of these series is $R.$"} {"_id": "135", "text": "If $f$ and $g$ are given by $\\eqref{eq:4.5.22}$ and $\\eqref{eq:4.5.23},$ then \\begin{eqnarray} f(x)g(x)\\ar=\\sum^\\infty_{n=0} c_n(x-x_0)^n,\\quad|x-x_0|0,$ there is a $\\delta>0$ such that \\begin{equation} \\label{eq:3.2.12} \\overline{\\int_a^b}f(x)\\,dx\\le S(P)<\\overline{\\int_a^b}f(x)\\,dx+\\epsilon \\end{equation} and $$ \\underline{\\int_a^b} f(x)\\,dx\\ge s(P)>\\underline{\\int_a^b} f(x)\\,dx-\\epsilon $$ if $\\|P\\|<\\delta$."} {"_id": "248", "text": "If $w_f(x)<\\epsilon$ for $a\\le x \\le b,$ then there is a $\\delta>0$ such that $W_f[a_1,b_1]\\le\\epsilon,$ provided that $[a_1,b_1]\\subset [a,b]$ and $b_1-a_1<\\delta.$"} {"_id": "249", "text": "Let $f$ be bounded on $[a,b]$ and define $$ E_\\rho=\\set{x\\in [a,b]}{w_f(x)\\ge\\rho}. $$ Then $E_\\rho$ is closed$,$ and $f$ is integrable on $[a,b]$ if and only if for every pair of positive numbers $\\rho$ and $\\delta,$ $E_\\rho$ can be covered by finitely many open intervals $I_1,$ $I_2, $\\dots$,$ $I_p$ such that \\begin{equation} \\label{eq:3.5.3} \\sum_{j=1}^p L(I_j)<\\delta. \\end{equation}"} {"_id": "250", "text": "Suppose that for $n$ sufficiently large $($that is$,$ for $n \\ge\\mbox{some integer }N$$)$ the terms of $\\sum_{n=k}^\\infty a_n$ satisfy some condition that implies convergence of an infinite series$.$ Then $\\sum_{n=k}^\\infty a_n$ converges$.$ Similarly, suppose that for $n$ sufficiently large the terms $\\sum_{n=k}^\\infty a_n$ satisfy some condition that implies divergence of an infinite series$.$ Then $\\sum_{n=k}^\\infty a_n$ diverges$.$"} {"_id": "255", "text": "Suppose that $\\mathbf{G}=(g_1,g_2, \\dots,g_n)$ is differentiable at $$ \\mathbf{U}_0=(u_{10}, u_{20}, \\dots,u_{m0}), $$ and define $$ M=\\left(\\sum_{i=1}^n\\sum_{j=1}^m\\left(\\frac{\\partial g_i(\\mathbf{U}_0} {\\partial u_j}\\right)^2\\right)^{1/2}. $$ Then$,$ if $\\epsilon>0,$ there is a $\\delta>0$ such that $$ \\frac{|\\mathbf{G}(\\mathbf{U})-\\mathbf{G}(\\mathbf{U}_0)|} {|\\mathbf{U}-\\mathbf{U}_{0}|} 0,$ there is a $\\delta>0$ such that \\begin{equation}\\label{eq:6.2.8} |\\mathbf{F}(\\mathbf{X})-\\mathbf{F}(\\mathbf{Y})|< (\\|\\mathbf{F}'(\\mathbf{X}_{0})\\| +\\epsilon) |\\mathbf{X}-\\mathbf{Y}| \\mbox{\\quad if\\quad}\\mathbf{A},\\mathbf{Y}\\in B_\\delta (\\mathbf{X}_0). \\end{equation}"} {"_id": "258", "text": "If $\\mathbf{F}:\\R^n\\to\\R^m$ is continuously differentiable on an open set containing a compact set $D,$ then there is a constant $M$ such that \\begin{equation}\\label{eq:6.2.18} |\\mathbf{F}(\\mathbf{Y})-\\mathbf{F}(\\mathbf{X})|\\le M|\\mathbf{Y}-\\mathbf{X}| \\mbox{\\quad if\\quad}\\mathbf{X},\\mathbf{Y}\\in D. \\end{equation}"} {"_id": "259", "text": "Suppose that $|f(\\mathbf{X})|\\le M$ if $\\mathbf{X}$ is in the rectangle $$ R=[a_1,b_1]\\times [a_2,b_2]\\times\\cdots\\times [a_n,b_n]. $$ Let ${\\bf P}=P_1\\times P_2\\times\\cdots\\times P_n$ and ${\\bf P}'= P_1'\\times P_2'\\times\\cdots\\times P_n'$ be partitions of $R,$ where $P_j'$ is obtained by adding $r_j$ partition points to $P_j,$ $1\\le j\\le n.$ Then \\begin{equation}\\label{eq:7.1.16} S({\\bf P})\\ge S({\\bf P}')\\ge S({\\bf P})-2MV(R)\\left(\\sum_{j=1}^n \\frac{r_j}{ b_j-a_j}\\right)\\|{\\bf P}\\| \\end{equation} and \\begin{equation}\\label{eq:7.1.17} s({\\bf P})\\le s({\\bf P}')\\le s({\\bf P})+2MV(R)\\left(\\sum_{j=1}^n \\frac{r_j }{ b_j-a_j}\\right)\\|{\\bf P}\\|. \\end{equation}"} {"_id": "261", "text": "The union of finitely many sets with zero content has zero content$.$"} {"_id": "262", "text": "Suppose that $S$ is contained in a bounded set $T$ and $f$ is integrable on $S.$ Then $f_S$ $($see $\\eqref{eq:7.1.36})$ is integrable on $T,$ and $$ \\int_T f_S(\\mathbf{X})\\,d\\mathbf{X}=\\int_S f(\\mathbf{X})\\,d\\mathbf{X}. $$"} {"_id": "264", "text": "Suppose that $\\mathbf{G}: \\R^n\\to \\R^n$ is continuously differentiable on a bounded open set $S,$ and let $K$ be a closed subset of $S$ with zero content$.$ Then $\\mathbf{G}(K)$ has zero content."} {"_id": "265", "text": "A nonsingular $n\\times n$ matrix $\\mathbf{A}$ can be written as \\begin{equation}\\label{eq:7.3.10} \\mathbf{A}=\\mathbf{E}_k\\mathbf{E}_{k-1}\\cdots\\mathbf{E}_1, \\end{equation} where each $\\mathbf{E}_i$ is a matrix that can be obtained from the $n\\times n$ identity matrix $\\mathbf{I}$ by one of the following operations$:$ \\begin{alist} \\item % (a) interchanging two rows of $\\mathbf{I};$ \\item % (b) multiplying a row of $\\mathbf{I}$ by a nonzero constant$;$ \\item % (c) adding a multiple of one row of $\\mathbf{I}$ to another$.$ \\end{alist}"} {"_id": "266", "text": "Suppose that $\\mathbf{G}:\\E^n\\to \\R^n$ is regular on a cube $C$ in $\\E^n,$ and let $\\mathbf{A}$ be a nonsingular $n\\times n$ matrix$.$ Then \\begin{equation}\\label{eq:7.3.29} V(\\mathbf{G}(C))\\le |\\det(\\mathbf{A})|\\left[\\max \\set{\\|\\mathbf{A}^{-1}\\mathbf{G}'(\\mathbf{Y})\\|_\\infty}{\\mathbf{Y}\\in C} \\right]^n V(C). \\end{equation}"} {"_id": "267", "text": "If $\\mathbf{G}:\\E^n\\rightarrow \\R^n$ is regular on a cube $C$ in $\\R^n,$ then \\begin{equation}\\label{eq:7.3.32} V(\\mathbf{G}(C))\\le\\int_C |JG(\\mathbf{Y})|\\,d\\mathbf{Y}. \\end{equation}"} {"_id": "269", "text": "Suppose that $\\mathbf{G}: \\E^n\\to \\R^n$ is regular on a compact Jordan measurable set $S$ and $f$ is continuous and nonnegative on $\\mathbf{G}(S).$ Let \\begin{equation}\\label{eq:7.3.37} Q(S)=\\int_{\\mathbf{G}(S)} f(\\mathbf{X})\\,d\\mathbf{X}-\\int_S f(\\mathbf{G}(\\mathbf{Y})) |J\\mathbf{G}(\\mathbf{Y})|\\,d\\mathbf{Y}. \\end{equation} Then $Q(S)\\le0.$"} {"_id": "270", "text": "Under the assumptions of Lemma~$\\ref{thmtype:7.3.13},$ $Q(S)\\ge0.$"} {"_id": "275", "text": "If $f$ is continuous on a set $T,$ then $f$ is uniformly continuous on any finite closed interval contained in $T.$"} {"_id": "276", "text": "If $f'$ is integrable on $[a,b],$ then $$ \\int_a^b f'(x)\\,dx=f(b)-f(a). $$"} {"_id": "278", "text": "If $\\sum a_n$ converges$,$ then for each $\\epsilon>0$ there is an integer $K$ such that $$ \\left|\\sum_{n=k}^\\infty a_n\\right|<\\epsilon\\mbox{\\quad if\\quad} k\\ge K; $$ that is$,$ $$ \\lim_{k\\to\\infty}\\sum_{n=k}^\\infty a_n=0. $$"} {"_id": "279", "text": "Suppose that $a_n\\ge0$ and $b_n>0$ for $n\\ge k,$ and $$ \\lim_{n\\to\\infty}\\frac{a_n}{ b_n}=L, $$ where $00\\ (n\\ge k)$ and $$ \\lim_{n\\to\\infty}\\frac{a_{n+1}}{ a_n}=L. $$ \\vskip-1em Then \\begin{alist} \\item % (a) $\\sum a_n<\\infty$ if $L<1.$ \\item % (b) $\\sum a_n=\\infty$ if $L>1.$ \\end{alist} The test is inconclusive if $L=1.$"} {"_id": "284", "text": "If $\\sum f_n$ converges uniformly on $S,$ then $\\lim_{n\\to\\infty}\\|f_n\\|_S=0.$"} {"_id": "285", "text": "The series $\\sum_{n=k}^\\infty f_ng_n$ converges uniformly on $S$ if $$ f_{n+1}(x)\\le f_n(x),\\quad x\\in S,\\quad n\\ge k, $$ $\\{f_n\\}$ converges uniformly to zero on $S,$ and $$ \\|g_k+g_{k+1}+\\cdots+g_n\\|_S\\le M,\\quad n\\ge k, $$ for some constant $M.$"} {"_id": "287", "text": "Uniqueness of Power Series If \\begin{equation}\\label{eq:4.5.13} \\sum^\\infty_{n=0} a_n(x-x_0)^n=\\sum^\\infty_{n=0} b_n(x-x_0)^n \\end{equation} for all $x$ in some interval $(x_0-r,x_0+r),$ then \\begin{equation}\\label{eq:4.5.14} a_n=b_n,\\quad n\\ge0. \\end{equation}"} {"_id": "288", "text": "If $\\mathbf{X},$ $\\mathbf{Y},$ and $\\mathbf{Z}$ are in $\\R^n,$ then $$ |\\mathbf{X}-\\mathbf{Z}|\\le |\\mathbf{X}-\\mathbf{Y}|+|\\mathbf{Y}-\\mathbf{Z}|. $$"} {"_id": "289", "text": "If $\\mathbf{X}$ and $\\mathbf{Y}$ are in $\\R^n,$ then $$ |\\mathbf{X}-\\mathbf{Y}|\\ge\\left| |\\mathbf{X}|-|\\mathbf{Y}|\\right|. $$"} {"_id": "290", "text": "Under the assumptions of Theorem~$\\ref{thmtype:5.4.3},$ \\begin{equation} \\label{eq:5.4.8} \\frac{\\partial h(\\mathbf{U}_0)}{\\partial u_i}=\\sum_{j=1}^n \\frac{\\partial f(\\mathbf{X}_0) }{\\partial x_j} \\frac{\\partial g_j(\\mathbf{U}_0)}{\\partial u_i},\\quad 1\\le i \\le m. \\end{equation}"} {"_id": "291", "text": "If $f_{x_1},$ $f_{x_2},$ \\dots$,$ $f_{x_n}$ are identically zero in an open region $S$ of $\\R^n,$ then $f$ is constant in $S.$"} {"_id": "292", "text": "Suppose that $f,$ $f_x,$ and $f_y$ are differentiable in a neigborhood of a critical point $\\mathbf{X}_0=(x_0,y_0)$ of $f$ and $f_{xx},$ $f_{yy},$ and $f_{xy}$ are continuous at $(x_0,y_0).$ Let $$ D=f_{xx}(x_0,y_0)f_{xy}(x_0,y_0)-f^2_{xy}(x_0,y_0). $$ Then \\begin{alist} \\item % (a) $(x_0,y_0)$ is a local extreme point of $f$ if $D>0;$ $(x_0,y_0)$ is a local minimum point if $f_{xx}(x_0,y_0)>0$, or a local maximum point if $f_{xx}(x_0,y_0)<0.$ \\item % (b) $(x_0,y_0)$ is not a local extreme point of $f$ if $D<0.$ \\end{alist}"} {"_id": "293", "text": "If $\\mathbf{F}$ is continuously differentiable on a neighborhood of $\\mathbf{X}_0$ and $J\\mathbf{F}(\\mathbf{X}_0)\\ne 0,$ then there is an open neighborhood $N$ of $\\mathbf{X}_0$ on which the conclusions of Theorem~$\\ref{thmtype:6.3.4}$ hold$.$"} {"_id": "294", "text": "Suppose that $f:\\R^{n+1}\\to \\R$ is continuously differentiable on an open set containing $(\\mathbf{X}_0,u_0),$ with $f(\\mathbf{X}_0,u_0)=0$ and $f_u(\\mathbf{X}_0,u_0)\\ne0$. Then there is a neighborhood $M$ of $(\\mathbf{X}_0,u_0),$ contained in $S,$ and a neighborhood $N$ of $\\mathbf{X}_0$ in $\\R^n$ on which is defined a unique continuously differentiable function $u=u(\\mathbf{X}):\\R^n\\to \\R$ such that $$ (\\mathbf{X},u(\\mathbf{X}))\\in M\\mbox{\\quad and \\quad} f_u(\\mathbf{X},u(\\mathbf{X}))\\ne0,\\quad\\mathbf{X}\\in N, $$ $$ u(\\mathbf{X}_0)=u_0, \\mbox{\\quad and \\quad} f(\\mathbf{X},u(\\mathbf{X}))=0,\\quad\\mathbf{X}\\in N. $$ The partial derivatives of $u$ are given by $$ u_{x_i}(\\mathbf{X})=-\\frac{f_{x_i}(\\mathbf{X},u(\\mathbf{X}))}{ f_u(\\mathbf{X},u(\\mathbf{X}))},\\quad 1\\le i\\le n. $$"} {"_id": "295", "text": "Suppose that $f$ is integrable on sets $S_1$ and $S_2$ such that $S_1\\cap S_2$ has zero content$.$ Then $f$ is integrable on $S_1\\cup S_2,$ and $$ \\int_{S_1\\cup S_2} f(\\mathbf{X})\\,d\\mathbf{X}= \\int_{S_1} f(\\mathbf{X})\\,d\\mathbf{X}+ \\int_{S_2} f(\\mathbf{X})\\,d\\mathbf{X}. $$"} {"_id": "296", "text": "If $f$ is integrable on $[a,b] \\times [c,d],$ then $$ \\int_a^b dx\\int_c^d f(x,y)\\,dy=\\int_c^d dy\\int_a^b f(x,y)\\,dx, $$ provided that $\\int_c^d f(x,y)\\,dy$ exists for $a\\le x\\le b$ and $\\int_a^b f(x,y)\\,dx$ exists for $c\\le y\\le d.$ In particular$,$ these hypotheses hold if $f$ is continuous on $[a,b]\\times [c,d].$"}