Let $\\left({S, \\circ}\\right)$ be a finite semigroup. Let $a \\in S$ be Definition:Right Cancellabl...\" wikitext text/x-wiki == Theorem == Let $\\left({S, \\circ}\\right)$ be a finite semigroup. Let $a \\in S$ be right cancellable. Then the right regular representation $\\rho_a$ of $\\left({S, \\circ}\\right)$ with respect to $a$ is a bijection. == Proof == By Right Cancellable iff Right Regular Representation Injective, $\\rho_a$ is an injection. By hypothesis, $S$ is finite. From Injection from Finite Set to Itself is Surjection, $\\rho_a$ is a surjection. Thus $\\rho_a$ is injective and surjective, and therefore a bijection. {{qed}} Category:Semigroups Category:Regular Representations Category:Cancellability 3dwl17i5fe551prpra9brqpnd0whzgb"}
+{"_id": "32654", "title": "Euler Phi Function/Examples/9", "text": "Euler Phi Function/Examples/9 0 49689 487588 357187 2020-09-13T21:27:28Z Prime.mover 59 wikitext text/x-wiki == Example of Use of Euler $\\phi$ Function == :$\\map \\phi 9 = 6$ where $\\phi$ denotes the Euler $\\phi$ function. == Proof == From Euler Phi Function of Prime Power: :$\\map \\phi {3^k} = 2 \\times 3^{k - 1}$ Thus: :$\\map \\phi 9 = \\map \\phi {3^2} = 2 \\times 3 = 6$ They can be enumerated as: :$1, 2, 4, 5, 7, 8$ {{qed}} == Sources == * {{BookReference|Introduction to the Theory of Finite Groups|1964|Walter Ledermann|ed = 5th|edpage = Fifth Edition|prev = Definition:Euler Phi Function|next = Euler Phi Function of Prime}}: Chapter $\\text {I}$: The Group Concept: $\\S 6$: Examples of Finite Groups: $\\text{(iii)}$ Category:Examples of Euler Phi Function Category:9 p5i3t2xd8nx03vkk15bcgmdgnhfbckz"}
+{"_id": "32655", "title": "Group of Rotation Matrices Order 4/Cayley Table", "text": "Group of Rotation Matrices Order 4/Cayley Table 0 49776 370971 370969 2018-10-14T05:06:03Z Prime.mover 59 wikitext text/x-wiki == Cayley Table for Group of Rotation Matrices Order $4$ == Consider the group of rotation matrices order $4$ :$R_4 = \\set {\\begin{bmatrix} 1 & 0 \\\\ 0 & 1 \\end{bmatrix}, \\begin{bmatrix} 0 & 1 \\\\ -1 & 0 \\end{bmatrix}, \\begin{bmatrix} -1 & 0 \\\\ 0 & -1 \\end{bmatrix}, \\begin{bmatrix} 0 & -1 \\\\ 1 & 0 \\end{bmatrix} }$ $R_4$ can be described completely by showing its Cayley table. Let: :$r_0 = \\begin{bmatrix} 1 & 0 \\\\ 0 & 1 \\end{bmatrix}$ :$r_1 = \\begin{bmatrix} 0 & 1 \\\\ -1 & 0 \\end{bmatrix}$ :$r_2 = \\begin{bmatrix} -1 & 0 \\\\ 0 & -1 \\end{bmatrix}$ :$r_3 = \\begin{bmatrix} 0 & -1 \\\\ 1 & 0 \\end{bmatrix}$ Then we have: :$\\begin{array}{r|rrrr} \\times & r_0 & r_1 & r_2 & r_3 \\\\ \\hline r_0 & r_0 & r_1 & r_2 & r_3 \\\\ r_1 & r_1 & r_2 & r_3 & r_0 \\\\ r_2 & r_2 & r_3 & r_0 & r_1 \\\\ r_3 & r_3 & r_0 & r_1 & r_2 \\\\ \\end{array}$ Category:Examples of Cayley Tables h310fikahfzikm7xwk68bhgocwhub0j"}
+{"_id": "32656", "title": "Multiplicative Group of Reduced Residues Modulo 5/Cayley Table", "text": "Multiplicative Group of Reduced Residues Modulo 5/Cayley Table 0 49801 385903 371167 2019-01-02T22:00:46Z Prime.mover 59 wikitext text/x-wiki == Cayley Table for Multiplicative Group of Reduced Residues Modulo 5 == The multiplicative group of reduced residues modulo $5$: :$\\Z'_5 = \\set {\\eqclass 1 5, \\eqclass 2 5, \\eqclass 3 5, \\eqclass 4 5}$ can be described completely by showing its Cayley table: :$\\begin{array}{r|rrrr} \\times_5 & \\eqclass 1 5 & \\eqclass 2 5 & \\eqclass 3 5 & \\eqclass 4 5 \\\\ \\hline \\eqclass 1 5 & \\eqclass 1 5 & \\eqclass 2 5 & \\eqclass 3 5 & \\eqclass 4 5 \\\\ \\eqclass 2 5 & \\eqclass 2 5 & \\eqclass 4 5 & \\eqclass 1 5 & \\eqclass 3 5 \\\\ \\eqclass 3 5 & \\eqclass 3 5 & \\eqclass 1 5 & \\eqclass 4 5 & \\eqclass 2 5 \\\\ \\eqclass 4 5 & \\eqclass 4 5 & \\eqclass 3 5 & \\eqclass 2 5 & \\eqclass 1 5 \\\\ \\end{array}$ By arranging the rows and columns into a different order, its cyclic nature becomes clear: :$\\begin{array}{r|rrrr} \\times_5 & \\eqclass 1 5 & \\eqclass 2 5 & \\eqclass 4 5 & \\eqclass 3 5 \\\\ \\hline \\eqclass 1 5 & \\eqclass 1 5 & \\eqclass 2 5 & \\eqclass 4 5 & \\eqclass 3 5 \\\\ \\eqclass 2 5 & \\eqclass 2 5 & \\eqclass 4 5 & \\eqclass 3 5 & \\eqclass 1 5 \\\\ \\eqclass 4 5 & \\eqclass 4 5 & \\eqclass 3 5 & \\eqclass 1 5 & \\eqclass 2 5 \\\\ \\eqclass 3 5 & \\eqclass 3 5 & \\eqclass 1 5 & \\eqclass 2 5 & \\eqclass 4 5 \\\\ \\end{array}$ == Sources == * {{BookReference|A Course in Group Theory|1996|John F. Humphreys|prev = Modulo Addition/Cayley Table/Modulo 4|next = Modulo Multiplication is Well-Defined}}: Chapter $2$: Maps and relations on sets: Exercise $5$ Category:Examples of Cayley Tables Category:Multiplicative Group of Reduced Residues Modulo 5 9uajnfql30wlvvgzmphmjtvembcikit"}
+{"_id": "32657", "title": "Group Generated by Reciprocal of z and 1 minus z/Cayley Table", "text": "Group Generated by Reciprocal of z and 1 minus z/Cayley Table 0 49814 487572 371069 2020-09-13T21:16:39Z Prime.mover 59 wikitext text/x-wiki == Cayley Table for Group Generated by Reciprocal of $1 / z$ and $1 - z$ == We have: {{begin-eqn}} {{eqn | l = \\map {f_1} z | r = z }} {{eqn | l = \\map {f_2} z | r = \\dfrac 1 {1 - z} }} {{eqn | l = \\map {f_3} z | r = \\dfrac {z - 1} z }} {{eqn | l = \\map {f_4} z | r = \\dfrac 1 z }} {{eqn | l = \\map {f_5} z | r = 1 - z }} {{eqn | l = \\map {f_6} z | r = \\dfrac z {z - 1} }} {{end-eqn}} Hence from Group Generated by Reciprocal of z and 1 minus z: :$\\begin{array}{r|rrrrrr} \\circ & f_1 & f_2 & f_3 & f_4 & f_5 & f_6 \\\\ \\hline f_1 & f_1 & f_2 & f_3 & f_4 & f_5 & f_6 \\\\ f_2 & f_2 & f_3 & f_1 & f_6 & f_4 & f_5 \\\\ f_3 & f_3 & f_1 & f_2 & f_5 & f_6 & f_4 \\\\ f_4 & f_4 & f_5 & f_6 & f_1 & f_2 & f_3 \\\\ f_5 & f_5 & f_6 & f_4 & f_3 & f_1 & f_2 \\\\ f_6 & f_6 & f_4 & f_5 & f_2 & f_3 & f_1 \\\\ \\end{array}$ Expressing the elements in full: :$\\begin{array}{c|cccccc} \\circ & z & \\dfrac 1 {1 - z} & \\dfrac {z - 1} z & \\dfrac 1 z & 1 - z & \\dfrac z {z - 1} \\\\ \\hline z & z & \\dfrac 1 {1 - z} & \\dfrac {z - 1} z & \\dfrac 1 z & 1 - z & \\dfrac z {z - 1} \\\\ \\dfrac 1 {1 - z} & \\dfrac 1 {1 - z} & \\dfrac {z - 1} z & z & \\dfrac z {z - 1} & \\dfrac 1 z & 1 - z \\\\ \\dfrac {z - 1} z & \\dfrac {z - 1} z & z & \\dfrac 1 {1 - z} & 1 - z & \\dfrac z {z - 1} & \\dfrac 1 z \\\\ \\dfrac 1 z & \\dfrac 1 z & 1 - z & \\dfrac z {z - 1} & z & \\dfrac 1 {1 - z} & \\dfrac {z - 1} z \\\\ 1 - z & 1 - z & \\dfrac z {z - 1} & \\dfrac 1 z & \\dfrac {z - 1} z & z & \\dfrac 1 {1 - z} \\\\ \\dfrac z {z - 1} & \\dfrac z {z - 1} & \\dfrac 1 z & 1 - z & \\dfrac 1 {1 - z} & \\dfrac {z - 1} z & z \\\\ \\end{array}$ == Sources == * {{BookReference|Introduction to the Theory of Finite Groups|1964|Walter Ledermann|ed = 5th|edpage = Fifth Edition|prev = Group Generated by Reciprocal of z and 1 minus z|next = Definition:Congruence (Number Theory)/Integers/Integer Multiple}}: Chapter $\\text {I}$: The Group Concept: $\\S 6$: Examples of Finite Groups: $\\text{(ii)}$ * {{BookReference|Elements of Abstract Algebra|1971|Allan Clark|prev = Group Generated by Reciprocal of z and 1 minus z|next = Isomorphism between Group Generated by Reciprocal of z and 1 minus z and Symmetric Group on 3 Letters}}: Introduction Category:Examples of Cayley Tables t51dc10j2jycz7bfmz2foh7jztds4aw"}
+{"_id": "32658", "title": "Group Generated by Reciprocal of z and Minus z/Cayley Table", "text": "Group Generated by Reciprocal of z and Minus z/Cayley Table 0 49823 372457 371010 2018-10-22T06:21:26Z Prime.mover 59 wikitext text/x-wiki == Cayley Table for Group Generated by Reciprocal of $1 / z$ and $-z$ == We have: :$\\map {f_1} z = z$ :$\\map {f_2} z = -z$ :$\\map {f_3} z = \\dfrac 1 z$ :$\\map {f_4} z = -\\dfrac 1 z$ Hence from Group Generated by Reciprocal of z and Minus z: :$\\begin{array}{r|rrrr} \\circ & f_1 & f_2 & f_3 & f_4 \\\\ \\hline f_1 & f_1 & f_2 & f_3 & f_4 \\\\ f_2 & f_2 & f_1 & f_4 & f_3 \\\\ f_3 & f_3 & f_4 & f_1 & f_2 \\\\ f_4 & f_4 & f_3 & f_2 & f_1 \\\\ \\end{array}$ Expressing the elements in full: :$\\begin{array}{c|cccc} \\circ & z & -z & \\dfrac 1 z & -\\dfrac 1 z \\\\ \\hline z & z & -z & \\dfrac 1 z & -\\dfrac 1 z \\\\ -z & -z & z & -\\dfrac 1 z & \\dfrac 1 z \\\\ \\dfrac 1 z & \\dfrac 1 z & -\\dfrac 1 z & z & -z \\\\ -\\dfrac 1 z & -\\dfrac 1 z & \\dfrac 1 z & -z & z \\\\ \\end{array}$ Category:Examples of Cayley Tables Category:Group Generated by Reciprocal of z and Minus z to60cmgij1pjl5e8utjqi95ilhndakp"}
+{"_id": "32659", "title": "Group of Reflection Matrices Order 4/Cayley Table", "text": "Group of Reflection Matrices Order 4/Cayley Table 0 49826 372448 370987 2018-10-22T06:17:56Z Prime.mover 59 wikitext text/x-wiki == Cayley Table for Group of Reflection Matrices Order $4$ == Consider the group of reflection matrices order $4$ :$R_4 = \\set {\\begin{bmatrix} 1 & 0 \\\\ 0 & 1 \\end{bmatrix}, \\begin{bmatrix} 1 & 0 \\\\ 0 & -1 \\end{bmatrix}, \\begin{bmatrix} -1 & 0 \\\\ 0 & 1 \\end{bmatrix}, \\begin{bmatrix} -1 & 0 \\\\ 0 & -1 \\end{bmatrix} }$ $R_4$ can be described completely by showing its Cayley table. Let: :$r_0 = \\begin{bmatrix} 1 & 0 \\\\ 0 & 1 \\end{bmatrix}$ :$r_1 = \\begin{bmatrix} 1 & 0 \\\\ 0 & -1 \\end{bmatrix}$ :$r_2 = \\begin{bmatrix} -1 & 0 \\\\ 0 & 1 \\end{bmatrix}$ :$r_3 = \\begin{bmatrix} -1 & 0 \\\\ 0 & -1 \\end{bmatrix}$ Then we have: :$\\begin{array}{r|rrrr} \\times & r_0 & r_1 & r_2 & r_3 \\\\ \\hline r_0 & r_0 & r_1 & r_2 & r_3 \\\\ r_1 & r_1 & r_0 & r_3 & r_2 \\\\ r_2 & r_2 & r_3 & r_0 & r_1 \\\\ r_3 & r_3 & r_2 & r_1 & r_0 \\\\ \\end{array}$ Category:Examples of Cayley Tables dgdam5yfreyiuqlpsfcllilq96gisd4"}
+{"_id": "32660", "title": "Multiplicative Group of Reduced Residues Modulo 8/Cayley Table", "text": "Multiplicative Group of Reduced Residues Modulo 8/Cayley Table 0 49828 371171 371165 2018-10-14T09:38:19Z Prime.mover 59 wikitext text/x-wiki == Cayley Table for Multiplicative Group of Reduced Residues Modulo 8 == The multiplicative group of reduced residues modulo $8$: :$\\Z'_8 = \\set {\\eqclass 1 8, \\eqclass 3 8, \\eqclass 5 8, \\eqclass 7 8}$ can be described completely by showing its Cayley table: :$\\begin{array}{r|rrrr} \\times_8 & \\eqclass 1 8 & \\eqclass 3 8 & \\eqclass 5 8 & \\eqclass 7 8 \\\\ \\hline \\eqclass 1 8 & \\eqclass 1 8 & \\eqclass 3 8 & \\eqclass 5 8 & \\eqclass 7 8 \\\\ \\eqclass 3 8 & \\eqclass 3 8 & \\eqclass 1 8 & \\eqclass 7 8 & \\eqclass 5 8 \\\\ \\eqclass 5 8 & \\eqclass 5 8 & \\eqclass 7 8 & \\eqclass 1 8 & \\eqclass 3 8 \\\\ \\eqclass 7 8 & \\eqclass 7 8 & \\eqclass 5 8 & \\eqclass 3 8 & \\eqclass 1 8 \\\\ \\end{array}$ Category:Examples of Cayley Tables Category:Multiplicative Group of Reduced Residues Modulo 8 tkrj64cqoh4o7k1sjya20y02wwf7qde"}
+{"_id": "32661", "title": "Klein Four-Group/Cayley Table", "text": "Klein Four-Group/Cayley Table 0 49829 379885 374806 2018-12-03T05:45:56Z Prime.mover 59 wikitext text/x-wiki == Cayley Table for Klein $4$-Group == The Klein $4$-group can be described completely by showing its Cayley table: :$\\begin{array}{c|cccc} & e & a & b & c \\\\ \\hline e & e & a & b & c \\\\ a & a & e & c & b \\\\ b & b & c & e & a \\\\ c & c & b & a & e \\\\ \\end{array}$ {{NamedforDef|Felix Christian Klein}} == Sources == * {{BookReference|Modern Algebra|1965|Seth Warner|prev = Definition:Klein Four-Group|next = Symmetric Group on 3 Letters/Group Presentation}}: $\\S 25$ * {{BookReference|Elements of Abstract Algebra|1966|Richard A. Dean|prev = Exponential on Real Numbers is Group Isomorphism/Proof 1|next = Definition:Klein Four-Group}}: $\\S 1.5$: Example $15$ * {{BookReference|Elements of Abstract Algebra|1971|Allan Clark|prev = Definition:Klein Four-Group|next = Klein Four-Group is Group}}: Chapter $2$: The Definition of Group Structure: $\\S 26 \\iota$ * {{BookReference|Algebra|1974|Thomas W. Hungerford|prev = Definition:Klein Four-Group|next = Reduced Residue System under Multiplication forms Abelian Group/Corollary}}: $\\text{I}$: Groups: $\\S 1$: Semigroups, Monoids and Groups: Exercise $6$ * {{BookReference|An Introduction to Abstract Algebra|1978|Thomas A. Whitelaw|prev = Definition:Klein Four-Group|next = Definition:Symmetry Group of Rectangle}}: $\\S 44.5$ Some consequences of Lagrange's Theorem Category:Klein Four-Group Category:Examples of Cayley Tables rmuh1ij005q9d890mjwk5plu3oio1hv"}
+{"_id": "32662", "title": "Complex Roots of Unity/Examples/Cube Roots", "text": "Complex Roots of Unity/Examples/Cube Roots 0 49894 451602 451599 2020-03-01T14:12:50Z Prime.mover 59 wikitext text/x-wiki == Example of Complex Roots of Unity == The '''complex cube roots of unity''' are the elements of the set: :$U_3 = \\set {z \\in \\C: z^3 = 1}$ They are: {{begin-eqn}} {{eqn | m = e^{0 i \\pi / 3} | o = | r = 1 | mo= = | c = }} {{eqn | l = \\omega | mo= = | m = e^{2 i \\pi / 3} | r = -\\frac 1 2 + \\frac {i \\sqrt 3} 2 }} {{eqn | l = \\omega^2 | mo= = | m = e^{4 i \\pi / 3} | r = -\\frac 1 2 - \\frac {i \\sqrt 3} 2 }} {{end-eqn}} The notation $\\omega$ for, specifically, the complex '''cube''' roots of unity is conventional. === Conjugate Form === {{:Complex Roots of Unity/Examples/Cube Roots/Conjugate Form}} == Proof == {{:Complex Roots of Unity/Examples/Cube Roots/Proof}} == Sources == * {{BookReference|Complex Numbers|1960|Walter Ledermann|prev = Sum of Powers of Primitive Complex Roots of Unity|next = Difference of Two Cubes/Corollary}}: $\\S 3$. Roots of Unity * {{BookReference|Elements of Abstract Algebra|1971|Allan Clark|prev = Roots of Complex Number/Examples/Cube Roots|next = Roots of Complex Number/Corollary/Examples/Cube Roots}}: Introduction * {{BookReference|The Concise Oxford Dictionary of Mathematics|2014|Christopher Clapham|author2 = James Nicholson|ed = 5th|edpage = Fifth Edition|prev = Definition:Cube Root|next = Definition:Cubic (Geometry)|entry = cube root of unity}} Category:Examples of Complex Roots of Unity Category:Cube Roots of Unity plam55cl80oep7dnkq3wkwwvzv93wau"}
+{"_id": "32663", "title": "Primitive Complex Roots of Unity/Examples/Cube Roots", "text": "Primitive Complex Roots of Unity/Examples/Cube Roots 0 49902 431571 363692 2019-10-16T01:33:03Z Caliburn 3218 wikitext text/x-wiki == Examples of Primitive Complex Roots of Unity == The '''primitive complex cube roots of unity''' are: {{begin-eqn}} {{eqn | l = \\omega | mo= = | m = e^{2 \\pi i / 3} | r = -\\frac 1 2 + \\frac {i \\sqrt 3} 2 }} {{eqn | l = \\omega^2 | mo= = | m = e^{4 \\pi i / 3} | r = -\\frac 1 2 - \\frac {i \\sqrt 3} 2 }} {{end-eqn}} == Proof == There are $3$ (complex) cube roots of unity: :$1, \\omega, \\omega^2$ We have: {{begin-eqn}} {{eqn | l = \\omega | r = e^{2 \\pi i / 3} }} {{eqn | l = \\omega^2 | r = e^{4 \\pi i / 3} }} {{eqn | l = \\omega^3 | r = 1 | c = Cube Roots of Unity }} {{end-eqn}} Also: {{begin-eqn}} {{eqn | l = \\omega^2 | r = e^{4 \\pi i / 3} }} {{eqn | l = \\paren {\\omega^2}^2 | r = \\omega^3 \\times \\omega }} {{eqn | r = 1 \\times \\omega | c = Cube Roots of Unity }} {{eqn | r = \\omega | c = }} {{eqn | l = \\paren {\\omega^2}^3 | r = \\paren {\\omega^3}^2 | c = Cube Roots of Unity }} {{eqn | r = 1 \\times 1 | c = Cube Roots of Unity }} {{eqn | r = 1 | c = }} {{end-eqn}} Trivially, $1$ is not a primitive complex cube root of unity because you cannot make either $\\omega$ or $\\omega^2$ by multiplying $1$ by itself as many times as you like. Hence the result. {{qed}} Category:Cube Roots of Unity thejark721e79ld0xl97nug8xzhwxdl"}
+{"_id": "32664", "title": "Symmetric Group on 3 Letters", "text": "Symmetric Group on 3 Letters 0 49917 388523 388518 2019-01-19T12:30:30Z Prime.mover 59 wikitext text/x-wiki == Group Example == Let $S_3$ denote the set of permutations on $3$ letters. The '''symmetric group on $3$ letters''' is the algebraic structure: :$\\struct {S_3, \\circ}$ where $\\circ$ denotes composition of mappings. It is usually denoted, when the context is clear, without the operator: $S_3$. === Cycle Notation === It can be expressed in the form of permutations given in cycle notation as follows: {{:Symmetric Group on 3 Letters/Cycle Notation}} === Cayley Table === {{:Symmetric Group on 3 Letters/Cayley Table}} === Group Presentation === Its group presentation is: {{:Symmetric Group on 3 Letters/Group Presentation}} == Order of Elements == {{:Symmetric Group on 3 Letters/Order of Elements}} == Subgroups == {{:Symmetric Group on 3 Letters/Subgroups}} == Normal Subgroups == {{:Symmetric Group on 3 Letters/Normal Subgroups}} == Generators == {{:Symmetric Group on 3 Letters/Generators}} == Centralizers == {{:Symmetric Group on 3 Letters/Centralizers}} == Normalizers of Subgroups == {{:Symmetric Group on 3 Letters/Normalizers}} == Center == {{:Symmetric Group on 3 Letters/Center}} == Conjugacy Classes == {{:Symmetric Group on 3 Letters/Conjugacy Classes}} == Also see == * Symmetric Group is Group, which demonstrates that this is a (finite) group. Category:Groups of Order 6 Category:Symmetric Group on 3 Letters Category:Symmetric Groups h2sn5oa3n3faf7jeos3g7n2x850c8ve"}
+{"_id": "32665", "title": "Solution to Card Game with Bluffing", "text": "Solution to Card Game with Bluffing 0 50132 270689 270687 2016-09-13T06:35:01Z Prime.mover 59 wikitext text/x-wiki == Solution to Card Game with Bluffing == {{:Definition:Card Game with Bluffing}} == Proof == From the payoff table: {{:Definition:Card Game with Bluffing/Payoff Table}} The solution is: : $A$ takes strategy $A_1$ for $2/3$ of the time, and $A_2$ for $1/3$ of the time. : $B$ takes strategy $B_1$ for $2/3$ of the time, and $B_2$ for $1/3$ of the time. {{explain|It is not made clear in the source work why this is. You just get: \"This is indeed a solution, because no player can do better if the other sticks to his strategy, but could gain or lose more than $1/3$ (which is what $A$ gains now) if he departed from the optimal solution and his opponent took advantage of it.\" This is handwaving. A source work with a higher level of precision is needed here.}} == Sources == * {{BookReference|The Theory of Games and Linear Programming|1956|Steven Vajda|prev = Definition:Card Game with Bluffing/Payoff Table|next = Two-Person Zero-Sum Game with Multiple Solutions}}: Chapter $\\text{I}$: An Outline of the Theory of Games: $3$ Category:Examples of Two-Person Zero-Sum Games 4ksn9gq6ze2pq47senvjeub2xvbd4sp"}
+{"_id": "32666", "title": "Induction of Finite Set", "text": "Induction of Finite Set 0 50174 414435 270828 2019-07-24T17:03:06Z Prime.mover 59 wikitext text/x-wiki == Theorem Scheme == Let $A$ be finite set. Let $\\map P -$ be a predicate. Let $\\map P \\O$. Let :$\\forall B \\subseteq A, x \\in A: \\paren {\\map P B \\implies \\map P {B \\cup \\set x} }$ Then: :$\\map P A$ == Proof == We will prove the result by induction on cardinality of argument. === Base Case === :$\\forall X \\subseteq A: \\paren {\\size X = 0 \\implies \\map P X}$ Let $X \\subseteq A$ such that: :$\\size X = 0$ By Cardinality of Empty Set: :$X = \\O$ Thus by assumption: :$\\map P X$ === Induction Hypothesis === :$\\forall X \\subseteq A: \\paren {\\size X = n \\implies \\map P X}$ === Induction Step === :$\\forall X \\subseteq A: \\paren {\\size X = n + 1 \\implies \\map P X}$ Let $X \\subseteq A$ such that: :$\\size X = n + 1$ By definition of cardinality: :$X = \\set {x_1, \\dots, x_n, x_{n + 1} }$ By Union of Unordered Tuples: :$X = \\set {x_1, \\dots, x_n} \\cup \\set {x_{n + 1} }$ By definition of cardinality: :$\\size {\\set {x_1, \\dots, x_n} } = n$ By Set is Subset of Union: :$\\set {x_1, \\dots, x_n} \\subseteq X \\subseteq A$ Then by Induction Hypothesis: :$\\map P {\\set {x_1, \\dots, x_n} }$ By definition of subset: :$x_{n + 1} \\in A$ Thus by assumption: :$\\map P X$ {{qed|lemma}} By the Principle of Mathematical Induction: :$\\forall X \\subseteq A: \\paren {\\size X = \\size A \\implies \\map P X}$ Hence: :$\\map P A$ {{qed}} == Sources == * {{Mizar|link = finset_1|sublink = S2|display = FINSET_1:sch 2}} Category:Set Theory kvjbq876k6dqr3q8pdqldwexmetyrrf"}
+{"_id": "32667", "title": "Infimum of Real Subset", "text": "Infimum of Real Subset 0 50378 407208 271659 2019-06-10T07:08:22Z Prime.mover 59 wikitext text/x-wiki == Lemma == Let $S$ be a set of extended real numbers. Let $S$ be bounded below (in $\\R$). Let $T = S \\cap \\R$. Then: :$S$ admits an infimum (in $\\R$) if and only if $T$ admits an infimum (in $\\R$) and, if $\\inf S$ and $\\inf T$ exist as real numbers: :$\\inf S = \\inf T$ == Proof == We observe that $T$ constitutes the real numbers of $S$. Since there is a real number that is a lower bound for $S$, $-\\infty$ is not an element of $S$. Accordingly, $\\infty$ is the only possible element of $S \\setminus T$. Therefore: :$S$ is a subset of $T \\cup \\set \\infty$ First, we show that $S$ and $T$ have the same set of lower bounds. Let $b$ be a lower bound (in $\\R$) for $S$. Then $b$ is a lower bound for $T$ as $T$ is a subset of $S$. Therefore: :the set of lower bounds for $S$ is a subset of the set of lower bounds for $T$ Assume that $c$ is a lower bound (in $\\R$) for $T$. Then $c$ is a lower bound for $T \\cup \\left\\{{\\infty}\\right\\}$ as well since $c < \\infty$. Accordingly, $c$ is a lower bound for $S$ since $S$ is a subset of $T \\cup \\set \\infty$. Therefore: :the set of lower bounds for $T$ is a subset of the set of lower bounds for $S$ We have: :the set of lower bounds for $T$ is a subset of the set of lower bounds for $S$ :the set of lower bounds for $S$ is a subset of the set of lower bounds for $T$ Therefore: :the set of lower bounds for $T$ equals the set of lower bounds for $S$ by definition Next, we show that $S$ and $T$ have the same infima. We have that $S$ and $T$ have the same set of lower bounds. Therefore, $S$ and $T$ have the same greatest lower bound in $\\overline \\R$. Accordingly, as a corollary, if one of the sets $S$ and $T$ admits an infimum (in $\\R$), so does the other. Furthermore, these infima are equal. {{qed}} Category:Extended Real Numbers kx4t3fbsz4b7rckt7fjm04bbiubtkgz"}
+{"_id": "32668", "title": "Infimum of Set of Oscillations on Set", "text": "Infimum of Set of Oscillations on Set 0 50466 407204 272152 2019-06-10T06:32:13Z Prime.mover 59 wikitext text/x-wiki == Lemma == Let $f: D \\to \\R$ be a real function where $D \\subseteq \\R$. Let $x$ be a point in $D$. Let $S_x$ be a set of real sets that contain (as an element) $x$. Let: :$\\map {\\omega_f} x = \\inf \\set {\\map {\\omega_f} I: I \\in S_x}$ where $\\map {\\omega_f} I$ denotes the oscillation of $f$ on the set $I$: :$\\map {\\omega_f} I = \\sup \\set {\\size {\\map f y - \\map f z}: y, z \\in I \\cap D}$ Then: :$\\map {\\omega_f} x \\in \\R$ {{iff}} $\\set {\\map {\\omega_f} I: I \\in S_x}$ contains a real number. == Proof == Let: :$S = \\set {\\map {\\omega_f} I: I \\in S_x}$ We observe that: :$\\inf S = \\map {\\omega_f} x$ === Necessary Condition === Let $\\inf S \\in \\R$. We need to prove that $S$ contains a real number. Note that $S$ is non-empty as the empty set does not admit an infimum (in $\\R$). Therefore, $S$ has at least one element. Accordingly, there is an $I \\in S_x$ such that $\\map {\\omega_f} I \\in S$. Let $I \\in S_x$. Therefore, $x \\in I$. From this follows by Oscillation on Set is an Extended Real Number that $\\map {\\omega_f} I$ is an extended real number. Therefore $S$ is a set of extended real numbers as $S = \\set {\\map {\\omega_f} I: I \\in S_x}$. Accordingly, $S$ contains a real number by Infimum of Subset of Extended Real Numbers is Arbitrarily Close as $\\inf S \\in \\R$. {{qed|lemma}} === Sufficient Condition === Let $S$ contain a real number. We need to prove that $\\inf S \\in \\R$. We have: :$S \\cap \\R$ is non-empty as $S$ contains a real number. Let $I \\in S_x$. Therefore, $x \\in I$. From this follows by Oscillation on Set is an Extended Real Number that $\\map {\\omega_f} I \\in \\overline \\R_{\\ge 0}$. Therefore: :$S$ is a subset of $\\overline \\R_{\\ge 0}$ as $S = \\set {\\map {\\omega_f} I: I \\in S_x}$ Accordingly: :$S$ is bounded below. From this follows that: :$S \\cap \\R$ is bounded below as $SR$ is a subset of $S$ We have: :$S \\cap \\R$ is bounded below :$S \\cap \\R$ is not empty Therefore: :$\\inf S \\cap \\R \\in \\R$ Continuum Property We have: :$S$ is a set of extended real numbers as $S$ is a subset of $\\overline \\R_{\\ge 0}$ :$S$ is bounded below Therefore: :$\\inf S \\in \\R$ by Infimum of Real Subset as $\\inf S \\cap \\R \\in \\R$ {{qed}} Category:Real Analysis Category:Oscillation 6csqfmfq0gbqeu6e9pqlkytunxctepo"}
+{"_id": "32669", "title": "Infimum of Set of Oscillations on Set is Arbitrarily Close", "text": "Infimum of Set of Oscillations on Set is Arbitrarily Close 0 50507 272883 272273 2016-10-10T07:37:43Z Ivar Sand 2302 Generalized wikitext text/x-wiki == Lemma == Let $f: D \\to \\R$ be a real function where $D \\subseteq \\R$. Let $x$ be a point in $D$. Let $S_x$ be a set of real sets that contain (as an element) $x$. Let: :$\\omega_f \\left({x}\\right) = \\displaystyle \\inf \\left\\{{\\omega_f \\left({I}\\right): I \\in S_x}\\right\\}$ where $\\omega_f \\left({I}\\right)$ is the oscillation of $f$ on a real set $I$: :$\\omega_f \\left({I}\\right) = \\displaystyle \\sup \\left\\{{\\left\\vert{f \\left({y}\\right) - f \\left({z}\\right)}\\right\\vert: y, z \\in I \\cap D}\\right\\}$ Let $\\epsilon \\in \\R_{>0}$. Let $\\omega_f \\left({x}\\right) \\in \\R$. Then an $I \\in S_x$ exists such that: :$\\omega_f \\left({I}\\right) - \\omega_f \\left({x}\\right) < \\epsilon$ == Proof == Let $\\epsilon \\in \\R_{>0}$. Let $\\omega_f \\left({x}\\right) \\in \\R$. We need to prove that an $I \\in S_x$ exists such that: :$\\omega_f \\left({I}\\right) - \\omega_f \\left({x}\\right) < \\epsilon$ We have that $\\omega_f \\left({I}\\right) \\in \\overline{\\R}_{\\ge 0}$ for every $I \\in S_x$ by Oscillation on Set is an Extended Real Number. Therefore: :$\\left\\{{\\omega_f \\left({I}\\right): I \\in S_x}\\right\\}$ is a subset of $\\overline{\\R}$ We have also: :$\\displaystyle \\inf \\left\\{{\\omega_f \\left({I}\\right): I \\in S_x}\\right\\} \\in \\R$ as $\\displaystyle \\inf \\left\\{{\\omega_f \\left({I}\\right): I \\in S_x}\\right\\} = \\omega_f \\left({x}\\right)$ Therefore, an $I \\in S_x$ exists such that: {{begin-eqn}} {{eqn | l = \\omega_f \\left({I}\\right) - \\displaystyle \\inf \\left\\{ {\\omega_f \\left({I'}\\right): I' \\in S_x}\\right\\} | o = < | r = \\epsilon | c = by Infimum of Subset of Extended Real Numbers is Arbitrarily Close }} {{eqn | ll = \\iff | l = \\omega_f \\left({I}\\right) - \\omega_f \\left({x}\\right) | o = < | r = \\epsilon | c = as $\\omega_f \\left({x}\\right) = \\displaystyle \\inf \\left\\{ {\\omega_f \\left({I'}\\right): I' \\in S_x}\\right\\}$ }} {{end-eqn}} {{qed|lemma}} Category:Real Analysis ez6vb772zpbteefj77vvv2y8o5rk4rh"}
+{"_id": "32670", "title": "Reciprocal/Examples/Euler's Number", "text": "Reciprocal/Examples/Euler's Number 0 50525 433471 379617 2019-11-01T13:37:32Z Prime.mover 59 wikitext text/x-wiki == Example of Reciprocal == The reciprocal of Euler's Number $e$ is approximately: :$\\dfrac 1 e \\approx 0 \\cdotp 36787 \\, 94411 \\, 71442 \\, 32159 \\, 55237 \\, 70161 \\, 46086 \\, 74458 \\, 11131 \\, 031 \\ldots$ {{OEIS|A068985}} == Sources == * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = Reciprocal/Examples/Pi|next = Envelope Problem}}: $0 \\cdotp 367 \\, 879 \\, 441 \\, 171 \\, 442 \\, 321 \\, 595 \\, 523 \\, 770 \\, 161 \\, 460 \\, 867 \\, 445 \\, 811 \\, 131 \\, 031$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = One Third as Quotient of Sequences of Odd Numbers|next = Euler's Number as Sum of Egyptian Fractions}}: $0 \\cdotp 36787 \\, 94411 \\, 71442 \\, 32159 \\, 55237 \\, 70161 \\, 46086 \\, 74458 \\, 11131 \\, 031$ Category:Examples of Reciprocals Category:Euler's Number fkt7k64j5ggfv11l4uh6q12mhgl4a9m"}
+{"_id": "32671", "title": "Continued Fraction Expansion of Irrational Square Root/Examples/2", "text": "Continued Fraction Expansion of Irrational Square Root/Examples/2 0 50722 470631 433258 2020-05-26T06:33:17Z Prime.mover 59 Prime.mover moved page Continued Fraction Expansion of Irrational Square Root/Example/2 to Continued Fraction Expansion of Irrational Square Root/Examples/2 wikitext text/x-wiki == Examples of Continued Fraction Expansion of Irrational Square Root == The continued fraction expansion of the square root of $2$ is given by: :$\\sqrt 2 = \\sqbrk {1, \\sequence 2}$ {{OEIS|A040000}} == Proof == {{begin-eqn}} {{eqn | l = \\sqrt 2 | r = 1 + \\paren {\\sqrt 2 − 1} | c = }} {{eqn | r = 1 + \\frac {\\paren {\\sqrt 2 − 1} \\paren {\\sqrt 2 + 1} } {\\sqrt 2 + 1} | c = multiplying top and bottom by $\\sqrt 2 + 1$ }} {{eqn | r = 1 + \\frac {\\paren {\\sqrt 2}^2 − 1^2} {\\sqrt 2 + 1} | c = Difference of Two Squares }} {{eqn | r = 1 + \\frac 1 {1 + \\sqrt 2} | c = as $\\paren {\\sqrt 2}^2 − 1^2 = 2 - 1 = 1$ }} {{end-eqn}} Thus it is possible to replace $\\sqrt 2$ recursively: {{begin-eqn}} {{eqn | l = \\sqrt 2 | r = 1 + \\frac 1 {1 + \\sqrt 2} | c = }} {{eqn | r = 1 + \\frac 1 {1 + \\paren {1 + \\cfrac 1 {1 + \\sqrt 2} } } | c = }} {{eqn | r = 1 + \\frac 1 {2 + \\cfrac 1 {1 + \\sqrt 2} } | c = }} {{eqn | r = 1 + \\frac 1 {2 + \\cfrac 1 {1 + \\paren {1 + \\cfrac 1 {1 + \\sqrt 2} } } } | c = }} {{eqn | r = 1 + \\frac 1 {2 + \\cfrac 1 {2 + \\cfrac 1 {1 + \\sqrt 2} } } | c = }} {{end-eqn}} The pattern repeats indefinitely, producing the continued fraction expansion: :$\\sqrt 2 = \\sqbrk {1, 2, 2, 2, \\ldots} = \\sqbrk {1, \\sequence 2}$ {{handwaving}} {{qed}} Category:Continued Fractions 4kyf0xltted86u8fkvn1ttmfsyps42z"}
+{"_id": "32672", "title": "Riemann Zeta Function at Even Integers/Examples/2", "text": "Riemann Zeta Function at Even Integers/Examples/2 0 50830 433362 393171 2019-11-01T09:37:43Z Prime.mover 59 wikitext text/x-wiki == Example of Riemann Zeta Function at Even Integers == The Riemann zeta function of $2$ is given by: {{begin-eqn}} {{eqn | l = \\map \\zeta 2 | r = \\dfrac 1 {1^2} + \\dfrac 1 {2^2} + \\dfrac 1 {3^2} + \\dfrac 1 {4^2} + \\cdots | c = }} {{eqn | r = \\dfrac {\\pi^2} 6 | c = }} {{eqn | o = \\approx | r = 1 \\cdotp 64493 \\, 4066 \\ldots | c = }} {{end-eqn}} {{OEIS|A013661}} == Proof == {{:Basel Problem/Proof 6}} The decimal expansion can be found by an application of arithmetic. == Sources == * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = Definition:Wythoff's Game|next = Square Root/Examples/3}}: $1 \\cdotp 644 \\, 934 \\, 066 \\ldots$ * {{BookReference|The Art of Computer Programming: Volume 1: Fundamental Algorithms|1997|Donald E. Knuth|ed = 3rd|edpage = Third Edition|prev = Riemann Zeta Function at Even Integers|next = Riemann Zeta Function of 4}}: $\\S 1.2.7$: Harmonic Numbers: $(7)$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = Definition:Wythoff's Game|next = Zeta of 2 as Product of Fractions with Prime Numerators}}: $1 \\cdotp 64493 \\, 4066 \\ldots$ Category:Riemann Zeta Function at Even Integers 4ddaa3tqvt1zokkd9f2ykl46o2pmv2k"}
+{"_id": "32673", "title": "Axiom:Real Number as Complex Number", "text": "Axiom:Real Number as Complex Number 100 51043 274515 274511 2016-10-30T14:33:07Z Prime.mover 59 wikitext text/x-wiki {{refactor|obviously needs refactoring}} {{MissingLinks|Needs a category}} == Axiom == Let $x \\in \\R$ be a real number. Then: : $x = \\left({x, 0}\\right)$ where $\\left({a, b}\\right)$ where $a, b \\in R$ denotes a complex number. Also: : $x = x + 0 i$ where $a + b i$ where $a, b \\in R$ denotes a complex number. 0ceu0zey8cofgzlvd94lyogii14qmr8"}
+{"_id": "32674", "title": "Magic Square/Examples/Order 3", "text": "Magic Square/Examples/Order 3 0 51180 446278 424228 2020-02-04T15:47:05Z Prime.mover 59 wikitext text/x-wiki == Example of Order $3$ Magic Square == Order $3$ magic square: :$\\begin{array}{|c|c|c|} \\hline 2 & 7 & 6 \\\\ \\hline 9 & 5 & 1 \\\\ \\hline 4 & 3 & 8 \\\\ \\hline \\end{array}$ == Also known as == {{:Magic Square/Examples/Order 3/Also known as}} == Also see == * Smallest Magic Square is of Order 3 * Magic Constant of Order 3 Magic Square == Historical Note == {{:Magic Square/Examples/Order 3/Historical Note}} == Sources == * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = Hilbert-Waring Theorem/Particular Cases/4/Historical Note|next = Magic Constant of Order 3 Magic Square}}: $9$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = Hilbert-Waring Theorem/Particular Cases/4/Historical Note|next = Magic Constant of Order 3 Magic Square}}: $9$ * {{BookReference|The Penguin Dictionary of Mathematics|1998|David Nelson|ed = 2nd|edpage = Second Edition|prev = Definition:Magic Square|next = Magic Square/Examples/Order 3/Also known as|entry = magic square}} * {{BookReference|The Penguin Dictionary of Mathematics|2008|David Nelson|ed = 4th|edpage = Fourth Edition|prev = Definition:Magic Square|next = Magic Square/Examples/Order 3/Also known as|entry = magic square}} * {{BookReference|The Concise Oxford Dictionary of Mathematics|2014|Christopher Clapham|author2 = James Nicholson|ed = 5th|edpage = Fifth Edition|prev = Definition:Magic Square|next = Magic Square/Examples/Order 4/Dürer|entry = magic square}} Category:Magic Squares izm9s929wxgdxosf4i8k13lsxtsnq01"}
+{"_id": "32675", "title": "Sum of Integrals on Adjacent Intervals for Integrable Functions/Corollary", "text": "Sum of Integrals on Adjacent Intervals for Integrable Functions/Corollary 0 51241 468131 459088 2020-05-16T09:47:50Z Prime.mover 59 wikitext text/x-wiki == Corollary to Sum of Integrals on Adjacent Intervals for Integrable Functions == Let $f$ be a real function which is Darboux integrable on any closed interval $\\mathbb I$. Let $a_0, a_1, \\ldots, a_n$ be real numbers, where $n \\in \\N$ and $n \\ge 2$. Then: :$\\displaystyle \\int_{a_0}^{a_n} \\map f t \\rd t = \\sum_{i \\mathop = 0}^{n - 1} \\int_{a_i}^{a_{i + 1} } \\map f t \\rd t$ == Proof == Proof by induction: === Basis for the Induction === According to Sum of Integrals on Adjacent Intervals for Integrable Functions, $n = 2$ holds. This is the basis for the induction. === Induction Hypothesis === This is our induction hypothesis: :$\\displaystyle \\int_{a_0}^{a_k} \\map f t \\rd x = \\sum_{i \\mathop = 0}^{k - 1} \\int_{a_i}^{a_{i + 1} } \\map f t \\rd t$ Now we need to show true for $n = k + 1$: :$\\displaystyle \\int_{a_0}^{a_{k + 1} } \\map f t \\rd t = \\sum_{i \\mathop = 0}^k \\int_{a_i}^{a_{i + 1} } \\map f t \\rd t$ === Induction Step === This is our induction step: {{begin-eqn}} {{eqn | l = \\int_{a_0}^{a_{k + 1} } \\map f t \\rd t | r = \\int_{a_0}^{a_k} \\map f t \\rd t + \\int_{a_k}^{a_{k + 1} } \\map f t \\rd t | c = Sum of Integrals on Adjacent Intervals for Integrable Functions }} {{eqn | r = \\sum_{i \\mathop = 0}^{k - 1} \\int_{a_i}^{a_{i + 1} } \\map f t \\rd t + \\int_{a_k}^{a_{k + 1} } \\map f t \\rd t | c = Induction Hypothesis }} {{eqn | r = \\sum_{i \\mathop = 0}^k \\int_{a_i}^{a_{i + 1} } \\map f t \\rd t | c = }} {{end-eqn}} The result follows by induction. {{qed}} == Sources == * {{BookReference|Fourier Series|1961|I.N. Sneddon|prev = Piecewise Continuous Function with One-Sided Limits is Darboux Integrable|next = Definition:Real Right-Hand Derivative}}: Chapter Two: $\\S 1$. Piecewise-Continuous Functions: $(5)$ * {{BookReference|Mathematical Handbook of Formulas and Tables|1968|Murray R. Spiegel|prev = Definition:Improper Integral on Open Below Interval|next = Definite Integral of Constant Multiple of Real Function}}: $\\S 15$: General Formulas involving Definite Integrals: $15.7$ Category:Proofs by Induction Category:Definite Integrals k1fa60kmb57gjadcvaqfg3nbpzzr9dn"}
+{"_id": "32676", "title": "Integration by Substitution/Corollary", "text": "Integration by Substitution/Corollary 0 51242 483482 468279 2020-08-28T12:48:52Z Prime.mover 59 wikitext text/x-wiki == Corollary to Integration by Substitution == Let $f : \\R \\to \\R$ be a real function. Let $f$ be integrable. Let $a$, $b$, and $c$ be real numbers. Then: :$\\displaystyle \\int_{a - c}^{b - c} \\map f t \\rd t = \\int_a^b \\map f {t - c} \\rd t$ == Proof == Let $\\map \\phi u = u - c$. By Sum Rule for Derivatives, Derivative of Identity Function, and Derivative of Constant, we have: :$\\map {\\phi'} u = 1$ By Integration by Substitution: {{begin-eqn}} {{eqn | l = \\int_{\\map \\phi a}^{\\map \\phi b} \\map f t \\rd t | r = \\int_a^b \\map f {\\map \\phi u} \\map {\\phi'} u \\rd u | c = }} {{eqn | ll = \\leadsto | l = \\int_{a - c}^{b - c} \\map f t \\rd t | r = \\int_a^b \\map f {u - c} \\paren 1 \\rd u | c = }} {{eqn | r = \\int_a^b \\map f {u - c} \\rd u | c = }} {{eqn | r = \\int_a^b \\map f {t - c} \\rd t | c = }} {{end-eqn}} {{qed}} Category:Integration by Substitution 1ipmzu7snocnfv8io33p1jmkhas10ci"}
+{"_id": "32677", "title": "Finite Ordinal Times Ordinal/Lemma", "text": "Finite Ordinal Times Ordinal/Lemma 0 51259 275440 2016-11-06T09:54:20Z Kc kennylau 2331 Created page with \"== Lemma == Let $m$ be a finite ordinal. Let $m \\ne 0$, where $0$ is the zero ordinal. Then: : $m \\times \\omeg...\" wikitext text/x-wiki == Lemma == Let $m$ be a finite ordinal. Let $m \\ne 0$, where $0$ is the zero ordinal. Then: : $m \\times \\omega = \\omega$ where $\\omega$ denotes the minimal infinite successor set. == Proof == {{begin-eqn}} {{eqn | ll = \\forall n \\in \\omega | l = m \\times n | o = \\in | r = \\omega | c = Natural Number Multiplication is Closed }} {{eqn | l = \\bigcup_{n \\mathop \\in \\omega} \\left({ m \\times n }\\right) | o = \\le | r = \\omega | c = Supremum Inequality for Ordinals }} {{eqn | ll = \\implies | l = m \\times \\omega | o = \\le | r = \\omega | c = Definition of Ordinal Multiplication }} {{end-eqn}} Also, $\\omega \\le \\left({ m \\times \\omega }\\right)$ by Subset is Right Compatible with Ordinal Multiplication. The lemma follows from the definition of equality. {{qed|lemma}} Category:Ordinal Arithmetic Category:Transfinite Arithmetic Category:Finite Ordinals Category:Minimal Infinite Successor Set 18ma4g26xnn9ic9e0uzk74435l9nfut"}
+{"_id": "32678", "title": "Binary Logarithm/Examples/10", "text": "Binary Logarithm/Examples/10 0 51349 433259 433010 2019-11-01T08:32:16Z Prime.mover 59 wikitext text/x-wiki == Example of Binary Logarithm == The binary logarithm of $10$ is: :$\\log_2 10 \\approx 3 \\cdotp 32192 \\, 80948 \\, 87362 \\, 34787 \\, 0319 \\ldots$ {{OEIS|A020862}} == Sources == * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = Square Root/Examples/10|next = Number of Binary Digits in Power of 10}}: $3 \\cdotp 321 \\, 928 \\ldots$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = Square Root/Examples/10|next = Number of Binary Digits in Power of 10}}: $3 \\cdotp 32192 \\, 8 \\ldots$ Category:Examples of Binary Logarithms 9g9r9j5lxwxupvxo71z87icnax3idki"}
+{"_id": "32679", "title": "Bound for Analytic Function and Derivatives", "text": "Bound for Analytic Function and Derivatives 0 51357 435939 435768 2019-11-21T10:51:19Z Ivar Sand 2302 Refactor template removed wikitext text/x-wiki == Lemma == Let $f$ be a complex function. Let $z_0$ be a point in $\\C$. Let $r$ be a real number in $\\R_{>0}$. Let $\\Gamma$ be a circle in $\\C$ with center at $z_0$ and radius $r$. Let $f$ be analytic on $\\Gamma$ and its interior. Let $t \\in \\C$ be such that $\\cmod {t - z_0} < r$. Then a real number $M$ exists such that, for every $n \\in \\N$: :$\\displaystyle \\cmod {\\map {f^{\\paren n} } t} \\le \\frac {M r \\, n!} {\\paren {r - \\cmod {t - z_0} }^\\paren {n + 1} }$ == Proof == === Lemma (Analytic Function Bounded on Circle) === {{:Bound for Analytic Function and Derivatives/Analytic Function Bounded on Circle}}{{qed|lemma}} We have: :$f$ is analytic on $\\Gamma$ and its interior :$t$ is in the interior of $\\Gamma$ Therefore: :$\\displaystyle \\map {f^{\\paren n} } t = \\frac {n!} {2 \\pi i} \\int_\\Gamma \\frac {\\map f z} {\\paren {z - t}^{\\paren {n + 1} } } \\rd z$ by Cauchy's Integral Formula for Derivatives where $\\Gamma$ is traversed counterclockwise. We have that $f$ is bounded on $\\Gamma$ by Lemma (Analytic Function Bounded on Circle). Therefore, there is a positive real number $M$ that satisfies: :$M \\ge \\cmod {\\map f z}$ for every $z$ on $\\Gamma$ We have $\\cmod {t - z_0} < r$. Therefore: :$0 < r - \\cmod {t - z_0}$ We observe that $r - \\cmod {t - z_0}$ is the minimum distance between $t$ and $\\Gamma$. Therefore: :$\\paren {r - \\cmod {t - z_0} } \\le \\cmod {z - t}$ for every $z$ on $\\Gamma$ We get: {{begin-eqn}} {{eqn | l = \\cmod {\\map {f^{\\paren n} } t} | r = \\cmod {\\frac {n!} {2 \\pi i} \\int_\\Gamma \\frac {\\map f z} {\\paren {z - t}^{\\paren {n + 1} } } \\rd z} }} {{eqn | o = \\le | r = \\frac {n!} {2 \\pi} \\int_\\Gamma \\frac {\\cmod {\\map f z} } {\\cmod {z - t}^{\\paren {n + 1} } } \\cmod {\\d z} }} {{eqn | o = \\le | r = \\frac {n!} {2 \\pi} \\int_\\Gamma \\frac M {\\cmod {z - t}^{\\paren {n + 1} } } \\cmod {\\d z} | c = as $M \\ge \\cmod {\\map f z}$ for every $z$ on $\\Gamma$ }} {{eqn | o = \\le | r = \\frac {n!} {2 \\pi} \\int_\\Gamma \\frac M {\\paren {r - \\cmod {t - z_0} }^{\\paren {n + 1} } } \\cmod {\\d z} | c = as $0 < \\paren {r - \\cmod {t - z_0} } \\le \\cmod {z - t}$ for every $z$ on $\\Gamma$ }} {{eqn | r = \\frac {n!} {2 \\pi} \\frac M {\\paren {r - \\cmod {t - z_0} }^{\\paren {n + 1} } } \\int_\\Gamma \\cmod {\\d z} }} {{eqn | r = \\frac {n!} {2 \\pi} \\frac M {\\paren {r - \\cmod {t - z_0} }^{\\paren {n + 1} } } 2 \\pi r }} {{eqn | r = \\frac {M r \\, n!} {\\paren {r - \\cmod {t - z_0} }^{\\paren {n + 1} } } }} {{end-eqn}} {{qed}} {{explain|The notation $\\cmod {\\d z}$ has not been raised before on {{ProofWiki}} -- we need to do something about that}} Category:Complex Analysis kfj9fmwm0855gzst2c2sez0pfyzc49o"}
+{"_id": "32680", "title": "Pythagorean Triangle/Examples/3-4-5", "text": "Pythagorean Triangle/Examples/3-4-5 0 51433 478808 478785 2020-07-18T13:12:02Z Prime.mover 59 wikitext text/x-wiki == Example of Primitive Pythagorean Triangle == The triangle whose sides are of length $3$, $4$ and $5$ is a primitive Pythagorean triangle. :300px == Proof == {{begin-eqn}} {{eqn | l = 3^2 + 4^2 | r = 9 + 16 | c = }} {{eqn | r = 25 | c = }} {{eqn | r = 5^2 | c = }} {{end-eqn}} It follows by Pythagoras's Theorem that $3$, $4$ and $5$ form a Pythagorean triple. Note that $3$ and $4$ are coprime. Hence, by definition, $3$, $4$ and $5$ form a primitive Pythagorean triple. The result follows by definition of a primitive Pythagorean triangle. {{qed}} == Also see == * Smallest Pythagorean Triangle is 3-4-5 * Pythagorean Triangle whose Area is Half Perimeter: its area and semiperimeter are both $6$ * Pythagorean Triangle with Sides in Arithmetic Sequence == Historical Note == {{:Pythagorean Triangle/Examples/3-4-5/Historical Note}} == Sources == * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = Definition:Pythagorean Triangle|next = Pythagoras's Theorem}}: $5$ * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = 6/Historical Note|next = Definition:Perfect Number}}: $6$ * {{BookReference|Curious and Interesting Puzzles|1992|David Wells|prev = Definition:Pythagorean Triple|next = Babylonian Mathematics/Examples/Sliding Ladder}}: Pythagorean Triples * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = Definition:Pythagorean Triangle|next = Pythagoras's Theorem}}: $5$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = 6/Historical Note|next = Definition:Perfect Number}}: $6$ Category:Examples of Pythagorean Triangles lwzjl2zodgtbfkortdr19jog0vbvdmh"}
+{"_id": "32681", "title": "Volume of Unit Hypersphere/Sequence", "text": "Volume of Unit Hypersphere/Sequence 0 51628 381091 276914 2018-12-10T23:29:46Z Prime.mover 59 wikitext text/x-wiki == Sequence of Volumes of Unit Hyperspheres == The sequence of volumes of the unit sphere in $n$-dimensional space begins as follows: {{begin-eqn}} {{eqn | l = n = 1 | o = : | r = \\map V 1 = 2 }} {{eqn | l = n = 2 | o = : | r = \\map V 2 = 3.1 }} {{eqn | l = n = 3 | o = : | r = \\map V 3 = 4.2 }} {{eqn | l = n = 4 | o = : | r = \\map V 4 = 4.9 }} {{eqn | l = n = 5 | o = : | r = \\map V 5 = 5.264 }} {{eqn | l = n = 6 | o = : | r = \\map V 6 = 5.2 }} {{eqn | l = n = 7 | o = : | r = \\map V 7 = 4.7 }} {{end-eqn}} == Sources == * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = Maximum Volume of Unit Radius Sphere in Fractional Dimensions|next = 6}}: $5 \\cdotp 256 \\, 946 \\, 404 \\, 860 \\ldots$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = Maximum Volume of Unit Radius Sphere in Fractional Dimensions|next = 6}}: $5 \\cdotp 25694 \\, 64048 \\, 60 \\ldots$ Category:Spheres 2132urzjbd5jd3ru1q589926yp8zeyw"}
+{"_id": "32682", "title": "Complex Power by Complex Exponential is Analytic", "text": "Complex Power by Complex Exponential is Analytic 0 51901 405960 353765 2019-05-30T07:10:27Z Prime.mover 59 wikitext text/x-wiki == Lemma == Let $\\psi, \\eta \\in \\C$ be constant. Let $\\map f z = z^\\psi \\, \\map \\exp {-\\eta z}$, where: :$z^\\psi$ denotes $z$ to the power of $\\psi$, defined on its principal branch :$\\map \\exp {-\\eta z}$ denotes the complex exponential function. Then $f$ is analytic on any simply connected domain that does not contain the origin nor any points on the negative real axis. == Proof == Let $z$ be written in exponential form: :$z = r \\map \\exp {i \\theta}$ where: :$r > 0$ :$\\theta \\in \\hointl {-\\pi} \\pi$ Let $\\psi = a + i b, \\eta = c + i d$. By the definition of $f$: {{begin-eqn}} {{eqn | l = \\map f {r \\, \\map \\exp {i \\theta} } | r = z^\\psi \\, \\map \\exp {-\\eta z} }} {{eqn | r = \\paren {r e^{i \\theta} }^\\psi \\, \\map \\exp {-\\eta r \\, \\map \\exp {i \\theta} } }} {{eqn | r = \\map \\exp {\\psi \\, \\map \\Log {r \\, \\map \\exp {i \\theta} } } \\, \\map \\exp {-\\eta r \\paren {\\cos \\theta + i \\sin \\theta} } }} {{eqn | r = \\map \\exp {\\psi \\ln r + i \\psi \\theta - \\eta r \\cos \\theta - i \\eta r \\sin \\theta} }} {{eqn | r = \\map \\exp {\\paren {a + i b} \\ln r + i \\paren {a + i b} \\theta - \\paren {c + i d} r \\cos \\theta - i \\paren {c + i d} r \\sin \\theta} }} {{eqn | r = \\map \\exp {a \\ln r + i b \\ln r + i a \\theta - b \\theta - c r \\cos \\theta - i d r \\cos \\theta - i c r \\sin \\theta + d r \\sin \\theta} }} {{eqn | r = \\map \\exp {a \\ln r - b \\theta - c r \\cos \\theta + d r \\sin \\theta} \\, \\map \\exp {i \\paren {b \\ln r + a \\theta - d r \\cos \\theta - c r \\sin \\theta} } }} {{end-eqn}} Define: {{begin-eqn}} {{eqn | l = \\map g {r, \\theta} | r = a \\ln r - b \\theta - c r \\cos \\theta + d r \\sin \\theta }} {{eqn | l = \\map h {r, \\theta} | r = b \\ln r + a \\theta - d r \\cos \\theta - c r \\sin \\theta }} {{end-eqn}} Then: {{begin-eqn}} {{eqn | l = \\map f {r \\, \\map \\exp {i \\theta} } | r = \\map \\exp g \\, \\map \\exp {i h} }} {{eqn | r = \\map \\exp g \\, \\map \\cos h + i \\map \\exp g \\, \\map \\sin h }} {{end-eqn}} Define: {{begin-eqn}} {{eqn | l = \\map u {r, \\theta} | r = \\map \\exp g \\, \\map \\cos h }} {{eqn | l = \\map v {r, \\theta} | r = \\map \\exp g \\, \\map \\sin h }} {{end-eqn}} Then: {{begin-eqn}} {{eqn | l = \\map f {r \\, \\map \\exp {i \\theta } } | r = u + iv }} {{end-eqn}} We check the Polar Form of Cauchy-Riemann Equations. As a preliminary: {{begin-eqn}} {{eqn | l = \\frac {\\partial g} {\\partial r} | r = \\frac a r - c \\cos \\theta + d \\sin \\theta }} {{eqn | l = \\frac {\\partial h} {\\partial r} | r = \\frac b r - d \\cos \\theta - \\sin \\theta }} {{eqn | l = \\frac {\\partial g} {\\partial \\theta} | r = -b + c r \\sin \\theta + d r \\cos \\theta }} {{eqn | l = \\frac {\\partial h} {\\partial \\theta} | r = a + d r \\sin \\theta - c r \\cos \\theta }} {{end-eqn}} Then: {{begin-eqn}} {{eqn | l = \\frac {\\partial u} {\\partial r} | r = \\map \\exp g \\frac {\\partial g} {\\partial r} \\map \\cos h - \\map \\exp g \\, \\map \\sin f \\frac {\\partial h} {\\partial r} }} {{eqn | r = \\frac 1 r \\map \\exp g \\paren {\\paren {a - r c \\cos \\theta + r d \\sin \\theta} \\, \\map \\cos h + \\map \\sin h \\paren {- b + r d \\cos \\theta + r c \\sin \\theta} } }} {{eqn | r = \\frac 1 r \\map \\exp g \\paren {\\frac {\\partial h} {\\partial \\theta} \\map \\cos h + \\, \\map \\sin h \\frac {\\partial g} {\\partial \\theta} } }} {{eqn | r = \\frac 1 r \\frac {\\partial v} {\\partial \\theta} }} {{eqn | l = \\frac {\\partial u} {\\partial \\theta} | r = \\map \\exp g \\frac {\\partial g} {\\partial \\theta} \\, \\map \\cos h - \\map \\exp g \\, \\map \\sin h \\frac {\\partial h} {\\partial \\theta} }} {{eqn | r = -r \\, \\map \\exp g \\paren {\\paren {\\frac b r - c \\sin \\theta - d \\cos \\theta} \\, \\map \\cos h + \\map \\sin h \\paren {\\frac a r + d \\sin \\theta - c \\cos \\theta} } | c = Sine Function is Odd }} {{eqn | r = -r \\, \\map \\exp g \\paren {\\frac {\\partial h} {\\partial r} \\, \\map \\cos h + \\map \\sin h \\frac {\\partial g} {\\partial r} } }} {{eqn | r = -r \\frac {\\partial v} {\\partial r} }} {{end-eqn}} {{qed}} Category:Complex Analysis oaqckgvsft6v52oxrbqf9p5bjzs3sz8"}
+{"_id": "32683", "title": "X to the x is not of Exponential Order/Lemma", "text": "X to the x is not of Exponential Order/Lemma 0 52223 357277 357276 2018-05-27T05:21:45Z Prime.mover 59 wikitext text/x-wiki == Lemma == Let $f: \\R \\to \\R$ be defined on $\\left [{0 \\,.\\,.\\, \\to} \\right)$ with $f \\left({x}\\right) = x^x$. Suppose there exist strictly positive real constants $M, K, a \\in \\R_{> 0}$ such that: :$\\forall t \\ge M: \\left\\vert {f \\left({t}\\right)} \\right \\vert < K e^{a t}$ Then there exists a constant $C$ such that: :$\\forall t > C: \\left\\vert {f \\left({t}\\right)} \\right \\vert > K e^{a t}$ == Proof == By the definition of power: :$f \\left({t}\\right) = \\exp \\left({t \\ln t}\\right)$ By Exponential of Real Number is Strictly Positive, we can reduce the lemma into the existence of $C$ such that: :$\\forall t > C: f \\left({t}\\right) > K e^{a t}$ We will divide into two cases. === Case 1: $K > 1$ === Assume that $t > K e^a$. {{begin-eqn}} {{eqn | l = a | o = > | r = 0 | c = }} {{eqn | l = e^a | o = > | r = e^0 | c = Exponential is Strictly Increasing }} {{eqn | l = e^a | o = > | r = 1 | c = Exponential of Zero }} {{eqn | l = K e^a | o = > | r = 1 | c = As $K > 1$ }} {{eqn | l = t | o = > | r = 1 | c = As $t > K e^a$ }} {{eqn | n = 1 | l = t \\ln K | o = > | r = \\ln K | c = }} {{eqn | l = t | o = > | r = K e^a | c = Assumption }} {{eqn | l = \\ln t | o = > | r = \\ln \\left({K e^a}\\right) | c = Logarithm is Strictly Increasing }} {{eqn | l = \\ln t | o = > | r = a + \\ln K | c = }} {{eqn | l = t \\ln t | o = > | r = a t + t \\ln K | c = }} {{eqn | l = t \\ln t | o = > | r = a t + \\ln K | c = from $(1)$ }} {{eqn | l = \\exp \\left({t \\ln t}\\right) | o = > | r = \\exp \\left({a t + \\ln K}\\right) | c = Exponential is Strictly Increasing }} {{eqn | l = f \\left({t}\\right) | o = > | r = K e^{a t} | c = Exponential is Strictly Increasing }} {{end-eqn}} Here, $C = K e^a$. === Case 2: $K \\le 1$ === Assume that $t > e^a$. {{begin-eqn}} {{eqn | l = \\ln K | o = \\le | r = \\ln 1 | c = Logarithm is Strictly Increasing }} {{eqn | n = 1 | l = \\ln K | o = \\le | r = 0 | c = Logarithm of 1 is 0 }} {{eqn | l = t | o = > | r = e^a | c = by assumption }} {{eqn | l = \\ln t | o = > | r = a | c = Logarithm is Strictly Increasing }} {{eqn | l = t \\ln t | o = > | r = a t | c = }} {{eqn | l = t \\ln t | o = > | r = a t + \\ln k | c = from $(1)$ }} {{eqn | l = \\exp \\left({t \\ln t}\\right) | o = > | r = \\exp \\left({a t + \\ln K}\\right) | c = Exponential is Strictly Increasing }} {{eqn | l = f \\left({t}\\right) | o = > | r = K e^{a t} | c = Exponential is Strictly Increasing }} {{end-eqn}} Here, $C = e^a$. {{qed}} Category:Exponential Order tnwa4ejjlezlzh9pfl6um4dtvf4c64u"}
+{"_id": "32684", "title": "Schanuel's Conjecture", "text": "Schanuel's Conjecture 0 52233 440312 353764 2019-12-20T13:58:41Z Prime.mover 59 wikitext text/x-wiki == Conjecture == Let $z_1, \\cdots, z_n$ be complex numbers that are linearly independent over the rational numbers $\\Q$. Then: :the extension field $\\map \\Q {z_1, \\cdots, z_n, e^{z_1}, \\cdots, e^{z_n} }$ has transcendence degree at least $n$ over $\\Q$ where $e^z$ is the complex exponential of $z$. {{Namedfor|Stephen Hoel Schanuel|cat = Schanuel}} Category:Transcendental Number Theory Category:Unproven Hypotheses Category:Schanuel's Conjecture aw8yqn1akkivluwqxl046e7ci2s6qy4"}
+{"_id": "32685", "title": "Characterization of Cosine Integral Function", "text": "Characterization of Cosine Integral Function 0 52237 417225 405915 2019-08-08T14:18:35Z Caliburn 3218 wikitext text/x-wiki == Definition == Let $\\Ci: \\R_{>0}: \\R$ denote the cosine integral function: :$\\map \\Ci x = \\displaystyle \\int_{t \\mathop = x}^{t \\mathop \\to +\\infty} \\frac {\\cos t} t \\rd t$ Then: :$\\map \\Ci x = -\\gamma - \\ln x + \\displaystyle \\int_{t \\mathop \\to 0}^{t \\mathop = x} \\frac{1 - \\cos t} t \\rd t$ where $\\gamma$ is the Euler-Macheroni constant. == Proof == {{proof wanted|Laplace transform to the one, then invert to the other?}} == Sources == * {{BookReference|Mathematical Handbook of Formulas and Tables|1968|Murray R. Spiegel|prev = Definition:Cosine Integral Function|next = Power Series Expansion for Cosine Integral Function plus Logarithm}}: $\\S 35$: Miscellaneous Special Functions: Cosine Integral: $35.14$ * {{MathWorld|Cosine Integral|CosineIntegral}} Category:Cosine Integral Function py644aus0b491ucur1l08l2rlwh2zqg"}
+{"_id": "32686", "title": "Sum of Terms of Magic Square/Sequence", "text": "Sum of Terms of Magic Square/Sequence 0 52261 433514 382814 2019-11-01T14:01:42Z Prime.mover 59 wikitext text/x-wiki == Sequence of Sums of Terms of Magic Squares == The sequence of the sum totals of all the entries in magic squares of order $n$ begins: :$1, \\paren {10,} \\, 45, 136, 325, 666, 1225, 2080, 3321, 5050, 7381, 10 \\, 440, 14 \\, 365, 19 \\, 306, 25 \\, 425, 32 \\, 896, \\ldots$ However, note that while $10 = \\dfrac {2^2 \\paren {2^2 + 1} } 2$, a magic square of order $2$ does not actually exist. {{OEIS|A037270}} Category:Magic Squares oqru1w4drzmzya0javj3gt9qjay04bc"}
+{"_id": "32687", "title": "Magic Constant of Magic Square/Sequence", "text": "Magic Constant of Magic Square/Sequence 0 52274 433416 382848 2019-11-01T12:58:36Z Prime.mover 59 wikitext text/x-wiki == Sequence of Magic Constants of Magic Squares == The sequence of the magic constants of magic squares of order $n$ begins: :$1, (5,) \\, 15, 34, 65, 111, 175, 260, 369, 505, 671, 870, 1105, 1379, 1695, 2056, 2465, 2925, 3439, \\ldots$ However, note that while $5 = \\dfrac {2 \\paren {2^2 + 1} } 2$, a magic square of order $2$ does not actually exist. {{OEIS|A006003}} Category:Magic Squares b0xwscvu10axivs1fnjg6ulrk1283ei"}
+{"_id": "32688", "title": "Schanuel's Conjecture Implies Transcendence of Pi to the power of Euler's Number/Lemma", "text": "Schanuel's Conjecture Implies Transcendence of Pi to the power of Euler's Number/Lemma 0 52293 442788 363086 2020-01-07T13:01:25Z Prime.mover 59 wikitext text/x-wiki == Lemma == Let Schanuel's Conjecture be true. Let $z_1 = \\ln \\ln \\pi$, $z_2 = 1 + \\ln \\ln \\pi$, $z_3 = \\ln \\pi$, $z_4 = e \\ln \\pi$, and $z_5 = i \\pi$. Then, $z_1$, $z_2$, $z_3$, $z_4$, and $z_5$ are linearly independent over the rational numbers $\\Q$. == Proof == Assume the truth of Schanuel's Conjecture. Now, we will prove that $z_1$ and $z_3$ are linearly independent over the rational numbers $\\Q$. Equivalently, they are linearly independent over the integers $\\Z$. Let $a, b \\in \\Z$ such that: :$a z_1 + b z_3 = 0$ Substituting: :$a \\ln \\ln \\pi + b \\ln \\pi = 0$ Applying the exponential function to both sides: :$\\paren {\\ln \\pi}^a \\pi^b = 1$ By Schanuel's Conjecture Implies Algebraic Independence of Pi and Log of Pi over the Rationals, the above equation only has solution when $a = b = 0$. Thus, $z_1$ and $z_3$ are linearly independent over the rational numbers $\\Q$. Since $z_5$ is wholly imaginary, $z_1$, $z_3$, and $z_5$ are linearly independent over the rational numbers $\\Q$. By Schanuel's Conjecture, the extension field $\\map \\Q {z_1, z_3, z_5, e^{z_1}, e^{z_3}, e^{z_5} }$ has transcendence degree at least $3$ over the rational numbers $\\Q$. That is, the extension field $\\map \\Q {\\ln \\ln \\pi, \\ln \\pi, i \\pi, \\ln \\pi, \\pi, e^{i \\pi} }$ has transcendence degree at least $3$ over $\\Q$. However, by Euler's Identity, $e^{i \\pi} = -1$ is algebraic. Also, $\\pi$ and $i \\pi$ are not algebraically independent over $\\Q$. Therefore, $\\ln \\ln \\pi$, $\\ln \\pi$, and $i \\pi$ must be algebraically independent over $\\Q$. That is, $z_1$, $z_3$, and $z_5$ must be algebraically independent over rational numbers $\\Q$. It follows that $z_1$, $z_3$, $z_5$, and $1$ are linearly independent over the rational numbers $\\Q$. By Schanuel's Conjecture, the extension field $\\map \\Q {z_1, z_3, z_5, 1, e^{z_1}, e^{z_3}, e^{z_5}, e}$ has transcendence degree at least $4$ over the rational numbers $\\Q$. That is, the extension field $\\map \\Q {\\ln \\ln \\pi, \\ln \\pi, i \\pi, 1, \\ln \\pi, \\pi, e^{i \\pi}, e}$ has transcendence degree at least $4$ over $\\Q$. However, $1$ is algebraic. Moreover, by Euler's Identity, $e^{i \\pi} = -1$ is algebraic. Also, $\\pi$ and $i \\pi$ are not algebraically independent over $\\Q$. Therefore, $\\ln \\ln \\pi$, $\\ln \\pi$, $i \\pi$, and $e$ must be algebraically independent over $\\Q$. That is, $z_1$, $z_3$, $z_5$, and $e$ must be algebraically independent over rational numbers $\\Q$. It follows that $z_1$, $z_3$, $e z_3$, and $z_5$ must be algebraically independent over rational numbers $\\Q$. That is, $z_1$, $z_3$, $z_4$, and $z_5$ must be algebraically independent over $\\Q$. Therefore, $z_1$, $1$, $z_3$, $z_4$, and $z_5$ must be linearly independent over $\\Q$. Hence, $z_1$, $1 + z_1$, $z_3$, $z_4$, and $z_5$ must be linearly independent over $\\Q$. That is, if Schanuel's Conjecture holds, then $z_1$, $z_2$, $z_3$, $z_4$, and $z_5$ are linearly independent over the rational numbers $\\Q$. {{qed|lemma}} Category:Transcendental Numbers Category:Logarithms Category:Pi Category:Euler's Number Category:Schanuel's Conjecture bx4wk4y7r4gw7tfasu9nwmzru2ii363"}
+{"_id": "32689", "title": "Schanuel's Conjecture Implies Transcendence of 2 to the power of Euler's Number/Lemma", "text": "Schanuel's Conjecture Implies Transcendence of 2 to the power of Euler's Number/Lemma 0 52294 353794 280546 2018-05-04T18:15:23Z Prime.mover 59 wikitext text/x-wiki {{MissingLinks|or rather, correct the existing links}} == Lemma == Let: :$z_1 = \\ln \\ln 2$ :$z_2 = 1 + \\ln \\ln 2$ :$z_3 = \\ln 2$ :$z_4 = e \\ln 2$ Let Schanuel's Conjecture be true. Then $z_1$, $z_2$, $z_3$ and $z_4$ are linearly independent over the rational numbers $\\Q$. == Proof == Assume the truth of Schanuel's Conjecture. $2$ is algebraic. Hence, by the Corollary of the weaker Hermite-Lindemann-Weierstrass theorem, $\\ln 2$ is transcendental. Now, we will prove that $z_1$ and $z_3$ are linearly independent over the rational numbers $\\Q$. Equivalently, by Linearly Independent over the Rational Numbers iff Linearly Independent over the Integers, they are linearly independent over the integers $\\Z$. Let $a, b \\in \\Z$ such that: :$a z_1 + b z_3 = 0$ Substituting: :$a \\ln \\ln 2 + b \\ln 2 = 0$ Applying the exponential function to both sides: :$\\left({\\ln 2}\\right)^a 2^b = 1$ Since $\\ln 2$ is transcendental, the above equation only has solution when $a = b = 0$. Thus, $z_1$ and $z_3$ are linearly independent over the rational numbers $\\Q$. By Schanuel's Conjecture, the extension field $\\Q \\left({z_1, z_3, e^{z_1}, e^{z_3}}\\right)$ has transcendence degree at least $2$ over the rational numbers $\\Q$. That is, the extension field $\\Q \\left({\\ln \\ln 2, \\ln 2, \\ln 2, 2}\\right)$ has transcendence degree at least $2$ over $\\Q$. However, $2$ is algebraic. Therefore, $\\ln \\ln 2$ and $\\ln 2$ must be algebraically independent over $\\Q$. That is, $z_1$, $z_3$ must be algebraically independent over rational numbers $\\Q$. It follows that $z_1$, $z_3$, and $1$ are linearly independent over the rational numbers $\\Q$. By Schanuel's Conjecture, the extension field $\\Q \\left({z_1, z_3, 1, e^{z_1}, e^{z_3}, e}\\right)$ has transcendence degree at least $3$ over the rational numbers $\\Q$. That is, the extension field $\\Q \\left({\\ln \\ln 2, \\ln 2, 1, \\ln 2, 2, e}\\right)$ has transcendence degree at least $3$ over $\\Q$. However, $1$ and $2$ are algebraic. Therefore, $\\ln \\ln 2$, $\\ln 2$, $e$ must be algebraically independent over $\\Q$. That is, $z_1$, $z_3$, and $e$ must be algebraically independent over rational numbers $\\Q$. It follows that $z_1$, $z_3$, $e z_3$ must be algebraically independent over rational numbers $\\Q$. That is, $z_1$, $z_3$, $z_4$ must be algebraically independent over $\\Q$. Therefore, $z_1$, $1$, $z_3$, $z_4$ must be linearly independent over $\\Q$. Hence, $z_1$, $1 + z_1$, $z_3$, $z_4$ must be linearly independent over $\\Q$. That is, if Schanuel's Conjecture holds, then $z_1$, $z_2$, $z_3$, $z_4$ are linearly independent over the rational numbers $\\Q$. {{qed|lemma}} Category:Transcendental Numbers Category:2 Category:Euler's Number Category:Schanuel's Conjecture bafqcvc586o7i7lkv4u9rm9xwz2e8sp"}
+{"_id": "32690", "title": "Divisor Counting Function/Examples/12", "text": "Divisor Counting Function/Examples/12 0 52622 451779 292229 2020-03-02T09:43:28Z Prime.mover 59 Prime.mover moved page Tau Function/Examples/12 to Divisor Counting Function/Examples/12 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({12}\\right) = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$12 = 2^2 \\times 3$ Thus: :$\\tau \\left({12}\\right) = \\tau \\left({2^2 \\times 3^1}\\right) = \\left({2 + 1}\\right) \\left({1 + 1}\\right) = 6$ The divisors of $12$ can be enumerated as: :$1, 2, 3, 4, 6, 12$ {{qed}} Category:Tau Function Category:12 hhyg9izsflqs51fkdhzqv7zjj2p2zhl"}
+{"_id": "32691", "title": "Differential of Differentiable Functional is Unique/Lemma", "text": "Differential of Differentiable Functional is Unique/Lemma 0 52631 282479 282477 2017-01-17T23:18:53Z Prime.mover 59 wikitext text/x-wiki {{MissingLinks}} == Lemma == Let $\\phi \\left[{y; h}\\right]$ be a linear functional w.r.t. $h$. Let: :$\\displaystyle \\lim_{\\left \\vert{h}\\right\\vert \\to 0} \\frac {\\phi \\left[{y; h}\\right]} {\\left\\vert{h}\\right\\vert} = 0$ Then : :$\\phi \\left[{y; h}\\right] = 0$ == Proof == This will be a proof by contradiction. {{AimForCont}} there exists a linear functional satisfying $\\phi \\left[{y; h_0}\\right] \\ne 0$ for some $h_0 \\ne 0$. Also suppose: :$\\displaystyle \\lim_{\\left \\vert{h_0}\\right\\vert \\to 0} \\frac{\\phi \\left[{y; h_0}\\right]} {\\left\\vert{h_0}\\right\\vert} = 0$ Now, define: :$h_n = \\dfrac {h_0} n$ and: :$m = \\dfrac{\\phi \\left[{y; h_0}\\right]} {\\left\\vert{h_0}\\right\\vert}$ Notice that $\\left\\vert{h_n}\\right\\vert \\to 0$ as $n \\to \\infty$. Hence, from the assumption of the limit it should hold that: :$\\displaystyle \\lim_{n \\to \\infty} \\frac{\\phi \\left[{y; h_n}\\right]}{\\left\\vert{h_n}\\right\\vert} = \\lim_{\\left\\vert{h_n}\\right\\vert \\to 0} \\frac{ \\left[{y; h_n}\\right]} {\\left\\vert{h_n}\\right\\vert} = 0$ However, using the linearity of $\\phi \\left[{y; h_0}\\right]$ w.r.t. $h_0$: {{begin-eqn}} {{eqn | l = \\lim_{n \\to \\infty} \\frac {\\phi \\left[{y; h_n}\\right]} {\\left\\vert{h_n}\\right\\vert} | r = \\lim_{n \\to \\infty} \\frac {\\phi \\left[{y; \\frac {h_0} n}\\right]} { \\left\\vert{\\frac {h_0} n}\\right\\vert} | c = Definition of $h_n$ }} {{eqn | r = \\lim_{n \\to \\infty} \\frac {n \\, \\phi \\left[{y; h_0}\\right]} {n \\, \\left\\vert{h_0}\\right\\vert} | c = extract of $n$ through linearity }} {{eqn | r = \\lim_{n \\to \\infty} \\frac {\\phi \\left[{y; h_0}\\right]} {\\left\\vert{h_0}\\right\\vert} | c = cancel $n$ }} {{eqn | r = \\frac {\\phi \\left[{y; h_0}\\right]} {\\left\\vert{h_0}\\right\\vert} | c = the limit does not depend on $n$ }} {{eqn | r = m | c = definition of $m$ }} {{end-eqn}} However, by hypothesis: : $m \\ne 0$ Hence, the contradiction is achieved and the initial statement of the lemma holds. {{qed}} == Sources == * {{BookReference|Calculus of Variations|1963|I.M. Gelfand|author2 = S.V. Fomin}}: $\\S 1.3$: The Variation of a Functional. A Necessary Condition for an Extremum Category:Calculus of Variations 818us82q2tkfdakeemo573ft46fcnqt"}
+{"_id": "32692", "title": "Continued Fraction Expansion of Irrational Square Root/Examples/13", "text": "Continued Fraction Expansion of Irrational Square Root/Examples/13 0 52897 470666 470627 2020-05-26T07:57:26Z Prime.mover 59 wikitext text/x-wiki == Example of Continued Fraction Expansion of Irrational Square Root == The continued fraction expansion of the square root of $13$ is given by: :$\\sqrt {13} = \\sqbrk {3, \\sequence {1, 1, 1, 1, 6} }$ {{OEIS|A010122}} === Convergents === {{:Continued Fraction Expansion of Irrational Square Root/Examples/13/Convergents}} == Proof == Let $\\sqrt {13} = \\sqbrk {a_0, a_1, a_2, a_3, \\ldots}$ From Partial Quotients of Continued Fraction Expansion of Irrational Square Root, the partial quotients of this continued fraction expansion can be calculated as: :$a_r = \\floor {\\dfrac {\\floor {\\sqrt {13} } + P_r} {Q_r} }$ where: :$P_r = \\begin {cases} 0 & : r = 0 \\\\ a_{r - 1} Q_{r - 1} - P_{r - 1} & : r > 0 \\\\ \\end {cases}$ :$Q_r = \\begin {cases} 1 & : r = 0 \\\\ \\dfrac {n - {P_r}^2} {Q_{r - 1} } & : r > 0 \\\\ \\end {cases}$ {{PartialQuotientCalculator-Start | n = 13}} {{PartialQuotientCalculator | n = 13 | r = 1 | ar-1 = 3 | Qr-1 = 1 | Pr-1 = 0}} {{PartialQuotientCalculator | n = 13 | r = 2 | ar-1 = 1 | Qr-1 = 4 | Pr-1 = 3}} {{PartialQuotientCalculator | n = 13 | r = 3 | ar-1 = 1 | Qr-1 = 3 | Pr-1 = 1}} {{PartialQuotientCalculator | n = 13 | r = 4 | ar-1 = 1 | Qr-1 = 3 | Pr-1 = 2}} {{PartialQuotientCalculator | n = 13 | r = 5 | ar-1 = 1 | Qr-1 = 4 | Pr-1 = 1}} |} and the cycle is complete: :$\\sequence {1, 1, 1, 1, 6}$ {{qed}} Category:Examples of Continued Fractions Category:13 7armlnz95rqtjn6vf9wz1v5rpx5spzv"}
+{"_id": "32693", "title": "Continued Fraction Expansion of Irrational Square Root/Examples/29", "text": "Continued Fraction Expansion of Irrational Square Root/Examples/29 0 52898 470654 470633 2020-05-26T06:45:22Z Prime.mover 59 wikitext text/x-wiki == Examples of Continued Fraction Expansion of Irrational Square Root == The continued fraction expansion of the square root of $29$ is given by: :$\\sqrt {29} = \\sqbrk {5, \\sequence {2, 1, 1, 2, 10} }$ {{OEIS|A010128}} === Convergents === {{:Continued Fraction Expansion of Irrational Square Root/Examples/29/Convergents}} == Proof == Let $\\sqrt {29} = \\sqbrk {a_0, a_1, a_2, a_3, \\ldots}$ From Partial Quotients of Continued Fraction Expansion of Irrational Square Root, the partial quotients of this continued fraction expansion can be calculated as: :$a_r = \\floor {\\dfrac {\\floor {\\sqrt {29} } + P_r} {Q_r} }$ where: :$P_r = \\begin {cases} 0 & : r = 0 \\\\ a_{r - 1} Q_{r - 1} - P_{r - 1} & : r > 0 \\\\ \\end {cases}$ :$Q_r = \\begin {cases} 1 & : r = 0 \\\\ \\dfrac {n - {P_r}^2} {Q_{r - 1} } & : r > 0 \\\\ \\end {cases}$ {{PartialQuotientCalculator-Start | n = 29}} {{PartialQuotientCalculator | n = 29 | r = 1 | ar-1 = 5 | Qr-1 = 1 | Pr-1 = 0}} {{PartialQuotientCalculator | n = 29 | r = 2 | ar-1 = 2 | Qr-1 = 4 | Pr-1 = 5}} {{PartialQuotientCalculator | n = 29 | r = 3 | ar-1 = 1 | Qr-1 = 5 | Pr-1 = 3}} {{PartialQuotientCalculator | n = 29 | r = 4 | ar-1 = 1 | Qr-1 = 5 | Pr-1 = 2}} {{PartialQuotientCalculator | n = 29 | r = 5 | ar-1 = 2 | Qr-1 = 4 | Pr-1 = 3}} |} and the cycle is complete: :$\\sequence {2, 1, 1, 2, 10}$ {{qed}} Category:Examples of Continued Fractions Category:29 876zglxnx6xicqdyytjb2cwqplr12yr"}
+{"_id": "32694", "title": "Continued Fraction Expansion of Irrational Square Root/Examples/13/Convergents", "text": "Continued Fraction Expansion of Irrational Square Root/Examples/13/Convergents 0 52899 470657 470629 2020-05-26T06:50:08Z Prime.mover 59 wikitext text/x-wiki == Convergents to Continued Fraction Expansion of $\\sqrt {13}$ == The sequence of convergents to the continued fraction expansion of the square root of $13$ begins: :$\\dfrac 3 1, \\dfrac 4 1, \\dfrac 7 2, \\dfrac {11} 3, \\dfrac {18} 5, \\dfrac {119} {33}, \\dfrac {137} {38}, \\dfrac {256} {71}, \\dfrac {393} {109}, \\dfrac {649} {180}, \\ldots$ {{OEIS-Numerators|A041018}} {{OEIS-Denominators|A041019}} == Proof == Let $\\sqbrk {a_0, a_1, a_2, \\ldots}$ be its continued fraction expansion. Let $\\sequence {p_n}_{n \\mathop \\ge 0}$ and $\\sequence {q_n}_{n \\mathop \\ge 0}$ be its numerators and denominators. Then the $n$th convergent is $\\dfrac {p_n} {q_n}$. By definition: :$p_k = \\begin {cases} a_0 & : k = 0 \\\\ a_0 a_1 + 1 & : k = 1 \\\\ a_k p_{k - 1} + p_{k - 2} & : k > 1 \\end {cases}$ :$q_k = \\begin {cases} 1 & : k = 0 \\\\ a_1 & : k = 1 \\\\ a_k q_{k - 1} + q_{k - 2} & : k > 1 \\end {cases}$ From Continued Fraction Expansion of $\\sqrt {13}$: :$\\sqrt {13} = \\sqbrk {3, \\sequence {1, 1, 1, 1, 6} }$ Thus the convergents are assembled: {{ConvergentCalculator-Start | a0 = 3 | a1 = 1}} {{ConvergentCalculator | k = 2 | ak = 1 | pk-1 = 4 | pk-2 = 3 | qk-1 = 1 | qk-2 = 1}} {{ConvergentCalculator | k = 3 | ak = 1 | pk-1 = 7 | pk-2 = 4 | qk-1 = 2 | qk-2 = 1}} {{ConvergentCalculator | k = 4 | ak = 1 | pk-1 = 11 | pk-2 = 7 | qk-1 = 3 | qk-2 = 2 }} {{ConvergentCalculator | k = 5 | ak = 6 | pk-1 = 18 | pk-2 = 11 | qk-1 = 5 | qk-2 = 3}} {{ConvergentCalculator | k = 6 | ak = 1 | pk-1 = 119 | pk-2 = 18 | qk-1 = 33 | qk-2 = 5}} {{ConvergentCalculator | k = 7 | ak = 1 | pk-1 = 137 | pk-2 = 119 | qk-1 = 38 | qk-2 = 33}} {{ConvergentCalculator | k = 8 | ak = 1 | pk-1 = 256 | pk-2 = 137 | qk-1 = 71 | qk-2 = 38}} {{ConvergentCalculator | k = 9 | ak = 1 | pk-1 = 393 | pk-2 = 256 | qk-1 = 109 | qk-2 = 71}} |} {{qed}} Category:Continued Fractions Category:13 6k36tbcv7u9lpzztikxt314un6ggl5x"}
+{"_id": "32695", "title": "Continued Fraction Expansion of Irrational Square Root/Examples/29/Convergents", "text": "Continued Fraction Expansion of Irrational Square Root/Examples/29/Convergents 0 52904 470653 470635 2020-05-26T06:44:59Z Prime.mover 59 wikitext text/x-wiki == Convergents to Continued Fraction Expansion of $\\sqrt {29}$ == The sequence of convergents to the continued fraction expansion of the square root of $29$ begins: :$\\dfrac 5 1, \\dfrac {11} 2, \\dfrac {16} 3, \\dfrac {27} 5, \\dfrac {70} {13}, \\dfrac {727} {135}, \\dfrac {1524} {283}, \\dfrac {2251} {418}, \\dfrac {3775} {701}, \\dfrac {9801} {1820}, \\ldots$ {{OEIS-Numerators|A041046}} {{OEIS-Denominators|A041047}} == Proof == Let $\\sqbrk {a_0, a_1, a_2, \\ldots}$ be its continued fraction expansion. Let $\\sequence {p_n}_{n \\mathop \\ge 0}$ and $\\sequence {q_n}_{n \\mathop \\ge 0}$ be its numerators and denominators. Then the $n$th convergent is $p_n / q_n$. By definition: :$p_k = \\begin {cases} a_0 & : k = 0 \\\\ a_0 a_1 + 1 & : k = 1 \\\\ a_k p_{k - 1} + p_{k - 2} & : k > 1\\end {cases}$ :$q_k = \\begin {cases} 1 & : k = 0 \\\\ a_1 & : k = 1 \\\\ a_k q_{k - 1} + q_{k - 2} & : k > 1\\end {cases}$ From Continued Fraction Expansion of $\\sqrt {29}$: :$\\sqrt {29} = \\sqbrk {5, \\sequence {2, 1, 1, 2, 10} }$ Thus the convergents are assembled: {{ConvergentCalculator-Start | a0 = 5 | a1 = 2}} {{ConvergentCalculator | k = 2 | ak = 1 | pk-1 = 11 | pk-2 = 5 | qk-1 = 2 | qk-2 = 1}} {{ConvergentCalculator | k = 3 | ak = 1 | pk-1 = 16 | pk-2 = 11 | qk-1 = 3 | qk-2 = 2}} {{ConvergentCalculator | k = 4 | ak = 2 | pk-1 = 27 | pk-2 = 16 | qk-1 = 5 | qk-2 = 3}} {{ConvergentCalculator | k = 5 | ak = 10 | pk-1 = 70 | pk-2 = 27 | qk-1 = 13 | qk-2 = 5}} {{ConvergentCalculator | k = 6 | ak = 2 | pk-1 = 727 | pk-2 = 70 | qk-1 = 135 | qk-2 = 13}} {{ConvergentCalculator | k = 7 | ak = 1 | pk-1 = 1524 | pk-2 = 727 | qk-1 = 283 | qk-2 = 135}} {{ConvergentCalculator | k = 8 | ak = 1 | pk-1 = 2251 | pk-2 = 1524 | qk-1 = 418 | qk-2 = 283}} {{ConvergentCalculator | k = 9 | ak = 2 | pk-1 = 3775 | pk-2 = 2251 | qk-1 = 701 | qk-2 = 418}} |} {{qed}} Category:Continued Fractions Category:29 3yesbydecvf35st0npptdo09kpr9pum"}
+{"_id": "32696", "title": "Lifting The Exponent Lemma/Lemma", "text": "Lifting The Exponent Lemma/Lemma 0 52990 457792 312888 2020-03-27T08:04:40Z Prime.mover 59 wikitext text/x-wiki == Lemma == Let $x, y \\in \\Z$ be distinct integers. Let $p$ be an odd prime. Let: :$p \\divides x - y$ and: :$p \\nmid x y$. Then :$\\map {\\nu_p} {x^p - y^p} = \\map {\\nu_p} {x - y} + 1$ where $\\nu_p$ denotes $p$-adic valuation. == Proof == Let $\\map {\\nu_p} {x - y} = k$. Then $x=p^k m + y$ where $p \\nmid m$. We have: {{begin-eqn}} {{eqn | l = x^p - y^p | r = (p^k m + y)^p - y^p | c = }} {{eqn | r = \\sum_{i \\mathop = 0}^p \\paren {\\binom p i \\paren {p^k m}^{p - i} y^i} - y^p | c = Binomial Theorem }} {{eqn | r = \\sum_{i \\mathop = 0}^{p - 2} \\paren {\\binom p i \\paren {p^k m}^{p - i} y^i} + \\binom p {p - 1} \\paren {p^k m} y^{p - 1} | c = picking out the last two terms from the summation }} {{eqn | r = \\sum_{i \\mathop = 0}^{p - 2} \\paren {\\binom p i \\paren {p^k m}^{p - i} y^i} + p^{k + 1} m y^{p - 1} | c = }} {{end-eqn}} Note that all terms in the above expression have a factor of $p$ to the order at least $k+1$. So, $p^{k + 1} \\mid x^p - y^p$. Also note that all terms in the summation have a factor of $p$ to the order at least $k + 2$. But in the term $p^{k + 1} m y^{p - 1}$, since $p \\nmid m$ and $p \\nmid y$, we have: :$p^{k + 2} \\nmid p^{k + 1} m y^{p - 1}$ So: :$p^{k + 2} \\nmid x^p - y^p$ So by definition of $p$-adic valuation: :$\\map {\\nu_p} {x^p - y^p} = k + 1$ {{qed}} == Sources == * {{citation|date = July 1904|title = On the Integral Divisors of $a^n - b^n$|journal = Annals of Mathematics|abbr = Ann. Math.|volume = 5|startpage = 173|endpage = 180|jstor = 2007263|author = George David Birkhoff|author2 = Harry Schultz Vandiver|jstorcat = yes}}: Theorem $\\text{III}$. Category:P-adic Valuations d4e0h0xni7916lg5nyycr7wdwh3khto"}
+{"_id": "32697", "title": "Solutions of Pythagorean Equation/Sequence", "text": "Solutions of Pythagorean Equation/Sequence 0 53030 283072 283069 2017-01-24T23:19:35Z Prime.mover 59 wikitext text/x-wiki == Sequence == The sequence of solutions of the Pythagorean equation can be tabulated as follows: :$\\begin{array} {r r | r r | r r r | c} m & n & m^2 & n^2 & 2 m n & m^2 - n^2 & m^2 + n^2 \\\\ \\hline 2 & 1 & 4 & 1 & 4 & 3 & 5 & \\text{Primitive} \\\\ \\hline 3 & 1 & 9 & 1 & 6 & 8 & 10 \\\\ 3 & 2 & 9 & 4 & 12 & 5 & 13 & \\text{Primitive} \\\\ \\hline 4 & 1 & 16 & 1 & 8 & 15 & 17 & \\text{Primitive} \\\\ 4 & 2 & 16 & 4 & 16 & 12 & 20 \\\\ 4 & 3 & 16 & 9 & 24 & 7 & 25 & \\text{Primitive} \\\\ \\hline 5 & 1 & 25 & 1 & 10 & 24 & 26 \\\\ 5 & 2 & 25 & 4 & 20 & 21 & 29 & \\text{Primitive} \\\\ 5 & 3 & 25 & 9 & 30 & 16 & 34 \\\\ 5 & 4 & 25 & 16 & 40 & 9 & 41 & \\text{Primitive} \\\\ \\hline 6 & 1 & 36 & 1 & 12 & 35 & 37 & \\text{Primitive} \\\\ 6 & 2 & 36 & 4 & 24 & 32 & 40 \\\\ 6 & 3 & 36 & 9 & 36 & 27 & 45 \\\\ 6 & 4 & 36 & 16 & 48 & 20 & 52 \\\\ 6 & 5 & 36 & 25 & 60 & 11 & 61 & \\text{Primitive} \\\\ \\hline 7 & 1 & 49 & 1 & 14 & 48 & 50 \\\\ 7 & 2 & 49 & 4 & 28 & 45 & 53 & \\text{Primitive} \\\\ 7 & 3 & 49 & 9 & 42 & 40 & 58 \\\\ 7 & 4 & 49 & 16 & 56 & 33 & 65 & \\text{Primitive} \\\\ 7 & 5 & 49 & 25 & 70 & 24 & 74 \\\\ 7 & 6 & 49 & 36 & 84 & 13 & 85 & \\text{Primitive} \\\\ \\hline \\end{array}$ Category:Pythagorean Triples Category:Solutions of Pythagorean Equation dqkjdu0c3nvufai4wklffejw24x8wb2"}
+{"_id": "32698", "title": "Pythagorean Triangle/Examples/5-12-13", "text": "Pythagorean Triangle/Examples/5-12-13 0 53032 478775 478750 2020-07-18T12:13:55Z Prime.mover 59 wikitext text/x-wiki == Example of Primitive Pythagorean Triangle == The triangle whose sides are of length $5$, $12$ and $13$ is a primitive Pythagorean triangle. :400px == Proof == {{begin-eqn}} {{eqn | l = 5^2 + 12^2 | r = 25 + 144 | c = }} {{eqn | r = 169 | c = }} {{eqn | r = 13^2 | c = }} {{end-eqn}} It follows by Pythagoras's Theorem that $5$, $12$ and $13$ form a Pythagorean triple. Note that $5$ and $12$ are coprime. Hence, by definition, $5$, $12$ and $13$ form a primitive Pythagorean triple. The result follows by definition of a primitive Pythagorean triangle. {{qed}} == Sources == * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = Smallest Pythagorean Triangle is 3-4-5|next = Pythagorean Triangle/Examples/6-8-10}}: $13$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = Smallest Pythagorean Triangle is 3-4-5|next = Pythagorean Triangle/Examples/6-8-10}}: $13$ Category:Examples of Pythagorean Triangles 3tbh5ki2lweolv39z8bwoob7o159qdm"}
+{"_id": "32699", "title": "Dirichlet Series Convergence Lemma/Lemma", "text": "Dirichlet Series Convergence Lemma/Lemma 0 53046 357559 350951 2018-05-28T17:18:39Z AliceInNumberland 3357 Fixed the proof, it follows the broad strokes of the cited source, with a few modifications to make it more elementary, as that is the objective of proving it in the ordinary sense wikitext text/x-wiki == Lemma to Dirichlet Series Convergence Lemma == Let $\\displaystyle f \\left({s}\\right) = \\sum_{n \\mathop = 1}^\\infty \\frac{a_n}{n^s}$ be a Dirichlet series. Suppose that for some $s_0 = \\sigma_0 + i t_0 \\in \\C$, $f \\left({s_0}\\right)$ has bounded partial sums: :$(1): \\quad \\displaystyle \\left\\vert{\\sum_{n \\mathop = 1}^N a_n n^{-s_0} }\\right\\vert \\le M$ for some $M \\in \\R$ and all $N \\ge 1$. Then for every $s = \\sigma + i t \\in \\C$ with $\\sigma > \\sigma_0$: :$\\displaystyle \\left\\vert{\\sum_{n \\mathop = m}^N a_n n^{-s} }\\right\\vert \\le 2 M m^{\\sigma_0 - \\sigma} \\left( 1+ \\frac {\\left\\vert s - s_0\\right\\vert} {\\sigma-\\sigma_0} \\right)$ == Proof == We have the Summation by Parts formula: :$\\displaystyle \\sum_{n \\mathop = m}^N f_n g_n = f_N G_N - f_m G_{m-1} - \\sum_{n \\mathop = m}^{N - 1} G_n \\left({f_{n+1} - f_n}\\right)$ We let $g_n = a_n n^{-s_0}$ and $f_n = n^{s_0 - s}$. For $N \\ge 1$, the quantities $G_N$ are the partial sums $(1)$ Thus $G_N \\le M$ for all $N \\ge 1$. We have: {{begin-eqn}} {{eqn | l = \\left\\vert{\\sum_{n \\mathop = m}^N \\frac {a_n} {n^s} }\\right\\vert | r = \\left\\vert{\\sum_{n \\mathop = m}^N f_n g_n}\\right\\vert }} {{eqn | r = \\left\\vert{f_N G_N}\\right\\vert + \\left\\vert{f_m G_{m-1} }\\right\\vert + \\sum_{n \\mathop = m}^{N - 1} \\left\\vert{G_n \\left({f_{n+1} - f_n}\\right)}\\right\\vert | o = \\le | c = using partial summation and the Triangle Inequality }} {{eqn | r = M \\left\\vert{N^{s_0 - s} }\\right\\vert + M \\left\\vert{m^{s_0 - s} }\\right\\vert + M \\sum_{n \\mathop = m}^{N - 1} \\left\\vert{\\left({\\left({n + 1}\\right)^{s_0 - s} - n^{s_0 - s} }\\right) }\\right\\vert | o = \\le | c = using the given bound on the partial sums }} {{eqn |r = M N^{\\sigma_0 - \\sigma} + M m^{\\sigma_0 - \\sigma} + M \\sum_{n \\mathop = m}^{N - 1} \\left\\vert{ \\left(s - s_0 \\right) \\int_n^{n+1} t^{s_0 - s -1} }\\right\\vert }} {{eqn |o= \\le |r = M N^{\\sigma_0 - \\sigma} + M m^{\\sigma_0 - \\sigma} + M \\sum_{n \\mathop = m}^{N - 1} \\left\\vert{ s - s_0 }\\right\\vert \\int_n^{n+1} \\left\\vert{ t^{s_0 - s -1} }\\right\\vert |c = Modulus of Complex Integral }} {{eqn |r = M N^{\\sigma_0 - \\sigma} + M m^{\\sigma_0 - \\sigma} + M \\sum_{n \\mathop = m}^{N - 1} \\left\\vert{s - s_0 }\\right\\vert \\int_n^{n+1} t^{\\sigma_0 - \\sigma -1} }} {{eqn |r = M N^{\\sigma_0 - \\sigma} + M m^{\\sigma_0 - \\sigma} + M \\left\\vert{ s - s_0 }\\right\\vert \\int_m^{N} t^{\\sigma_0 - \\sigma -1} }} {{eqn |r = M N^{\\sigma_0 - \\sigma} + M m^{\\sigma_0 - \\sigma} + M \\frac{\\left\\vert{ s - s_0 }\\right\\vert}{\\sigma - \\sigma_0} \\left( m^{\\sigma_0 - \\sigma}- N^{\\sigma_0 - \\sigma} \\right) }} {{eqn |o= \\le |r = M N^{\\sigma_0 - \\sigma} + M m^{\\sigma_0 - \\sigma} + M \\frac{\\left\\vert{ s - s_0 }\\right\\vert}{\\sigma - \\sigma_0} \\left( m^{\\sigma_0 - \\sigma} + N^{\\sigma_0 - \\sigma} \\right) }} {{end-eqn}} Finally, because $N \\ge m$ and $\\sigma_0 - \\sigma < 0$, we have: :$ N^{\\sigma_0 - \\sigma} + m^{\\sigma_0 - \\sigma} \\le 2 m^{\\sigma_0 - \\sigma}$ Therefore: {{begin-eqn}} {{eqn |l= \\left\\vert{\\sum_{n \\mathop = m}^N a_n n^{-s} }\\right\\vert |o= \\le |r= M N^{\\sigma_0 - \\sigma} + M m^{\\sigma_0 - \\sigma} + M \\frac{\\left\\vert{ s - s_0 }\\right\\vert}{\\sigma - \\sigma_0} \\left( m^{\\sigma_0 - \\sigma} + N^{\\sigma_0 - \\sigma} \\right) }} {{eqn |o=\\leq |r= 2 M m^{\\sigma_0 - \\sigma} + 2 M \\frac{\\left\\vert{ s - s_0 }\\right\\vert}{\\sigma - \\sigma_0} m^{\\sigma_0 - \\sigma} }} {{eqn |r = 2 M m^{\\sigma_0 - \\sigma} \\left(1 + \\frac{\\left\\vert{ s - s_0 }\\right\\vert}{\\sigma - \\sigma_0} \\right) }} {{end-eqn}} Hence the result. {{qed|lemma}} == Sources == {{SourceReview|wrt Dirichlet Series Convergence Lemma}} * {{BookReference|Introduction to Analytic Number Theory|1976|Tom M. Apostol}}: $\\S 11.6$: Lemma $2$, Theorem $11.8$ Category:Dirichlet Series jqn0qz0s10dk2k2et5rlpomi63xtihe"}
+{"_id": "32700", "title": "Pythagorean Triangle/Examples/6-8-10", "text": "Pythagorean Triangle/Examples/6-8-10 0 53055 478773 478752 2020-07-18T12:12:27Z Prime.mover 59 wikitext text/x-wiki == Example of Pythagorean Triangle == The triangle whose sides are of length $6$, $8$ and $10$ is a Pythagorean triangle. This is not a primitive Pythagorean triangle. :300px == Proof == {{begin-eqn}} {{eqn | l = 6^2 + 8^2 | r = 2^2 \\times 3^2 + 2^2 \\times 4^2 | c = }} {{eqn | r = 4 \\times \\paren {9 + 16} | c = }} {{eqn | r = 4 \\times 25 | c = }} {{eqn | r = 2^2 \\times 5^2 | c = }} {{eqn | r = 10^2 | c = }} {{end-eqn}} It follows by Pythagoras's Theorem that $6$, $8$ and $10$ form a Pythagorean triple. Note that $6$ and $8$ are not coprime as $\\gcd \\set {6, 8} = 2$. Hence, by definition, $6$, $8$ and $10$ do not form a primitive Pythagorean triple. The result follows by definition of a primitive Pythagorean triangle. {{qed}} == Sources == * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = Pythagorean Triangle/Examples/5-12-13|next = Pythagorean Triangle/Examples/7-24-25}}: $13$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = Pythagorean Triangle/Examples/5-12-13|next = Pythagorean Triangle/Examples/7-24-25}}: $13$ Category:Examples of Pythagorean Triangles fxd28zo105jua0jquhuvakzl9v7vg0d"}
+{"_id": "32701", "title": "Convergence of Complex Sequence in Polar Form/Corollary", "text": "Convergence of Complex Sequence in Polar Form/Corollary 0 53060 407029 362409 2019-06-08T13:31:11Z Prime.mover 59 wikitext text/x-wiki == Corollary to Convergence of Complex Sequence in Polar Form == Let $\\left\\langle{z_n}\\right\\rangle$ be a sequence of nonzero complex numbers. Let $z \\ne 0$ be a complex number with modulus $r$ and argument $\\theta$. Let $I$ be a real interval of length at most $2 \\pi$ that contains $\\theta$. Suppose $\\theta$ is not an endpoint of $I$. Suppose each $z_n$ admits an argument $\\theta_n \\in I$. Let $r_n$ be the modulus of $z_n$. Then $z_n$ converges to $z$ {{iff}} $r_n$ converges to $r$ and $\\theta_n$ converges to $\\theta$. == Proof == Suppose $r_n \\to r$ and $\\theta_n \\to \\theta$. Then by Convergence of Complex Sequence in Polar Form, $z_n \\to z$. Conversely, suppose $z_n \\to z$. By Convergence of Complex Sequence in Polar Form, we have: :$(1): \\quad r_n \\to r$ :$(2): \\quad$ There exists a sequence $\\left\\langle{k_n}\\right\\rangle$ of integers such that $\\theta_n + 2 k_n \\pi$ converges to $\\theta$. It remains to be proved that $\\theta_n \\to \\theta$. Let $N \\in \\N$ such that $\\left\\vert{\\theta_N + 2 k_N \\pi - \\theta}\\right\\vert \\le \\pi / 2$ for all $n \\ge N$. By the Triangle Inequality for Real Numbers: :$\\left\\vert{2 k_n \\pi - 2 k_N \\pi}\\right\\vert \\le \\left\\vert{\\theta_n + 2 k_n \\pi - \\theta}\\right\\vert + \\left\\vert{\\theta_N + 2 k_N \\pi - \\theta}\\right\\vert \\le \\pi$ for all $n \\ge N$. Thus $\\left\\vert{k_n - k_N}\\right\\vert \\le 1 / 2$, so $k_n = k_N$ for all $n \\ge N$. By the Triangle Inequality for Real Numbers: :$\\left\\vert{2 \\pi k_N}\\right\\vert \\le \\left\\vert{\\theta_n - \\theta}\\right\\vert + \\left\\vert{\\theta_n + 2 \\pi k_N - \\theta}\\right\\vert$ for all $n \\in \\N$. Because $\\theta_n \\in I$ and $\\theta$ is not an endpoint of $I$: :$\\left\\vert{\\theta_n - \\theta}\\right\\vert < 2 \\pi$ for all $n \\in \\N$. Because $\\theta_n + 2 \\pi k_N - \\theta \\to 0$: :$\\left\\vert{2 \\pi k_N}\\right\\vert < 2 \\pi$ Thus $k_n = 0$ for all $n \\ge N$. Thus $\\theta_n \\to \\theta$. {{qed}} Category:Complex Analysis i7cch7fbmgc5k27c7k67jp1ygqqypw0"}
+{"_id": "32702", "title": "Pythagorean Triangle/Examples/693-1924-2045", "text": "Pythagorean Triangle/Examples/693-1924-2045 0 53074 478760 478754 2020-07-18T12:06:32Z Prime.mover 59 wikitext text/x-wiki == Example of Primitive Pythagorean Triangle == The triangle whose sides are of length $693$, $1924$ and $2045$ is a primitive Pythagorean triangle. :700px == Proof == {{begin-eqn}} {{eqn | l = 693^2 + 1924^2 | r = 480 \\, 249 + 3 \\, 701 \\, 776 | c = }} {{eqn | r = 4 \\, 182 \\, 025 | c = }} {{eqn | r = 2045^2 | c = }} {{end-eqn}} It follows by Pythagoras's Theorem that $693$, $1924$ and $2045$ form a Pythagorean triple. Note that $693$ and $1924$ are coprime. Hence, by definition, $693$, $1924$ and $2045$ form a primitive Pythagorean triple. The result follows by definition of a primitive Pythagorean triangle. {{qed}} == Sources == * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = Pythagorean Triangle whose Area is Half Perimeter|next = Pythagorean Triangles whose Areas are Repdigit Numbers}}: $13$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = Pythagorean Triangle whose Area is Half Perimeter|next = Pythagorean Triangles whose Areas are Repdigit Numbers}}: $13$ Category:Examples of Pythagorean Triangles h1hz8c88k0y8dp6iz2daoaftzcivnpz"}
+{"_id": "32703", "title": "693", "text": "693 0 53097 478771 306362 2020-07-18T12:10:45Z Prime.mover 59 wikitext text/x-wiki {{NumberPageLink|prev = 692|next = 694}} == Number == $693$ ('''six hundred and ninety three''') is: :$3^2 \\times 7 \\times 11$ :One of the legs of the Pythagorean triangle $693-1924-2045$, whose area is $666 \\, 666$. == Also see == * Pythagorean Triangles whose Areas are Repdigit Numbers Category:Specific Numbers Category:693 lrnrx7zujqpwoskv5ajj4nun7p1y6me"}
+{"_id": "32704", "title": "1924", "text": "1924 0 53099 478770 303430 2020-07-18T12:10:34Z Prime.mover 59 wikitext text/x-wiki {{NumberPageLink|prev = 1923|next = 1925}} == Number == $1924$ ('''one thousand nine hundred and twenty four''') is: :$2^2 \\times 13 \\times 37$ :One of the legs of the Pythagorean triangle $693-1924-2045$, whose area is $666 \\, 666$. == Also see == * Pythagorean Triangles whose Areas are Repdigit Numbers Category:Specific Numbers Category:1924 ny180aji87241vumpmtwksdgvejdo3i"}
+{"_id": "32705", "title": "111", "text": "111 0 53106 478342 461296 2020-07-16T05:33:30Z Prime.mover 59 wikitext text/x-wiki {{NumberPageLink|prev = 110|next = 112}} == Number == $111$ ('''one hundred and eleven''') is: :$3 \\times 37$ :The magic constant of the smallest prime magic square. :The $3$rd repuint after $1$, $11$ :The $4$th of the $17$ positive integers for which the value of the Euler $\\phi$ function is $72$: ::$73$, $91$, $95$, $111$, $117$, $135$, $146$, $148$, $152$, $182$, $190$, $216$, $222$, $228$, $234$, $252$, $270$ :The $6$th positive integer after $1$, $2$, $7$, $11$, $101$ whose cube is palindromic: ::$111^3 = 1 \\, 367 \\, 631$ :The magic constant of a magic square of order $6$, after $1$, $(5)$, $15$, $34$, $65$: ::$111 = \\displaystyle \\dfrac 1 6 \\sum_{k \\mathop = 1}^{6^2} k = \\dfrac {6 \\paren {6^2 + 1} } 2$ :The $7$th palindromic lucky number: ::$1$, $3$, $7$, $9$, $33$, $99$, $111$, $\\ldots$ :The $8$th palindromic integer after $0$, $1$, $2$, $3$, $11$, $22$, $101$ whose square is also palindromic integer ::$111^2 = 12 \\, 321$ :The $15$th Zuckerman number after $1$, $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$, $11$, $12$, $15$, $24$, $36$: ::$111 = 111 \\times 1 = 111 \\times \\paren {1 \\times 1 \\times 1}$ :The $24$th lucky number: ::$1$, $3$, $7$, $9$, $13$, $15$, $21$, $25$, $31$, $33$, $37$, $43$, $49$, $51$, $63$, $67$, $73$, $75$, $79$, $87$, $93$, $99$, $105$, $111$, $\\ldots$ :The $35$th semiprime: ::$111 = 3 \\times 37$ == Also see == * Magic Constant of Smallest Prime Magic Square * {{NumberPageLink|prev = 11|next = 1111|type = Repunit|cat = Repunits}} * {{NumberPageLink|prev = 36|next = 112|type = Zuckerman Number|cat = Zuckerman Numbers}} * {{NumberPageLink|prev = 65|next = 175|result = Magic Constant of Magic Square}} * {{NumberPageLink|prev = 95|next = 117|result = Numbers with Euler Phi Value of 72}} * {{NumberPageLink|prev = 99|next = 141|result = Sequence of Palindromic Lucky Numbers}} * {{NumberPageLink|prev = 101|next = 121|result = Square of Small-Digit Palindromic Number is Palindromic}} * {{NumberPageLink|prev = 101|next = 1001|result = Sequence of Integers whose Cube is Palindromic}} * {{NumberPageLink|prev = 105|next = 115|type = Lucky Number|cat = Lucky Numbers}} * {{NumberPageLink|prev = 106|next = 115|type = Semiprime Number|cat = Semiprimes}} == Sources == * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = Magic Constant of Smallest Prime Magic Square|next = 112/Historical Note}}: $111$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = Magic Constant of Smallest Prime Magic Square|next = Sequence of Palindromic Lucky Numbers}}: $111$ Category:Specific Numbers Category:111 nj1uqqd71djtmooa94n27t3kops38hp"}
+{"_id": "32706", "title": "1001", "text": "1001 0 53108 478349 461059 2020-07-16T05:49:34Z Prime.mover 59 wikitext text/x-wiki {{NumberPageLink|prev = 1000|next = 1002}} == Number == $1001$ ('''one thousand and one''') is: :$7 \\times 11 \\times 13$ :The $4$th pentagonal number after $1$, $5$, $22$ which is also palindromic: ::$1001 = \\displaystyle \\sum_{k \\mathop = 1}^{26} \\paren {3 k - 2} = \\dfrac {26 \\paren {3 \\times 26 - 1} } 2$ :The $7$th positive integer after $1$, $2$, $7$, $11$, $101$, $111$ whose cube is palindromic: ::$1001^3 = 1 \\, 003 \\, 003 \\, 001$ :The $11$th pentatope number after $1$, $5$, $15$, $35$, $70$, $126$, $210$, $330$, $495$, $715$: ::$1001 = \\displaystyle \\sum_{k \\mathop = 1}^{11} \\dfrac {k \\paren {k + 1} \\paren {k + 2} } 6 = \\dfrac {11 \\paren {11 + 1} \\paren {11 + 2} \\paren {11 + 3} } {24}$ :The $12$th palindromic integer after $0$, $1$, $2$, $3$, $11$, $22$, $101$, $111$, $121$, $202$, $212$ whose square is also palindromic integer ::$1001^2 = 1 \\, 002 \\, 001$ :The $26$th pentagonal number after $1$, $5$, $12$, $22$, $35$, $\\ldots$, $477$, $532$, $590$, $651$, $715$, $782$, $852$, $925$: ::$1001 = \\displaystyle \\sum_{k \\mathop = 1}^{26} \\paren {3 k - 2} = \\dfrac {26 \\paren {3 \\times 26 - 1} } 2$ :The $51$st generalized pentagonal number after $1$, $2$, $5$, $7$, $12$, $15$, $\\ldots$, $610$, $651$, $672$, $715$, $737$, $782$, $805$, $852$, $876$, $925$, $950$: ::$1001 = \\displaystyle \\sum_{k \\mathop = 1}^{26} \\paren {3 k - 2} = \\dfrac {26 \\paren {3 \\times 26 - 1} } 2$ == Also see == * {{NumberPageLink|prev = 22|next = 2882|result = Sequence of Palindromic Pentagonal Numbers}} * {{NumberPageLink|prev = 101|next = 10,001|result = Prime Factors of One More than Power of 10}} * {{NumberPageLink|prev = 111|next = 2201|result = Sequence of Integers whose Cube is Palindromic}} * {{NumberPageLink|prev = 212|next = 1111|result = Square of Small-Digit Palindromic Number is Palindromic}} * {{NumberPageLink|prev = 715|next = 1365|type = Pentatope Number|cat = Pentatope Numbers}} * {{NumberPageLink|prev = 925|next = 1080|type = Pentagonal Number|cat = Pentagonal Numbers}} * {{NumberPageLink|prev = 950|next = 1027|type = Generalized Pentagonal Number|cat = Generalized Pentagonal Numbers}} == Historical Note == {{:1001/Historical Note}} == Sources == * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = 1000|next = Divisibility Test for 7, 11 and 13}}: $1001$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = 1000|next = Divisibility Test for 7, 11 and 13}}: $1001$ Category:Specific Numbers Category:1001 25posi7kny0a9yy14labtbcg1ve4mdt"}
+{"_id": "32707", "title": "Brahmagupta-Fibonacci Identity/General", "text": "Brahmagupta-Fibonacci Identity/General 0 53203 283820 283813 2017-01-29T09:29:18Z Prime.mover 59 wikitext text/x-wiki == General version of Brahmagupta-Fibonacci Identity == Let $a, b, c, d, n$ be numbers. :$\\left({a^2 + n b^2}\\right) \\left({c^2 + n d^2}\\right) = \\left({a c + n b d}\\right)^2 + n \\left({a d - b c}\\right)^2$ === Corollary === {{:Brahmagupta-Fibonacci Identity/General/Corollary}} === Extension === {{:Brahmagupta-Fibonacci Identity/General/Extension}} == Proof == {{begin-eqn}} {{eqn | o = | r = \\left({a c + n b d}\\right)^2 + n \\left({a d - b c}\\right)^2 | c = }} {{eqn | r = \\left({\\left({a c}\\right)^2 + 2 \\left({a c}\\right) \\left({n b d}\\right) + \\left({n b d}\\right)^2}\\right) + n \\left({\\left({a d}\\right)^2 - 2 \\left({a b}\\right) \\left({c d}\\right) + \\left({b c}\\right)^2}\\right) | c = Square of Sum, Square of Difference }} {{eqn | r = a^2 c^2 + 2 n a b c d + n^2 b^2 d^2 + n a^2 d^2 - 2 n a b c d + n b^2 c^2 | c = multiplying out }} {{eqn | r = a^2 c^2 + n a^2 d^2 + n b^2 c^2 + n^2 b^2 d^2 | c = simplifying }} {{eqn | r = \\left({a^2 + n b^2}\\right) \\left({c^2 + n d^2}\\right) | c = }} {{end-eqn}} {{qed}} {{Namedfor|Brahmagupta|name2 = Leonardo Fibonacci}} Category:Brahmagupta-Fibonacci Identity 1usmy94pvju94p1q87n512l2liguijm"}
+{"_id": "32708", "title": "Brahmagupta-Fibonacci Identity/Extension/General", "text": "Brahmagupta-Fibonacci Identity/Extension/General 0 53211 437759 283952 2019-12-04T16:28:06Z Prime.mover 59 wikitext text/x-wiki == Extension to Brahmagupta-Fibonacci Identity == Let $a_1, a_2, \\ldots, a_n, b_1, b_2, \\ldots, b_n, m$ be integers. Then: :$\\displaystyle \\prod_{j \\mathop = 1}^n \\paren { {a_j}^2 + m {b_j}^2} = c^2 + m d^2$ for some $c, d \\in \\Z$. That is: the set of all integers of the form $a^2 + m b^2$ is closed under multiplication. == Proof == The proof proceeds by induction. For all $n \\in \\Z_{> 0}$, let $\\map P n$ be the proposition: :$\\displaystyle \\prod_{j \\mathop = 1}^n \\paren { {a_j}^2 + m {b_j}^2} = c^2 + m d^2$ for some $c, d \\in \\Z$. $\\map P 1$ is the trivial case: {{begin-eqn}} {{eqn | l = \\prod_{j \\mathop = 1}^1 \\paren { {a_j}^2 + m {b_j}^2} | r = {a_1}^2 + m {b_1}^2 | c = }} {{eqn | r = c^2 + m d^2 | c = setting $c = a_1$ and $d = b_1$ }} {{end-eqn}} Thus $\\map P 1$ is seen to hold. === Basis for the Induction === $\\map P 2$ is the case: {{begin-eqn}} {{eqn | l = \\prod_{j \\mathop = 1}^2 \\paren { {a_j}^2 + m {b_j}^2} | r = \\paren { {a_1}^2 + m {b_1}^2} \\paren { {a_2}^2 + m {b_2}^2} | c = }} {{eqn | r = \\paren {a_1 a_2 + m b_1 b_2}^2 + m \\paren {a_1 b_2 - b_1 a_2}^2 | c = General Brahmagupta-Fibonacci Identity }} {{eqn | r = c^2 + m d^2 | c = setting $c = a_1 a_2 + m b_1 b_2$ and $d = a_1 b_2 - b_1 a_2$ }} {{end-eqn}} Thus $\\map P 2$ is seen to hold. This is the basis for the induction. === Induction Hypothesis === Now it needs to be shown that, if $\\map P k$ is true, where $k \\ge 2$, then it logically follows that $\\map P {k + 1}$ is true. So this is the induction hypothesis: :$\\displaystyle \\prod_{j \\mathop = 1}^k \\paren { {a_j}^2 + m {b_j}^2} = c^2 + m d^2$ for some $c, d \\in \\Z$. from which it is to be shown that: :$\\displaystyle \\prod_{j \\mathop = 1}^{k + 1} \\paren { {a_j}^2 + m {b_j}^2} = c^2 + m d^2$ for some $c, d \\in \\Z$. === Induction Step === This is the induction step: {{begin-eqn}} {{eqn | l = \\prod_{j \\mathop = 1}^{k + 1} \\paren { {a_j}^2 + m {b_j}^2} | r = \\prod_{j \\mathop = 1}^k \\paren { {a_j}^2 + m {b_j}^2} \\paren { {a_{k + 1} }^2 + m {b_{k + 1} }^2} | c = }} {{eqn | r = \\paren { {c'}^2 + m {d'}^2} \\paren { {a_{k + 1} }^2 + m {b_{k + 1} }^2} | c = Induction Hypothesis: for some $c', d' \\in \\Z$ }} {{eqn | r = c^2 + m d^2 | c = Basis for the Induction: for some $c, d \\in \\Z$ }} {{end-eqn}} So $\\map P k \\implies \\map P {k + 1}$ and the result follows by the Principle of Mathematical Induction. Therefore, for all $n \\in \\Z_{> 0}$: :$\\displaystyle \\prod_{j \\mathop = 1}^n \\paren { {a_j}^2 + m {b_j}^2} = c^2 + m d^2$ for some $c, d \\in \\Z$. {{qed}} Category:Brahmagupta-Fibonacci Identity 6fkhzc2kgy79r4dx5r34g6nzf2kxisq"}
+{"_id": "32709", "title": "Brahmagupta-Fibonacci Identity/Extension/Proof 2", "text": "Brahmagupta-Fibonacci Identity/Extension/Proof 2 0 53226 283951 283948 2017-01-29T15:26:25Z Prime.mover 59 wikitext text/x-wiki == Extension to Brahmagupta-Fibonacci Identity == {{:Brahmagupta-Fibonacci Identity/Extension}} == Proof == The proof proceeds by induction. For all $n \\in \\Z_{> 0}$, let $P \\left({n}\\right)$ be the proposition: :$\\displaystyle \\prod_{j \\mathop = 1}^n \\left({ {a_j}^2 + {b_j}^2}\\right) = c^2 + d^2$ for some $c, d \\in \\Z$. $P \\left({1}\\right)$ is the trivial case: {{begin-eqn}} {{eqn | l = \\prod_{j \\mathop = 1}^1 \\left({ {a_j}^2 + {b_j}^2}\\right) | r = {a_1}^2 + {b_1}^2 | c = }} {{eqn | r = c^2 + d^2 | c = setting $c = a_1$ and $d = b_1$ }} {{end-eqn}} Thus $P \\left({1}\\right)$ is seen to hold. === Basis for the Induction === $P \\left({2}\\right)$ is the case: {{begin-eqn}} {{eqn | l = \\prod_{j \\mathop = 1}^2 \\left({ {a_j}^2 + {b_j}^2}\\right) | r = \\left({ {a_1}^2 + {b_1}^2}\\right) \\left({ {a_2}^2 + {b_2}^2}\\right) | c = }} {{eqn | r = \\left({a_1 a_2 + b_1 b_2}\\right)^2 + \\left({a_1 b_2 - b_1 a_2}\\right)^2 | c = Brahmagupta-Fibonacci Identity }} {{eqn | r = c^2 + d^2 | c = setting $c = a_1 a_2 + b_1 b_2$ and $d = a_1 b_2 - b_1 a_2$ }} {{end-eqn}} Thus $P \\left({2}\\right)$ is seen to hold. This is the basis for the induction. === Induction Hypothesis === Now it needs to be shown that, if $P \\left({k}\\right)$ is true, where $k \\ge 2$, then it logically follows that $P \\left({k + 1}\\right)$ is true. So this is the induction hypothesis: :$\\displaystyle \\prod_{j \\mathop = 1}^k \\left({ {a_j}^2 + {b_j}^2}\\right) = c^2 + d^2$ for some $c, d \\in \\Z$. from which it is to be shown that: :$\\displaystyle \\prod_{j \\mathop = 1}^{k + 1} \\left({ {a_j}^2 + {b_j}^2}\\right) = c^2 + d^2$ for some $c, d \\in \\Z$. === Induction Step === This is the induction step: {{begin-eqn}} {{eqn | l = \\prod_{j \\mathop = 1}^{k + 1} \\left({ {a_j}^2 + {b_j}^2}\\right) | r = \\prod_{j \\mathop = 1}^k \\left({ {a_j}^2 + {b_j}^2}\\right) \\left({ {a_{k + 1} }^2 + {b_{k + 1} }^2}\\right) | c = }} {{eqn | r = \\left({ {c'}^2 + {d'}^2}\\right) \\left({ {a_{k + 1} }^2 + {b_{k + 1} }^2}\\right) | c = Induction Hypothesis: for some $c', d' \\in \\Z$ }} {{eqn | r = c^2 + m d^2 | c = Basis for the Induction: for some $c, d \\in \\Z$ }} {{end-eqn}} So $P \\left({k}\\right) \\implies P \\left({k + 1}\\right)$ and the result follows by the Principle of Mathematical Induction. Therefore, for all $n \\in \\Z_{> 0}$: :$\\displaystyle \\prod_{j \\mathop = 1}^n \\left({ {a_j}^2 + {b_j}^2}\\right) = c^2 + d^2$ for some $c, d \\in \\Z$. {{qed}} Category:Brahmagupta-Fibonacci Identity ezs3g9lp2x0ml1h4z22zb4yg5j92d8a"}
+{"_id": "32710", "title": "Magic Square/Examples/Order 4", "text": "Magic Square/Examples/Order 4 0 53567 310268 300669 2017-08-10T05:40:04Z Prime.mover 59 wikitext text/x-wiki == Examples of Order $4$ Magic Squares == There are many order $4$ magic squares. ==== Dürer's Order $4$ Magic Square ==== This is one of the more famous ones, due to {{AuthorRef|Albrecht Dürer}}: {{:Magic Square/Examples/Order 4/Dürer}} ==== Moessner's Order $4$ Magic Square ==== This one, created by {{AuthorRef|Alfred Moessner}}, has extra interesting properties: {{:Magic Square/Examples/Order 4/Alfred Moessner}} == Also see == * Magic Constant of Order 4 Magic Square * Number of Magic Squares of Order 4 Category:Magic Squares q21ghuew2eagljs5i7h9xx2q5uuvfhz"}
+{"_id": "32711", "title": "Magic Square/Examples/Order 4/Alfred Moessner", "text": "Magic Square/Examples/Order 4/Alfred Moessner 0 53573 381665 381661 2018-12-12T23:57:37Z Prime.mover 59 wikitext text/x-wiki == Example of Order $4$ Magic Square == This example of an order $4$ magic square is due to {{AuthorRef|Alfred Moessner}}: :$\\begin{array}{|c|c|c|c|} \\hline 12 & 13 & 1 & 8 \\\\ \\hline 6 & 3 & 15 & 10 \\\\ \\hline 7 & 2 & 14 & 11 \\\\ \\hline 9 & 16 & 4 & 5 \\\\ \\hline \\end{array}$ == Also see == * Properties of Moessner's Order $4$ Magic Square == Historical Note == {{:Magic Square/Examples/Order 4/Alfred Moessner/Historical Note}} == Sources == * {{citation|author = Alfred Moessner|title = A Curious Magic Square|journal = Scripta Mathematica|volume = 13|date = 1947?|startpage = ???|endpage = ???}} * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = Magic Square/Examples/Order 4/Dürer/Historical Note|next = Magic Square/Examples/Order 4/Alfred Moessner/Historical Note}}: $16$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = Magic Square/Examples/Order 4/Dürer/Historical Note|next = Magic Square/Examples/Order 4/Alfred Moessner/Historical Note}}: $16$ Category:Magic Squares 30gjmsv91qxdg3xjo5bcb8iiqyk24oo"}
+{"_id": "32712", "title": "Euler Lucky Number/Examples/41", "text": "Euler Lucky Number/Examples/41 0 53646 382719 291883 2018-12-17T06:43:57Z Prime.mover 59 wikitext text/x-wiki == Example of Euler Lucky Number == The expression: :$n^2 + n + 41$ yields primes for $n = 0$ to $n = 39$. It also generates the same set of primes for $n = -1 \\to n = -40$. These are not the only primes generated by this formula. No other quadratic function of the form $x^2 + a x + b$, where $a, b \\in \\Z_{>0}$ and $a, b < 10000$ generates a longer sequence of primes. == Proof == {{begin-eqn}} {{eqn | l = 0^2 + 0 + 41 | r = 0 + 0 + 41 | rr= = 41 | c = which is prime }} {{eqn | l = 1^2 + 1 + 41 | r = 1 + 1 + 41 | rr= = 43 | c = which is prime }} {{eqn | l = 2^2 + 2 + 41 | r = 4 + 2 + 41 | rr= = 47 | c = which is prime }} {{eqn | l = 3^2 + 3 + 41 | r = 9 + 3 + 41 | rr= = 53 | c = which is prime }} {{eqn | l = 4^2 + 4 + 41 | r = 16 + 4 + 41 | rr= = 61 | c = which is prime }} {{eqn | l = 5^2 + 5 + 41 | r = 25 + 5 + 41 | rr= = 71 | c = which is prime }} {{eqn | l = 6^2 + 6 + 41 | r = 36 + 6 + 41 | rr= = 83 | c = which is prime }} {{eqn | l = 7^2 + 7 + 41 | r = 49 + 7 + 41 | rr= = 97 | c = which is prime }} {{eqn | l = 8^2 + 8 + 41 | r = 64 + 8 + 41 | rr= = 113 | c = which is prime }} {{eqn | l = 9^2 + 9 + 41 | r = 81 + 9 + 41 | rr= = 131 | c = which is prime }} {{eqn | l = 10^2 + 10 + 41 | r = 100 + 10 + 41 | rr= = 151 | c = which is prime }} {{eqn | l = 11^2 + 11 + 17 | r = 121 + 11 + 17 | rr= = 173 | c = which is prime }} {{eqn | l = 12^2 + 12 + 41 | r = 144 + 12 + 41 | rr= = 197 | c = which is prime }} {{eqn | l = 13^2 + 13 + 17 | r = 169 + 13 + 17 | rr= = 223 | c = which is prime }} {{eqn | l = 14^2 + 14 + 41 | r = 196 + 14 + 41 | rr= = 251 | c = which is prime }} {{eqn | l = 15^2 + 15 + 41 | r = 225 + 15 + 41 | rr= = 281 | c = which is prime }} {{eqn | l = 16^2 + 16 + 41 | r = 256 + 16 + 41 | rr= = 313 | c = which is prime }} {{eqn | l = 17^2 + 17 + 41 | r = 289 + 17 + 41 | rr= = 347 | c = which is prime }} {{eqn | l = 18^2 + 18 + 41 | r = 324 + 18 + 41 | rr= = 383 | c = which is prime }} {{eqn | l = 19^2 + 19 + 41 | r = 361 + 19 + 41 | rr= = 421 | c = which is prime }} {{eqn | l = 20^2 + 20 + 41 | r = 400 + 20 + 41 | rr= = 461 | c = which is prime }} {{eqn | l = 21^2 + 21 + 41 | r = 441 + 21 + 41 | rr= = 503 | c = which is prime }} {{eqn | l = 22^2 + 22 + 41 | r = 484 + 22 + 41 | rr= = 547 | c = which is prime }} {{eqn | l = 23^2 + 23 + 41 | r = 529 + 23 + 41 | rr= = 593 | c = which is prime }} {{eqn | l = 24^2 + 24 + 41 | r = 576 + 24 + 41 | rr= = 641 | c = which is prime }} {{eqn | l = 25^2 + 25 + 41 | r = 625 + 25 + 41 | rr= = 691 | c = which is prime }} {{eqn | l = 26^2 + 26 + 41 | r = 676 + 26 + 41 | rr= = 743 | c = which is prime }} {{eqn | l = 27^2 + 27 + 41 | r = 729 + 27 + 41 | rr= = 797 | c = which is prime }} {{eqn | l = 28^2 + 28 + 41 | r = 784 + 28 + 41 | rr= = 853 | c = which is prime }} {{eqn | l = 29^2 + 29 + 41 | r = 841 + 29 + 41 | rr= = 911 | c = which is prime }} {{eqn | l = 30^2 + 30 + 41 | r = 900 + 30 + 41 | rr= = 971 | c = which is prime }} {{eqn | l = 31^2 + 31 + 41 | r = 961 + 31 + 41 | rr= = 1033 | c = which is prime }} {{eqn | l = 32^2 + 32 + 41 | r = 1024 + 32 + 41 | rr= = 1097 | c = which is prime }} {{eqn | l = 33^2 + 33 + 41 | r = 1089 + 33 + 41 | rr= = 1163 | c = which is prime }} {{eqn | l = 34^2 + 34 + 41 | r = 1156 + 34 + 41 | rr= = 1231 | c = which is prime }} {{eqn | l = 35^2 + 35 + 41 | r = 1225 + 35 + 41 | rr= = 1301 | c = which is prime }} {{eqn | l = 36^2 + 36 + 41 | r = 1296 + 36 + 41 | rr= = 1373 | c = which is prime }} {{eqn | l = 37^2 + 37 + 41 | r = 1369 + 37 + 41 | rr= = 1447 | c = which is prime }} {{eqn | l = 38^2 + 38 + 41 | r = 1444 + 38 + 41 | rr= = 1523 | c = which is prime }} {{eqn | l = 39^2 + 39 + 41 | r = 1521 + 39 + 41 | rr= = 1601 | c = which is prime }} {{eqn | l = 40^2 + 40 + 41 | r = 1600 + 40+ 41 | rr= = 1681 | c = which is not prime: $1681 = 41^2$ }} {{end-eqn}} {{OEIS|A005846}} Then we have: {{begin-eqn}} {{eqn | l = \\paren {-\\paren {n + 1} }^2 + \\paren {-\\paren {n + 1} } | r = n^2 + 2 n + 1 - \\paren {n + 1} | c = }} {{eqn | r = n^2 + n | c = }} {{end-eqn}} and so replacing $0$ to $39$ with $-1$ to $-40$ yields exactly the same sequence of primes. We note in addition the example: :$581^2 + 581 + 41 = 338 \\, 183$ which is prime. {{qed}} == Sources == * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = 41|next = Prime-Generating Quadratic of form x squared - 79 x + 1601}}: $41$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = 41|next = Euler Lucky Number/Examples/41/Mistake}}: $41$ Category:Euler Lucky Numbers Category:41 lk4bfvl2uaiw5v6frkad6sln0swla02"}
+{"_id": "32713", "title": "Feit-Thompson Conjecture", "text": "Feit-Thompson Conjecture 0 53680 346749 285703 2018-03-11T10:32:43Z Prime.mover 59 wikitext text/x-wiki == Conjecture == There exist no distinct prime numbers $p$ and $q$ such that: :$\\dfrac {p^q - 1} {p - 1}$ divides $\\dfrac {q^p - 1} {q - 1}$ === Stronger Feit-Thompson Conjecture === {{:Feit-Thompson Conjecture/Stronger}} {{Namedfor|Walter Feit|name2 = John Griggs Thompson|cat = Feit|cat2 = Thompson}} Category:Prime Numbers Category:Divisors Category:Unproven Hypotheses Category:Feit-Thompson Conjecture mdebsx8acjyb9iigtnnvjvbmi14qoh6"}
+{"_id": "32714", "title": "Factorial/Examples/11", "text": "Factorial/Examples/11 0 53752 307317 285906 2017-07-30T05:19:59Z Prime.mover 59 wikitext text/x-wiki == Example of Factorial == :$11! = 39 \\, 916 \\, 800$ == Proof == From Examples of Factorials: :$10! = 3 \\, 628 \\, 800$ Then: 3 628 800 x 11 ---------- 3 628 800 36 288 000 ---------- 39 916 800
{{qed}} Category:Factorials/Examples Category:11 6ra9v68ayfjn5rouvqw5o43wmkd2r37"}
+{"_id": "32715", "title": "Factorial/Examples/12", "text": "Factorial/Examples/12 0 53753 307318 285905 2017-07-30T05:20:19Z Prime.mover 59 wikitext text/x-wiki == Example of Factorial == :$12! = 479 \\, 001 \\, 600$ == Proof == From $11$ factorial: :$11! = 39 \\, 916 \\, 800$ Then: 39 916 800 x 12 ----------- 79 833 600 399 168 000 ----------- 479 001 600
{{qed}} Category:Factorials/Examples Category:12 c3mh9jjeduydt0onxjery7csw6wgrbe"}
+{"_id": "32716", "title": "Factorial/Examples/13", "text": "Factorial/Examples/13 0 53754 307319 285911 2017-07-30T05:20:39Z Prime.mover 59 wikitext text/x-wiki == Example of Factorial == :$13! = 6 \\, 227 \\, 020 \\, 800$ === Prime Factors of $13!$ === {{:Prime Factors of 13 Factorial}} == Proof == From $12$ factorial: :$12! = 479 \\, 001 \\, 600$ Then: 479 001 600 x 13 ------------- 1 437 004 800 4 790 016 000 ------------- 6 227 020 800
{{qed}} Category:Factorials/Examples Category:13 7d7m48618hj5aze0mz9oc74dnppukox"}
+{"_id": "32717", "title": "Factorial/Examples/14", "text": "Factorial/Examples/14 0 53755 307320 285903 2017-07-30T05:20:57Z Prime.mover 59 wikitext text/x-wiki == Example of Factorial == :$14! = 87 \\, 178 \\, 291 \\, 200$ == Proof == From $13$ factorial: :$13! = 6 \\, 227 \\, 020 \\, 800$ Then: 6 227 020 800 x 14 --------------- 24 908 083 200 62 270 208 000 -------------- 87 178 291 200
{{qed}} Category:Factorials/Examples Category:14 0n3ojsabmqnri974kjbmklppvl0jc9q"}
+{"_id": "32718", "title": "Factorial/Examples/15", "text": "Factorial/Examples/15 0 53757 307321 285907 2017-07-30T05:21:10Z Prime.mover 59 wikitext text/x-wiki == Example of Factorial == :$15! = 1 \\, 307 \\, 674 \\, 368 \\, 000$ == Proof == From $14$ Factorial: :$14! = 87 \\, 178 \\, 291 \\, 200$ Then: 87 178 291 200 x 15 ------------------ 435 891 456 000 871 782 912 000 ----------------- 1 307 674 368 000
{{qed}} Category:Factorials/Examples Category:15 lqtdq70q03acamfxx2281pfzhlhabvk"}
+{"_id": "32719", "title": "Factorial/Examples/16", "text": "Factorial/Examples/16 0 53758 307322 285908 2017-07-30T05:21:22Z Prime.mover 59 wikitext text/x-wiki == Example of Factorial == :$16! = 20 \\, 922 \\, 789 \\, 888 \\, 000$ == Proof == From $15$ Factorial: :$15! = 1 \\, 307 \\, 674 \\, 368 \\, 000$ Then: 1 307 674 368 000 x 16 ------------------ 7 846 046 208 000 13 076 743 680 000 ------------------ 20 922 789 888 000
{{qed}} Category:Factorials/Examples Category:16 d1yze2qeyc9jpylsn7didmwujg4epuj"}
+{"_id": "32720", "title": "Factorial/Examples/17", "text": "Factorial/Examples/17 0 53759 307323 285909 2017-07-30T05:21:32Z Prime.mover 59 wikitext text/x-wiki == Example of Factorial == :$17! = 355 \\, 687 \\, 428 \\, 096 \\, 000$ == Proof == From $16$ Factorial: :$16! = 20 \\, 922 \\, 789 \\, 888 \\, 000$ Then: 20 922 789 888 000 x 17 ------------------- 146 459 529 216 000 209 227 898 880 000 ------------------- 355 687 428 096 000
{{qed}} Category:Factorials/Examples Category:17 aa7clqqtqsra93zliurbbr6ut34uy58"}
+{"_id": "32721", "title": "Factorial/Examples/18", "text": "Factorial/Examples/18 0 53760 307324 285910 2017-07-30T05:21:42Z Prime.mover 59 wikitext text/x-wiki == Example of Factorial == :$18! = 6 \\, 402 \\, 373 \\, 705 \\, 728 \\, 000$ == Proof == From $17$ Factorial: :$17! = 355 \\, 687 \\, 428 \\, 096 \\, 000$ Then: 355 687 428 096 000 x 18 --------------------- 2 845 499 424 768 000 3 556 874 280 960 000 --------------------- 6 402 373 705 728 000
{{qed}} Category:Factorials/Examples Category:18 iy07acl27x5ararkfo5bnxgb1fezbbe"}
+{"_id": "32722", "title": "Factorial/Examples/19", "text": "Factorial/Examples/19 0 53761 307325 285915 2017-07-30T05:21:53Z Prime.mover 59 wikitext text/x-wiki == Example of Factorial == :$19! = 121 \\, 645 \\, 100 \\, 408 \\, 832 \\, 000$ == Proof == From $18$ Factorial: :$18! = 6 \\, 402 \\, 373 \\, 705 \\, 728 \\, 000$ Then: 6 402 373 705 728 000 x 19 ----------------------- 57 621 363 351 552 000 64 023 737 057 280 000 ----------------------- 121 645 100 408 832 000
{{qed}} Category:Factorials/Examples Category:19 8bw062ee8izvjerlllqkr0j857z6fw4"}
+{"_id": "32723", "title": "Factorial/Examples/20", "text": "Factorial/Examples/20 0 53762 382273 307326 2018-12-14T22:42:48Z Prime.mover 59 wikitext text/x-wiki == Example of Factorial == :$20! = 2 \\, 432 \\, 902 \\, 008 \\, 176 \\, 640 \\, 000$ === Prime Factors of $20!$ === {{:Prime Factors of 20 Factorial}} == Proof == From $19$ Factorial: :$19! = 121 \\, 645 \\, 100 \\, 408 \\, 832 \\, 000$ Then: 121 645 100 408 832 000 x 20 ------------------------ 2 432 902 008 176 640 000
{{qed}} == Sources == * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = Cross-Sections of Leech Lattice|next = Factorial/Examples/450/Historical Note}}: $24$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = Definition:Factorial|next = Factorial/Examples/1,000,000}}: $24$ Category:Factorials/Examples Category:20 sflj3v0q5ogye6so4mmykwgq7oynkkw"}
+{"_id": "32724", "title": "Factorial/Examples/21", "text": "Factorial/Examples/21 0 53836 307327 286137 2017-07-30T05:22:17Z Prime.mover 59 wikitext text/x-wiki == Example of Factorial == :$21! = 51 \\, 090 \\, 942 \\, 171 \\, 709 \\, 440 \\, 000$ == Proof == From $20$ Factorial: :$20! = 2 \\, 432 \\, 902 \\, 008 \\, 176 \\, 640 \\, 000$ Then: 2 432 902 008 176 640 000 x 21 --------------------------- 2 432 902 008 176 640 000 48 658 040 163 532 800 000 --------------------------- 51 090 942 171 709 440 000
{{qed}} Category:Factorials/Examples Category:21 0a57vhpp7r4z699dh61a3eb8dtpaaw8"}
+{"_id": "32725", "title": "Factorial/Examples/22", "text": "Factorial/Examples/22 0 53837 307328 286139 2017-07-30T05:22:27Z Prime.mover 59 wikitext text/x-wiki == Example of Factorial == :$22! = 1 \\, 124 \\, 000 \\, 727 \\, 777 \\, 607 \\, 680 \\, 000$ == Proof == From $21$ Factorial: :$21! = 51 \\, 090 \\, 942 \\, 171 \\, 709 \\, 440 \\, 000$ Then: 51 090 942 171 709 440 000 x 22 ----------------------------- 102 181 884 343 418 880 000 1 021 818 843 434 188 800 000 ----------------------------- 1 124 000 727 777 607 680 000
{{qed}} Category:Factorials/Examples Category:22 s6zkqhpng4z50u0nvcp4kzeyag2zrkm"}
+{"_id": "32726", "title": "Factorial/Examples/23", "text": "Factorial/Examples/23 0 53838 307329 286140 2017-07-30T05:22:38Z Prime.mover 59 wikitext text/x-wiki == Example of Factorial == :$23! = 25 \\, 852 \\, 016 \\, 738 \\, 884 \\, 976 \\, 640 \\, 000$ == Proof == From $22$ Factorial: :$22! = 1 \\, 124 \\, 000 \\, 727 \\, 777 \\, 607 \\, 680 \\, 000$ Then: 1 124 000 727 777 607 680 000 x 23 ------------------------------ 3 372 002 183 332 823 040 000 22 480 014 555 552 153 600 000 ------------------------------ 25 852 016 738 884 976 640 000
{{qed}} Category:Factorials/Examples Category:23 fpy1sfyi1q72rxgk957fgb4wwlyhqyc"}
+{"_id": "32727", "title": "Factorial/Examples/24", "text": "Factorial/Examples/24 0 53839 307330 286141 2017-07-30T05:22:50Z Prime.mover 59 wikitext text/x-wiki == Example of Factorial == :$24! = 620 \\, 448 \\, 401 \\, 733 \\, 239 \\, 439 \\, 360 \\, 000$ == Proof == From $23$ Factorial: :$23! = 25 \\, 852 \\, 016 \\, 738 \\, 884 \\, 976 \\, 640 \\, 000$ Then: 25 852 016 738 884 976 640 000 x 24 ------------------------------- 103 408 066 955 539 906 560 000 517 040 334 777 699 532 800 000 ------------------------------- 620 448 401 733 239 439 360 000
{{qed}} Category:Factorials/Examples Category:24 4tg05bm160modl1t8ynopwd8so39p4d"}
+{"_id": "32728", "title": "Factorial/Examples/25", "text": "Factorial/Examples/25 0 53840 307331 286143 2017-07-30T05:23:00Z Prime.mover 59 wikitext text/x-wiki == Example of Factorial == :$25! = 15 \\, 511 \\, 210 \\, 043 \\, 330 \\, 985 \\, 984 \\, 000 \\, 000$ == Proof == From $24$ Factorial: :$24! = 620 \\, 448 \\, 401 \\, 733 \\, 239 \\, 439 \\, 360 \\, 000$ Then: 620 448 401 733 239 439 360 000 x 25 ---------------------------------- 3 102 242 008 666 197 196 800 000 12 408 968 034 664 788 787 200 000 ---------------------------------- 15 511 210 043 330 985 984 000 000
{{qed}} Category:Factorials/Examples Category:25 3rsp94dts04c0kf6b2axggtlhyfstfn"}
+{"_id": "32729", "title": "Square of Small-Digit Palindromic Number is Palindromic/Examples/11", "text": "Square of Small-Digit Palindromic Number is Palindromic/Examples/11 0 53853 383304 382082 2018-12-20T06:39:14Z Prime.mover 59 wikitext text/x-wiki == Example of Square of Small-Digit Palindromic Number is Palindromic == ::$11^2 = 121$ == Proof == {{begin-eqn}} {{eqn | l = 11^2 | r = \\left({10 + 1}\\right)^2 | c = }} {{eqn | r = 10^2 + 2 \\times 10 \\times 1 + 1^2 | c = }} {{eqn | r = 100 + 20 + 1 | c = }} {{eqn | r = 121 | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = Square of Small-Digit Palindromic Number is Palindromic/Examples/22|next = Square of Small-Digit Palindromic Number is Palindromic/Examples/111}}: $22$ * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = 121|next = 121 is Square Number in All Bases greater than 2}}: $121$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = Square of Small-Digit Palindromic Number is Palindromic/Examples/22|next = Square of Small-Digit Palindromic Number is Palindromic/Examples/111}}: $22$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = 121|next = 121 is Square Number in All Bases greater than 2}}: $121$ Category:Square of Small-Digit Palindromic Number is Palindromic Category:11 Category:121 k0ar8p9ci8onod77ll6uy8e8c8s2snc"}
+{"_id": "32730", "title": "Square of Small-Digit Palindromic Number is Palindromic/Examples/121", "text": "Square of Small-Digit Palindromic Number is Palindromic/Examples/121 0 53859 382085 298747 2018-12-14T06:17:48Z Prime.mover 59 wikitext text/x-wiki == Example of Square of Small-Digit Palindromic Number is Palindromic == ::$121^2 = 14641$ == Proof == 121 x 121 ----- 121 2420 12100 ------- 14641
{{qed}} == Sources == * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = Square of Small-Digit Palindromic Number is Palindromic/Examples/1111|next = Square of Small-Digit Palindromic Number is Palindromic/Examples/212}}: $22$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = Square of Small-Digit Palindromic Number is Palindromic/Examples/1111|next = Square of Small-Digit Palindromic Number is Palindromic/Examples/212}}: $22$ Category:Square of Small-Digit Palindromic Number is Palindromic Category:121 tdhaur6apnd1st1t64fjvusyxar35xc"}
+{"_id": "32731", "title": "Sigma Function of Square-Free Integer/Examples/70", "text": "Sigma Function of Square-Free Integer/Examples/70 0 53870 492965 317776 2020-10-06T18:06:59Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Square-Free Integer == :$\\map \\sigma {70} = 144$ where $\\sigma$ denotes the $\\sigma$ function. == Proof 1 == {{:Sigma Function of Square-Free Integer/Examples/70/Proof 1}} == Proof 2 == {{:Sigma Function of Square-Free Integer/Examples/70/Proof 2}} Category:Sigma Function of Square-Free Integer Category:70 Category:Sigma Function of Square-Free Integer/Examples/70 ld8kh8u994m7leko1i8hf74cwmhm918"}
+{"_id": "32732", "title": "Birthday Paradox", "text": "Birthday Paradox 0 53960 478611 478607 2020-07-17T10:49:09Z Prime.mover 59 wikitext text/x-wiki == Paradox == Let there be $23$ or more people in a room. The probability that at least $2$ of them have the same birthday is greater than $50 \\%$. == Proof == Let there be $n$ people in the room. Let $\\map p n$ be the probability that no two people in the room have the same birthday. For simplicity, let us ignore leap years and assume there are $365$ days in the year. Let the birthday of person $1$ be established. The probability that person $2$ shares person $1$'s birthday is $\\dfrac 1 {365}$. Thus, the probability that person $2$ does not share person $1$'s birthday is $\\dfrac {364} {365}$. Similarly, the probability that person $3$ does not share the birthday of either person $1$ or person $2$ is $\\dfrac {363} {365}$. And further, the probability that person $n$ does not share the birthday of any of the people indexed $1$ to $n - 1$ is $\\dfrac {365 - \\paren {n - 1} } {365}$. Hence the total probability that none of the $n$ people share a birthday is given by: :$\\map p n = \\dfrac {364} {365} \\dfrac {363} {365} \\dfrac {362} {365} \\cdots \\dfrac {365 - n + 1} {365}$ {{begin-eqn}} {{eqn | l = \\map p n | r = \\dfrac {364} {365} \\dfrac {363} {365} \\dfrac {362} {365} \\cdots \\dfrac {365 - n + 1} {365} | c = }} {{eqn | r = \\dfrac {365!} {365^n} \\binom {365} n | c = }} {{end-eqn}} Setting $n = 23$ and evaluating the above gives: :$\\map p {23} \\approx 0.493$ Hence the probability that at least $2$ people share a birthday is $1 = 0.492 = 0.507 = 50.7 \\%$ {{qed}} == Conclusion == This is a veridical paradox. Counter-intuitively, the probability of a shared birthday amongst such a small group of people is surprisingly high. == General Birthday Paradox == {{:Birthday Paradox/General}} == Sources == * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = 23 is Largest Integer not Sum of Distinct Perfect Powers/Mistake|next = Harmonic Series is Divergent}}: $23$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = 23 is Largest Integer not Sum of Distinct Perfect Powers/Mistake|next = Birthday Paradox/General/3}}: $23$ Category:Probability Theory Category:Combinatorics Category:Veridical Paradoxes Category:Birthday Paradox n82iwsg3p01ongoa3zlquh7ap1exnev"}
+{"_id": "32733", "title": "Legendre's Condition/Lemma 1", "text": "Legendre's Condition/Lemma 1 0 54016 496498 457855 2020-10-25T13:41:04Z Prime.mover 59 wikitext text/x-wiki {{MissingLinks}} == Lemma == Let $y = \\map y x$ be a real function, such that: :$\\map y a = A$ :$\\map y b = B$ Let $J \\sqbrk y$ be a functional, such that: :$\\ds J \\sqbrk y = \\int_a^b \\map F {x, y, y'} \\rd x$ where: :$F \\in C^2 \\closedint a b$ {{WRT}} all its variables. Then: :$\\ds \\delta^2 J \\sqbrk {y; h} = \\int_a^b \\paren {\\map P {x, \\map y x} h'^2 + \\map Q {x, \\map y x} h^2} \\rd x$ where: {{begin-eqn}} {{eqn | l = \\map P {x, \\map y x} | r = \\frac 1 2 F_{y'y'} }} {{eqn | l = \\map Q {x, \\map y x} | r = \\frac 1 2 \\paren {F_{yy} - \\frac \\d {\\d x} F_{yy} } }} {{end-eqn}} == Proof == The minimising function $y$ has fixed end-points. Therefore, consider an increment of a functional with $h$ such that: :$h \\in C^1 \\closedint a b: \\paren {\\map h a = 0} \\land \\paren {\\map h b = 0}$ Then: {{begin-eqn}} {{eqn | l = \\Delta J \\sqbrk {y; h} | r = J \\sqbrk {y + h} - J \\sqbrk y | c = {{Defof|Increment of Functional}} }} {{eqn | r = \\int_a^b \\paren {\\map F {x, y + h, y' + h'} - \\map F {x, y, y'} } \\rd x | c = form of $J$ }} {{eqn | r = \\int_a^b \\paren {F + \\paren {F_y h + F_{y'} h'} + \\frac 1 2 \\paren {\\overline F_{yy} h^2 + \\overline F_{yy'} h h' + \\overline F_{y'y'} h'^2} - F} \\rd x | c = Taylor's Theorem }} {{eqn | r = \\int_a^b \\paren {F_y h + F_{y'} h'} \\rd x + \\frac 1 2 \\int_a^b \\paren {\\overline F_{yy} h^2 + \\overline F_{yy'} h h' + \\overline F_{y'y'} h'^2} \\rd x | c = cancel $F$ }} {{end-eqn}} where omitted variables are $\\paren {x, y, y'}$, and the overbar indicates derivatives being taken along some intermediate curves: {{begin-eqn}} {{eqn | l = \\overline {\\map {F_{yy} } {x,y,y'} } | r = \\map {F_{yy} } {x, y + \\theta h, y' + \\theta h'} }} {{eqn | l = \\overline {\\map {F_{yy'} } {x,y,y'} } | r = \\map {F_{yy'} } {x, y + \\theta h, y' + \\theta h'} }} {{eqn | l = \\overline {\\map {F_{y'y'} } {x,y,y'} } | r = \\map {F_{y'y'} } {x, y + \\theta h, y' + \\theta h'} }} {{end-eqn}} with $0 < \\theta < 1$. If $\\overline F_{yy}$, $\\overline F_{yy'}$, $\\overline F_{y'y'} $ are to be replaced by $F_{yy}$, $F_{yy}$, $F_{y'y'}$ evaluated at the point $\\tuple {x, \\map y x, \\map {y'} x}$, then: :$\\ds \\Delta J \\sqbrk {y; h} = \\int_a^b \\paren {\\map {F_y} {x, y, y'} h + \\map {F_{y'} } {x, y, y'} h'} \\rd x + \\frac 1 2 \\int_a^b \\paren {\\map {F_{yy} } {x, y, y'} h^2 + 2 \\map {F_{yy'} } {x, y, y'} h h'+ \\map {F_{y'y'} } {x, y, y'} h'^2} \\rd x + \\epsilon$ where: :$\\ds \\epsilon = \\int_a^b \\paren {\\epsilon_1 h^2 + \\epsilon_2 h h' + \\epsilon_3 h'^2}$ By continuity of $F_{yy}$, $F_{yy}$, $F_{y'y'}$: :$\\size h_1 \\to 0 \\implies \\epsilon_1, \\epsilon_2, \\epsilon_3 \\to 0$ {{explain|What does $\\size h_1$ mean?}} Thus, $\\epsilon$ is an infinitesimal of the order higher than 2 {{WRT}} $\\size h$. {{Stub|Expand on steps including $ \\epsilon $}} The first and second term on the {{RHS}} of $\\Delta J \\sqbrk {y; h}$ are $\\delta J \\sqbrk {y; h}$ and $\\delta^2 J \\sqbrk {y; h}$ respectively. Integrate the second term of $\\delta^2 J \\sqbrk {y; h}$ by parts: {{begin-eqn}} {{eqn | l = \\int_a^b 2 F_{yy'} h h' \\rd x | r = \\int_a^b 2 F_{yy'} h \\rd h }} {{eqn | r = \\int_a^b F_{yy'} \\rd h^2 }} {{eqn | r = \\bigintlimits {F_{yy'} h^2} {x \\mathop = a} {x \\mathop = b} - \\int_a^b \\map {\\frac \\d {\\d x} } {F_{yy'} } h^2 \\rd x }} {{eqn | r = -\\int_a^b \\map {\\frac \\d {\\d x} } {F_{yy'} } h^2 \\rd x }} {{end-eqn}} {{explain|Why does $\\bigintlimits {F_{yy'} h^2} {x \\mathop {{=}} a} {x \\mathop {{=}} b}$ vanish?}} Therefore: :$\\ds \\delta^2 J \\sqbrk {y; h} = \\int_a^b \\paren {\\frac 1 2 F_{y'y'} h'^2 + \\frac 1 2 \\paren {F_{yy} - \\frac \\d {\\d x} F_{yy'} } h^2} \\rd x$ {{qed|lemma}} {{explain|Review use of square brackets. If they are being used purely for parenthesis, better to replace with round ones, as square ones have conventional meanings, so use of them for parenthesis may confuse.}} == Mistake == {{BookReference|Calculus of Variations|1963|I.M. Gelfand|author2 = S.V. Fomin}}: $\\S 5.25$: The Formula for the Second Variation. Legendre's Condition p. 102 states that :$P = \\dfrac 1 2 F_{y'y'} \\quad Q = \\dfrac 1 2 \\paren {F_{yy'} - \\dfrac \\d {\\d x} F_{yy'} }$ This is a mistake, since the second variation should contain both pure and mixed partial derivatives of the order 2. However, $F_{yy} $ is missing and could not have been lost during derivation of the proof. It should be: :$Q = \\dfrac 1 2 \\paren {F_{yy} - \\dfrac \\d {\\d x} F_{yy'} }$ == Sources == {{BookReference|Calculus of Variations|1963|I.M. Gelfand|author2 = S.V. Fomin|prev = Legendre's Condition|next = Legendre's Condition/Lemma 2}}: $\\S 5.25$: The Formula for the Second Variation. Legendre's Condition Category:Calculus of Variations 4f4ujy87m15vkm3s39frexhfs87749v"}
+{"_id": "32734", "title": "Legendre's Condition/Lemma 2", "text": "Legendre's Condition/Lemma 2 0 54021 458074 458070 2020-03-28T22:13:00Z Julius 3095 wikitext text/x-wiki {{MissingLinks}} == Lemma == Let $ h$ be a real function such that: :$h \\in C^1 \\openint a b$ :$\\map h a = 0$ :$\\map h b = 0$ Let: :$\\displaystyle \\delta^2 J \\sqbrk {y; h} = \\int_a^b \\paren {\\map P {x, \\map y x} h'^2 + \\map Q {x, \\map y x} h^2} \\rd x$ where $P \\in C^0 \\closedint a b$. Then a necessary condition for: :$\\delta^2 J \\sqbrk {y; h} \\ge 0$ is: :$\\forall x\\in\\closedint a b: \\map P {x, \\map y x} \\ge 0$ == Proof == Assume that above is not true. Then: :$\\paren {\\exists x_0 \\in \\closedint a b} \\land \\paren {\\exists \\beta \\in \\R_{<0} }: \\map P {x_0} = -2 \\beta$ $P$ is continuous. Thus: :$\\exists \\alpha \\in \\R_{>0}: \\paren {a \\ge x_0 - \\alpha} \\land \\paren {x_0 + \\alpha \\ge b}$ and: :$\\forall x \\in \\openint {x_0 - \\alpha} {x_0 + \\alpha}: \\map P x < -\\beta$ In other words: $\\map P x \\begin {cases} = 0 & : x \\in \\closedint a {x_0 - \\alpha} \\lor \\closedint {x_0 + \\alpha} b \\\\ < 0 & : x \\in \\closedint {x_0 - \\alpha} {x_0 + \\alpha} \\end {cases}$ Let :$h = \\begin {cases} \\sin^2 \\paren {\\dfrac {\\map \\pi {x - x_0} } \\alpha} & : x_0 - \\alpha \\ge x \\ge x_0 + \\alpha \\\\ 0 & : \\text {otherwise} \\end{cases}$ It belongs to $C^1 \\openint a b$ because: {{explain|The derivation and significance of all the below: what they mean, what depends on what, etc.}} {{begin-eqn}} {{eqn | l = \\lim_{x \\to x_0 - \\alpha + 0^+} h | r = \\lim_{x \\to x_0 - \\alpha + 0^+} \\map {\\sin^2} {\\frac {\\map \\pi {x - x_0} } \\alpha} }} {{eqn | r = \\map {\\sin^2} {\\map \\pi {\\frac {0^+} \\alpha - 1} } }} {{eqn | r = 0 }} {{end-eqn}} {{begin-eqn}} {{eqn | l = \\lim_{x \\to x_0 - \\alpha + 0^+}h' | r = \\lim_{x \\to x_0 - \\alpha + 0^+} \\map \\sin {\\frac {2 \\map \\pi {x - x_0} } \\alpha} \\frac \\pi \\alpha }} {{eqn | r = \\map \\sin {2 \\map \\pi {\\frac {0^+} \\alpha - 1} } \\frac \\pi \\alpha }} {{eqn | r = 0 }} {{end-eqn}} {{begin-eqn}} {{eqn | l = \\lim_{x \\to x_0 - \\alpha + 0^+}h'' | r = \\lim_{x \\to x_0 - \\alpha + 0^+} \\map \\cos {\\frac {2 \\map \\pi {x - x_0} } \\alpha} \\frac {2 \\pi^2} {\\alpha^2} }} {{eqn | r = \\map \\cos {2 \\map \\pi {\\frac {0^+} \\alpha - 1} } \\frac {2 \\pi^2} {\\alpha^2} }} {{eqn | r = \\frac {2 \\pi^2} {\\alpha^2} }} {{end-eqn}} {{begin-eqn}} {{eqn | l = \\lim_{x \\to x_0 + \\alpha + 0^-} h | r = \\lim_{x \\to x_0 + \\alpha + 0^-} \\map {\\sin^2} {\\frac {\\map \\pi {x - x_0} } \\alpha} }} {{eqn | r = \\map {\\sin^2} {\\map \\pi {\\frac {0^-} \\alpha + 1} } }} {{eqn | r = 0 }} {{end-eqn}} {{begin-eqn}} {{eqn | l = \\lim_{x \\to x_0 + \\alpha + 0^-}h' | r = \\lim_{x \\to x_0 - \\alpha + 0^-} \\map \\sin {\\frac {2 \\map \\pi {x - x_0} } \\alpha} \\frac \\pi \\alpha }} {{eqn | r = \\map \\sin {2 \\map \\pi {\\frac {0^-} \\alpha + 1} } \\frac \\pi \\alpha }} {{eqn | r = 0 }} {{end-eqn}} {{begin-eqn}} {{eqn | l = \\lim_{x \\to x_0 + \\alpha + 0^-}h'' | r = \\lim_{x \\to x_0 - \\alpha + 0^-} \\map \\cos {\\frac {2 \\map \\pi {x - x_0} } \\alpha} \\frac {2 \\pi^2} {\\alpha^2} }} {{eqn | r = \\map \\cos {2 \\map \\pi {\\frac {0^-} \\alpha + 1} } \\frac {2 \\pi^2} {\\alpha^2} }} {{eqn | r = \\frac {2\\pi^2} {\\alpha^2} }} {{end-eqn}} In other words, only $h$ and $h'$ are continuous in $\\closedint a b$ Then: {{begin-eqn}} {{eqn | l = \\int_a^b \\paren {P h'^2 + Q h^2} \\rd x | r = \\int_{x_0 - \\alpha}^{x_0 + \\alpha} P \\frac {\\pi^2} {\\alpha^2} \\map {\\sin^2} {\\frac {2 \\map \\pi {x - x_0} } \\alpha} \\rd x + \\int_{x_0 - \\alpha}^{x_0 + \\alpha} Q \\map {\\sin^4} {\\frac {\\map \\pi {x - x_0} } \\alpha} \\rd x }} {{eqn | o = < | r = -\\beta \\frac {\\pi^2} {\\alpha^2} \\int_{x_0 - \\alpha}^{x_0 + \\alpha} \\map {\\sin^2} {\\frac {2 \\map \\pi {x - x_0} } \\alpha} \\rd x + \\max_{a \\le x \\le b} \\size {\\map Q x} \\int_{x_0 - \\alpha}^{x_0 + \\alpha} \\map {\\sin^4} {\\frac {\\map \\pi {x - x_0} } \\alpha}\\rd x | c = as $\\displaystyle \\map P x < -\\beta, \\quad \\map Q x < \\max_{a \\mathop \\le x \\mathop \\le b} \\size {\\map Q x}$ }} {{eqn | r = -\\beta \\frac {\\pi^2} \\alpha + \\max_{a \\mathop \\le x \\mathop \\le b} \\size {\\map Q x} \\int_{x_0 - \\alpha}^{x_0 + \\alpha} \\map {\\sin^4} {\\frac {\\map \\pi {x - x_0} } \\alpha} \\rd x }} {{eqn | r = -\\beta \\frac {\\pi^2} \\alpha + \\frac 3 4 \\alpha M }} {{end-eqn}} where: :$\\displaystyle M = \\max_{a \\mathop \\le x \\mathop \\le b} \\size {\\map Q x}$ For sufficiently small $\\alpha$ the {{RHS}} is negative. Hence, $\\delta^2 J$ is negative for the corresponding $h$. To conclude, it has been shown that :$P \\ge 0 \\quad \\neg \\forall x \\in \\closedint a b \\implies \\delta^2 J<0$ Then, by contrapositive statement this is equivalent to: :$\\forall x \\in \\closedint a b: \\delta^2 J \\ge 0 \\implies P \\ge 0$ {{qed}} == Sources == {{BookReference|Calculus of Variations|1963|I.M. Gelfand|author2 = S.V. Fomin|prev = Legendre's Condition/Lemma 1|next = Definition:Conjugate Point}}: $\\S 5.25$: The Formula for the Second Variation. Legendre's Condition Category:Calculus of Variations r3a5e2emmox1zng2irquahrotbcr76s"}
+{"_id": "32735", "title": "Sigma Function of Integer/Examples/20", "text": "Sigma Function of Integer/Examples/20 0 54025 317610 317522 2017-09-16T11:58:00Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\sigma \\left({20}\\right) = 42$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == From Sigma Function of Integer :$\\displaystyle \\sigma \\left({n}\\right) = \\prod_{1 \\mathop \\le i \\mathop \\le r} \\frac {p_i^{k_i + 1} - 1} {p_i - 1}$ where $n = \\displaystyle \\prod_{1 \\mathop \\le i \\mathop \\le r} p_i^{k_i}$ denotes the prime decomposition of $n$. We have that: :$20 = 2^2 \\times 5$ Hence: {{begin-eqn}} {{eqn | l = \\sigma \\left({20}\\right) | r = \\frac {2^3 - 1} {2 - 1} \\times \\frac {5^2 - 1} {5 - 1} | c = }} {{eqn | r = \\frac 7 1 \\times \\frac {6 \\times 4} 4 | c = }} {{eqn | r = 7 \\times 6 | c = }} {{eqn | r = 42 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:20 svrer95xyqtzsimn8y4q3fhlh5itsor"}
+{"_id": "32736", "title": "Sigma Function of Non-Square Semiprime/Examples/35", "text": "Sigma Function of Non-Square Semiprime/Examples/35 0 54077 484228 352264 2020-08-30T21:18:49Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Non-Square Semiprime == :$\\map \\sigma {35} = 48$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$35 = 5 \\times 7$ and so by definition is a semiprime whose prime factors are distinct. Hence: {{begin-eqn}} {{eqn | l = \\map \\sigma {35} | r = \\paren {5 + 1} \\paren {7 + 1} | c = Sigma Function of Non-Square Semiprime }} {{eqn | r = 6 \\times 8 | c = }} {{eqn | r = 48 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Non-Square Semiprime Category:35 f563vp1dfsoqnxbfeuiwl1ldgq3e6hn"}
+{"_id": "32737", "title": "Binomial Theorem/Examples/Cube of Sum", "text": "Binomial Theorem/Examples/Cube of Sum 0 54109 412151 393428 2019-07-08T08:23:28Z Prime.mover 59 wikitext text/x-wiki == Example of Use of Binomial Theorem == :$\\paren {x + y}^3 = x^3 + 3 x^2 y + 3 x y^2 + y^3$ === Corollary === {{:Cube of Sum/Corollary}} == Proof == Follows directly from the Binomial Theorem: :$\\displaystyle \\forall n \\in \\Z_{\\ge 0}: \\paren {x + y}^n = \\sum_{k \\mathop = 0}^n \\binom n k x^{n - k} y^k$ putting $n = 3$. {{qed}} == Sources == * {{BookReference|Mathematical Handbook of Formulas and Tables|1968|Murray R. Spiegel|prev = Square of Difference|next = Cube of Difference}}: $\\S 2$: Special Products and Factors: $2.3$ * {{BookReference|Mathematical Handbook of Formulas and Tables|1968|Murray R. Spiegel|prev = Square of Sum/Algebraic Proof 2|next = Fourth Power of Sum}}: $\\S 20$: Binomial Series: $20.6$ * {{BookReference|Elementary Number Theory|1980|David M. Burton|ed = revised|edpage = Revised Printing|prev = Square of Sum|next = Binomial Theorem/Examples/4th Power of Sum}}: Chapter $1$: Some Preliminary Considerations: $1.2$ The Binomial Theorem Category:Examples of Use of Binomial Theorem Category:Third Powers jux8rm3q0livgh17bgq7gn9mq7opwy1"}
+{"_id": "32738", "title": "Taylor Expansion for Polynomials/Order 1", "text": "Taylor Expansion for Polynomials/Order 1 0 54559 288840 2017-03-15T22:09:30Z Barto 3079 Created page with \"== Theorem == Let $R$ be a commutative ring with unity. Let $f(X)\\in R[X]$ be a Definition:Polynomial (Abstract Al...\" wikitext text/x-wiki == Theorem == Let $R$ be a commutative ring with unity. Let $f(X)\\in R[X]$ be a polynomial. Let $a\\in R$. Then there exists a polynomial $g(X)\\in R[X]$ such that: :$f(X+a) = f(X) + a f'(X) +a^2 g(X)$ where $f'$ denotes the formal derivative of $f$. == Proof == By linearity, it suffices to prove this for $f(X)=X^n$. This is now a direct consequence of the Binomial Theorem. {{qed}} Category:Polynomial Theory 2y2stiza6omv9tu8mo9wsygmj8frhvf"}
+{"_id": "32739", "title": "Smallest Set of Weights for One-Pan Balance", "text": "Smallest Set of Weights for One-Pan Balance 0 54967 481405 390665 2020-08-11T21:23:51Z Prime.mover 59 wikitext text/x-wiki == Classic Problem == Consider a set of balance scales for determining the weight of a physical object. Let this set of scales be such that weights may be placed in one of the pans. What is the smallest set of weights needed to weigh any given integer weight up to a given amount? == Solution == A set of $m$ weights in the sequence $\\sequence {2^n}$: :$1, 2, 4, 8, 16, \\ldots$ allows one to weigh any given integer weight up to $2^m - 1$. == Proof == This is equivalent to the statement that every positive integer can be expressed uniquely in binary notation. This in turn is an application of the Basis Representation Theorem. {{qed}} == Examples == {{:Smallest Set of Weights for One-Pan Balance/Examples}} == Also see == * Smallest Set of Weights for Two-Pan Balance == Historical Note == {{:Smallest Set of Weights for One-Pan Balance/Historical Note}} == Sources == * {{BookReference|Mathematical Recreations and Essays|1974|W.W. Rouse Ball|author2 = H.S.M. Coxeter|ed = 12th|edpage = Twelfth Edition}} * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = 18,446,744,073,709,551,615|next = Smallest Set of Weights for One-Pan Balance/Historical Note}}: $31$ * {{BookReference|Curious and Interesting Puzzles|1992|David Wells|prev = Smallest Set of Weights for One-Pan Balance/Historical Note|next = Smallest Set of Weights for Two-Pan Balance}}: Bachet: $108$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = 18,446,744,073,709,551,615|next = Smallest Set of Weights for One-Pan Balance/Historical Note}}: $31$ Category:Classic Problems Category:Binary Notation Category:Smallest Set of Weights for One-Pan Balance pep184wcvd7st290r60wp69n9qxgoza"}
+{"_id": "32740", "title": "Smallest Set of Weights for Two-Pan Balance", "text": "Smallest Set of Weights for Two-Pan Balance 0 54969 481412 390754 2020-08-11T22:01:32Z Prime.mover 59 wikitext text/x-wiki == Classic Problem == Consider a set of balance scales for determining the weight of a physical object. Let this set of scales be such that weights may be placed in either of the two pans. What is the smallest set of weights needed to weigh any given integer weight up to a given amount? == Solution == A set of weights up to $3^m$ in the sequence $\\sequence {3^n}$: :$1, 3, 9, 27, \\ldots$ allows one to weigh any given integer weight up to $\\dfrac {3^{m + 1} - 1} 2$. == Proof == Place the item to be weighed in the left hand pan of the balance. Let it weigh $n$. Let $n$ be expressed in balanced ternary representation. From Representation of Integers in Balanced Ternary, $n$ can be uniquely so represented. With $m$ digits, we can count up to $\\dfrac {3^{m + 1} - 1} 2$. We use the balanced ternary representation to model how to place the weights. Let the digits of $n$ in such a representation be numbered $0, 1, \\ldots, m$ from the least significant digit to the most significant digit. The $k$th digit represents the weight which weighs $3^k$. When the $k$th digit is $1$, place weight $3^k$ in the right hand pan. When the $k$th digit is $\\underline 1$, place weight $3^k$ in the left hand pan. When the $k$th digit is $$, place weight $3^k$ in neither pan. This will make the scales balance. {{qed}} == Examples == {{:Smallest Set of Weights for Two-Pan Balance/Examples}} == Also see == * Smallest Set of Weights for One-Pan Balance == Historical Note == {{:Smallest Set of Weights for Two-Pan Balance/Historical Note}} == Sources == * {{BookReference|Problèmes Plaisans et Delectables qui se font par les Nombres|1612|Claude-Gaspar Bachet}} * {{BookReference|Mathematical Recreations and Essays|1974|W.W. Rouse Ball|author2 = H.S.M. Coxeter|ed = 12th|edpage = Twelfth Edition}} * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = Smallest Set of Weights for One-Pan Balance/Historical Note|next = Smallest Set of Weights for Two-Pan Balance/Historical Note}}: $31$ * {{BookReference|Curious and Interesting Puzzles|1992|David Wells|prev = Smallest Set of Weights for One-Pan Balance|next = Book:Claudio Gaspare Bacheto/Diophanti Alexandrini Arithmeticorum}}: Bachet: $108$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = Smallest Set of Weights for One-Pan Balance/Historical Note|next = Smallest Set of Weights for Two-Pan Balance/Historical Note}}: $31$ Category:Classic Problems Category:Ternary Notation Category:Smallest Set of Weights for Two-Pan Balance ck5ksbidrvet8wqobildwk75wly3x9a"}
+{"_id": "32741", "title": "Sigma Function of 217", "text": "Sigma Function of 217 0 55223 352260 317842 2018-05-01T14:11:33Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Non-Square Semiprime == :$\\sigma \\left({217}\\right) = 256$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$217 = 7 \\times 31$ and so by definition is a semiprime whose prime factors are distinct. Hence: {{begin-eqn}} {{eqn | l = \\sigma \\left({217}\\right) | r = \\left({7 + 1}\\right) \\left({31 + 1}\\right) | c = Sigma Function of Non-Square Semiprime }} {{eqn | r = 8 \\times 32 | c = }} {{eqn | r = 2^3 \\times 2^5 | c = }} {{eqn | r = 2^8 | c = }} {{eqn | r = \\left({2^4}\\right)^2 | c = }} {{eqn | r = 16^2 | c = }} {{eqn | r = 256 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Non-Square Semiprime Category:217 t1dzyhch4vk8p05ofatyl44vay5sw3p"}
+{"_id": "32742", "title": "Sigma Function of 214", "text": "Sigma Function of 214 0 55226 392679 352261 2019-02-18T14:54:06Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Non-Square Semiprime == :$\\map \\sigma {214} = 324$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$214 = 2 \\times 107$ and so by definition is a semiprime whose prime factors are distinct. Hence: {{begin-eqn}} {{eqn | l = \\map \\sigma {214} | r = \\paren {2 + 1} \\paren {107 + 1} | c = Sigma Function of Non-Square Semiprime }} {{eqn | r = 3 \\times 108 | c = }} {{eqn | r = 3 \\times \\paren {2^2 \\times 3^3} | c = }} {{eqn | r = 2^3 \\times 3^4 | c = }} {{eqn | r = \\paren {2 \\times 3^2}^2 | c = }} {{eqn | r = 18^2 | c = }} {{eqn | r = 324 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Non-Square Semiprime Category:214 llhx6cmvjx6219ej3u92ldhuco7nalq"}
+{"_id": "32743", "title": "Sigma Function of 210", "text": "Sigma Function of 210 0 55249 444501 444500 2020-01-22T15:27:26Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Square-Free Integer == :$\\map \\sigma {210} = 576$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$210 = 2 \\times 3 \\times 5 \\times 7$ Hence: {{begin-eqn}} {{eqn | l = \\map \\sigma {210} | r = \\paren {2 + 1} \\paren {3 + 1} \\paren {5 + 1} \\paren {7 + 1} | c = Sigma Function of Square-Free Integer }} {{eqn | r = 3 \\times 4 \\times 6 \\times 8 | c = }} {{eqn | r = 3 \\times 2^2 \\times \\paren {2 \\times 3} \\times 2^3 | c = }} {{eqn | r = 2^6 \\times 3^2 | c = }} {{eqn | r = \\paren {2^3 \\times 3}^2 | c = }} {{eqn | r = 24^2 | c = }} {{eqn | r = 576 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Square-Free Integer Category:210 dcu9qi73ill3ucy6qxc63z0usb33us4"}
+{"_id": "32744", "title": "Sigma Function of 265", "text": "Sigma Function of 265 0 55252 317910 317908 2017-09-16T13:26:59Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Non-Square Semiprime == :$\\sigma \\left({265}\\right) = 324$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$265 = 5 \\times 53$ Hence: {{begin-eqn}} {{eqn | l = \\sigma \\left({265}\\right) | r = \\left({5 + 1}\\right) \\left({53 + 1}\\right) | c = Sigma Function of Non-Square Semiprime }} {{eqn | r = 6 \\times 54 | c = }} {{eqn | r = \\left({2 \\times 3}\\right) \\times \\left({2 \\times 3^3}\\right) | c = }} {{eqn | r = 2^2 \\times 3^4 | c = }} {{eqn | r = \\left({2 \\times 3^2}\\right)^2 | c = }} {{eqn | r = 18^2 | c = }} {{eqn | r = 324 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Non-Square Semiprime Category:265 27lfvdolzh8xkyhjnkvfr2k2qer0quv"}
+{"_id": "32745", "title": "Sigma Function of 282", "text": "Sigma Function of 282 0 55254 439920 317859 2019-12-17T13:28:01Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Square-Free Integer == :$\\map \\sigma {282} = 576$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$282 = 2 \\times 3 \\times 47$ Hence: {{begin-eqn}} {{eqn | l = \\map \\sigma {282} | r = \\paren {2 + 1} \\paren {3 + 1} \\paren {47 + 1} | c = Sigma Function of Square-Free Integer }} {{eqn | r = 3 \\times 4 \\times 48 | c = }} {{eqn | r = 3 \\times 2^2 \\times \\paren {2^4 \\times 3} | c = }} {{eqn | r = 2^6 \\times 3^2 | c = }} {{eqn | r = \\paren {2^3 \\times 3}^2 | c = }} {{eqn | r = 24^2 | c = }} {{eqn | r = 576 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Square-Free Integer Category:282 mxl5x6554hbloriiuetd6t7yb5ft1f2"}
+{"_id": "32746", "title": "Sigma Function of 310", "text": "Sigma Function of 310 0 55257 317871 317869 2017-09-16T13:20:45Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Square-Free Integer == :$\\sigma \\left({310}\\right) = 576$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$310 = 2 \\times 5 \\times 31$ Hence: {{begin-eqn}} {{eqn | l = \\sigma \\left({310}\\right) | r = \\left({2 + 1}\\right) \\left({5 + 1}\\right) \\left({31 + 1}\\right) | c = Sigma Function of Square-Free Integer }} {{eqn | r = 3 \\times 6 \\times 32 | c = }} {{eqn | r = 3 \\times \\left({2 \\times 3}\\right) \\times 2^5 | c = }} {{eqn | r = 2^6 \\times 3^2 | c = }} {{eqn | r = \\left({2^3 \\times 3}\\right)^2 | c = }} {{eqn | r = 24^2 | c = }} {{eqn | r = 576 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Square-Free Integer Category:310 fgx8h5izqq9d9m76ftnwn651hr8qtts"}
+{"_id": "32747", "title": "Sigma Function of 322", "text": "Sigma Function of 322 0 55260 317874 317872 2017-09-16T13:21:13Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Square-Free Integer == :$\\sigma \\left({322}\\right) = 576$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$322 = 2 \\times 7 \\times 23$ Hence: {{begin-eqn}} {{eqn | l = \\sigma \\left({322}\\right) | r = \\left({2 + 1}\\right) \\left({7 + 1}\\right) \\left({23 + 1}\\right) | c = Sigma Function of Square-Free Integer }} {{eqn | r = 3 \\times 8 \\times 24 | c = }} {{eqn | r = 3 \\times 2^3 \\times \\left({2^3 \\times 3}\\right) | c = }} {{eqn | r = 2^6 \\times 3^2 | c = }} {{eqn | r = \\left({2^3 \\times 3}\\right)^2 | c = }} {{eqn | r = 24^2 | c = }} {{eqn | r = 576 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Square-Free Integer Category:322 7tw0yluzqzp8h0teneku39m8ua1bta0"}
+{"_id": "32748", "title": "Sigma Function of 343", "text": "Sigma Function of 343 0 55263 383904 383903 2018-12-22T16:29:10Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Power of Prime == :$\\map \\sigma {343} = 400$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == From Sigma Function of Power of Prime: :$\\map \\sigma {p^k} = \\dfrac {p^{k + 1} - 1} {p_i - 1}$ We have that: :$343 = 7^3$ Hence: {{begin-eqn}} {{eqn | l = \\map \\sigma {343} | r = \\frac {7^4 - 1} {7 - 1} | c = }} {{eqn | r = \\frac {2400} 6 | c = }} {{eqn | r = 400 | c = }} {{eqn | r = 20^2 | c = }} {{end-eqn}} Thus we have that: :$7^0 + 7^2 + 7^2 + 7^3 = 20^2$ {{qed}} == Sources == * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = 400|next = Numbers whose Sigma is Square/Examples/400}}: $400$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = 400|next = Numbers whose Sigma is Square/Examples/400}}: $400$ Category:Sigma Function of Power of Prime Category:343 Category:400 ipq88t9fu4afs6dd70zbupj0gzvi375"}
+{"_id": "32749", "title": "Sigma Function of 345", "text": "Sigma Function of 345 0 55267 317877 317875 2017-09-16T13:21:35Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Square-Free Integer == :$\\sigma \\left({345}\\right) = 576$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$345 = 3 \\times 5 \\times 23$ Hence: {{begin-eqn}} {{eqn | l = \\sigma \\left({345}\\right) | r = \\left({3 + 1}\\right) \\left({5 + 1}\\right) \\left({23 + 1}\\right) | c = Sigma Function of Square-Free Integer }} {{eqn | r = 4 \\times 6 \\times 24 | c = }} {{eqn | r = 2^2 \\times \\left({2 \\times 3}\\right) \\times \\left({2^3 \\times 3}\\right) | c = }} {{eqn | r = 2^6 \\times 3^2 | c = }} {{eqn | r = \\left({2^3 \\times 3}\\right)^2 | c = }} {{eqn | r = 24^2 | c = }} {{eqn | r = 576 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Square-Free Integer Category:345 k9hdfy09zns4sbi7wj6r2bxagpmucpf"}
+{"_id": "32750", "title": "Sigma Function of 382", "text": "Sigma Function of 382 0 55282 352262 318092 2018-05-01T14:12:21Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Non-Square Semiprime == :$\\sigma \\left({382}\\right) = 576$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$382 = 2 \\times 191$ and so by definition is a semiprime whose prime factors are distinct. Hence: {{begin-eqn}} {{eqn | l = \\sigma \\left({382}\\right) | r = \\left({2 + 1}\\right) \\left({191 + 1}\\right) | c = Sigma Function of Non-Square Semiprime }} {{eqn | r = 3 \\times 192 | c = }} {{eqn | r = 3 \\times \\left({2^6 \\times 3}\\right) | c = }} {{eqn | r = 2^6 \\times 3^2 | c = }} {{eqn | r = \\left({2^3 \\times 3}\\right)^2 | c = }} {{eqn | r = 24^2 | c = }} {{eqn | r = 576 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Non-Square Semiprime Category:382 8acbm1vdulf64bmj1lrz6oshkujbmsa"}
+{"_id": "32751", "title": "Legendre's Condition/Lemma 1/Dependent on N Functions", "text": "Legendre's Condition/Lemma 1/Dependent on N Functions 0 55435 496503 470503 2020-10-25T13:44:39Z Prime.mover 59 wikitext text/x-wiki {{MissingLinks}} == Lemma == Let $\\mathbf y = \\paren {\\sequence {\\map {y_i} x}_{1 \\mathop \\le i \\mathop \\le N} }$ be a vector real function, such that: :$\\map {\\mathbf y} a = A$ :$\\map {\\mathbf y} b = B$ Let $J \\sqbrk {\\mathbf y}$ be a functional, such that: :$\\ds J \\sqbrk {\\mathbf y} = \\int_a^b \\map F {x, \\mathbf y, \\mathbf y'} \\rd x$ where: :$F \\in C^2 \\closedint a b$ {{WRT}} all its variables. Then: :$\\ds \\delta^2 J \\sqbrk {\\mathbf y; \\mathbf h} = \\int_a^b \\paren {\\mathbf h' \\mathbf P \\mathbf h' + \\mathbf h \\mathbf Q \\mathbf h} \\rd x$ where: :$\\mathbf P = \\dfrac 1 2 F_{y_i'y_j'}$ :$\\mathbf Q = \\dfrac 1 2 \\paren {F_{ y_i y_j} - \\dfrac \\d {\\d x} F_{y_i y_j'} }$ == Proof == {{ProofWanted}} == Sources == {{BookReference|Calculus of Variations|1963|I.M. Gelfand|author2 = S.V. Fomin|prev = Definition:Twice Differentiable/Functional/Dependent on N functions|next = Legendre's Condition/Lemma 2/Dependent on N Functions}}: $\\S 5.29$: Generalization to n Unknown Functions Category:Calculus of Variations nom8ugjj6nbhrzoyzl65vluwk9memcs"}
+{"_id": "32752", "title": "Divisor Counting Function/Examples/1", "text": "Divisor Counting Function/Examples/1 0 55440 451771 292209 2020-03-02T09:43:28Z Prime.mover 59 Prime.mover moved page Tau Function/Examples/1 to Divisor Counting Function/Examples/1 wikitext text/x-wiki == Example of Use of $\\tau$ Function == The value of the $\\tau$ function for the integer $1$ is $1$. == Proof == By definition, the $\\tau$ function of an integer $n$ is the number of positive integer divisors of $n$. There is only one positive integer which is a divisor of $1$, and that is $1$ itself. Hence the result. {{qed}} Category:Tau Function p6llhtqkzlgph5ch80n8f8yooghmbhd"}
+{"_id": "32753", "title": "Sigma Function of 1", "text": "Sigma Function of 1 0 55443 379705 317546 2018-12-02T09:42:58Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\map \\sigma 1 = 1$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == By definition, the $\\sigma$ function of an integer $n$ is the sum of the positive integer divisors of $n$. There is only one positive integer which is a divisor of $1$, and that is $1$ itself. Hence the result. {{qed}} Category:Sigma Function of Integer lqa21r4lnidrvam1iqgugfvslb3sys4"}
+{"_id": "32754", "title": "Parenthesization/Examples/4", "text": "Parenthesization/Examples/4 0 55471 392225 382884 2019-02-12T21:45:51Z Prime.mover 59 wikitext text/x-wiki == Example of Parenthesization == A word of $4$ elements can be parenthesized in $5$ distinct ways: :$\\quad a_1 \\paren {a_2 \\paren {a_3 a_4} }$ :$\\quad a_1 \\paren {\\paren {a_2 a_3} a_4}$ :$\\quad \\paren {a_1 a_2} \\paren {a_3 a_4}$ :$\\quad \\paren {a_1 \\paren {a_2 a_3} } a_4$ :$\\quad \\paren {\\paren {a_1 a_2} a_3} a_4$ == Proof == From Number of Distinct Parenthesizations on Word, the number of distinct parenthesizations of a word $w$ of $n$ elements is the Catalan number $C_{n - 1}$: :$C_{n - 1} = \\dfrac 1 n \\dbinom {2 \\paren {n - 1} } {n - 1}$ For $n = 4$ we have: {{begin-eqn}} {{eqn | l = C_4 | r = \\dfrac 1 4 \\dbinom {2 \\times 3} 3 | c = }} {{eqn | r = \\dfrac 1 4 \\times \\dfrac {6!} {3! \\times 3!} | c = {{Defof|Binomial Coefficient}} }} {{eqn | r = \\dfrac 1 4 \\times \\dfrac {6 \\times 5 \\times 4} {3 \\times 2 \\times 1} | c = {{Defof|Factorial}} }} {{eqn | r = 5 | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Number Theory|1971|George E. Andrews|prev = Power Series Expansion for Exponential Function|next = Number of Distinct Parenthesizations on Word}}: $\\text {3-4}$ Generating Functions * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = Parenthesization/Examples/3|next = Number of Paths on Graph along X-axis using Diagonal Steps}}: $42$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = Parenthesization/Examples/3|next = Number of Paths on Graph along X-axis using Diagonal Steps}}: $42$ Category:Parenthesization Category:Catalan Numbers Category:5 0zj4kbos3u8p9pg4ng0n991004dq51p"}
+{"_id": "32755", "title": "Complex Exponential is Uniformly Continuous on Half-Planes/Corollary", "text": "Complex Exponential is Uniformly Continuous on Half-Planes/Corollary 0 55581 454378 437840 2020-03-14T09:10:09Z Prime.mover 59 wikitext text/x-wiki == Corollary to Complex Exponential is Uniformly Continuous on Half-Planes == Let $X$ be a set. Let $\\family {g_n}$ be a family of mappings $g_n : X \\to \\C$. Let $g_n$ converge uniformly to $g: X \\to \\C$. Let there be a constant $a \\in \\R$ such that $\\map \\Re {\\map g x} \\le a$ for all $x \\in X$. Then $\\exp g_n$ converges uniformly to $\\exp g$. == Proof == By uniform convergence, there exists $N > 0$ such that $\\cmod {\\map {g_n} x - \\map g x} \\le 1$ for all $n > N$. Then $\\map \\Re {\\map {g_n} x} \\le a + 1$. The result now follows from: :Complex Exponential is Uniformly Continuous on Half-Planes, applied to the half-plane $\\set {z \\in \\C : \\map \\Re z \\le a + 1}$ :Uniformly Continuous Function Preserves Uniform Convergence {{qed}} == Sources == * {{BookReference|Functions of One Complex Variable|1973|John B. Conway|next = Equivalence of Definitions of Uniform Absolute Convergence of Product of Complex Functions}} $\\text {VII}$: Compact and Convergence in the Space of Analytic Functions: $\\S 5$: Weierstrass Factorization Theorem: Lemma $5.7$ Category:Exponential Function Category:Uniform Continuity 3aina9ra6ungqocjtrdi605lkz8q7ml"}
+{"_id": "32756", "title": "Quasiamicable Numbers/Examples/48,75", "text": "Quasiamicable Numbers/Examples/48,75 0 55614 461023 318187 2020-04-10T11:22:48Z Prime.mover 59 wikitext text/x-wiki == Examples of Quasiamicable Pair == $48$ and $75$ form a quasiamicable pair. == Proof == {{begin-eqn}} {{eqn | l = \\map \\sigma {48} | r = 124 | c = {{SigmaLink|48}} }} {{eqn | l = \\map \\sigma {75} | r = 124 | c = {{SigmaLink|75}} }} {{eqn | l = 48 + 75 + 1 | r = 124 | c = }} {{end-eqn}} Hence the result by definition of quasiamicable pair. {{qed}} Category:Quasiamicable Numbers Category:48 Category:75 m2x4gsxvwcsq82aaucf03d9ukeig1tr"}
+{"_id": "32757", "title": "Sigma Function of 140", "text": "Sigma Function of 140 0 55646 415146 317552 2019-07-29T12:31:00Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\map \\sigma {140} = 336$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == From Sigma Function of Integer :$\\displaystyle \\map \\sigma n = \\prod_{1 \\mathop \\le i \\mathop \\le r} \\frac {p_i^{k_i + 1} - 1} {p_i - 1}$ where $n = \\displaystyle \\prod_{1 \\mathop \\le i \\mathop \\le r} p_i^{k_i}$ denotes the prime decomposition of $n$. We have that: :$140 = 2^2 \\times 5 \\times 7$ Hence: {{begin-eqn}} {{eqn | l = \\map \\sigma {140} | r = \\frac {2^3 - 1} {2 - 1} \\times \\frac {5^2 - 1} {5 - 1} \\times \\frac {7^2 - 1} {7 - 1} | c = }} {{eqn | r = \\frac 7 1 \\times \\frac {6 \\times 4} 4 \\times \\frac {8 \\times 6} 6 | c = }} {{eqn | r = 7 \\times 6 \\times 8 | c = }} {{eqn | r = 7 \\times \\paren {2 \\times 3} \\times 2^3 | c = }} {{eqn | r = 2^4 \\times 3 \\times 7 | c = }} {{eqn | r = 336 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:140 hi2p6sdll9aixcvg1wj6hxm44t6lo32"}
+{"_id": "32758", "title": "Partial Products of Uniformly Convergent Product Converge Uniformly", "text": "Partial Products of Uniformly Convergent Product Converge Uniformly 0 55686 390030 375099 2019-01-26T23:41:40Z Leigh.Samphier 3031 wikitext text/x-wiki == Definition == Let $X$ be a set. Let $\\struct {\\mathbb K, \\norm{\\,\\cdot\\,}}$ be a valued field. Let $\\left\\langle{f_n}\\right\\rangle$ be a sequence of bounded mappings $f_n:X\\to \\mathbb K$. Let the product $\\displaystyle \\prod_{n \\mathop = 1}^\\infty f_n$ converge uniformly. Then the sequence of partial products converges uniformly. == Proof == Let $n_0\\in\\N$ be such that the sequence of partial products of $\\displaystyle \\prod_{n \\mathop = n_0}^\\infty f_n$ converges uniformly. By Product of Bounded Functions is Bounded, $\\displaystyle \\prod_{n \\mathop = 1}^{n_0-1}f_n$ is bounded. By Uniformly Convergent Sequence Multiplied with Function, the sequence of partial products converges uniformly. {{qed}} == Also see == * Uniform Product of Continuous Functions is Continuous * Infinite Product of Analytic Functions is Analytic Category:Uniform Convergence Category:Infinite Products hb2okugmrd5y4few6v4pdi5lygaqlxu"}
+{"_id": "32759", "title": "Logarithm of Infinite Product of Complex Functions/Corollary", "text": "Logarithm of Infinite Product of Complex Functions/Corollary 0 55695 458325 340546 2020-03-29T14:19:39Z Prime.mover 59 wikitext text/x-wiki {{MissingLinks}} == Corollary to Logarithm of Infinite Product of Complex Functions == Let $X$ be a locally compact and locally connected metric space. Let $\\sequence {f_n}$ be a sequence of continuous mappings $f_n: X \\to \\C$. Let the product $\\displaystyle \\prod_{n \\mathop = 1}^\\infty f_n$ converge locally uniformly to $f$. Let $x_0 \\in X$. Then there exist $n_0 \\in \\N$, $k \\in \\Z$ and a neighborhood $U$ of $x_0$ such that: :$(1): \\quad \\map {f_n} x \\ne 0$ for $n \\ge n_0$ and $x \\in U$ :$(2): \\quad$ The series $\\displaystyle \\sum_{n \\mathop = n_0}^\\infty \\ln f_n$ converges uniformly on $U$ to $\\ln g + 2 k \\pi i$, where $g = \\displaystyle \\prod_{n \\mathop = n_0}^\\infty f_n$. == Outline of Proof == We construct a neighborhood of $x_0$ on which $\\displaystyle \\sum_{n \\mathop = n_0}^\\infty \\ln f_n$ and $\\ln g$ are continuous, so that $k$ is continuous and thus constant. == Proof == Let $K$ be a compact neighborhood of $x_0$. By Tail of Uniformly Convergent Product Converges Uniformly to One, there exists $N \\in \\N$ such that $\\displaystyle \\prod_{n \\mathop = N}^\\infty \\map {f_n} x \\notin \\R^-$ for all $x \\in K$. By Factors in Uniformly Convergent Product Converge Uniformly to One, there exists $M \\in \\N$ such that $\\size {\\map {f_n} x - 1} \\le \\dfrac 1 2$ for $n \\ge M$ and $x \\in K$. Let $n_0 = \\map \\max {N, M}$. Let $g = \\displaystyle \\prod_{n \\mathop = n_0}^\\infty f_n$. By Logarithm of Infinite Product of Complex Functions, there exists $k: K \\to \\Z$ such that $\\displaystyle \\sum_{n \\mathop = n_0}^\\infty \\ln f_n = \\ln g + 2 k \\pi i$ uniformly on $K$. We show that $k$ is constant on some neighborhood $U \\subset K$. By Uniform Product of Continuous Functions is Continuous and Complex Logarithm is Continuous Outside Branch, $\\ln g$ is continuous on $K$. By the Heine-Cantor Theorem, $\\ln$ is uniformly continuous on $\\map {\\overline B} {1, \\dfrac 1 2}$. By Uniformly Continuous Function Preserves Uniform Convergence, $\\displaystyle \\sum_{n \\mathop = n_0}^\\infty \\ln f_n$ converges uniformly on $K$. {{questionable|we're using here that partial products belong to $\\map {\\overline B} {1, \\dfrac 1 2}$. Need to use the Cauchy criterion for uniform products here}} By the Uniform Limit Theorem, $\\displaystyle \\sum_{n \\mathop = n_0}^\\infty \\ln f_n$ is continuous. Because $\\ln g$ and $\\displaystyle \\sum_{n \\mathop = n_0}^\\infty \\ln f_n$ are continuous, so is $k$. Let $U\\subset K$ be a connected neighborhood of $x_0$. By Continuous Mapping from Connected to Discrete Space is Constant $k$ is constant on $U$. {{qed}} Category:Infinite Products aua5s84b252zwf90pyleti5pwtb2l3v"}
+{"_id": "32760", "title": "Divisor Counting Function/Examples/60", "text": "Divisor Counting Function/Examples/60 0 56068 451785 319151 2020-03-02T09:43:29Z Prime.mover 59 Prime.mover moved page Tau Function/Examples/60 to Divisor Counting Function/Examples/60 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({60}\\right) = 12$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$60 = 2^2 \\times 3 \\times 5$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({60}\\right) | r = \\tau \\left({2^2 \\times 3^1 \\times 5^1}\\right) | c = }} {{eqn | r = \\left({2 + 1}\\right) \\left({1 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 12 | c = }} {{end-eqn}} The divisors of $60$ can be enumerated as: :$1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60$ {{OEIS|A018266}}{{qed}} Category:Tau Function Category:60 sb03tbvnrfiqeamd4dl20bo0izexchv"}
+{"_id": "32761", "title": "Sigma Function of 104", "text": "Sigma Function of 104 0 56216 479684 317755 2020-07-24T19:45:17Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\map \\sigma {104} = 210$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$104 = 2^3 \\times 13$ Hence: {{begin-eqn}} {{eqn | l = \\map \\sigma {104} | r = \\frac {2^4 - 1} {2 - 1} \\times \\frac {13^2 - 1} {13 - 1} | c = Sigma Function of Integer }} {{eqn | r = \\frac {16 - 1} 1 \\times \\frac {169 - 1} {12} | c = }} {{eqn | r = 15 \\times 14 | c = }} {{eqn | r = 210 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:104 6cyvd2sqdk5b0s78odnr4n8pvjo8lkb"}
+{"_id": "32762", "title": "Sigma Function of 105", "text": "Sigma Function of 105 0 56217 442172 317715 2020-01-03T23:38:18Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Square-Free Integer == :$\\map \\sigma {105} = 192$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$105 = 3 \\times 5 \\times 7$ Hence: {{begin-eqn}} {{eqn | l = \\map \\sigma {105} | r = \\paren {3 + 1} \\paren {5 + 1} \\paren {7 + 1} | c = Sigma Function of Square-Free Integer }} {{eqn | r = 4 \\times 6 \\times 8 | c = }} {{eqn | r = 2^2 \\times \\paren {2 \\times 3} \\times 2^3 | c = }} {{eqn | r = 2^6 \\times 3 | c = }} {{eqn | r = 192 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Square-Free Integer Category:105 bfc5pmjgfhijkmj2camptgunxtax9kh"}
+{"_id": "32763", "title": "Continued Fraction Expansion of Irrational Square Root/Examples/61", "text": "Continued Fraction Expansion of Irrational Square Root/Examples/61 0 56247 470651 470637 2020-05-26T06:42:40Z Prime.mover 59 wikitext text/x-wiki == Examples of Continued Fraction Expansion of Irrational Square Root == The continued fraction expansion of the square root of $61$ is given by: :$\\sqrt {61} = \\sqbrk {7, \\sequence {1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14} }$ {{OEIS|A010145}} === Convergents === {{:Continued Fraction Expansion of Irrational Square Root/Examples/61/Convergents}} == Proof == Let $\\sqrt {61} = \\sqbrk {a_0, a_1, a_2, a_3, \\ldots}$ From Partial Quotients of Continued Fraction Expansion of Irrational Square Root, the partial quotients of this continued fraction can be calculated as: :$a_r = \\floor {\\dfrac {\\floor {\\sqrt {61} } + P_r} {Q_r} }$ where: :$P_r = \\begin {cases} 0 & : r = 0 \\\\ a_{r - 1} Q_{r - 1} - P_{r - 1} & : r > 0 \\\\ \\end {cases}$ :$Q_r = \\begin {cases} 1 & : r = 0 \\\\ \\dfrac {n - {P_r}^2} {Q_{r - 1} } & : r > 0 \\\\ \\end {cases}$ {{PartialQuotientCalculator-Start | n = 61}} {{PartialQuotientCalculator | n = 61 | r = 1 | ar-1 = 7 | Qr-1 = 1 | Pr-1 = 0}} {{PartialQuotientCalculator | n = 61 | r = 2 | ar-1 = 1 | Qr-1 = 12 | Pr-1 = 7}} {{PartialQuotientCalculator | n = 61 | r = 3 | ar-1 = 4 | Qr-1 = 3 | Pr-1 = 5}} {{PartialQuotientCalculator | n = 61 | r = 4 | ar-1 = 3 | Qr-1 = 4 | Pr-1 = 7}} {{PartialQuotientCalculator | n = 61 | r = 5 | ar-1 = 1 | Qr-1 = 9 | Pr-1 = 5}} {{PartialQuotientCalculator | n = 61 | r = 6 | ar-1 = 2 | Qr-1 = 5 | Pr-1 = 4}} {{PartialQuotientCalculator | n = 61 | r = 7 | ar-1 = 2 | Qr-1 = 5 | Pr-1 = 6}} {{PartialQuotientCalculator | n = 61 | r = 8 | ar-1 = 1 | Qr-1 = 9 | Pr-1 = 4}} {{PartialQuotientCalculator | n = 61 | r = 9 | ar-1 = 3 | Qr-1 = 4 | Pr-1 = 5}} {{PartialQuotientCalculator | n = 61 | r = 10 | ar-1 = 4 | Qr-1 = 3 | Pr-1 = 7}} {{PartialQuotientCalculator | n = 61 | r = 11 | ar-1 = 1 | Qr-1 = 12 | Pr-1 = 5}} |} and the cycle is complete: :$\\sequence {1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14}$ {{qed}} Category:Continued Fractions Category:61 7tgz1nya9cmwb8mbta2ho1dtiwyxxbm"}
+{"_id": "32764", "title": "Continued Fraction Expansion of Irrational Square Root/Examples/61/Convergents", "text": "Continued Fraction Expansion of Irrational Square Root/Examples/61/Convergents 0 56249 470652 470639 2020-05-26T06:43:41Z Prime.mover 59 wikitext text/x-wiki == Convergents to Continued Fraction Expansion of $\\sqrt {61}$ == The sequence of convergents to the continued fraction expansion of the square root of $61$ begins: :$\\dfrac 7 1, \\dfrac {8} 1, \\dfrac {39} 5, \\dfrac {125} {16}, \\dfrac {164} {21}, \\dfrac {453} {58}, \\dfrac {1070} {137}, \\dfrac {1523} {195}, \\dfrac {5639} {722}, \\dfrac {24079} {3083}, \\ldots$ {{OEIS-Numerators|A041106}} {{OEIS-Denominators|A041107}} == Proof == Let $\\sqbrk {a_0, a_1, a_2, \\ldots}$ be its continued fraction expansion. Let $\\sequence {p_n}_{n \\ge \\mathop 0}$ and $\\sequence {q_n}_{n \\ge \\mathop 0}$ be its numerators and denominators. Then the $n$th convergent is $p_n / q_n$. By definition: :$p_k = \\begin {cases} a_0 & : k = 0 \\\\ a_0 a_1 + 1 & : k = 1 \\\\ a_k p_{k - 1} + p_{k - 2} & : k > 1 \\end {cases}$ :$q_k = \\begin {cases} 1 & : k = 0 \\\\ a_1 & : k = 1 \\\\ a_k q_{k - 1} + q_{k - 2} & : k > 1 \\end {cases}$ From Continued Fraction Expansion of $\\sqrt {61}$: :$\\sqrt {61} = \\sqbrk {7, \\sequence {1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14} }$ Thus the convergents are assembled: {{ConvergentCalculator-Start | a0 = 7 | a1 = 1}} {{ConvergentCalculator | k = 2 | ak = 4 | pk-1 = 8 | pk-2 = 7 | qk-1 = 1 | qk-2 = 1}} {{ConvergentCalculator | k = 3 | ak = 3 | pk-1 = 39 | pk-2 = 8 | qk-1 = 5 | qk-2 = 1}} {{ConvergentCalculator | k = 4 | ak = 1 | pk-1 = 125 | pk-2 = 39 | qk-1 = 16 | qk-2 = 5}} {{ConvergentCalculator | k = 5 | ak = 2 | pk-1 = 164 | pk-2 = 125 | qk-1 = 21 | qk-2 = 16}} {{ConvergentCalculator | k = 6 | ak = 2 | pk-1 = 453 | pk-2 = 164 | qk-1 = 58 | qk-2 = 21}} {{ConvergentCalculator | k = 7 | ak = 1 | pk-1 = 1070 | pk-2 = 453 | qk-1 = 137 | qk-2 = 58}} {{ConvergentCalculator | k = 8 | ak = 3 | pk-1 = 1523 | pk-2 = 1070 | qk-1 = 195 | qk-2 = 137}} {{ConvergentCalculator | k = 9 | ak = 4 | pk-1 = 5639 | pk-2 = 1523 | qk-1 = 722 | qk-2 = 195}} {{ConvergentCalculator | k = 10 | ak = 1 | pk-1 = 24079 | pk-2 = 5639 | qk-1 = 3083 | qk-2 = 722}} {{ConvergentCalculator | k = 11 | ak = 14 | pk-1 = 29718 | pk-2 = 24079 | qk-1 = 3805 | qk-2 = 3083}} {{ConvergentCalculator | k = 12 | ak = 1 | pk-1 = 440131 | pk-2 = 29718 | qk-1 = 56353 | qk-2 = 3805}} {{ConvergentCalculator | k = 13 | ak = 4 | pk-1 = 469849 | pk-2 = 440131 | qk-1 = 60158 | qk-2 = 56353}} {{ConvergentCalculator | k = 14 | ak = 3 | pk-1 = 2319527 | pk-2 = 469849 | qk-1 = 296985 | qk-2 = 60158}} {{ConvergentCalculator | k = 15 | ak = 1 | pk-1 = 7428430 | pk-2 = 2319527 | qk-1 = 951113 | qk-2 = 296985}} {{ConvergentCalculator | k = 16 | ak = 2 | pk-1 = 9747957 | pk-2 = 7428430 | qk-1 = 1248098 | qk-2 = 951113}} {{ConvergentCalculator | k = 17 | ak = 2 | pk-1 = 26924344 | pk-2 = 9747957 | qk-1 = 3447309 | qk-2 = 1248098}} {{ConvergentCalculator | k = 18 | ak = 1 | pk-1 = 63596645 | pk-2 = 26924344 | qk-1 = 8142716 | qk-2 = 3447309}} {{ConvergentCalculator | k = 19 | ak = 3 | pk-1 = 90520989 | pk-2 = 63596645 | qk-1 = 11590025 | qk-2 = 8142716}} {{ConvergentCalculator | k = 20 | ak = 4 | pk-1 = 335159612 | pk-2 = 90520989 | qk-1 = 42912791 | qk-2 = 11590025}} {{ConvergentCalculator | k = 21 | ak = 1 | pk-1 = 1431159437 | pk-2 = 335159612 | qk-1 = 183241189 | qk-2 = 42912791}} |} {{qed}} Category:Continued Fractions Category:61 5f0pmtfjlgu37o58x5s1l6eti82bo01"}
+{"_id": "32765", "title": "Magic Square/Examples/Order 5", "text": "Magic Square/Examples/Order 5 0 56292 300654 300567 2017-06-11T11:02:42Z Prime.mover 59 Prime.mover moved page Magic Square/Example/Order 5 to Magic Square/Examples/Order 5 wikitext text/x-wiki == Examples of Order $5$ Magic Squares == :$\\begin{array}{|c|c|c|c|c|} \\hline 23 & 6 & 19 & 2 & 15 \\\\ \\hline 10 & 18 & 1 & 14 & 22 \\\\ \\hline 17 & 5 & 13 & 21 & 9 \\\\ \\hline 4 & 12 & 25 & 8 & 16 \\\\ \\hline 11 & 23 & 7 & 20 & 3 \\\\ \\hline \\end{array}$ == Also see == * Magic Constant of Order 5 Magic Square Category:Magic Squares ahx3qr6080nia7iuamy6fgpvaedp5ti"}
+{"_id": "32766", "title": "Numbers with Euler Phi Value of 72", "text": "Numbers with Euler Phi Value of 72 0 56365 475849 455827 2020-06-24T16:21:09Z Prime.mover 59 wikitext text/x-wiki == Example of Use of Euler $\\phi$ Function == There are $17$ positive integers for which the value of the Euler $\\phi$ function is $72$: :$73, 91, 95, 111, 117, 135, 146, 148, 152, 182, 190, 216, 222, 228, 234, 252, 270$ == Proof == {{begin-eqn}} {{eqn | l = 72 | r = \\map \\phi {73} | c = Euler Phi Function of Prime }} {{eqn | r = \\map \\phi {91} | c = {{EulerPhiLink|91}} }} {{eqn | r = \\map \\phi {95} | c = {{EulerPhiLink|95}} }} {{eqn | r = \\map \\phi {111} | c = {{EulerPhiLink|111}} }} {{eqn | r = \\map \\phi {117} | c = {{EulerPhiLink|117}} }} {{eqn | r = \\map \\phi {135} | c = {{EulerPhiLink|135}} }} {{eqn | r = \\map \\phi {146} | c = {{EulerPhiLink|146}} }} {{eqn | r = \\map \\phi {148} | c = {{EulerPhiLink|148}} }} {{eqn | r = \\map \\phi {152} | c = {{EulerPhiLink|152}} }} {{eqn | r = \\map \\phi {182} | c = {{EulerPhiLink|182}} }} {{eqn | r = \\map \\phi {190} | c = {{EulerPhiLink|190}} }} {{eqn | r = \\map \\phi {216} | c = {{EulerPhiLink|216}} }} {{eqn | r = \\map \\phi {222} | c = {{EulerPhiLink|222}} }} {{eqn | r = \\map \\phi {228} | c = {{EulerPhiLink|228}} }} {{eqn | r = \\map \\phi {234} | c = {{EulerPhiLink|234}} }} {{eqn | r = \\map \\phi {252} | c = {{EulerPhiLink|252}} }} {{eqn | r = \\map \\phi {270} | c = {{EulerPhiLink|270}} }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = 4 Positive Integers in Arithmetic Sequence which have Same Euler Phi Value/Mistake|next = Positive Integers which are Euler Phi Value for 17 Integers}}: $72$ Category:Euler Phi Function Category:72 36cpgnjrma7zyvwd49i6mkrq7mpnlfy"}
+{"_id": "32767", "title": "Square of 1 Less than Number Base/Examples/5", "text": "Square of 1 Less than Number Base/Examples/5 0 56424 296925 296921 2017-05-10T13:33:26Z Prime.mover 59 wikitext text/x-wiki == Example of Square of 1 Less than Number Base == The square of $5$ is expressed in base $6$ as: :$5^2 = \\left[{41}\\right]_6$ == Proof == In base $10$: {{begin-eqn}} {{eqn | l = 5^2 | r = \\left({6 - 1}\\right)^2 | c = }} {{eqn | r = 6^2 - 2 \\times 6 + 1 | c = }} {{eqn | r = 4 \\times 6 + 1 | c = }} {{end-eqn}} Hence the result. {{qed}} Category:Square of 1 Less than Number Base etjz2uat44omvcyi8tz7rc2lkk253mj"}
+{"_id": "32768", "title": "Sigma Function of 836", "text": "Sigma Function of 836 0 56474 488970 318343 2020-09-18T22:38:27Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\map \\sigma {836} = 1680$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$836 = 2^2 \\times 11 \\times 19$ Hence: {{begin-eqn}} {{eqn | l = \\map \\sigma {836} | r = \\frac {2^3 - 1} {2 - 1} \\times \\paren {11 + 1} \\times \\paren {19 + 1} | c = Sigma Function of Integer }} {{eqn | r = \\frac 7 1 \\times 12 \\times 20 | c = }} {{eqn | r = 7 \\times \\paren {2^2 \\times 3} \\times \\paren {2^2 \\times 5} | c = }} {{eqn | r = 2^4 \\times 3 \\times 5 \\times 7 | c = }} {{eqn | r = 1680 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:836 r1t5ilql58pwkirxakqji1rijx8wigf"}
+{"_id": "32769", "title": "Euler Phi Function of 104", "text": "Euler Phi Function of 104 0 56574 415511 297622 2019-07-31T15:42:32Z Prime.mover 59 wikitext text/x-wiki == Example of Use of Euler $\\phi$ Function == :$\\map \\phi {104} = 48$ where $\\phi$ denotes the Euler $\\phi$ Function. == Proof == From Euler Phi Function of Integer: :$\\displaystyle \\map \\phi n = n \\prod_{p \\mathop \\divides n} \\paren {1 - \\frac 1 p}$ where $p \\divides n$ denotes the primes which divide $n$. We have that: :$104 = 2^3 \\times 13$ Thus: {{begin-eqn}} {{eqn | l = \\map \\phi {104} | r = 104 \\paren {1 - \\dfrac 1 2} \\paren {1 - \\dfrac 1 {13} } | c = }} {{eqn | r = 104 \\times \\frac 1 2 \\times \\frac {12} {13} | c = }} {{eqn | r = 4 \\times 1 \\times 12 | c = }} {{eqn | r = 48 | c = }} {{end-eqn}} {{qed}} Category:Euler Phi Function Category:104 c5bntb3ll1mwk80jojr9g504forcbok"}
+{"_id": "32770", "title": "Euler Phi Function of 105", "text": "Euler Phi Function of 105 0 56575 394760 297623 2019-03-05T16:45:05Z Prime.mover 59 wikitext text/x-wiki == Example of Euler $\\phi$ Function of Square-Free Integer == :$\\map \\phi {105} = 48$ where $\\phi$ denotes the Euler $\\phi$ Function. == Proof == From Euler Phi Function of Square-Free Integer: :$\\displaystyle \\map \\phi n = \\prod_{\\substack {p \\mathop \\divides n \\\\ p \\mathop > 2} } \\paren {p - 1}$ where $p \\divides n$ denotes the primes which divide $n$. We have that: :$105 = 3 \\times 5 \\times 7$ and so is square-free. Thus: {{begin-eqn}} {{eqn | l = \\map \\phi {105} | r = \\paren {3 - 1} \\paren {5 - 1} \\paren {7 - 1} | c = }} {{eqn | r = 2 \\times 4 \\times 6 | c = }} {{eqn | r = 48 | c = }} {{end-eqn}} {{qed}} Category:Euler Phi Function of Square-Free Integer Category:105 p9zwsy94v795fymhtmghu8rg3t14cai"}
+{"_id": "32771", "title": "Euler Phi Function of 15", "text": "Euler Phi Function of 15 0 56579 297640 2017-05-16T20:46:52Z Prime.mover 59 Created page with \"== Example of Euler $\\phi$ Function of Non-Square Semiprime == :$\\phi \\left({15}\\right) = 8$ where...\" wikitext text/x-wiki == Example of Euler $\\phi$ Function of Non-Square Semiprime == :$\\phi \\left({15}\\right) = 8$ where $\\phi$ denotes the Euler $\\phi$ Function. == Proof == We have that: :$15 = 3 \\times 5$ Thus: {{begin-eqn}} {{eqn | l = \\phi \\left({15}\\right) | r = \\left({3 - 1}\\right) \\left({5 - 1}\\right) | c = Euler $\\phi$ Function of Non-Square Semiprime }} {{eqn | r = 2 \\times 4 | c = }} {{eqn | r = 8 | c = }} {{end-eqn}} {{qed}} Category:Euler Phi Function of Non-Square Semiprime Category:15 38qrkw3pc8084fyd3flsrr96rpcrmzl"}
+{"_id": "32772", "title": "Divisor Counting Function/Examples/105", "text": "Divisor Counting Function/Examples/105 0 56595 451773 438890 2020-03-02T09:43:28Z Prime.mover 59 Prime.mover moved page Tau Function/Examples/105 to Divisor Counting Function/Examples/105 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\map \\tau {105} = 8$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\map \\tau n = \\prod_{j \\mathop = 1}^r \\paren {k_j + 1}$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$105 = 3 \\times 5 \\times 7$ Thus: {{begin-eqn}} {{eqn | l = \\map \\tau {105} | r = \\map \\tau {3^1 \\times 5^1 \\times 7^1} | c = }} {{eqn | r = \\paren {1 + 1} \\paren {1 + 1} \\paren {1 + 1} | c = }} {{eqn | r = 8 | c = }} {{end-eqn}} The divisors of $105$ can be enumerated as: :$1, 3, 5, 7, 15, 21, 35, 105$ {{OEIS|A018286}}{{qed}} Category:Tau Function Category:105 2htkwufti6wb7pp0xrnn69im8wdkrev"}
+{"_id": "32773", "title": "Euler Phi Function of 165", "text": "Euler Phi Function of 165 0 56604 297726 2017-05-17T20:19:14Z Prime.mover 59 Created page with \"== Example of Euler $\\phi$ Function of Square-Free Integer == :$\\phi \\left({165}\\right) = 80$ where...\" wikitext text/x-wiki == Example of Euler $\\phi$ Function of Square-Free Integer == :$\\phi \\left({165}\\right) = 80$ where $\\phi$ denotes the Euler $\\phi$ Function. == Proof == From Euler Phi Function of Square-Free Integer: :$\\displaystyle \\phi \\left({n}\\right) = \\prod_{\\substack {p \\mathop \\backslash n \\\\ p \\mathop > 2} } \\left({p - 1}\\right)$ where $p \\mathop \\backslash n$ denotes the primes which divide $n$. We have that: :$165 = 3 \\times 5 \\times 11$ and so is square-free. Thus: {{begin-eqn}} {{eqn | l = \\phi \\left({165}\\right) | r = \\left({3 - 1}\\right) \\left({5 - 1}\\right) \\left({11 - 1}\\right) | c = }} {{eqn | r = 2 \\times 4 \\times 10 | c = }} {{eqn | r = 80 | c = }} {{end-eqn}} {{qed}} Category:Euler Phi Function of Square-Free Integer Category:165 jiw6cuy5f1dkk50qucprga9b4gcmgmf"}
+{"_id": "32774", "title": "Euler Phi Function of 35", "text": "Euler Phi Function of 35 0 56612 440076 297741 2019-12-18T14:17:40Z Prime.mover 59 wikitext text/x-wiki == Example of Euler $\\phi$ Function of Non-Square Semiprime == :$\\map \\phi {35} = 24$ where $\\phi$ denotes the Euler $\\phi$ Function. == Proof == We have that: :$35 = 5 \\times 7$ Thus: {{begin-eqn}} {{eqn | l = \\map \\phi {35} | r = \\paren {5 - 1} \\paren {7 - 1} | c = Euler $\\phi$ Function of Non-Square Semiprime }} {{eqn | r = 4 \\times 6 | c = }} {{eqn | r = 24 | c = }} {{end-eqn}} {{qed}} Category:Euler Phi Function of Non-Square Semiprime Category:35 mjjv5cjj5ypy7kqkvzap4kg15ce1q85"}
+{"_id": "32775", "title": "Tau Function of 35", "text": "Tau Function of 35 0 56613 297742 2017-05-17T20:54:37Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({35}\\right) = 4$ where $\\tau$ denotes the Definition:Tau Functi...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({35}\\right) = 4$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$35 = 5 \\times 7$ Thus: :$\\tau \\left({35}\\right) = \\tau \\left({5^1 \\times 7^1}\\right) = \\left({1 + 1}\\right) \\left({1 + 1}\\right) = 4$ The divisors of $35$ can be enumerated as: :$1, 5, 7, 35$ {{qed}} Category:Tau Function Category:35 148wl4amvfuqejw7csdysz46kyd7184"}
+{"_id": "32776", "title": "Prime Magic Square/Examples/Order 3/Smallest", "text": "Prime Magic Square/Examples/Order 3/Smallest 0 56666 481551 299484 2020-08-13T10:19:40Z RandomUndergrad 3904 wikitext text/x-wiki == Example of Order $3$ Prime Magic Square == This order $3$ prime magic square has the smallest elements: :$\\begin{array}{|c|c|c|} \\hline 67 & 1 & 43 \\\\ \\hline 13 & 37 & 61 \\\\ \\hline 31 & 73 & 7 \\\\ \\hline \\end{array}$ == Proof == For the purpose of this magic square only, we consider $1$ as a prime. A simple parity argument can show that $2$ cannot be included in a prime magic square: If it is, the row containing $2$ sum to an even number, while a row not containing $2$ will sum to an odd number. {{Improve|I'm drawing a blank on how to present the following result clearly}} We aim to show that all elements of an order $3$ prime magic square has the same remainder when divided by $3$. There are two parts to this: === $3$ cannot be used === For simplicity, we denote the numbers in the cells by their remainders when divided by $3$. Note that $3$ is the only prime divisible by $3$. We define the off-diagonals as: :$\\begin{array}{|c|c|c|} \\hline * & & \\\\ \\hline & * & \\\\ \\hline & & * \\\\ \\hline \\end{array} \\begin{array}{|c|c|c|} \\hline & * & \\\\ \\hline & & * \\\\ \\hline * & & \\\\ \\hline \\end{array} \\begin{array}{|c|c|c|} \\hline & & * \\\\ \\hline * & & \\\\ \\hline & * & \\\\ \\hline \\end{array} \\begin{array}{|c|c|c|} \\hline & & * \\\\ \\hline & * & \\\\ \\hline * & & \\\\ \\hline \\end{array} \\begin{array}{|c|c|c|} \\hline & * & \\\\ \\hline * & & \\\\ \\hline & & * \\\\ \\hline \\end{array} \\begin{array}{|c|c|c|} \\hline * & & \\\\ \\hline & & * \\\\ \\hline & * & \\\\ \\hline \\end{array}$ We also observe that, by switching rows and columns, the numbers in each row and column remains unchanged, while the two diagonals become two off-diagonals sharing one cell. Therefore the position of the numbers do not matter in the most part. Suppose $3$ is used in the square. {{WLOG}} there are only two cases: ==== Case $1$: The row containing $3$ has numbers with all remainders ==== We have: :$\\begin{array}{|c|c|c|} \\hline 0 & 1 & 2 \\\\ \\hline & & \\\\ \\hline & & \\\\ \\hline \\end{array}$ Hence the row sum is divisible by $3$. Since: :$1 + 1 \\equiv 2 \\pmod 3$ :$2 + 2 \\equiv 1 \\pmod 3$ :$1 + 2 \\equiv 0 \\pmod 3$ there is a unique way to fill in the columns: :$\\begin{array}{|c|c|c|} \\hline 0 & 1 & 2 \\\\ \\hline 1 & 1 & 2 \\\\ \\hline 2 & 1 & 2 \\\\ \\hline \\end{array}$ Note that the order of $1$ and $2$ in the leftmost column do not matter due to symmetry. The sums of rows $2$ and $3$ are not divisible by $3$. Hence this case cannot occur. {{qed|lemma}} ==== Case $2$: The row containing $3$ leave out numbers with some remainder ==== {{WLOG}} suppose $2$ is not used. Then: :$\\begin{array}{|c|c|c|} \\hline 0 & 1 & 1 \\\\ \\hline & & \\\\ \\hline & & \\\\ \\hline \\end{array}$ Filling in the columns: :$\\begin{array}{|c|c|c|} \\hline 0 & 1 & 1 \\\\ \\hline 1 & 2 & 2 \\\\ \\hline 1 & 2 & 2 \\\\ \\hline \\end{array}$ All off-diagonals sum to $1$, which is not $1 + 1 = 2$. Hence this case cannot occur. {{qed|lemma}} === Primes of remainder $1, 2$ cannot be mixed === {{WLOG}} suppose there are $2$ $1$'s and $1$ $2$. Then the row sum is not divisible by $3$. We have: :$\\begin{array}{|c|c|c|} \\hline 1 & 1 & 2 \\\\ \\hline & & \\\\ \\hline & & \\\\ \\hline \\end{array}$ Filling in the first and third columns: :$\\begin{array}{|c|c|c|} \\hline 1 & 1 & 2 \\\\ \\hline 1 & & 1 \\\\ \\hline 2 & & 1 \\\\ \\hline \\end{array}$ Finally, filling up the rows: :$\\begin{array}{|c|c|c|} \\hline 1 & 1 & 2 \\\\ \\hline 1 & 2 & 1 \\\\ \\hline 2 & 1 & 1 \\\\ \\hline \\end{array}$ There must be an off-diagonal with sum divisible by $3$. Hence this case cannot occur. {{qed|lemma}} Using this result, we divide the primes $\\le 73$ into two groups: :Remainder of $1$: $\\set {1, 7, 13, 19, 31, 37, 43, 61, 67, 73}$ :Remainder of $2$: $\\set {5, 11, 17, 23, 29, 41, 47, 53, 59, 71}$ We only need to show these primes cannot form a smaller magic square. Consider: :$\\begin{array}{|c|c|c|} \\hline a & b & c \\\\ \\hline d & e & f \\\\ \\hline g & h & i \\\\ \\hline \\end{array}$ Let $C$ be the magic constant. Then: {{begin-eqn}} {{eqn | l = 4C | r = \\paren {a + e + i} + \\paren {b + e + h} + \\paren {c + e + g} + \\paren {d + e + f} | c = These are all lines passing through the center }} {{eqn | r = \\paren {a + b + c + d + e + f + g + h + i} + 3 e | c = Center counted $4$ times }} {{eqn | r = 3 C + 3 e }} {{end-eqn}} Hence $e = \\dfrac C 3$, which is $\\dfrac 1 9$ of the sum of all numbers in the square. We have: :$1 + 7 + 13 + 19 + 31 + 37 + 43 + 61 + 67 + 73 = 352$ :$5 + 11 + 17 + 23 + 29 + 41 + 47 + 53 + 59 + 71 = 356$ $352$ and $356$ have remainders $1$ and $5$ when divided by $9$. In the lists: :$1, 19, 37, 73$ have a remainder of $1$ when divided by $9$. :$5, 23, 41, 59$ have a remainder of $5$ when divided by $9$. Omitting each number gives the corresponding center square values: :$39, 37, 35, 31$ for the first list :$39, 37, 35, 33$ for the second list Only $31, 37$ of the first list are possible candidates. However: :$73 + 31 > 93$ Hence $31$ fail to produce a magic square. This leaves $37$, which possibility is demonstrated above. {{qed}} == Also see == * Magic Constant of Smallest Prime Magic Square == Sources == * {{MathWorld|Prime Magic Square|PrimeMagicSquare}} Category:Prime Magic Squares rm8quqhjni9pd5p3v8lxkgilju1wocj"}
+{"_id": "32777", "title": "Tau Function of 120", "text": "Tau Function of 120 0 56751 311826 298498 2017-08-19T11:36:27Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({120}\\right) = 16$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$120 = 2^3 \\times 3 \\times 5$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({120}\\right) | r = \\tau \\left({2^3 \\times 3^1 \\times 5^1}\\right) | c = }} {{eqn | r = \\left({3 + 1}\\right) \\left({1 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 16 | c = }} {{end-eqn}} The divisors of $120$ can be enumerated as: :$1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120$ {{OEIS|A018293}}{{qed}} Category:Tau Function Category:120 b9jhzy1sjyd0lx0pivvzu4lw82nskgs"}
+{"_id": "32778", "title": "Tau Function of 6", "text": "Tau Function of 6 0 56966 304284 299213 2017-07-10T11:16:00Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({6}\\right) = 4$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$6 = 2 \\times 3$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({6}\\right) | r = \\tau \\left({2^1 \\times 3^1}\\right) | c = }} {{eqn | r = \\left({1 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 4 | c = }} {{end-eqn}} The divisors of $6$ can be enumerated as: :$1, 2, 3, 6$ {{qed}} Category:Tau Function Category:6 m4moxy6pt99zs65yhbvjapb73oboovj"}
+{"_id": "32779", "title": "Tau Function of 28", "text": "Tau Function of 28 0 56967 304291 299215 2017-07-10T13:15:30Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({28}\\right) = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$28 = 2^2 \\times 7$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({28}\\right) | r = \\tau \\left({2^2 \\times 7^1}\\right) | c = }} {{eqn | r = \\left({2 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 6 | c = }} {{end-eqn}} The divisors of $28$ can be enumerated as: :$1, 2, 4, 7, 14, 28$ {{OEIS|A018254}}{{qed}} Category:Tau Function Category:28 kozulcl7ntshl4lk0ccw3yp6kdnjcfa"}
+{"_id": "32780", "title": "Tau Function of 140", "text": "Tau Function of 140 0 56970 300366 299221 2017-06-07T20:22:04Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({140}\\right) = 12$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$140 = 2^2 \\times 5 \\times 7$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({140}\\right) | r = \\tau \\left({2^2 \\times 5^1 \\times 7^1}\\right) | c = }} {{eqn | r = \\left({2 + 1}\\right) \\left({1 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 12 | c = }} {{end-eqn}} The divisors of $140$ can be enumerated as: :$1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140$ {{OEIS|A018301}}{{qed}} Category:Tau Function Category:140 03lobprrp437yfmyxrzusvctn5mqow1"}
+{"_id": "32781", "title": "Tau Function of 270", "text": "Tau Function of 270 0 56972 299223 2017-05-26T21:24:58Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({270}\\right) = 16$ where $\\tau$ denotes the Definition:Tau Func...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({270}\\right) = 16$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$270 = 2 \\times 3^3 \\times 5$ Thus: :$\\tau \\left({270}\\right) = \\tau \\left({2^1 \\times 3^3 \\times 5^1}\\right) = \\left({1 + 1}\\right) \\left({3 + 1}\\right) \\left({1 + 1}\\right) = 16$ The divisors of $270$ can be enumerated as: :$1, 2, 3, 5, 6, 9, 10, 15, 18, 27, 30, 45, 54, 90, 135, 270$ {{qed}} Category:Tau Function Category:270 53q4gcguc1el4g5mz3s3spxvtkbucc3"}
+{"_id": "32782", "title": "Sigma Function of 270", "text": "Sigma Function of 270 0 56973 318217 318215 2017-09-16T18:25:41Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\sigma \\left({270}\\right) = 720$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == From Sigma Function of Integer :$\\displaystyle \\sigma \\left({n}\\right) = \\prod_{1 \\mathop \\le i \\mathop \\le r} \\frac {p_i^{k_i + 1} - 1} {p_i - 1}$ where $n = \\displaystyle \\prod_{1 \\mathop \\le i \\mathop \\le r} p_i^{k_i}$ denotes the prime decomposition of $n$. We have that: :$270 = 2 \\times 3^3 \\times 5$ Hence: {{begin-eqn}} {{eqn | l = \\sigma \\left({270}\\right) | r = \\left({2 + 1}\\right) \\times \\frac {3^4 - 1} {3 - 1} \\times \\left({5 + 1}\\right) | c = }} {{eqn | r = 3 \\times \\frac {81 - 1} 2 \\times 6 | c = }} {{eqn | r = 3 \\times 40 \\times 6 | c = }} {{eqn | r = 3 \\times \\left({2^3 \\times 5}\\right) \\times \\left({2 \\times 3}\\right) | c = }} {{eqn | r = 2^4 \\times 3^2 \\times 5 | c = }} {{eqn | r = 720 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:270 8f9ogza4vhxcmt0zwjuesjjyatmwm20"}
+{"_id": "32783", "title": "Tau Function of 496", "text": "Tau Function of 496 0 56975 304296 301321 2017-07-10T21:04:44Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({496}\\right) = 10$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$496 = 2^4 \\times 31$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({496}\\right) | r = \\tau \\left({2^4 \\times 31^1}\\right) | c = }} {{eqn | r = \\left({4 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 10 | c = }} {{end-eqn}} The divisors of $496$ can be enumerated as: :$1, 2, 4, 8, 16, 31, 62, 124, 248, 496$ {{OEIS|A018487}}{{qed}} Category:Tau Function Category:496 21pb8k2a3ndqsh3wik0lkwnekrrraa4"}
+{"_id": "32784", "title": "Sigma Function of 496", "text": "Sigma Function of 496 0 56976 317812 317810 2017-09-16T13:05:07Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\sigma \\left({496}\\right) = 992$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == From Sigma Function of Integer :$\\displaystyle \\sigma \\left({n}\\right) = \\prod_{1 \\mathop \\le i \\mathop \\le r} \\frac {p_i^{k_i + 1} - 1} {p_i - 1}$ where $n = \\displaystyle \\prod_{1 \\mathop \\le i \\mathop \\le r} p_i^{k_i}$ denotes the prime decomposition of $n$. We have that: :$496 = 2^4 \\times 31$ Hence: {{begin-eqn}} {{eqn | l = \\sigma \\left({496}\\right) | r = \\left({2^5 - 1}\\right) \\times \\left({31 + 1}\\right) | c = }} {{eqn | r = 31 \\times 32 | c = }} {{eqn | r = 31 \\times 2^5 | c = }} {{eqn | r = 992 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:496 nchj6b8510ltl0p3vdpo9zxxjul9xx3"}
+{"_id": "32785", "title": "Prime Magic Square/Examples/Order 12/Smallest with Consecutive Primes from 3", "text": "Prime Magic Square/Examples/Order 12/Smallest with Consecutive Primes from 3 0 57043 462309 462295 2020-04-16T08:09:19Z RandomUndergrad 3904 wikitext text/x-wiki == Example of Order $12$ Prime Magic Square == This order $12$ prime magic square is the smallest whose elements are consecutive odd primes starting from $3$ (including $1$). The primes themselves are the $143$ consecutive odd primes from $3$ up to $827$. This magic square has magic constant $4514$. :$\\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|} \\hline 1 & 823 & 821 & 809 & 811 & 797 & 19 & 29 & 313 & 31 & 23 & 37 \\\\ \\hline 89 & 83 & 211 & 79 & 641 & 631 & 619 & 709 & 617 & 53 & 43 & 739 \\\\ \\hline 97 & 227 & 103 & 107 & 193 & 557 & 719 & 727 & 607 & 139 & 757 & 281 \\\\ \\hline 223 & 653 & 499 & 197 & 109 & 113 & 563 & 479 & 173 & 761 & 587 & 157 \\\\ \\hline 367 & 379 & 521 & 383 & 241 & 467 & 257 & 263 & 269 & 167 & 601 & 599 \\\\ \\hline 349 & 359 & 353 & 647 & 389 & 331 & 317 & 311 & 409 & 307 & 293 & 449 \\\\ \\hline 503 & 523 & 233 & 337 & 547 & 397 & 421 & 17 & 401 & 271 & 431 & 433 \\\\ \\hline 229 & 491 & 373 & 487 & 461 & 251 & 443 & 463 & 137 & 439 & 457 & 283 \\\\ \\hline 509 & 199 & 73 & 541 & 347 & 191 & 181 & 569 & 577 & 571 & 163 & 593 \\\\ \\hline 661 & 101 & 643 & 239 & 691 & 701 & 127 & 131 & 179 & 613 & 277 & 151 \\\\ \\hline 659 & 673 & 677 & 683 & 71 & 67 & 61 & 47 & 59 & 743 & 733 & 41 \\\\ \\hline 827 & 3 & 7 & 5 & 13 & 11 & 787 & 769 & 773 & 419 & 149 & 751 \\\\ \\hline \\end{array}$ == Proof == It is sufficient to show that for $n \\le 11$, there is no order $n$ prime magic square. We will show this fact regardless of whether $1$ is included in the magic square. === Order $2$ === First the order $2$ magic square is eliminated. Consider: :$\\begin{array}{|c|c|} \\hline a & b \\\\ \\hline c & d \\\\ \\hline \\end{array}$ Then we must have $a + b = a + c$. So $b = c$, so they are not distinct, so this array cannot be a magic square. {{qed|lemma}} Next, by definition of magic square, each row adds up to the magic constant. Hence the sum of all entries of the magic square of order $n$ must be divisible by $n$. Here is a list of: :$1 + $ the sums of the first $n^2 - 1$ odd primes :sums of the first $n^2$ odd primes :their divisibility by $n$: $\\begin{array}{|c|c|c|} \\hline & \\text{Including } 1 & \\text{Divisible by } n? & \\text{Not including } 1 & \\text{Divisible by } n? \\\\ \\hline 3 & 99 & \\text{Yes} & 127 & \\text{No} \\\\ \\hline 4 & 380 & \\text{Yes} & 438 & \\text{No} \\\\ \\hline 5 & 1059 & \\text{No} & 1159 & \\text{No} \\\\ \\hline 6 & 2426 & \\text{No} & 2582 & \\text{No} \\\\ \\hline 7 & 4887 & \\text{No} & 5115 & \\text{No} \\\\ \\hline 8 & 8892 & \\text{No} & 9204 & \\text{No} \\\\ \\hline 9 & 15115 & \\text{No} & 15535 & \\text{No} \\\\ \\hline 10 & 24132 & \\text{No} & 24678 & \\text{No} \\\\ \\hline 11 & 36887 & \\text{No} & 37559 & \\text{No} \\\\ \\hline \\end{array}$ So the only potential magic squares are of order $3$ or $4$. These magic squares, if they exist, must have magic constants $33$ and $95$. === Order $3$ === The first $8$ primes are $3, 5, 7, 11, 13, 17, 19, 23$. Because every prime and $1$ appears exactly once in a magic square, each number contributes to at least $2$ sums: the row and column sums. However, there is only one way to express $32$ as a sum of $2$ primes less than $23$: :$32 = 19 + 13$ and so $33$ cannot be made from a sum that includes $1$ in $2$ distinct ways. Thus an order $3$ prime magic square cannot be made. === Order $4$ === Every row of an order $4$ magic square contains $4$ odd numbers. These sum to an even number. But the magic constant of an order $4$ prime magic square, as shown above, is $95$. Hence it is not possible to create an order $4$ prime magic square. {{qed|lemma}} Hence there can be no prime magic square whose order is less than $12$. Thus the order $12$ prime magic square is the smallest whose elements are consecutive odd primes starting from $3$ (including or not including $1$). {{qed}} == Also see == * Magic Constant of Smallest Prime Magic Square with Consecutive Primes from 3 == Sources == * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = Square of Reversal of Small-Digit Number/Examples/12|next = Prime Magic Square/Examples/Order 12/Smallest with Consecutive Primes/Mistake}}: $144$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = Square of Reversal of Small-Digit Number/Examples/12|next = Prime Magic Square/Examples/Order 12/Smallest with Consecutive Primes/Mistake}}: $144$ * {{MathWorld|Prime Magic Square|PrimeMagicSquare}} Category:Prime Magic Squares aritkhflesvmf45cqcy250otnkv5tim"}
+{"_id": "32786", "title": "Euler Phi Function of 164", "text": "Euler Phi Function of 164 0 57145 437843 299795 2019-12-05T15:22:47Z Prime.mover 59 wikitext text/x-wiki == Example of Use of Euler $\\phi$ Function == :$\\map \\phi {164} = 80$ where $\\phi$ denotes the Euler $\\phi$ Function. == Proof == From Euler Phi Function of Integer: :$\\displaystyle \\map \\phi n = n \\prod_{p \\mathop \\divides n} \\paren {1 - \\frac 1 p}$ where $p \\divides n$ denotes the primes which divide $n$. We have that: :$164 = 2^2 \\times 41$ Thus: {{begin-eqn}} {{eqn | l = \\map \\phi {164} | r = 164 \\paren {1 - \\dfrac 1 2} \\paren {1 - \\dfrac 1 {41} } | c = }} {{eqn | r = 164 \\times \\frac 1 2 \\times \\frac {40} {41} | c = }} {{eqn | r = 2 \\times 1 \\times 40 | c = }} {{eqn | r = 80 | c = }} {{end-eqn}} {{qed}} Category:Euler Phi Function Category:164 p4uxlt8z13je88kx51h1ub82f2kob5w"}
+{"_id": "32787", "title": "Tau Function of 18", "text": "Tau Function of 18 0 57163 437769 299847 2019-12-04T16:52:45Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\map \\tau {18} = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\map \\tau n = \\prod_{j \\mathop = 1}^r \\paren {k_j + 1}$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$18 = 2 \\times 3^2$ Thus: :$\\map \\tau {18} = \\map \\tau {2^1 \\times 3^2} = \\paren {1 + 1} \\paren {2 + 1} = 6$ The divisors of $18$ can be enumerated as: :$1, 2, 3, 6, 9, 18$ {{OEIS|A018251}}{{qed}} Category:Tau Function Category:18 6mn7ak5k9wqy7vn876hfo5jym5mrp6f"}
+{"_id": "32788", "title": "Tau Function of 27", "text": "Tau Function of 27 0 57164 299848 2017-06-01T17:38:30Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({27}\\right) = 4$ where $\\tau$ denotes the Definition:Tau Functi...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({27}\\right) = 4$ where $\\tau$ denotes the $\\tau$ Function. == Proof == {{begin-eqn}} {{eqn | l = \\tau \\left({27}\\right) | r = \\tau \\left({3^3}\\right) | c = }} {{eqn | r = 3 + 1 | c = Tau of Power of Prime }} {{eqn | r = 4 | c = }} {{end-eqn}} The divisors of $27$ can be enumerated as: :$1, 3, 9, 27$ {{qed}} Category:Tau Function Category:27 2wzd93gzsz3x4pam1hs2hjn0merpq37"}
+{"_id": "32789", "title": "Tau Function of 24", "text": "Tau Function of 24 0 57165 439339 299851 2019-12-12T16:51:03Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\map \\tau {24} = 8$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\map \\tau n = \\prod_{j \\mathop = 1}^r \\paren {k_j + 1}$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$24 = 2^3 \\times 3$ Thus: {{begin-eqn}} {{eqn | l = \\map \\tau {24} | r = \\map \\tau {2^3 \\times 3^1} | c = }} {{eqn | r = \\paren {3 + 1} \\paren {1 + 1} | c = }} {{eqn | r = 8 | c = }} {{end-eqn}} The divisors of $24$ can be enumerated as: :$1, 2, 3, 4, 6, 8, 12, 24$ {{OEIS|A018253}}{{qed}} Category:Tau Function Category:24 12jn4nnaall53zx6orjfk1t5ittt0va"}
+{"_id": "32790", "title": "Tau Function of 32", "text": "Tau Function of 32 0 57166 299850 2017-06-01T17:45:57Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({32}\\right) = 6$ where $\\tau$ denotes the Definition:Tau Functi...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({32}\\right) = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == {{begin-eqn}} {{eqn | l = \\tau \\left({32}\\right) | r = \\tau \\left({2^5}\\right) | c = }} {{eqn | r = 5 + 1 | c = Tau of Power of Prime }} {{eqn | r = 6 | c = }} {{end-eqn}} The divisors of $32$ can be enumerated as: :$1, 2, 4, 8, 16, 32$ {{qed}} Category:Tau Function Category:32 4pgdl9biib1b9f07pkgmtu3idyvrlv2"}
+{"_id": "32791", "title": "Tau Function of 56", "text": "Tau Function of 56 0 57167 478128 300358 2020-07-13T20:19:32Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\map \\tau {56} = 8$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\map \\tau n = \\prod_{j \\mathop = 1}^r \\paren {k_j + 1}$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$56 = 2^3 \\times 7$ Thus: {{begin-eqn}} {{eqn | l = \\map \\tau {56} | r = \\map \\tau {2^3 \\times 7^1} | c = }} {{eqn | r = \\paren {3 + 1} \\paren {1 + 1} | c = }} {{eqn | r = 8 | c = }} {{end-eqn}} The divisors of $56$ can be enumerated as: :$1, 2, 4, 7, 8, 14, 28, 56$ {{OEIS|A018265}}{{qed}} Category:Tau Function Category:56 1ohrcsenhcfs5cro7d76r5byksnjw0r"}
+{"_id": "32792", "title": "Tau Function of 64", "text": "Tau Function of 64 0 57168 299853 2017-06-01T17:51:50Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({64}\\right) = 7$ where $\\tau$ denotes the Definition:Tau Functi...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({64}\\right) = 7$ where $\\tau$ denotes the $\\tau$ Function. == Proof == {{begin-eqn}} {{eqn | l = \\tau \\left({64}\\right) | r = \\tau \\left({2^6}\\right) | c = }} {{eqn | r = 6 + 1 | c = Tau of Power of Prime }} {{eqn | r = 7 | c = }} {{end-eqn}} The divisors of $64$ can be enumerated as: :$1, 2, 4, 8, 16, 32, 64$ {{qed}} Category:Tau Function Category:64 929fehhxkun7m814g7j21flfet4nklw"}
+{"_id": "32793", "title": "Euler Phi Function of 194", "text": "Euler Phi Function of 194 0 57256 300154 300152 2017-06-05T05:53:24Z Prime.mover 59 wikitext text/x-wiki == Example of Use of Euler $\\phi$ Function == :$\\phi \\left({194}\\right) = 96$ where $\\phi$ denotes the Euler $\\phi$ Function. == Proof == We have that: :$194 = 2 \\times 97$ Thus: {{begin-eqn}} {{eqn | l = \\phi \\left({194}\\right) | r = 97 - 1 | c = Euler Phi Function of 2 times Odd Prime }} {{eqn | r = 96 | c = }} {{end-eqn}} {{qed}} Category:Euler Phi Function of 2 times Odd Prime Category:194 p556xb2odwsuha7fesumz8jcf821x1g"}
+{"_id": "32794", "title": "Euler Phi Function of 195", "text": "Euler Phi Function of 195 0 57257 442119 300153 2020-01-03T17:19:26Z Prime.mover 59 wikitext text/x-wiki == Example of Euler $\\phi$ Function of Square-Free Integer == :$\\map \\phi {195} = 96$ where $\\phi$ denotes the Euler $\\phi$ Function. == Proof == From Euler Phi Function of Square-Free Integer: :$\\displaystyle \\map \\phi n = \\prod_{\\substack {p \\mathop \\divides n \\\\ p \\mathop > 2} } \\paren {p - 1}$ where $p \\divides n$ denotes the primes which divide $n$. We have that: :$195 = 3 \\times 5 \\times 13$ and so is square-free. Thus: {{begin-eqn}} {{eqn | l = \\map \\phi {195} | r = \\paren {3 - 1} \\paren {5 - 1} \\paren {13 - 1} | c = }} {{eqn | r = 2 \\times 4 \\times 12 | c = }} {{eqn | r = 96 | c = }} {{end-eqn}} {{qed}} Category:Euler Phi Function of Square-Free Integer Category:195 2rfjcc03p4hfc5wxk9g35vnqcr4w4qe"}
+{"_id": "32795", "title": "Tau Function of 70", "text": "Tau Function of 70 0 57331 419360 300361 2019-08-20T15:16:23Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\map \\tau {70} = 8$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\map \\tau n = \\prod_{j \\mathop = 1}^r \\paren {k_j + 1}$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$70 = 2 \\times 5 \\times 7$ Thus: {{begin-eqn}} {{eqn | l = \\map \\tau {70} | r = \\map \\tau {2^1 \\times 5^1 \\times 7^1} | c = }} {{eqn | r = \\paren {1 + 1} \\paren {1 + 1} \\paren {1 + 1} | c = }} {{eqn | r = 8 | c = }} {{end-eqn}} The divisors of $70$ can be enumerated as: :$1, 2, 5, 7, 10, 14, 35, 70$ {{OEIS|A018270}}{{qed}} Category:Tau Function Category:70 srddfybjijycf4kl1td3oi05t3fmzmt"}
+{"_id": "32796", "title": "Amicable Pair/Examples/220-284", "text": "Amicable Pair/Examples/220-284 0 57457 495109 445192 2020-10-16T22:16:34Z Prime.mover 59 wikitext text/x-wiki == Example of Amicable Pair == $220$ and $284$ are the smallest amicable pair: :$\\map \\sigma {220} = \\map \\sigma {284} = 504 = 220 + 284$ == Proof == Let $\\map s n$ denote the aliquot sum of $n$. By definition: :$\\map s n = \\map \\sigma n - n$ where $\\map \\sigma n$ denotes the $\\sigma$ function. Thus: {{begin-eqn}} {{eqn | l = \\map s {220} | r = \\map \\sigma {220} - 220 | c = }} {{eqn | r = 504 - 220 | c = $\\sigma$ of $220$ }} {{eqn | r = 284 | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | l = \\map s {284} | r = \\map \\sigma {284} - 284 | c = }} {{eqn | r = 504 - 284 | c = $\\sigma$ of $284$ }} {{eqn | r = 220 | c = }} {{end-eqn}} It can be determined by inspection of the aliquot sums of all smaller integers that there is no smaller amicable pair. {{qed}} == Historical Note == {{:Amicable Pair/Examples/220-284/Historical Note}} == Sources == * {{BookReference|History of the Theory of Numbers|1919|Leonard Eugene Dickson|volume = I|prev = Definition:Aliquot Part|next = Amicable Pair/Examples/220-284/Historical Note}}: Preface * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = 230|next = 220}}: $220$ * {{BookReference|Dictionary of Mathematics|1989|Ephraim J. Borowski|author2 = Jonathan M. Borwein|prev = Definition:Amicable Pair/Definition 1|next = Symbols:Abbreviations/A/amp|entry = amicable numbers}} * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = 230|next = 220}}: $220$ * {{BookReference|The Penguin Dictionary of Mathematics|1998|David Nelson|ed = 2nd|edpage = Second Edition|prev = Definition:Amicable Pair/Historical Note|next = Mathematician:André-Marie Ampère|entry = amicable numbers}} * {{BookReference|The Penguin Dictionary of Mathematics|2008|David Nelson|ed = 4th|edpage = Fourth Edition|prev = Definition:Amicable Pair/Historical Note|next = Mathematician:André-Marie Ampère|entry = amicable numbers}} * {{BookReference|The Concise Oxford Dictionary of Mathematics|2014|Christopher Clapham|author2 = James Nicholson|ed = 5th|edpage = Fifth Edition|prev = Definition:Amicable Pair/Definition 1|next = Amicable Pair/Examples/220-284/Historical Note|entry = amicable numbers}} * {{MathWorld|Amicable Pair|AmicablePair}} Category:Amicable Pairs 156m1wuwhpnymqw0qxn9gftolka1wxn"}
+{"_id": "32797", "title": "Sigma Function of 220", "text": "Sigma Function of 220 0 57461 454512 318160 2020-03-15T06:22:18Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\map \\sigma {220} = 504$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == From Sigma Function of Integer :$\\displaystyle \\map \\sigma n = \\prod_{1 \\mathop \\le i \\mathop \\le r} \\frac {p_i^{k_i + 1} - 1} {p_i - 1}$ where $n = \\displaystyle \\prod_{1 \\mathop \\le i \\mathop \\le r} p_i^{k_i}$ denotes the prime decomposition of $n$. We have that: :$220 = 2^2 \\times 5 \\times 11$ Hence: {{begin-eqn}} {{eqn | l = \\map \\sigma {220} | r = \\frac {2^3 - 1} {2 - 1} \\times \\frac {5^2 - 1} {5 - 1} \\times \\frac {11^2 - 1} {11 - 1} | c = }} {{eqn | r = \\frac 7 1 \\times \\frac {6 \\times 4} 4 \\times \\frac {12 \\times 10} {10} | c = }} {{eqn | r = 7 \\times 6 \\times 12 | c = }} {{eqn | r = 7 \\times \\paren {2 \\times 3} \\times \\paren {2^2 \\times 3} | c = }} {{eqn | r = 2^3 \\times 3^2 \\times 7 | c = }} {{eqn | r = 504 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:220 1vcippmcl9c5totyrn7swo390so3i5n"}
+{"_id": "32798", "title": "Sigma Function of 284", "text": "Sigma Function of 284 0 57462 428849 318226 2019-09-30T15:44:51Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\map \\sigma {284} = 504$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == From Sigma Function of Integer :$\\displaystyle \\map \\sigma n = \\prod_{1 \\mathop \\le i \\mathop \\le r} \\frac {p_i^{k_i + 1} - 1} {p_i - 1}$ where $n = \\displaystyle \\prod_{1 \\mathop \\le i \\mathop \\le r} p_i^{k_i}$ denotes the prime decomposition of $n$. We have that: :$284 = 2^2 \\times 71$ Hence: {{begin-eqn}} {{eqn | l = \\map \\sigma {284} | r = \\frac {2^3 - 1} {2 - 1} \\times \\paren {71 + 1} | c = }} {{eqn | r = 7 \\times 72 | c = }} {{eqn | r = 7 \\times \\paren {2^3 \\times 3^2} | c = }} {{eqn | r = 2^3 \\times 3^2 \\times 7 | c = }} {{eqn | r = 504 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:284 6rdlg5a1yonk3gmbtsgxoqqmutizo8w"}
+{"_id": "32799", "title": "Tau Function of 242", "text": "Tau Function of 242 0 57624 301348 301347 2017-06-16T06:38:54Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({242}\\right) = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$242 = 2 \\times 11^2$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({242}\\right) | r = \\tau \\left({2^1 \\times 11^2}\\right) | c = }} {{eqn | r = \\left({1 + 1}\\right) \\left({2 + 1}\\right) | c = }} {{eqn | r = 6 | c = }} {{end-eqn}} The divisors of $242$ can be enumerated as: :$1, 2, 11, 22, 121, 242$ {{OEIS|A018351}}{{qed}} Category:Tau Function Category:242 cw3x17ukjsvscw56toml4uol58puatc"}
+{"_id": "32800", "title": "Tau Function of 243", "text": "Tau Function of 243 0 57625 301350 301349 2017-06-16T06:40:14Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({243}\\right) = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$243 = 3^5$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({243}\\right) | r = \\tau \\left({3^5}\\right) | c = }} {{eqn | r = 5 + 1 | c = }} {{eqn | r = 6 | c = }} {{end-eqn}} The divisors of $243$ can be enumerated as: :$1, 3, 9, 27, 81, 243$ {{qed}} Category:Tau Function Category:243 gbe4y7w8ust9kft8qcmx5c47zsdlomu"}
+{"_id": "32801", "title": "Tau Function of 244", "text": "Tau Function of 244 0 57627 442166 301352 2020-01-03T23:24:31Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\map \\tau {244} = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\map \\tau n = \\prod_{j \\mathop = 1}^r \\paren {k_j + 1}$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$244 = 2^2 \\times 61$ Thus: {{begin-eqn}} {{eqn | l = \\map \\tau {244} | r = \\map \\tau {2^2 \\times 61^1} | c = }} {{eqn | r = \\paren {2 + 1} \\paren {1 + 1} | c = }} {{eqn | r = 6 | c = }} {{end-eqn}} The divisors of $244$ can be enumerated as: :$1, 2, 4, 61, 122, 244$ {{OEIS|A018352}}{{qed}} Category:Tau Function Category:244 tt5qjt0kh52cpbdoy10801body7eao2"}
+{"_id": "32802", "title": "Tau Function of 245", "text": "Tau Function of 245 0 57628 437662 301353 2019-12-03T22:27:03Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\map \\tau {245} = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\map \\tau n = \\prod_{j \\mathop = 1}^r \\paren {k_j + 1}$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$245 = 5 \\times 7^2$ Thus: {{begin-eqn}} {{eqn | l = \\map \\tau {245} | r = \\map \\tau {5^1 \\times 7^2} | c = }} {{eqn | r = \\paren {1 + 1} \\paren {2 + 1} | c = }} {{eqn | r = 6 | c = }} {{end-eqn}} The divisors of $245$ can be enumerated as: :$1, 5, 7, 35, 49, 245$ {{OEIS|A018353}}{{qed}} Category:Tau Function Category:245 ax6xkkjmionh27wol5xl7cb1o3aikwv"}
+{"_id": "32803", "title": "Tau Function of 44", "text": "Tau Function of 44 0 57631 392274 301359 2019-02-13T13:43:41Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\map \\tau {44} = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\map \\tau n = \\prod_{j \\mathop = 1}^r \\paren {k_j + 1}$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$44 = 2^2 \\times 11$ Thus: {{begin-eqn}} {{eqn | l = \\map \\tau {44} | r = \\map \\tau {2^2 \\times 11^1} | c = }} {{eqn | r = \\paren {2 + 1} \\paren {1 + 1} | c = }} {{eqn | r = 6 | c = }} {{end-eqn}} The divisors of $44$ can be enumerated as: :$1, 2, 4, 11, 22, 44$ {{OEIS|A018259}}{{qed}} Category:Tau Function Category:44 obchaa6rttld5l92qyw5jn6low7xme2"}
+{"_id": "32804", "title": "Tau Function of 45", "text": "Tau Function of 45 0 57632 498640 301360 2020-11-11T15:10:51Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\map \\tau {45} = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\ds \\map \\tau n = \\prod_{j \\mathop = 1}^r \\paren {k_j + 1}$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$45 = 3^2 \\times 5$ Thus: {{begin-eqn}} {{eqn | l = \\map \\tau {45} | r = \\map \\tau {3^2 \\times 5^1} | c = }} {{eqn | r = \\paren {2 + 1} \\paren {1 + 1} | c = }} {{eqn | r = 6 | c = }} {{end-eqn}} The divisors of $45$ can be enumerated as: :$1, 3, 5, 9, 15, 45$ {{OEIS|A018260}}{{qed}} Category:Tau Function Category:45 pi8h7w7wkxq59n6ftpw5q77k2hovj9c"}
+{"_id": "32805", "title": "Tau Function of 75", "text": "Tau Function of 75 0 57633 462846 301361 2020-04-18T19:11:38Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\map \\tau {75} = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\map \\tau n = \\prod_{j \\mathop = 1}^r \\paren {k_j + 1}$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$75 = 3 \\times 5^2$ Thus: {{begin-eqn}} {{eqn | l = \\map \\tau {75} | r = \\map \\tau {3^1 \\times 5^2} | c = }} {{eqn | r = \\paren {1 + 1} \\paren {2 + 1} | c = }} {{eqn | r = 6 | c = }} {{end-eqn}} The divisors of $75$ can be enumerated as: :$1, 3, 5, 15, 25, 75$ {{OEIS|A018272}}{{qed}} Category:Tau Function Category:75 4n8i6x28vhggiyuf2krmi2wt5vf3pbe"}
+{"_id": "32806", "title": "Tau Function of 76", "text": "Tau Function of 76 0 57634 301362 2017-06-16T07:04:24Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({76}\\right) = 6$ where $\\tau$ denotes the Definition:Tau Functi...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({76}\\right) = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$76 = 2^2 \\times 19$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({76}\\right) | r = \\tau \\left({2^2 \\times 19^1}\\right) | c = }} {{eqn | r = \\left({2 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 6 | c = }} {{end-eqn}} The divisors of $76$ can be enumerated as: :$1, 2, 4, 19, 38, 76$ {{OEIS|A018273}}{{qed}} Category:Tau Function Category:76 0v0qr9pw59m0qr4ynosy2tmi4b9xbfs"}
+{"_id": "32807", "title": "Tau Function of 98", "text": "Tau Function of 98 0 57635 493092 301363 2020-10-07T21:00:26Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\map \\tau {98} = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\ds \\map \\tau n = \\prod_{j \\mathop = 1}^r \\paren {k_j + 1}$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$98 = 2 \\times 7^2$ Thus: {{begin-eqn}} {{eqn | l = \\map \\tau {98} | r = \\map \\tau {2^1 \\times 7^2} | c = }} {{eqn | r = \\paren {1 + 1} \\paren {2 + 1} | c = }} {{eqn | r = 6 | c = }} {{end-eqn}} The divisors of $98$ can be enumerated as: :$1, 2, 7, 14, 49, 98$ {{OEIS|A018281}}{{qed}} Category:Tau Function Category:98 emweidxaurus9g2kcqsmh9li2ba1aip"}
+{"_id": "32808", "title": "Tau Function of 99", "text": "Tau Function of 99 0 57636 440180 301364 2019-12-19T14:26:33Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\map \\tau {99} = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\map \\tau n = \\prod_{j \\mathop = 1}^r \\paren {k_j + 1}$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$99 = 3^2 \\times 11$ Thus: {{begin-eqn}} {{eqn | l = \\map \\tau {99} | r = \\map \\tau {3^2 \\times 11^1} | c = }} {{eqn | r = \\paren {2 + 1} \\paren {1 + 1} | c = }} {{eqn | r = 6 | c = }} {{end-eqn}} The divisors of $99$ can be enumerated as: :$1, 3, 9, 11, 33, 99$ {{OEIS|A018282}}{{qed}} Category:Tau Function Category:99 jmexhprzj9jku6bnx4x88o7tbhrbct4"}
+{"_id": "32809", "title": "Tau Function of 116", "text": "Tau Function of 116 0 57637 301365 2017-06-16T07:12:51Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({116}\\right) = 6$ where $\\tau$ denotes the Definition:Tau Funct...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({116}\\right) = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$116 = 2^2 \\times 29$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({116}\\right) | r = \\tau \\left({2^2 \\times 29^1}\\right) | c = }} {{eqn | r = \\left({2 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 6 | c = }} {{end-eqn}} The divisors of $116$ can be enumerated as: :$1, 2, 4, 29, 58, 116$ {{OEIS|A018291}}{{qed}} Category:Tau Function Category:116 lb1er71ruxb8hxim1qr1w8j9alfsg7c"}
+{"_id": "32810", "title": "Tau Function of 117", "text": "Tau Function of 117 0 57638 301366 2017-06-16T07:14:55Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({117}\\right) = 6$ where $\\tau$ denotes the Definition:Tau Funct...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({117}\\right) = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$117 = 3^2 \\times 13$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({117}\\right) | r = \\tau \\left({3^2 \\times 13^1}\\right) | c = }} {{eqn | r = \\left({2 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 6 | c = }} {{end-eqn}} The divisors of $117$ can be enumerated as: :$1, 3, 9, 13, 39, 117$ {{OEIS|A018292}}{{qed}} Category:Tau Function Category:117 sa61trstzw6njn8hwvtrkn1aovqug3j"}
+{"_id": "32811", "title": "Tau Function of 147", "text": "Tau Function of 147 0 57639 301367 2017-06-16T07:17:02Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({147}\\right) = 6$ where $\\tau$ denotes the Definition:Tau Funct...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({147}\\right) = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$147 = 3 \\times 7^2$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({147}\\right) | r = \\tau \\left({3^1 \\times 7^2}\\right) | c = }} {{eqn | r = \\left({1 + 1}\\right) \\left({2 + 1}\\right) | c = }} {{eqn | r = 6 | c = }} {{end-eqn}} The divisors of $147$ can be enumerated as: :$1, 3, 7, 21, 49, 147$ {{OEIS|A018303}}{{qed}} Category:Tau Function Category:147 ltd5c69ddqp6j2mj4cioynjxd2z1e5o"}
+{"_id": "32812", "title": "Tau Function of 148", "text": "Tau Function of 148 0 57640 301368 2017-06-16T07:18:53Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({148}\\right) = 6$ where $\\tau$ denotes the Definition:Tau Funct...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({148}\\right) = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$148 = 2^2 \\times 37$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({148}\\right) | r = \\tau \\left({2^2 \\times 37^1}\\right) | c = }} {{eqn | r = \\left({2 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 6 | c = }} {{end-eqn}} The divisors of $148$ can be enumerated as: :$1, 2, 4, 37, 74, 148$ {{OEIS|A018304}}{{qed}} Category:Tau Function Category:148 bd1lmvoloq9hgkal0gdmfacusjavqru"}
+{"_id": "32813", "title": "Tau Function of 171", "text": "Tau Function of 171 0 57641 301369 2017-06-16T07:20:53Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({171}\\right) = 6$ where $\\tau$ denotes the Definition:Tau Funct...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({171}\\right) = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$171 = 3^2 \\times 19$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({171}\\right) | r = \\tau \\left({3^2 \\times 19^1}\\right) | c = }} {{eqn | r = \\left({2 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 6 | c = }} {{end-eqn}} The divisors of $171$ can be enumerated as: :$1, 3, 9, 19, 57, 171$ {{OEIS|A018316}}{{qed}} Category:Tau Function Category:171 mxk5jkfzab71vxjdtrxj3uanp3verfz"}
+{"_id": "32814", "title": "Tau Function of 172", "text": "Tau Function of 172 0 57642 301370 2017-06-16T07:22:22Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({172}\\right) = 6$ where $\\tau$ denotes the Definition:Tau Funct...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({172}\\right) = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$172 = 2^2 \\times 43$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({172}\\right) | r = \\tau \\left({2^2 \\times 43^1}\\right) | c = }} {{eqn | r = \\left({2 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 6 | c = }} {{end-eqn}} The divisors of $172$ can be enumerated as: :$1, 2, 4, 43, 86, 172$ {{OEIS|A018317}}{{qed}} Category:Tau Function Category:172 f4fyyhnchmz2lbtz7jghqb1nermgh2d"}
+{"_id": "32815", "title": "Tau Function of 332", "text": "Tau Function of 332 0 57643 453229 301371 2020-03-07T22:54:29Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\map \\tau {332} = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\map \\tau n = \\prod_{j \\mathop = 1}^r \\paren {k_j + 1}$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$332 = 2^2 \\times 83$ Thus: {{begin-eqn}} {{eqn | l = \\map \\tau {332} | r = \\map \\tau {2^2 \\times 83^1} | c = }} {{eqn | r = \\paren {2 + 1} \\paren {1 + 1} | c = }} {{eqn | r = 6 | c = }} {{end-eqn}} The divisors of $332$ can be enumerated as: :$1, 2, 4, 83, 166, 332$ {{OEIS|A018397}}{{qed}} Category:Tau Function Category:332 t66rqz4j7izzms654yr849sg0ltcmsr"}
+{"_id": "32816", "title": "Tau Function of 333", "text": "Tau Function of 333 0 57645 479809 301373 2020-07-26T19:08:37Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\map \\tau {333} = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\map \\tau n = \\prod_{j \\mathop = 1}^r \\paren {k_j + 1}$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$333 = 3^2 \\times 37$ Thus: {{begin-eqn}} {{eqn | l = \\map \\tau {333} | r = \\map \\tau {3^2 \\times 37^1} | c = }} {{eqn | r = \\paren {2 + 1} \\paren {1 + 1} | c = }} {{eqn | r = 6 | c = }} {{end-eqn}} The divisors of $333$ can be enumerated as: :$1, 3, 9, 37, 111, 333$ {{OEIS|A018398}}{{qed}} Category:Tau Function Category:333 1024mwyu3a23yig2nixfbw8izpf3zfr"}
+{"_id": "32817", "title": "Euler Phi Function of 255", "text": "Euler Phi Function of 255 0 57677 301456 2017-06-17T05:05:03Z Prime.mover 59 Created page with \"== Example of Euler $\\phi$ Function of Square-Free Integer == :$\\phi \\left({255}\\right) = 128$ where...\" wikitext text/x-wiki == Example of Euler $\\phi$ Function of Square-Free Integer == :$\\phi \\left({255}\\right) = 128$ where $\\phi$ denotes the Euler $\\phi$ Function. == Proof == From Euler Phi Function of Square-Free Integer: :$\\displaystyle \\phi \\left({n}\\right) = \\prod_{\\substack {p \\mathop \\backslash n \\\\ p \\mathop > 2} } \\left({p - 1}\\right)$ where $p \\mathop \\backslash n$ denotes the primes which divide $n$. We have that: :$255 = 3 \\times 5 \\times 17$ and so is square-free. Thus: {{begin-eqn}} {{eqn | l = \\phi \\left({255}\\right) | r = \\left({3 - 1}\\right) \\left({5 - 1}\\right) \\left({17 - 1}\\right) | c = }} {{eqn | r = 2 \\times 4 \\times 16 | c = }} {{eqn | r = 2 \\times 2^2 \\times 2^4 | c = }} {{eqn | r = 2^7 | c = }} {{eqn | r = 128 | c = }} {{end-eqn}} {{qed}} Category:Euler Phi Function of Square-Free Integer Category:255 15jcgmcyt9gmekph9k99y8vohk7gi3y"}
+{"_id": "32818", "title": "Euler Phi Function of 256", "text": "Euler Phi Function of 256 0 57678 301457 2017-06-17T05:08:31Z Prime.mover 59 Created page with \"== Example of Use of Euler $\\phi$ Function == The value of the Euler $\\phi$ function for the...\" wikitext text/x-wiki == Example of Use of Euler $\\phi$ Function == The value of the Euler $\\phi$ function for the integer $256$ is $128$. == Proof == From the corollary to Euler Phi Function of Prime Power: :$\\phi \\left({2^k}\\right) = 2^{k-1}$ Thus: {{begin-eqn}} {{eqn | l = \\phi \\left({256}\\right) | r = \\phi \\left({2^8}\\right) | c = }} {{eqn | r = 2^7 | c = }} {{eqn | r = 128 | c = }} {{end-eqn}} {{qed}} Category:Euler Phi Function Category:256 9v9f6py2viisafgp53w6dr79zy9yg8k"}
+{"_id": "32819", "title": "Tau Function of 20", "text": "Tau Function of 20 0 58327 304238 303115 2017-07-10T09:17:26Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({20}\\right) = 6$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$20 = 2^2 \\times 5$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({20}\\right) | r = \\tau \\left({2^2 \\times 5^1}\\right) | c = }} {{eqn | r = \\left({2 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 6 | c = }} {{end-eqn}} The divisors of $20$ can be enumerated as: :$1, 2, 4, 5, 10, 20$ {{OEIS|A005018}}{{qed}} Category:Tau Function Category:20 aiul2j4zaqmzkql5jarvm0pqntnpuo0"}
+{"_id": "32820", "title": "Non-Square Positive Integers not Sum of Square and Prime", "text": "Non-Square Positive Integers not Sum of Square and Prime 0 58473 326104 303396 2017-11-11T09:49:55Z Barto 3079 \"work to do\" template wikitext text/x-wiki == Conjecture == The sequence of (strictly) positive integers which are not square and not the sum of a square and a prime is believed to be complete: :$10, 34, 58, 85, 91, 130, 214, 226, 370, 526, 706, 730, 771, 1255, 1351, 1414, 1906, 2986, 3676, 9634, 21679$ {{OEIS|A020495}} == Progress == From Square of n such that 2n-1 is Composite is not Sum of Square and Prime, $n^2$ is the sum of a square and a prime {{iff}} $2 n - 1$ composite. Hence the question is specifically about non-squares. No prime number is in this sequence, as trivially: :$p = p + 0^2$ and so is the sum of a prime (itself), and $0^2$, which is square. Each non-square composite $n \\in \\Z$ can be tested by subtracting successive squares less than $n$ and investigating whether a prime can result. In the following, the smallest $m$ such that $n - m^2 = p$ is shown where such a $p$ exists. Otherwise the nonexistence of such a $p$ is demonstrated explicitly. As follows: {{begin-eqn}} {{eqn | l = 4 - 1^2 | r = 3 | c = which is prime }} {{eqn | l = 6 - 1^2 | r = 5 | c = which is prime }} {{eqn | l = 8 - 1^2 | r = 7 | c = which is prime }} {{end-eqn}} $10$ cannot be expressed as $10 = m^2 + p$. Thus $10$ is seen to be in this sequence. {{begin-eqn}} {{eqn | l = 12 - 1^2 | r = 11 | c = which is prime }} {{eqn | l = 14 - 1^2 | r = 13 | c = which is prime }} {{eqn | l = 15 - 2^2 | r = 11 | c = which is prime }} {{eqn | l = 16 - 3^2 | r = 7 | c = which is prime }} {{eqn | l = 18 - 1^2 | r = 17 | c = which is prime }} {{eqn | l = 20 - 1^2 | r = 19 | c = which is prime }} {{eqn | l = 21 - 2^2 | r = 17 | c = which is prime }} {{eqn | l = 22 - 3^2 | r = 13 | c = which is prime }} {{eqn | l = 24 - 1^2 | r = 23 | c = which is prime }} {{eqn | l = 26 - 3^2 | r = 17 | c = which is prime }} {{eqn | l = 27 - 2^2 | r = 23 | c = which is prime }} {{eqn | l = 28 - 3^2 | r = 19 | c = which is prime }} {{eqn | l = 30 - 1^2 | r = 29 | c = which is prime }} {{eqn | l = 32 - 1^2 | r = 31 | c = which is prime }} {{eqn | l = 33 - 2^2 | r = 29 | c = which is prime }} {{end-eqn}} $34$ cannot be expressed as $34 = m^2 + p$. Thus $34$ is seen to be in this sequence. Similarly: $58$ cannot be expressed as $58 = m^2 + p$. Thus $58$ is seen to be in this sequence. This establishes the pattern. The algorithm for determining whether a particular $n$ belongs to this sequence can be defined in pseudocode as follows: For n := 1, loop indefinitely, incrementing by 1: Is n prime? If so, continue to the next n Is n square? If so, continue to the next n For m := 1, incrementing by 1 until m^2 > n: Is n - n^2 prime? If so, continue to the next n Next m Add n to the sequence Next n
{{wtd|Design (or adoption) of a rigorous pseudocode needs to be done. Alternatively we may seek to stick with our existing technique for implement algorithms, and/or use a flow chart.}} {{finish|Tidy up the algorithm above. Do we demonstrate an instance of an computer program here?}} == Examples == {{:Non-Square Positive Integers not Sum of Square and Prime/Examples}} == Historical Note == {{:Non-Square Positive Integers not Sum of Square and Prime/Historical Note}} Category:Numbers not Sum of Square and Prime Category:Unproven Hypotheses 200j0yl2xxwh429avnf174txlp4nyt8"}
+{"_id": "32821", "title": "Tau Function of 836", "text": "Tau Function of 836 0 58989 488971 304141 2020-09-18T22:40:48Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\map \\tau {836} = 12$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\map \\tau n = \\prod_{j \\mathop = 1}^r \\paren {k_j + 1}$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$836 = 2^2 \\times 11 \\times 19$ Thus: {{begin-eqn}} {{eqn | l = \\map \\tau {836} | r = \\map \\tau {2^2 \\times 11^1 \\times 19^1} | c = }} {{eqn | r = \\paren {2 + 1} \\paren {1 + 1} \\paren {1 + 1} | c = }} {{eqn | r = 12 | c = }} {{end-eqn}} The divisors of $836$ can be enumerated as: :$1, 2, 4, 11, 19, 22, 38, 44, 76, 209, 418, 836$ {{OEIS|A018674}}{{qed}} Category:Tau Function Category:836 3p7ep19hp9lks5cd2e5mlmuyd81v6bc"}
+{"_id": "32822", "title": "Sigma Function of 4030", "text": "Sigma Function of 4030 0 58996 393901 317889 2019-02-25T15:01:57Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Square-Free Integer == :$\\map \\sigma {4030} = 8064$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$4030 = 2 \\times 5 \\times 13 \\times 31$ Hence: {{begin-eqn}} {{eqn | l = \\map \\sigma {4030} | r = \\paren {2 + 1} \\paren {5 + 1} \\paren {13 + 1} \\paren {31 + 1} | c = Sigma Function of Square-Free Integer }} {{eqn | r = 3 \\times 6 \\times 14 \\times 32 | c = }} {{eqn | r = 3 \\times \\paren {2 \\times 3} \\times \\paren {2 \\times 7} \\times 2^5 | c = }} {{eqn | r = 2^7 \\times 3^2 \\times 7 | c = }} {{eqn | r = 8064 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Square-Free Integer Category:4030 94fs2bv2gjbu850omhvswl2iscnyp4p"}
+{"_id": "32823", "title": "Tau Function of 4030", "text": "Tau Function of 4030 0 58997 304156 2017-07-09T19:08:53Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({4030}\\right) = 16$ where $\\tau$ denotes the Definition:Tau Fun...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({4030}\\right) = 16$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$4030 = 2 \\times 5 \\times 13 \\times 31$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({4030}\\right) | r = \\tau \\left({2^1 \\times 5^1 \\times 13^1 \\times 31^1}\\right) | c = }} {{eqn | r = \\left({1 + 1}\\right) \\left({1 + 1}\\right) \\left({1 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 16 | c = }} {{end-eqn}} The divisors of $4030$ can be enumerated as: :$1, 2, 5, 10, 13, 26, 31, 62, 65, 130, 155, 310, 403, 806, 2015, 4030$ {{qed}} Category:Tau Function Category:4030 h53efoeraud09v5hpgi203y0gm5a3ve"}
+{"_id": "32824", "title": "Tau Function of 490", "text": "Tau Function of 490 0 59007 304197 2017-07-09T22:41:58Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({490}\\right) = 12$ where $\\tau$ denotes the Definition:Tau Func...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({490}\\right) = 12$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$490 = 2 \\times 5 \\times 7^2$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({490}\\right) | r = \\tau \\left({2^1 \\times 5^1 \\times 7^2}\\right) | c = }} {{eqn | r = \\left({1 + 1}\\right) \\left({1 + 1}\\right) \\left({2 + 1}\\right) | c = }} {{eqn | r = 12 | c = }} {{end-eqn}} The divisors of $490$ can be enumerated as: :$1, 2, 5, 7, 10, 14, 35, 49, 70, 98, 245, 490$ {{OEIS|A018483}}{{qed}} Category:Tau Function Category:490 jchifntti6yp12ggx2eiwo8aqnefwvb"}
+{"_id": "32825", "title": "Tau Function of 550", "text": "Tau Function of 550 0 59008 304202 2017-07-09T22:56:05Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({550}\\right) = 12$ where $\\tau$ denotes the Definition:Tau Func...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({550}\\right) = 12$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$550 = 2 \\times 5^2 \\times 11$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({550}\\right) | r = \\tau \\left({2^1 \\times 5^2 \\times 11^1}\\right) | c = }} {{eqn | r = \\left({1 + 1}\\right) \\left({2 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 12 | c = }} {{end-eqn}} The divisors of $550$ can be enumerated as: :$1, 2, 5, 10, 11, 22, 25, 50, 55, 110, 275, 550$ {{OEIS|A018514}}{{qed}} Category:Tau Function Category:550 npbvgbi3gczo3qlsits8hp9d7wm6zvo"}
+{"_id": "32826", "title": "Tau Function of 572", "text": "Tau Function of 572 0 59010 304205 2017-07-09T23:06:44Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({572}\\right) = 12$ where $\\tau$ denotes the Definition:Tau Func...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({572}\\right) = 12$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$572 = 2^2 \\times 11 \\times 13$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({572}\\right) | r = \\tau \\left({2^2 \\times 11^1 \\times 13^1}\\right) | c = }} {{eqn | r = \\left({2 + 1}\\right) \\left({1 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 12 | c = }} {{end-eqn}} The divisors of $572$ can be enumerated as: :$1, 2, 4, 11, 13, 22, 26, 44, 52, 143, 286, 572$ {{OEIS|A018525}}{{qed}} Category:Tau Function Category:572 rhv4hqbtrzva88kvoefc2n6ngmd4zed"}
+{"_id": "32827", "title": "Tau Function of 650", "text": "Tau Function of 650 0 59015 304223 2017-07-09T23:30:22Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({650}\\right) = 12$ where $\\tau$ denotes the Definition:Tau Func...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({650}\\right) = 12$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$650 = 2 \\times 5^2 \\times 13$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({650}\\right) | r = \\tau \\left({2^1 \\times 5^2 \\times 13^1}\\right) | c = }} {{eqn | r = \\left({1 + 1}\\right) \\left({2 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 12 | c = }} {{end-eqn}} The divisors of $650$ can be enumerated as: :$1, 2, 5, 10, 13, 25, 26, 50, 65, 130, 325, 650$ {{OEIS|A018571}}{{qed}} Category:Tau Function Category:650 5gefu5m1ce8n0dmit0o9j7j003lfdhc"}
+{"_id": "32828", "title": "Tau Function of 88", "text": "Tau Function of 88 0 59022 304235 2017-07-10T09:09:04Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({88}\\right) = 8$ where $\\tau$ denotes the Definition:Tau Functi...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({88}\\right) = 8$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$88 = 2^3 \\times 11$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({88}\\right) | r = \\tau \\left({2^3 \\times 11^1}\\right) | c = }} {{eqn | r = \\left({3 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 8 | c = }} {{end-eqn}} The divisors of $88$ can be enumerated as: :$1, 2, 4, 8, 11, 22, 44, 88$ {{OEIS|A018277}}{{qed}} Category:Tau Function Category:88 qds6jo0jge6b258ki5stwt2s5aodcq0"}
+{"_id": "32829", "title": "Tau Function of 104", "text": "Tau Function of 104 0 59024 334107 304239 2018-01-02T16:23:08Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({104}\\right) = 8$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$104 = 2^3 \\times 13$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({104}\\right) | r = \\tau \\left({2^3 \\times 13^1}\\right) | c = }} {{eqn | r = \\left({3 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 8 | c = }} {{end-eqn}} The divisors of $104$ can be enumerated as: :$1, 2, 4, 8, 13, 26, 52, 104$ {{OEIS|A018285}}{{qed}} Category:Tau Function Category:104 euuy536l81o3uo5z62ubdnadh6md7m3"}
+{"_id": "32830", "title": "Sigma Function of 272", "text": "Sigma Function of 272 0 59026 318220 318218 2017-09-16T18:26:03Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\sigma \\left({272}\\right) = 558$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$272 = 2^4 \\times 17$ Hence: {{begin-eqn}} {{eqn | l = \\sigma \\left({272}\\right) | r = \\frac {2^5 - 1} {2 - 1} \\times \\frac {17^2 - 1} {17 - 1} | c = Sigma Function of Integer }} {{eqn | r = \\frac {31 - 1} 1 \\times \\frac {289 - 1} {16} | c = }} {{eqn | r = 31 \\times 18 | c = }} {{eqn | r = \\left({2 \\times 3^2}\\right) \\times 31 | c = }} {{eqn | r = 558 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:272 rx3scmsglraze6gjw7jksv67w3pcnw9"}
+{"_id": "32831", "title": "Tau Function of 272", "text": "Tau Function of 272 0 59027 304242 2017-07-10T09:26:58Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({272}\\right) = 10$ where $\\tau$ denotes the Definition:Tau Func...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({272}\\right) = 10$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$272 = 2^4 \\times 17$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({272}\\right) | r = \\tau \\left({2^4 \\times 17^1}\\right) | c = }} {{eqn | r = \\left({4 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 10 | c = }} {{end-eqn}} The divisors of $272$ can be enumerated as: :$1, 2, 4, 8, 16, 17, 34, 68, 136, 272$ {{OEIS|A018366}}{{qed}} Category:Tau Function Category:272 s7nn4xxhrkckargd8ql0zio5nglgyc7"}
+{"_id": "32832", "title": "Tau Function of 304", "text": "Tau Function of 304 0 59029 437827 304244 2019-12-05T13:17:44Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\map \\tau {304} = 10$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\map \\tau n = \\prod_{j \\mathop = 1}^r \\paren {k_j + 1}$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$304 = 2^4 \\times 19$ Thus: {{begin-eqn}} {{eqn | l = \\map \\tau {304} | r = \\map \\tau {2^4 \\times 19^1} | c = }} {{eqn | r = \\paren {4 + 1} \\paren {1 + 1} | c = }} {{eqn | r = 10 | c = }} {{end-eqn}} The divisors of $304$ can be enumerated as: :$1, 2, 4, 8, 16, 19, 38, 76, 152, 304$ {{OEIS|A018383}}{{qed}} Category:Tau Function Category:304 4sp5aqq0s67es5to2ipj3cfkzxgnnaa"}
+{"_id": "32833", "title": "Sigma Function of 304", "text": "Sigma Function of 304 0 59031 437054 318249 2019-11-28T11:59:16Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\map \\sigma {304} = 620$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$304 = 2^4 \\times 19$ Hence: {{begin-eqn}} {{eqn | l = \\map \\sigma {304} | r = \\frac {2^5 - 1} {2 - 1} \\times \\frac {19^2 - 1} {19 - 1} | c = Sigma Function of Integer }} {{eqn | r = \\frac {31 - 1} 1 \\times \\frac {361 - 1} {18} | c = }} {{eqn | r = 31 \\times 20 | c = }} {{eqn | r = \\paren {2^2 \\times 5} \\times 31 | c = }} {{eqn | r = 620 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:304 scg937vsfb5vp31ewr73chnst9ufmdk"}
+{"_id": "32834", "title": "Sigma Function of 748", "text": "Sigma Function of 748 0 59032 318334 318332 2017-09-16T18:43:23Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\sigma \\left({748}\\right) = 1512$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$748 = 2^2 \\times 11 \\times 17$ Hence: {{begin-eqn}} {{eqn | l = \\sigma \\left({748}\\right) | r = \\frac {2^3 - 1} {2 - 1} \\times \\left({11 + 1}\\right) \\times \\left({17 + 1}\\right) | c = Sigma Function of Integer }} {{eqn | r = 7 \\times 12 \\times 18 | c = }} {{eqn | r = 7 \\times \\left({2^2 \\times 3}\\right) \\times \\left({2 \\times 3^2}\\right) | c = }} {{eqn | r = 2^3 \\times 3^3 \\times 7 | c = }} {{eqn | r = 1512 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:748 bak7x1fyh5pcawhxicsevj5k53a0qix"}
+{"_id": "32835", "title": "Tau Function of 748", "text": "Tau Function of 748 0 59034 304251 304250 2017-07-10T09:47:44Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({748}\\right) = 12$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$748 = 2^2 \\times 11 \\times 17$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({748}\\right) | r = \\tau \\left({2^2 \\times 11^1 \\times 17^1}\\right) | c = }} {{eqn | r = \\left({2 + 1}\\right) \\left({1 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 12 | c = }} {{end-eqn}} The divisors of $748$ can be enumerated as: :$1, 2, 4, 11, 17, 22, 34, 44, 68, 187, 374, 748$ {{OEIS|A018625}}{{qed}} Category:Tau Function Category:748 gy36kbpwjvlwbg7l8qemzf3uswc8ul5"}
+{"_id": "32836", "title": "Perfect Number/Examples/6", "text": "Perfect Number/Examples/6 0 59047 304290 304286 2017-07-10T13:10:44Z Prime.mover 59 wikitext text/x-wiki == Example of Perfect Number == $6$ is a perfect number: :$1 + 2 + 3 = 6$ == Proof == {{begin-eqn}} {{eqn | l = 6 | r = 2 \\times 3 | c = }} {{eqn | r = 2^{2 - 1} \\left({2^2 - 1}\\right) | c = }} {{end-eqn}} Thus $6$ is in the form $2^{n - 1} \\left({2^n - 1}\\right)$. $\\left({2^2 - 1}\\right) = 3$ is prime. So $6$ is perfect by the Theorem of Even Perfect Numbers. The aliquot parts of $6$ are enumerated at $\\tau$ of $6$: :$1, 2, 3$ {{qed}} Category:Perfect Numbers/Examples Category:6 l5ifi04j4tscc66zegdw575qgp0xjl4"}
+{"_id": "32837", "title": "Perfect Number/Examples/28", "text": "Perfect Number/Examples/28 0 59049 304301 304289 2017-07-10T21:11:53Z Prime.mover 59 wikitext text/x-wiki == Example of Perfect Number == $28$ is a perfect number: :$1 + 2 + 4 + 7 + 14 = 28$ == Proof == {{begin-eqn}} {{eqn | l = 28 | r = 4 \\times 7 | c = }} {{eqn | r = 2^{3 - 1} \\left({2^3 - 1}\\right) | c = }} {{end-eqn}} Thus $28$ is in the form $2^{p - 1} \\left({2^p - 1}\\right)$. $\\left({2^3 - 1}\\right) = 7$ is prime. So $28$ is perfect by the Theorem of Even Perfect Numbers. The aliquot parts of $28$ are enumerated at $\\tau$ of $28$: :$1, 2, 4, 7, 14$ {{qed}} Category:Perfect Numbers/Examples Category:28 ko1oaen6qi02suw50mk42r15d4yc14d"}
+{"_id": "32838", "title": "Perfect Number/Examples/496", "text": "Perfect Number/Examples/496 0 59052 304297 2017-07-10T21:05:03Z Prime.mover 59 Created page with \"== Example of Perfect Number == $496$ is a perfect number: :$1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248...\" wikitext text/x-wiki == Example of Perfect Number == $496$ is a perfect number: :$1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 = 496$ == Proof == {{begin-eqn}} {{eqn | l = 496 | r = 16 \\times 31 | c = }} {{eqn | r = 2^{5 - 1} \\left({2^5 - 1}\\right) | c = }} {{end-eqn}} Thus $496$ is in the form $2^{p - 1} \\left({2^p - 1}\\right)$. $\\left({2^5 - 1}\\right) = 31$ is prime. So $496$ is perfect by the Theorem of Even Perfect Numbers. The aliquot parts of $496$ are enumerated at $\\tau$ of $496$: :$1, 2, 4, 8, 16, 31, 62, 124, 248$ {{qed}} Category:Perfect Numbers/Examples Category:496 5caq0phszs33pcx9ubnbtaw1dnhv8f4"}
+{"_id": "32839", "title": "Tau Function of 8128", "text": "Tau Function of 8128 0 59053 304298 2017-07-10T21:08:43Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({8128}\\right) = 10$ where $\\tau$ denotes the Definition:Tau Fun...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({8128}\\right) = 10$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$8128 = 2^6 \\times 127$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({8128}\\right) | r = \\tau \\left({2^6 \\times 127^1}\\right) | c = }} {{eqn | r = \\left({6 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 14 | c = }} {{end-eqn}} The divisors of $496$ can be enumerated as: :$1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064, 8128$ {{OEIS|A133024}}{{qed}} Category:Tau Function Category:8128 hm2zpslcr20akwp3rts5nourkv1yngr"}
+{"_id": "32840", "title": "Tau Function of 350", "text": "Tau Function of 350 0 59059 304308 2017-07-10T22:22:33Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({350}\\right) = 12$ where $\\tau$ denotes the Definition:Tau Func...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({350}\\right) = 12$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$350 = 2 \\times 5^2 \\times 7$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({350}\\right) | r = \\tau \\left({2^1 \\times 5^2 \\times 7^1}\\right) | c = }} {{eqn | r = \\left({1 + 1}\\right) \\left({2 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 12 | c = }} {{end-eqn}} The divisors of $350$ can be enumerated as: :$1, 2, 5, 7, 10, 14, 25, 35, 50, 70, 175, 350$ {{OEIS|A018406}}{{qed}} Category:Tau Function Category:350 pwa2hv67xd0ko87ic5yzleh47df80ss"}
+{"_id": "32841", "title": "Tau Function of 368", "text": "Tau Function of 368 0 59061 304310 2017-07-10T22:28:37Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({368}\\right) = 10$ where $\\tau$ denotes the Definition:Tau Func...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({368}\\right) = 10$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$368 = 2^4 \\times 23$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({368}\\right) | r = \\tau \\left({2^4 \\times 23^1}\\right) | c = }} {{eqn | r = \\left({4 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 10 | c = }} {{end-eqn}} The divisors of $368$ can be enumerated as: :$1, 2, 4, 8, 16, 23, 46, 92, 184, 368$ {{OEIS|A018416}}{{qed}} Category:Tau Function Category:368 6k9v95xl1u1mmviudnaqyvxwui8t5yl"}
+{"_id": "32842", "title": "Tau Function of 464", "text": "Tau Function of 464 0 59063 473808 304313 2020-06-12T15:22:36Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\map \\tau {464} = 10$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\map \\tau n = \\prod_{j \\mathop = 1}^r \\paren {k_j + 1}$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$464 = 2^4 \\times 29$ Thus: {{begin-eqn}} {{eqn | l = \\map \\tau {464} | r = \\map \\tau {2^4 \\times 29^1} | c = }} {{eqn | r = \\paren {4 + 1} \\paren {1 + 1} | c = }} {{eqn | r = 10 | c = }} {{end-eqn}} The divisors of $464$ can be enumerated as: :$1, 2, 4, 8, 16, 29, 58, 116, 232, 464$ {{OEIS|A018469}}{{qed}} Category:Tau Function Category:464 cm87fogt027tziyuwpzb01bo5l7fiqw"}
+{"_id": "32843", "title": "Sigma Function of 464", "text": "Sigma Function of 464 0 59074 318279 318277 2017-09-16T18:35:27Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\sigma \\left({464}\\right) = 930$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$464 = 2^4 \\times 29$ Hence: {{begin-eqn}} {{eqn | l = \\sigma \\left({464}\\right) | r = \\frac {2^5 - 1} {2 - 1} \\times \\left({29 + 1}\\right) | c = Sigma Function of Integer }} {{eqn | r = \\frac {31 - 1} 1 \\times 30 | c = }} {{eqn | r = 31 \\times 30 | c = }} {{eqn | r = \\left({2 \\times 3 \\times 5}\\right) \\times 31 | c = }} {{eqn | r = 930 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:464 pwwssq4d21pngtykzhxl1bdd7lri6rr"}
+{"_id": "32844", "title": "Sigma Function of 550", "text": "Sigma Function of 550 0 59076 318303 318301 2017-09-16T18:38:48Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\sigma \\left({550}\\right) = 1116$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$550 = 2 \\times 5^2 \\times 11$ Hence: {{begin-eqn}} {{eqn | l = \\sigma \\left({550}\\right) | r = \\left({2 + 1}\\right) \\times \\frac {5^3 - 1} {5 - 1} \\times \\left({11 + 1}\\right) | c = Sigma Function of Integer }} {{eqn | r = 3 \\times \\frac {125 - 1} 4 \\times 12 | c = }} {{eqn | r = 3 \\times 31 \\times \\left({2^2 \\times 3}\\right) | c = }} {{eqn | r = 2^2 \\times 3^2 \\times 31 | c = }} {{eqn | r = 1116 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:550 czyhqlmea1f0bdvkvlv8w7iocze8mwu"}
+{"_id": "32845", "title": "Sigma Function of 572", "text": "Sigma Function of 572 0 59078 318309 318307 2017-09-16T18:39:36Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\sigma \\left({572}\\right) = 1176$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$572 = 2^2 \\times 11 \\times 13$ Hence: {{begin-eqn}} {{eqn | l = \\sigma \\left({572}\\right) | r = \\frac {2^3 - 1} {2 - 1} \\times \\left({11 + 1}\\right) \\times \\left({13 + 1}\\right) | c = Sigma Function of Integer }} {{eqn | r = \\frac {7 - 1} 1 \\times 12 \\times 14 | c = }} {{eqn | r = 7 \\times \\left({2^2 \\times 3}\\right) \\times \\left({2 \\times 7}\\right) | c = }} {{eqn | r = 2^3 \\times 3 \\times 7^2 | c = }} {{eqn | r = 1176 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:572 f9klaav8ehkgcafcylzae71k86l4ud0"}
+{"_id": "32846", "title": "Sigma Function of 650", "text": "Sigma Function of 650 0 59080 435882 318324 2019-11-20T19:00:14Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\map \\sigma {650} = 1302$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$650 = 2 \\times 5^2 \\times 13$ Hence: {{begin-eqn}} {{eqn | l = \\map \\sigma {650} | r = \\paren {2 + 1} \\times \\frac {5^3 - 1} {5 - 1} \\times \\paren {13 + 1} | c = Sigma Function of Integer }} {{eqn | r = 3 \\times \\frac {125 - 1} 4 \\times 14 | c = }} {{eqn | r = 3 \\times 31 \\times \\paren {2 \\times 7} | c = }} {{eqn | r = 2 \\times 3 \\times 7 \\times 31 | c = }} {{eqn | r = 1302 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:650 bm6g40cfm16s71b0igpb06njswgr2vd"}
+{"_id": "32847", "title": "Tau Function of 770", "text": "Tau Function of 770 0 59567 305915 305909 2017-07-22T08:34:49Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({770}\\right) = 16$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$770 = 2 \\times 5 \\times 7 \\times 11$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({770}\\right) | r = \\tau \\left({2^1 \\times 5^1 \\times 7^1 \\times 11^1}\\right) | c = }} {{eqn | r = \\left({1 + 1}\\right) \\left({1 + 1}\\right) \\left({1 + 1}\\right) \\left({1 + 1}\\right) | c = }} {{eqn | r = 16 | c = }} {{end-eqn}} The divisors of $770$ can be enumerated as: :$1, 2, 5, 7, 10, 11, 14, 22, 35, 55, 70, 77, 110, 154, 385, 770$ {{OEIS|A018636}}{{qed}} Category:Tau Function Category:770 6jgxiy0fxo1q0xqw1xnjov11x3mhfz9"}
+{"_id": "32848", "title": "Multiplicative Persistence/Examples/25", "text": "Multiplicative Persistence/Examples/25 0 60112 308235 308234 2017-08-02T06:02:20Z Prime.mover 59 wikitext text/x-wiki == Examples of Multiplicative Persistence == $25$ is the smallest positive integer which has a multiplicative persistence of $2$. == Proof == Trivially: {{begin-eqn}} {{eqn | n = 1 | l = 2 \\times 5 | r = 10 }} {{eqn | n = 2 | l = 1 \\times 0 | r = 0 }} {{end-eqn}} All positive integers between $10$ and $19$ are seen to have a multiplicative persistence of $1$: :$1 \\times n = n$ where $n$ is a single digit. Then for 2-digit positive integers starting with $2$: :$2 \\times n > 9 \\implies n > 4$ by inspection. Hence the result. {{qed}} Category:Multiplicative Persistence Category:25 q4xeibo3s0mj1uxi8vb11276c4hz6vy"}
+{"_id": "32849", "title": "De Polignac's Formula/Examples/2 in 720 Factorial", "text": "De Polignac's Formula/Examples/2 in 720 Factorial 0 60227 391883 308633 2019-02-09T23:45:11Z Prime.mover 59 wikitext text/x-wiki == Example of Use of De Polignac's Formula == The prime factor $2$ appears in $720!$ to the power of $716$. That is: :$2^{716} \\divides 720!$ but: :$2^{717} \\nmid 720!$ == Proof == Let $\\mu$ denote the power of $2$ which divides $720!$ {{begin-eqn}} {{eqn | l = \\mu | r = \\sum_{k \\mathop > 0} \\floor {\\frac {720} {2^k} } | c = De Polignac's Formula }} {{eqn | r = \\floor {\\frac {720} 2} + \\floor {\\frac {720} 4} + \\floor {\\frac {720} 8} + \\floor {\\frac {720} {16} } + \\floor {\\frac {720} {32} } | c = }} {{eqn | o = | r = + \\floor {\\frac {720} {64} } + \\floor {\\frac {720} {128} } + \\floor {\\frac {720} {256} } + \\floor {\\frac {720} {512} } | c = }} {{eqn | r = 360 + 180 + 90 + 45 + 22 + 11 + 5 + 2 + 1 | c = }} {{eqn | r = 716 | c = }} {{end-eqn}} {{qed}} Category:De Polignac's Formula maxgk7rg0b1l1jnx4zh0pbqnazmfcbw"}
+{"_id": "32850", "title": "De Polignac's Formula/Examples/3 in 720 Factorial", "text": "De Polignac's Formula/Examples/3 in 720 Factorial 0 60228 391885 334099 2019-02-09T23:46:07Z Prime.mover 59 wikitext text/x-wiki == Example of Use of De Polignac's Formula == The prime factor $3$ appears in $720!$ to the power of $356$. That is: :$3^{356} \\divides 720!$ but: :$3^{357} \\nmid 720!$ == Proof == Let $\\mu$ denote the power of $3$ which divides $720!$ {{begin-eqn}} {{eqn | l = \\mu | r = \\sum_{k \\mathop > 0} \\floor {\\frac {720} {3^k} } | c = De Polignac's Formula }} {{eqn | r = \\floor {\\frac {720} 3} + \\floor {\\frac {720} 9} + \\floor {\\frac {720} {27} } + \\floor {\\frac {720} {81} } + \\floor {\\frac {720} {243} } | c = }} {{eqn | r = 240 + 80 + 26 + 8 + 2 | c = }} {{eqn | r = 356 | c = }} {{end-eqn}} {{qed}} Category:De Polignac's Formula aku8yebg8tzo3oxc1cpymz97023rxyq"}
+{"_id": "32851", "title": "De Polignac's Formula/Examples/5 in 720 Factorial", "text": "De Polignac's Formula/Examples/5 in 720 Factorial 0 60229 391886 358683 2019-02-09T23:47:00Z Prime.mover 59 wikitext text/x-wiki == Example of Use of De Polignac's Formula == The prime factor $5$ appears in $720!$ to the power of $178$. That is: :$5^{178} \\divides 720!$ but: :$5^{179} \\nmid 720!$ == Proof == Let $\\mu$ denote the power of $5$ which divides $720!$ {{begin-eqn}} {{eqn | l = \\mu | r = \\sum_{k \\mathop > 0} \\floor {\\frac {720} {5^k} } | c = De Polignac's Formula }} {{eqn | r = \\floor {\\frac {720} 5} + \\floor {\\frac {720} {25} } + \\floor {\\frac {720} {125} } + \\floor {\\frac {720} {625} } | c = }} {{eqn | r = 144 + 28 + 5 + 1 | c = }} {{eqn | r = 178 | c = }} {{end-eqn}} {{qed}} Category:De Polignac's Formula 45qodtu6gqlwu69yvt7btcb8fpudk4c"}
+{"_id": "32852", "title": "Sigma Function of 1184", "text": "Sigma Function of 1184 0 60464 454635 317765 2020-03-15T15:40:51Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\map \\sigma {1184} = 2394$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == From Sigma Function of Integer :$\\displaystyle \\map \\sigma n = \\prod_{1 \\mathop \\le i \\mathop \\le r} \\frac {p_i^{k_i + 1} - 1} {p_i - 1}$ where $n = \\displaystyle \\prod_{1 \\mathop \\le i \\mathop \\le r} p_i^{k_i}$ denotes the prime decomposition of $n$. We have that: :$1184 = 2^5 \\times 37$ Hence: {{begin-eqn}} {{eqn | l = \\map \\sigma {1184} | r = \\frac {2^6 - 1} {2 - 1} \\times \\frac {37^2 - 1} {37 - 1} | c = }} {{eqn | r = \\frac {63} 1 \\times \\frac {38 \\times 36} {36} | c = }} {{eqn | r = 63 \\times 38 | c = }} {{eqn | r = \\paren {3^2 \\times 7} \\times \\paren {2 \\times 19} | c = }} {{eqn | r = 2 \\times 3^2 \\times 7 \\times 19 | c = }} {{eqn | r = 2394 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:1184 ganlt3wy11purs9zxg4h9t2r84dq0mg"}
+{"_id": "32853", "title": "Sigma Function of 1210", "text": "Sigma Function of 1210 0 60465 317791 317789 2017-09-16T13:01:46Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\sigma \\left({1210}\\right) = 2394$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == From Sigma Function of Integer :$\\displaystyle \\sigma \\left({n}\\right) = \\prod_{1 \\mathop \\le i \\mathop \\le r} \\frac {p_i^{k_i + 1} - 1} {p_i - 1}$ where $n = \\displaystyle \\prod_{1 \\mathop \\le i \\mathop \\le r} p_i^{k_i}$ denotes the prime decomposition of $n$. We have that: :$1210 = 2 \\times 5 \\times 11^2$ Hence: {{begin-eqn}} {{eqn | l = \\sigma \\left({1210}\\right) | r = \\left({2 + 1}\\right) \\times \\left({5 + 1}\\right) \\times \\frac {11^3 - 1} {11 - 1} | c = }} {{eqn | r = 3 \\times 6 \\times \\frac {1330} {10} | c = }} {{eqn | r = 3 \\times 6 \\times 133 | c = }} {{eqn | r = 3 \\times \\left({2 \\times 3}\\right) \\times \\left({7 \\times 19}\\right) | c = }} {{eqn | r = 2 \\times 3^2 \\times 7 \\times 19 | c = }} {{eqn | r = 2394 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:1210 6eiwqik7ft4fpi17l6dtmvwllrjpuuv"}
+{"_id": "32854", "title": "Sigma Function of 1638", "text": "Sigma Function of 1638 0 60492 318129 318127 2017-09-16T14:56:56Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\sigma \\left({1638}\\right) = 4368$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == We have that: :$1638 = 2 \\times 3^2 \\times 7 \\times 13$ Hence: {{begin-eqn}} {{eqn | l = \\sigma \\left({1638}\\right) | r = \\left({2 + 1}\\right) \\frac {3^3 - 1} {3 - 1} \\times \\left({7 + 1}\\right) \\times \\left({13 + 1}\\right) | c = Sigma Function of Integer }} {{eqn | r = 3 \\times \\frac {26} 2 \\times 8 \\times 14 | c = }} {{eqn | r = 3 \\times 13 \\times 2^3 \\times \\left({2 \\times 7}\\right) | c = }} {{eqn | r = 2^4 \\times 3 \\times 7 \\times 13 | c = }} {{eqn | r = 4368 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:1638 piry1g4q0g9krzjvna8gqdbqybd7dko"}
+{"_id": "32855", "title": "Tau Function of 1638", "text": "Tau Function of 1638 0 60493 445384 309876 2020-01-31T11:05:00Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\map \\tau {1638} = 24$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\map \\tau n = \\prod_{j \\mathop = 1}^r \\paren {k_j + 1}$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$1638 = 2 \\times 3^2 \\times 7 \\times 13$ Thus: {{begin-eqn}} {{eqn | l = \\map \\tau {1638} | r = \\map \\tau {2^1 \\times 3^2 \\times 7^1 \\times 13^1} | c = }} {{eqn | r = \\paren {1 + 1} \\paren {2 + 1} \\paren {1 + 1} \\paren {1 + 1} | c = }} {{eqn | r = 24 | c = }} {{end-eqn}} The divisors of $1638$ can be enumerated as: :$1, 2, 3, 6, 7, 9, 13, 14, 18, 21, 26, 39, 42, 63, 78, 91, 117, 126, 182, 234, 273, 546, 819, 1638$ {{qed}} Category:Tau Function Category:1638 s9kup1bhls2umalmu3n3pig5qpa3a4y"}
+{"_id": "32856", "title": "Tau Function of 945", "text": "Tau Function of 945 0 60606 425091 310276 2019-09-13T12:10:32Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\map \\tau {945} = 16$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\map \\tau n = \\prod_{j \\mathop = 1}^r \\paren {k_j + 1}$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$945 = 3^3 \\times 5 \\times 7$ Thus: {{begin-eqn}} {{eqn | l = \\map \\tau {945} | r = \\map \\tau {3^3 \\times 5^1 \\times 7^1} | c = }} {{eqn | r = \\paren {3 + 1} \\paren {1 + 1} \\paren {1 + 1} | c = }} {{eqn | r = 16 | c = }} {{end-eqn}} The divisors of $945$ can be enumerated as: :$1, 3, 5, 7, 9, 15, 21, 27, 35, 45, 63, 105, 135, 189, 315, 945$ {{OEIS|A018736}}{{qed}} Category:Tau Function Category:945 87e3zg4t9qjr3unoyfn33x5h0mnybkn"}
+{"_id": "32857", "title": "Tau Function of 910", "text": "Tau Function of 910 0 60608 439494 310279 2019-12-14T10:31:38Z Prime.mover 59 wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\map \\tau {910} = 16$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\map \\tau n = \\prod_{j \\mathop = 1}^r \\paren {k_j + 1}$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$910 = 2 \\times 5 \\times 7 \\times 13$ Thus: {{begin-eqn}} {{eqn | l = \\map \\tau {910} | r = \\map \\tau {2^1 \\times 5^1 \\times 7^1 \\times 13^1} | c = }} {{eqn | r = \\paren {1 + 1} \\paren {1 + 1} \\paren {1 + 1} \\paren {1 + 1} | c = }} {{eqn | r = 16 | c = }} {{end-eqn}} The divisors of $910$ can be enumerated as: :$1, 2, 5, 7, 10, 13, 14, 26, 35, 65, 70, 91, 130, 182, 455, 910$ {{OEIS|A018717}}{{qed}} Category:Tau Function Category:910 ccz2ot8ebhj08bja1wyq1810eollxc4"}
+{"_id": "32858", "title": "Tau Function of 1184", "text": "Tau Function of 1184 0 60611 310282 2017-08-10T06:33:21Z Prime.mover 59 Created page with \"== Example of Use of $\\tau$ Function == :$\\tau \\left({1184}\\right) = 12$ where $\\tau$ denotes the Definition:Tau Fun...\" wikitext text/x-wiki == Example of Use of $\\tau$ Function == :$\\tau \\left({1184}\\right) = 12$ where $\\tau$ denotes the $\\tau$ Function. == Proof == From Tau Function from Prime Decomposition: :$\\displaystyle \\tau \\left({n}\\right) = \\prod_{j \\mathop = 1}^r \\left({k_j + 1}\\right)$ where: :$r$ denotes the number of distinct prime factors in the prime decomposition of $n$ :$k_j$ denotes the multiplicity of the $j$th prime in the prime decomposition of $n$. We have that: :$1184 = 2^5 \\times 37$ Thus: {{begin-eqn}} {{eqn | l = \\tau \\left({1184}\\right) | r = \\tau \\left({2^5 \\times 37^1}\\right) | c = }} {{eqn | r = \\left({5 + 1}\\right) \\left({2 + 1}\\right) | c = }} {{eqn | r = 12 | c = }} {{end-eqn}} The divisors of $1184$ can be enumerated as: :$1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592, 1184$ {{qed}} Category:Tau Function Category:1184 hp5q548fdculppmqc91vdbj1uf8rot5"}
+{"_id": "32859", "title": "Integer whose Digits when Grouped in 3s add to Multiple of 999 is Divisible by 999/Examples", "text": "Integer whose Digits when Grouped in 3s add to Multiple of 999 is Divisible by 999/Examples 0 60630 478390 478377 2020-07-16T06:53:03Z Prime.mover 59 wikitext text/x-wiki == Examples of Integer whose Digits when Grouped in 3s add to Multiple of 999 is Divisible by 999 == {{begin-eqn}} {{eqn | l = 4 \\times 999 | r = 3996 | c = }} {{eqn | ll= \\leadsto | l = 3 + 996 | r = 999 | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | l = 15 \\times 999 | r = 14 \\, 985 | c = }} {{eqn | ll= \\leadsto | l = 14 + 985 | r = 999 | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | l = 47 \\times 999 | r = 46 \\, 953 | c = }} {{eqn | ll= \\leadsto | l = 46 + 953 | r = 999 | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | l = 57 \\times 999 | r = 56 \\, 943 | c = }} {{eqn | ll= \\leadsto | l = 56 + 943 | r = 999 | c = }} {{end-eqn}} Category:Integer whose Digits when Grouped in 3s add to Multiple of 999 is Divisible by 999 k75tr675sa2cztel9d4thg7069dew4m"}
+{"_id": "32860", "title": "Carmichael Number/Examples/1729", "text": "Carmichael Number/Examples/1729 0 60981 323299 312511 2017-10-26T20:16:49Z Prime.mover 59 wikitext text/x-wiki == Example of Carmichael Number== $1729$ is a Carmichael number: :$\\forall a \\in \\Z: a \\perp 1729: a^{1729} \\equiv a \\pmod {1729}$ while $1729$ is composite. == Proof == We have that: :$1729 = 7 \\times 13 \\times 19$ and so: {{begin-eqn}} {{eqn | l = 7^2 | o = \\nmid | r = 1729 | c = }} {{eqn | l = 13^2 | o = \\nmid | r = 1729 | c = }} {{eqn | l = 19^2 | o = \\nmid | r = 1729 | c = }} {{end-eqn}} We also have that: {{begin-eqn}} {{eqn | l = 1728 | r = 288 \\times 6 | c = }} {{eqn | r = 144 \\times 12 | c = }} {{eqn | r = 96 \\times 18 | c = }} {{end-eqn}} The result follows by Korselt's Theorem. {{qed}} == Sources == * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = 509,033,161|next = Carmichael Number/Examples/294,409}}: $509,033,161$ Category:Carmichael Numbers Category:1729 qgour7zwj5qk61w91iqa7mzf20wlqhx"}
+{"_id": "32861", "title": "Highly Composite Number/Examples/1", "text": "Highly Composite Number/Examples/1 0 61035 492964 312820 2020-10-06T18:06:40Z Prime.mover 59 wikitext text/x-wiki == Example of Highly Composite Number == $1$ is a highly composite number, being the smallest positive integer with $1$ divisor or more. == Proof == From Tau Function of 1: :$\\map \\tau 1 = 1$ The positive integer $1$ has $1$ divisor, that is, $1$ itself. Vacuously, no smaller positive integer has a greater number of divisors. Thus, despite not actually being composite, $1$ is a highly composite number. {{qed}} Category:Highly Composite Numbers 0p8650qep457aueoerbrrp7pp93pyns"}
+{"_id": "32862", "title": "Special Highly Composite Number/Examples/1", "text": "Special Highly Composite Number/Examples/1 0 61038 312830 2017-08-23T21:58:22Z Prime.mover 59 Created page with \"== Example of Special Highly Composite Number == $1$ is a Definition:Special Highly Composite Number|special hig...\" wikitext text/x-wiki == Example of Special Highly Composite Number == $1$ is a special highly composite number, being a highly composite number which is a divisor of all larger highly composite numbers. == Proof == We have that $1$ is highly composite. From One Divides all Integers, it follows trivially that $1$ is a divisor of all larger highly composite numbers. Thus, by definition, $1$ is a special highly composite number. {{qed}} == Sources == * {{Citation|title = An Interesting Subset of the Highly Composite Numbers|author = Steven Ratering|journal = Mathematics Magazine|abbr = Math. Mag.|volume = 64|issue = 5|date = Dec. 1991|startpage = 343|endpage = 346|jstor = 2690653}} Category:Special Highly Composite Numbers i3t0aihfktpa57wuu91qmdax7ttfb3j"}
+{"_id": "32863", "title": "Highly Composite Number/Examples/2", "text": "Highly Composite Number/Examples/2 0 61039 312834 312833 2017-08-23T22:04:28Z Prime.mover 59 wikitext text/x-wiki == Example of Highly Composite Number == $2$ is a highly composite number, being the smallest positive integer with $2$ divisors or more. == Proof == From Tau of Prime Number: :$\\tau \\left({2}\\right) = 2$ From Tau Function of 1: :$\\tau \\left({1}\\right) = 1$ That is, the only positive integer smaller than $2$ has a smaller number of divisors. Thus, despite not actually being composite, $2$ is a highly composite number. {{qed}} Category:Highly Composite Numbers opsdh13u7m4uhchr7v0zb1rvxf5e8ar"}
+{"_id": "32864", "title": "Special Highly Composite Number/Examples/2", "text": "Special Highly Composite Number/Examples/2 0 61065 412551 313064 2019-07-12T16:23:03Z Prime.mover 59 wikitext text/x-wiki == Example of Special Highly Composite Number == $2$ is a special highly composite number, being a highly composite number which is a divisor of all larger highly composite numbers. == Proof == We have that $2$ is highly composite. Let $n > 2$ be a highly composite number. From Prime Decomposition of Highly Composite Number, the multiplicity of $2$ in $n$ is at least as high as the multiplicity of any other prime $p$ in $n$. Thus if $p \\divides n$ it follows that $2 \\divides n$. Thus, by definition, $2$ is a special highly composite number. {{qed}} == Sources == * {{Citation|title = An Interesting Subset of the Highly Composite Numbers|author = Steven Ratering|journal = Mathematics Magazine|abbr = Math. Mag.|volume = 64|issue = 5|date = Dec. 1991|startpage = 343|endpage = 346|jstor = 2690653}} Category:Special Highly Composite Numbers Category:2 3m6blgzzkw9e3zqsh0mzkup9sr9v5cc"}
+{"_id": "32865", "title": "Special Highly Composite Number/Examples/6", "text": "Special Highly Composite Number/Examples/6 0 61067 313065 312947 2017-08-26T06:11:36Z Prime.mover 59 wikitext text/x-wiki == Example of Special Highly Composite Number == $6$ is a special highly composite number, being a highly composite number which is a divisor of all larger highly composite numbers. == Proof == By inspection of the sequence of highly composite numbers, $6$ is highly composite. {{AimForCont}} $n > 6$ is a highly composite number which is not divisible by $6$. We have that $2$ is a special highly composite number. Therefore $2$ is a divisor of $n$. As $6$ is not a divisor of $n$, it follows that $3$ is also not a divisor of $n$. By Prime Decomposition of Highly Composite Number, that means $n = 2^k$ for some $k \\ge 3$. Then: {{begin-eqn}} {{eqn | l = 2^{k - 2} \\times 3 | o = < | r = 2^k | c = because $3 < 2^2 = 4$ }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^{k - 2} \\times 3}\\right) | o = < | r = \\tau \\left({2^k}\\right) | c = as $2^k$ is highly composite }} {{eqn | ll= \\leadsto | l = \\left({k - 1}\\right) \\left({1 + 1}\\right) | o = < | r = k + 1 | c = {{Defof|Tau Function}} }} {{eqn | ll= \\leadsto | l = k | o = < | r = 3 | c = after algebra }} {{end-eqn}} But this contradicts our deduction that $n = 2^k$ where $k \\ge 3$. The result follows by Proof by Contradiction. {{qed}} == Sources == * {{Citation|title = An Interesting Subset of the Highly Composite Numbers|author = Steven Ratering|journal = Mathematics Magazine|abbr = Math. Mag.|volume = 64|issue = 5|date = Dec. 1991|startpage = 343|endpage = 346|jstor = 2690653}} Category:Special Highly Composite Numbers Category:6 85yg2crs8eimf36fbfbd8u16gudlxwr"}
+{"_id": "32866", "title": "Special Highly Composite Number/Examples/12", "text": "Special Highly Composite Number/Examples/12 0 61069 313066 312950 2017-08-26T06:13:05Z Prime.mover 59 wikitext text/x-wiki == Example of Special Highly Composite Number == $12$ is a special highly composite number, being a highly composite number which is a divisor of all larger highly composite numbers. == Proof == By inspection of the sequence of highly composite numbers, $12$ is highly composite. {{AimForCont}} $n > 12$ is a highly composite number which is not divisible by $12$. We have that $6$ is a special highly composite number. Therefore $6$ is a divisor of $n$. As $12$ is not a divisor of $n$, it follows that the multiplicity of $2$ in $n$ is $1$. From Prime Decomposition of Highly Composite Number, that means: : $n = 2 \\times 3 \\times 5 \\times r$ where $r$ is a possibly vacuous square-free product of prime numbers strictly greater than $5$. Then: {{begin-eqn}} {{eqn | l = 2^3 \\times 3 \\times r | o = < | r = 2 \\times 3 \\times 5 \\times r | c = because $4 = 2^2 < 5$ }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^3 \\times 3 \\times r}\\right) | o = < | r = \\tau \\left({2 \\times 3 \\times 5 \\times r}\\right) | c = as $2 \\times 3 \\times 5 \\times r$ is highly composite }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^3 \\times 3}\\right) \\times \\tau \\left({r}\\right) | o = < | r = \\tau \\left({2 \\times 3 \\times 5}\\right) \\times \\tau \\left({r}\\right) | c = Tau Function is Multiplicative }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^3 \\times 3}\\right) | o = < | r = \\tau \\left({2 \\times 3 \\times 5}\\right) | c = simplifying }} {{eqn | ll= \\leadsto | l = \\left({3 + 1}\\right) \\left({1 + 1}\\right) | o = < | r = \\left({1 + 1}\\right) \\left({1 + 1}\\right) \\left({1 + 1}\\right) | c = {{Defof|Tau Function}} }} {{eqn | ll= \\leadsto | l = 8 | o = < | r = 8 | c = which is a falsehood }} {{end-eqn}} The result follows by Proof by Contradiction. {{qed}} == Sources == * {{Citation|title = An Interesting Subset of the Highly Composite Numbers|author = Steven Ratering|journal = Mathematics Magazine|abbr = Math. Mag.|volume = 64|issue = 5|date = Dec. 1991|startpage = 343|endpage = 346|jstor = 2690653}} Category:Special Highly Composite Numbers Category:12 ne9hzwbf2tx192vwctgj5lqk14clq3z"}
+{"_id": "32867", "title": "Special Highly Composite Number/Examples/60", "text": "Special Highly Composite Number/Examples/60 0 61070 313067 312953 2017-08-26T06:17:38Z Prime.mover 59 wikitext text/x-wiki == Example of Special Highly Composite Number == $60$ is a special highly composite number, being a highly composite number which is a divisor of all larger highly composite numbers. == Proof == By inspection of the sequence of highly composite numbers, $60$ is highly composite. {{AimForCont}} $n > 60$ is a highly composite number which is not divisible by $60$. We have that $12$ is a special highly composite number. Therefore $12$ is a divisor of $n$. As $60$ is not a divisor of $n$, it follows that while $3$ is a divisor of $n$, $5$ is not. From Prime Decomposition of Highly Composite Number, no prime number greater than $5$ is a divisor of $n$. Thus: :$n = 2^a \\times 3^b$ where $a \\ge b \\ge 1$. This will be investigated on a case-by-case basis. :$(1): \\quad b = 1$ That is, $n = 2^a \\times 3$. We have that $n > 60$. Therefore: :$(1 \\text a): \\quad a \\ge 5$ as $2^4 \\times 3^1 = 48$. Then: {{begin-eqn}} {{eqn | l = 2^{a - 3} \\times 3 \\times 5 | o = < | r = 2^a \\times 3 | c = because $5 < 2^3 = 8$ }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^{a - 3} \\times 3 \\times 5}\\right) | o = < | r = \\tau \\left({2^a \\times 3}\\right) | c = as $2^a \\times 3$ is highly composite }} {{eqn | ll= \\leadsto | l = \\left({\\left({a - 3}\\right) + 1}\\right) \\left({1 + 1}\\right) \\left({1 + 1}\\right) | o = < | r = \\left({a + 1}\\right) \\left({1 + 1}\\right) | c = {{Defof|Tau Function}} }} {{eqn | ll= \\leadsto | l = 4 \\left({a - 2}\\right) | o = < | r = 2 \\left({a + 1}\\right) | c = simplifying }} {{eqn | ll= \\leadsto | l = a | o = < | r = 5 | c = which is a contradiction of $(1 \\text a)$ }} {{end-eqn}} It follows by Proof by Contradiction that $b \\ne 1$. {{qed|lemma}} :$(2): \\quad b = 2$ That is, $n = 2^a \\times 3^2$. We have that $n > 60$. Therefore: :$(2 \\text a): \\quad a \\ge 3$ as $2^2 \\times 3^2 = 36$. Then: {{begin-eqn}} {{eqn | l = 2^{a - 1} \\times 3 \\times 5 | o = < | r = 2^a \\times 3^2 | c = because $5 < 2 \\times 3 = 6$ }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^{a - 1} \\times 3 \\times 5}\\right) | o = < | r = \\tau \\left({2^a \\times 3^2}\\right) | c = as $2^a \\times 3^2$ is highly composite }} {{eqn | ll= \\leadsto | l = \\left({\\left({a - 1}\\right) + 1}\\right) \\left({1 + 1}\\right) \\left({1 + 1}\\right) | o = < | r = \\left({a + 1}\\right) \\left({2 + 1}\\right) | c = {{Defof|Tau Function}} }} {{eqn | ll= \\leadsto | l = 4 a | o = < | r = 3 \\left({a + 1}\\right) | c = simplifying }} {{eqn | ll= \\leadsto | l = a | o = < | r = 3 | c = which is a contradiction of $(2 \\text a)$ }} {{end-eqn}} It follows by Proof by Contradiction that $b \\ne 2$. {{qed|lemma}} :$(3): \\quad b \\ge 3$ By Prime Decomposition of Highly Composite Number we have that $a \\ge 3$. Then: {{begin-eqn}} {{eqn | l = 2^{a - 1} \\times 3^{b - 1} \\times 5 | o = < | r = 2^a \\times 3^b | c = because $5 < 2 \\times 3 = 6$ }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^{a - 1} \\times 3^{b - 1} \\times 5}\\right) | o = < | r = \\tau \\left({2^a \\times 3^b}\\right) | c = as $2^a \\times 3^b$ is highly composite }} {{eqn | ll= \\leadsto | l = \\left({\\left({a - 1}\\right) + 1}\\right) \\left({\\left({b - 1}\\right) + 1}\\right) \\left({1 + 1}\\right) | o = < | r = \\left({a + 1}\\right) \\left({b + 1}\\right) | c = {{Defof|Tau Function}} }} {{eqn | ll= \\leadsto | l = 2 a b | o = < | r = \\left({a + 1}\\right) \\left({b + 1}\\right) | c = }} {{eqn | ll= \\leadsto | l = a b | o = < | r = a + b + 1 | c = }} {{eqn | ll= \\leadsto | l = 3 a | o = < | r = a + b + 1 | c = as $b \\ge 3$ }} {{eqn | ll= \\leadsto | l = 2 a | o = < | r = b + 1 | c = }} {{eqn | ll= \\leadsto | l = 2 b | o = < | r = b + 1 | c = as $a \\ge b$ }} {{eqn | ll= \\leadsto | l = b | o = < | r = 1 | c = which is a contradiction of $(3)$ }} {{end-eqn}} {{qed|lemma}} By Proof by Cases it is seen that the existence of a highly composite $n$ not divisible by $60$ leads to a contradiction. The result then follows by Proof by Contradiction. {{qed}} == Sources == * {{Citation|title = An Interesting Subset of the Highly Composite Numbers|author = Steven Ratering|journal = Mathematics Magazine|abbr = Math. Mag.|volume = 64|issue = 5|date = Dec. 1991|startpage = 343|endpage = 346|jstor = 2690653}} Category:Special Highly Composite Numbers Category:60 2scpj1d25yf7x7ls4qlytolch75s6en"}
+{"_id": "32868", "title": "Special Highly Composite Number/Examples/2520", "text": "Special Highly Composite Number/Examples/2520 0 61071 322270 321092 2017-10-22T12:17:49Z Prime.mover 59 wikitext text/x-wiki == Example of Special Highly Composite Number == $2520$ is a special highly composite number, being a highly composite number which is a divisor of all larger highly composite numbers. == Proof == By inspection of the sequence of highly composite numbers, $2520$ is highly composite. For reference, the prime decomposition of $2520$ is: :$2520 = 2^3 \\times 3^2 \\times 5 \\times 7$ {{AimForCont}} $n > 2520$ is a highly composite number which is not divisible by $2520$. We have that $60$ is a special highly composite number. Therefore $60$ is a divisor of $n$. It follows that $3$, $4$ and $5$ are all divisors of $n$. But as $2520$ is not a divisor of $n$, it follows that at least one of $7$, $8$ and $9$ is not a divisor of $n$. These will be investigated on a case-by-case basis. :$(1): \\quad 7$ is not a divisor of $n$. By Prime Decomposition of Highly Composite Number we have that: :$n = 2^a \\times 3^b \\times 5^c$ where $a \\ge b \\ge c \\ge 1$. Suppose that $a < 3$. Then: :$n \\le 2^2 \\times 3^2 \\times 5^2 = 900$ which is too small. So we have that $a \\ge 3$. Then: {{begin-eqn}} {{eqn | l = 2^{a - 3} \\times 3^b \\times 5^c \\times 7 | o = < | r = 2^a \\times 3^b \\times 5^c | c = because $7 < 2^3 = 8$ }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^{a - 3} \\times 3^b \\times 5^c \\times 7}\\right) | o = < | r = \\tau \\left({2^a \\times 3^b \\times 5^c}\\right) | c = as $2^a \\times 3^b \\times 5^c$ is highly composite }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^{a - 3} \\times 7}\\right) \\times \\tau \\left({3^b \\times 5^c}\\right) | o = < | r = \\tau \\left({2^a}\\right) \\times \\tau \\left({3^b \\times 5^c}\\right) | c = Tau Function is Multiplicative }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^{a - 3} \\times 7}\\right) | o = < | r = \\tau \\left({2^a}\\right) | c = simplifying }} {{eqn | ll= \\leadsto | l = \\left({\\left({a - 3}\\right) + 1}\\right) \\left({1 + 1}\\right) | o = < | r = \\left({a + 1}\\right) | c = {{Defof|Tau Function}} }} {{eqn | ll= \\leadsto | l = 2 \\left({a - 2}\\right) | o = < | r = a + 1 | c = }} {{eqn | ll= \\leadsto | l = a | o = < | r = 5 | c = }} {{end-eqn}} Now suppose that $b < 2$. Then: :$n \\le 2^5 \\times 3 \\times 5 = 480$ which is too small. So we have that $b \\ge 2$. Then: {{begin-eqn}} {{eqn | l = 2^a \\times 3^{b - 2} \\times 5^c \\times 7 | o = < | r = 2^a \\times 3^b \\times 5^c | c = because $7 < 3^2 = 9$ }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^a \\times 3^{b - 2} \\times 5^c \\times 7}\\right) | o = < | r = \\tau \\left({2^a \\times 3^b \\times 5^c}\\right) | c = as $2^a \\times 3^b \\times 5^c$ is highly composite }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^a \\times 5^c}\\right) \\times \\tau \\left({3^{b - 2} \\times 7}\\right) | o = < | r = \\tau \\left({2^a \\times 5^c}\\right) \\times \\tau \\left({3^b}\\right) | c = Tau Function is Multiplicative }} {{eqn | ll= \\leadsto | l = \\tau \\left({3^{b - 2} \\times 7}\\right) | o = < | r = \\tau \\left({3^b}\\right) | c = simplifying }} {{eqn | ll= \\leadsto | l = \\left({\\left({b - 2}\\right) + 1}\\right) \\left({1 + 1}\\right) | o = < | r = \\left({b + 1}\\right) | c = {{Defof|Tau Function}} }} {{eqn | ll= \\leadsto | l = 2 \\left({b - 1}\\right) | o = < | r = b + 1 | c = }} {{eqn | ll= \\leadsto | l = b | o = < | r = 3 | c = }} {{end-eqn}} But $c \\le b$ and so $c < 3$ as well. Thus we have upper bounds on $a$, $b$ and $c$. Since $2^a \\times 3^b \\times 5^c > 2520$, it must be the case that: :$n = 2^4 \\times 3^2 \\times 5^2$ which gives that $n = 3600$. But: : from {{TauLink|3600}} we have that $\\tau \\left({3600}\\right) = 45$ : from {{TauLink|2520}} we have that $\\tau \\left({2520}\\right) = 48$ This contradicts our hypothesis that $3600$ is highly composite. By Proof by Contradiction it follows that $7$ must be a divisor of $n$. {{qed|lemma}} :$(2): \\quad 9$ is not a divisor of $n$, but $7$ is. By Prime Decomposition of Highly Composite Number we have that: :$n = 2^a \\times 3^1 \\times 5^1 \\times 7^1 \\times 11^e \\times r$ where: :$e$ is either $0$ or $1$ :$r$ is a possibly vacuous square-free product of prime numbers strictly greater than $11$. Suppose $e = 1$. Then: {{begin-eqn}} {{eqn | l = 2^a \\times 3^3 \\times 5 \\times 7 \\times r | o = < | r = 2^a \\times 3 \\times 5 \\times 7 \\times 11 \\times r | c = because $9 = 3^2 < 11$ }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^a \\times 3^3 \\times 5 \\times 7 \\times r}\\right) | o = < | r = \\tau \\left({2^a \\times 3 \\times 5 \\times 7 \\times 11 \\times r}\\right) | c = as $2^a \\times 3 \\times 5 \\times 7 \\times 11 \\times r$ is highly composite }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^a \\times 5 \\times 7 \\times r}\\right) \\times \\tau \\left({3^3}\\right) | o = < | r = \\tau \\left({2^a \\times 5 \\times 7 \\times r}\\right) \\times \\tau \\left({3 \\times 11}\\right) | c = Tau Function is Multiplicative }} {{eqn | ll= \\leadsto | l = \\tau \\left({3^3}\\right) | o = < | r = \\tau \\left({3 \\times 11}\\right) | c = simplifying }} {{eqn | ll= \\leadsto | l = 3 + 1 | o = < | r = \\left({1 + 1}\\right) \\left({1 + 1}\\right) | c = {{Defof|Tau Function}} }} {{eqn | ll= \\leadsto | l = 4 | o = < | r = 4 | c = which is an absurdity }} {{end-eqn}} So $e = 0$ and so by Prime Decomposition of Highly Composite Number $r = 1$. Thus: :$n = 2^a \\times 3 \\times 5 \\times 7$ We have that $n > 2520$, so: :$(2 \\text a): a \\ge 5$ Then: {{begin-eqn}} {{eqn | l = 2^{a - 2} \\times 3^2 \\times 5 \\times 7 | o = < | r = 2^a \\times 3 \\times 5 \\times 7 | c = because $3 < 2^2 = 4$ }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^{a - 2} \\times 3^2 \\times 5 \\times 7}\\right) | o = < | r = \\tau \\left({2^a \\times 3 \\times 5 \\times 7}\\right) | c = as $2^a \\times 3 \\times 5 \\times 7$ is highly composite }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^{a - 2} \\times 3^2}\\right) \\times \\tau \\left({5 \\times 7}\\right) | o = < | r = \\tau \\left({2^a \\times 3}\\right) \\times \\tau \\left({5 \\times 7}\\right) | c = Tau Function is Multiplicative }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^{a - 2} \\times 3^2}\\right) | o = < | r = \\tau \\left({2^a \\times 3}\\right) | c = simplifying }} {{eqn | ll= \\leadsto | l = \\left({\\left({a - 2}\\right) + 1}\\right) \\left({2 + 1}\\right) | o = < | r = \\left({a + 1}\\right) \\left({1 + 1}\\right) | c = {{Defof|Tau Function}} }} {{eqn | ll= \\leadsto | l = 3 \\left({a - 1}\\right) | o = < | r = 2 \\left({a + 1}\\right) | c = simplifying }} {{eqn | ll= \\leadsto | l = a | o = < | r = 5 | c = which is a contradiction of $(2 \\text a)$ }} {{end-eqn}} It follows by Proof by Contradiction that $9$ is a divisor of $n$. {{qed|lemma}} :$(3): \\quad 8$ is not a divisor of $n$, but $7$ and $9$ both are. By Prime Decomposition of Highly Composite Number we have that: :$n = 2^2 \\times 3^2 \\times 5^c \\times 7^d \\times 11^e \\times r$ where $r$ is a possibly vacuous product of prime numbers strictly greater than $11$. Suppose: :$(3 \\text a): \\quad e > 0$ Then: {{begin-eqn}} {{eqn | l = 2^5 \\times 3^2 \\times 5^c \\times 7^d \\times 11^{e - 1} \\times r | o = < | r = 2^2 \\times 3^2 \\times 5^c \\times 7^d \\times 11^e \\times r | c = because $8 = 2^3 < 11$ }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^5 \\times 3^2 \\times 5^c \\times 7^d \\times 11^{e - 1} \\times r}\\right) | o = < | r = \\tau \\left({2^2 \\times 3^2 \\times 5^c \\times 7^d \\times 11^e \\times r}\\right) | c = as $2^2 \\times 3^2 \\times 5^c \\times 7^d \\times 11^e \\times r$ is highly composite }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^5 \\times 11^{e - 1} }\\right) \\times \\tau \\left({3^2 \\times 5^c \\times 7^d \\times r}\\right) | o = < | r = \\tau \\left({2^2 \\times 11^e}\\right) \\times \\tau \\left({3^2 \\times 5^c \\times 7^d \\times r}\\right) | c = Tau Function is Multiplicative }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^5 \\times 11^{e - 1} }\\right) | o = < | r = \\tau \\left({2^2 \\times 11^e}\\right) | c = simplifying }} {{eqn | ll= \\leadsto | l = \\left({5 + 1}\\right) \\left({\\left({e - 1}\\right) + 1}\\right) | o = < | r = \\left({2 + 1}\\right) \\left({e + 1}\\right) | c = {{Defof|Tau Function}} }} {{eqn | ll= \\leadsto | l = 6 e | o = < | r = 3 \\left({e + 1}\\right) | c = simplifying }} {{eqn | ll= \\leadsto | l = e | o = < | r = 1 | c = which is a contradiction of $(3 \\text a)$ }} {{end-eqn}} So $e = 0$ and so Prime Decomposition of Highly Composite Number $r = 1$. Thus: :$n = 2^2 \\times 3^2 \\times 5^c \\times 7^d$ Suppose $c = 2$. Then: {{begin-eqn}} {{eqn | l = 2^4 \\times 3^2 \\times 5^1 \\times 7^d | o = < | r = 2^2 \\times 3^2 \\times 5^2 \\times 7^d | c = because $4 = 2^2 < 5$ }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^4 \\times 3^2 \\times 5^1 \\times 7^d}\\right) | o = < | r = \\tau \\left({2^2 \\times 3^2 \\times 5^2 \\times 7^d}\\right) | c = as $2^2 \\times 3^2 \\times 5^2 \\times 7^d$ is highly composite }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^4 \\times 5}\\right) \\times \\tau \\left({3^2 \\times 7^d}\\right) | o = < | r = \\tau \\left({2^2 \\times 5^2}\\right) \\times \\tau \\left({3^2 \\times 7^d}\\right) | c = Tau Function is Multiplicative }} {{eqn | ll= \\leadsto | l = \\tau \\left({2^4 \\times 5}\\right) | o = < | r = \\tau \\left({2^2 \\times 5^2}\\right) | c = simplifying }} {{eqn | ll= \\leadsto | l = \\left({4 + 1}\\right) \\left({1 + 1}\\right) | o = < | r = \\left({2 + 1}\\right) \\left({2 + 1}\\right) | c = {{Defof|Tau Function}} }} {{eqn | ll= \\leadsto | l = 10 | o = < | r = 9 | c = which is an absurdity }} {{end-eqn}} The remaining possibility is that $c = 1$ and $d = 1$: Thus: :$n = 2^2 \\times 3^2 \\times 5 \\times 7 = 1260$ But this is a contradiction of our supposition that $n > 2520$. It follows by Proof by Contradiction that $8$ is a divisor of $n$. {{qed|lemma}} By Proof by Cases it is seen that the existence of a highly composite $n$ not divisible by $2520$ leads to a contradiction. The result then follows by Proof by Contradiction. {{qed}} == Sources == * {{Citation|title = An Interesting Subset of the Highly Composite Numbers|author = Steven Ratering|journal = Mathematics Magazine|abbr = Math. Mag.|volume = 64|issue = 5|date = Dec. 1991|startpage = 343|endpage = 346|jstor = 2690653}} Category:Special Highly Composite Numbers Category:2520 h5re8uupp5lyxmk06qhw4oe3ena9n0u"}
+{"_id": "32869", "title": "Sigma Function of 2620", "text": "Sigma Function of 2620 0 61119 318211 318209 2017-09-16T18:24:46Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\sigma \\left({2620}\\right) = 5544$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == From Sigma Function of Integer :$\\displaystyle \\sigma \\left({n}\\right) = \\prod_{1 \\mathop \\le i \\mathop \\le r} \\frac {p_i^{k_i + 1} - 1} {p_i - 1}$ where $n = \\displaystyle \\prod_{1 \\mathop \\le i \\mathop \\le r} p_i^{k_i}$ denotes the prime decomposition of $n$. We have that: :$2620 = 2^2 \\times 5 \\times 131$ Hence: {{begin-eqn}} {{eqn | l = \\sigma \\left({2620}\\right) | r = \\frac {2^3 - 1} {2 - 1} \\times \\left({5 + 1}\\right) \\times \\left({131 + 1}\\right) | c = }} {{eqn | r = \\frac 7 1 \\times 6 \\times 132 | c = }} {{eqn | r = 7 \\times \\left({2 \\times 3}\\right) \\times \\left({2^2 \\times 3 \\times 11}\\right) | c = }} {{eqn | r = 2^3 \\times 3^2 \\times 7 \\times 11 | c = }} {{eqn | r = 5544 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:2620 oo4wii402j4f183zvi1wjki1geo26ro"}
+{"_id": "32870", "title": "Sigma Function of 2924", "text": "Sigma Function of 2924 0 61123 318232 318230 2017-09-16T18:27:48Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\sigma \\left({2924}\\right) = 5544$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == From Sigma Function of Integer :$\\displaystyle \\sigma \\left({n}\\right) = \\prod_{1 \\mathop \\le i \\mathop \\le r} \\frac {p_i^{k_i + 1} - 1} {p_i - 1}$ where $n = \\displaystyle \\prod_{1 \\mathop \\le i \\mathop \\le r} p_i^{k_i}$ denotes the prime decomposition of $n$. We have that: :$2924 = 2^2 \\times 17 \\times 43$ Hence: {{begin-eqn}} {{eqn | l = \\sigma \\left({2924}\\right) | r = \\frac {2^3 - 1} {2 - 1} \\times \\left({17 + 1}\\right) \\times \\left({43 + 1}\\right) | c = }} {{eqn | r = \\frac 7 1 \\times 18 \\times 44 | c = }} {{eqn | r = 7 \\times \\left({2 \\times 3^2}\\right) \\times \\left({2^2 \\times 11}\\right) | c = }} {{eqn | r = 2^3 \\times 3^2 \\times 7 \\times 11 | c = }} {{eqn | r = 5544 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:2924 lpi8bmft2jg3kv0jl0f7apaxhn8xjbk"}
+{"_id": "32871", "title": "Sigma Function of 5020", "text": "Sigma Function of 5020 0 61419 318288 318286 2017-09-16T18:36:38Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\sigma \\left({5020}\\right) = 10 \\, 584$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == From Sigma Function of Integer :$\\displaystyle \\sigma \\left({n}\\right) = \\prod_{1 \\mathop \\le i \\mathop \\le r} \\frac {p_i^{k_i + 1} - 1} {p_i - 1}$ where $n = \\displaystyle \\prod_{1 \\mathop \\le i \\mathop \\le r} p_i^{k_i}$ denotes the prime decomposition of $n$. We have that: :$5020 = 2^2 \\times 5 \\times 251$ Hence: {{begin-eqn}} {{eqn | l = \\sigma \\left({5020}\\right) | r = \\frac {2^3 - 1} {2 - 1} \\times \\left({5 + 1}\\right) \\times \\left({251 + 1}\\right) | c = }} {{eqn | r = \\frac 7 1 \\times 6 \\times 252 | c = }} {{eqn | r = 7 \\times \\left({2 \\times 3}\\right) \\times \\left({2^2 \\times 3^2 \\times 7}\\right) | c = }} {{eqn | r = 2^3 \\times 3^3 \\times 7^2 | c = }} {{eqn | r = 10 \\, 584 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:5020 3fvyay6mnnqrsutdmzfx7aen7y3uq12"}
+{"_id": "32872", "title": "Sigma Function of 5564", "text": "Sigma Function of 5564 0 61422 449562 318246 2020-02-17T10:32:33Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\map \\sigma {5564} = 10 \\, 584$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == From Sigma Function of Integer :$\\map \\sigma n = \\displaystyle \\prod_{1 \\mathop \\le i \\mathop \\le r} \\frac {p_i^{k_i + 1} - 1} {p_i - 1}$ where $n = \\displaystyle \\prod_{1 \\mathop \\le i \\mathop \\le r} p_i^{k_i}$ denotes the prime decomposition of $n$. We have that: :$5564 = 2^2 \\times 13 \\times 107$ Hence: {{begin-eqn}} {{eqn | l = \\map \\sigma {5020} | r = \\frac {2^3 - 1} {2 - 1} \\times \\paren {13 + 1} \\times \\paren {107 + 1} | c = }} {{eqn | r = \\frac 7 1 \\times 14 \\times 108 | c = }} {{eqn | r = 7 \\times \\paren {2 \\times 7} \\times \\paren {2^2 \\times 3^3} | c = }} {{eqn | r = 2^3 \\times 3^3 \\times 7^2 | c = }} {{eqn | r = 10 \\, 584 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:5564 dkj32zjugpiuvxaye2xd0q0esa16uhu"}
+{"_id": "32873", "title": "Euler Phi Function of 5186", "text": "Euler Phi Function of 5186 0 61432 313964 2017-08-29T07:04:25Z Prime.mover 59 Created page with \"== Example of Euler Phi Function of 2 times Odd Prime == :$\\phi \\left({5186}\\right) = 2592$ where $\\phi$ denotes the Definition:Euler Phi Fu...\" wikitext text/x-wiki == Example of Euler Phi Function of 2 times Odd Prime == :$\\phi \\left({5186}\\right) = 2592$ where $\\phi$ denotes the Euler $\\phi$ Function. == Proof == We have that: :$5186 = 2 \\times 2593$ Thus: {{begin-eqn}} {{eqn | l = \\phi \\left({5186}\\right) | r = 2593 - 1 | c = Euler Phi Function of 2 times Odd Prime }} {{eqn | r = 2592 | c = }} {{end-eqn}} {{qed}} Category:Euler Phi Function of 2 times Odd Prime Category:5186 6u42hodcge8arxocxxfdwq9byioakzg"}
+{"_id": "32874", "title": "Euler Phi Function of 5187", "text": "Euler Phi Function of 5187 0 61433 313968 2017-08-29T07:09:59Z Prime.mover 59 Created page with \"== Example of Euler $\\phi$ Function of Square-Free Integer == :$\\phi \\left({5187}\\right) = 2592$ whe...\" wikitext text/x-wiki == Example of Euler $\\phi$ Function of Square-Free Integer == :$\\phi \\left({5187}\\right) = 2592$ where $\\phi$ denotes the Euler $\\phi$ Function. == Proof == From Euler Phi Function of Square-Free Integer: :$\\displaystyle \\phi \\left({n}\\right) = \\prod_{\\substack {p \\mathop \\backslash n \\\\ p \\mathop > 2} } \\left({p - 1}\\right)$ where $p \\mathop \\backslash n$ denotes the primes which divide $n$. We have that: :$5187 = 3 \\times 7 \\times 13 \\times 19$ and so is square-free. Thus: {{begin-eqn}} {{eqn | l = \\phi \\left({5187}\\right) | r = \\left({2 - 1}\\right) \\left({7 - 1}\\right) \\left({13 - 1}\\right) \\left({19 - 1}\\right) | c = }} {{eqn | r = 2 \\times 6 \\times 12 \\times 18 | c = }} {{eqn | r = 2 \\times \\left({2 \\times 3}\\right) \\times \\left({2^2 \\times 3}\\right) \\times \\left({2 \\times 3^2}\\right) | c = }} {{eqn | r = 2^5 \\times 3^4 | c = }} {{eqn | r = 2592 | c = }} {{end-eqn}} {{qed}} Category:Euler Phi Function of Square-Free Integer Category:5187 pfzyjagdkn9eh3xfjg84vlul4jf99nt"}
+{"_id": "32875", "title": "Euler Phi Function of 5188", "text": "Euler Phi Function of 5188 0 61434 313969 2017-08-29T07:12:17Z Prime.mover 59 Created page with \"== Example of Use of Euler $\\phi$ Function == :$\\phi \\left({5188}\\right) = 2592$ where $\\phi$ denotes the Defi...\" wikitext text/x-wiki == Example of Use of Euler $\\phi$ Function == :$\\phi \\left({5188}\\right) = 2592$ where $\\phi$ denotes the Euler $\\phi$ Function. == Proof == From Euler Phi Function of Integer: :$\\displaystyle \\phi \\left({n}\\right) = n \\prod_{p \\mathop \\backslash n} \\left({1 - \\frac 1 p}\\right)$ where $p \\mathop \\backslash n$ denotes the primes which divide $n$. We have that: :$5188 = 2^2 \\times 1297$ Thus: {{begin-eqn}} {{eqn | l = \\phi \\left({5188}\\right) | r = 5188 \\left({1 - \\dfrac 1 2}\\right) \\left({1 - \\dfrac 1 {1297} }\\right) | c = }} {{eqn | r = 5188 \\times \\frac 1 2 \\times \\frac {1296} {1297} | c = }} {{eqn | r = 2 \\times 1 \\times 1296 | c = }} {{eqn | r = 2592 | c = }} {{end-eqn}} {{qed}} Category:Euler Phi Function Category:5188 ksc0vo75vdfeh9ceq0pw48wdpg33m9c"}
+{"_id": "32876", "title": "Hurwitz's Theorem (Number Theory)/Lemma 1", "text": "Hurwitz's Theorem (Number Theory)/Lemma 1 0 61447 408768 314012 2019-06-17T20:24:04Z Prime.mover 59 wikitext text/x-wiki == Lemma == Let $\\xi$ be an irrational number. Let $A \\in \\R$ be a real number strictly greater than $\\sqrt 5$. Then there may exist at most a finite number of relatively prime integers $p, q \\in \\Z$ such that: :$\\size {\\xi - \\dfrac p q} < \\dfrac 1 {A \\, q^2}$ == Proof == We will take as our example of such an irrational number: :$\\xi = \\dfrac {\\sqrt 5 - 1} 2$ This is equal to $1 - \\phi$, where $\\phi$ is the Golden mean. {{AimForCont}} that there exist an infinite number of $p, q$ with $p \\perp q$ such that: :$\\size {\\xi - \\dfrac p q} < \\dfrac 1 {A \\, q^2}$ Then there exist an infinite number of $p, q$ with $p \\perp q$ such that: :$\\xi = \\dfrac p q + \\dfrac \\delta {q^2}$ where: :$\\size \\delta < \\dfrac 1 A < \\dfrac 1 {\\sqrt 5}$ Hence: {{begin-eqn}} {{eqn | l = \\dfrac \\delta q | r = q \\xi - p | c = }} {{eqn | ll= \\leadsto | l = \\dfrac \\delta q - \\dfrac {q \\sqrt 5} 2 | r = -\\dfrac q 2 - p | c = }} {{eqn | n = 1 | ll= \\leadsto | l = \\dfrac {\\delta^2} {q^2} - \\delta \\sqrt 5 | r = \\paren {\\dfrac q 2 - p}^2 - \\dfrac {5 q^2} 4 | c = }} {{eqn | r = p^2 + p q - q^2 | c = }} {{end-eqn}} When $q$ is large, the {{LHS}} of $(1)$ becomes less than $1$. At the same time, the {{RHS}} is always an integer. Thus: :$p^2 + p q - q^2 = 0$ or: :$\\paren {2 p + q}^2 = 5 q^2$ which would lead to: :$p = 2 q$ which contradicts the stipulation that $p$ and $q$ are coprime. Hence by Proof by Contradiction there cannot be an infinite number of such $p, q$. Hence the result. {{qed}} {{Namedfor|Adolf Hurwitz}} == Sources == * {{BookReference|An Introduction to the Theory of Numbers|1979|G.H. Hardy|author2 = E.M. Wright|ed = 5th|edpage = Fifth Edition}}: $11.8$: The measure of the closest approximation to an arbitrary irrational: Theorem $194$ Category:Hurwitz's Theorem (Number Theory) 3jryiijqyoi0w0w4np98gsgoqlqeckx"}
+{"_id": "32877", "title": "Hurwitz's Theorem (Number Theory)/Lemma 2", "text": "Hurwitz's Theorem (Number Theory)/Lemma 2 0 61450 314015 2017-08-29T21:47:57Z Prime.mover 59 Created page with \"{{MissingLinks|Much of the notation used below needs to be explained in its context.}} == Lemma == Let $\\xi$ be an Definition:Irrational Number|irrational numb...\" wikitext text/x-wiki {{MissingLinks|Much of the notation used below needs to be explained in its context.}} == Lemma == Let $\\xi$ be an irrational number. Let there be $3$ consecutive convergents of the continued fraction to $\\xi$. Then at least one of them, $\\dfrac p q$, say, satisfies: :$\\left|{\\xi - \\dfrac p q}\\right| < \\dfrac 1 {A \\, q^2}$ == Proof == Let $\\dfrac {p_k} {q_k}$ be an arbitrary convergent to $\\xi$. Let: :$\\dfrac {q_{n - 1} } {q_n} = b_{n + 1}$ Then: {{begin-eqn}} {{eqn | l = \\left\\lvert{\\dfrac {p_n} {q_n} - \\xi}\\right\\rvert | r = \\dfrac 1 {q_n q'_{n + 1} } | c = }} {{eqn | r = \\dfrac 1 { {q_n}^2} \\dfrac 1 {a'_{n + 1} + b_{n + 1} } | c = }} {{end-eqn}} It is sufficient to prove that: :$(1): \\quad a'_i + b_i \\le 5$ cannot be true for all of $n - 1$, $n$ and $n + 1$ of $i$. Suppose $(1)$ is true for $i = n - 1$ and $i = n$. Then: :$a'_{n - 1} = a_{n - 1} + \\dfrac 1 {a'_n}$ and: :$\\dfrac 1 {b_n} = \\dfrac {q_{n - 1} } {q_{n - 2} } = a_{n - 1} + b_{n - 1}$ Hence: :$\\dfrac 1 {a'_n} + \\dfrac 1 {b_n} = a'_{n - 1} + b_{n - 1} \\le \\sqrt 5$ and: :$1 = a'_n \\dfrac 1 {a'_n} \\le \\left({\\sqrt 5 - b_n}\\right) \\left({\\sqrt 5 - \\dfrac 1 {b_n} }\\right)$ or: :$b_n + \\dfrac 1 {b_n} \\le \\sqrt 5$ As $b_n$ is rational, the equality cannot happen. We also have that $b_n < 1$. Thus: :${b_n}^2 -b_n \\sqrt 5 + 1 < 0$ :$\\left({\\dfrac {\\sqrt 5} 2 - b_n}\\right)^2 < \\dfrac 1 4$ and so: :$b_n > \\dfrac {\\sqrt 5 - 1} 2$ If $(1)$ were also true for $i = n + 1$, it could be proved similarly that: :$b_{n + 1} > \\dfrac {\\sqrt 5 - 1} 2$ and we would then be able to substitute $n + 1$ for $n$ in the above equations, to get: :$a_n = \\dfrac 1 {b_{n + 1} } - b_n < \\dfrac {\\sqrt 5 + 1} 2 - \\dfrac {\\sqrt 5 - 1} 2 = 1$ from which a contradiction is apparent. {{qed}} == Sources == * {{BookReference|An Introduction to the Theory of Numbers|1979|G.H. Hardy|author2 = E.M. Wright|ed = 5th|edpage = Fifth Edition}}: $11.8$: The measure of the closest approximation to an arbitrary irrational: Theorem $195$ Category:Hurwitz's Theorem (Number Theory) mtf3n0u2276ibpmkdowb12f8np3vhc4"}
+{"_id": "32878", "title": "Sigma Function of 6232", "text": "Sigma Function of 6232 0 62161 318239 318237 2017-09-16T18:29:08Z Prime.mover 59 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\sigma \\left({6232}\\right) = 12 \\, 600$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == From Sigma Function of Integer :$\\displaystyle \\sigma \\left({n}\\right) = \\prod_{1 \\mathop \\le i \\mathop \\le r} \\frac {p_i^{k_i + 1} - 1} {p_i - 1}$ where $n = \\displaystyle \\prod_{1 \\mathop \\le i \\mathop \\le r} p_i^{k_i}$ denotes the prime decomposition of $n$. We have that: :$6232 = 2^3 \\times 19 \\times 41$ Hence: {{begin-eqn}} {{eqn | l = \\sigma \\left({6232}\\right) | r = \\frac {2^4 - 1} {2 - 1} \\times \\left({19 + 1}\\right) \\times \\left({41 + 1}\\right) | c = }} {{eqn | r = \\frac {15} 1 \\times 20 \\times 42 | c = }} {{eqn | r = \\left({3 \\times 5}\\right) \\times \\left({2^2 \\times 5}\\right) \\times \\left({2 \\times 3 \\times 7}\\right) | c = }} {{eqn | r = 2^3 \\times 3^2 \\times 5^2 \\times 7 | c = }} {{eqn | r = 12 \\, 600 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:6232 3wiisvb0sskiv79patt7x501veejja0"}
+{"_id": "32879", "title": "Sigma Function of 6368", "text": "Sigma Function of 6368 0 62162 318240 318236 2017-09-16T18:29:20Z Prime.mover 59 Prime.mover moved page Sigma of 6368 to Sigma Function of 6368 wikitext text/x-wiki == Example of Sigma Function of Integer == :$\\sigma \\left({6368}\\right) = 12 \\, 600$ where $\\sigma$ denotes the $\\sigma$ function. == Proof == From Sigma Function of Integer :$\\displaystyle \\sigma \\left({n}\\right) = \\prod_{1 \\mathop \\le i \\mathop \\le r} \\frac {p_i^{k_i + 1} - 1} {p_i - 1}$ where $n = \\displaystyle \\prod_{1 \\mathop \\le i \\mathop \\le r} p_i^{k_i}$ denotes the prime decomposition of $n$. We have that: :$6368 = 2^5 \\times 199$ Hence: {{begin-eqn}} {{eqn | l = \\sigma \\left({6368}\\right) | r = \\frac {2^6 - 1} {2 - 1} \\times \\left({199 + 1}\\right) | c = }} {{eqn | r = \\frac {63} 1 \\times 200 | c = }} {{eqn | r = \\left({3^2 \\times 7}\\right) \\times \\left({2^3 \\times 5^2}\\right) | c = }} {{eqn | r = 2^3 \\times 3^2 \\times 5^2 \\times 7 | c = }} {{eqn | r = 12 \\, 600 | c = }} {{end-eqn}} {{qed}} Category:Sigma Function of Integer Category:6368 iidrztpqoybupgrji3pcirgmyhsiy7p"}
+{"_id": "32880", "title": "Completion Theorem (Measure Spaces)/Lemma", "text": "Completion Theorem (Measure Spaces)/Lemma 0 62230 317250 317249 2017-09-13T21:08:39Z Lord Farin 560 wikitext text/x-wiki == Lemma == Let $\\left({X, \\Sigma, \\mu}\\right)$ be a measure space. Let $\\mathcal N$ and $\\Sigma^*$ be defined as: :$\\mathcal N := \\left\\{{N \\subseteq X: \\exists M \\in \\Sigma: \\mu \\left({M}\\right) = 0, N \\subseteq M}\\right\\}$ :$\\Sigma^* := \\left\\{{E \\cup N: E \\in \\Sigma, N \\in \\mathcal N}\\right\\}$ Next, define $\\bar \\mu: \\Sigma^* \\to \\overline{\\R}_{\\ge 0}$ by: :$\\bar \\mu \\left({E \\cup N}\\right) := \\mu \\left({E}\\right)$ The mapping $\\bar \\mu$ is well-defined, i.e.: :$\\forall E, F \\in \\Sigma: \\forall N, M \\in \\mathcal N: E \\cup N = F \\cup M \\implies \\mu \\left({E}\\right) = \\mu \\left({F}\\right)$ == Proof == Let $N_0, M_0 \\in \\Sigma$ be null sets such that $N \\subseteq N_0, M \\subseteq M_0$. Then: :$E \\subseteq E \\cup N = F \\cup M \\subseteq F \\cup M_0$ so that: :$\\mu \\left({E}\\right) \\le \\mu \\left({F \\cup M_0}\\right) \\le \\mu \\left({F}\\right) + \\mu \\left({M_0}\\right) = \\mu \\left({F}\\right) + 0$ Analogously: :$F \\subseteq F \\cup M = E \\cup N \\subseteq E \\cup N_0$ so that: :$\\mu \\left({F}\\right) \\le \\mu \\left({E \\cup N_0}\\right) \\le \\mu \\left({E}\\right) + \\mu \\left({N_0}\\right) = \\mu \\left({E}\\right) + 0$ In total: :$\\mu \\left({E}\\right) = \\mu \\left({F}\\right)$ {{qed}} Category:Measure Theory q3ci6501bmbncb84lqewf3oofmb6nkt"}
+{"_id": "32881", "title": "Language of Propositional Logic has Unique Parsability/Lemma", "text": "Language of Propositional Logic has Unique Parsability/Lemma 0 62976 352583 319218 2018-05-01T21:04:07Z Prime.mover 59 wikitext text/x-wiki == Lemma == Let $\\mathcal L_0$ be the language of propositional logic. Let $\\mathbf A$ be a WFF. Suppose that $\\mathbf A = \\left({B \\circ C}\\right) = \\left({D * E}\\right)$. Then $\\mathbf B = \\mathbf D$, ${\\circ} = {*}$, and $\\mathbf C = \\mathbf E$. == Proof == The WFFs $\\mathbf B$ and $\\mathbf D$ are strings which both start in the same place, right after the first left bracket in $\\mathbf A$. By Initial Part of WFF of PropLog is not WFF, neither $\\mathbf B$ nor $\\mathbf D$ can be an initial part of the other. Therefore $\\mathbf B = \\mathbf D$. It follows that $* = \\circ$ and $\\mathbf C = \\mathbf E$. Hence the result. {{qed}} == Sources == * {{BookReference|Mathematical Logic and Computability|1996|H. Jerome Keisler|author2 = Joel Robbin|prev = Definition:Main Connective/Propositional Logic/Definition 2|next = Definition:Abbreviation of WFFs of Propositional Logic}}: $\\S 1.4$: Main Connective: Theorem $1.4.2$ Category:Language of Propositional Logic j1eji49p7l5w74u7w2cl9j60e14lacs"}
+{"_id": "32882", "title": "Finished Branch Lemma/Corollary", "text": "Finished Branch Lemma/Corollary 0 63153 319762 2017-10-04T20:59:11Z Lord Farin 560 Created page with \"== Corollary to Finished Branch Lemma == Let $\\Gamma$ be a finished branch of a Definition:Proposit...\" wikitext text/x-wiki == Corollary to Finished Branch Lemma == Let $\\Gamma$ be a finished branch of a propositional tableau $\\left({T, \\mathbf H, \\Phi}\\right)$. Then $\\Phi \\left[{\\Gamma}\\right]$, the image of $\\Gamma$ under $\\Phi$, is satisfiable for boolean interpretations. == Proof == {{Finish|Branch not contradictory. See Finished Set Lemma}} Category:Propositional Tableaus 74txt8zkki3759oge83rh2k2wi40qnn"}
+{"_id": "32883", "title": "Pythagorean Triangle/Examples/4485-5852-7373", "text": "Pythagorean Triangle/Examples/4485-5852-7373 0 63453 478778 478748 2020-07-18T12:16:53Z Prime.mover 59 wikitext text/x-wiki == Example of Primitive Pythagorean Triangle == The triangle whose sides are of length $4485$, $5852$ and $7373$ is a primitive Pythagorean triangle. :700px It has generator $\\tuple {77, 38}$. == Proof == We have: {{begin-eqn}} {{eqn | l = 77^2 - 38^2 | r = 5929 - 1444 | c = }} {{eqn | r = 4485 | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | l = 2 \\times 77 \\times 38 | r = 5852 | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | l = 77^2 + 38^2 | r = 5929 + 1444 | c = }} {{eqn | r = 7373 | c = }} {{end-eqn}} Hence: {{begin-eqn}} {{eqn | l = 4485^2 + 5852^2 | r = 20 \\, 115 \\, 225 + 34 \\, 245 \\, 904 | c = }} {{eqn | r = 54 \\, 361 \\, 129 | c = }} {{eqn | r = 7373^2 | c = }} {{end-eqn}} It follows by Pythagoras's Theorem that $4485$, $5852$ and $7373$ form a Pythagorean triple. We have that: {{begin-eqn}} {{eqn | l = 4485 | r = 3 \\times 5 \\times 13 \\times 23 | c = }} {{eqn | l = 5852 | r = 2^2 \\times 7 \\times 11 \\times 19 | c = }} {{end-eqn}} It is seen that $4485$ and $5852$ share no prime factors. That is, $4485$ and $5852$ are coprime. Hence, by definition, $693$, $1924$ and $2045$ form a primitive Pythagorean triple. The result follows by definition of a primitive Pythagorean triangle. {{qed}} Category:Examples of Pythagorean Triangles rsjb3kgh1ab6emmlccixjpdz13jyq52"}
+{"_id": "32884", "title": "Pythagorean Triangle/Examples/3059-8580-9109", "text": "Pythagorean Triangle/Examples/3059-8580-9109 0 63454 478782 478746 2020-07-18T12:20:06Z Prime.mover 59 wikitext text/x-wiki == Example of Primitive Pythagorean Triangle == The triangle whose sides are of length $3059$, $8580$ and $9109$ is a primitive Pythagorean triangle. :700px It has generator $\\tuple {78, 55}$. == Proof == We have: {{begin-eqn}} {{eqn | l = 78^2 - 55^2 | r = 6084 - 3025 | c = }} {{eqn | r = 3059 | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | l = 2 \\times 78 \\times 55 | r = 8580 | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | l = 78^2 + 55^2 | r = 6084 + 3025 | c = }} {{eqn | r = 9109 | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | l = 3059^2 + 8580^2 | r = 9 \\, 357 \\, 481 + 73 \\, 616 \\, 400 | c = }} {{eqn | r = 82 \\, 973 \\, 881 | c = }} {{eqn | r = 9109^2 | c = }} {{end-eqn}} It follows by Pythagoras's Theorem that $3059$, $8580$ and $9109$ form a Pythagorean triple. We have that: {{begin-eqn}} {{eqn | l = 3059 | r = 7 \\times 19 \\times 23 | c = }} {{eqn | l = 8580 | r = 2^2 \\times 3 \\times 5 \\times 11 \\times 13 | c = }} {{end-eqn}} It is seen that $3059$ and $8580$ share no prime factors. That is, $3059$ and $8580$ are coprime. Hence, by definition, $3059$, $8580$ and $9109$ form a primitive Pythagorean triple. The result follows by definition of a primitive Pythagorean triangle. {{qed}} Category:Examples of Pythagorean Triangles s2evzbxc685l7qigf75rmq6fh6k46es"}
+{"_id": "32885", "title": "Pythagorean Triangle/Examples/1380-19,019-19,069", "text": "Pythagorean Triangle/Examples/1380-19,019-19,069 0 63455 478798 478740 2020-07-18T12:30:57Z Prime.mover 59 wikitext text/x-wiki == Example of Primitive Pythagorean Triangle == The triangle whose sides are of length $1380$, $19 \\, 019$ and $19 \\, 069$ is a primitive Pythagorean triangle. :700px It has generator $\\left({138, 5}\\right)$. == Proof == We have: {{begin-eqn}} {{eqn | l = 138^2 - 5^2 | r = 19 \\, 044 - 25 | c = }} {{eqn | r = 19 \\, 019 | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | l = 2 \\times 138 \\times 5 | r = 1380 | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | l = 138^2 + 5^2 | r = 19 \\, 044 + 25 | c = }} {{eqn | r = 19 \\, 069 | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | l = 1380^2 + 19 \\, 019^2 | r = 1 \\, 904 \\, 400 + 361 \\, 722 \\, 361 | c = }} {{eqn | r = 363 \\, 626 \\, 761 | c = }} {{eqn | r = 19 \\, 069^2 | c = }} {{end-eqn}} It follows by Pythagoras's Theorem that $1380$, $19 \\, 019$ and $19 \\, 069$ form a Pythagorean triple. We have that: {{begin-eqn}} {{eqn | l = 1380 | r = 2^2 \\times 3 \\times 5 \\times 23 | c = }} {{eqn | l = 19 \\, 019 | r = 7 \\times 11 \\times 13 \\times 19 | c = }} {{end-eqn}} It is seen that $1380$ and $19 \\, 019$ share no prime factors. That is, $1380$ and $19 \\, 019$ are coprime. Hence, by definition, $1380$, $19 \\, 019$ and $19 \\, 069$ form a primitive Pythagorean triple. The result follows by definition of a primitive Pythagorean triangle. {{qed}} Category:Examples of Pythagorean Triangles k7a305zpkonaow2uzak0kn3stqp6v1m"}
+{"_id": "32886", "title": "Carmichael Number/Examples/294,409", "text": "Carmichael Number/Examples/294,409 0 64010 392221 333769 2019-02-12T16:07:42Z Prime.mover 59 wikitext text/x-wiki == Example of Carmichael Number == $294 \\, 409$ is a Carmichael number: :$\\forall a \\in \\Z: a \\perp 294 \\, 409: a^{294 \\, 409} \\equiv a \\pmod {294 \\, 409}$ while $294 \\, 409$ is composite. == Proof == We have that: :$294 \\, 409 = 37 \\times 73 \\times 109$ First note that $294 \\, 409$ is square-free. Hence the square of none of its prime factors is a divisor of $294 \\, 409$: :$\\forall p \\divides 294 \\, 409: p^2 \\nmid 294 \\, 409$ We also see that: {{begin-eqn}} {{eqn | l = 294 \\, 408 | r = 2^3 \\times 3^3 \\times 29 \\times 47 | c = }} {{eqn | r = 8178 \\times 36 | c = }} {{eqn | r = 4089 \\times 72 | c = }} {{eqn | r = 2726 \\times 108 | c = }} {{end-eqn}} Thus $294 \\, 409$ is a Carmichael number by Korselt's Theorem. {{qed}} == Sources == * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = Carmichael Number/Examples/1729|next = Smallest Integer which is Sum of 2 Fourth Powers in 2 Ways}}: $509,033,161$ Category:Carmichael Numbers Category:294,409 78fchhna1ilh2bjp5ltl9itndk8c6wg"}
+{"_id": "32887", "title": "Euler Phi Function of 6", "text": "Euler Phi Function of 6 0 64278 391878 324134 2019-02-09T23:41:24Z Prime.mover 59 wikitext text/x-wiki == Example of Euler $\\phi$ Function of Square-Free Integer == :$\\map \\phi 6 = 2$ where $\\phi$ denotes the Euler $\\phi$ Function. == Proof == From Euler Phi Function of Square-Free Integer: :$\\displaystyle \\map \\phi n = \\prod_{\\substack {p \\mathop \\divides n \\\\ p \\mathop > 2} } \\paren {p - 1}$ where $p \\divides n$ denotes the primes which divide $n$. We have that: :$6 = 2 \\times 3$ and so is square-free. Thus: {{begin-eqn}} {{eqn | l = \\map \\phi 6 | r = \\paren {3 - 1} | c = }} {{eqn | r = 2 | c = }} {{end-eqn}} {{qed}} Category:Euler Phi Function of Square-Free Integer Category:6 gi0ykexw3gggcps7d1ep2kk89o3valv"}
+{"_id": "32888", "title": "Odd Amicable Pair/Examples/29,912,035,725-34,883,817,075", "text": "Odd Amicable Pair/Examples/29,912,035,725-34,883,817,075 0 64360 467815 324454 2020-05-14T06:00:22Z Prime.mover 59 wikitext text/x-wiki == Example of Odd Amicable Pair == $29 \\, 912 \\, 035 \\, 725$ and $34 \\, 883 \\, 817 \\, 075$ are an odd amicable pair: :$\\map \\sigma {29 \\, 912 \\, 035 \\, 725} = \\map \\sigma {34 \\, 883 \\, 817 \\, 075} = 64 \\, 795 \\, 852 \\, 800 = 29 \\, 912 \\, 035 \\, 725 + 34 \\, 883 \\, 817 \\, 075$ == Proof == By definition, $m$ and $n$ form an amicable pair {{iff}}: :$\\map \\sigma m = \\map \\sigma n = m + n$ where $\\map \\sigma n$ denotes the $\\sigma$ function of $n$. Thus: {{begin-eqn}} {{eqn | l = \\map \\sigma {29 \\, 912 \\, 035 \\, 725} | r = 64 \\, 795 \\, 852 \\, 800 | c = {{SigmaLink|29,912,035,725|29 \\, 912 \\, 035 \\, 725}} }} {{eqn | r = 29 \\, 912 \\, 035 \\, 725 + 34 \\, 883 \\, 817 \\, 075 | c = }} {{eqn | r = \\map \\sigma {34 \\, 883 \\, 817 \\, 075} | c = {{SigmaLink|34,883,817,075|34 \\, 883 \\, 817 \\, 075}} }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = 64,795,852,800|next = Odd Amicable Pair/Examples/31,695,652,275-33,100,200,525}}: $64,795,852,800$ Category:Amicable Pairs sl6nmndx3i6chz3kyt71ni5m1qdfbg6"}
+{"_id": "32889", "title": "Odd Amicable Pair/Examples/31,695,652,275-33,100,200,525", "text": "Odd Amicable Pair/Examples/31,695,652,275-33,100,200,525 0 64361 324455 2017-11-03T07:11:08Z Prime.mover 59 Created page with \"== Example of Odd Amicable Pair == $31 \\, 695 \\, 652 \\, 275$ and $33 \\, 100 \\, 200 \\, 525$ are an Defin...\" wikitext text/x-wiki == Example of Odd Amicable Pair == $31 \\, 695 \\, 652 \\, 275$ and $33 \\, 100 \\, 200 \\, 525$ are an odd amicable pair: :$\\sigma \\left({31 \\, 695 \\, 652 \\, 275}\\right) = \\sigma \\left({33 \\, 100 \\, 200 \\, 525}\\right) = 64 \\, 795 \\, 852 \\, 800 = 31 \\, 695 \\, 652 \\, 275 + 33 \\, 100 \\, 200 \\, 525$ == Proof == By definition, $m$ and $n$ form an amicable pair {{iff}}: :$\\sigma \\left({m}\\right) = \\sigma \\left({n}\\right) = m + n$ where $\\sigma \\left({n}\\right)$ denotes the $\\sigma$ function. Thus: {{begin-eqn}} {{eqn | l = \\sigma \\left({31 \\, 695 \\, 652 \\, 275}\\right) | r = 64 \\, 795 \\, 852 \\, 800 | c = {{SigmaLink|31,695,652,275|31 \\, 695 \\, 652 \\, 275}} }} {{eqn | r = 31 \\, 695 \\, 652 \\, 275 + 33 \\, 100 \\, 200 \\, 525 | c = }} {{eqn | r = \\sigma \\left({33 \\, 100 \\, 200 \\, 525}\\right) | c = {{SigmaLink|33,100,200,525|33 \\, 100 \\, 200 \\, 525}} }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = Odd Amicable Pair/Examples/29,912,035,725-34,883,817,075|next = Odd Amicable Pair/Examples/32,129,958,525-32,665,894,275}}: $64,795,852,800$ Category:Amicable Pairs l41u780ot9j3ot1lx6zoqja2377ajfo"}
+{"_id": "32890", "title": "Odd Amicable Pair/Examples/32,129,958,525-32,665,894,275", "text": "Odd Amicable Pair/Examples/32,129,958,525-32,665,894,275 0 64362 324456 2017-11-03T07:15:34Z Prime.mover 59 Created page with \"== Example of Odd Amicable Pair == $32 \\, 129 \\, 958 \\, 525$ and $32 \\, 665 \\, 894 \\, 275$ are an Defin...\" wikitext text/x-wiki == Example of Odd Amicable Pair == $32 \\, 129 \\, 958 \\, 525$ and $32 \\, 665 \\, 894 \\, 275$ are an odd amicable pair: :$\\sigma \\left({32 \\, 129 \\, 958 \\, 525}\\right) = \\sigma \\left({32 \\, 665 \\, 894 \\, 275}\\right) = 64 \\, 795 \\, 852 \\, 800 = 32 \\, 129 \\, 958 \\, 525 + 32 \\, 665 \\, 894 \\, 275$ == Proof == By definition, $m$ and $n$ form an amicable pair {{iff}}: :$\\sigma \\left({m}\\right) = \\sigma \\left({n}\\right) = m + n$ where $\\sigma \\left({n}\\right)$ denotes the $\\sigma$ function. Thus: {{begin-eqn}} {{eqn | l = \\sigma \\left({32 \\, 129 \\, 958 \\, 525}\\right) | r = 64 \\, 795 \\, 852 \\, 800 | c = {{SigmaLink|32,129,958,525|32 \\, 129 \\, 958 \\, 525}} }} {{eqn | r = 32 \\, 129 \\, 958 \\, 525 + 32 \\, 665 \\, 894 \\, 275 | c = }} {{eqn | r = \\sigma \\left({32 \\, 665 \\, 894 \\, 275}\\right) | c = {{SigmaLink|32,665,894,275|32 \\, 665 \\, 894 \\, 275}} }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = Odd Amicable Pair/Examples/31,695,652,275-33,100,200,525|next = Multiply Perfect Number of Order 6}}: $64,795,852,800$ Category:Amicable Pairs h8hkza7rcn54glac3ff8jchw53909h2"}
+{"_id": "32891", "title": "Aurifeuillian Factorization/Examples/2^4n+2 + 1", "text": "Aurifeuillian Factorization/Examples/2^4n+2 + 1 0 65177 385072 385071 2018-12-28T15:20:25Z Prime.mover 59 wikitext text/x-wiki == Example of Aurifeuillian Factorizations == :$2^{4 n + 2} + 1 = \\paren {2^{2 n + 1} - 2^{n + 1} + 1} \\paren {2^{2 n + 1} + 2^{n + 1} + 1}$ == Proof == From Sum of Squares as Product of Factors with Square Roots: :$x^2 + y^2 = \\paren {x + \\sqrt {2 x y} + y} \\paren {x - \\sqrt {2 x y} + y}$ Let $x = 2^{2 n + 1}$ and $y = 1$. Then: {{begin-eqn}} {{eqn | l = 2^{4 n + 2} + 1 | r = \\paren {2^{2 n + 1} }^2 + 1^2 | c = }} {{eqn | r = \\paren {2^{2 n + 1} + \\sqrt {2 \\times \\paren {2^{2 n + 1} } \\times 1} + 1} \\paren {2^{2 n + 1} - \\sqrt {2 \\times \\paren {2^{2 n + 1} } \\times 1} + 1} | c = }} {{eqn | r = \\paren {2^{2 n + 1} + \\sqrt {2^{2 n + 2} } + 1} \\paren {2^{2 n + 1} - \\sqrt {2^{2 n + 2} } + 1} | c = }} {{eqn | r = \\paren {2^{2 n + 1} - 2^{n + 1} + 1} \\paren {2^{2 n + 1} + 2^{n + 1} + 1} | c = }} {{end-eqn}} {{qed}} == Historical Note == {{:Aurifeuillian Factorization/Examples/2^4n+2 + 1/Historical Note}} == Sources == * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = Prime Decomposition of 2^58+1/Historical Note|next = Aurifeuillian Factorization/Examples/2^4n+2 + 1/Historical Note}}: $2^{58} + 1$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = Prime Decomposition of 2^58+1/Historical Note|next = Aurifeuillian Factorization/Examples/2^4n+2 + 1/Historical Note}}: $2^{58} + 1$ Category:Aurifeuillian Factorizations 0c3oxexmsom4rnbzn48k0x3fupkqo47"}
+{"_id": "32892", "title": "Tutte's Wheel Theorem/Lemma", "text": "Tutte's Wheel Theorem/Lemma 0 66822 340403 340082 2018-01-28T07:02:36Z Stixme 3311 wikitext text/x-wiki {{MissingLinks}} {{tidy}} == Lemma == If a graph $G$ is 3-connected with $|V\\left({G}\\right)| > 4$ then $\\exists e, \\: e \\in E\\left({G}\\right)$ such that $G \\thinspace / \\thinspace e$ is also 3-connected. == Proof == Suppose that no such edge $e$ exists. Then $\\forall e, \\: e = xy \\in E\\left({G}\\right)$, $\\: G \\thinspace / \\thinspace e$ contains a vertex cut $S, \\: |S| ≤ 2$. Since $\\kappa\\left({G}\\right) \\geq 3$, the contracted vertex $v_{x,y}$ of $G \\thinspace / \\thinspace e$ lies in $S$ (i.e. $\\exists z, \\: z \\in G, \\: z \\notin \\{x,y\\}$.) Let $S = \\{v_{x,y}, z\\}$. Then $T = \\{x, y, z\\}$ is a vertex cut of $G$. Thus, every vertex in $T$ has an edge to every component of $G'=G-T$. Let $C$ be the smallest component of $G'$. Let $u \\in N\\left({z}\\right) \\cap C$ where $N\\left({z}\\right)$ is the set of all neighbours of the vertex $z$. By assumption, $G \\thinspace / \\thinspace zu$ is again not 3-connected, so again $\\exists w$ such that $\\{w, z, u\\}$ is a vertex cut of $G$. It also follows that every vertex in $\\{w, z, u\\}$ has an edge to every component of $G'' = G - \\{w, z, u\\}$. Since $x,y$ are connected, $\\exists D$, $D$ is a component of $G''$ and $D \\cap \\{x,y\\} = \\emptyset$. Then, $D \\subseteq N\\left({z}\\right) \\cap V\\left({C}\\right) = \\emptyset$. Hence $D \\varsubsetneqq C$ by the choice of $D$, which contradicts the assumption that $C$ was the smallest component. {{qed|lemma}} Category:Graph Theory b4if14xx8b5hx14s014gee025jvwj56"}
+{"_id": "32893", "title": "Completion Theorem (Metric Space)/Lemma 1", "text": "Completion Theorem (Metric Space)/Lemma 1 0 66833 453813 340173 2020-03-10T15:50:34Z Prime.mover 59 wikitext text/x-wiki == Lemma == Let $M = \\struct {A, d}$ be a metric space. Let $\\CC \\sqbrk A$ denote the set of all Cauchy sequences in $A$. Define the equivalence relation $\\sim$ on $\\CC \\sqbrk A$ by: :$\\displaystyle \\sequence {x_n} \\sim \\sequence {y_n} \\iff \\lim_{n \\mathop \\to \\infty} \\map d {x_n, y_n} = 0$ Denote the equivalence class of $\\sequence {x_n} \\in \\CC \\sqbrk A$ by $\\sqbrk {x_n}$. Denote the set of equivalence classes under $\\sim$ by $\\tilde A$. Define $\\tilde d: \\tilde A \\to \\R_{\\ge 0}$ by: :$\\displaystyle \\map {\\tilde d} {\\sqbrk {x_n}, \\sqbrk {y_n} } = \\lim_{n \\mathop \\to \\infty} \\map d {x_n, y_n}$ Then: :$\\tilde d$ is well-defined on $\\tilde A$. == Proof == Let $\\sequence {x_n}$, $\\sequence {\\hat x_n}$, $\\sequence {y_n}$, $\\sequence {\\hat y_n} \\in \\CC \\sqbrk A$ be such that: :$\\sequence {x_n} \\sim \\sequence {\\hat x_n}$ :$\\sequence {y_n} \\sim \\sequence {\\hat y_n}$ We have: {{begin-eqn}} {{eqn | l = \\map d {x_n, y_n} - \\map d {\\hat x_n, \\hat y_n} | o = \\le | r = \\map d {x_n, \\hat x_n} + \\map d {\\hat x_n, y_n} - \\map d {\\hat x_n, \\hat y_n} | c = Triangle Inequality }} {{eqn | o = \\le | r = \\map d {x_n, \\hat x_n} + \\map d {\\hat x_n, \\hat y_n} + \\map d {\\hat y_n, y_n} - \\map d {\\hat x_n, \\hat y_n} | c = Triangle Inequality }} {{eqn | r = \\map d {x_n, \\hat x_n} + \\map d {\\hat y_n, y_n} | c = }} {{end-eqn}} By an identical argument, we can also show that: :$\\map d {\\hat x_n, \\hat y_n} - \\map d {x_n, y_n} \\le \\map d {x_n, \\hat x_n} + \\map d {\\hat y_n, y_n}$ and therefore: :$\\displaystyle 0 \\le \\size {\\map d {x_n, y_n} - \\map d {\\hat x_n, \\hat y_n} } \\le \\map d {x_n, \\hat x_n} + \\map d {\\hat y_n, y_n}$ Passing to the limit $n \\to \\infty$ and using the Combination Theorem for Sequences we have shown that: $\\displaystyle \\lim_{n \\mathop \\to \\infty} \\map d {x_n, y_n} = \\lim_{n \\mathop \\to \\infty} \\map d {\\hat x_n, \\hat y_n}$ But this precisely means that: :$\\map {\\tilde d} {\\sqbrk {x_n}, \\sqbrk {y_n} } = \\map {\\tilde d} {\\sqbrk {\\hat x_n}, \\sqbrk {\\hat y_n} }$ {{qed}} Category:Completion Theorem 20d0c7shgcq6vlnumi2nzcsg5cx4w0g"}
+{"_id": "32894", "title": "Completion Theorem (Metric Space)/Lemma 2", "text": "Completion Theorem (Metric Space)/Lemma 2 0 66834 364362 340176 2018-09-04T21:11:34Z Prime.mover 59 wikitext text/x-wiki == Lemma == Let $M = \\left({A, d}\\right)$ be a metric space. Let $\\mathcal C \\left[{A}\\right]$ denote the set of all Cauchy sequences in $A$. Define the equivalence relation $\\sim$ on $\\mathcal C \\left[{A}\\right]$ by: :$\\displaystyle \\left\\langle{x_n}\\right\\rangle \\sim \\left\\langle{y_n}\\right\\rangle \\iff \\lim_{n \\mathop \\to \\infty} d \\left({x_n, y_n}\\right) = 0$ Denote the equivalence class of $\\left\\langle{x_n}\\right\\rangle \\in \\mathcal C \\left[{A}\\right]$ by $\\left[{x_n}\\right]$. Denote the set of equivalence classes under $\\sim$ by $\\tilde A$. Define $\\tilde d: \\tilde A \\to \\R_{\\ge 0}$ by: :$\\displaystyle \\tilde d \\left({\\left[{x_n}\\right], \\left[{y_n}\\right]}\\right) = \\lim_{n \\mathop \\to \\infty} d \\left({x_n, y_n}\\right)$ Then: :$\\tilde d$ is a metric on $\\tilde A$. == Proof == To prove $\\tilde d$ is a metric, we verify that it satisfies the axioms $M1$, $M2$, $M3$ and $M4$. === Proof of $M4$ === Let $\\tilde d \\left({\\left[{x_n}\\right], \\left[{y_n}\\right]}\\right) = \\infty$. Then $\\left\\langle{x_n}\\right\\rangle$ and $\\left\\langle y_n \\right\\rangle$ cannot both be Cauchy. So $\\tilde d \\left({\\left[{x_n}\\right], \\left[{y_n}\\right]}\\right) < \\infty$ for $\\left[{x_n}\\right], \\left[{y_n}\\right] \\in \\tilde A$. By the definition of $\\tilde d$, for any $\\left[{x_n}\\right], \\left[{y_n}\\right] \\in \\tilde A$, $\\tilde d \\left({\\left[{x_n}\\right], \\left[{y_n}\\right]}\\right)$ must be a limit point of $R_{\\ge 0}$. The closure of $\\R_{\\ge 0}$ is $\\R_{\\ge 0}$, so $\\tilde d: \\tilde A \\times \\tilde A \\to \\R_{\\ge 0}$. So axiom $M4$ holds for $\\tilde d$. === Proof of $M1$ === Let $\\tilde d \\left({\\left[{x_n}\\right], \\left[{y_n}\\right]}\\right) = 0$, which means that: :$\\displaystyle \\lim_{n \\mathop \\to \\infty} d\\left({x_n, y_n}\\right) = 0$ So by definition: :$\\left\\langle{x_n}\\right\\rangle \\sim \\left\\langle{y_n}\\right\\rangle$ and: :$\\left[{x_n}\\right] = \\left[{y_n}\\right]$ As $d$ is a metric, we also find immediately: :$\\tilde d \\left({\\left[{x_n}\\right], \\left[{x_n}\\right]}\\right) = 0$ So axiom $M1$ holds for $\\tilde d$. {{qed|lemma}} === Proof of $M3$ === We have that: {{begin-eqn}} {{eqn | l = \\tilde d \\left({\\left[{x_n}\\right], \\left[{y_n}\\right]}\\right) | r = \\lim_{n \\mathop \\to \\infty} d \\left({x_n, y_n}\\right) | c = }} {{eqn | r = \\lim_{n \\mathop \\to \\infty} d \\left({y_n, x_n}\\right) | c = $d$ is a Metric }} {{eqn | r = \\tilde d \\left({\\left[{y_n}\\right], \\left[{x_n}\\right]}\\right) | c = }} {{end-eqn}} So axiom $M3$ holds for $\\tilde d$. {{qed|lemma}} === Proof of $M2$ === We have that: {{begin-eqn}} {{eqn | l = \\tilde d \\left({\\left[{x_n}\\right], \\left[{z_n}\\right]}\\right) | r = \\lim_{n \\mathop \\to \\infty} d \\left({x_n, z_n}\\right) | c = }} {{eqn | o = \\le | r = \\lim_{n \\mathop \\to \\infty} \\left\\{ {d \\left({x_n, y_n}\\right) + d \\left({y_n, z_n}\\right)}\\right\\} | c = $d$ is a metric, and using elementary properties of limits (Reference?) }} {{eqn | r = \\lim_{n \\mathop \\to \\infty} d\\left({x_n, y_n}\\right) + \\lim_{n \\to \\infty} d \\left({y_n, z_n}\\right) | c = Sum Rule for Real Sequences }} {{eqn | r = \\tilde d \\left({\\left[{x_n}\\right], \\left[{y_n}\\right]}\\right) + \\tilde d \\left({\\left[{y_n}\\right], \\left[{z_n}\\right]}\\right) }} {{end-eqn}} So axiom $M2$ holds for $\\tilde d$. {{qed|lemma}} Thus $\\tilde d$ satisfies all the metric space axioms and so is a metric. {{qed}} Category:Completion Theorem irpehes3ivyz25mgvi3adr78b3pr3ht"}
+{"_id": "32895", "title": "Completion Theorem (Metric Space)/Lemma 3", "text": "Completion Theorem (Metric Space)/Lemma 3 0 66835 340181 340180 2018-01-27T11:17:19Z Prime.mover 59 wikitext text/x-wiki == Lemma == Let $M = \\left({A, d}\\right)$ be a metric space. Let $\\mathcal C \\left[{A}\\right]$ denote the set of all Cauchy sequences in $A$. Define the equivalence relation $\\sim$ on $\\mathcal C \\left[{A}\\right]$ by: :$\\displaystyle \\left\\langle{x_n}\\right\\rangle \\sim \\left\\langle{y_n}\\right\\rangle \\iff \\lim_{n \\mathop \\to \\infty} d \\left({x_n, y_n}\\right) = 0$ Denote the equivalence class of $\\left\\langle{x_n}\\right\\rangle \\in \\mathcal C \\left[{A}\\right]$ by $\\left[{x_n}\\right]$. Denote the set of equivalence classes under $\\sim$ by $\\tilde A$. Define $\\tilde d: \\tilde A \\to \\R_{\\ge 0}$ by: :$\\displaystyle \\tilde d \\left({\\left[{x_n}\\right], \\left[{y_n}\\right]}\\right) = \\lim_{n \\mathop \\to \\infty} d \\left({x_n, y_n}\\right)$ Then: :$\\tilde M = \\left({\\tilde A, \\tilde d}\\right)$ is a completion of $M$. == Proof == We are to show that: : $(1): \\quad \\tilde M$ is a complete metric space : $(2): \\quad A \\subseteq \\tilde A$ : $(3): \\quad A$ is dense in $\\tilde M$ : $(4): \\quad \\forall x, y \\in A : \\tilde d \\left({x, y}\\right) = d \\left({x, y}\\right)$ For $x \\in A$, let $\\hat x = \\left({x, x, x, \\ldots}\\right)$ be the constant sequence with value $x$. Let $\\phi: A \\to \\tilde A: x = \\left[{\\hat x}\\right]$. We first demonstrate that $(2)$ holds, by showing that $A \\subseteq \\tilde A$. {{begin-eqn}} {{eqn | l = \\phi \\left({x}\\right) | r = \\phi \\left({y}\\right) }} {{eqn | ll= \\implies | l = \\left[{\\hat x}\\right] | r = \\left[{\\hat y}\\right] }} {{eqn | ll= \\implies | l = \\lim_{n \\mathop \\to \\infty} d \\left({x, y}\\right) | r = 0 }} {{eqn | ll= \\implies | l = d \\left({x, y}\\right) | r = 0 }} {{eqn | ll= \\implies | l = x | r = y }} {{end-eqn}} Thus: :$A \\subseteq \\tilde A$ {{qed|lemma}} Henceforth we identify $A$ with its isomorphic copy in $\\tilde A$ when it is convenient. Now we demonstrate that $(4)$ holds, by showing that $\\phi$ is an injection from $A$ into $\\tilde A$. For any $x, y \\in A$: {{begin-eqn}} {{eqn | l = \\tilde d \\left({\\left[{\\hat x}\\right], \\left[{\\hat y}\\right]}\\right) | r = \\lim_{n \\mathop \\to \\infty} d \\left({x, y}\\right) }} {{eqn | r = d \\left({x, y}\\right) }} {{end-eqn}} That is: :$\\forall x, y \\in A : \\tilde d \\left({x, y}\\right) = d \\left({x, y}\\right)$ {{qed|lemma}} Now we demonstrate that $(3)$ holds, by showing that $A$ is dense in $\\tilde A$. Recall that the closure of $A$ is the union of $A$ and the limit points of $A$. Let $\\left[{x_n}\\right] \\in \\tilde A$ and $\\epsilon > 0$ be arbitrary. If we can find $x \\in A$ such that $\\tilde d \\left({\\left[{\\hat x}\\right], \\left[{x_n}\\right]}\\right) < \\epsilon$ then we have shown that $A$ is dense in $\\tilde A$. Since $\\left\\langle{x_n}\\right\\rangle$ is Cauchy, there exists $N \\in \\N$ such that: :$\\forall m, n \\ge N: d \\left({x_m, x_n}\\right) < \\epsilon$ Then we have: {{begin-eqn}} {{eqn | l = \\tilde d \\left({\\left[{\\hat x_N}\\right], \\left[{x_n}\\right]}\\right) | r = \\lim_{n \\mathop \\to \\infty} d \\left({x_N, x_n}\\right) }} {{eqn | o = < | r = \\epsilon }} {{end-eqn}} and therefore $A$ is dense in $\\tilde A$. {{qed|lemma}} Finally we demonstrate that $(1)$ holds, by showing that $\\left({\\tilde A, \\tilde d}\\right)$ is complete. By the completeness criterion it is sufficient to show that every Cauchy sequence in $\\phi \\left({A}\\right)$ converges in $\\tilde A$. Let $\\left\\langle{\\hat w_n}\\right\\rangle$ be a Cauchy sequence in $\\phi \\left({A}\\right)$, so each $\\hat w_n$ has the form $\\left\\langle{w_n, w_n, w_n, \\ldots}\\right\\rangle$. Since $\\phi$ is an isometry: :$\\forall m, n \\in \\N: \\tilde d \\left({\\hat w_n, \\hat w_m}\\right) = d \\left({w_n, w_m}\\right)$ Therefore, $\\left\\langle{w_1, w_2, w_3,\\ldots}\\right\\rangle$ is Cauchy in $A$. Let $W = \\left[{\\left\\langle{w_1, w_2, w_3, \\ldots}\\right\\rangle}\\right] \\in \\tilde A$. We claim that $\\left\\langle{\\hat w_n}\\right\\rangle$ converges to $W$ in $\\tilde A$. Let $\\epsilon > 0$ be arbitrary. Since $\\left\\langle{w_1, w_2, w_3, \\ldots}\\right\\rangle$ is Cauchy in $A$, there exists $N \\in \\N$ such that for all $m, n \\ge N$, we have $d \\left({w_n, w_m}\\right) < \\epsilon$. Thus for all $n > N$: :$\\displaystyle \\tilde d \\left({w_n, W}\\right) = \\lim_{n \\mathop \\to \\infty} d \\left({w_n, W}\\right) < \\epsilon$ Therefore, $\\left\\langle{\\hat w_n}\\right\\rangle \\to W$ as $N \\to \\infty$, and $\\tilde A$ is complete. {{qed}} {{ACC|Completeness Criterion (Metric Spaces)}} Category:Completion Theorem iunu09pstzvf3vvstpmluzt6nz0bbt7"}
+{"_id": "32896", "title": "Heine-Borel Theorem/Euclidean Space/Necessary Condition", "text": "Heine-Borel Theorem/Euclidean Space/Necessary Condition 0 67083 342472 2018-02-12T08:09:32Z Prime.mover 59 Created page with \"== Theorem == For any natural number $n \\ge 1$, a closed and Definition:Bounded Metric Spac...\" wikitext text/x-wiki == Theorem == For any natural number $n \\ge 1$, a closed and bounded subspace of the Euclidean space $\\R^n$ is compact. == Proof 1 == {{:Heine-Borel Theorem/Euclidean Space/Necessary Condition/Proof 1}} == Proof 2 == {{:Heine-Borel Theorem/Euclidean Space/Necessary Condition/Proof 2}} {{Namedfor|Heinrich Eduard Heine|name2 = Émile Borel}} Category:Heine-Borel Theorem d74r4b7lk9ga1i4go85xka0z7cy390g"}
+{"_id": "32897", "title": "Separated Subsets of Linearly Ordered Space under Order Topology/Lemma", "text": "Separated Subsets of Linearly Ordered Space under Order Topology/Lemma 0 67102 471130 342563 2020-05-28T07:05:25Z Prime.mover 59 wikitext text/x-wiki == Lemma == Let $T = \\struct {S, \\preceq, \\tau}$ be a linearly ordered space. Let $A$ and $B$ be separated sets of $T$. Let $A^*$ and $B^*$ be defined as: :$A^* := \\displaystyle \\bigcup \\set {\\closedint a b: a, b \\in A, \\closedint a b \\cap B^- = \\O}$ :$B^* := \\displaystyle \\bigcup \\set {\\closedint a b: a, b \\in B, \\closedint a b \\cap A^- = \\O}$ where $A^-$ and $B^-$ denote the closure of $A$ and $B$ in $T$. Then: :$(1): \\quad A \\subseteq A^*$ :$(2): \\quad B \\subseteq B^*$ :$(3): \\quad A^* \\cap B^* = \\O$ == Proof == Let $a \\in A$. Then: {{begin-eqn}} {{eqn | l = \\closedint a a | r = \\set a | c = }} {{eqn | ll= \\leadsto | l = \\closedint a a \\cap B^- | r = \\O | c = {{Defof|Separated Sets}} }} {{eqn | ll= \\leadsto | l = \\closedint a a | o = \\subseteq | r = A^* | c = Definition of $A^*$ }} {{eqn | ll= \\leadsto | l = a | o = \\in | r = A^* | c = Definition of $\\closedint a a$ }} {{eqn | ll= \\leadsto | l = A | o = \\subseteq | r = A^* | c = {{Defof|Subset}} }} {{end-eqn}} Similarly, $B \\subseteq B^-$. {{qed|lemma}} {{AimForCont}} $A^* \\cap B^* \\ne \\O$. Then: :$\\exists p: p \\in A^* \\cap B^*$ Hence: :$\\exists a, b \\in A, c, d \\in B: p \\in \\closedint a b \\cap \\closedint c d$ But because $A$ and $B$ are separated sets: :$c, d \\notin A$ and: :$a, b \\notin B$ and so: :$\\closedint a b \\cap \\closedint c d = \\O$ Thus $p \\notin \\closedint a b \\cap \\closedint c d$ It follows by Proof by Contradiction that $A^* \\cap B^* = \\O$. {{qed}} == Sources == * {{BookReference|Counterexamples in Topology|1978|Lynn Arthur Steen|author2 = J. Arthur Seebach, Jr.|ed = 2nd|edpage = Second Edition|prev = Definition:Convex Component|next = Separated Subsets of Linearly Ordered Space under Order Topology}}: Part $\\text {II}$: Counterexamples: $39$. Order Topology: $3$ Category:Linearly Ordered Spaces i2v65eccpzydkuytk9n5k95db573kxl"}
+{"_id": "32898", "title": "Power Series Expansion for Logarithm of 1 + x/Corollary", "text": "Power Series Expansion for Logarithm of 1 + x/Corollary 0 67448 363669 349899 2018-08-26T11:27:37Z Prime.mover 59 wikitext text/x-wiki == Corollary to Power Series Expansion for $\\ln \\paren {1 + x}$ == {{begin-eqn}} {{eqn | l = \\ln \\paren {1 - x} | r = -\\sum_{n \\mathop = 1}^\\infty \\frac {x^n} n | c = }} {{eqn | r = -x - \\frac {x^2} 2 - \\frac {x^3} 3 - \\frac {x^4} 4 - \\cdots | c = }} {{end-eqn}} valid for $-1 < x < 1$. == Proof == By Power Series Expansion for $\\ln \\paren {1 + x}$: :$\\displaystyle \\ln \\paren {1 + x} = \\sum_{n \\mathop = 1}^\\infty \\paren {-1}^{n - 1} \\frac {x^n} n$ Then: {{begin-eqn}} {{eqn | l = \\ln \\paren {1 - x} | r = \\sum_{n \\mathop = 1}^\\infty \\paren {-1}^{n - 1} \\frac {\\paren {-x}^n} n | c = substituting $x \\to -x$ }} {{eqn | r = -\\sum_{n \\mathop = 1}^\\infty \\paren {-1}^{2 n} \\frac {x^n} n }} {{eqn | r = -\\sum_{n \\mathop = 1}^\\infty \\frac {x^n} n }} {{end-eqn}} {{qed}} Category:Examples of Power Series Category:Logarithms jjoh7jh41havb8b3zshple7iibi2yvy"}
+{"_id": "32899", "title": "Fourier's Theorem/Lemma 1", "text": "Fourier's Theorem/Lemma 1 0 67846 459093 459092 2020-04-02T21:20:26Z Prime.mover 59 wikitext text/x-wiki == Lemma for Fourier's Theorem == Let $\\psi$ be a real function defined on a closed interval $\\closedint a b$. Let $\\psi$ be piecewise continuous with one-sided limits on $\\closedint a b$. Then: :$\\displaystyle \\lim_{N \\mathop \\to \\infty} \\int_a^b \\map \\psi u \\sin N u \\rd u = 0$ == Proof == We are given that $\\psi$ is piecewise continuous with one-sided limits on $\\closedint a b$. Therefore, there exists a finite subdivision $\\set {x_0, x_1, \\ldots, x_m}$ of $\\closedint a b$, where $x_0 = a$ and $x_m = b$, such that for all $i \\in \\set {1, 2, \\ldots, m}$: :$\\psi$ is continuous on $\\openint {x_{i - 1} } {x_i}$ :$\\displaystyle \\lim_{x \\mathop \\to {x_{i - 1} }^+} \\map \\psi x$ and $\\displaystyle \\lim_{x \\mathop \\to {x_i}^-} \\map \\psi x$ exist. From the corollary to Sum of Integrals on Adjacent Intervals for Integrable Functions: :$\\displaystyle \\int_a^b \\map \\psi u \\sin N u \\rd u = \\sum_{r \\mathop = 0}^{m - 1} \\int_{x_r}^{x_{r + 1} } \\map \\psi u \\sin N u \\rd u$ Then: {{begin-eqn}} {{eqn | n = 1 | l = \\int_{x_r}^{x_{r + 1} } \\map \\psi u \\sin N u \\rd u | r = \\intlimits {-\\map \\psi u \\frac {\\cos N u} N} {x_r} {x_{r + 1} } | c = Integration by Parts }} {{eqn | o = | ro= + | r = \\frac 1 N \\int_{x_r}^{x_{r + 1} } \\map {\\psi'} u \\cos N u \\rd u | c = }} {{end-eqn}} The last integral is bounded. Thus $(1)$ is less than $\\dfrac {M_r} N$ for $M_r \\in \\R$. Let $M = \\max \\set {\\size {M_0}, \\size {M_1}, \\dotsc, \\size {M_{m - 1} } }$. Then: :$\\displaystyle \\size {\\int_a^b \\map \\psi u \\sin N u \\rd u} < \\dfrac {M m} N$ As $M$ and $m$ are finite: :$\\displaystyle \\lim_{N \\mathop \\to \\infty} \\dfrac {M m} N = 0$ Hence the result. {{qed}} == Sources == * {{BookReference|Fourier Series|1961|I.N. Sneddon|prev = Definition:Real Left-Hand Derivative|next = Fourier's Theorem/Lemma 1/Mistake 1}}: Chapter Two: $\\S 2$. Some Important Limits: Lemma $(1)$ Category:Fourier's Theorem l5xmrwqfroh93mu5ef8de049918xstw"}
+{"_id": "32900", "title": "Fourier's Theorem/Lemma 2", "text": "Fourier's Theorem/Lemma 2 0 67850 459098 348113 2020-04-02T22:11:31Z Prime.mover 59 wikitext text/x-wiki == Lemma for Fourier's Theorem == Let $\\psi$ be a real function defined on a half-open interval $\\hointl 0 a$. Let $\\psi$ and its derivative $\\psi'$ be piecewise continuous with one-sided limits on $\\hointl 0 a$. Let $\\map \\psi u$ have a right-hand derivative at $u = 0$. Then: :$\\displaystyle \\lim_{N \\mathop \\to \\infty} \\int_0^a \\map \\psi u \\frac {\\sin N u} u \\rd u = \\frac \\pi 2 \\map \\psi {0^+}$ where $\\map \\psi {0^+}$ denotes the limit of $\\psi$ at $0$ from the right. == Proof == We have: :$\\map \\psi u = \\map \\psi {0^+} + \\paren {\\map \\psi u - \\map \\psi {0^+} }$ from which: :$(1): \\quad \\displaystyle \\int_0^a \\map \\psi u \\frac {\\sin N u} u \\rd u = \\map \\psi {0^+} \\int_0^a \\frac {\\sin N u} u \\rd u + \\int_0^a \\map \\phi u \\sin N u \\rd u$ where: :$\\map \\phi u = \\dfrac {\\map \\psi u - \\map \\psi {0^+} } u$ Let $\\xi = N u$. Then: {{begin-eqn}} {{eqn | l = \\int_0^a \\frac {\\sin N u} u \\rd u | r = \\int_0^{N a} \\frac {\\sin \\xi} \\xi \\rd \\xi | c = }} {{eqn | o = \\to | r = \\int_0^\\infty \\frac {\\sin \\xi} \\xi \\rd \\xi | c = }} {{eqn | r = \\frac \\pi 2 | c = Integral to Infinity of $\\dfrac {\\sin \\xi} \\xi$ }} {{end-eqn}} We have that $\\map \\psi u$ is piecewise continuous with one-sided limits on $\\hointl 0 a$. Hence it follows that $\\map \\phi u = \\dfrac {\\map \\psi u - \\map \\psi {0^+} } u$ is also piecewise continuous with one-sided limits on $\\hointl 0 a$. We also have that $\\map \\psi u$ has a right-hand derivative at $u = 0$. It follows that $\\map \\phi u$ is piecewise continuous with one-sided limits on $\\hointl 0 a$. Thus from Lemma 1 for Fourier's Theorem: :$\\displaystyle \\lim_{N \\mathop \\to \\infty} \\int_0^a \\map \\phi u \\sin N u \\rd u = 0$ and letting $N \\to \\infty$ in $(1)$ above: :$\\displaystyle \\lim_{N \\mathop \\to \\infty} \\int_0^a \\map \\psi u \\frac {\\sin N u} u \\rd u = \\frac \\pi 2 \\map \\psi {0^+}$ {{qed}} {{Proofread}} == Sources == * {{BookReference|Fourier Series|1961|I.N. Sneddon|prev = Fourier's Theorem/Lemma 1/Mistake 2|next = Fourier's Theorem/Lemma 2/Mistake}}: Chapter Two: $\\S 2$. Some Important Limits: Lemma $(2)$ Category:Fourier's Theorem 5mirn4oim09fohb29j85c0esawwisnn"}
+{"_id": "32901", "title": "Fourier's Theorem/Lemma 3", "text": "Fourier's Theorem/Lemma 3 0 67853 459101 348117 2020-04-02T22:20:37Z Prime.mover 59 wikitext text/x-wiki == Lemma for Fourier's Theorem == Let $\\psi$ be a real function defined on an open interval $\\openint a b$. Let $\\psi$ and its derivative $\\psi'$ be piecewise continuous with one-sided limits on $\\openint a b$. Let $\\map \\psi u$ have both right-hand derivative and left-hand derivative at a point $u = x$ where $x \\in \\openint a b$. Then: :$\\displaystyle \\lim_{N \\mathop \\to \\infty} \\int_a^b \\map \\psi u \\frac {\\sin N \\paren {u - x} } {u - x} \\rd u = \\frac \\pi 2 \\paren {\\map \\psi {x^+} + \\map \\psi {x^-} }$ where: :$\\map \\psi {x^+}$ denotes the limit of $\\psi$ at $x$ from the right :$\\map \\psi {x^-}$ denotes the limit of $\\psi$ at $x$ from the left. == Proof == From Sum of Integrals on Adjacent Intervals for Integrable Functions, we have: :$\\displaystyle \\int_a^b \\map \\psi u \\frac {\\sin N \\paren {u - x} } {u - x} \\rd u = \\int_a^x \\map \\psi u \\frac {\\sin N \\paren {u - x} } {u - x} \\rd u + \\int_x^b \\map \\psi u \\frac {\\sin N \\paren {u - x} } {u - x} \\rd u$ Let $u = x - \\xi$. Then by Integration by Substitution: :$\\displaystyle \\int_a^x \\map \\psi u \\frac {\\sin N \\paren {u - x} } {u - x} \\rd u = \\int_0^{x - a} \\map \\phi \\xi \\frac {\\sin N \\xi} \\xi \\rd \\xi$ where: :$\\map \\phi \\xi = \\map \\psi {u - \\xi}$ {{explain|It needs to be established how the limits change from $a \\to x$ to $0 \\to x - a$ as this is not obvious.}} By Fourier's Theorem: Lemma 2: {{begin-eqn}} {{eqn | l = \\lim_{N \\mathop \\to \\infty} \\int_0^{x - a} \\map \\phi \\xi \\frac {\\sin N \\xi} \\xi \\rd \\xi | r = \\frac \\pi 2 \\map \\phi {0^+} | c = }} {{eqn | r = \\frac \\pi 2 \\map \\psi {x^-} | c = }} {{end-eqn}} Similarly, substituting $u = x + \\eta$: :$\\displaystyle \\int_x^b \\map \\psi u \\frac {\\sin N \\paren {u - x} } {u - x} \\rd u = \\int_0^{b - x} \\map \\chi \\eta \\frac {\\sin N \\eta} \\eta \\rd \\eta$ where: :$\\map \\chi \\xi = \\map \\psi {x + \\eta}$ By Fourier's Theorem: Lemma 2: {{begin-eqn}} {{eqn | l = \\lim_{N \\mathop \\to \\infty} \\int_0^{b - x} \\map \\chi \\eta \\frac {\\sin N \\eta} \\eta \\rd \\eta | r = \\frac \\pi 2 \\map \\phi {0^+} | c = }} {{eqn | r = \\frac \\pi 2 \\map \\psi {x^+} | c = }} {{end-eqn}} The result follows by adding the two limits. {{qed}} {{Proofread}} == Sources == * {{BookReference|Fourier Series|1961|I.N. Sneddon|prev = Fourier's Theorem/Lemma 2/Mistake|next = Fourier's Theorem}}: Chapter Two: $\\S 2$. Some Important Limits: Lemma $(3)$ Category:Fourier's Theorem rneh9nk5wbf5h4nyhwnhdivs7nsu33f"}
+{"_id": "32902", "title": "Sum of Sequence of Products of Consecutive Odd and Consecutive Even Reciprocals/Corollary", "text": "Sum of Sequence of Products of Consecutive Odd and Consecutive Even Reciprocals/Corollary 0 68118 349357 349294 2018-03-31T20:15:11Z Prime.mover 59 wikitext text/x-wiki == Corollary to Sum of Sequence of Products of Consecutive Odd and Consecutive Even Reciprocals == {{begin-eqn}} {{eqn | l = \\sum_{j \\mathop = 1}^\\infty \\frac 1 {j \\left({j + 2}\\right)} | r = \\frac 1 {1 \\times 3} + \\frac 1 {2 \\times 4} + \\frac 1 {3 \\times 5} + \\frac 1 {4 \\times 6} + \\cdots | c = }} {{eqn | r = \\frac 3 4 | c = }} {{end-eqn}} == Proof == {{begin-eqn}} {{eqn | l = \\sum_{j \\mathop = 1}^\\infty \\frac 1 {j \\left({j + 2}\\right)} | r = \\lim_{n \\mathop \\to \\infty} \\sum_{j \\mathop = 1}^n \\frac 1 {j \\left({j + 2}\\right)} | c = }} {{eqn | r = \\lim_{n \\mathop \\to \\infty} \\left({\\frac 3 4 - \\frac {2 n + 3} {2 \\left({n + 1}\\right) \\left({n + 2}\\right)} }\\right) | c = Sum of Sequence of Products of Consecutive Odd Reciprocals }} {{eqn | r = \\frac 3 4 - \\lim_{n \\mathop \\to \\infty} \\frac {\\frac 2 n + \\frac 3 {n^2} } {2 \\left({1 + \\frac 1 n}\\right) \\left({1 + \\frac 2 n}\\right)} | c = dividing top and bottom by $n^2$ }} {{eqn | r = \\frac 3 4 | c = Basic Null Sequences }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Mathematical Handbook of Formulas and Tables|1968|Murray R. Spiegel|prev = Sum of Sequence of Products of Consecutive Odd Reciprocals/Corollary|next = Sum of Sequence of Products of Squares of Consecutive Odd Reciprocals}}: $\\S 19$: Series involving Reciprocals of Powers of Positive Integers: $19.31$ Category:Sums of Sequences Category:Reciprocals o91i9uxaoxvvhgqx6lu7gh97c6hthz3"}
+{"_id": "32903", "title": "Binomial Theorem/Examples/4th Power of Sum", "text": "Binomial Theorem/Examples/4th Power of Sum 0 68172 417824 412152 2019-08-11T12:46:23Z Caliburn 3218 wikitext text/x-wiki == Example of Use of Binomial Theorem == :$\\paren {x + y}^4 = x^4 + 4 x^3 y + 6 x^2 y^2 + 4 x y^3 + y^4$ == Proof == Follows directly from the Binomial Theorem: :$\\displaystyle \\forall n \\in \\Z_{\\ge 0}: \\paren {x + y}^n = \\sum_{k \\mathop = 0}^n \\binom n k x^{n - k} y^k$ putting $n = 4$. {{qed}} == Sources == * {{BookReference|Mathematical Handbook of Formulas and Tables|1968|Murray R. Spiegel|prev = Cube of Difference|next = Fourth Power of Difference}}: $\\S 2$: Special Products and Factors: $2.5$ * {{BookReference|Mathematical Handbook of Formulas and Tables|1968|Murray R. Spiegel|prev = Cube of Sum|next = Power Series Expansion of Reciprocal of 1 + x/Proof 2}}: $\\S 20$: Binomial Series: $20.7$ * {{BookReference|Elementary Number Theory|1980|David M. Burton|ed = revised|edpage = Revised Printing|prev = Binomial Theorem/Examples/Cube of Sum|next = Definition:Pascal's Triangle/Historical Note}}: Chapter $1$: Some Preliminary Considerations: $1.2$ The Binomial Theorem Category:Examples of Use of Binomial Theorem Category:Fourth Powers iohl4jm3n8273acnkq9fyb0me4cvzvp"}
+{"_id": "32904", "title": "Power Series Expansion of Reciprocal of Square of 1 + x", "text": "Power Series Expansion of Reciprocal of Square of 1 + x 0 68177 349714 2018-04-03T15:07:34Z Prime.mover 59 Created page with \"== Theorem == Let $x \\in \\R$ such that $-1 < x < 1$. Then: {{begin-eqn}} {{eqn | l = \\dfrac 1 {\\left({1 + x}\\right)^2} | r = \\sum_{k \\mathop = 0}^\\infty...\" wikitext text/x-wiki == Theorem == Let $x \\in \\R$ such that $-1 < x < 1$. Then: {{begin-eqn}} {{eqn | l = \\dfrac 1 {\\left({1 + x}\\right)^2} | r = \\sum_{k \\mathop = 0}^\\infty \\left({-1}\\right)^k \\left({k + 1}\\right) x^k | c = }} {{eqn | r = 1 - 2 x + 3 x^2 - 4 x^3 + 5 x^4 - \\cdots | c = }} {{end-eqn}} == Proof 1 == {{:Power Series Expansion of Reciprocal of Square of 1 + x/Proof 1}} == Proof 2 == {{:Power Series Expansion of Reciprocal of Square of 1 + x/Proof 2}} Category:Examples of Power Series Category:Power Series Expansion of Reciprocal of Square of 1 + x 7robieaxmfj2d4h8hycx1hom9mur1me"}
+{"_id": "32905", "title": "Harmonic Numbers/Examples/H1", "text": "Harmonic Numbers/Examples/H1 0 69012 355776 355774 2018-05-16T20:19:47Z Prime.mover 59 wikitext text/x-wiki == Example of Harmonic Number == :$H_1 = 1$ where $H_1$ denotes the first harmonic number. == Proof == {{begin-eqn}} {{eqn | l = H_1 | r = \\sum_{k \\mathop = 1}^1 \\frac 1 k | c = {{Defof|Harmonic Number}} }} {{eqn | r = \\frac 1 1 | c = }} {{eqn | r = 1 | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|The Art of Computer Programming: Volume 1: Fundamental Algorithms|1997|Donald E. Knuth|ed = 3rd|edpage = Third Edition|prev = Harmonic Numbers/Examples/H0|next = Harmonic Numbers/Examples/H2}}: $\\S 1.2.7$: Harmonic Numbers: Exercise $1$ Category:Examples of Harmonic Numbers atu4v1wo1h1vtcjcwzb01gicuko4wv2"}
+{"_id": "32906", "title": "Harmonic Numbers/Examples/H2", "text": "Harmonic Numbers/Examples/H2 0 69015 359009 355779 2018-06-15T06:22:29Z Prime.mover 59 wikitext text/x-wiki == Example of Harmonic Number == :$H_2 = \\dfrac 3 2$ where $H_2$ denotes the second harmonic number. == Proof == {{begin-eqn}} {{eqn | l = H_2 | r = \\sum_{k \\mathop = 1}^2 \\frac 1 k | c = {{Defof|Harmonic Number}} }} {{eqn | r = \\frac 1 1 + \\frac 1 2 | c = }} {{eqn | r = \\dfrac 3 2 | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|The Art of Computer Programming: Volume 1: Fundamental Algorithms|1997|Donald E. Knuth|ed = 3rd|edpage = Third Edition|prev = Harmonic Number H1|next = Upper Bound for Harmonic Number}}: $\\S 1.2.7$: Harmonic Numbers: Exercise $1$ Category:Examples of Harmonic Numbers p9ega59o43niojrowf6ddsxvx97aerz"}
+{"_id": "32907", "title": "Sum of Arithmetic Sequence/Examples/Sum of j from m to n", "text": "Sum of Arithmetic Sequence/Examples/Sum of j from m to n 0 69146 456256 455622 2020-03-19T10:13:27Z Prime.mover 59 wikitext text/x-wiki == Example of Sum of Arithmetic Sequence == {{begin-eqn}} {{eqn | l = \\sum_{j \\mathop = m}^n j | r = m \\paren {n - m + 1} + \\frac 1 2 \\paren {n - m} \\paren {n - m + 1} | c = }} {{eqn | r = \\frac {n \\paren {n + 1} } 2 - \\frac {\\paren {m - 1} m} 2 | c = }} {{end-eqn}} == Proof 1 == {{:Sum of Arithmetic Sequence/Examples/Sum of j from m to n/Proof 1}} == Proof 2 == {{:Sum of Arithmetic Sequence/Examples/Sum of j from m to n/Proof 2}} == Sources == * {{BookReference|The Art of Computer Programming: Volume 1: Fundamental Algorithms|1997|Donald E. Knuth|ed = 3rd|edpage = Third Edition|prev = Sum of Geometric Sequence/Examples/One Seventh from 1 to n|next = General Distributivity Theorem/Examples/Sum of j from m to n by Sum of k from r to s}}: $\\S 1.2.3$: Sums and Products: Exercise $13$ Category:Examples of Sum of Arithmetic Sequence mn2s6399j6zegqolarfea9gebtt16cc"}
+{"_id": "32908", "title": "Factorial/Examples/1", "text": "Factorial/Examples/1 0 69333 357503 2018-05-28T07:04:05Z Prime.mover 59 Created page with \"== Example of Factorial == The factorial of $1$ is $1$: :$1! = 1$ == Proof == From the definit...\" wikitext text/x-wiki == Example of Factorial == The factorial of $1$ is $1$: :$1! = 1$ == Proof == From the definition of factorial: :$n! = \\displaystyle \\prod_{k \\mathop = 1}^n k$ where $\\prod$ denotes product notation. When $n = 1$ we have: :$1! = \\displaystyle \\prod_{k \\mathop = 1}^1 k$ {{begin-eqn}} {{eqn | l = 1! | r = \\prod_{k \\mathop = 1}^1 k | c = }} {{eqn | r = 1 | c = }} {{end-eqn}} {{qed}} Category:Factorials/Examples ozkkkc9bs06qczcuw9c9pcuox40ln6s"}
+{"_id": "32909", "title": "Factors of Binomial Coefficient/Corollary 1", "text": "Factors of Binomial Coefficient/Corollary 1 0 69484 358308 2018-06-04T21:51:29Z Prime.mover 59 Created page with \"== Theorem == For all $r \\in \\R, k \\in \\Z$: :$\\left ({r - k}\\right) \\dbinom r k = r \\dbinom {r - 1} k$ from which: :$\\dbinom r k = \\dfrac r {r - k} \\dbinom {r -...\" wikitext text/x-wiki == Theorem == For all $r \\in \\R, k \\in \\Z$: :$\\left ({r - k}\\right) \\dbinom r k = r \\dbinom {r - 1} k$ from which: :$\\dbinom r k = \\dfrac r {r - k} \\dbinom {r - 1} k$ (if $r \\ne k$) == Proof == {{begin-eqn}} {{eqn | l = r \\binom {r - 1} k | r = r \\frac {\\left({r - 1}\\right) \\left({\\left({r - 1}\\right) - 1}\\right) \\cdots \\left({\\left({r - 1}\\right) - k + 2}\\right) \\left({\\left({r - 1}\\right) - k + 1}\\right)} {k \\left({k - 1}\\right) \\left({k - 2}\\right) \\cdots 1} | c = }} {{eqn | r = \\frac {r \\left({r - 1}\\right) \\left({r - 2}\\right) \\cdots \\left({r - k + 1}\\right) \\left({r - k}\\right)} {k \\left({k - 1}\\right) \\left({k - 2}\\right) \\cdots 1} | c = }} {{eqn | r = \\left({r - k}\\right) \\frac {r \\left({r - 1}\\right) \\left({r - 2}\\right) \\cdots \\left({r - k + 1}\\right)} {k \\left({k - 1}\\right) \\left({k - 2}\\right) \\cdots 1} | c = }} {{eqn | r = \\left({r - k}\\right) \\binom r k | c = }} {{end-eqn}} {{qed|lemma}} Then: :$\\dbinom r k = \\dfrac r {r - k} \\dbinom {r - 1} k$ follows from the :$\\left ({r - k}\\right) \\dbinom r k = r \\dbinom {r - 1} k$ by dividing both sides by $r - k$. {{qed}} == Sources == * {{BookReference|The Art of Computer Programming: Volume 1: Fundamental Algorithms|1997|Donald E. Knuth|ed = 3rd|edpage = Third Edition|prev = Factors of Binomial Coefficient|next = Pascal's Rule/Real Numbers}}: $\\S 1.2.6$: Binomial Coefficients: $\\text{C}$ Category:Binomial Coefficients pckf7nqveg56hvodmowqbga3in6ilal"}
+{"_id": "32910", "title": "Numbers Expressed as Sums of Binomial Coefficients", "text": "Numbers Expressed as Sums of Binomial Coefficients 0 69501 465323 358420 2020-05-02T06:29:16Z RandomUndergrad 3904 wikitext text/x-wiki == Definition == Let $n \\in \\Z_{> 0}$ be a (strictly) positive integer. Then for all $k \\in \\Z_{> 0}$, it is possible to express $k$ uniquely in the form: {{begin-eqn}} {{eqn | l = k | r = \\sum_{j \\mathop = 1}^n \\dbinom {k_j} j | c = }} {{eqn | r = \\dbinom {k_1} 1 + \\dbinom {k_2} 2 + \\cdots + \\dbinom {k_n} n | c = }} {{end-eqn}} such that $0 \\le k_1 < k_2 < \\cdots < k_n$. == Proof == === Existence of Representation === Proof by induction: For all $k \\in \\Z_{\\ge 0}$, let $\\map P k$ be the proposition that it is possible to express $k$ in the form: :$\\displaystyle k = \\sum_{j \\mathop = 1}^n \\dbinom {k_j} j$ such that $0 \\le k_1 < k_2 < \\cdots < k_n$. ==== Basis for the Induction ==== $\\map P 0$ is true, as $\\displaystyle 0 = \\sum_{j \\mathop = 1}^n \\dbinom {j - 1} j$. This is our basis for the induction. ==== Induction Hypothesis ==== Now we need to show that, if $\\map P m$ is true, where $r \\ge 2$, then it logically follows that $\\map P {m + 1}$ is true. So this is our induction hypothesis: $m$ can be expressed in the form: :$\\displaystyle m = \\sum_{j \\mathop = 1}^n \\dbinom {m_j} j$ where $0 \\le m_1 < m_2 < \\cdots < m_n$. Then we need to show: $m + 1$ can be expressed in the form: :$\\displaystyle m = \\sum_{j \\mathop = 1}^n \\dbinom {k_j} j$ where $0 \\le k_1 < k_2 < \\cdots < k_n$. ==== Induction Step ==== This is our induction step: Suppose the first $c$ $m_j$ are consecutive, that is: :$\\forall \\, j \\in \\N: 1 \\le j < c: m_{j + 1} - m_j = 1$ and $m_{c + 1} - m_c > 1$ Then: {{begin-eqn}} {{eqn | l = m + 1 | r = \\sum_{j \\mathop = 1}^n \\dbinom {m_j} j + 1 | c = from the induction hypothesis }} {{eqn | r = \\sum_{j \\mathop = c + 1}^n \\dbinom {m_j} j + \\sum_{j \\mathop = 1}^c \\dbinom {m_j} j + 1 | c = }} {{eqn | r = \\sum_{j \\mathop = c + 1}^n \\dbinom {m_j} j + \\sum_{j \\mathop = 1}^c \\dbinom {m_1 + j - 1} j + \\dbinom {m_1 + 0 - 1} 0 | c = Binomial Coefficient with Zero }} {{eqn | r = \\sum_{j \\mathop = c + 1}^n \\dbinom {m_j} j + \\dbinom {m_1 + c} c | c = Sum of r+k Choose k up to n }} {{eqn | r = \\sum_{j \\mathop = c + 1}^n \\dbinom {m_j} j + \\dbinom {m_c - 1} c | c = }} {{eqn | r = \\sum_{j \\mathop = c + 1}^n \\dbinom {m_j} j + \\dbinom {m_c - 1} c + \\sum_{j = 1}^{c - 1} \\dbinom {j - 1} j | c = }} {{end-eqn}} Since $0 \\le m_1 < m_2 < \\cdots < m_n$, we must have $m_j \\ge j - 1$ for each $j \\le n$. Hence $0 \\le 0 < 1 < \\cdots < c - 2 < m_c - 1 < m_{c + 1} < \\cdots < m_n$. Thus the expression above satisfy the conditions. So $\\map P m \\implies \\map P {m + 1}$ and the result follows by the Principle of Mathematical Induction. Therefore: :$\\displaystyle \\forall n \\in \\Z_{\\ge 0}: \\sum_{k \\mathop = 0}^n \\binom {r + k} k = \\binom {r + n + 1} n$ {{qed|lemma}} === Uniqueness of Representation === Suppose $k$ can be expressed in the form: :$\\displaystyle k = \\sum_{j \\mathop = 1}^n \\dbinom {k_j} j = \\sum_{j \\mathop = 1}^n \\dbinom {m_j} j$ where $0 \\le k_1 < k_2 < \\cdots < k_n$ and $0 \\le m_1 < m_2 < \\cdots < m_n$. {{AimForCont}} $k_i$ and $m_i$ are not all equal. Let $c$ be the largest integer such that $k_c \\ne m_c$. {{WLOG}} assume $k_c < m_c$. Then: {{begin-eqn}} {{eqn | l = k | r = \\sum_{j \\mathop = 1}^n \\dbinom {k_j} j }} {{eqn | r = \\sum_{j \\mathop = c + 1}^n \\dbinom {m_j} j + \\sum_{j \\mathop = 1}^c \\dbinom {k_j} j }} {{eqn | o = \\le | r = \\sum_{j \\mathop = c + 1}^n \\dbinom {m_j} j + \\sum_{j \\mathop = 1}^c \\dbinom {k_c - c + j} j | c = $0 \\le k_1 < k_2 < \\cdots < k_n$ }} {{eqn | r = \\sum_{j \\mathop = c + 1}^n \\dbinom {m_j} j + \\dbinom {k_c - c + c + 1} c - \\dbinom {k_c - c} 0 | c = Sum of r+k Choose k up to n }} {{eqn | o = \\le | r = \\sum_{j \\mathop = c + 1}^n \\dbinom {m_j} j + \\dbinom {m_c} c - 1 | c = $k_c + 1 \\le m_c$ }} {{eqn | o = < | r = \\sum_{j \\mathop = c + 1}^n \\dbinom {m_j} j + \\dbinom {m_c} c | c = }} {{eqn | o = \\le | r = \\sum_{j \\mathop = 1}^n \\dbinom {m_j} j | c = $\\dbinom {m_j} j \\ge 0$ }} {{eqn | r = k | c = }} {{end-eqn}} which is a contradiction. Thus the representation is unique. {{qed}} == Examples == {{:Numbers Expressed as Sums of Binomial Coefficients/Examples}} == Also see == * Definition:Combinatorial Number System == Sources == * {{BookReference|The Art of Computer Programming: Volume 1: Fundamental Algorithms|1997|Donald E. Knuth|ed = 3rd|edpage = Third Edition|prev = Inverse of Stirling's Triangle expressed as Matrix|next = Numbers Expressed as Sums of Binomial Coefficients/Examples/n = 3}}: $\\S 1.2.6$: Binomial Coefficients: Exercise $56$ Category:Numbers Expressed as Sums of Binomial Coefficients Category:Binomial Coefficients jgdt82aonbbr8gwtxj44wswha7lvase"}
+{"_id": "32911", "title": "Abel's Lemma/Formulation 1", "text": "Abel's Lemma/Formulation 1 0 69643 454400 442776 2020-03-14T13:19:32Z Prime.mover 59 wikitext text/x-wiki == Lemma == Let $\\sequence a$ and $\\sequence b$ be sequences in an arbitrary ring $R$. Then: :$\\displaystyle \\sum_{k \\mathop = m}^n a_k \\paren {b_{k + 1} - b_k} = a_{n + 1} b_{n + 1} - a_m b_m - \\sum_{k \\mathop = m}^n \\paren {a_{k + 1} - a_k} b_{k + 1}$ Note that although proved for the general ring, this result is usually applied to one of the conventional number fields $\\Z, \\Q, \\R$ and $\\C$. === Corollary === {{:Abel's Lemma/Formulation 1/Corollary}} == Proof == {{begin-eqn}} {{eqn | l = \\sum_{k \\mathop = m}^n a_k \\paren {b_{k + 1} - b_k} | r = \\sum_{k \\mathop = m}^n a_k b_{k + 1} - \\sum_{k \\mathop = m}^n a_k b_k | c = }} {{eqn | r = \\sum_{k \\mathop = m}^n a_k b_{k + 1} - \\paren {a_m b_m + \\sum_{k \\mathop = m}^n a_{k + 1} b_{k + 1} - a_{n + 1} b_{n + 1} } | c = }} {{eqn | r = a_{n + 1} b_{n + 1} - a_m b_m + \\sum_{k \\mathop = m}^n a_k b_{k + 1} - \\sum_{k \\mathop = m}^n a_{k + 1} b_{k + 1} | c = }} {{eqn | r = a_{n + 1} b_{n + 1} - a_m b_m - \\sum_{k \\mathop = m}^n \\paren {a_{k + 1} - a_k} b_{k + 1} | c = }} {{end-eqn}} {{qed}} == Also reported as == Some sources give this as: :$\\displaystyle \\sum_{k \\mathop = m}^n \\paren {a_{k + 1} - a_k} b_k = a_{n + 1} b_{n + 1} - a_m b_m - \\sum_{k \\mathop = m}^n a_{k + 1} \\paren {b_{k + 1} - b_k}$ which is obtained from the main result by interchanging $a$ and $b$. Others take the upper index to $n - 1$: :$\\displaystyle \\sum_{k \\mathop = m}^{n - 1} \\paren {a_{k + 1} - a_k} b_k = a_n b_n - a_m b_m - \\sum_{k \\mathop = m}^{n - 1} a_{k + 1} \\paren {b_{k + 1} - b_k}$ == Also known as == {{:Abel's Lemma/Also known as}} {{Namedfor|Niels Henrik Abel}} Category:Abel's Lemma 9vb9u0cd2cxfgnvmw9v6ewlc4gbrmt3"}
+{"_id": "32912", "title": "Abel's Lemma/Formulation 2", "text": "Abel's Lemma/Formulation 2 0 69646 454403 413263 2020-03-14T13:21:00Z Prime.mover 59 wikitext text/x-wiki == Lemma == Let $\\sequence a$ and $\\sequence b$ be sequences in an arbitrary ring $R$. Let $\\displaystyle A_n = \\sum_{i \\mathop = m}^n {a_i}$ be the partial sum of $\\sequence a$ from $m$ to $n$. Then: :$\\displaystyle \\sum_{k \\mathop = m}^n a_k b_k = \\sum_{k \\mathop = m}^{n - 1} A_k \\paren {b_k - b_{k + 1} } + A_n b_n$ Note that although proved for the general ring, this result is usually applied to one of the conventional number fields $\\Z, \\Q, \\R$ and $\\C$. === Corollary === {{:Abel's Lemma/Formulation 2/Corollary}} == Proof 1 == {{:Abel's Lemma/Formulation 2/Proof 1}} == Proof 2 == {{:Abel's Lemma/Formulation 2/Proof 2}} == Also known as == {{:Abel's Lemma/Also known as}} {{Namedfor|Niels Henrik Abel}} == Sources == * {{BookReference|Dictionary of Mathematics|1989|Ephraim J. Borowski|author2 = Jonathan M. Borwein|prev = Symmetric Group is not Abelian|next = Definition:Abel Summation Method|entry = Abel's partial summation formula}} * {{BookReference|The Concise Oxford Dictionary of Mathematics|2014|Christopher Clapham|author2 = James Nicholson|ed = 5th|edpage = Fifth Edition|prev = Abel's Limit Theorem|next = Definition:Abel Summation Method|entry = Abel's partial summation formula}} Category:Abel's Lemma rx01s1cgpt2yy19j756dqwulgh7zwhd"}
+{"_id": "32913", "title": "Sum of Angles between Straight Lines at Point form Four Right Angles", "text": "Sum of Angles between Straight Lines at Point form Four Right Angles 0 69677 359191 359186 2018-06-18T15:58:12Z Prime.mover 59 wikitext text/x-wiki == Corollary to Two Angles on Straight Line make Two Right Angles == If any number of straight lines are drawn from a given point, the sum of the consecutive angles so formed is $4$ right angles. == Proof == Let $OA_1, OA_2, \\ldots, OA_n$ be straight lines drawn from a point $O$ to points $A_1, A_2, \\ldots, A_n$. Let $OA_1$ be produced past $O$ to $B$. Then $OB$ either coincides with $OA_j$ for some $j$ between $1$ and $n$, or $OB$ divides angle $A_j O A_k$ for some $j, k$ between $1$ and $n$. First suppose $OB$ coincides with $OA_j$. {{finish|etc.}} == Sources == * {{BookReference|Problems & Solutions in Euclidean Geometry|1968|M.N. Aref|author2 = William Wernick|prev = Two Angles on Straight Line make Two Right Angles|next = Bisectors of Adjacent Angles between Straight Lines Meeting at Point are Perpendicular}}: Chapter $1$: Triangles and Polygons: Theorems and Corollaries $1.1$: Corollary $1$ Category:Angles ekhdayhfzl4qf346826w1frlt9g85hq"}
+{"_id": "32914", "title": "Characterization of Strictly Increasing Mapping on Woset", "text": "Characterization of Strictly Increasing Mapping on Woset 0 69689 360226 360224 2018-07-09T20:07:20Z GFauxPas 522 wikitext text/x-wiki {{tidy}} == Lemma == Let $J$ and $E$ be well-ordered sets. Let $h: J \\to E$ be a mapping. Let $S_\\alpha$ denote an initial segment determined by $\\alpha$. {{TFAE}} :$(1):\\quad$ $h$ is strictly increasing and its image is either all of $E$ or an initial segment of $E$ :$(2):\\quad$ $\\forall \\alpha \\in J: h\\left({\\alpha}\\right) = \\min \\left({E\\setminus h\\left[{S_\\alpha}\\right]}\\right)$, and $h[S_\\alpha] = S_{h(\\alpha)}$ where: :$h\\left[{S_\\alpha}\\right]$ denotes the image of $S_\\alpha$ under $h$ :$\\min$ denotes the smallest element of the set. == Proof == === $(1)$ implies $(2)$ === Suppose $h$ satisfies: :$h$ is strictly increasing and its image is either all of $E$ or an initial segment of $E$ Then for any $x,y \\in J$: {{begin-eqn}} {{eqn | l = x | o = \\prec | r = y }} {{eqn | ll = \\implies | l = h(x) | o = \\prec | r = h(y) | c = {{Defof|Strictly Increasing Mapping|strictly increasing}} }} {{eqn | l = h[S_y] | r = \\left\\{ { h(x) \\in E: \\exists x \\in J: h(x) \\prec h(y) } \\right\\} }} {{eqn | r = S_{h(y)} }} {{eqn | l = \\min\\left({E \\setminus h\\left[{S_y}\\right] }\\right) | r = \\min\\left({E \\setminus S_{h(y)} }\\right) }} {{eqn | r = h(y) | c = {{Defof|Smallest Element|smallest}} and of initial segment }} {{end-eqn}} {{qed|lemma}} === $(2)$ implies $(1)$ === Suppose $h$ satisfies: :$h(\\alpha) = \\min\\left({E \\setminus h\\left[{S_\\alpha}\\right] }\\right)$ By the Principle of Recursive Definition for Well-Ordered Sets, $h$ is thus uniquely determined. Then: {{begin-eqn}} {{eqn | l = h(y) | r = \\min\\left({E \\setminus h\\left[{S_y}\\right] }\\right) }} {{eqn | l = h[S_y] | r = \\left\\{ { h(x) \\in E: \\exists x \\in J: h(x) = \\min\\left({E \\setminus h\\left[{S_y }\\right] }\\right)} \\right\\} }} {{eqn | r = \\left\\{ { h(x) \\in E: \\exists x \\in J: h(x) \\prec h(y)} \\right\\} }} {{eqn | r = S_{h(y)} | c = {{Defof|Initial Segment|initial segment}} }} {{end-eqn}} Thus for every $x \\in S_y$, we have that $h(x) \\in S_{h(y)}$. Therefore $h$ is an strictly increasing mapping. Furthermore, the image set of $h$ is the union of initial segments in $E$. By Union of Initial Segments is Initial Segment or All of Woset, $h[J]$ is an initial segment of $E$ or all of $E$. {{qed}} {{proofread}} == Sources == * {{BookReference|Topology|2000|James R. Munkres|ed = 2nd|edpage = Second Edition}}: Supplementary Exercise $1.2$ Category:Well-Orderings 4nlrguvf1tumug3w9gmy3u63fs0vcml"}
+{"_id": "32915", "title": "Strictly Increasing Mapping Between Wosets Implies Order Isomorphism", "text": "Strictly Increasing Mapping Between Wosets Implies Order Isomorphism 0 69763 359719 359526 2018-06-28T07:19:25Z Prime.mover 59 wikitext text/x-wiki {{tidy}} == Lemma == Let $J$ and $E$ be well-ordered sets. Let there exist a mapping $k: J \\to E$ which is strictly increasing. Then $J$ is order isomorphic to $E$ or an initial segment of $E$. == Proof == If the sets considered are empty or singletons, the theorem holds vacuously or trivially. Suppose $J,E$ both have at least two elements. Let $e_0 = \\min E$, the smallest element of $E$. Define the mapping: :$h: J \\to E$: :$h(\\alpha) = \\begin{cases} \\min \\left({E \\setminus h\\left[ {S_\\alpha} \\right]}\\right) & \\text{ if } h\\left[ {S_\\alpha} \\right] \\ne E \\\\ e_0 & \\text{ if } h\\left[ {S_\\alpha} \\right] = E \\end{cases}$ where $S_\\alpha$ is the initial segment determined by $\\alpha$ and $h\\left[ {S_\\alpha} \\right]$ is the image of $S_\\alpha$ under $h$. By the Principle of Recursive Definition for Well-Ordered Sets, this construction is well-defined and uniquely determined. Observe that: {{begin-eqn}} {{eqn | l = h[S_\\alpha] | r = \\left\\{ { h(x) \\in E: \\exists x \\in J: h(x) = \\min\\left({E \\setminus h\\left[{S_\\alpha}\\right] }\\right)} \\right\\} | c = {{Defof|Image of Subset under Mapping|image of a subset}} }} {{eqn | r = \\left\\{ { h(x) \\in E: \\exists x \\in J: h(x) \\prec h(\\alpha)} \\right\\} }} {{eqn | r = S_{h(\\alpha)} | c = {{Defof|Initial Segment|initial segment}} }} {{end-eqn}} This equality also holds if $h(\\alpha) = e_0$, by Initial Segment Determined by Smallest Element is Empty. We claim that $h(\\alpha) \\preceq k(\\alpha)$ for all $\\alpha \\in J$. {{AimForCont}} there is some $a \\in J$ such that $h(a) \\not \\preceq k(a)$. Then $k(a) \\prec h(a)$ by the trichotomy law. Because $h(a)$ has an element preceding it, $h(a) \\ne e_0$. Thus $k(a) \\prec \\min \\left({E \\setminus h\\left[ {S_a} \\right]}\\right)$ by the construction of $k$. Then $k(a) \\in h\\left[ {S_a} \\right]$, because it precedes the smallest element that isn't in $h\\left[ {S_a} \\right]$. Recall that $h[S_a] = S_{h(a)}$. Then $k(a) \\in S_{h(a)}$. This implies that $h(a) \\prec k(a)$, contradicting the assumption that $h(a) \\not \\preceq k(a)$ From this contradiction we can conclude: :$h(\\alpha) \\preceq k(\\alpha)$ for all $\\alpha \\in J$. {{AimForCont}} there is some $\\alpha \\in J$ such that $h[S_\\alpha] = E$. Recall that $h[S_\\alpha] = S_{h(\\alpha)}$. Thus, were such an $\\alpha$ to exist, then it would succeed all elements in $E$. It particular, it would also succeed $k(\\alpha)$. But we showed above that $h(\\alpha) \\preceq k(\\alpha)$. From this contradiction we see that there cannot be any $\\alpha \\in J$ with $h[S_\\alpha] = E$. Thus the definition of $h$ can be simplified: :$h: J \\to E$: :$h(\\alpha) = \\min \\left({E \\setminus h\\left[ {S_\\alpha} \\right]}\\right)$ Then the hypotheses of Characterization of Strictly Increasing Mapping on Woset are satisfied. Thus $h$ is a strictly increasing mapping and its image is $E$ or an initial segment of $E$. From Strictly Monotone Mapping with Totally Ordered Domain is Injective, $h$ is also injective. From Injection to Image is Bijection, $h$ is also bijective to its image. We conclude that there is an order isomorphism from $J$ to $E$, or from $J$ to an initial segment of $E$. {{qed}}{{proofread}} == Sources == * {{BookReference|Topology|2000|James R. Munkres|ed = 2nd|edpage = Second Edition}}: Supplementary Exercises $1.3$ Category:Well-Orderings 26s8gwwcf2jck79dirajwntol68aa7w"}
+{"_id": "32916", "title": "Equality to Initial Segment Imposes Well-Ordering", "text": "Equality to Initial Segment Imposes Well-Ordering 0 69778 483120 359717 2020-08-27T07:42:20Z Prime.mover 59 wikitext text/x-wiki == Lemma == Let $X$ be a set. Let $\\AA$ be the set of all ordered pairs $\\struct {A, <}$ such that $A$ is a subset of $X$ and $<$ is a strict well-ordering of $A$. Define $\\prec$ as: :$\\struct {A, <} \\prec \\struct {A', <'}$ {{iff}} :$\\struct {A, <}$ equals an initial segment of $\\struct {A', <'}$. Let $\\BB$ be a set of ordered pairs in $\\AA$ such that $\\BB$ is ordered by $\\prec$. Let $B'$ be the union of the sets $B$ for all $\\struct {B, <} \\in \\BB$. Let $<'$ be the union of the relations $<$ for all $\\struct {B, <}$. Then $\\struct {B', <'}$ is strictly well-ordered set. == Proof == If the set $X$ considered is empty or a singleton, the lemma holds vacuously or trivially. Thus assume $X$ contains at least two elements. We first prove that $\\prec$ is a strict partial ordering on $\\AA$. From the definition of initial segment, no $\\struct {A, <}$ can equal an initial segment of itself. Thus $\\prec$ is antireflexive. Suppose $\\struct {A, <_A}$ equals an initial segment of $\\struct {B, <_B}$ and $\\struct {B, <_B}$ equals an initial segment of $\\struct {C, <_C}$. Then $\\struct {A, <_A}$ equals an initial segment of $\\struct {C, <'}$ from Equality is Transitive. Thus $\\prec$ is a strict partial ordering on $\\AA$. We then prove that any $\\struct {B', <'}$ is a strictly well-ordered set. Let $x_1,x_2 \\in B'$. That is, let $x_i \\in \\struct {A_i, <_i}$ for $i = 1, 2$. Suppose $x_2 \\prec x_1$. That is, $\\struct {A_2, <_2}$ equals an initial segment in $\\struct {A_1, <_1}$ By the definition of initial segment, both $x_1$ and $x_2$ are in $\\struct {A_1, <_1}$. Thus $<'$ is connected, as all $<_i$ are strict well-orderings by hypothesis. For any $x_i \\in \\struct {A_i, <_i}$, $x_i \\nprec x_i$ as all $<_i$ are strict well-orderings by hypothesis. Thus $<'$ is antireflexive. To show that $<'$ is transitive, consider $x_i \\in \\struct {B', <'}$ for $i = 1, 2, 3$. Suppose $x_1 <' x_2 <' x_3$. Then $x_1 <_1 x_2$ and $x_2 <_2 x_3$, from the definition of $<'$ as a union of relations $<_i$. Then $\\struct {A_j, <_j}$ is an initial segment of $\\struct {A_i, <_i}$ for $j = 1, 2; j < i$ Thus $x_1 <_i x_2 <_i x_3$. Then $x_1 <_i x_3$, as all $<_i$ as all $<_i$ are strict well-orderings by hypothesis. Conclude that $<'$ is itself a strict ordering. It remains to be shown that $<'$ is a well-ordering. Let $A$ be an arbitrary non-empty subset of $B'$. Let $x \\in A$ and $x \\in \\struct {B, <}$ for $\\struct {B, <} \\in \\BB$. Then for all $y \\in A$, $y <' x$ {{iff}} $y < x$ and $y \\in B$. As $<$ is a well-ordering, $\\struct {B \\cap A, <}$ has a smallest element $b$. This $b$ is then a smallest element of $<'$ in $A$. Conclude that $<'$ is a strict well-ordering on $B'$. {{qed}} == Sources == * {{BookReference|Topology|2000|James R. Munkres|ed = 2nd|edpage = Second Edition}}: Supplementary Exercises $1.5$ Category:Well-Orderings Category:Set Equality rezg3r5cjiygyv3pkro2xkyvwjxxk0r"}
+{"_id": "32917", "title": "Euler-Binet Formula/Corollary 1", "text": "Euler-Binet Formula/Corollary 1 0 69795 380982 380978 2018-12-10T07:48:51Z Prime.mover 59 wikitext text/x-wiki == Corollary to Euler-Binet Formula == :$F_n = \\dfrac {\\phi^n} {\\sqrt 5}$ rounded to the nearest integer where: :$F_n$ denotes the $n$th Fibonacci number :$\\phi$ denotes the golden mean. == Proof == By definition of $n$th Fibonacci number, $F_n$ is an integer. From Euler-Binet Formula: :$F_n = \\dfrac {\\phi^n - \\hat \\phi^n} {\\sqrt 5} = \\dfrac {\\phi^n } {\\sqrt 5} - \\dfrac {\\hat \\phi^n} {\\sqrt 5}$ But $\\size {\\dfrac {\\hat \\phi^n} {\\sqrt 5} } < \\dfrac 1 2$ for all $n \\ge 0$. Thus $\\dfrac {\\phi^n } {\\sqrt 5}$ differs from $F_n$ by a number less than $\\dfrac 1 2$. Thus the nearest integer to $\\dfrac {\\phi^n } {\\sqrt 5}$ is $F_n$. {{qed}} == Sources == * {{BookReference|Curious and Interesting Numbers|1986|David Wells|prev = Euler-Binet Formula/Historical Note|next = Euler-Binet Formula/Corollary 1/Mistake}}: $5$ * {{BookReference|The Art of Computer Programming: Volume 1: Fundamental Algorithms|1997|Donald E. Knuth|ed = 3rd|edpage = Third Edition|prev = Definition:Golden Mean/One Minus Golden Mean/Decimal Expansion|next = Summation over k to n of Product of kth with n-kth Fibonacci Numbers}}: $\\S 1.2.8$: Fibonacci Numbers: $(15)$ * {{BookReference|Curious and Interesting Numbers|1997|David Wells|ed = 2nd|edpage = Second Edition|prev = Euler-Binet Formula/Historical Note|next = Cassini's Identity}}: $5$ Category:Euler-Binet Formula qs30a3prs4nh9ygu017vhmfe9ne526h"}
+{"_id": "32918", "title": "Fibonacci Number plus Arbitrary Function in terms of Fibonacci Numbers/Lemma", "text": "Fibonacci Number plus Arbitrary Function in terms of Fibonacci Numbers/Lemma 0 69841 359979 359974 2018-07-03T07:15:12Z Prime.mover 59 wikitext text/x-wiki == Lemma for Fibonacci Number plus Arbitrary Function in terms of Fibonacci Numbers == Let $f \\left({n}\\right)$ be an arbitrary arithmetic function. Let $\\left\\langle{a_n}\\right\\rangle$ be the sequence defined as: :$a_n = \\begin{cases} 0 & : n = 0 \\\\ 1 & : n = 1 \\\\ a_{n - 1} + a_{n - 2} + f \\left({n - 2}\\right) & : n > 1 \\end{cases}$ Then: :$a_n = F_n + \\displaystyle \\sum_{k \\mathop = 0}^{n - 2} F_{n - k - 1} f \\left({k}\\right)$ == Proof == Trying out a few values: {{begin-eqn}} {{eqn | l = a_0 | r = 0 | c = }} {{eqn | r = F_0 | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | l = a_1 | r = 1 | c = }} {{eqn | r = F_1 | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | l = a_2 | r = a_1 + a_0 + f \\left({0}\\right) | c = }} {{eqn | r = F_1 + F_0 + f \\left({0}\\right) | c = }} {{eqn | r = F_2 + F_1 f \\left({0}\\right) | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | l = a_3 | r = a_2 + a_1 + f \\left({1}\\right) | c = }} {{eqn | r = F_2 + F_1 f \\left({0}\\right) + F_1 + f \\left({1}\\right) | c = }} {{eqn | r = F_3 + F_2 f \\left({0}\\right) + F_1 f \\left({1}\\right) | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | l = a_4 | r = a_3 + a_2 + f \\left({2}\\right) | c = }} {{eqn | r = F_3 + F_2 f \\left({0}\\right) + F_1 f \\left({1}\\right) + F_2 + F_1 f \\left({0}\\right) + f \\left({2}\\right) | c = }} {{eqn | r = F_4 + F_3 f \\left({0}\\right) + F_2 f \\left({1}\\right) + F_1 f \\left({2}\\right) | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | l = a_5 | r = a_4 + a_3 + f \\left({3}\\right) | c = }} {{eqn | r = F_4 + F_3 f \\left({0}\\right) + F_2 f \\left({1}\\right) + F_1 f \\left({2}\\right) + F_3 + F_2 f \\left({0}\\right) + F_1 f \\left({1}\\right) + f \\left({3}\\right) | c = }} {{eqn | r = F_5 + F_4 f \\left({0}\\right) + F_3 f \\left({1}\\right) + F_2 f \\left({2}\\right) + F_1 f \\left({3}\\right) | c = }} {{end-eqn}} The proof proceeds by induction. For all $n \\in \\Z_{\\ge 0}$, let $P \\left({n}\\right)$ be the proposition: :$a_n = F_n + \\displaystyle \\sum_{k \\mathop = 1}^{n - 1} F_{n - k - 1} f \\left({k}\\right)$ $P \\left({0}\\right)$ is the case: {{begin-eqn}} {{eqn | l = F_0 + \\sum_{k \\mathop = 0}^{0 - 2} F_{0 - k - 1} f \\left({k}\\right) | r = F_0 | c = as the summation is vacuous }} {{eqn | r = 0 | c = {{Defof|Fibonacci Number}}: $F_0 = 0$ }} {{eqn | r = a_0 | c = by definition }} {{end-eqn}} Thus $P \\left({0}\\right)$ is seen to hold. === Basis for the Induction === $P \\left({1}\\right)$ is the case: {{begin-eqn}} {{eqn | l = F_1 + \\sum_{k \\mathop = 0}^{1 - 2} F_{1 - k - 1} f \\left({k}\\right) | r = F_1 | c = as the summation is vacuous }} {{eqn | r = 1 | c = {{Defof|Fibonacci Number}}: $F_1 = 1$ }} {{eqn | r = a_1 | c = by definition }} {{end-eqn}} Thus $P \\left({1}\\right)$ is seen to hold. $P \\left({2}\\right)$ is the case: {{begin-eqn}} {{eqn | l = F_2 + \\sum_{k \\mathop = 0}^{2 - 2} F_{2 - k - 1} f \\left({k}\\right) | r = F_2 + F_1 f \\left({0}\\right) | c = }} {{eqn | r = F_2 + f \\left({0}\\right) | c = {{Defof|Fibonacci Number}}: $F_1 = 1$ }} {{eqn | r = F_1 + F_0 + f \\left({0}\\right) | c = {{Defof|Fibonacci Number}} }} {{eqn | r = 1 + 0 + f \\left({0}\\right) | c = {{Defof|Fibonacci Number}}: $F_1 = 1, F_0 = 0$ }} {{eqn | r = a_1 + a_0 + f \\left({0}\\right) | c = by definition }} {{end-eqn}} Thus $P \\left({2}\\right)$ is seen to hold. This is the basis for the induction. === Induction Hypothesis === Now it needs to be shown that, if $P \\left({r}\\right)$ is true, where $r \\ge 1$, then it logically follows that $P \\left({r + 1}\\right)$ is true. So this is the induction hypothesis: :$a_r = F_r + \\displaystyle \\sum_{k \\mathop = 0}^{r - 2} F_{r - k - 1} f \\left({k}\\right)$ and: :$a_{r - 1} = F_{r - 1} + \\displaystyle \\sum_{k \\mathop = 0}^{r - 3} F_{r - k - 2} f \\left({k}\\right)$ from which it is to be shown that: :$a_{r + 1} = F_{r + 1} + \\displaystyle \\sum_{k \\mathop = 0}^{r - 1} F_{r - k} f \\left({k}\\right)$ === Induction Step === This is the induction step: {{begin-eqn}} {{eqn | l = a_{r + 1} | r = a_{r - 1} + a_r + f \\left({r - 1}\\right) | c = }} {{eqn | r = \\left({F_{r - 1} + \\sum_{k \\mathop = 0}^{r - 3} F_{r - k - 2} f \\left({k}\\right)}\\right) + \\left({F_r + \\sum_{k \\mathop = 0}^{r - 2} F_{r - k - 1} f \\left({k}\\right)}\\right) + f \\left({r - 1}\\right) | c = Induction Hypothesis }} {{eqn | r = F_{r + 1} + \\sum_{k \\mathop = 0}^{r - 3} F_{r - k - 2} f \\left({k}\\right) + \\sum_{k \\mathop = 0}^{r - 2} F_{r - k - 1} f \\left({k}\\right) + F_1 f \\left({r - 1}\\right) | c = {{Defof|Fibonacci Number}} }} {{eqn | r = F_{r + 1} + \\sum_{k \\mathop = 0}^{r - 3} \\left({F_{r - k - 2} + F_{r - k - 1} }\\right) f \\left({k}\\right) + F_{r - \\left({r - 2}\\right) - 1} f \\left({r - 2}\\right) + F_1 f \\left({r - 1}\\right) | c = factoring out the summation }} {{eqn | r = F_{r + 1} + \\sum_{k \\mathop = 0}^{r - 3} F_{r - k} f \\left({k}\\right) + F_1 f \\left({r - 2}\\right) + F_1 f \\left({r - 1}\\right) | c = {{Defof|Fibonacci Number}} and simplifying }} {{eqn | r = F_{r + 1} + \\sum_{k \\mathop = 0}^{r - 3} F_{r - k} f \\left({k}\\right) + F_2 f \\left({r - 2}\\right) + F_1 f \\left({r - 1}\\right) | c = {{Defof|Fibonacci Number}}: $F_1 = F_2 = 1$ }} {{eqn | r = F_{r + 1} + \\sum_{k \\mathop = 0}^{r - 1} F_{r - k} f \\left({k}\\right) | c = }} {{end-eqn}} So $P \\left({k}\\right) \\implies P \\left({k + 1}\\right)$ and the result follows by the Principle of Mathematical Induction. Therefore: :$a_n = F_n + \\displaystyle \\sum_{k \\mathop = 0}^{n - 2} F_{n - k - 1} f \\left({k}\\right)$ Category:Fibonacci Number plus Arbitrary Function in terms of Fibonacci Numbers q6p3nz26e1plob0y403qqx7k2xtpvru"}
+{"_id": "32919", "title": "Recurrence Relation for Sequence of mth Powers of Fibonacci Numbers/Lemma 1", "text": "Recurrence Relation for Sequence of mth Powers of Fibonacci Numbers/Lemma 1 0 69897 360163 2018-07-08T11:52:00Z Prime.mover 59 Created page with \"== Theorem == :$\\displaystyle \\sum_{k \\mathop \\in \\Z} \\dbinom m k_\\mathcal F \\left({-1}\\right)^{\\left\\lceil{\\left({m - k}\\right) / 2}\\right\\rceil} {F_{n + k} }^{...\" wikitext text/x-wiki == Theorem == :$\\displaystyle \\sum_{k \\mathop \\in \\Z} \\dbinom m k_\\mathcal F \\left({-1}\\right)^{\\left\\lceil{\\left({m - k}\\right) / 2}\\right\\rceil} {F_{n + k} }^{m - 2} F_k = F_m \\sum_{k \\mathop \\in \\Z} \\dbinom {m - 1} {k - 1}_\\mathcal F \\left({-1}\\right)^{\\left\\lceil{\\left({m - k}\\right) / 2}\\right\\rceil} {F_{n + k} }^{m - 2} = 0$ where: :$\\dbinom m k_\\mathcal F$ denotes a Fibonomial coefficient :$F_{n + k}$ denotes the $n + k$th Fibonacci number :$\\left\\lceil{\\, \\cdot \\,}\\right\\rceil$ denotes the ceiling function == Proof == {{ProofWanted}} == Sources == * {{BookReference|The Art of Computer Programming: Volume 1: Fundamental Algorithms|1997|Donald E. Knuth|ed = 3rd|edpage = Third Edition|prev = Recurrence Relation for Sequence of mth Powers of Fibonacci Numbers|next = Recurrence Relation for Sequence of mth Powers of Fibonacci Numbers/Lemma 2}}: $\\S 1.2.8$: Fibonacci Numbers: Exercise $30$: Solution: $\\text{(a)}$ Category:Recurrence Relation for Sequence of mth Powers of Fibonacci Numbers dexfwbxjyaq6c8wlvcct67e1mfwm1ik"}
+{"_id": "32920", "title": "Recurrence Relation for Sequence of mth Powers of Fibonacci Numbers/Lemma 2", "text": "Recurrence Relation for Sequence of mth Powers of Fibonacci Numbers/Lemma 2 0 69904 360188 2018-07-08T13:24:12Z Prime.mover 59 Created page with \"== Theorem == :$\\displaystyle \\sum_{k \\mathop \\in \\Z} \\dbinom m k_\\mathcal F \\left({-1}\\right)^{\\left\\lceil{\\left({m - k}\\right) / 2}\\right\\rceil} {F_{n + k} }^{...\" wikitext text/x-wiki == Theorem == :$\\displaystyle \\sum_{k \\mathop \\in \\Z} \\dbinom m k_\\mathcal F \\left({-1}\\right)^{\\left\\lceil{\\left({m - k}\\right) / 2}\\right\\rceil} {F_{n + k} }^{m - 2} \\left({-1}\\right)^k F_{m - k} = \\left({-1}\\right)^m F_m \\sum_{k \\mathop \\in \\Z} \\dbinom {m - 1} k_\\mathcal F \\left({-1}\\right)^{\\left\\lceil{\\left({m - 1 - k}\\right) / 2}\\right\\rceil} {F_{n + k} }^{m - 2} = 0$ where: :$\\dbinom m k_\\mathcal F$ denotes a Fibonomial coefficient :$F_{n + k}$ denotes the $n + k$th Fibonacci number :$\\left\\lceil{\\, \\cdot \\,}\\right\\rceil$ denotes the ceiling function == Proof == {{ProofWanted}} == Sources == * {{BookReference|The Art of Computer Programming: Volume 1: Fundamental Algorithms|1997|Donald E. Knuth|ed = 3rd|edpage = Third Edition|prev = Recurrence Relation for Sequence of mth Powers of Fibonacci Numbers/Lemma 1|next = Recurrence Relation for Sequence of mth Powers of Fibonacci Numbers/Examples/m = 3}}: $\\S 1.2.8$: Fibonacci Numbers: Exercise $30$: Solution: $\\text{(b)}$ Category:Recurrence Relation for Sequence of mth Powers of Fibonacci Numbers gaub0lzv715zubeg5xxu0wdrs9ldap5"}
+{"_id": "32921", "title": "Addition of 1 in Golden Mean Number System", "text": "Addition of 1 in Golden Mean Number System 0 69969 360433 360432 2018-07-13T19:59:10Z Prime.mover 59 wikitext text/x-wiki == Algorithm == Let $x \\in \\R$ be a real number. The following algorithm performs the operation of addition of $1$ to $x$ in the golden mean number system. Let $S$ be the representation of $x$ in the golden mean number system in its simplest form. :'''Step $1$''': Is the digit immediately to the left of the radix point a zero? :: If '''Yes''', replace that $0$ with $1$. Go to '''Step $4$'''. :: If '''No''', set $m = 2$ and go to '''Step $2$'''. :'''Step $2$''': Does the $m$th place after the radix point contain $0$? :: If '''Yes''', expand the $100$ in the $3$ places ending in the $m$th place with $011$. Subtract $2$ from $m$. Go to '''Step $3$'''. :: If '''No''', add $2$ to $m$. Repeat '''Step $2$'''. :'''Step $3$''': Is $m = 0$? :: If '''Yes''', set the digit immediately to the left of the radix point from $0$ to $1$. Go to '''Step $4$'''. :: If '''No''', go to '''Step $2$'''. :'''Step $4$''': Convert $S$ to its simplest form. '''Stop'''. == Proof == The above constitutes an algorithm, for the following reasons: === Finiteness === The only case in which it is possible for the process not to terminate is if the $m$th place never contains $0$. This can only happen if $S$ ends in an infinite string $01010101 \\ldots$ But if this is the case, $S$ is not in its simplest form. === Definiteness === Each step can be seen to be precisely defined. === Inputs === The only input to the algorithm is the representation $S$ of $x$. === Outputs === The only output from the algorithm is the representation $S$ of $x + 1$. All operations that change $S$ are of the following nature: :$(1): \\quad$ Simplification of $S$, which does not change $x$, which happens if at all in '''Step $4$. :$(2): \\quad$ Expansion of $S$, which does not change $x$, which happens if at all in ''Step $2$. :$(3): \\quad$ Setting the digit corresponding to $\\phi^0$ to $1$ from $0$, which happens either in '''Step $1$''' or in '''Step $3$'''. :::In either step, it happens only once, after which the algorithm terminates. === Effective === Each step is basic enough to be done exactly and predictably. {{qed}} == Sources == * {{citation|author = George Bergman|title = Number System with an Irrational Base|journal = Mathematics Magazine|abbr = Math. Mag.|volume = 31|issue = 2|date = 1957|startpage = 98|endpage = 110|jstor = 3029218}} Category:Golden Mean Number System 5gqhubgrxtldabakec720486ayfx61p"}
+{"_id": "32922", "title": "Fibonacci String/Examples/S3", "text": "Fibonacci String/Examples/S3 0 69980 360465 2018-07-14T08:42:36Z Prime.mover 59 Created page with \"== Example of Fibonacci Strings == The Fibonacci string $S_3$ is $\\text{ba}$. ==...\" wikitext text/x-wiki == Example of Fibonacci Strings == The Fibonacci string $S_3$ is $\\text{ba}$. == Proof == By definition of Fibonacci string: {{begin-eqn}} {{eqn | l = S_1 | r = \\text{a} }} {{eqn | l = S_2 | r = \\text{b} }} {{end-eqn}} Then: {{begin-eqn}} {{eqn | l = S_3 | r = S_2 S_1 | c = }} {{eqn | r = \\text{ba} | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|The Art of Computer Programming: Volume 1: Fundamental Algorithms|1997|Donald E. Knuth|ed = 3rd|edpage = Third Edition|prev = Definition:Fibonacci String|next = Fibonacci String/Examples/S4}}: $\\S 1.2.8$: Fibonacci Numbers: Exercise $36$ Category:Fibonacci Strings gj4xfcodh6c7x5k8syqbowp5jacm53y"}
+{"_id": "32923", "title": "Fibonacci String/Examples/S4", "text": "Fibonacci String/Examples/S4 0 69981 360466 2018-07-14T08:45:06Z Prime.mover 59 Created page with \"== Example of Fibonacci Strings == The Fibonacci string $S_4$ is $\\text{bab}$. ==...\" wikitext text/x-wiki == Example of Fibonacci Strings == The Fibonacci string $S_4$ is $\\text{bab}$. == Proof == {{begin-eqn}} {{eqn | l = S_4 | r = S_3 S_2 | c = {{Defof|Fibonacci String}} }} {{eqn | r = \\text{ba} \\ \\text{b} | c = Definition of Fibonacci String $S_3$ }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|The Art of Computer Programming: Volume 1: Fundamental Algorithms|1997|Donald E. Knuth|ed = 3rd|edpage = Third Edition|prev = Fibonacci String/Examples/S3|next = Fibonacci String/Examples/S5}}: $\\S 1.2.8$: Fibonacci Numbers: Exercise $36$ Category:Fibonacci Strings q4xbjhm8j9hrnwcdze0jpptvzajqfnc"}
+{"_id": "32924", "title": "Complex Modulus/Examples/i", "text": "Complex Modulus/Examples/i 0 70270 362517 361893 2018-08-16T07:11:17Z Prime.mover 59 wikitext text/x-wiki == Example of Complex Modulus == :$\\cmod i = \\cmod {-i} = 1$ == Proof == {{begin-eqn}} {{eqn | l = \\cmod i | r = \\cmod {0 + 1 i} | c = }} {{eqn | r = \\sqrt {0^2 + 1^2} | c = {{Defof|Complex Modulus}} }} {{eqn | r = \\sqrt 1 | c = }} {{eqn | r = 1 | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | l = \\cmod {-i} | r = \\cmod {0 + \\left({-1}\\right) i} | c = }} {{eqn | r = \\sqrt {0^2 + \\left({-1}\\right)^2} | c = {{Defof|Complex Modulus}} }} {{eqn | r = \\sqrt 1 | c = }} {{eqn | r = 1 | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Complex Numbers|1960|Walter Ledermann|prev = Power of Complex Modulus equals Complex Modulus of Power|next = Complex Modulus/Examples/-5}}: $\\S 1.2$. The Algebraic Theory: Examples Category:Examples of Complex Modulus 60nu6xawnfq6iw0ersbqw2abszqxyfw"}
+{"_id": "32925", "title": "Complex Modulus/Examples/1+i", "text": "Complex Modulus/Examples/1+i 0 70274 496584 361891 2020-10-25T23:13:47Z Prime.mover 59 wikitext text/x-wiki == Example of Complex Modulus == :$\\cmod {1 + i} = \\sqrt 2$ == Proof == {{begin-eqn}} {{eqn | l = \\cmod {1 + i} | r = \\cmod {1 + 1 i} | c = }} {{eqn | r = \\sqrt {1^2 + 1^2} | c = {{Defof|Complex Modulus}} }} {{eqn | r = \\sqrt 2 | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Complex Numbers|1960|Walter Ledermann|prev = Complex Modulus/Examples/-5|next = Power of Complex Modulus equals Complex Modulus of Power/Examples/(1+i)^4}}: $\\S 1.2$. The Algebraic Theory: Examples Category:Examples of Complex Modulus 2e8ljo6803ducgre7b0p9mds7jhi34i"}
+{"_id": "32926", "title": "Polar Form of Complex Number/Examples/i", "text": "Polar Form of Complex Number/Examples/i 0 70398 395502 394578 2019-03-13T08:13:05Z Prime.mover 59 wikitext text/x-wiki == Example of Polar Form of Complex Number == The imaginary unit $i$ can be expressed in polar form as $\\polar {1, \\dfrac \\pi 2}$. == Proof == {{begin-eqn}} {{eqn | l = \\cmod i | r = \\sqrt {0^2 + 1^2} | c = {{Defof|Complex Modulus}} }} {{eqn | r = 1 | c = }} {{end-eqn}} Then: {{begin-eqn}} {{eqn | l = \\map \\cos {\\map \\arg i} | r = \\dfrac 0 1 | c = {{Defof|Argument of Complex Number}} }} {{eqn | r = 0 | c = }} {{eqn | ll= \\leadsto | l = \\map \\arg i | r = \\pm \\dfrac \\pi 2 | c = Cosine of Half-Integer Multiple of Pi }} {{end-eqn}} {{begin-eqn}} {{eqn | l = \\map \\sin {\\map \\arg i} | r = \\dfrac 1 1 | c = {{Defof|Argument of Complex Number}} }} {{eqn | r = 1 | c = }} {{eqn | ll= \\leadsto | l = \\map \\arg i | r = \\dfrac \\pi 2 | c = Sine of Half-Integer Multiple of Pi }} {{end-eqn}} Hence: :$\\map \\arg i = \\dfrac \\pi 2$ and hence the result. {{qed}} == Sources == * {{BookReference|Complex Numbers|1960|Walter Ledermann|prev = Argument of Quotient equals Difference of Arguments|next = Multiplication by Imaginary Unit is Equivalent to Rotation through Right Angle}}: $\\S 2$. Geometrical Representations Category:Examples of Polar Form of Complex Number l0ukan4ajbvpnrlz8ckq40uydle6ia3"}
+{"_id": "32927", "title": "Euler's Formula/Examples/e^i pi by 2", "text": "Euler's Formula/Examples/e^i pi by 2 0 70472 363046 363041 2018-08-20T06:08:50Z Prime.mover 59 wikitext text/x-wiki == Example of Use of Euler's Formula == :$e^{i \\pi / 2} = i$ == Proof == {{begin-eqn}} {{eqn | l = e^{i \\pi / 2} | r = \\cos \\frac \\pi 2 + i \\sin \\frac \\pi 2 | c = Euler's Formula }} {{eqn | r = 0 + i \\times 1 | c = Cosine of $\\dfrac \\pi 2$, Sine of $\\dfrac \\pi 2$ }} {{eqn | r = i | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Complex Numbers|1960|Walter Ledermann|prev = Euler's Formula/Examples/e^i pi by 4|next = Euler's Formula/Examples/e^-i pi by 2}}: $\\S 2$. Geometrical Representations: $(2.19)$ Category:Examples of Euler's Formula b95q3mt20dmvzmum5n3wqjfcme18b7i"}
+{"_id": "32928", "title": "Euler's Formula/Examples/e^-i pi by 2", "text": "Euler's Formula/Examples/e^-i pi by 2 0 70473 363045 363043 2018-08-20T06:08:37Z Prime.mover 59 wikitext text/x-wiki == Example of Use of Euler's Formula == :$e^{-i \\pi / 2} = -i$ == Proof == {{begin-eqn}} {{eqn | l = e^{-i \\pi / 2} | r = \\cos \\frac {-\\pi} 2 + i \\sin \\frac {-\\pi} 2 | c = Euler's Formula }} {{eqn | r = \\cos \\frac {3 \\pi} 2 + i \\sin \\frac {3 \\pi} 2 | c = Cosine of Angle plus Full Angle, Sine of Angle plus Full Angle }} {{eqn | r = 0 + i \\times \\paren {-1} | c = Cosine of $\\dfrac {3 \\pi} 2$, Sine of $\\dfrac {3 \\pi} 2$ }} {{eqn | r = -i | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Complex Numbers|1960|Walter Ledermann|prev = Euler's Formula/Examples/e^i pi by 2|next = Euler's Formula/Examples/e^i pi}}: $\\S 2$. Geometrical Representations: $(2.19)$ Category:Examples of Euler's Formula lha2db5g6v7msclv5qua2zyz4xsk0kh"}
+{"_id": "32929", "title": "Euler's Formula/Examples/e^2 i pi", "text": "Euler's Formula/Examples/e^2 i pi 0 70477 365064 363049 2018-09-09T00:08:20Z Prime.mover 59 wikitext text/x-wiki == Example of Use of Euler's Formula == :$e^{2 i \\pi} = 1$ == Proof == {{begin-eqn}} {{eqn | l = e^{2 i \\pi} | r = \\cos 2 \\pi + i \\sin 2 \\pi | c = Euler's Formula }} {{eqn | r = 1 + i \\times 0 | c = Cosine of $2 \\pi$, Sine of $2 \\pi$ }} {{eqn | r = 1 | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Complex Numbers|1960|Walter Ledermann|prev = Euler's Formula/Examples/e^i pi|next = Exponential of Complex Number plus 2 pi i}}: $\\S 2$. Geometrical Representations: $(2.19)$ * {{BookReference|Complex Numbers|1960|Walter Ledermann|prev = Euler's Formula/Proof|next = Period of Complex Exponential Function}}: $\\S 4.5$. The Functions $e^z$, $\\cos z$, $\\sin z$: $\\text{(ii)}$ Category:Examples of Euler's Formula sy6uwbgoocnlk19yrkru0px3asxjluz"}
+{"_id": "32930", "title": "Euler's Formula/Examples/e^2 k i pi", "text": "Euler's Formula/Examples/e^2 k i pi 0 70480 363057 2018-08-20T07:07:01Z Prime.mover 59 Created page with \"== Example of Use of Euler's Formula == :$\\forall k \\in \\Z: e^{2 k i \\pi} = 1$ == Proof == {{begin-eqn}} {{eqn | l = e^{2 k i \\pi} | r...\" wikitext text/x-wiki == Example of Use of Euler's Formula == :$\\forall k \\in \\Z: e^{2 k i \\pi} = 1$ == Proof == {{begin-eqn}} {{eqn | l = e^{2 k i \\pi} | r = \\cos 2 k \\pi + i \\sin 2 k \\pi | c = Euler's Formula }} {{eqn | r = 1 + i \\times 0 | c = Cosine of Multiple of $\\pi$, Sine of Multiple of $\\pi$ }} {{eqn | r = 1 | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Complex Numbers|1960|Walter Ledermann|prev = Exponential of Complex Number plus 2 pi i|next = Period of Complex Exponential Function}}: $\\S 2$. Geometrical Representations Category:Examples of Euler's Formula mbx3yw6qpt5at8mltyx1f02mmfwtoca"}
+{"_id": "32931", "title": "Euler's Theorem/Corollary 1", "text": "Euler's Theorem/Corollary 1 0 70492 374816 363115 2018-11-03T21:59:13Z Prime.mover 59 wikitext text/x-wiki == Corollary to Euler's Theorem == Let $p^n$ be a prime power for some prime number $p > 1$. Let $a$ be an integer not divisible by $p: p \\nmid a$. Then: : $a^{\\paren {p - 1} p^{n - 1} } \\equiv 1 \\pmod {p^n}$ == Proof == We have that Divisor Relation is Transitive. Since $p \\divides p^n$, it follows that $p^n \\nmid a$. From Euler's Theorem: : $a^{\\map \\phi {p^n} } \\equiv 1 \\pmod {p^n}$ From Euler Phi Function of Prime Power: :$\\map \\phi {p^n} = \\paren {p - 1} p^{n - 1}$ Then: : $a^{\\paren {p - 1} p^{n - 1} } \\equiv 1 \\pmod {p^n}$ {{qed}} Category:Prime Numbers Category:Number Theory 0uc9jenglnm484q1xhjndaxfnpeos3l"}
+{"_id": "32932", "title": "Argument of Negative Real Number is Pi", "text": "Argument of Negative Real Number is Pi 0 70516 363220 2018-08-22T21:43:48Z Prime.mover 59 Created page with \"== Theorem == Let $x \\in \\R_{>0}$ be a positive real number. Then: :$\\arg \\paren {-x} = \\pi$ where $\\arg$ denotes the Def...\" wikitext text/x-wiki == Theorem == Let $x \\in \\R_{>0}$ be a positive real number. Then: :$\\arg \\paren {-x} = \\pi$ where $\\arg$ denotes the argument of a complex number. == Proof == We have that: :$-x = -x + 0 i$ and so: {{begin-eqn}} {{eqn | l = \\cmod {-x} | r = \\sqrt {\\paren {-x}^2 + 0^2} | c = {{Defof|Complex Modulus}} }} {{eqn | r = x | c = }} {{end-eqn}} Hence: {{begin-eqn}} {{eqn | l = \\cos \\paren {\\arg \\paren {-x} } | r = \\dfrac {-x} x | c = {{Defof|Argument of Complex Number}} }} {{eqn | r = -1 | c = }} {{eqn | ll= \\leadsto | l = \\arg \\paren {-x} | r = \\pi | c = Cosine of Multiple of Pi }} {{end-eqn}} {{begin-eqn}} {{eqn | l = \\sin \\paren {\\arg \\paren {-x} } | r = \\dfrac 0 x | c = {{Defof|Argument of Complex Number}} }} {{eqn | r = 0 | c = }} {{eqn | ll= \\leadsto | l = \\arg \\paren {-x} | r = 0 \\text { or } \\pi | c = Sine of Multiple of Pi }} {{end-eqn}} Hence: : $\\arg \\paren {-x} = \\pi$ {{qed}} Category:Examples of Arguments of Complex Numbers 10dadpk3wkk9w8kfmpi2lwet2shamug"}
+{"_id": "32933", "title": "Equation of Unit Circle in Complex Plane/Corollary 1", "text": "Equation of Unit Circle in Complex Plane/Corollary 1 0 70543 363328 2018-08-24T22:57:32Z Prime.mover 59 Created page with \"== Corollary to Equation of Unit Circle in Complex Plane == Consider the unit circle $C$ whose center is at $\\l...\" wikitext text/x-wiki == Corollary to Equation of Unit Circle in Complex Plane == Consider the unit circle $C$ whose center is at $\\left({0, 0}\\right)$ on the complex plane. The equation of $C$ can be given by: :$z \\overline z = 1$ where $\\overline z$ denotes the complex conjugate of $z$. == Proof == From Equation of Unit Circle in Complex Plane, the equation of $C$ can also be given by: :$\\cmod z = 1$ where $\\cmod z$ denotes the complex modulus of $z$. Thus: {{begin-eqn}} {{eqn | l = \\cmod z | r = 1 | c = }} {{eqn | ll= \\leadsto | l = \\cmod z^2 | r = 1 | c = }} {{eqn | ll= \\leadsto | l = z \\overline z | r = 1 | c = Modulus in Terms of Conjugate }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Complex Numbers|1960|Walter Ledermann|prev = Equation of Unit Circle|next = Equation of Unit Circle in Complex Plane/Corollary 2}}: $\\S 3$. Roots of Unity Category:Equation of Unit Circle in Complex Plane 0khohopk8187y9269w6uf1hjfjdwohv"}
+{"_id": "32934", "title": "Complex Roots of Unity/Examples/4th Roots", "text": "Complex Roots of Unity/Examples/4th Roots 0 70575 445882 395931 2020-02-03T09:26:52Z Prime.mover 59 wikitext text/x-wiki == Example of Complex Roots of Unity == The '''complex $4$th roots of unity''' are the elements of the set: :$U_n = \\set {z \\in \\C: z^4 = 1}$ They are: {{begin-eqn}} {{eqn | l = e^{0 i \\pi / 4} | r = 1 }} {{eqn | l = e^{i \\pi / 2} | r = i }} {{eqn | l = e^{i \\pi} | r = -1 }} {{eqn | l = e^{3 i \\pi / 2} | r = -i }} {{end-eqn}} == Proof == By definition, the first complex $4$th root of unity $\\alpha$ is given by: {{begin-eqn}} {{eqn | l = \\alpha | r = e^{2 i \\pi / 4} | c = }} {{eqn | r = e^{i \\pi / 2} | c = }} {{eqn | r = \\cos \\frac \\pi 2 + i \\sin \\frac \\pi 2 | c = }} {{eqn | r = 0 + i \\times 1 | c = Cosine of $\\dfrac \\pi 2$, Sine of $\\dfrac \\pi 2$ }} {{eqn | r = i | c = }} {{end-eqn}} We have that: :$e^{0 i \\pi / 4} = e^0 = 1$ which gives us, as always, the zeroth complex $n$th root of unity for all $n$. The remaining complex $4$th roots of unity can be expressed as $e^{4 i \\pi / 4} = e^{i \\pi}$ and $e^{6 i \\pi / 4} = e^{3 i \\pi / 2}$, but it is simpler to calculate them as follows: {{begin-eqn}} {{eqn | l = \\alpha^2 | r = i^2 | c = }} {{eqn | r = -1 | c = {{Defof|Imaginary Unit}} }} {{end-eqn}} {{begin-eqn}} {{eqn | l = \\alpha^3 | r = \\alpha^2 \\times \\alpha | c = }} {{eqn | r = \\paren {-1} \\times i | c = }} {{eqn | r = -i | c = }} {{end-eqn}} :500px {{qed}} == Sources == * {{BookReference|Complex Numbers|1960|Walter Ledermann|prev = Complex Roots of Unity are Vertices of Regular Polygon Inscribed in Circle|next = Complex 5th Roots of Unity}}: $\\S 3$. Roots of Unity: Example $1$. * {{BookReference|Theory and Problems of Complex Variables|1981|Murray R. Spiegel|ed = SI|edpage = SI (Metric) Edition|prev = Viète's Formulas/Examples/Sum 4, Product 8|next = Complex Roots of Unity/Examples/7th Roots}}: $1$: Complex Numbers: Supplementary Problems: The $n$th Roots of Unity: $105 \\ \\text {(a)}$ * {{BookReference|The Concise Oxford Dictionary of Mathematics|2014|Christopher Clapham|author2 = James Nicholson|ed = 5th|edpage = Fifth Edition|prev = Four Squares Theorem|next = Definition:Fractal|entry = fourth root of unity}} Category:Examples of Complex Roots of Unity 626ort6gwxv170mtalcoktj0m3j1ma8"}
+{"_id": "32935", "title": "Complex Roots of Unity/Examples/5th Roots", "text": "Complex Roots of Unity/Examples/5th Roots 0 70576 437891 395936 2019-12-06T06:38:43Z Prime.mover 59 wikitext text/x-wiki == Example of Complex Roots of Unity == The '''complex $5$th roots of unity''' are the elements of the set: :$U_n = \\set {z \\in \\C: z^5 = 1}$ They are: {{begin-eqn}} {{eqn | l = e^{0 \\pi / 5} | r = 1 }} {{eqn | l = e^{2 \\pi / 5} | r = \\dfrac {\\sqrt 5 - 1} 4 + i \\dfrac {\\sqrt {10 + 2 \\sqrt 5} } 4 }} {{eqn | l = e^{4 \\pi / 5} | r = -\\dfrac {1 + \\sqrt 5} 4 + i \\sqrt {\\dfrac 5 8 - \\dfrac {\\sqrt 5} 8} }} {{eqn | l = e^{6 \\pi / 5} | r = -\\dfrac {1 + \\sqrt 5} 4 - i \\sqrt {\\dfrac 5 8 - \\dfrac {\\sqrt 5} 8} }} {{eqn | l = e^{8 \\pi / 5} | r = \\dfrac {\\sqrt 5 - 1} 4 - i \\dfrac {\\sqrt {10 + 2 \\sqrt 5} } 4 }} {{end-eqn}} == Proof == By definition, the first complex $5$th root of unity $\\alpha$ is given by: {{begin-eqn}} {{eqn | l = \\alpha | r = e^{2 i \\pi / 5} | c = }} {{eqn | r = \\cos \\frac {2 \\pi} 5 + i \\sin \\frac {2 \\pi} 5 | c = }} {{eqn | r = \\dfrac {\\sqrt 5 - 1} 4 + i \\dfrac {\\sqrt {10 + 2 \\sqrt 5} } 4 | c = Cosine of $\\dfrac {2 \\pi} 5$, Sine of $\\dfrac {2 \\pi} 5$ }} {{end-eqn}} We have that: :$e^{0 i \\pi / 5} = e^0 = 1$ which gives us, as always, the zeroth complex $n$th root of unity for all $n$. The remaining complex $5$th roots of unity follow: {{begin-eqn}} {{eqn | l = \\alpha^2 | r = e^{4 i \\pi / 5} | c = }} {{eqn | r = -\\dfrac {1 + \\sqrt 5} 4 + i \\sqrt {\\dfrac 5 8 - \\dfrac {\\sqrt 5} 8} | c = }} {{eqn | r = \\dfrac {\\sqrt 5 - 1} 4 + i \\dfrac {\\sqrt {10 + 2 \\sqrt 5} } 4 | c = Cosine of $\\dfrac {4 \\pi} 5$, Sine of $\\dfrac {4 \\pi} 5$ }} {{end-eqn}} {{begin-eqn}} {{eqn | l = \\alpha^3 | r = \\overline {\\alpha^{5 - 3} } | c = Complex Roots of Unity occur in Conjugate Pairs }} {{eqn | r = \\overline {\\alpha^2} | c = }} {{eqn | r = \\overline {-\\dfrac {1 + \\sqrt 5} 4 + i \\sqrt {\\dfrac 5 8 - \\dfrac {\\sqrt 5} 8} } | c = }} {{eqn | r = -\\dfrac {1 + \\sqrt 5} 4 - i \\sqrt {\\dfrac 5 8 - \\dfrac {\\sqrt 5} 8} | c = {{Defof|Complex Conjugate}} }} {{end-eqn}} {{begin-eqn}} {{eqn | l = \\alpha^4 | r = \\overline {\\alpha^{4 - 1} } | c = Complex Roots of Unity occur in Conjugate Pairs }} {{eqn | r = \\overline \\alpha | c = }} {{eqn | r = \\overline {\\dfrac {\\sqrt 5 - 1} 4 + i \\dfrac {\\sqrt {10 + 2 \\sqrt 5} } 4} | c = }} {{eqn | r = \\dfrac {\\sqrt 5 - 1} 4 - i \\dfrac {\\sqrt {10 + 2 \\sqrt 5} } 4 | c = {{Defof|Complex Conjugate}} }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Complex Numbers|1960|Walter Ledermann|prev = Complex 4th Roots of Unity|next = Complex Roots of Unity/Examples/6th Roots/Illustration}}: $\\S 3$. Roots of Unity: Example $2$. * {{BookReference|Theory and Problems of Complex Variables|1981|Murray R. Spiegel|ed = SI|edpage = SI (Metric) Edition|prev = Complex Roots of Polynomial with Real Coefficients occur in Conjugate Pairs/Proof 2|next = Sum of Cosines of Fractions of Pi}}: $1$: Complex Numbers: Solved Problems: The $n$th Roots of Unity: $37$ Category:Examples of Complex Roots of Unity Category:Complex 5th Roots of Unity s7scye8xf3d942lgzdqkq63ufkrm3ja"}
+{"_id": "32936", "title": "Polynomial Factor Theorem/Corollary/Complex Numbers", "text": "Polynomial Factor Theorem/Corollary/Complex Numbers 0 70604 399146 363764 2019-04-05T22:07:27Z Prime.mover 59 wikitext text/x-wiki == Corollary to Polynomial Factor Theorem == Let $\\map P z$ be a polynomial in $z$ over the complex numbers $\\C$ of degree $n$. Suppose there exists $\\zeta \\in \\C: \\map P \\xi = 0$. Then: :$\\map P z = \\paren {x - \\zeta} \\map Q z$ where $\\map Q z$ is a polynomial of degree $n - 1$. Hence, if $\\zeta_1, \\zeta_2, \\ldots, \\zeta_n \\in \\C$ such that all are different, and $\\map P {\\zeta_1} = \\map P {\\zeta_2} = \\dotsb = \\map P {\\zeta_n} = 0$, then: :$\\displaystyle \\map P z = k \\prod_{j \\mathop = 1}^n \\paren {z - \\zeta_j}$ where $k \\in \\C$. == Proof == Recall that Complex Numbers form Field. The result then follows from the Polynomial Factor Theorem. {{qed}} == Sources == * {{BookReference|Complex Numbers|1960|Walter Ledermann|prev = Roots of Complex Number/Corollary/Examples/Cube Roots of 8i|next = Power of Complex Number minus 1}}: $\\S 3$. Roots of Unity Category:Polynomial Theory 5a1t2sdcgh059t3b0jzevzvi5rwhxlk"}
+{"_id": "32937", "title": "Complex Algebra/Examples/z^6 + z^3 + 1", "text": "Complex Algebra/Examples/z^6 + z^3 + 1 0 70620 456565 363910 2020-03-19T23:14:08Z Prime.mover 59 wikitext text/x-wiki == Example of Complex Algebra == :$z^6 + z^3 + 1 = \\paren {z^2 - 2 z \\cos \\dfrac {2 \\pi} 9 + 1} \\paren {z^2 - 2 z \\cos \\dfrac {4 \\pi} 9 + 1} \\paren {z^2 - 2 z \\cos \\dfrac {8 \\pi} 9 + 1}$ == Proof == From Sum of Geometric Sequence or Difference of Two Cubes: :$z^6 + z^3 + 1 = \\dfrac {z^9 - 1} {z^3 - 1}$ Then from Factorisation of $x^{2 n + 1} - 1$ in Real Domain: :$z^9 - 1 = \\paren {z - 1} \\displaystyle \\prod_{k \\mathop = 1}^4 \\paren {z^2 - 2 \\cos \\dfrac {2 \\pi k} 9 + 1}$ and: {{begin-eqn}} {{eqn | l = z^3 - 1 | r = \\paren {z - 1} \\prod_{k \\mathop = 1}^1 \\paren {z^2 - 2 \\cos \\dfrac {2 \\pi k} 3 + 1} | c = }} {{eqn | r = \\paren {z - 1} \\paren {z^2 - 2 \\cos \\dfrac {2 \\pi} 3 + 1} | c = }} {{eqn | r = \\paren {z - 1} \\paren {z^2 - 2 \\cos \\dfrac {6 \\pi} 9 + 1} | c = }} {{end-eqn}} Thus: :$\\paren {z^3 - 1} \\paren {z^6 + z^3 + 1} = \\paren {\\paren {z - 1} \\paren {z^2 - 2 \\cos \\dfrac {6 \\pi} 9 + 1} } \\paren {\\paren {z^2 - 2 \\cos \\dfrac {2 \\pi} 9 + 1} \\paren {z^2 - 2 \\cos \\dfrac {4 \\pi} 9 + 1} \\paren {z^2 - 2 \\cos \\dfrac {8 \\pi} 9 + 1} }$ from which: :$\\paren {z^6 + z^3 + 1} = \\paren {z^2 - 2 \\cos \\dfrac {2 \\pi} 9 + 1} \\paren {z^2 - 2 \\cos \\dfrac {4 \\pi} 9 + 1} \\paren {z^2 - 2 \\cos \\dfrac {8 \\pi} 9 + 1}$ {{qed}} == Sources == * {{BookReference|Complex Numbers|1960|Walter Ledermann|prev = Factorisation of z^n-a|next = Triple Angle Formulas/Cosine/2 cos 3 theta + 1}}: $\\S 3$. Roots of Unity: Example $6$: $(3.14)$ Category:Complex Roots Category:Examples of Complex Algebra 7rexsnnxj4bf04rohyd7kfxfpkltee3"}
+{"_id": "32938", "title": "Roots of Complex Number/Examples/z^8 + 1 = 0/Illustration", "text": "Roots of Complex Number/Examples/z^8 + 1 = 0/Illustration 0 70649 364035 2018-09-02T06:13:38Z Prime.mover 59 Created page with \"== Illustration of Roots of $z^8 + 1 = 0$ == The roots of the Definition:Pol...\" wikitext text/x-wiki == Illustration of Roots of $z^8 + 1 = 0$ == The roots of the polynomial: :$z^8 + 1 = 0$ are illustrated below: :620px == Sources == * {{BookReference|Complex Numbers|1960|Walter Ledermann|prev = Roots of Complex Number/Examples/z^8 + 1 = 0|next = Complex Algebra/Examples/z^8 + 1}}: $\\S 3$. Roots of Unity: Exercise $8$ Category:Examples of Complex Roots 576jivb1jsfmev9aqjwjg3o0oeu5huo"}
+{"_id": "32939", "title": "Complex Algebra/Examples/z^8 + 1", "text": "Complex Algebra/Examples/z^8 + 1 0 70650 364074 364042 2018-09-02T10:06:57Z Prime.mover 59 wikitext text/x-wiki == Example of Complex Algebra == :$z^8 + 1 = \\paren {z^2 - 2 z \\cos \\dfrac \\pi 8 + 1} \\paren {z^2 - 2 z \\cos \\dfrac {3 \\pi} 8 + 1} \\paren {z^2 - 2 z \\cos \\dfrac {5 \\pi} 8 + 1} \\paren {z^2 - 2 z \\cos \\dfrac {7 \\pi} 8 + 1}$ == Proof == From Roots of $z^8 + 1 = 0$ and the corollary to the Polynomial Factor Theorem: :$z^8 + 1 = \\displaystyle \\prod_{k \\mathop = 0}^7 \\paren {z - \\paren {\\cos \\dfrac {\\paren {2 k + 1} \\pi} 8 + i \\sin \\dfrac {\\paren {2 k + 1} \\pi} 8} }$ Hence: {{begin-eqn}} {{eqn | l = z^8 + 1 | r = \\prod_{k \\mathop = 0}^7 \\paren {z - \\exp \\dfrac {\\paren {2 k + 1} i \\pi} 8} | c = {{Defof|Exponential Form of Complex Number}} }} {{eqn | r = \\prod_{k \\mathop = 0}^3 \\paren {z - \\exp \\dfrac {\\paren {2 k + 1} i \\pi} 8} \\paren {z - \\exp \\dfrac {-\\paren {2 k + 1} i \\pi} 8} | c = Complex Roots of Polynomial with Real Coefficients occur in Conjugate Pairs }} {{eqn | r = \\prod_{k \\mathop = 0}^3 \\paren {z^2 - z \\paren {\\exp \\dfrac {\\paren {2 k + 1} i \\pi} 8 + \\exp \\dfrac {-\\paren {2 k + 1} i \\pi} 8} + \\exp \\dfrac {\\paren {2 k + 1} i \\pi} 8 \\exp \\dfrac {-\\paren {2 k + 1} i \\pi} 8} | c = multiplying out }} {{eqn | r = \\prod_{k \\mathop = 0}^3 \\paren {z^2 - z \\paren {\\exp \\dfrac {\\paren {2 k + 1} i \\pi} 8 + \\exp \\dfrac {-\\paren {2 k + 1} i \\pi} 8} + 1} | c = simplifying }} {{eqn | r = \\prod_{k \\mathop = 0}^3 \\paren {z^2 - z \\paren {\\cos \\dfrac {\\paren {2 k + 1} \\pi} 8 + i \\sin \\dfrac {\\paren {2 k + 1} \\pi} 8 + \\cos \\dfrac {\\paren {2 k + 1} \\pi} 8 - i \\sin \\dfrac {\\paren {2 k + 1} \\pi} 8} + 1} | c = {{Defof|Exponential Form of Complex Number}} }} {{eqn | r = \\prod_{k \\mathop = 0}^3 \\paren {z^2 - 2 z \\cos \\dfrac {\\paren {2 k + 1} \\pi} 8 + 1} | c = simplifying }} {{end-eqn}} Hence the result. {{qed}} == Sources == * {{BookReference|Complex Numbers|1960|Walter Ledermann|prev = Roots of Complex Number/Examples/z^8 + 1 = 0/Illustration|next = Quadruple Angle Formulas/Cosine/Factor Form}}: $\\S 3$. Roots of Unity: Exercise $8$ Category:Complex Roots Category:Examples of Complex Algebra tcb2reog2caqly9vaw987knentssqgp"}
+{"_id": "32940", "title": "Euler's Formula/Corollary", "text": "Euler's Formula/Corollary 0 70856 365723 365141 2018-09-14T22:06:16Z Prime.mover 59 wikitext text/x-wiki == Corollary to Euler's Formula == Let $z \\in \\C$ be a complex number. Then: :$e^{-i z} = \\cos z - i \\sin z$ where: : $e^{-i z}$ denotes the complex exponential function : $\\cos z$ denotes the complex cosine function : $\\sin z$ denotes complex sine function : $i$ denotes the imaginary unit. === Corollary === This result is often presented and proved separately for arguments in the real domain: {{:Euler's Formula/Real Domain/Corollary}} == Proof == {{begin-eqn}} {{eqn | l = e^{-i z} | r = \\cos \\paren {-z} + i \\sin \\paren {-z} | c = Euler's Formula }} {{eqn | r = \\cos z + i \\sin \\paren {-z} | c = Cosine Function is Even }} {{eqn | r = \\cos z - i \\sin z | c = Sine Function is Odd }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Complex Numbers|1960|Walter Ledermann|prev = Sine Function is Odd|next = Cosine Exponential Formulation/Proof 3}}: $\\S 4.5$. The Functions $e^z$, $\\cos z$, $\\sin z$: $\\text{(ii)}$: $(4.16)$ Category:Euler's Formula od8drfqw7i7eigin9lgee53gjmm4c2s"}
+{"_id": "32941", "title": "Complex Natural Logarithm/Examples/i", "text": "Complex Natural Logarithm/Examples/i 0 70907 365496 365494 2018-09-11T22:18:14Z Prime.mover 59 wikitext text/x-wiki == Example of Complex Natural Logarithm == :$\\ln \\paren i = \\paren {4 k + 1} \\dfrac {\\pi i} 2$ for all $k \\in \\Z$. == Proof == {{begin-eqn}} {{eqn | l = i | r = \\exp \\paren {\\dfrac {i \\pi} 2} | c = Polar Form of $i$ }} {{eqn | ll= \\leadsto | l = \\ln \\paren i | r = \\ln \\paren {\\exp \\paren {\\dfrac {i \\pi} 2 + 2 k \\pi i} } | c = }} {{eqn | r = \\dfrac {i \\pi + 4 k \\pi i} 2 | c = {{Defof|Complex Natural Logarithm}} }} {{eqn | r = \\paren {4 k + 1} \\dfrac {\\pi i} 2 | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Complex Numbers|1960|Walter Ledermann|prev = Complex Natural Logarithm/Examples/-2|next = Complex Cosine Function/Examples/4 cos z = 3+i}}: $\\S 4.6$. The Logarithm: Examples: $\\text {(ii)}$ Category:Examples of Complex Natural Logarithms 4vjtql85ggcsbb4s8ujl8vs7hcm55md"}
+{"_id": "32942", "title": "Square Root of Complex Number in Cartesian Form/Examples/-8+6i", "text": "Square Root of Complex Number in Cartesian Form/Examples/-8+6i 0 70916 365526 365505 2018-09-12T06:24:03Z Prime.mover 59 wikitext text/x-wiki == Example of Square Root of Complex Number in Cartesian Form == :$\\sqrt {-8 + 6 i} = \\pm \\paren {1 + 3 i}$ == Proof == {{begin-eqn}} {{eqn | l = \\paren {x + i y}^2 | r = -8 + 6 i | c = }} {{eqn | ll= \\leadsto | l = x^2 | r = \\dfrac {-8 + \\sqrt {\\paren {-8}^2 + 6^2} } 2 | c = Square Root of Complex Number in Cartesian Form }} {{eqn | r = \\dfrac {-8 + \\sqrt {100} } 2 | c = }} {{eqn | r = \\dfrac {-8 + 10} 2 | c = }} {{eqn | r = 1 | c = }} {{eqn | ll= \\leadsto | l = x | r = \\pm 1 | c = }} {{eqn | ll= \\leadsto | l = y | r = \\pm \\dfrac 6 {2 \\times 1} | c = }} {{eqn | r = \\pm 3 | c = }} {{end-eqn}} As $2 x y = 6$ it follows that the two solutions are: :$1 + 3 i$ :$-1 - 3 i$ {{Qed}} == Sources == * {{BookReference|Complex Numbers|1960|Walter Ledermann|prev = Complex Cosine Function/Examples/4 cos z = 3+i|next = Inverse Tangent of i}}: $\\S 4.6$. The Logarithm: Examples: $\\text {(iii)}$ Category:Examples of Square Roots lgeddlb38hbut62yl9p26gre49nmkar"}
+{"_id": "32943", "title": "Proof by Contraposition", "text": "Proof by Contraposition 0 70942 370643 370486 2018-10-12T07:57:47Z KarlFrei 3474 fixed this as well wikitext text/x-wiki == Proof Technique == '''Proof by contraposition''' is a rule of inference used in proofs. This rule infers a conditional statement from its contrapositive. It is based on the Rule of Transposition, which says that a conditional statement and its contrapositive have the same truth value: :$p \\implies q \\dashv \\vdash \\neg q \\implies \\neg p$ In other words, the conclusion \"if A, then B\" is drawn from the single premise \"if not B, then not A.\" == Explanation == '''Proof by Contraposition''' can be expressed in natural language as follows: If we know that by making an assumption :$\\neg q$ we can deduce :$\\neg p$ then it must be the case that :$p \\implies q$. Thus it provides a means of proving a logical implication. This proof is often confused with Reductio ad Absurdum, which also starts with an assumption $\\neg q$. Reductio ad Absurdum itself is often confused with Proof by Contradiction. Unlike Reductio ad Absurdum however, Proof by Contraposition ''can'' be a valid proof in intuitionistic logic, just like Proof by Contradiction. Specifically, suppose :$p \\implies q$ is true. Suppose furthermore that we have a proof of :$\\neg q$. Then if we had a proof of $p$, it could be turned into a proof of $q$. This would imply :$q\\land \\neg q$ which is impossible. Therefore :$\\neg p$. However, now suppose :$\\neg q \\implies \\neg p$ is true. Suppose furthermore that we have a proof of :$p$. Then if we had a proof of $\\neg q$, it could be turned into a proof of $\\neg p$. This would imply :$p\\land\\neg p$ which is impossible. Thus it is not possible to prove $\\neg q$. That means in this case we only know :$\\neg \\neg q$. Category:Proof Techniques dfilcz1dhbzddxx88jkwh9kofb4jzyy"}
+{"_id": "32944", "title": "Hyperbolic Sine of Complex Number", "text": "Hyperbolic Sine of Complex Number 0 70971 365755 2018-09-15T09:06:14Z Prime.mover 59 Created page with \"== Theorem == Let $a$ and $b$ be real numbers. Let $i$ be the imaginary unit. Then: :$\\sinh \\paren {a...\" wikitext text/x-wiki == Theorem == Let $a$ and $b$ be real numbers. Let $i$ be the imaginary unit. Then: :$\\sinh \\paren {a + b i} = \\sinh a \\cos b + i \\cosh a \\sin b$ where: :$\\sin$ denotes the real sine function :$\\cos$ denotes the real cosine function :$\\sinh$ denotes the hyperbolic sine function :$\\cosh$ denotes the hyperbolic cosine function. == Proof 1 == {{:Hyperbolic Sine of Complex Number/Proof 1}} == Proof 2 == {{:Hyperbolic Sine of Complex Number/Proof 2}} == Also see == * Hyperbolic Cosine of Complex Number * Hyperbolic Tangent of Complex Number * Hyperbolic Cosecant of Complex Number * Hyperbolic Secant of Complex Number * Hyperbolic Cotangent of Complex Number Category:Hyperbolic Sine Function Category:Complex Numbers Category:Hyperbolic Sine of Complex Number a6nti2dzyb53lz3n90ykjnnj4vsqqjc"}
+{"_id": "32945", "title": "Hyperbolic Cotangent of Complex Number/Formulation 1", "text": "Hyperbolic Cotangent of Complex Number/Formulation 1 0 70986 365788 2018-09-15T10:49:12Z Prime.mover 59 Created page with \"== Theorem == Let $a$ and $b$ be real numbers. Let $i$ be the imaginary unit. Then: :$\\coth \\paren {...\" wikitext text/x-wiki == Theorem == Let $a$ and $b$ be real numbers. Let $i$ be the imaginary unit. Then: :$\\coth \\paren {a + b i} = \\dfrac {\\cosh a \\cos b + i \\sinh a \\sin b} {\\sinh a \\cos b + i \\cosh a \\sin b}$ where: :$\\coth$ denotes the hyperbolic cotangent function :$\\sin$ denotes the real sine function :$\\cos$ denotes the real cosine function :$\\sinh$ denotes the hyperbolic sine function :$\\cosh$ denotes the hyperbolic cosine function. == Proof == {{begin-eqn}} {{eqn | l = \\coth \\paren {a + b i} | r = \\frac {\\cosh \\paren {a + b i} } {\\sinh \\paren {a + b i} } | c = {{Defof|Hyperbolic Cotangent}} }} {{eqn | r = \\dfrac {\\cosh a \\cos b + i \\sinh a \\sin b} {\\sinh a \\cos b + i \\cosh a \\sin b} | c = Hyperbolic Sine of Complex Number and Hyperbolic Cosine of Complex Number }} {{end-eqn}} {{qed}} == Also see == * Hyperbolic Sine of Complex Number * Hyperbolic Cosine of Complex Number * Hyperbolic Tangent of Complex Number * Hyperbolic Cosecant of Complex Number * Hyperbolic Secant of Complex Number Category:Hyperbolic Cotangent of Complex Number dpmhmf06af3ewir8mn3uwbn7sinxmtn"}
+{"_id": "32946", "title": "Cardinality/Examples/0 less than x less than 6", "text": "Cardinality/Examples/0 less than x less than 6 0 71072 366321 366318 2018-09-18T07:13:08Z Prime.mover 59 wikitext text/x-wiki == Example of Cardinality == Let $S_2 = \\set {x \\in \\Z: 0 < x < 6}$. The cardinality of $S_2$ is given by: :$\\card {S_2} = 5$ == Proof == The elements of $S_2$, by definition, are those integers greater than $0$ and less than $6$. That is: :$S_2 = \\set {1, 2, 3, 4, 5}$ Thus $S_2$ has $5$ elements: $1, 2, 3, 4, 5$. Hence the result by definition of cardinality. {{qed}} == Sources == * {{BookReference|An Introduction to Abstract Algebra|1978|Thomas A. Whitelaw|prev = Cardinality/Examples/-1,0,1|next = Cardinality/Examples/x^2-x}}: Chapter $1$: Sets and Logic: Exercise $4$ Category:Examples of Cardinality 2pb843cw778el57i367ci63qz0be32w"}
+{"_id": "32947", "title": "Fermat's Little Theorem/Corollary 3", "text": "Fermat's Little Theorem/Corollary 3 0 71091 392010 366591 2019-02-10T22:10:48Z Prime.mover 59 wikitext text/x-wiki {{Proofread}} == Corollary to Fermat's Little Theorem == Let $p^k$ be a prime power for some prime number $p$ and $k \\in \\Z_{\\gt 0}$. Then: :$\\forall n \\in \\Z_{\\gt 0}: n^{p^k} \\equiv n \\pmod p$ == Proof == The proof proceeds by induction. For all $k \\in \\Z_{\\ge 1}$, let $P \\paren {k}$ be the proposition: :$\\forall n \\in \\Z_{\\gt 0}: n^{p^k} \\equiv n \\pmod p$ === Basis for the Induction === $P \\paren {1}$ is the case: :$\\forall n \\in \\Z_{\\gt 0}: n^p \\equiv n \\pmod p$ which follows from the corollary 1 to Fermat's Little Theorem. This is the basis for the induction. === Induction Hypothesis === Now it needs to be shown that, if $P \\paren{k-1}$ is true, where $k \\ge 2$, then it logically follows that $P \\paren {k}$ is true. So this is the induction hypothesis: :$\\forall n \\in \\Z_{\\gt 0}: n^{p^{k - 1} } \\equiv n \\pmod p$ from which it is to be shown that: :$\\forall n \\in \\Z_{\\gt 0}: n^{p^k} \\equiv n \\pmod p$ === Induction Step === This is the induction step: For any $n \\in \\Z_{\\gt 0}$ then: {{begin-eqn}} {{eqn | l = n^{p^k} | r = \\paren {n^{p^{k - 1} } }^p }} {{eqn | r = n^{p^{k - 1} } \\pmod p | o = \\equiv | c = Corollary 1 to Fermat's Little Theorem }} {{eqn | r = n \\pmod p | o = \\equiv | c = Induction Hypothesis }} {{end-eqn}} {{qed}} == Sources == Category:Fermat's Little Theorem 84bvsuw33h9sxbgpby1ep4ig4816wh1"}
+{"_id": "32948", "title": "Fermat's Little Theorem/Corollary 4", "text": "Fermat's Little Theorem/Corollary 4 0 71092 392011 366414 2019-02-10T22:11:15Z Prime.mover 59 wikitext text/x-wiki {{Proofread}} == Corollary to Fermat's Little Theorem == Let $p^k$ be a prime power for some prime number $p$ and $k \\in \\Z_{\\gt 0}$. Let $n \\in \\Z_{\\gt 0}$ with $p \\nmid n$. Then: :$n^{p^k - 1} \\equiv 1 \\pmod p$ == Proof == By corollary 3 of Fermat's Little Theorem: :$n^{p^k} \\equiv n \\pmod p$ That is: :$p \\divides \\paren {n^{p^k} - n} = n \\paren {n^{p^k - 1} - 1}$ Since $p \\nmid n$, by Corollary to Divisors of Product of Coprime Integers: :$p \\divides \\paren {n^{p^k - 1} - 1}$ That is: :$n^{p^k-1} \\equiv 1 \\pmod p$ {{qed}} == Sources == Category:Fermat's Little Theorem q0leb0mj7psa4cwwhoy40z4g2khedcq"}
+{"_id": "32949", "title": "Total Number of Set Partitions/Examples", "text": "Total Number of Set Partitions/Examples 0 71112 366790 366778 2018-09-22T08:10:30Z Prime.mover 59 wikitext text/x-wiki == Examples of Total Number of Set Partitions == === Example: $\\card S = 2$ === {{:Total Number of Set Partitions/Examples/2}} === Example: $\\card S = 3$ === {{:Total Number of Set Partitions/Examples/3}} === Example: $\\card S = 4$ === {{:Total Number of Set Partitions/Examples/4}} Category:Examples of Set Partitions to3rp6r8nn76o1kly0i4xiycq66lq29"}
+{"_id": "32950", "title": "1", "text": "1 0 71115 478436 478434 2020-07-16T10:43:54Z Prime.mover 59 wikitext text/x-wiki {{NumberPageLink|prev = 0|next = 2}} == Number == $1$ ('''one''') is: :The immediate successor element of zero in the set of natural numbers $\\N$ :The only (strictly) positive integer which is neither prime nor composite :The only (strictly) positive integer which is a divisor of every integer === $0$th Term === :The $0$th (zeroth) power of every non-non-zero number: ::$\\forall n: n \\ne 0 \\implies n^1 = 1$ :The $0$th term of Göbel's sequence, by definition :The $0$th term of the $3$-Göbel sequence, by definition :The $0$th and $1$st Catalan numbers: ::$1 = \\dfrac 1 {0 + 1} \\dbinom {2 \\times 0} 1 = \\dfrac 1 1 \\times 1$ ::$1 = \\dfrac 1 {1 + 1} \\dbinom {2 \\times 1} 1 = \\dfrac 1 2 \\times 2$ :The $0$th and $1$st Bell numbers === $1$st Term === :The $1$st (strictly) positive integer :The $1$st (strictly) positive integer :The $1$st (positive) odd number ::$1 = 0 \\times 2 + 1$ :The $1$st number to be both square and triangular: ::$1 = 1^2 = \\dfrac {1 \\times \\paren {1 + 1}} 2$ :The $1$st square number to be the $\\sigma$ (sigma) value of some (strictly) positive integer: ::$1 = \\map \\sigma 1$ :The $1$st generalized pentagonal number: ::$1 = \\dfrac {1 \\paren {3 \\times 1 - 1} } 2$ :The $1$st highly composite number: ::$\\map \\tau 1 = 1$ :The $1$st special highly composite number :The $1$st highly abundant number: ::$\\map \\sigma 1 = 1$ :The $1$st superabundant number: ::$\\dfrac {\\map \\sigma 1} 1 = \\dfrac 1 1 = 1$ :The $1$st almost perfect number: ::$\\map \\sigma 1 = 1 = 2 - 1$ :The $1$st factorial: ::$1 = 1!$ :The $1$st superfactorial: ::$1 = 1\\$ = 1!$ :The $1$st Lucas number after the zeroth $(2)$ :The $1$st Ulam number :The $1$st (strictly) positive integer which cannot be expressed as the sum of exactly $5$ non-zero squares :The $1$st of the $24$ positive integers which cannot be expressed as the sum of distinct non-pythagorean primes :The $1$st of the $5$ known powers of $2$ whose digits are also all powers of $2$ :The $1$st factorion base $10$: ::$1 = 1!$ :The $1$st of the trivial $1$-digit pluperfect digital invariants: ::$1^1 = 1$ :The $1$st of the $1$st pair of consecutive integers whose product is a primorial: ::$1 \\times 2 = 2 = 2 \\#$ :The $1$st of the (trivial $1$-digit) Zuckerman numbers: ::$1 = 1 \\times 1$ :The $1$st of the (trivial $1$-digit) harshad numbers: ::$1 = 1 \\times 1$ :The $1$st positive integer whose cube is palindromic (in this case trivially): ::$1^3 = 1$ :The $1$st lucky number :The $1$st palindromic lucky number :The $1$st Stern number :The $1$st Cullen number: ::$1 = 0 \\times 2^0 + 1$ :The $1$st number whose $\\sigma$ value is square: ::$\\map \\sigma 1 = 1 = 1^2$ :The $1$st positive integer after $1$ of which the product of its Euler $\\phi$ function and its $\\tau$ function equals its $\\sigma$ function: ::$\\map \\phi 1 \\map \\tau 1 = 1 \\times 1 = 1 = \\map \\sigma 1$ :The $1$st positive integer solution to $\\map \\phi n = \\map \\phi {n + 1}$: ::$\\map \\phi 1 = 1 = \\map \\phi 2$ :The $1$st element of the Fermat set :The $1$st integer $n$ with the property that $\\map \\tau n \\divides \\map \\phi n \\divides \\map \\sigma n$: ::$\\map \\tau 1 = 1$, $\\map \\phi 1 = 1$, $\\map \\sigma 1 = 1$ :The $1$st Lucas number which is also triangular :The $1$st tetrahedral number: ::$1 = \\dfrac {1 \\left({1 + 1}\\right) \\left({1 + 2}\\right)} 6$ :The $1$st of the $3$ tetrahedral numbers which are also square :The $1$st trimorphic number: ::$1^3 = \\mathbf 1$ :The $1$st powerful number (vacuously) :The $1$st integer which equals the number of digits in its factorial: ::$1! = 1$ :which has $1$ digit :The $1$st power of $2$ which is the sum of distinct powers of $3$: ::$1 = 2^0 = 3^0$ :The $1$st square which has no more than $2$ distinct digits :The $1$st pentagonal number: ::$1 = \\dfrac {1 \\left({1 \\times 3 - 1}\\right)} 2$ :The $1$st pentagonal number which is also palindromic: ::$1 = \\dfrac {1 \\left({1 \\times 3 - 1}\\right)} 2$ :The $1$st square pyramidal number: ::$1 = \\dfrac {1 \\paren {1 + 1} \\paren {2 \\times 1 + 1} } 6$ :The $1$st pentatope number: ::$1 = \\dfrac {1 \\paren {1 + 1} \\paren {1 + 2} \\paren {1 + 3} } {24}$ :The $1$st automorphic number: ::$1^2 = \\mathbf 1$ :The $1$st number such that $2 n^2 - 1$ is square: ::$2 \\times 1^2 - 1 = 2 \\times 1 - 1 = 1 = 1^2$ {{WIP|Find out what sequence this belongs to, because it has not been set up on the $5$ page}} :The $1$st Ore number: ::$\\dfrac {1 \\times \\map \\tau 1} {\\map \\sigma 1} = 1$ :and the $1$st whose divisors also have an arithmetic mean which is an integer: ::$\\dfrac {\\map \\sigma 1} {\\map \\tau 1} = 1$ :The $1$st hexagonal number: ::$1 = 1 \\paren {2 \\times 1 - 1}$ :The $1$st pentagonal pyramidal number: ::$1 = \\dfrac {1^2 \\paren {1 + 1} } 2$ :The $1$st heptagonal number: ::$1 = \\dfrac {1 \\paren {5 \\times 1 - 3} } 2$ :The $1$st centered hexagonal number: ::$1 = 1^3 - 0^3$ :The $1$st hexagonal pyramidal number: :The $1$st Woodall number: ::$1 = 1 \\times 2^1 - 1$ :The $1$st happy number: ::$1 \\to 1^2 = 1$ :The $1$st positive integer the sum of whose divisors is a cube: ::$\\map \\sigma 1 = 1 = 1^3$ :The $1$st cube number: ::$1 = 1^3$ :The $1$st of the only two cubic Fibonacci numbers :The $1$st octagonal number: ::$1 = 1 \\paren {3 \\times 1 - 2}$ :The $1$st heptagonal pyramidal number: ::$1 = \\dfrac {1 \\paren {1 + 1} \\paren {5 \\times 1 - 2} } 6$ :The $1$st Kaprekar triple: ::$1^3 = 1 \\to 0 + 0 + 1 = 1$ :The $1$st palindromic cube: ::$1 = 1^3$ :The $1$st Kaprekar number: ::$1^2 = 01 \\to 0 + 1 = 1$ :The $1$st number whose square has a $\\sigma$ value which is itself square: ::$\\map \\sigma 1 = 1 = 1^2$ :The $1$st of the $5$ tetrahedral numbers which are also triangular :The $1$st positive integer which cannot be expressed as the sum of a square and a prime :The $1$st positive integer such that all smaller positive integers coprime to it are prime :The (trivial) $1$st repunit :The $1$st fourth power: ::$1 = 1 \\times 1 \\times 1 \\times 1$ :The $1$st integer $m$ whose cube can be expressed (trivially) as the sum of $m$ consecutive squares: ::$1^3 = \\displaystyle \\sum_{k \\mathop = 1}^1 \\left({0 + k}\\right)^2$ :The $1$st and $2$nd Fibonacci numbers after the zeroth ($0$): ::$1 = 0 + 1$ :The $1$st positive integer whose $\\sigma$ value of its Euler $\\phi$ value equals its $\\sigma$ value: ::$\\map \\sigma {\\map \\phi 1} = \\map \\sigma 1 = 1 = \\map \\sigma 1$ :The $1$st square pyramorphic number: ::$1 = \\displaystyle \\sum_{k \\mathop = 1}^1 k^2 = \\dfrac {1 \\paren {1 + 1} \\paren {2 \\times 1 + 1} } 6$ :The $1$st of the $4$ square pyramidal numbers which are also triangular :The $1$st Wonderful Demlo number :The $1$st obstinate number :The index of the $1$st Cullen prime: ::$1 \\times 2^1 + 1 = 3$ :The index of the $1$st Mersenne number which {{AuthorRef|Marin Mersenne}} asserted to be prime ::($1$ itself was classified as a prime number in those days) :The number of different representations of $1$ as the sum of $1$ unit fractions (degenerate case) :The $1$st centered hexagonal number which is also square :The $1$st pentagonal number which is also triangular: ::$1 = \\dfrac {1 \\paren {3 \\times 1 - 1} } 2 = \\dfrac {1 \\times \\paren {1 + 1} } 2$ :The $1$st odd positive integer that cannot be expressed as the sum of exactly $4$ distinct non-zero square numbers all of which are coprime :The $1$st odd number which cannot be expressed as the sum of an integer power and a prime number :The number of distinct free monominoes === $2$nd Term === :The $2$nd after $0$ of the $5$ Fibonacci numbers which are also triangular :The $2$nd palindromic triangular number after $0$ :The $2$nd integer $n$ after $0$ such that $2^n$ contains no zero in its decimal representation: ::$2^1 = 2$ :The $2$nd integer $n$ after $0$ such that $5^n$ contains no zero in its decimal representation: ::$5^1 = 5$ :The $2$nd integer $n$ after $0$ such that both $2^n$ and $5^n$ have no zeroes: ::$2^1 = 2, 5^1 = 5$ :The $2$nd palindromic integer which is the index of a palindromic triangular number after $0$: ::$T_1 = 1$ :The $1$st palindromic integer after $0$ whose square is also palindromic integer ::$1^2 = 1$ :The $2$nd Dudeney number after $0$: ::$1^3 = 1$ :The $2$nd number after $0$ which is (trivially) the sum of the increasing powers of its digits taken in order: ::$1^1 = 1$ :The $2$nd non-negative integer $n$ after $0$ such that the Fibonacci number $F_n$ ends in $n$ :The $2$nd after $0$ of the $3$ Fibonacci numbers which equals its index :The $2$nd subfactorial after $0$: ::$1 = 2! \\paren {1 - \\dfrac 1 {1!} + \\dfrac 1 {2!} }$ :The $2$nd integer $m$ after $0$ such that $m^2 = \\dbinom n 0 + \\dbinom n 1 + \\dbinom n 2 + \\dbinom n 3$ for integer $n$: ::$1^2 = \\dbinom 0 0 + \\dbinom 0 1 + \\dbinom 0 2 + \\dbinom 0 3$ :The $2$nd integer $m$ after $0$ such that $m! + 1$ (its factorial plus $1$) is prime: ::$1! + 1 = 1 + 1 = 2$ :The $2$nd integer after $0$ such that its double factorial plus $1$ is prime: ::$1!! + 1 = 2$ :The $2$nd integer after $0$ which is palindromic in both decimal and binary: ::$1_{10} = 1_2$ :The $2$nd integer after $0$ which is palindromic in both decimal and ternary: ::$1_{10} = 1_3$ :The $2$nd Ramanujan-Nagell number after $0$: ::$1 = 2^1 - 1 = \\dfrac {1 \\left({1 + 1}\\right)} 2$ :The number of different representations of $1$ as the sum of $2$ unit fractions: ::$1 = \\dfrac 1 2 + \\dfrac 1 2$ :The number of distinct free dominoes === Miscellaneous === :The total of all the entries in the trivial magic square of order $1$: ::$1 = \\displaystyle \\sum_{k \\mathop = 1}^{1^2} k = \\dfrac {1^2 \\paren {1^2 + 1} } 2$ :The total of all the entries in the trivial magic cube of order $1$: ::$1 = \\displaystyle \\sum_{k \\mathop = 1}^{1^3} k = \\dfrac {1^3 \\paren {1^3 + 1} } 2$ :The magic constant of the trivial magic square of order $1$: ::$1 = \\displaystyle \\dfrac 1 1 \\sum_{k \\mathop = 1}^{1^2} k = \\dfrac {1 \\paren {1^2 + 1} } 2$ :The magic constant of the trivial magic cube of order $1$: ::$1 = \\displaystyle \\dfrac 1 {1^2} \\sum_{k \\mathop = 1}^{1^3} k = \\dfrac {1 \\paren {1^3 + 1} } 2$ {{ArithmeticFunctionTable|n = 1|tau = 1|phi = 1|sigma = 1}} == Also see == * Definition:Unity * One is not Prime * Divisors of One * One Divides all Integers === Previous in sequence: $0$ === ==== Next in sequence: $2$ ==== * {{NumberPageLink|prev = 0|next = 2|type = Subfactorial|cat = Subfactorials}} * {{NumberPageLink|prev = 0|next = 2|result = Sequence of Integers whose Factorial plus 1 is Prime}} * {{NumberPageLink|prev = 0|next = 2|result = Prime Values of Double Factorial plus 1}} * {{NumberPageLink|prev = 0|next = 2|type = Fibonacci Number|cat = Fibonacci Numbers}} * {{NumberPageLink|prev = 0|next = 2|result = Powers of 2 with no Zero in Decimal Representation}} * {{NumberPageLink|prev = 0|next = 2|result = Powers of 5 with no Zero in Decimal Representation}} * {{NumberPageLink|prev = 0|next = 2|result = Powers of 2 and 5 without Zeroes}} * {{NumberPageLink|prev = 0|next = 2|result = Palindromes in Base 10 and Base 3}} * {{NumberPageLink|prev = 0|next = 2|result = Numbers which are Sum of Increasing Powers of Digits}} * {{NumberPageLink|prev = 0|next = 2|result = Square Formed from Sum of 4 Consecutive Binomial Coefficients}} * {{NumberPageLink|prev = 0|next = 2|result = Palindromic Indices of Palindromic Triangular Numbers}} * {{NumberPageLink|prev = 0|next = 2|result = Square of Small-Digit Palindromic Number is Palindromic}} ==== Next in sequence: $3$ ==== * {{NumberPageLink|prev = 0|next = 3|type = Triangular Number|cat = Triangular Numbers}} * {{NumberPageLink|prev = 0|next = 3|result = Palindromes in Base 10 and Base 2}} * {{NumberPageLink|prev = 0|next = 3|result = Triangular Fibonacci Numbers}} * {{NumberPageLink|prev = 0|next = 3|result = Palindromic Triangular Numbers}} * {{NumberPageLink|prev = 0|next = 3|type = Ramanujan-Nagell Number|cat = Ramanujan-Nagell Numbers}} ==== Next in sequence: $5$ ==== * {{NumberPageLink|prev = 0|next = 5|result = Fibonacci Numbers which equal their Index}} * {{NumberPageLink|prev = 0|next = 5|result = Sequence of Fibonacci Numbers ending in Index}} ==== Next in sequence: $8$ ==== * {{NumberPageLink|prev = 0|next = 8|type = Dudeney Number|cat = Dudeney Numbers}} === Previous in sequence: $2$ === * {{NumberPageLink|prev = 2|next = 3|type = Lucas Number|cat = Lucas Numbers}} === Next in sequence: $2$ === * {{NumberPageLink|next = 2|type = Generalized Pentagonal Number|cat = Generalized Pentagonal Numbers}} * {{NumberPageLink|next = 2|type = Highly Composite Number|cat = Highly Composite Numbers}} * {{NumberPageLink|next = 2|type = Special Highly Composite Number|cat = Special Highly Composite Numbers}} * {{NumberPageLink|next = 2|type = Highly Abundant Number|cat = Highly Abundant Numbers}} * {{NumberPageLink|next = 2|type = Superabundant Number|cat = Superabundant Numbers}} * {{NumberPageLink|next = 2|type = Almost Perfect Number|cat = Almost Perfect Numbers}} * {{NumberPageLink|next = 2|type = Factorial|cat = Factorials}} * {{NumberPageLink|next = 2|type = Superfactorial|cat = Superfactorials}} * {{NumberPageLink|next = 2|type = Fibonacci Number|cat = Fibonacci Numbers}} * {{NumberPageLink|next = 2|type = Catalan Number|cat = Catalan Numbers}} * {{NumberPageLink|next = 2|type = Ulam Number|cat = Ulam Numbers}} * {{NumberPageLink|next = 2|result = Sequence of Powers of 2|cat = Powers of 2}} * {{NumberPageLink|next = 2|result = Powers of 2 with no Zero in Decimal Representation}} * {{NumberPageLink|next = 2|result = Powers of 2 and 5 without Zeroes}} * {{NumberPageLink|next = 2|result = Integer not Expressible as Sum of 5 Non-Zero Squares}} * {{NumberPageLink|next = 2|result = Integers such that all Coprime and Less are Prime}} * {{NumberPageLink|next = 2|type = Göbel's Sequence|cat = Göbel's Sequence}} * {{NumberPageLink|next = 2|type = 3-Göbel Sequence|cat = Göbel's Sequence}} * {{NumberPageLink|next = 2|result = Positive Integers Not Expressible as Sum of Distinct Non-Pythagorean Primes}} * {{NumberPageLink|next = 2|result = Powers of 2 whose Digits are Powers of 2}} * {{NumberPageLink|next = 2|type = Pluperfect Digital Invariant|cat = Pluperfect Digital Invariants}} * {{NumberPageLink|next = 2|result = Factorions Base 10|cat = Factorions}} * {{NumberPageLink|next = 2|result = Consecutive Integers whose Product is Primorial}} * {{NumberPageLink|next = 2|type = Zuckerman Number|cat = Zuckerman Numbers}} * {{NumberPageLink|next = 2|type = Harshad Number|cat = Harshad Numbers}} * {{NumberPageLink|next = 2|result = Square Formed from Sum of 4 Consecutive Binomial Coefficients}} * {{NumberPageLink|next = 2|type = Bell Number|cat = Bell Numbers}} * {{NumberPageLink|next = 2|result = Sequence of Integers whose Cube is Palindromic}} * {{NumberPageLink|next = 2|result = Number of Free Polyominoes}} * {{NumberPageLink|next = 2|type = Mersenne Prime/Historical Note|cat = Mersenne's Assertion}} === Next in sequence: $3$ === * {{NumberPageLink|next = 3|result = Sequence of Powers of 3|cat = Powers of 3}} * {{NumberPageLink|next = 3|type = Lucky Number|cat = Lucky Numbers}} * {{NumberPageLink|next = 3|result = Sequence of Palindromic Lucky Numbers}} * {{NumberPageLink|next = 3|type = Stern Number|cat = Stern Numbers}} * {{NumberPageLink|next = 3|type = Cullen Number|cat = Cullen Numbers}} * {{NumberPageLink|next = 3|result = Numbers whose Sigma is Square|cat = Numbers whose Sigma is Square}} * {{NumberPageLink|next = 3||result = Integers whose Phi times Tau equal Sigma}} * {{NumberPageLink|next = 3|result = Consecutive Integers with Same Euler Phi Value}} * {{NumberPageLink|next = 3|type = Fermat Set}} * {{NumberPageLink|next = 3|result = Numbers such that Tau divides Phi divides Sigma}} * {{NumberPageLink|next = 3|result = Triangular Lucas Numbers}} * {{NumberPageLink|next = 3|result = Representation of 1 as Sum of n Unit Fractions}} * {{NumberPageLink|next = 3|result = Odd Numbers Not Expressible as Sum of 4 Distinct Non-Zero Coprime Squares}} === Next in sequence: $4$ === * {{NumberPageLink|next = 4|result = Sequence of Powers of 4|cat = Powers of 4}} * {{NumberPageLink|next = 4|type = Tetrahedral Number|cat = Tetrahedral Numbers}} * {{NumberPageLink|next = 4|result = Square and Tetrahedral Numbers}} * {{NumberPageLink|next = 4|type = Trimorphic Number|cat = Trimorphic Numbers}} * {{NumberPageLink|next = 4|type = Powerful Number|cat = Powerful Numbers}} * {{NumberPageLink|next = 4|result = Powers of 2 which are Sum of Distinct Powers of 3}} * {{NumberPageLink|next = 4|result = Squares with No More than 2 Distinct Digits}} === Next in sequence: $5$ === * {{NumberPageLink|next = 5|result = Sequence of Powers of 5|cat = Powers of 5}} * {{NumberPageLink|next = 5|type = Pentagonal Number|cat = Pentagonal Numbers}} * {{NumberPageLink|next = 5|result = Sequence of Palindromic Pentagonal Numbers}} * {{NumberPageLink|next = 5|type = Square Pyramidal Number|cat = Pyramidal Numbers}} * {{NumberPageLink|next = 5|type = Pentatope Number|cat = Pentatope Numbers}} * {{NumberPageLink|next = 5|type = Automorphic Number|cat = Automorphic Numbers}} * {{NumberPageLink|next = 5|result = Magic Constant of Magic Square}} * {{NumberPageLink|next = 5|result = Odd Numbers not Sum of Prime and Power}} === Next in sequence: $6$ === * {{NumberPageLink|next = 6|result = Sequence of Powers of 6|cat = Powers of 6}} * {{NumberPageLink|next = 6|type = Ore Number|cat = Ore Numbers}} * {{NumberPageLink|next = 6|result = Sequence of Numbers with Integer Arithmetic and Harmonic Means of Divisors}} * {{NumberPageLink|next = 6|type = Hexagonal Number|cat = Hexagonal Numbers}} * {{NumberPageLink|next = 6|type = Pentagonal Pyramidal Number|cat = Pyramidal Numbers}} === Next in sequence: $7$ === * {{NumberPageLink|next = 7|cat = Powers of 7|result = Sequence of Powers of 7}} * {{NumberPageLink|next = 7|type = Centered Hexagonal Number|cat = Centered Hexagonal Numbers}} * {{NumberPageLink|next = 7|type = Hexagonal Pyramidal Number|cat = Pyramidal Numbers}} * {{NumberPageLink|next = 7|type = Heptagonal Number|cat = Heptagonal Numbers}} * {{NumberPageLink|next = 7|type = Woodall Number|cat = Woodall Numbers}} * {{NumberPageLink|next = 7|type = Happy Number|cat = Happy Numbers}} * {{NumberPageLink|next = 7|result = Integers whose Sigma Value is Cube}} === Next in sequence: $8$ === * {{NumberPageLink|next = 8|result = Sequence of Powers of 8|cat = Powers of 8}} * {{NumberPageLink|next = 8|type = Cube Number|cat = Cube Numbers}} * {{NumberPageLink|next = 8|result = Cubic Fibonacci Numbers}} * {{NumberPageLink|next = 8|type = Octagonal Number|cat = Octagonal Numbers}} * {{NumberPageLink|next = 8|type = Heptagonal Pyramidal Number|cat = Pyramidal Numbers}} * {{NumberPageLink|next = 8|type = Kaprekar Triple|cat = Kaprekar Numbers}} * {{NumberPageLink|next = 8|result = Sequence of Palindromic Cubes}} === Next in sequence: $9$ === * {{NumberPageLink|next = 9|result = Sequence of Powers of 9|cat = Powers of 9}} * {{NumberPageLink|next = 9|type = Kaprekar Number|cat = Kaprekar Numbers}} * {{NumberPageLink|next = 9|result = Square Numbers whose Sigma is Square|cat = Square Numbers whose Sigma is Square}} * {{NumberPageLink|next = 9|result = Magic Constant of Magic Cube}} === Next in sequence: $10$ === * {{NumberPageLink|next = 10|result = Sum of Terms of Magic Square}} * {{NumberPageLink|next = 10|cat = Powers of 10|result = Sequence of Powers of 10}} * {{NumberPageLink|next = 10|result = Tetrahedral and Triangular Numbers}} * {{NumberPageLink|next = 10|result = Numbers not Sum of Square and Prime}} === Next in sequence: $11$ === * {{NumberPageLink|next = 11|result = Sequence of Powers of 11|cat = Powers of 11}} * {{NumberPageLink|next = 11|type = Repunit|cat = Repunits}} === Next in sequence: $12$ and above === * {{NumberPageLink|next = 12|result = Sequence of Powers of 12|cat = Powers of 12}} * {{NumberPageLink|next = 13|result = Sequence of Powers of 13|cat = Powers of 13}} * {{NumberPageLink|next = 14|result = Sequence of Powers of 14|cat = Powers of 14}} * {{NumberPageLink|next = 15|result = Sequence of Powers of 15|cat = Powers of 15}} * {{NumberPageLink|next = 16|type = Fourth Power|cat = Fourth Powers}} * {{NumberPageLink|next = 16|result = Sequence of Powers of 16|cat = Powers of 16}} * {{NumberPageLink|next = 22|result = Numbers Equal to Number of Digits in Factorial}} * {{NumberPageLink|next = 36|result = Integer both Square and Triangular}} * {{NumberPageLink|next = 36|result = Sum of Terms of Magic Cube}} * {{NumberPageLink|next = 47|result = Numbers whose Cube equals Sum of Sequence of that many Squares|cat = Numbers whose Cube equals Sum of Sequence of that many Squares}} * {{NumberPageLink|next = 55|result = Square Pyramidal and Triangular Numbers}} * {{NumberPageLink|next = 55|type = Square Pyramorphic Number|cat = Square Pyramorphic Numbers}} * {{NumberPageLink|next = 87|result = Integers for which Sigma of Phi equals Sigma}} * {{NumberPageLink|next = 121|type = Wonderful Demlo Number|cat = Wonderful Demlo Numbers}} * {{NumberPageLink|next = 127|type = Obstinate Number|cat = Obstinate Numbers}} * {{NumberPageLink|next = 141|type = Cullen Prime|cat = Cullen Primes}} * {{NumberPageLink|next = 169|result = Sequence of Square Centered Hexagonal Numbers}} * {{NumberPageLink|next = 210|result = Triangular Numbers which are also Pentagonal}} == Historical Note == {{:1/Historical Note}} == Linguistic Note == {{:1/Linguistic Note}} == Sources == * {{BookReference|Les Nombres Remarquables|1983|François Le Lionnais|author2 = Jean Brette|prev = Integral from 0 to 1 of Complete Elliptic Integral of First Kind|next = Trivial Group is Smallest Group}}: $1$ * {{BookReference|The Penguin Dictionary of Mathematics|1998|David Nelson|ed = 2nd|edpage = Second Edition|prev = Definition:Unit Vector|next = Definition:Universal Quantifier|entry = unity}} * {{BookReference|The Penguin Dictionary of Mathematics|2008|David Nelson|ed = 4th|edpage = Fourth Edition|prev = Definition:Unit Vector|next = Universal Instantiation|entry = unity}} * {{BookReference|The Concise Oxford Dictionary of Mathematics|2014|Christopher Clapham|author2 = James Nicholson|ed = 5th|edpage = Fifth Edition|prev = Definition:Unit Vector|next = Definition:Universal Gravitational Constant|entry = unity}} Category:Specific Numbers Category:1 f3jrybgjko4vrtj7j704f8zzrwv4hbg"}
+{"_id": "32951", "title": "Total Number of Set Partitions/Examples/2/Illustration", "text": "Total Number of Set Partitions/Examples/2/Illustration 0 71136 366804 2018-09-22T08:51:38Z Prime.mover 59 Created page with \"== Example of Total Number of Set Partitions == Let a set $S$ of cardinality $2$ be exemplified by $S = \\set {a...\" wikitext text/x-wiki == Example of Total Number of Set Partitions == Let a set $S$ of cardinality $2$ be exemplified by $S = \\set {a, b}$. Then the partitions of $S$ are: :$\\set {a, b}$ :$\\set {a \\mid b}$ Category:Examples of Set Partitions m79iolwjmaoknsukrz8pneqzcwq0imf"}
+{"_id": "32952", "title": "Total Number of Set Partitions/Examples/3/Illustration", "text": "Total Number of Set Partitions/Examples/3/Illustration 0 71137 366808 2018-09-22T08:54:10Z Prime.mover 59 Created page with \"== Example of Total Number of Set Partitions == Let a set $S$ of cardinality $3$ be exemplified by $S = \\set {a...\" wikitext text/x-wiki == Example of Total Number of Set Partitions == Let a set $S$ of cardinality $3$ be exemplified by $S = \\set {a, b, c}$. Then the partitions of $S$ are: :$\\set {a, b, c}$ :$\\set {a, b \\mid c}$ :$\\set {a, c \\mid b}$ :$\\set {b, c \\mid a}$ :$\\set {a \\mid b \\mid c}$ Category:Examples of Set Partitions awrrsx8y7vinkak3nia95du5zdfolgp"}
+{"_id": "32953", "title": "Total Number of Set Partitions/Examples/4/Illustration", "text": "Total Number of Set Partitions/Examples/4/Illustration 0 71138 418216 418215 2019-08-15T06:28:33Z Prime.mover 59 wikitext text/x-wiki == Example of Total Number of Set Partitions == Let a set $S$ of cardinality $4$ be exemplified by $S = \\set {a, b, c, d}$. Then the partitions of $S$ are: :$\\set {a, b, c, d}$ :$\\set {\\set a, \\set {b, c, d} }$ :$\\set {\\set b, \\set {a, c, d} }$ :$\\set {\\set c, \\set {a, b, d} }$ :$\\set {\\set d, \\set {a, b, c} }$ :$\\set {\\set {a, b}, \\set {c, d} }$ :$\\set {\\set {a, c}, \\set {b, d} }$ :$\\set {\\set {a, d}, \\set {b, c} }$ :$\\set {\\set a, \\set b, \\set {c, d} }$ :$\\set {\\set a, \\set c, \\set {b, d} }$ :$\\set {\\set a, \\set d, \\set {b, c} }$ :$\\set {\\set b, \\set c, \\set {a, d} }$ :$\\set {\\set b, \\set d, \\set {a, c} }$ :$\\set {\\set c, \\set d, \\set {a, b} }$ :$\\set {\\set a, \\set b, \\set c, \\set d}$ == Sources == * {{BookReference|Set Theory and Abstract Algebra|1975|T.S. Blyth|prev = Definition:Set Partition/Definition 1|next = Set Partition/Examples/Partition into Singletons}}: $\\S 6$. Indexed families; partitions; equivalence relations: Example $6.2$ Category:Examples of Set Partitions g7vdhma5nj19r1y3o9j4rnx5w4mq25j"}
+{"_id": "32954", "title": "Modulo Addition/Cayley Table/Modulo 6", "text": "Modulo Addition/Cayley Table/Modulo 6 0 71211 379077 378169 2018-11-29T13:28:19Z Prime.mover 59 wikitext text/x-wiki == Cayley Table for Modulo Addition == The additive group of integers modulo $m$ can be described by showing its Cayley table. This one is for modulo $6$: :$\\begin{array}{r|rrrrrr} \\struct {\\Z_6, +_6} & \\eqclass 0 6 & \\eqclass 1 6 & \\eqclass 2 6 & \\eqclass 3 6 & \\eqclass 4 6 & \\eqclass 5 6 \\\\ \\hline \\eqclass 0 6 & \\eqclass 0 6 & \\eqclass 1 6 & \\eqclass 2 6 & \\eqclass 3 6 & \\eqclass 4 6 & \\eqclass 5 6 \\\\ \\eqclass 1 6 & \\eqclass 1 6 & \\eqclass 2 6 & \\eqclass 3 6 & \\eqclass 4 6 & \\eqclass 5 6 & \\eqclass 0 6 \\\\ \\eqclass 2 6 & \\eqclass 2 6 & \\eqclass 3 6 & \\eqclass 4 6 & \\eqclass 5 6 & \\eqclass 0 6 & \\eqclass 1 6 \\\\ \\eqclass 3 6 & \\eqclass 3 6 & \\eqclass 4 6 & \\eqclass 5 6 & \\eqclass 0 6 & \\eqclass 1 6 & \\eqclass 2 6 \\\\ \\eqclass 4 6 & \\eqclass 4 6 & \\eqclass 5 6 & \\eqclass 0 6 & \\eqclass 1 6 & \\eqclass 2 6 & \\eqclass 3 6 \\\\ \\eqclass 5 6 & \\eqclass 5 6 & \\eqclass 0 6 & \\eqclass 1 6 & \\eqclass 2 6 & \\eqclass 3 6 & \\eqclass 4 6 \\\\ \\end{array}$ which can also be presented: :$\\begin{array}{r|rrrrrr} +_6 & 0 & 1 & 2 & 3 & 4 & 5 \\\\ \\hline 0 & 0 & 1 & 2 & 3 & 4 & 5 \\\\ 1 & 1 & 2 & 3 & 4 & 5 & 0 \\\\ 2 & 2 & 3 & 4 & 5 & 0 & 1 \\\\ 3 & 3 & 4 & 5 & 0 & 1 & 2 \\\\ 4 & 4 & 5 & 0 & 1 & 2 & 3 \\\\ 5 & 5 & 0 & 1 & 2 & 3 & 4 \\\\ \\end{array}$ == Sources == * {{BookReference|Sets and Groups|1965|J.A. Green|prev = Symmetric Group on 3 Letters/Cayley Table|next = Alternating Group on 4 Letters/Cayley Table}}: Tables: $2$. Cyclic group of order $6$ * {{BookReference|Modern Algebra|1965|Seth Warner|prev = Definition:Multiplication/Modulo Multiplication/Definition 3|next = Modulo Multiplication/Cayley Table/Modulo 6}}: $\\S 2$: Example $2.3$ Category:Examples of Cayley Tables Category:Groups of Order 6 Category:Examples of Additive Groups of Integers Modulo m hjmtao7z2dr3n1jhme9h0i1x6pjfg32"}
+{"_id": "32955", "title": "Modulo Multiplication/Cayley Table/Modulo 6", "text": "Modulo Multiplication/Cayley Table/Modulo 6 0 71213 397332 370857 2019-03-25T21:58:59Z Prime.mover 59 wikitext text/x-wiki == Cayley Table for Modulo Multiplication == The multiplicative monoid of integers modulo $m$ can be described by showing its Cayley table. This one is for modulo $6$: :$\\begin{array} {r|rrrrrr} \\struct {\\Z_6, \\times_6} & \\eqclass 0 6 & \\eqclass 1 6 & \\eqclass 2 6 & \\eqclass 3 6 & \\eqclass 4 6 & \\eqclass 5 6 \\\\ \\hline \\eqclass 0 6 & \\eqclass 0 6 & \\eqclass 0 6 & \\eqclass 0 6 & \\eqclass 0 6 & \\eqclass 0 6 & \\eqclass 0 6 \\\\ \\eqclass 1 6 & \\eqclass 0 6 & \\eqclass 1 6 & \\eqclass 2 6 & \\eqclass 3 6 & \\eqclass 4 6 & \\eqclass 5 6 \\\\ \\eqclass 2 6 & \\eqclass 0 6 & \\eqclass 2 6 & \\eqclass 4 6 & \\eqclass 0 6 & \\eqclass 2 6 & \\eqclass 4 6 \\\\ \\eqclass 3 6 & \\eqclass 0 6 & \\eqclass 3 6 & \\eqclass 0 6 & \\eqclass 3 6 & \\eqclass 0 6 & \\eqclass 3 6 \\\\ \\eqclass 4 6 & \\eqclass 0 6 & \\eqclass 4 6 & \\eqclass 2 6 & \\eqclass 0 6 & \\eqclass 4 6 & \\eqclass 2 6 \\\\ \\eqclass 5 6 & \\eqclass 0 6 & \\eqclass 5 6 & \\eqclass 4 6 & \\eqclass 3 6 & \\eqclass 2 6 & \\eqclass 1 6 \\\\ \\end{array}$ which can also be presented: :$\\begin{array} {r|rrrrrr} \\times_6 & 0 & 1 & 2 & 3 & 4 & 5 \\\\ \\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\ 1 & 0 & 1 & 2 & 3 & 4 & 5 \\\\ 2 & 0 & 2 & 4 & 0 & 2 & 4 \\\\ 3 & 0 & 3 & 0 & 3 & 0 & 3 \\\\ 4 & 0 & 4 & 2 & 0 & 4 & 2 \\\\ 5 & 0 & 5 & 4 & 3 & 2 & 1 \\\\ \\end{array}$ == Sources == * {{BookReference|Modern Algebra|1965|Seth Warner|prev = Modulo Addition/Cayley Table/Modulo 6|next = Modulo Multiplication is Associative/Proof 2}}: $\\S 2$: Example $2.3$ * {{BookReference|An Introduction to Abstract Algebra|1978|Thomas A. Whitelaw|prev = Equivalence Relation on Square Matrices induced by Positive Integer Powers|next = Modulo Arithmetic/Examples/Solutions to x^2 = x Modulo 6}}: Chapter $3$: Equivalence Relations and Equivalence Classes: Exercise $7$ Category:Examples of Cayley Tables Category:Modulo Multiplication qdh7ih2623tp3ft6811sln6l30hf97q"}
+{"_id": "32956", "title": "Cauchy Sequences form Ring with Unity/Corollary", "text": "Cauchy Sequences form Ring with Unity/Corollary 0 71225 472816 472815 2020-06-09T06:45:06Z Prime.mover 59 wikitext text/x-wiki == Corollary to Cauchy Sequences form Ring with Unity == Let $\\struct {F, +, \\circ, \\norm {\\, \\cdot \\,} }$ be a valued field. Let $\\struct {F^\\N, +, \\circ}$ be the commutative ring of sequences over $F$ with unity $\\tuple {1, 1, 1, \\dotsc}$. {{explain|Has it been proved that $\\struct {F^\\N, +, \\circ}$ is actually a commutative ring?}} Let $\\CC \\subset F^\\N$ be the set of Cauchy sequences on $F$. Then: :$\\struct {\\CC, +, \\circ}$ is a commutative subring of $F^\\N$ with unity $\\tuple {1, 1, 1, \\dotsc}$. == Proof == By Cauchy Sequences form Ring with Unity, $\\struct {\\CC, +, \\circ}$ is a subring of $F^\\N$. We have that $\\circ$ is commutative on $F^\\N$. Hence by Restriction of Commutative Operation is Commutative the restriction of $\\circ$ to $\\CC$ is commutative. == Sources == * {{BookReference|p-adic Numbers: An Introduction|1997|Fernando Q. Gouvea}}: $\\S 3.2$: Completions Category:Cauchy Sequences in Normed Division Rings shjh29azsntz6pkub11ghpuvur8rmlw"}
+{"_id": "32957", "title": "Modulo Arithmetic/Examples/Multiplicative Inverse of 41 Modulo 97", "text": "Modulo Arithmetic/Examples/Multiplicative Inverse of 41 Modulo 97 0 71245 367522 367490 2018-09-27T15:38:12Z Prime.mover 59 wikitext text/x-wiki == Example of Modulo Arithmetic == The inverse of $41$ under multiplication modulo $97$ is given by: :${\\eqclass {41} {97} }^{-1} = 71$ === Solution to $41 x \\equiv 2 \\pmod {97}$ === {{:Modulo Arithmetic/Examples/Multiplicative Inverse of 41 Modulo 97/41x = 2 Modulo 97}} == Proof == From Ring of Integers Modulo Prime is Field, multiplication modulo $97$ has an inverse for all $x \\in \\Z_{97}$ where $x \\ne 0$. Using Euclid's Algorithm: {{begin-eqn}} {{eqn | n = 1 | l = 97 | r = 2 \\times 41 + 15 }} {{eqn | n = 2 | l = 41 | r = 2 \\times 15 + 11 }} {{eqn | n = 3 | l = 15 | r = 11 + 4 }} {{eqn | n = 4 | l = 11 | r = 2 \\times 4 + 3 }} {{eqn | n = 5 | l = 4 | r = 3 + 1 }} {{end-eqn}} Then: {{begin-eqn}} {{eqn | l = 1 | r = 4 - 3 | c = from $(5)$ }} {{eqn | r = 4 - \\paren {11 - 2 \\times 4} | c = from $(4)$ }} {{eqn | r = 3 \\times 4 - 11 | c = }} {{eqn | r = 3 \\times \\paren {15 - 11} - 11 | c = from $(3)$ }} {{eqn | r = 3 \\times 15 - 4 \\times 11 | c = }} {{eqn | r = 3 \\times 15 - 4 \\times \\paren {41 - 2 \\times 15} | c = from $(2)$ }} {{eqn | r = 11 \\times 15 - 4 \\times 41 | c = }} {{eqn | r = 11 \\times \\paren {97 - 2 \\times 14} - 4 \\times 41 | c = from $(1)$ }} {{eqn | r = 11 \\times 97 - 26 \\times 41 | c = }} {{end-eqn}} So: : $\\paren {-26} \\times 41 \\equiv 1 \\pmod {97}$ {{begin-eqn}} {{eqn | l = \\paren {-26} \\times 41 | o = \\equiv | r = 1 | rr= \\pmod {97} | c = }} {{eqn | l = 71 \\times 41 | o = \\equiv | r = 1 | rr= \\pmod {97} | c = as $-26 \\equiv 71 \\pmod {97}$ because $26 + 71 = 97$ }} {{eqn | ll= \\leadsto | l = {\\eqclass {41} {97} }^{-1} | r = \\eqclass {71} {97} | c = }} {{end-eqn}} Hence the result. {{qed}} == Sources == * {{BookReference|An Introduction to Abstract Algebra|1978|Thomas A. Whitelaw|prev = Modulo Arithmetic/Examples/Solutions to x^2 = x Modulo 6|next = Modulo Arithmetic/Examples/Multiplicative Inverse of 41 Modulo 97/41x = 2 Modulo 97}}: Chapter $3$: Equivalence Relations and Equivalence Classes: Exercise $8$ Category:Examples of Modulo Arithmetic Category:Multiplicative Inverse of 41 Modulo 97 aj7quf3yc5k62f9zgwb5kwrh5za2ik7"}
+{"_id": "32958", "title": "Real Square Function is not Injective", "text": "Real Square Function is not Injective 0 71342 376794 376744 2018-11-15T16:13:56Z Prime.mover 59 wikitext text/x-wiki == Example of Mapping which is Not an Injection == Let $f: \\R \\to \\R$ be the real square function: :$\\forall x \\in \\R: \\map f x = x^2$ Then $f$ is not an injection. == Proof == For $f$ to be an injection, it would be necessary that: :$\\forall x_1, x_2 \\in \\R: \\map f {x_1} = \\map f {x_2} \\implies x_1 = x_2$ By definition of the squaring operation, we have: :$\\map f x = \\map f {-x}$ But unless $x = 0$ it is not the case that $x = -x$. Hence $f$ is not an injection. {{qed}} == Sources == * {{BookReference|An Introduction to Abstract Algebra|1978|Thomas A. Whitelaw|prev = Definition:Injection/Definition 1 a|next = Injection/Examples/Cube Function}}: $\\S 22$: Injections; bijections; inverse of a bijection Category:Examples of Injections Category:Square Function rnjglt6paz96657wm169cjbl4y054mu"}
+{"_id": "32959", "title": "Image of Mapping/Examples/Image of x^2-4x+5", "text": "Image of Mapping/Examples/Image of x^2-4x+5 0 71455 427644 368749 2019-09-25T15:48:30Z Prime.mover 59 wikitext text/x-wiki == Example of Image of Element under Mapping == Let $f: \\R \\to \\R$ be the mapping defined as: :$\\forall x \\in \\R: \\map f x = x^2 - 4 x + 5$ The image of $f$ is the unbounded closed interval: :$\\Img f = \\hointr 1 \\to$ and so $f$ is not a surjection. === Graphical Representation of $\\map f x = x^2 - 4 x + 5$ === {{:Image of Mapping/Examples/Image of x^2-4x+5/Graph}} == Proof == By differentiating $x^2 - 4 x + 5$ twice {{WRT|Differentiation}} $x$: :$f' = 2 x - 4$ :$f' = 2 x - 4$ {{begin-eqn}} {{eqn | l = f' | r = 2 x - 4 }} {{eqn | l = f'' | r = 2 }} {{end-eqn}} Equating $f'$ to $0$, a stationary point is found at $x = 2$. Inspecting the sign of $f''$, it is noted that $f'$ is increasing everywhere. Hence the stationary point at $x = 2$ is a minimum of $\\Img f$. This is the only stationary point, so it can be stated that '''the''' minimum of $f$ occurs at $x = 2$. We have that: :$f \\paren 2 = 2^2 - 4 \\times 2 + 5 = 4 - 8 + 5 = 1$ As $f$ is strictly increasing on $x > 2$ and strictly decreasing on $x < 2$, it is seen that $f$ is unbounded above. Thus: :$\\Img f = \\hointr 1 \\to$ {{qed}} == Also see == * Bijective Restrictions of $\\map f x = x^2 - 4 x + 5$ == Sources == * {{BookReference|An Introduction to Abstract Algebra|1978|Thomas A. Whitelaw|prev = Cantor's Theorem|next = Bijective Restriction/Examples/x^2-4x+5}}: Chapter $4$: Mappings: Exercise $12 \\ \\text{(ii)}$ Category:Examples of Images under Mappings 4c0225x2ed0rbwxsccxhz3tccv0cdge"}
+{"_id": "32960", "title": "Subsemigroup/Examples/2x2 Matrices with One Non-Zero Entry", "text": "Subsemigroup/Examples/2x2 Matrices with One Non-Zero Entry 0 71509 369174 369160 2018-10-05T22:25:59Z Prime.mover 59 wikitext text/x-wiki == Example of Subsemigroup == Let $\\struct {S, \\times}$ be the semigroup formed by the set of order $2$ square matrices over the real numbers $R$ under (conventional) matrix multiplication. Let $T$ be the subset of $S$ consisting of the matrices of the form $\\begin{bmatrix} x & 0 \\\\ 0 & 0 \\end{bmatrix}$ for $x \\in \\R$. Then $\\struct {T, \\times}$ is a subsemigroup of $\\struct {S, \\times}$. == Proof == From the Subsemigroup Closure Test it is sufficient to demonstrate that $\\struct {T, \\times}$ is closed. Let $A = \\begin{bmatrix} x & 0 \\\\ 0 & 0 \\end{bmatrix}$ and $B = \\begin{bmatrix} y & 0 \\\\ 0 & 0 \\end{bmatrix}$. Then: {{begin-eqn}} {{eqn | l = A B | r = \\begin{bmatrix} x & 0 \\\\ 0 & 0 \\end{bmatrix} \\begin{bmatrix} y & 0 \\\\ 0 & 0 \\end{bmatrix} | c = }} {{eqn | r = \\begin{bmatrix} x y + 0 \\times 0 & x \\times 0 + 0 \\times 0 \\\\ 0 \\times y + 0 \\times 0 & 0 \\times 0 + 0 \\times 0 \\end{bmatrix} | c = {{Defof|Matrix Product (Conventional)}} }} {{eqn | r = \\begin{bmatrix} x y & 0 \\\\ 0 & 0 \\end{bmatrix} | c = }} {{eqn | 0 = \\in | r = T | c = }} {{end-eqn}} Hence the result. {{qed}} == Sources == * {{BookReference|An Introduction to Abstract Algebra|1978|Thomas A. Whitelaw|prev = Subsemigroup Closure Test|next = Identity of Submonoid is not necessarily Identity of Monoid}}: $\\S 32$ Identity element and inverses Category:Examples of Subsemigroups 18jb5pq679bn9stqcgsimhlezkawejn"}
+{"_id": "32961", "title": "Semigroup/Examples/x+y-xy on Integers", "text": "Semigroup/Examples/x+y-xy on Integers 0 71513 369176 369175 2018-10-05T22:31:28Z Prime.mover 59 wikitext text/x-wiki == Example of Semigroup == Let $\\circ: \\Z \\times \\Z$ be the operation defined on the integers $\\Z$ as: :$\\forall x, y \\in \\Z: x \\circ y := x + y - x y$ Then $\\struct {\\Z, \\circ}$ is a semigroup. == Proof == We have that: :$\\forall x, y \\in \\Z: x \\circ y \\in \\Z$ and so $\\struct {\\Z, \\circ}$ is closed. Now let $x, y, z \\in \\Z$. We have: {{begin-eqn}} {{eqn | l = x \\circ \\paren {y \\circ z} | r = x + \\paren {y \\circ z} - x \\paren {y \\circ z} | c = Definition of $\\circ$ }} {{eqn | r = x + \\paren {y + z - y z} - x \\paren {y + z - y z} | c = Definition of $\\circ$ }} {{eqn | r = x + y + z - y z - x y - x z + x y z | c = }} {{end-eqn}} and: {{begin-eqn}} {{eqn | l = \\paren {x \\circ y} \\circ z | r = \\paren {x \\circ y} + z - \\paren {x \\circ y} z | c = Definition of $\\circ$ }} {{eqn | r = \\paren {x + y - x y} + z - \\paren {x + y - x y} z | c = Definition of $\\circ$ }} {{eqn | r = x + y - x y + z - x z - y z + x y z | c = }} {{end-eqn}} As can be seen by inspection: :$x \\circ \\paren {y \\circ z} = \\paren {x \\circ y} \\circ z$ and so $\\circ$ is associative. The result follows by definition of semigroup. {{qed}} == Also see == * Inclusion-Exclusion Principle (think about why) == Sources == * {{BookReference|An Introduction to Abstract Algebra|1978|Thomas A. Whitelaw|prev = Identity of Submonoid is not necessarily Identity of Monoid|next = Subsemigroup/Examples/x+y-xy on Integers}}: Chapter $5$: Semigroups: Exercise $1$ Category:Examples of Semigroups 29jgsmiq5wfzvoahsghgaqhysfrstze"}
+{"_id": "32962", "title": "Order of Group Element/Examples/Element of Multiplicative Group of Real Numbers", "text": "Order of Group Element/Examples/Element of Multiplicative Group of Real Numbers 0 71674 370495 370432 2018-10-11T19:59:37Z Prime.mover 59 wikitext text/x-wiki == Examples of Order of Group Element == Consider the multiplicative group of real numbers $\\struct {\\R_{\\ne 0}, \\times}$. The order of $2$ in $\\struct {\\R_{\\ne 0}, \\times}$ is infinite. == Proof == From Real Multiplication Identity is One, the identity of $\\struct {\\R_{\\ne 0}, \\times}$ is $1$. There exists no $n \\in \\Z_{\\ge 0}$ such that $2^n = 1$. Hence the result by definition of infinite order element. {{qed}} == Sources == * {{BookReference|An Introduction to Abstract Algebra|1978|Thomas A. Whitelaw|prev = Definition:Order of Group Element/Also known as|next = Order of Group Element/Examples/Imaginary Unit in Multiplicative Group of Complex Numbers}}: $\\S 38$. Period of an element: Illustrations: $\\text{(i)}$ Category:Examples of Order of Group Elements Category:Multiplicative Group of Real Numbers r8303q13pbsr1eujhsy2zscbynoqbsf"}
+{"_id": "32963", "title": "Order of Group Element/Examples/Imaginary Unit in Multiplicative Group of Complex Numbers", "text": "Order of Group Element/Examples/Imaginary Unit in Multiplicative Group of Complex Numbers 0 71675 370340 370337 2018-10-11T06:38:37Z Prime.mover 59 Prime.mover moved page Order of Group Element/Examples/Gaussian Integer in Multiplicative Group of Complex Numbers to Order of Group Element/Examples/Imaginary Unit in Multiplicative Group of Complex Numbers wikitext text/x-wiki == Examples of Order of Group Element == Consider the multiplicative group of complex numbers $\\struct {\\C_{\\ne 0}, \\times}$. The order of $i$ in $\\struct {\\C_{\\ne 0}, \\times}$ is $4$. == Proof == We have: {{begin-eqn}} {{eqn | l = i^1 | r = 1 | c = }} {{eqn | l = i^2 | r = -1 | c = }} {{eqn | l = i^3 | r = -i | c = }} {{eqn | l = i^4 | r = 1 | c = }} {{end-eqn}} Hence the result by definition of order of group element. {{qed}} == Sources == * {{BookReference|An Introduction to Abstract Algebra|1978|Thomas A. Whitelaw|prev = Order of Group Element/Examples/Element of Multiplicative Group of Real Numbers|next = Identity is Only Group Element of Order 1}}: $\\S 38$. Period of an element: Illustrations: $\\text{(ii)}$ Category:Examples of Order of Group Elements oh68f40teq2kjhn3mrnyhe3jlurecwi"}
+{"_id": "32964", "title": "Quaternion Group/Cayley Table", "text": "Quaternion Group/Cayley Table 0 71742 387867 374905 2019-01-15T13:02:12Z Prime.mover 59 wikitext text/x-wiki == Cayley Table for Quaternion Group== The Cayley table for the quaternion group given with the group presentation: :$Q = \\Dic 2 = \\gen {a, b: a^4 = e, b^2 = a^2, a b a = b}$ can be presented as: :$\\begin{array}{r|rrrrrrrr} & e & a & a^2 & a^3 & b & a b & a^2 b & a^3 b \\\\ \\hline e & e & a & a^2 & a^3 & b & a b & a^2 b & a^3 b \\\\ a & a & a^2 & a^3 & e & a b & a^2 b & a^3 b & b \\\\ a^2 & a^2 & a^3 & e & a & a^2 b & a^3 b & b & a b \\\\ a^3 & a^3 & e & a & a^2 & a^3 b & b & a b & a^2 b \\\\ b & b & a^3 b & a^2 b & a b & a^2 & a & e & a^3 \\\\ a b & a b & b & a^3 b & a^2 b & a^3 & a^2 & a & e \\\\ a^2 b & a^2 b & a b & b & a^3 b & e & a^3 & a^2 & a \\\\ a^3 b & a^3 b & a^2 b & a b & b & a & e & a^3 & a^2 \\end{array}$ === Coset Decomposition of $\\set {e, a^2}$ === Presenting the above Cayley table with respect to the coset decomposition of the normal subgroup $\\gen a^2$ gives: {{:Quaternion Group/Cayley Table/Coset Decomposition of (e, a^2)}} == Sources == * {{BookReference|Elements of Abstract Algebra|1971|Allan Clark|prev = Definition:Quaternion Group|next = Quaternion Group is Hamiltonian}}: Chapter $2$: Conjugacy, Normal Subgroups, and Quotient Groups: $\\S 46 \\iota$ Category:Quaternion Group Category:Examples of Cayley Tables lnm51jeg7pcggtfeaiqu9z7kxcezvi6"}
+{"_id": "32965", "title": "Quaternion Group/Complex Matrices/Cayley Table", "text": "Quaternion Group/Complex Matrices/Cayley Table 0 71744 370945 370909 2018-10-13T22:01:19Z Prime.mover 59 wikitext text/x-wiki == Cayley Table for Quaternion Group== The Cayley table for the quaternion group: :$Q = \\Dic 2 = \\set {\\mathbf 1, -\\mathbf 1, \\mathbf i, -\\mathbf i, \\mathbf j, -\\mathbf j, \\mathbf k, -\\mathbf k}$ under the operation of conventional matrix multiplication, where: :$\\mathbf 1 = \\begin{bmatrix} 1 & 0 \\\\ 0 & 1 \\end{bmatrix} \\qquad \\mathbf i = \\begin{bmatrix} i & 0 \\\\ 0 & -i \\end{bmatrix} \\qquad \\mathbf j = \\begin{bmatrix} 0 & 1 \\\\ -1 & 0 \\end{bmatrix} \\qquad \\mathbf k = \\begin{bmatrix} 0 & i \\\\ i & 0 \\end{bmatrix}$ can be presented as: :$\\begin{array}{r|rrrrrrrr} & \\mathbf 1 & \\mathbf i & -\\mathbf 1 & -\\mathbf i & \\mathbf j & \\mathbf k & -\\mathbf j & -\\mathbf k \\\\ \\hline \\mathbf 1 & \\mathbf 1 & \\mathbf i & -\\mathbf 1 & -\\mathbf i & \\mathbf j & \\mathbf k & -\\mathbf j & -\\mathbf k \\\\ \\mathbf i & \\mathbf i & -\\mathbf 1 & -\\mathbf i & \\mathbf 1 & \\mathbf k & -\\mathbf j & -\\mathbf k & \\mathbf j \\\\ -\\mathbf 1 & -\\mathbf 1 & -\\mathbf i & \\mathbf 1 & \\mathbf i & -\\mathbf j & -\\mathbf k & \\mathbf j & \\mathbf k \\\\ -\\mathbf i & -\\mathbf i & \\mathbf 1 & \\mathbf i & -\\mathbf 1 & -\\mathbf k & \\mathbf j & \\mathbf k & -\\mathbf j \\\\ \\mathbf j & \\mathbf j & -\\mathbf k & -\\mathbf j & \\mathbf k & -\\mathbf 1 & \\mathbf i & \\mathbf 1 & -\\mathbf i \\\\ \\mathbf k & \\mathbf k & \\mathbf j & -\\mathbf k & -\\mathbf j & -\\mathbf i & -\\mathbf 1 & \\mathbf i & \\mathbf 1 \\\\ -\\mathbf j & -\\mathbf j & \\mathbf k & \\mathbf j & -\\mathbf k & \\mathbf 1 & -\\mathbf i & -\\mathbf 1 & \\mathbf i \\\\ -\\mathbf k & -\\mathbf k & -\\mathbf j & \\mathbf k & \\mathbf j & \\mathbf i & \\mathbf 1 & -\\mathbf i & -\\mathbf 1 \\end{array}$ == Sources == * {{BookReference|An Introduction to Abstract Algebra|1978|Thomas A. Whitelaw|prev = Order of Power of Group Element/Examples/Powers of Element of Order 20|next = Order of Elements in Quaternion Group}}: Chapter $6$: An Introduction to Groups: Exercise $14$ Category:Quaternion Group Category:Examples of Cayley Tables a8334fcqkltaejdxgcf2c1z0aauwyi2"}
+{"_id": "32966", "title": "Order of Subgroup Product/Lemma", "text": "Order of Subgroup Product/Lemma 0 71989 372771 2018-10-23T14:20:28Z Prime.mover 59 Created page with \"== Lemma for Order of Subgroup Product == Let $h_1, h_2 \\in H$. Then: :$h_1 K = h_2 K$ {{iff}}: :$h_1$ and $h_2$ are in the same Definition:Left Coset|lef...\" wikitext text/x-wiki == Lemma for Order of Subgroup Product == Let $h_1, h_2 \\in H$. Then: :$h_1 K = h_2 K$ {{iff}}: :$h_1$ and $h_2$ are in the same left coset of $H \\cap K$. == Proof == Let $h_1, h_2 \\in H$. Then: {{begin-eqn}} {{eqn | l = h_1 K | r = h_2 K | c = }} {{eqn | ll= \\iff | l = h_1^{-1} h_2 | o = \\in | r = K | c = Left Cosets are Equal iff Product with Inverse in Subgroup }} {{eqn | ll= \\iff | l = h_1^{-1} h_2 | o = \\in | r = H \\cap K | c = {{Defof|Set Intersection}} }} {{eqn | ll= \\iff | l = h_1 \\paren {H \\cap K} | r = h_2 \\paren {H \\cap K} | c = Left Cosets are Equal iff Product with Inverse in Subgroup }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|An Introduction to Abstract Algebra|1978|Thomas A. Whitelaw|prev = Intersection of Left Cosets of Subgroups is Left Coset of Intersection|next = Order of Subgroup Product/Proof 2}}: Chapter $7$: Cosets and Lagrange's Theorem: Exercise $10$ Category:Order of Subgroup Product 8ppal07pfp8shxynzdiwus7k1ph9xcu"}
+{"_id": "32967", "title": "Symmetry Group of Regular Hexagon/Group Action on Vertices", "text": "Symmetry Group of Regular Hexagon/Group Action on Vertices 0 72174 444487 374648 2020-01-22T13:40:32Z Prime.mover 59 wikitext text/x-wiki == Group Action of Symmetry Group of Regular Hexagon == Let $\\HH = ABCDEF$ be a regular hexagon. Let $D_6$ denote the symmetry group of $\\HH$. :520px Let $e$ denote the identity mapping Let $\\alpha$ denote rotation of $\\HH$ anticlockwise through $\\dfrac \\pi 3$ radians ($60 \\degrees$) Let $\\beta$ denote reflection of $\\HH$ in the $AD$ axis. $D_6$ acts on the vertices of $\\HH$ according to this table: :$\\begin{array}{cccccccccccc} e & \\alpha & \\alpha^2 & \\alpha^3 & \\alpha^4 & \\alpha^5 & \\beta & \\alpha \\beta & \\alpha^2 \\beta & \\alpha^3 \\beta & \\alpha^4 \\beta & \\alpha^5 \\beta \\\\ \\hline A & B & C & D & E & F & A & B & C & D & E & F \\\\ B & C & D & E & F & A & F & A & B & C & D & E \\\\ C & D & E & F & A & B & E & F & A & B & C & D \\\\ D & E & F & A & B & C & D & E & F & A & B & C \\\\ E & F & A & B & C & D & C & D & E & F & A & B \\\\ F & A & B & C & D & E & B & C & D & E & F & A \\\\ \\end{array}$ == Sources == * {{BookReference|Elements of Abstract Algebra|1971|Allan Clark|prev = Definition:Symmetry Group of Regular Hexagon|next = Symmetry Group of Regular Hexagon/Examples/Subgroup that Fixes C}}: Chapter $2$: Subgroups and Cosets: $\\S 35 \\zeta$ Category:Symmetry Group of Regular Hexagon m0iwr36mc45sx35m6unnqrg85efbqc2"}
+{"_id": "32968", "title": "Composition of Distance-Preserving Mappings is Distance-Preserving", "text": "Composition of Distance-Preserving Mappings is Distance-Preserving 0 72279 375364 2018-11-08T10:30:08Z Leigh.Samphier 3031 Created page with \"{{Proofread}} == Theorem == Let: : $\\struct{X_1, d_1}$ : $\\struct{X_2, d_2}$ : $\\struct{X_3, d_3}$ be metric spaces. Let: : $\\phi: \\...\" wikitext text/x-wiki {{Proofread}} == Theorem == Let: : $\\struct{X_1, d_1}$ : $\\struct{X_2, d_2}$ : $\\struct{X_3, d_3}$ be metric spaces. Let: : $\\phi: \\struct{X_1, d_1} \\to \\struct{X_2, d_2}$ : $\\psi: \\struct{X_2, d_2} \\to \\struct{X_3, d_3}$ be distance-preserving mappings. Then the composite of $\\phi$ and $\\psi$ is also a distance-preserving mapping. == Proof == Let $x,y \\in X_1$ then: {{begin-eqn}} {{eqn|l= d_1 \\paren {x,y} |r= d_2 \\paren {\\map \\phi x, \\map \\phi y } |c= $\\phi$ is a distance-preserving mapping }} {{eqn|r= d_3 \\paren {\\map \\psi {\\map \\phi x}, \\map \\psi {\\map \\phi y} } |c= $\\psi$ is a distance-preserving mapping }} {{eqn|r= d_3 \\paren {\\map {\\psi \\circ \\phi} x, \\map {\\psi \\circ \\phi} y } |c= Definition of composite mappings }} {{end-eqn}} By the definition of a distance-preserving mapping then $\\psi \\circ \\phi$ is distance-preserving. {{qed}} Category:Metric Spaces hfxs3l40pav13ef7tjwiauyc64ky2dk"}
+{"_id": "32969", "title": "First Sylow Theorem/Corollary", "text": "First Sylow Theorem/Corollary 0 72298 375516 375507 2018-11-09T08:07:40Z Prime.mover 59 wikitext text/x-wiki == Corollary to First Sylow Theorem == Let $p$ be a prime number. Let $G$ be a group. Let: :$p^n \\divides \\order G$ where: :$\\order G$ denotes the order of $G$ :$n$ is a positive integer. Then $G$ has at least one subgroup of order $p$. == Proof 1 == {{:First Sylow Theorem/Corollary/Proof 1}} == Proof 2 == This result can also be proved directly: {{:First Sylow Theorem/Corollary/Proof 2}} == Sources == * {{BookReference|An Introduction to Abstract Algebra|1978|Thomas A. Whitelaw|prev = Group does not Necessarily have Subgroup of Order of Divisor of its Order/Proof 1|next = Sylow Theorems/Historical Note}}: $\\S 44$. Some consequences of Lagrange's Theorem Category:Sylow Theorems Category:First Sylow Theorem ney8asccuu12b8eb2wiwnl2i3np323q"}
+{"_id": "32970", "title": "Real Square Function is not Surjective", "text": "Real Square Function is not Surjective 0 72448 376766 376755 2018-11-15T12:35:50Z Prime.mover 59 wikitext text/x-wiki == Example of Mapping which is Not a Surjection == Let $f: \\R \\to \\R$ be the real square function: :$\\forall x \\in \\R: \\map f x = x^2$ Then $f$ is not a surjection. == Proof == For $f$ to be a surjection, it would be necessary that: :$\\forall y \\in \\R: \\exists x \\in \\R: \\map f x = y$ However from Square of Real Number is Non-Negative: :$\\forall y \\in \\R_{< 0}: \\nexists x \\in \\R: \\map f x = y$ Hence $f$ is not a surjection. {{qed}} Category:Examples of Surjections Category:Square Function jirhg29kr6a3z2p55pv7z9u7rl9en6t"}
+{"_id": "32971", "title": "Monoid/Examples/x+y+xy on Reals", "text": "Monoid/Examples/x+y+xy on Reals 0 72644 377613 377611 2018-11-20T22:53:40Z Prime.mover 59 wikitext text/x-wiki == Example of Monoid == Let $\\circ: \\R \\times \\R$ be the operation defined on the real numbers $\\R$ as: :$\\forall x, y \\in \\R: x \\circ y := x + y + x y$ Then $\\struct {\\R, \\circ}$ is a monoid whose identity is $0$. == Proof == We have that: :$\\forall x, y \\in \\R: x \\circ y \\in \\R$ and so $\\struct {\\R, \\circ}$ is closed. Now let $x, y, z \\in \\R$. We have: {{begin-eqn}} {{eqn | l = x \\circ \\paren {y \\circ z} | r = x + \\paren {y \\circ z} + x \\paren {y \\circ z} | c = Definition of $\\circ$ }} {{eqn | r = x + \\paren {y + z + y z} + x \\paren {y + z + y z} | c = Definition of $\\circ$ }} {{eqn | r = x + y + z + y z + x y + x z + x y z | c = }} {{end-eqn}} and: {{begin-eqn}} {{eqn | l = \\paren {x \\circ y} \\circ z | r = \\paren {x \\circ y} + z + \\paren {x \\circ y} z | c = Definition of $\\circ$ }} {{eqn | r = \\paren {x + y + x y} + z + \\paren {x + y + x y} z | c = Definition of $\\circ$ }} {{eqn | r = x + y + x y + z + x z + y z + x y z | c = }} {{end-eqn}} As can be seen by inspection: :$x \\circ \\paren {y \\circ z} = \\paren {x \\circ y} \\circ z$ and so $\\circ$ is associative. Then we have: {{begin-eqn}} {{eqn | l = x \\circ 0 | r = x + 0 + x \\times 0 | c = Definition of $\\circ$ }} {{eqn | r = x | c = }} {{eqn | r = 0 + x + 0 \\times x | c = }} {{eqn | r = 0 \\circ x | c = Definition of $\\circ$ }} {{end-eqn}} The result follows by definition of monoid. {{qed}} == Sources == * {{BookReference|Sets and Groups|1965|J.A. Green|prev = Product of Semigroup Element with Right Inverse is Idempotent|next = Group/Examples/x+y+xy over Reals less -1}}: Chapter $4$. Groups: Exercise $11$ Category:Examples of Monoids 8k8qism2j4hs6tzrbri531k0xz0ye4e"}
+{"_id": "32972", "title": "Symmetric Group on 3 Letters/Subgroups", "text": "Symmetric Group on 3 Letters/Subgroups 0 72657 387850 386199 2019-01-15T10:15:05Z Prime.mover 59 wikitext text/x-wiki == Subgroups of the Symmetric Group on $3$ Letters == Let $S_3$ denote the Symmetric Group on $3$ Letters, whose Cayley table is given as: {{:Symmetric Group on 3 Letters/Cayley Table}} The subsets of $S_3$ which form subgroups of $S_3$ are: {{begin-eqn}} {{eqn | o = | r = S_3 }} {{eqn | o = | r = \\set e }} {{eqn | o = | r = \\set {e, \\tuple {123}, \\tuple {132} } }} {{eqn | o = | r = \\set {e, \\tuple {12} } }} {{eqn | o = | r = \\set {e, \\tuple {13} } }} {{eqn | o = | r = \\set {e, \\tuple {23} } }} {{end-eqn}} == Examples == {{:Symmetric Group on 3 Letters/Subgroups/Examples}} == Sources == * {{BookReference|Sets and Groups|1965|J.A. Green|prev = Integer Multiples under Addition form Subgroup of Integers|next = Intersection of Subgroups/General Result}}: $\\S 5.2$. Subgroups: Example $93$ * {{BookReference|Problems in Group Theory|1967|John D. Dixon|prev = Symmetric Group on 3 Letters/Group Presentation|next = Quaternion Group/Complex Matrices}}: $1$: Subgroups: Problem $1.1$ * {{BookReference|A Course in Group Theory|1996|John F. Humphreys|prev = Conjugate of Subgroup is Subgroup|next = Symmetric Group on 3 Letters/Normal Subgroups}}: Chapter $7$: Normal subgroups and quotient groups: Exercise $2$ Category:Symmetric Group on 3 Letters ox31arglp9woaqb3klh0cjskly338vd"}
+{"_id": "32973", "title": "Alternating Group on 4 Letters", "text": "Alternating Group on 4 Letters 0 72718 378592 378497 2018-11-26T21:28:05Z Prime.mover 59 wikitext text/x-wiki == Group Example == Let $S_4$ denote the symmetric group on $4$ letters. The '''alternating group on $4$ letters''' $A_4$ is the kernel of the mapping $\\sgn: S_4 \\to C_2$. === Cycle Notation === It can be expressed in the form of permutations given in cycle notation as follows: {{:Alternating Group on 4 Letters/Cycle Notation}} === Cayley Table === The Cayley table of $A_4$ can be written: {{:Alternating Group on 4 Letters/Cayley Table}} == Order of Elements == {{:Alternating Group on 4 Letters/Order of Elements}} == Subgroups == {{:Alternating Group on 4 Letters/Subgroups}} == Normality of Subgroups == {{:Alternating Group on 4 Letters/Normality of Subgroups}} == Conjugacy Classes == {{:Alternating Group on 4 Letters/Conjugacy Classes}} Category:Groups of Order 12 Category:Alternating Group on 4 Letters Category:Examples of Alternating Groups b8c53avi3mg9mezem94330pcr7iayd8"}
+{"_id": "32974", "title": "Alternating Group on 4 Letters/Cayley Table", "text": "Alternating Group on 4 Letters/Cayley Table 0 72721 379079 378599 2018-11-29T13:33:18Z Prime.mover 59 wikitext text/x-wiki == Cayley Table of Alternating Group on $4$ Letters == The Cayley table of the alternating group on $4$ letters can be written: :$\\begin{array}{c|cccc|cccc|cccc} \\circ & e & t & u & v & a & b & c & d & p & q & r & s \\\\ \\hline e & e & t & u & v & a & b & c & d & p & q & r & s \\\\ t & t & e & v & u & b & a & d & c & q & p & s & r \\\\ u & u & v & e & t & c & d & a & b & r & s & p & q \\\\ v & v & u & t & e & d & c & b & a & s & r & q & p \\\\ \\hline a & a & c & d & b & p & r & s & q & e & u & v & t \\\\ b & b & d & c & a & q & s & r & p & t & v & u & e \\\\ c & c & a & b & d & r & p & q & s & u & e & t & v \\\\ d & d & b & a & c & s & q & p & r & v & t & e & u \\\\ \\hline p & p & s & q & r & e & v & t & u & a & d & b & c \\\\ q & q & r & p & s & t & u & e & v & b & c & a & d \\\\ r & r & q & s & p & u & t & v & e & c & b & d & a \\\\ s & s & p & r & q & v & e & u & t & d & a & c & b \\\\ \\end{array}$ where the expression for $A_4$ in cycle notation is given as: {{:Alternating Group on 4 Letters/Cycle Notation}} == Sources == * {{BookReference|Sets and Groups|1965|J.A. Green|prev = Modulo Addition/Cayley Table/Modulo 6|next = Definition:Klein Four-Group}}: Tables: $3$. Alternating group $\\map A 4$ Category:Examples of Cayley Tables Category:Alternating Group on 4 Letters nwy2h2z2dzkaiehq36hkylmxreidu1z"}
+{"_id": "32975", "title": "Alternating Group on 4 Letters/Cycle Notation", "text": "Alternating Group on 4 Letters/Cycle Notation 0 72722 388451 388450 2019-01-19T06:15:16Z Prime.mover 59 wikitext text/x-wiki == Cycle Notation for Alternating Group on $4$ Letters == The alternating group on $4$ letters can be given in cycle notation as follows: {{begin-eqn}} {{eqn | l = e | o = := | r = \\text { the identity mapping} }} {{eqn | l = t | o = := | r = \\tuple {1 2} \\tuple {3 4} }} {{eqn | l = u | o = := | r = \\tuple {1 3} \\tuple {2 4} }} {{eqn | l = v | o = := | r = \\tuple {1 4} \\tuple {2 3} }} {{end-eqn}} {{begin-eqn}} {{eqn | l = a | o = := | r = \\tuple {1 2 3} }} {{eqn | l = b | o = := | r = \\tuple {1 3 4} }} {{eqn | l = c | o = := | r = \\tuple {2 4 3} }} {{eqn | l = d | o = := | r = \\tuple {1 4 2} }} {{end-eqn}} {{begin-eqn}} {{eqn | l = p | o = := | r = \\tuple {1 3 2} }} {{eqn | l = q | o = := | r = \\tuple {2 3 4} }} {{eqn | l = r | o = := | r = \\tuple {1 2 4} }} {{eqn | l = s | o = := | r = \\tuple {1 4 3} }} {{end-eqn}} == Sources == * {{BookReference|A Course in Group Theory|1996|John F. Humphreys|prev = Symmetric Group on 4 Letters/Subgroups/Examples/Disjoint Transpositions|next = Alternating Group on 4 Letters/Order of Elements}}: Chapter $9$: Permutations: Exercise $3$ Category:Alternating Group on 4 Letters 00uol1mkvs05aj9c2bxpvntjgd8kzuy"}
+{"_id": "32976", "title": "Symmetric Group on 3 Letters/Normal Subgroups", "text": "Symmetric Group on 3 Letters/Normal Subgroups 0 72767 387861 387857 2019-01-15T11:18:01Z Prime.mover 59 wikitext text/x-wiki == Normal Subgroups of the Symmetric Group on 3 Letters == Let $S_3$ denote the Symmetric Group on 3 Letters, whose Cayley table is given as: {{:Symmetric Group on 3 Letters/Cayley Table}} Consider the subgroups of $S_3$: {{:Symmetric Group on 3 Letters/Subgroups}} Of those, the normal subgroups in $S_3$ are: :$S_3, \\set e, \\set {e, \\tuple {123}, \\tuple {132} }$ == Proof == $S_3$ itself is normal in $S_3$ by Group is Normal in Itself. $\\set e$ is normal in $S_3$ by Trivial Subgroup is Normal. $\\set {e, \\tuple {12} }$: {{begin-eqn}} {{eqn | l = \\tuple {123} \\tuple {13} \\tuple {123}^{-1} | r = \\tuple {123} \\tuple {13} \\tuple {132} | c = }} {{eqn | r = \\tuple {123} \\tuple {12} | c = }} {{eqn | r = \\tuple {23} | c = }} {{eqn | o = \\notin | r = \\set {e, \\tuple {12} } | c = }} {{end-eqn}} Hence $\\set {e, \\tuple {12} }$ is not normal in $S_3$. $\\set {e, \\tuple {23} }$: {{begin-eqn}} {{eqn | l = \\tuple {123} \\tuple {23} \\tuple {123}^{-1} | r = \\tuple {123} \\tuple {23} \\tuple {132} | c = }} {{eqn | r = \\tuple {123} \\tuple {13} | c = }} {{eqn | r = \\tuple {12} | c = }} {{eqn | o = \\notin | r = \\set {e, \\tuple {23} } | c = }} {{end-eqn}} Hence $\\set {e, \\tuple {23} }$ is not normal in $S_3$. $\\set {e, \\tuple {13} }$: {{begin-eqn}} {{eqn | l = \\tuple {123} \\tuple {13} \\tuple {123}^{-1} | r = \\tuple {123} \\tuple {13} \\tuple {132} | c = }} {{eqn | r = \\tuple {123} \\tuple {12} | c = }} {{eqn | r = \\tuple {23} | c = }} {{eqn | o = \\notin | r = \\set {e, \\tuple {13} } | c = }} {{end-eqn}} Hence $\\set {e, \\tuple {13} }$ is not normal in $S_3$. $\\set {e, \\tuple {123}, \\tuple {132} }$: We have that $\\set {e, \\tuple {123}, \\tuple {132} }$ is the set of even permutations of $S_3$. Any permutation of the form $\\alpha \\pi \\alpha^{-1}$, for $\\pi$ even, is also even. Thus: :$\\forall \\alpha \\in S_3: \\alpha \\pi \\alpha^{-1} \\in \\set {e, \\tuple {123}, \\tuple {132} }$ Hence $\\set {e, \\tuple {123}, \\tuple {132} }$ is normal in $S_3$. {{qed}} == Sources == * {{BookReference|Sets and Groups|1965|J.A. Green|prev = Subgroup is Superset of Conjugate iff Normal|next = Group is Normal in Itself}}: $\\S 6.6$. Normal subgroups: Example $122$ * {{BookReference|A Course in Group Theory|1996|John F. Humphreys|prev = Symmetric Group on 3 Letters/Subgroups|next = Subgroups of Quaternion Group}}: Chapter $7$: Normal subgroups and quotient groups: Exercise $2$ Category:Symmetric Group on 3 Letters Category:Examples of Normal Subgroups gr8pg2feru0djipvuiyeu3gr5xtagfi"}
+{"_id": "32977", "title": "Modulo Addition/Cayley Table/Modulo 3", "text": "Modulo Addition/Cayley Table/Modulo 3 0 72769 463911 463905 2020-04-24T06:18:00Z Prime.mover 59 wikitext text/x-wiki == Cayley Table for Addition Modulo $3$ == The additive group of integers modulo $3$ can be described by showing its Cayley table: :$\\begin{array}{r|rrr} \\struct {\\Z_3, +_3} & \\eqclass 0 3 & \\eqclass 1 3 & \\eqclass 2 3 \\\\ \\hline \\eqclass 0 3 & \\eqclass 0 3 & \\eqclass 1 3 & \\eqclass 2 3 \\\\ \\eqclass 1 3 & \\eqclass 1 3 & \\eqclass 2 3 & \\eqclass 0 0 \\\\ \\eqclass 2 3 & \\eqclass 2 3 & \\eqclass 0 3 & \\eqclass 1 3 \\\\ \\end{array}$ It can also be presented: :$\\begin{array}{r|rrr} +_3 & 0 & 1 & 2 \\\\ \\hline 0 & 0 & 1 & 2 \\\\ 1 & 1 & 2 & 0 \\\\ 2 & 2 & 0 & 1 \\\\ \\end{array}$ == Sources == * {{BookReference|Sets and Groups|1965|J.A. Green|prev = Quotient Group of Integers by Multiples|next = Klein Four-Group is Normal in A4}}: $\\S 6.7$. Quotient groups: Example $126$ * {{BookReference|Topology: An Introduction with Application to Topological Groups|1967|George McCarty|prev = Definition:Parity of Integer|next = Definition:Quotient Group/Motivation}}: Chapter $\\text{II}$: Groups: A Little Number Theory * {{BookReference|A Course in Group Theory|1996|John F. Humphreys|prev = Integers Modulo m under Addition form Abelian Group|next = Mathematician:Arthur Cayley}}: Chapter $2$: Maps and relations on sets: Example $2.33$ Category:Examples of Cayley Tables Category:Examples of Additive Groups of Integers Modulo m Category:Cyclic Group of Order 3 b59mrv9uwib7stlw48ftagmhpq895h6"}
+{"_id": "32978", "title": "Alternating Group on 4 Letters/Subgroups", "text": "Alternating Group on 4 Letters/Subgroups 0 72772 388453 378472 2019-01-19T06:19:04Z Prime.mover 59 wikitext text/x-wiki == Subgroups of the Alternating Group on $4$ Letters == Let $A_4$ denote the alternating group on $4$ letters, whose Cayley table is given as: {{:Alternating Group on 4 Letters/Cayley Table}} The subsets of $A_4$ which form subgroups of $A_4$ are as follows: Trivial: {{begin-eqn}} {{eqn | o = | r = \\set e | c = Trivial Subgroup is Subgroup }} {{eqn | o = | r = A_4 | c = Group is Subgroup of Itself }} {{end-eqn}} Order $2$ subgroups: {{begin-eqn}} {{eqn | o = | r = \\set {e, t} | c = as $t^2 = e$ }} {{eqn | o = | r = \\set {e, u} | c = as $u^2 = e$ }} {{eqn | o = | r = \\set {e, v} | c = as $v^2 = e$ }} {{end-eqn}} Order $3$ subgroups: {{begin-eqn}} {{eqn | o = | r = \\set {e, a, p} | c = as $a^2 = p$, $a^3 = a p = e$ }} {{eqn | o = | r = \\set {e, b, s} | c = as $b^2 = s$, $b^3 = b s = e$ }} {{eqn | o = | r = \\set {e, c, q} | c = as $c^2 = q$, $c^3 = c q = e$ }} {{eqn | o = | r = \\set {e, d, r} | c = as $d^2 = r$, $d^3 = d r = e$ }} {{end-eqn}} Order $4$ subgroup: {{begin-eqn}} {{eqn | o = | r = \\set {e, t, u, v} | c = Klein $4$-Group }} {{end-eqn}} == Examples of Subgroups == {{:Alternating Group on 4 Letters/Subgroups/Examples}} == Sources == * {{BookReference|A Course in Group Theory|1996|John F. Humphreys|prev = Alternating Group on 4 Letters/Order of Elements|next = Group does not Necessarily have Subgroup of Order of Divisor of its Order/Proof 2}}: Chapter $9$: Permutations: Exercise $3$ Category:Alternating Group on 4 Letters fcb3cssioaoq68bpr5xonor2rjqx8ny"}
+{"_id": "32979", "title": "Alternating Group on 4 Letters/Normality of Subgroups", "text": "Alternating Group on 4 Letters/Normality of Subgroups 0 72794 387204 385380 2019-01-11T14:09:46Z Prime.mover 59 wikitext text/x-wiki == Normality of Subgroups of the Alternating Group on $4$ Letters == Let $A_4$ denote the alternating group on $4$ letters, whose Cayley table is given as: {{:Alternating Group on 4 Letters/Cayley Table}} The normality status of the non-trivial proper subgroups of $A_4$ is as follows: Order $2$ subgroups: {{begin-eqn}} {{eqn | l = T | o = := | r = \\set {e, t} | c = Not normal }} {{eqn | l = U | o = := | r = \\set {e, u} | c = Not normal }} {{eqn | l = V | o = := | r = \\set {e, v} | c = Not normal }} {{end-eqn}} Order $3$ subgroups: {{begin-eqn}} {{eqn | l = P | o = := | r = \\set {e, a, p} | c = Not normal }} {{eqn | l = Q | o = := | r = \\set {e, c, q} | c = Not normal }} {{eqn | l = R | o = := | r = \\set {e, d, r} | c = Not normal }} {{eqn | l = S | o = := | r = \\set {e, b, s} | c = Not normal }} {{end-eqn}} Order $4$ subgroup: {{begin-eqn}} {{eqn | l = K | o = := | r = \\set {e, t, u, v} | c = Normal }} {{end-eqn}} == Proof == Testing one of the left cosets of $T = \\set {e, t}$ against its corresponding right coset: {{begin-eqn}} {{eqn | l = a T | r = \\set {a \\circ e, a \\circ t} | c = }} {{eqn | r = \\set {a, c} | c = }} {{eqn | l = T a | r = \\set {e \\circ a, t \\circ a} | c = }} {{eqn | r = \\set {a, b} | c = }} {{eqn | o = \\ne | r = a T | c = }} {{end-eqn}} The left coset does not equal the right coset and so $T$ is not normal in $A_4$. {{qed|lemma}} Testing one of the left cosets of $U = \\set {e, u}$ against its corresponding right coset: {{begin-eqn}} {{eqn | l = b U | r = \\set {b \\circ e, b \\circ u} | c = }} {{eqn | r = \\set {b, c} | c = }} {{eqn | l = U b | r = \\set {e \\circ b, u \\circ b} | c = }} {{eqn | r = \\set {b, d} | c = }} {{eqn | o = \\ne | r = b U | c = }} {{end-eqn}} The left coset does not equal the right coset and so $U$ is not normal in $A_4$. {{qed|lemma}} Testing one of the left cosets of $V = \\set {e, v}$ against its corresponding right coset: {{begin-eqn}} {{eqn | l = c V | r = \\set {c \\circ e, c \\circ v} | c = }} {{eqn | r = \\set {c, d} | c = }} {{eqn | l = V c | r = \\set {e \\circ c, v \\circ c} | c = }} {{eqn | r = \\set {c, b} | c = }} {{eqn | o = \\ne | r = c V | c = }} {{end-eqn}} The left coset does not equal the right coset and so $V$ is not normal in $A_4$. {{qed|lemma}} Testing one of the left cosets of $P = \\set {e, a, p}$ against its corresponding right coset: {{begin-eqn}} {{eqn | l = t P | r = \\set {t \\circ e, t \\circ a, t \\circ p} | c = }} {{eqn | r = \\set {t, b, q} | c = }} {{eqn | l = P t | r = \\set {e \\circ t, a \\circ t, p \\circ t} | c = }} {{eqn | r = \\set {t, c, s} | c = }} {{eqn | o = \\ne | r = t P | c = }} {{end-eqn}} The left coset does not equal the right coset and so $P$ is not normal in $A_4$. {{qed|lemma}} Testing one of the left cosets of $Q = \\set {e, c, q}$ against its corresponding right coset: {{begin-eqn}} {{eqn | l = t Q | r = \\set {t \\circ e, t \\circ c, t \\circ q} | c = }} {{eqn | r = \\set {t, d, p} | c = }} {{eqn | l = Q t | r = \\set {e \\circ t, c \\circ t, q \\circ t} | c = }} {{eqn | r = \\set {t, a, r} | c = }} {{eqn | o = \\ne | r = t Q | c = }} {{end-eqn}} The left coset does not equal the right coset and so $Q$ is not normal in $A_4$. {{qed|lemma}} Testing one of the left cosets of $R = \\set {e, d, r}$ against its corresponding right coset: {{begin-eqn}} {{eqn | l = t R | r = \\set {t \\circ e, t \\circ d, t \\circ r} | c = }} {{eqn | r = \\set {t, c, s} | c = }} {{eqn | l = R t | r = \\set {e \\circ t, d \\circ t, r \\circ t} | c = }} {{eqn | r = \\set {t, b, q} | c = }} {{eqn | o = \\ne | r = t R | c = }} {{end-eqn}} The left coset does not equal the right coset and so $R$ is not normal in $A_4$. {{qed|lemma}} Testing one of the left cosets of $S = \\set {e, b, s}$ against its corresponding right coset: {{begin-eqn}} {{eqn | l = t S | r = \\set {t \\circ e, t \\circ b, t \\circ s} | c = }} {{eqn | r = \\set {t, a, r} | c = }} {{eqn | l = S t | r = \\set {e \\circ t, b \\circ t, s \\circ t} | c = }} {{eqn | r = \\set {t, d, p} | c = }} {{eqn | o = \\ne | r = t S | c = }} {{end-eqn}} The left coset does not equal the right coset and so $S$ is not normal in $A_4$. {{qed|lemma}} The cosets of $K = \\set {e, t, u, v}$ are as follows: {{begin-eqn}} {{eqn | l = a K | r = \\set {a \\circ e, a \\circ t, a \\circ u, a \\circ v} | c = }} {{eqn | r = \\set {a, c, d, b} | c = }} {{eqn | l = K a | r = \\set {e \\circ a, t \\circ a, u \\circ a, v \\circ a} | c = }} {{eqn | r = \\set {a, b, c, d} | c = }} {{eqn | r = a K | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | l = p K | r = \\set {p \\circ e, p \\circ t, p \\circ u, p \\circ v} | c = }} {{eqn | r = \\set {p, s, q, r} | c = }} {{eqn | l = K p | r = \\set {e \\circ p, t \\circ p, u \\circ p, v \\circ p} | c = }} {{eqn | r = \\set {p, q, r, s} | c = }} {{eqn | r = p K | c = }} {{end-eqn}} The left cosets equal the right cosets and so $K$ is normal in $A_4$. {{qed|lemma}} == Sources == * {{BookReference|Sets and Groups|1965|J.A. Green|prev = Stabilizer of Polynomial|next = Normality Relation is not Transitive/Proof 1}}: Chapter $6$: Cosets: Exercise $11$ Category:Alternating Group on 4 Letters bichruyi89pkryb6htqxbl6dk2nznh0"}
+{"_id": "32980", "title": "Dihedral Group D4/Matrix Representation/Formulation 1", "text": "Dihedral Group D4/Matrix Representation/Formulation 1 0 72869 389014 385553 2019-01-22T07:52:21Z Prime.mover 59 wikitext text/x-wiki == Matrix Representation of Dihedral Group $D_4$ == Let $\\mathbf I, \\mathbf A, \\mathbf B, \\mathbf C$ denote the following four elements of the matrix space $\\map {\\mathcal M_\\Z} 2$: :$\\mathbf I = \\begin{bmatrix} 1 & 0 \\\\ 0 & 1 \\end{bmatrix} \\qquad \\mathbf A = \\begin{bmatrix} 1 & 0 \\\\ 0 & -1 \\end{bmatrix} \\qquad \\mathbf B = \\begin{bmatrix} 0 & -1 \\\\ 1 & 0 \\end{bmatrix} \\qquad \\mathbf C = \\begin{bmatrix} 0 & 1 \\\\ 1 & 0 \\end{bmatrix}$ The set: :$D_4 = \\set {\\mathbf I, -\\mathbf I, \\mathbf A, -\\mathbf A, \\mathbf B, -\\mathbf B, \\mathbf C, -\\mathbf C}$ under the operation of conventional matrix multiplication, forms the '''dihedral group $D_4$'''. === Cayley Table === Its Cayley table is given by: {{:Dihedral Group D4/Matrix Representation/Formulation 1/Cayley Table}} == Also see == * Dihedral Group D4 Defined by Matrices where it is shown that these have the appropriate properties. == Sources == {{SourceReview}} Category:Dihedral Group D4 fotfa45owyoai8vixxeyk8z782wx8gs"}
+{"_id": "32981", "title": "Dihedral Group D4/Matrix Representation/Formulation 1/Cayley Table", "text": "Dihedral Group D4/Matrix Representation/Formulation 1/Cayley Table 0 72870 385551 385533 2018-12-31T09:57:02Z Prime.mover 59 wikitext text/x-wiki == Cayley Table for Dihedral Group $D_4$ == The Cayley table for the dihedral group $D_4$: :$D_4 = \\set {\\mathbf I, -\\mathbf I, \\mathbf A, -\\mathbf A, \\mathbf B, -\\mathbf B, \\mathbf C, -\\mathbf C}$ under the operation of conventional matrix multiplication, where: :$\\mathbf I = \\begin{bmatrix} 1 & 0 \\\\ 0 & 1 \\end{bmatrix} \\qquad \\mathbf A = \\begin{bmatrix} 1 & 0 \\\\ 0 & -1 \\end{bmatrix} \\qquad \\mathbf B = \\begin{bmatrix} 0 & -1 \\\\ 1 & 0 \\end{bmatrix} \\qquad \\mathbf C = \\begin{bmatrix} 0 & 1 \\\\ 1 & 0 \\end{bmatrix}$ can be presented as: :$\\begin{array}{r|rrrrrrrr} & \\mathbf I & \\mathbf A & \\mathbf B & \\mathbf C & -\\mathbf I & -\\mathbf A & -\\mathbf B & -\\mathbf C \\\\ \\hline \\mathbf I & \\mathbf I & \\mathbf A & \\mathbf B & \\mathbf C & -\\mathbf I & -\\mathbf A & -\\mathbf B & -\\mathbf C \\\\ \\mathbf A & \\mathbf A & \\mathbf I & -\\mathbf C & -\\mathbf B & -\\mathbf A & -\\mathbf I & \\mathbf C & \\mathbf B \\\\ \\mathbf B & \\mathbf B & \\mathbf C & -\\mathbf I & -\\mathbf A & -\\mathbf B & -\\mathbf C & \\mathbf I & \\mathbf A \\\\ \\mathbf C & \\mathbf C & \\mathbf B & \\mathbf A & \\mathbf I & -\\mathbf C & -\\mathbf B & -\\mathbf A & -\\mathbf I \\\\ -\\mathbf I & -\\mathbf I & -\\mathbf A & -\\mathbf B & -\\mathbf C & \\mathbf I & \\mathbf A & \\mathbf B & \\mathbf C \\\\ -\\mathbf A & -\\mathbf A & -\\mathbf I & \\mathbf C & \\mathbf B & \\mathbf A & \\mathbf I & -\\mathbf C & -\\mathbf B \\\\ -\\mathbf B & -\\mathbf B & -\\mathbf C & \\mathbf I & \\mathbf A & \\mathbf B & -\\mathbf C & -\\mathbf I & -\\mathbf A \\\\ -\\mathbf C & -\\mathbf C & -\\mathbf B & -\\mathbf A & -\\mathbf I & \\mathbf C & \\mathbf B & \\mathbf A & \\mathbf I \\end{array}$ == Sources == {{SourceReview}} Category:Dihedral Group D4 Category:Examples of Cayley Tables f7uc1dmd4ox2xz595bc5jvw9rsw7tsk"}
+{"_id": "32982", "title": "Quaternion Group/Group Presentation", "text": "Quaternion Group/Group Presentation 0 72932 445965 387854 2020-02-03T12:02:51Z Prime.mover 59 wikitext text/x-wiki == Group Presentation of Quaternion Group == The group presentation of the quaternion group is given by: :$\\Dic 2 = \\gen {a, b: a^4 = e, b^2 = a^2, a b a = b}$ == Proof == Let $G = \\gen {a, b: a^4 = e, b^2 = a^2, a b a = b}$. It is to be demonstrated that $\\Dic 2$ is isomorphic to $G$. Consider the Cayley table for $\\Dic 2$: {{:Quaternion Group/Cayley Table}} We have that: :$a^4 = e$ :$b^2 = a^2$ :$\\paren {a b} a = b$ demonstrating that $\\Dic 2$ has the same group presentation as $G$. Hence the result. {{qed}} == Sources == * {{BookReference|A Course in Group Theory|1996|John F. Humphreys|prev = Dihedral Group D4/Matrix Representation/Formulation 2/Examples of Generated Subgroups/B, F|next = Definition:Left Coset}}: Chapter $4$: Subgroups: Exercise $4$ * {{BookReference|The Penguin Dictionary of Mathematics|1998|David Nelson|ed = 2nd|edpage = Second Edition|prev = Definition:Generator of Group|next = Definition:Cyclic Group/Definition 2|entry = generator|index = 2}} Category:Quaternion Group Category:Group Presentations gyoyxuok1r5eambe6mx37emrp4yjam8"}
+{"_id": "32983", "title": "Bound for Analytic Function and Derivatives/Analytic Function Bounded on Circle", "text": "Bound for Analytic Function and Derivatives/Analytic Function Bounded on Circle 0 72944 413234 379993 2019-07-17T18:36:53Z Prime.mover 59 wikitext text/x-wiki == Lemma == Let $f$ be a complex function. Let $z_0$ be a point in $\\C$. Let $\\Gamma$ be a circle in $\\C$ with center at $z_0$ and radius in $\\R_{>0}$. Let $f$ be analytic on $\\Gamma$. Then $f$ is bounded on $\\Gamma$. == Proof == Let: :$\\map {f_{\\Re} } z = \\map \\Re {\\map f z}$ :$\\map {f_{\\Im} } z = \\map \\Im {\\map f z}$ Let $\\closedint a b$, $a < b$, be a closed real interval. Let $p$ be a continuous complex-valued function defined such that: :$\\Gamma = \\set {\\map p u: u \\in \\closedint a b}$ $f$ is continuous on $\\Gamma$ as $f$ is analytic on $\\Gamma$ by the definition of analytic. Also, Real and Imaginary Part Projections are Continuous. Therefore, $f_{\\Re}$ and $f_{\\Im}$ are continuous by the corollary to Composite of Continuous Mappings is Continuous. Observe that $f_{\\Re}$ and $f_{\\Im}$ are real-valued functions that are continuous. Also, $p$ is a continuous function defined on a set of real numbers. Therefore $\\map {f_{\\Re} } {\\map p u}$ and $\\map {f_{\\Im} } {\\map p u}$ are continuous real functions by the corollary to Composite of Continuous Mappings is Continuous. $\\map {f_{\\Re} } {\\map p u}$ and $\\map {f_{\\Im} } {\\map p u}$ are bounded on $\\closedint a b$ by Continuous Real Function is Bounded. Therefore $\\map f {\\map p u}$ is bounded on $\\closedint a b$ as $\\map f {\\map p u} = \\map {f_{\\Re} } {\\map p u} + i \\map {f_{\\Im} } {\\map p u}$ where $i = \\sqrt {-1}$. Accordingly, $f$ is bounded on $\\Gamma$ as $\\Gamma = \\set {\\map p u: u \\in \\closedint a b}$. {{qed}} Category:Complex Analysis gokqfygmi1t231kgrg5l4ovtp6573nv"}
+{"_id": "32984", "title": "Convergence of Taylor Series of Function Analytic on Disk/Lemma", "text": "Convergence of Taylor Series of Function Analytic on Disk/Lemma 0 72959 435251 380103 2019-11-14T15:05:50Z Prime.mover 59 wikitext text/x-wiki {{refactor|This (or something very similar) already exists somewhere as a basic null sequence}} == Lemma == Let $y > 1$. Then: :$\\displaystyle \\lim_{n \\mathop \\to \\infty} \\frac n {y^n} = 0$ == Proof == Note that $\\ln y > 0$ as $y > 1$. {{begin-eqn}} {{eqn | l = \\lim_{n \\mathop \\to \\infty} \\frac n {y^n} | r = \\lim_{n \\mathop \\to \\infty} \\frac n {\\left({e^{\\ln y} }\\right)^n} }} {{eqn | r = \\lim_{n \\mathop \\to \\infty} \\frac n {e^{\\left({\\ln y}\\right) n} } }} {{eqn | r = 0 | c = as $\\displaystyle \\lim_{x \\mathop \\to \\infty} \\frac x {e^{\\left({\\ln y}\\right) x} } = 0$ by Limit at Infinity of Polynomial over Complex Exponential as $\\ln y > 0$ }} {{end-eqn}} {{qed}} Category:Real Analysis 00nqt72unqz24foiob6y1l26q9rmv46"}
+{"_id": "32985", "title": "Oscillation at Point (Infimum) equals Oscillation at Point (Limit)/Lemma", "text": "Oscillation at Point (Infimum) equals Oscillation at Point (Limit)/Lemma 0 72976 437673 435381 2019-12-03T22:41:36Z Prime.mover 59 wikitext text/x-wiki == Lemma == Let $f: D \\to \\R$ be a real function where $D \\subseteq \\R$. Let $x$ be a point in $D$. Let $N_x$ be the set of open subset neighborhoods of $x$. Let $\\map {\\omega_f} x$ be the oscillation of $f$ at $x$ as defined by: :$\\map {\\omega_f} x = \\displaystyle \\inf \\set {\\map {\\omega_f} I: I \\in N_x}$ where $\\map {\\omega_f} I$ is the oscillation of $f$ on a real set $I$: :$\\map {\\omega_f} I = \\displaystyle \\sup \\set {\\size {\\map f y - \\map f z}: y, z \\in I \\cap D}$ Let $\\map {\\omega^L_f} x$ be the oscillation of $f$ at $x$ as defined by: :$\\map {\\omega^L_f} x = \\displaystyle \\lim_{h \\mathop \\to 0^+} \\map {\\omega_f} {\\openint {x - h} {x + h} }$ Let $\\map {\\omega^L_f} x \\in \\R$. Let $\\map {\\omega_f} x \\in \\R$. Then $\\map {\\omega^L_f} x = \\map {\\omega_f} x$. == Proof == We know that $\\map {\\omega^L_f} x$ and $\\map {\\omega_f} x$ are real numbers. We need to prove that $\\map {\\omega^L_f} x = \\map {\\omega_f} x$. Let $\\epsilon \\in \\R_{>0}$. First, we aim to prove that $\\size {\\map {\\omega_f} {\\openint {x - h} {x + h} } - \\map {\\omega_f} x} < \\epsilon$ for a small enough $h \\in R_{>0}$. $\\map {\\omega^L_f} x = \\displaystyle \\lim_{h \\mathop \\to 0^+} \\map {\\omega_f} {\\openint {x - h} {x + h} }$ means by the definition of limit from the right that a strictly positive real number $h_1$ exists such that: :$\\size {\\map {\\omega_f} {\\openint {x - h} {x + h} } - \\map {\\omega^L_f} x)} < \\epsilon$ for every $h$ that satisfies: $0 < h < h_1$. This means in particular that $\\map {\\omega_f} {\\openint {x - h} {x + h} } \\in \\R$ for every $h$ that satisfies: $0 < h < h_1$. Let $h'$ be a real number that satisfies: $0 < h' < h_1$. We observe that $\\openint {x - h'} {x + h'} \\in N_x$. Therefore, $\\map {\\omega_f} {\\openint {x - h'} {x + h'} } \\in \\set {\\map {\\omega_f} I: I \\in N_x}$. By definition, $\\map {\\omega_f} x$ is a lower bound for $\\set {\\map {\\omega_f} I: I \\in N_x}$. Accordingly: :$\\map {\\omega_f} {\\openint {x - h'} {x + h'} } \\ge \\map {\\omega_f} x$ The fact that $\\map {\\omega_f} x \\in \\R$ implies that: :$\\map {\\omega_f} I - \\map {\\omega_f} x < \\epsilon$ by Infimum of Set of Oscillations on Set is Arbitrarily Close for an $I \\in N_x$. Let $I$ be such an element of $N_x$. We observe in particular that $\\map {\\omega_f} I \\in \\R$. A neighborhood in $N_x$ contains an open subset that contains the point $x$. So, $I$ contains such an open subset as $I \\in N_x$. Therefore, a number $h_2 \\in \\R_{>0}$ exists such that $\\openint {x - h_2} {x + h_2}$ is a subset of $I$. Let $h''$ be a real number that satisfies: $0 < h'' < h_2$. We observe that $\\openint {x - h''} {x + h''}$ is a subset of $I$. We have: :$\\map {\\omega_f} I \\in \\R$ :$\\openint {x - h''} {x + h''}$ is a subset of $I$ Therefore: :$\\map {\\omega_f} {\\openint {x - h''} {x + h''} } \\le \\map {\\omega_f} I$ by Oscillation on Subset Putting all this together, we get for every $h$ that satisfies: $0 < h < \\min \\set {h_1, h_2}$: {{begin-eqn}} {{eqn | l = \\map {\\omega_f} {\\openint {x - h} {x + h} } | o = \\le | r = \\map {\\omega_f} I }} {{eqn | ll= \\leadsto | l = \\map {\\omega_f} x \\le \\map {\\omega_f} {\\openint {x - h} {x + h} } | o = \\le | r = \\map {\\omega_f} I | c = as $\\map {\\omega_f} x \\le \\map {\\omega_f} {\\openint {x - h} {x + h} }$ is true }} {{eqn | ll= \\leadsto | l = \\map {\\omega_f} x \\le \\map {\\omega_f} {\\openint {x - h} {x + h} } | o = \\le | r = \\map {\\omega_f} I < \\map {\\omega_f} x + \\epsilon | c = as $\\map {\\omega_f} I < \\map {\\omega_f} x + \\epsilon$ is true }} {{eqn | ll= \\leadsto | l = \\map {\\omega_f} x \\le \\map {\\omega_f} {\\openint {x - h} {x + h} } | o = < | r = \\map {\\omega_f} x + \\epsilon | c = }} {{eqn | ll= \\leadsto | l = 0 \\le \\map {\\omega_f} {\\openint {x - h} {x + h} } - \\map {\\omega_f} x | o = < | r = \\epsilon }} {{eqn | ll= \\leadsto | l = \\size {\\map {\\omega_f} {\\openint {x - h} {x + h} } - \\map {\\omega_f} x} | o = < | r = \\epsilon }} {{end-eqn}} Thus, we achieved our first aim. Next, we get for every $h$ that satisfies: $0 < h < \\min \\set {h_1, h_2}$: {{begin-eqn}} {{eqn | l = \\size {\\map {\\omega^L_f} x - \\map {\\omega_f} x} | r = \\size {\\map {\\omega^L_f} x - \\map {\\omega_f} {\\openint {x - h} {x + h} } + \\map {\\omega_f} {\\openint {x - h} {x + h} } - \\map {\\omega_f} x} }} {{eqn | o = \\le | r = \\size {\\map {\\omega^L_f} x - \\map {\\omega_f} {\\openint {x - h} {x + h} } } + \\size {\\map {\\omega_f} {\\openint {x - h} {x + h} } - \\map {\\omega_f} x} | c = Triangle Inequality for Real Numbers }} {{eqn | o = < | r = \\epsilon + \\epsilon }} {{eqn | r = 2 \\epsilon }} {{end-eqn}} This holds for every $\\epsilon \\in \\R_{>0}$. Therefore, $\\size {\\map {\\omega^L_f} x - \\map {\\omega_f} x} = 0$ as $\\size {\\map {\\omega^L_f} x - \\map {\\omega_f} x}$ is independent of $\\epsilon$. Accordingly: :$\\map {\\omega^L_f} x = \\map {\\omega_f} x$ {{qed}} {{Improve|Implement a better category than this}} Category:Real Analysis 3pmygvx7f48jhe9eidgjxzeyt2q2wiy"}
+{"_id": "32986", "title": "Sum of Terms of Magic Cube/Sequence", "text": "Sum of Terms of Magic Cube/Sequence 0 73169 433513 382796 2019-11-01T14:01:22Z Prime.mover 59 wikitext text/x-wiki == Sequence of Sums of Terms of Magic Cubes == The sequence of the sum totals of all the entries in magic cubes of order $n$ begins: :$1, \\paren {36,} \\, 378, 2080, 7875, 23 \\, 436, 58 \\, 996, 131 \\, 328, \\ldots$ However, note that while $36 = \\dfrac {2^3 \\paren {2^3 + 1} } 2$, a magic cube of order $2$ does not actually exist. {{OEIS|A037270}} Category:Magic Cubes 2y8fzpedt6pmmf8b0svb3wy0m1xikwm"}
+{"_id": "32987", "title": "Magic Constant of Magic Cube/Sequence", "text": "Magic Constant of Magic Cube/Sequence 0 73171 433415 382868 2019-11-01T12:58:11Z Prime.mover 59 wikitext text/x-wiki == Sequence of Magic Constants of Magic Cubes == The sequence of the magic constants of magic cubes of order $n$ begins: :$1, (9,) \\, 42, 130, 315, 651, 1204, 2052, 3285, 5005, 7326, 10 \\, 374, 14 \\, 287, 19 \\, 215, 25 \\, 320, 32 \\, 776, \\ldots$ However, note that while $9 = \\dfrac {2 \\paren {2^3 + 1} } 2$, a magic cube of order $2$ does not actually exist. {{OEIS|A027441}} Category:Magic Cubes 9gyu6xzac1eu8s55wz15feg80loz1xg"}
+{"_id": "32988", "title": "Sequence Lemma", "text": "Sequence Lemma 0 73179 490698 490697 2020-09-25T16:19:10Z Prime.mover 59 wikitext text/x-wiki {{tidy}} {{MissingLinks}} == Lemma == Let $A$ be a subset of a topological space $X$. If there is a sequence of points of $A$ converging to $x$, then $x \\in \\bar A$. The converse holds if $X$ is first-countable. == Proof == Assume the sequence of points of $A$ that converges to $x$ is $\\sequence {x_i}$. Then for any open set $U$ of $x$, there exists a positive natural number $N$ such that when $i > N$, $x_i \\in U$. Thus $U \\cap A$ is nonempty, $x \\in \\bar A$. Let the topological space $X$ be first-countable. Then there is a countable collection of open neighbourhood $\\family {U_i}_{i \\mathop \\in \\Bbb Z_+}$ of $x$ such that any open neighbourhood $U$ of $x$ contains at least one of the sets $U_i$. Because $x \\in \\bar A$, $U_1 \\cap A$ is nonempty, we can select a point $x_1$ in it. In a similar manner, $U_1 \\cap U_2 \\cap A$ is nonempty. Hence we can select a point $x_2$ in it. The point $x_i$ is selected from: :$U_1 \\cap U_2 \\cap \\cdots \\cap U_i \\cap A$ We then obtain a sequence $\\sequence {x_i}$. For any open neighbourhood $U$ of $x$, it contains at least one of the set $U_N$, $N \\in \\Bbb Z_+$ of $\\family {U_i}_{i \\mathop \\in \\Bbb Z_+}$. Thus it contains the set: :$U_1 \\cap U_2 \\cap \\cdots \\cap U_N \\cap A$ :$U_1 \\cap U_2 \\cap \\cdots \\cap U_N \\cap U_{N + 1}\\cap A$ :$U_1 \\cap U_2 \\cap \\cdots \\cap U_N \\cap U_{N + 1} \\cap U_{N + 2} \\cap A$ :$\\ldots$ or the set $U_1 \\cap U_2 \\cap \\cdots \\cap U_i \\cap A$ with $i > N$, hence the points $x_i$ with $i > N$. The sequence $\\sequence {x_i}$ converges to $x$. {{qed}} == Sources == * {{BookReference|Topology|2004|James R. Munkres}} P130, Lemma 21.2 Category:Topology Category:Countability Axioms Category:First-Countable Spaces ta4s3r4pyrg9tkz7apjkpwtszep4f0q"}
+{"_id": "32989", "title": "Group Direct Product/Examples/C2 x C2", "text": "Group Direct Product/Examples/C2 x C2 0 73396 389230 386523 2019-01-23T15:31:00Z Prime.mover 59 wikitext text/x-wiki == Example of Group Direct Product == The direct product of $C_2$, the cyclic group of order $2$, with itself is as follows. Let us represent $C_2$ as the group $\\struct {\\set {1, -1}, \\times}$: :$\\begin {array} {r|rr} \\struct {\\set {1, -1} , \\times} & 1 & -1 \\\\ \\hline 1 & 1 & -1 \\\\ -1 & -1 & 1 \\\\ \\end{array}$ Then the Cayley table for $C_2 \\times C_2$ can be portrayed as: :$\\begin {array} {c|cccc} C_2 \\times C_2 & \\tuple { 1, 1} & \\tuple { 1, -1} & \\tuple {-1, 1} & \\tuple {-1, -1} \\\\ \\hline \\tuple { 1, 1} & \\tuple { 1, 1} & \\tuple { 1, -1} & \\tuple {-1, 1} & \\tuple {-1, -1} \\\\ \\tuple { 1, -1} & \\tuple { 1, -1} & \\tuple { 1, 1} & \\tuple {-1, -1} & \\tuple {-1, 1} \\\\ \\tuple {-1, 1} & \\tuple {-1, 1} & \\tuple {-1, -1} & \\tuple { 1, 1} & \\tuple { 1, -1} \\\\ \\tuple {-1, -1} & \\tuple {-1, -1} & \\tuple {-1, 1} & \\tuple { 1, -1} & \\tuple { 1, 1} \\\\ \\end{array}$ This is seen by inspection to be an instance of the Klein $4$-group. == Subgroups == {{:Group Direct Product/Examples/C2 x C2/Subgroups}} == Sources == * {{BookReference|A Course in Group Theory|1996|John F. Humphreys|prev = External Direct Product of Groups is Group|next = Definition:Multiplicative Notation}}: Chapter $1$: Definitions and Examples: Example $1.10$ Category:Examples of Group Direct Products Category:Klein Four-Group prtc0kzrbj0gjde092r3sgogxcwrelf"}
+{"_id": "32990", "title": "Dihedral Group D4/Matrix Representation/Formulation 2/Cayley Table", "text": "Dihedral Group D4/Matrix Representation/Formulation 2/Cayley Table 0 73423 385557 385555 2018-12-31T12:05:18Z Prime.mover 59 wikitext text/x-wiki == Cayley Table for Dihedral Group $D_4$ == The Cayley table for the dihedral group $D_4$: :$D_4 = \\set {\\mathbf I, \\mathbf A, \\mathbf B, \\mathbf C, \\mathbf D, \\mathbf E, \\mathbf F, \\mathbf G}$ under the operation of conventional matrix multiplication, where: :$\\mathbf I = \\begin{bmatrix} 1 & 0 \\\\ 0 & 1 \\end{bmatrix} \\qquad \\mathbf A = \\begin{bmatrix} i & 0 \\\\ 0 & -i \\end{bmatrix} \\qquad \\mathbf B = \\begin{bmatrix} -1 & 0 \\\\ 0 & -1 \\end{bmatrix} \\qquad \\mathbf C = \\begin{bmatrix} -i & 0 \\\\ 0 & i \\end{bmatrix}$ :$\\mathbf D = \\begin{bmatrix} 0 & 1 \\\\ 1 & 0 \\end{bmatrix} \\qquad \\mathbf E = \\begin{bmatrix} 0 & i \\\\ -i & 0 \\end{bmatrix} \\qquad \\mathbf F = \\begin{bmatrix} 0 & -1 \\\\ -1 & 0 \\end{bmatrix} \\qquad \\mathbf G = \\begin{bmatrix} 0 & -i \\\\ i & 0 \\end{bmatrix}$ can be presented as: :$\\begin{array}{r|rrrrrrrr} & \\mathbf I & \\mathbf A & \\mathbf B & \\mathbf C & \\mathbf D & \\mathbf E & \\mathbf F & \\mathbf G \\\\ \\hline \\mathbf I & \\mathbf I & \\mathbf A & \\mathbf B & \\mathbf C & \\mathbf D & \\mathbf E & \\mathbf F & \\mathbf G \\\\ \\mathbf A & \\mathbf A & \\mathbf B & \\mathbf C & \\mathbf I & \\mathbf E & \\mathbf F & \\mathbf G & \\mathbf D \\\\ \\mathbf B & \\mathbf B & \\mathbf C & \\mathbf I & \\mathbf A & \\mathbf F & \\mathbf G & \\mathbf D & \\mathbf E \\\\ \\mathbf C & \\mathbf C & \\mathbf I & \\mathbf A & \\mathbf B & \\mathbf G & \\mathbf D & \\mathbf E & \\mathbf F \\\\ \\mathbf D & \\mathbf D & \\mathbf G & \\mathbf F & \\mathbf E & \\mathbf I & \\mathbf C & \\mathbf B & \\mathbf A \\\\ \\mathbf E & \\mathbf E & \\mathbf D & \\mathbf G & \\mathbf F & \\mathbf A & \\mathbf I & \\mathbf C & \\mathbf B \\\\ \\mathbf F & \\mathbf F & \\mathbf E & \\mathbf D & \\mathbf G & \\mathbf B & \\mathbf A & \\mathbf I & \\mathbf C \\\\ \\mathbf G & \\mathbf G & \\mathbf F & \\mathbf E & \\mathbf D & \\mathbf C & \\mathbf B & \\mathbf A & \\mathbf I \\end{array}$ == Sources == * {{BookReference|A Course in Group Theory|1996|John F. Humphreys|prev = Square Matrices with +1 or -1 Determinant under Multiplication forms Group|next = Symmetry Group of Square/Cayley Table}}: Chapter $1$: Definitions and Examples: Exercise $2$ Category:Dihedral Group D4 Category:Examples of Cayley Tables guk2cvj7qlekm5o2z8a17vgul9mj7g8"}
+{"_id": "32991", "title": "Dihedral Group D4/Group Presentation", "text": "Dihedral Group D4/Group Presentation 0 73538 386381 386233 2019-01-05T08:46:01Z Prime.mover 59 wikitext text/x-wiki == Group Presentation of Dihedral Group $D_4$ == The group presentation of the dihedral group $D_4$ is given by: :$D_4 = \\gen {a, b: a^4 = b^2 = e, a b = b a^{-1} }$ == Proof == We have that the group presentation of the dihedral group $D_n$ is: :$D_n = \\gen {\\alpha, \\beta: \\alpha^n = \\beta^2 = e, \\beta \\alpha \\beta = \\alpha^{−1} }$ Setting $n = 4, \\alpha = a, \\beta = b$, we get: :$D_4 = \\gen {a, b: a^4 = b^2 = e, b a b = a^{−1} }$ from which the result follows. {{qed}} Category:Dihedral Group D4 oh3atztie8viahgrxt735dwnqryv7xg"}
+{"_id": "32992", "title": "Dihedral Group D3/Group Presentation", "text": "Dihedral Group D3/Group Presentation 0 73560 386380 386377 2019-01-05T08:45:49Z Prime.mover 59 wikitext text/x-wiki == Group Presentation of Dihedral Group $D_3$ == The group presentation of the dihedral group $D_3$ is given by: :$D_3 = \\gen {a, b: a^3 = b^2 = e, a b = b a^{-1} }$ == Proof == We have that the group presentation of the dihedral group $D_n$ is: :$D_n = \\gen {\\alpha, \\beta: \\alpha^n = \\beta^2 = e, \\beta \\alpha \\beta = \\alpha^{−1} }$ Setting $n = 3, \\alpha = a, \\beta = b$, we get: :$D_3 = \\gen {a, b: a^3 = b^2 = e, b a b = a^{−1} }$ from which the result follows. {{qed}} Category:Dihedral Group D3 675nb0ghqc462n8hcjps9rwo03tf0nt"}
+{"_id": "32993", "title": "Dihedral Group D3/Cayley Table", "text": "Dihedral Group D3/Cayley Table 0 73563 386386 2019-01-05T09:08:29Z Prime.mover 59 Created page with \"== Cayley Table of Dihedral Group $D_3$ == The Cayley table of the Definition:Dihed...\" wikitext text/x-wiki == Cayley Table of Dihedral Group $D_3$ == The Cayley table of the dihedral group $D_3$ can be written: :$\\begin{array}{c|cccccc} & e & a & a^2 & b & a b & a^2 b \\\\ \\hline e & e & a & a^2 & b & a b & a^2 b \\\\ a & a & a^2 & e & a b & a^2 b & b \\\\ a^2 & a^2 & e & a & a^2 b & b & a b \\\\ b & b & a^2 b & a b & e & a^2 & a \\\\ a b & a b & b & a^2 b & a & e & a^2 \\\\ a^2 b & a^2 b & a b & b & a^2 & a & e \\\\ \\end{array}$ where the group presentation of $D_3$ is given as: {{:Group Presentation of Dihedral Group D3}} Category:Examples of Cayley Tables Category:Dihedral Group D3 89aknx2cuypw4ge7xzprwq9gksdrk06"}
+{"_id": "32994", "title": "Standard Parity Check Matrix/Examples/(6, 3) code in Z2", "text": "Standard Parity Check Matrix/Examples/(6, 3) code in Z2 0 73781 387552 387549 2019-01-13T10:35:07Z Prime.mover 59 wikitext text/x-wiki == Example of Standard Parity Check Matrix == Let $C$ be the linear $\\tuple {6, 3}$-code in $\\Z_2$ whose standard generator matrix $G$ is given by: :$G := \\begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\\\ 0 & 1 & 0 & 1 & 0 & 1 \\\\ 0 & 0 & 1 & 0 & 1 & 1 \\end{pmatrix}$ Its standard parity check matrix $P$ is given by: :$P := \\begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\\\ 1 & 0 & 1 & 0 & 1 & 0 \\\\ 0 & 1 & 1 & 0 & 0 & 1 \\end{pmatrix}$ == Proof == Expressing $G$ in the form: :$G = \\paren {\\begin{array} {c|c} \\mathbf I_k & \\mathbf A \\end{array} }$ it is seen that: :$\\mathbf A = \\begin{pmatrix} 1 & 1 & 0 \\\\ 1 & 0 & 1 \\\\ 0 & 1 & 1 \\end{pmatrix}$ It is noted that $\\mathbf A^\\intercal$ is: :$\\mathbf A^\\intercal = \\begin{pmatrix} 1 & 1 & 0 \\\\ 1 & 0 & 1 \\\\ 0 & 1 & 1 \\end{pmatrix}$ as $\\mathbf A$ is symmetrical about the main diagonal. Then each of the elements of $\\Z_2$ is self-inverse, so: :$-\\mathbf A^\\intercal = \\mathbf A^\\intercal$ {{Qed}} == Sources == * {{BookReference|A Course in Group Theory|1996|John F. Humphreys|prev = Definition:Standard Parity Check Matrix|next = Definition:Syndrome}}: Chapter $6$: Error-correcting codes: Example $6.18$ Category:Examples of Linear Codes qr1jfa03pvbul95tdgxdv9khqnvkcg1"}
+{"_id": "32995", "title": "Syndrome Decoding/Examples/(6, 3) code in Z2", "text": "Syndrome Decoding/Examples/(6, 3) code in Z2 0 73802 387561 2019-01-13T13:16:59Z Prime.mover 59 Created page with \"== Example of Syndrome Decoding == Let $C$ be the linear code: :$C = \\set {000000, 100110, 010101, 110011, 001011, 101101, 011110...\" wikitext text/x-wiki == Example of Syndrome Decoding == Let $C$ be the linear code: :$C = \\set {000000, 100110, 010101, 110011, 001011, 101101, 011110, 111000}$ Then the Syndrome Decoding table $T$ for $C$ is: :$\\begin{array} {cc} 000000 & 000 \\\\ 100000 & 110 \\\\ 010000 & 101 \\\\ 001000 & 011 \\\\ 000100 & 100 \\\\ 000010 & 010 \\\\ 000001 & 001 \\\\ 100001 & 111 \\\\ \\end{array}$ To find the $8$th row, it is not necessary to hunt directly an element $v$ of $\\map V {6, 2}$ of weight $2$ which does not exist anywhere in the other $7$ rows. What you do is identify the remaining syndrome of $3$ digits that has not been used yet (that is: $111$). Then you work out what combinations of coset leaders and their own syndromes which when added together make that last syndrome. The fact that in this case that combination is not unique (here we get $100001$, $010010$, $001100$ and $000111$) means that an element of $\\map V {6, 2}$ which is more than $2$ distant from a codeword cannot be uniquely decoded. == Example == {{:Syndrome Decoding/Examples/(6, 3) code in Z2/Example}} == Sources == * {{BookReference|A Course in Group Theory|1996|John F. Humphreys|prev = Syndrome Decoding|next = Syndrome Decoding/Examples/(6, 3) code in Z2/Example}}: Chapter $6$: Error-correcting codes: Example $6.22$ Category:Examples of Linear Codes qdysn310ovs76bzkwix1spvm2ut3zse"}
+{"_id": "32996", "title": "Dihedral Group D4/Cayley Table", "text": "Dihedral Group D4/Cayley Table 0 73840 387808 387779 2019-01-15T07:52:51Z Prime.mover 59 wikitext text/x-wiki == Cayley Table for Dihedral Group $D_4$ == The Cayley table for the dihedral group $D_4$, whose group presentation is: {{:Group Presentation of Dihedral Group D4}} can be presented as: :$\\begin{array}{l|cccccccc} & e & a & a^2 & a^3 & b & b a & b a^2 & b a^3 \\\\ \\hline e & e & a & a^2 & a^3 & b & b a & b a^2 & b a^3 \\\\ a & a & a^2 & a^3 & e & b a^3 & b & b a & b a^2 \\\\ a^2 & a^2 & a^3 & e & a & b a^2 & b a^3 & b & b a \\\\ a^3 & a^3 & e & a & a^2 & b a & b a^2 & b a^3 & b \\\\ b & b & b a & b a^2 & b a^3 & e & a & a^2 & a^3 \\\\ b a & b a & b a^2 & b a^3 & b & a^3 & e & a & a^2 \\\\ b a^2 & b a^2 & b a^3 & b & b a & a^2 & a^3 & e & a \\\\ b a^3 & b a^3 & b & b a & b a^2 & a & a^2 & a^3 & e \\end{array}$ === Coset Decomposition of $\\set {e, a^2}$ === Presenting the above Cayley table with respect to the coset decomposition of the normal subgroup $\\gen a^2$ gives: {{:Dihedral Group D4/Cayley Table/Coset Decomposition of (e, a^2)}} === Coset Decomposition of $\\set {e, a, a^2, a^3}$ === Presenting the above Cayley table with respect to the coset decomposition of the normal subgroup $\\gen a$ gives: {{:Dihedral Group D4/Cayley Table/Coset Decomposition of (e, a, a^2, a^3)}} == Sources == * {{BookReference|A Course in Group Theory|1996|John F. Humphreys|prev = Dihedral Group D4/Normal Subgroups/Subgroup Generated by a^2/Quotient Group|next = Dihedral Group D4/Cayley Table/Coset Decomposition of (e, a^2)}}: Chapter $7$: Normal subgroups and quotient groups: Example $7.13$ Category:Dihedral Group D4 Category:Examples of Cayley Tables lk9n3g9c3rc1tk0fyai15cfnc7c0q8i"}
+{"_id": "32997", "title": "Quaternion Group/Subgroups", "text": "Quaternion Group/Subgroups 0 73851 387863 387860 2019-01-15T11:20:53Z Prime.mover 59 wikitext text/x-wiki == Subgroups of the Quaternion Group == Let $Q$ denote the quaternion group, whose group presentation is given as: {{:Group Presentation of Quaternion Group}} The subsets of $Q$ which form subgroups of $Q$ are: {{begin-eqn}} {{eqn | o = | r = Q }} {{eqn | o = | r = \\set e }} {{eqn | o = | r = \\set {e, a^2} }} {{eqn | o = | r = \\set {e, a, a^2, a^3} }} {{eqn | o = | r = \\set {e, b, a^2, a^2 b} }} {{eqn | o = | r = \\set {e, a b, a^2, a^3 b} }} {{end-eqn}} From Quaternion Group is Hamiltonian we have that all of these subgroups of $Q$ are normal. == Proof == Consider the Cayley table for $Q$: {{:Quaternion Group/Cayley Table}} We have that: :$a^4 = e$ and so $\\gen a = \\set {e, a, a^2, a^3}$ forms a subgroup of $Q$ which is cyclic. We have that: :$b^2 = a^2$ and so $\\gen b = \\set {e, b, a^2, a^2 b}$ forms a subgroup of $Q$ which is cyclic. We have that: :$\\paren {a b}^2 = a^2$ and so $\\gen {a b} = \\set {e, a b, a^2, a^3 b}$ forms a subgroup of $Q$ which is cyclic. We have that: :$\\paren {a^2}^2 = e$ and so $\\gen {a^2} = \\set {e, a^2}$ forms a subgroup of $Q$ which is also a subgroup of $\\gen a$, $\\gen b$ and $\\gen {a b}$. That exhausts all elements of $Q$. Any subgroup generated by any $2$ elements of $Q$ which are not both in the same subgroup as described above will generate the whole of $Q$. {{qed}} == Also see == * Quaternion Group is Hamiltonian == Sources == * {{BookReference|A Course in Group Theory|1996|John F. Humphreys|prev = Symmetric Group on 3 Letters/Normal Subgroups|next = Quaternion Group is Hamiltonian}}: Chapter $7$: Normal subgroups and quotient groups: Exercise $3$ Category:Quaternion Group 7liu2qz525m458f5b51dpwqwtyj0y46"}
+{"_id": "32998", "title": "Dihedral Group D4/Subgroups", "text": "Dihedral Group D4/Subgroups 0 73855 497569 497568 2020-11-02T16:20:32Z Prime.mover 59 wikitext text/x-wiki == Subgroups of the Dihedral Group $D_4$ == Let the dihedral group $D_4$ be represented by its group presentation: {{:Group Presentation of Dihedral Group D4}} The subsets of $D_4$ which form subgroups of $D_4$ are: {{begin-eqn}} {{eqn | o = | r = D_4 }} {{eqn | o = | r = \\set e }} {{eqn | o = | r = \\set {e, a, a^2, a^3} }} {{eqn | o = | r = \\set {e, a^2} }} {{eqn | o = | r = \\set {e, b} }} {{eqn | o = | r = \\set {e, b a} }} {{eqn | o = | r = \\set {e, b a^2} }} {{eqn | o = | r = \\set {e, b a^3} }} {{eqn | o = | r = \\set {e, a^2, b, b a^2} }} {{eqn | o = | r = \\set {e, a^2, b a, b a^3} }} {{end-eqn}} == Proof == Consider the Cayley table for $D_4$: {{:Dihedral Group D4/Cayley Table}} We have that: :$a^4 = e$ and so $\\gen a = \\set {e, a, a^2, a^3}$ forms a subgroup of $D_4$ which is cyclic. We have that: :$\\paren {a^2}^2 = e$ and so $\\gen {a^2} = \\set {e, a^2}$ forms a subgroup of $D_4$ which is cyclic, and also a subgroup of $\\gen a$. We have that: :$b^2 = e$ and so $\\gen b = \\set {e, b}$ forms a subgroup of $D_4$ which is cyclic. We have that: :$\\paren {b a}^2 = e$ and so $\\gen {b a} = \\set {e, b a}$ forms a subgroup of $D_4$ which is cyclic. We have that: :$\\paren {b a^2}^2 = e$ and so $\\gen {b a^2} = \\set {e, b a^2}$ forms a subgroup of $D_4$ which is cyclic. We have that: :$\\paren {b a^3}^2 = e$ and so $\\gen {b a^3} = \\set {e, b a^3}$ forms a subgroup of $D_4$ which is cyclic. Then we have that: :$b a^2 = a^2 b$ and so $\\gen {a^2, b} = \\set {e, a^2, b, b a^2}$ forms a subgroup of $D_4$ which is not cyclic, but which has subgroups $\\set {e, a^2}$, $\\set {e, b}$, $\\set {e, b a^2}$. Then we have that: :$b a^3 = a^2 b a$ and so $\\gen {a^2, b a} = \\set {e, a^2, b a, b a^3}$ forms a subgroup of $D_4$ which is not cyclic, but which has subgroups $\\set {e, a^2}$, $\\set {e, b}$, $\\set {e, b a^2}$. That exhausts all elements of $D_4$. Any subgroup generated by any $2$ elements of $Q$ which are not both in the same subgroup as described above generate the whole of $D^4$. {{qed}} Category:Dihedral Group D4 h8f00ilfqs8wjrsvc502y7dpox94vsu"}
+{"_id": "32999", "title": "Dihedral Group D4/Center", "text": "Dihedral Group D4/Center 0 73863 387887 387886 2019-01-15T21:08:09Z Prime.mover 59 wikitext text/x-wiki == Center of the Dihedral Group $D_4$ == Let $D_4$ denote the dihedral group $D_4$, whose group presentation is given as: {{:Group Presentation of Dihedral Group D4}} The center of $D_4$ is given by: :$\\map Z {D_4} = \\set {e, a^2}$ == Proof == From Center of Dihedral Group: :$\\map Z {D_n} = \\begin{cases} e & : n \\text { odd} \\\\ \\set {e, \\alpha^{n / 2} } & : n \\text { even} \\end{cases}$ Hence the result. {{qed}} == Sources == * {{BookReference|A Course in Group Theory|1996|John F. Humphreys|prev = Symmetric Group on 3 Letters/Center|next = Definition:Group Homomorphism}}: Chapter $7$: Normal subgroups and quotient groups: Exercise $5$ Category:Centers of Groups Category:Dihedral Group D4 cswd14eda2ndj39sr0wh4es0d3hluuv"}
+{"_id": "33000", "title": "Group Action of Symmetric Group on Complex Vector Space/Orbit/Examples/Example 1", "text": "Group Action of Symmetric Group on Complex Vector Space/Orbit/Examples/Example 1 0 73994 417080 388751 2019-08-07T15:42:10Z Prime.mover 59 wikitext text/x-wiki == Example of Orbit of Group Action of Symmetric Group on Complex Vector Space == Let $S_n$ denote the symmetric group on $n$ letters. Let $V$ denote a vector space over the complex numbers $\\C$. Let $V$ have a basis: :$\\mathcal B := \\set {v_1, v_2, \\ldots, v_n}$ Let $*: S_n \\times V \\to V$ be a group action of $S_n$ on $V$ defined as: :$\\forall \\tuple {\\rho, v} \\in S_n \\times V: \\rho * v := \\lambda_1 v_{\\map \\rho 1} + \\lambda_2 v_{\\map \\rho 2} + \\dotsb + \\lambda_n v_{\\map \\rho n}$ where: :$v = \\lambda_1 v_1 + \\lambda_2 v_2 + \\dotsb + \\lambda_n v_n$ Let $n = 4$. Let $v = v_1 + v_2 + v_3 + v_4$. The orbit of $v$ is: :$\\Orb v = \\set v$ == Proof == {{begin-eqn}} {{eqn | l = \\Orb v | r = \\set {w \\in V: \\exists \\rho \\in S_4: w = \\rho * v} | c = {{Defof|Orbit (Group Theory)|Orbit}} }} {{eqn | r = \\set {w \\in V: \\exists \\rho \\in S_4: w = \\rho * \\sum_{k \\mathop = 1}^4 v_k} | c = Definition of $v$ }} {{eqn | r = \\set {w \\in V: \\exists \\rho \\in S_4: w = \\sum_{k \\mathop = 1}^4 v_\\map \\rho k} | c = Definition of $*$ }} {{eqn | r = \\set {w \\in V: \\exists \\rho \\in S_4: w = \\sum_{k \\mathop = 1}^4 v_k} | c = Permutation of Indices of Summation }} {{eqn | r = \\set {w \\in V: \\exists \\rho \\in S_4: w = v} | c = Definition of $v$ }} {{eqn | r = \\set v | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|A Course in Group Theory|1996|John F. Humphreys|prev = Group Action of Symmetric Group on Complex Vector Space/Stabilizer|next = Group Action of Symmetric Group on Complex Vector Space/Stabilizer/Examples/Example 1}}: Chapter $10$: The Orbit-Stabiliser Theorem: Exercise $1 \\ \\text {(a)}$ Category:Group Action of Symmetric Group on Complex Vector Space bvxiiee6p1aslbmoipu19e3qdvvc2ia"}
+{"_id": "33001", "title": "Sylow Theorems/Examples/Sylow 3-Subgroups in Group of Order 12", "text": "Sylow Theorems/Examples/Sylow 3-Subgroups in Group of Order 12 0 74043 388972 2019-01-21T21:07:43Z Prime.mover 59 Created page with \"== Example of Use of Sylow Theorems == In a group of order $12$, there are either $1$ or $4$ Definition:...\" wikitext text/x-wiki == Example of Use of Sylow Theorems == In a group of order $12$, there are either $1$ or $4$ Sylow $3$-subgroups. == Proof == Let $G$ be a group of order $12$. Let $n_3$ be the number of Sylow $3$-subgroups in $G$. From the Fourth Sylow Theorem, $n_3$ is congruent to $1$ modulo $3$, that is, in $\\set {1, 4, 7, \\ldots}$ Let $H$ be a Sylow $3$-subgroup of $G$. We have that: :$12 = 4 \\times 3$ and so the order of $H$ is $3$. Thus: {{begin-eqn}} {{eqn | l = \\index G H | r = \\dfrac {12} {3} | c = }} {{eqn | r = 4 | c = }} {{end-eqn}} From the Fifth Sylow Theorem: :$n_3 \\divides 4$ where $\\divides$ denotes divisibility. Thus there may be $1$ or $4$ Sylow $3$-subgroups of $G$. {{qed}} == Sources == * {{BookReference|A Course in Group Theory|1996|John F. Humphreys|prev = Sylow Theorems/Examples/Sylow 2-Subgroups in Group of Order 12|next = Direct Product of Normal Subgroups is Normal}}: Chapter $11$: The Sylow Theorems: Exercise $1 \\ \\text{(e)}$ Category:Sylow Theorems Category:Groups of Order 12 i082pikg0cnwnvas2h0g72fnb5xdgqw"}
+{"_id": "33002", "title": "Pullback is Subgroup", "text": "Pullback is Subgroup 0 74142 389466 389454 2019-01-24T16:18:20Z Prime.mover 59 wikitext text/x-wiki {{disambig}} * Pullback of Quotient Group Isomorphism is Subgroup Category:Group Theory 1bgtgm1hui7kmw21di56qb30x84d37i"}
+{"_id": "33003", "title": "Pullback of Quotient Group Isomorphism/Examples/Subgroups of Index 2", "text": "Pullback of Quotient Group Isomorphism/Examples/Subgroups of Index 2 0 74155 389510 389500 2019-01-24T21:43:39Z Prime.mover 59 wikitext text/x-wiki == Example of Pullback of Quotient Group Isomorphism == Let $G$ and $H$ be groups. Let $N$ and $K$ be normal subgroups of $G$ and $H$ respectively such that: :their quotient groups $G / N$ and $H / K$ are isomorphic :their indices are $2$: ::$\\index G N = \\index H K = 2$ Let $\\theta: G / N \\to H / K$ be an isomorphism. The pullback of $G$ and $H$ by $\\theta$ is a subset of $G \\times H$ of the form: :$G \\times^\\theta H = \\set {\\tuple {g, h}: \\paren {g \\in N, h \\in K} \\text { or } \\paren {g \\notin N, h \\notin K} }$ == Proof == As $\\index G N = \\index H K = 2$, it follows that: :$\\order {G / N} = \\order {H / K} = 2$ and they are the cyclic group of order $2$. Let: : $x \\in G: x \\notin N$ : $y \\in H: y \\notin K$ Then: :$G / N = \\gen {x N}$ :$H / K = \\gen {y K}$ and we have: {{begin-eqn}} {{eqn | l = \\map \\theta N | r = K }} {{eqn | l = \\map \\theta {x N} | r = y K }} {{end-eqn}} Let $\\tuple {g, h} \\in G \\times^\\theta H$. By definition: :$G \\times^\\theta H = \\set {\\tuple {g, h}: \\map \\theta {g N} = h K}$ Let $g \\in N$. Then $g N = N$ and so: : $\\map \\theta {g N} = h K = K$ So $g \\in N \\implies h \\in K$. Let $g \\notin N$. Then $g N = x N$ and so: : $\\map \\theta {g N} = h K = x K$ So $g \\notin N \\implies h \\notin K$. Hence the result. {{qed}} == Sources == * {{BookReference|A Course in Group Theory|1996|John F. Humphreys|prev = Pullback of Quotient Group Isomorphism is Subgroup|next = Pullback of Quotient Group Isomorphism/Examples/Alternating Subgroups of Symmetric Groups}}: Chapter $13$: Direct products: Example $13.12$ Category:Examples of Pullbacks of Quotient Group Isomorphisms tgclnb62ygmyfrq9ftv21h2wws2sqvg"}
+{"_id": "33004", "title": "Arcsin as an Integral/Lemma 1", "text": "Arcsin as an Integral/Lemma 1 0 74302 390719 390718 2019-01-30T14:50:47Z Pelliott 3564 sin_A inverse arcsin_a wikitext text/x-wiki == Lemma == Let $sin_A$ be the analytic sine function for real numbers, the one defined by Definition:Sine/Real Numbers. $\\arcsin_A$ is the inverse of this function. :$\\displaystyle \\map {\\arcsin_A} x = \\int_0^x \\frac {\\d x} {\\sqrt {1 - x^2} }$ == Proof == For this proof only, let $\\sin_A$ be the analytic sine function from Definition:Sine/Real Numbers. Consider: :$\\displaystyle \\int_0^x \\frac {\\d x} {\\sqrt {1 - x^2} }$ Let: :$x = \\sin_A \\theta \\iff x = \\map {\\arcsin_A} \\theta$ Then: {{begin-eqn}} {{eqn | l = \\d x | r = \\cos_A \\theta \\rd \\theta | c = Derivative of Sine Function }} {{eqn | l = \\int \\frac {\\d x} {\\sqrt {1 - x^2} } | r = \\int \\frac {\\d x} {\\cos_A \\theta} \\cos_A \\theta \\rd \\theta | c = Integration by Substitution }} {{eqn | r = \\int 1 \\rd \\theta }} {{eqn | r = \\theta + C }} {{eqn | r = \\map {\\arcsin_A} x + C }} {{eqn | ll= \\leadsto | l = \\int_0^x \\frac {\\d x} {\\sqrt {1 - x^2} } | r = \\map {\\arcsin_A} x | c = Fundamental Theorem of Calculus: Second Part }} {{end-eqn}} {{qed|lemma}} chldcq0gp73np0qqonhd2zb3nt5sh13"}
+{"_id": "33005", "title": "Arcsin as an Integral/Lemma 2", "text": "Arcsin as an Integral/Lemma 2 0 74304 390774 390773 2019-01-31T06:27:22Z Prime.mover 59 Reverted edits by Prime.mover (talk) to last revision by Pelliott wikitext text/x-wiki == Lemma == Let, $\\sin_G$ be the Geometric Sine from Definition:Sine/Definition from Circle. $\\arcsin_G$ is the inverse of this function. :$\\displaystyle \\map {\\arcsin_G} x = \\int_0^x \\frac {\\d x} {\\sqrt {1 - x^2} }$ == Proof == This result will be used in proving Derivative of Sine Function in the geometric case. So we can not use the same reasoning as Arcsin as an Integral/Lemma 1 because our logic would be circular. :640px {{improve|Might be worth revisiting the diagram to make all the text the same size}} Let $\\theta$ be the length of the arc associated with the angle on the circle of radius $1$. By definition of arcsine: :$y = \\sin \\theta \\iff \\theta = \\arcsin y$ We have that arc length is always positive. For negative $y$, the $\\arcsin$ function is defined as being the negative of the arc length. This makes the $\\arcsin$ function and the $\\sin$ function odd, and puts us in line with mathematical convention: :Inverse Sine is Odd Function. :Sine Function is Odd Without this convention, the derivative of the $\\sin$ function would not be continuous. Now: {{begin-eqn}} {{eqn | l = x^2 + y^2 | r = 1 | c = Equation of Circle | n = 1 }} {{eqn | l = \\dfrac {\\d x} {\\d y} | r = -\\dfrac y x | c = Implicit Differentiation }} {{eqn | r = -\\dfrac y {\\sqrt {1 - y^2} } | c = substituting for $x$ }} {{end-eqn}} Then: {{begin-eqn}} {{eqn | l = \\arcsin_G y | r = \\int_0^y \\sqrt {1 + \\paren {\\dfrac {\\d x} {\\d y} }^2} \\rd y | c = {{Defof|Arc Length}} }} {{eqn | r = \\int_0^y \\sqrt {1 + \\paren {-\\dfrac y x}^2} | c = substituting for $\\dfrac {\\d x} {\\d y}$ }} {{eqn | r = \\int_0^y \\sqrt {1 + \\dfrac {y^2} {x^2} } \\rd y }} {{eqn | r = \\int_0^y \\sqrt {\\dfrac {x^2} {x^2} + \\dfrac {y^2} {x^2} } \\rd y | c = rewriting $1$ to create common denominator }} {{eqn | r = \\int_0^y \\sqrt {\\dfrac {x^2 + y^2} {x^2} } \\rd y | c = combining terms with common denominator }} {{eqn | r = \\int_0^y \\sqrt {\\dfrac 1 {x^2} } \\rd y | c = Equation of Circle $(1)$ }} {{eqn | r = \\int_0^y \\dfrac 1 x \\rd y | c = in Quadrant $\\text I$ and Quadrant $\\text {IV}$ }} {{eqn | r = \\int_0^y \\dfrac 1 {\\sqrt {1 - y^2} } \\rd y | c = substituting for $x$ in Quadrant $\\text I$ and Quadrant $\\text {IV}$ }} {{end-eqn}} {{qed|lemma}} l2gxb81370tgmmd6hllwvmdl8u05l8q"}
+{"_id": "33006", "title": "Modulo Arithmetic/Examples/n(n^2-1)(3n-2) Modulo 24", "text": "Modulo Arithmetic/Examples/n(n^2-1)(3n-2) Modulo 24 0 74319 390579 2019-01-29T21:13:22Z Prime.mover 59 Created page with \"== Example of Modulo Arithmetic == :$n \\paren {n^2 - 1} \\paren {3 n + 2} \\equiv 0 \\pmod {24}$ == Proof == The p...\" wikitext text/x-wiki == Example of Modulo Arithmetic == :$n \\paren {n^2 - 1} \\paren {3 n + 2} \\equiv 0 \\pmod {24}$ == Proof == The proof proceeds by induction. For all $n \\in \\Z_{> 0}$, let $\\map P n$ be the proposition: :$n \\paren {n^2 - 1} \\paren {3 n + 2} \\equiv 0 \\pmod {24}$ === Basis for the Induction === $\\map P 1$ is the case: {{begin-eqn}} {{eqn | l = 1 \\paren {1^2 - 1} \\paren {3 \\times 1 + 2} | r = 0 | c = }} {{eqn | o = \\equiv | r = 0 | rr= \\pmod {24} | c = }} {{end-eqn}} Thus $\\map P 1$ is seen to hold. This is the basis for the induction. === Induction Hypothesis === Now it needs to be shown that, if $\\map P k$ is true, where $k \\ge 1$, then it logically follows that $\\map P {k + 1}$ is true. So this is the induction hypothesis: :$k \\paren {k^2 - 1} \\paren {3 k + 2} \\equiv 0 \\pmod {24}$ from which it is to be shown that: :$\\paren {k + 1} \\paren {\\paren {k + 1}^2 - 1} \\paren {3 \\paren {k + 1} + 2} \\equiv 0 \\pmod {24}$ === Induction Step === This is the induction step: {{begin-eqn}} {{eqn | l = \\paren {k + 1} \\paren {\\paren {k + 1}^2 - 1} \\paren {3 \\paren {k + 1} - 2} | r = k \\paren {k + 1} \\paren {k + 2} \\paren {3 k + 5} | c = }} {{eqn | r = k \\paren {k + 1} \\paren {k - 1 + 3} \\paren {3 k + 2 + 3} | c = }} {{eqn | r = k \\paren {k + 1} \\paren {k - 1} \\paren {3 k + 2 + 3} + 3 k \\paren {k + 1} \\paren {3 k + 2 + 3} | c = }} {{eqn | r = k \\paren {k + 1} \\paren {k - 1} \\paren {3 k + 2} + 3 k \\paren {k + 1} \\paren {k - 1} + 3 k \\paren {k + 1} \\paren {3 k + 5} | c = }} {{eqn | r = k \\paren {k^2 - 1} \\paren {3 k + 2} + 3 k \\paren {k + 1} \\paren {k - 1 + 3 k + 5} | c = }} {{eqn | r = k \\paren {k^2 - 1} \\paren {3 k + 2} + 3 k \\paren {k + 1} \\paren {4 k + 4} | c = }} {{eqn | r = k \\paren {k^2 - 1} \\paren {3 k + 2} + 12 k \\paren {k + 1}^2 | c = }} {{end-eqn}} By the induction hypothesis: :$k \\paren {k^2 - 1} \\paren {3 k + 2} = 24 r$ for some $r \\in \\Z$. Take $12 k \\paren {k + 1}^2$. If $k$ is even, then $12 k$ and so $12 k \\paren {k + 1}^2$ is divisible by $24$. If $k$ is odd, then $k + 1$ is even and so $12 k \\paren {k + 1}^2$ is again divisible by $24$. Thus: :$12 k \\paren {k + 1}^2 = 24 s$ for some $s \\in \\Z$. Thus: :$k \\paren {k^2 - 1} \\paren {3 k + 2} + 12 k \\paren {k + 1}^2 = 24 \\paren {r + s}$ So $\\map P k \\implies \\map P {k + 1}$ and the result follows by the Principle of Mathematical Induction. Therefore: :$\\forall n \\in \\Z_{>0}: n \\paren {n^2 - 1} \\paren {3 n + 2} \\equiv 0 \\pmod {24}$ {{qed}} == Sources == * {{BookReference|Number Theory|1971|George E. Andrews|prev = Sum of Sequence of Product of Lucas Numbers with Powers of 2|next = Sum of Odd Positive Powers}}: $\\text {1-1}$ Principle of Mathematical Induction: Exercise $18$ Category:Examples of Modulo Arithmetic 040thy9kquhouj6rzuegnhscy352s0e"}
+{"_id": "33007", "title": "Euclidean Algorithm/Examples/341 and 527", "text": "Euclidean Algorithm/Examples/341 and 527 0 74394 493846 391022 2020-10-11T06:57:10Z Prime.mover 59 wikitext text/x-wiki == Examples of Use of Euclidean Algorithm == The GCD of $341$ and $527$ is found to be: :$\\gcd \\set {341, 527} = 31$ ==== Integer Combination ==== {{:Euclidean Algorithm/Examples/341 and 527/Integer Combination}} == Proof == {{begin-eqn}} {{eqn | n = 1 | l = 527 | r = 1 \\times 341 + 186 }} {{eqn | n = 2 | l = 341 | r = 1 \\times 186 + 155 }} {{eqn | n = 3 | l = 186 | r = 1 \\times 155 + 31 }} {{eqn | n = | l = 155 | r = 5 \\times 31 }} {{end-eqn}} Thus: :$\\gcd \\set {341, 527} = 31$ {{qed}} == Sources == * {{BookReference|Number Theory|1971|George E. Andrews|prev = GCD of Integer and Divisor|next = Euclidean Algorithm}}: $\\text {2-2}$ Divisibility: Example $\\text {2-7}$ Category:Examples of Euclidean Algorithm 1tp7629hnw1wa04yq9vndlb9a8x1e6g"}
+{"_id": "33008", "title": "Lowest Common Multiple/Examples/n and n+1", "text": "Lowest Common Multiple/Examples/n and n+1 0 74418 391109 391100 2019-02-02T13:17:31Z Prime.mover 59 wikitext text/x-wiki == Example of Lowest Common Multiple of Integers == Let $n \\in \\Z_{>0}$ be a strictly positive integer. The lowest common multiple of $n$ and $n + 1$ is: :$\\lcm \\set {n, n + 1} = n \\paren {n + 1}$ == Proof == We find the greatest common divisor of $n$ and $n + 1$ using the Euclidean Algorithm: {{begin-eqn}} {{eqn | n = 1 | l = n + 1 | r = 1 \\times n + 1 }} {{eqn | n = 2 | l = n | r = n \\times 1 }} {{end-eqn}} Thus $\\gcd \\set {n, n + 1} = 1$. Hence by definition $n$ and $n + 1$ are coprime. The result follows from LCM of Coprime Integers. {{qed}} == Sources == * {{BookReference|Number Theory|1971|George E. Andrews|prev = Lowest Common Multiple/Examples/28 and 29|next = Lowest Common Multiple of Consecutive Odd Integers}}: $\\text {2-2}$ Divisibility: Exercise $5 \\ \\text {(e)}$ Category:Examples of Lowest Common Multiples tenqrtcuqhx6ex6zgf2ko269dorzlak"}
+{"_id": "33009", "title": "Area of Triangle in Determinant Form with Vertex at Origin", "text": "Area of Triangle in Determinant Form with Vertex at Origin 0 74481 391400 391394 2019-02-04T07:47:41Z Prime.mover 59 wikitext text/x-wiki == Example of Area of Triangle in Determinant Form == Let $A = \\tuple {0, 0}, B = \\tuple {b, a}, C = \\tuple {x, y}$ be points in the Cartesian plane. Let $T$ the triangle whose vertices are at $A$, $B$ and $C$. Then the area $\\mathcal A$ of $T$ is: :$\\map \\Area T = \\dfrac {\\size {b y - a x} } 2$ == Proof == {{begin-eqn}} {{eqn | l = \\map \\Area T | r = \\dfrac 1 2 \\size {\\paren {\\begin{vmatrix} 0 & 0 & 1 \\\\ b & a & 1 \\\\ x & y & 1 \\end{vmatrix} } } | c = Area of Triangle in Determinant Form }} {{eqn | r = \\dfrac 1 2 \\size {b y - a x} | c = {{Defof|Determinant of Order 3}} }} {{end-eqn}} {{qed}} == Example == {{:Area of Triangle in Determinant Form with Vertex at Origin/Example}} == Sources == * {{BookReference|Number Theory|1971|George E. Andrews|prev = Linear Diophantine Equation/Examples/15x + 51y = 41/Graph|next = Area of Triangle in Determinant Form with Vertex at Origin/Example}}: $\\text {2-3}$ The Linear Diophantine Equation: Exercise $4$ Category:Area of Triangle in Determinant Form e4vesh61jg84w2k8j6f36tt46abd0bs"}
+{"_id": "33010", "title": "Square Modulo 3/Corollary 3", "text": "Square Modulo 3/Corollary 3 0 74617 476278 462461 2020-06-28T15:53:22Z RandomUndergrad 3904 wikitext text/x-wiki == Corollary to Square Modulo 3 == Let $n \\in \\Z$ be an integer such that: :$3 \\nmid n$ where $\\nmid$ denotes non-divisibility. Then: :$3 \\divides n^2 - 1$ where $\\divides$ denotes divisibility. == Proof == From Square Modulo 3: :$n \\equiv 0 \\pmod 3 \\iff n^2 \\equiv 0 \\pmod 3$ Hence also from Square Modulo 3: :$n \\not \\equiv 0 \\pmod 3 \\iff n^2 \\equiv 1 \\pmod 3$ That is: $3 \\nmid n \\iff 3 \\divides n^2 - 1$ {{qed}} == Sources == * {{BookReference|Number Theory|1971|George E. Andrews|prev = Integer and Fifth Power have same Last Digit|next = Sufficient Condition for 5 to divide n^2+1}}: $\\text {3-2}$ Fermat's Little Theorem: Exercise $5$ Category:Square Modulo 3 n39xgma4sjtzzqmqv79rj9wyejujslo"}
+{"_id": "33011", "title": "Quadratic Residue/Examples/3", "text": "Quadratic Residue/Examples/3 0 74687 392366 392356 2019-02-14T07:45:47Z Prime.mover 59 wikitext text/x-wiki == Example of Quadratic Residues == There exists exactly $1$ quadratic residue modulo $3$, and that is $1$. == Proof == To list the quadratic residues of $3$ it is enough to work out the squares $1^2$ and $2^2$ modulo $3$. {{begin-eqn}} {{eqn | l = 1^2 | o = \\equiv | r = 1 | rr= \\pmod 3 }} {{eqn | l = 2^2 | o = \\equiv | r = 1 | rr= \\pmod 3 }} {{end-eqn}} So the set of quadratic residues modulo $3$ is: :$\\set 1$ The set of quadratic non-residues of $3$ therefore consists of all the other non-zero least positive residues: :$\\set 2$ {{qed}} == Sources == * {{BookReference|Number Theory|1971|George E. Andrews|prev = Quadratic Residue/Examples/11|next = Quadratic Residue/Examples/5}}: $\\text {3-5}$ The Use of Computers in Number Theory: Exercise $6$ Category:Examples of Quadratic Residues Category:3 hychsymwxsahklszp3zsz49zhllthfr"}
+{"_id": "33012", "title": "Quadratic Residue/Examples/5", "text": "Quadratic Residue/Examples/5 0 74688 392365 392355 2019-02-14T07:45:36Z Prime.mover 59 wikitext text/x-wiki == Example of Quadratic Residues == The set of quadratic residues modulo $5$ is: :$\\set {1, 4}$ == Proof == To list the quadratic residues of $5$ it is enough to work out the squares $1^2, 2^2, 3^2, 4^2$ modulo $5$. {{begin-eqn}} {{eqn | l = 1^2 | o = \\equiv | r = 1 | rr= \\pmod 5 }} {{eqn | l = 2^2 | o = \\equiv | r = 4 | rr= \\pmod 5 }} {{eqn | l = 3^2 | o = \\equiv | r = 4 | rr= \\pmod 5 }} {{eqn | l = 4^2 | o = \\equiv | r = 1 | rr= \\pmod 5 }} {{end-eqn}} So the set of quadratic residues modulo $5$ is: :$\\set {1, 4}$ The set of quadratic non-residues of $5$ therefore consists of all the other non-zero least positive residues: :$\\set {2, 3}$ {{qed}} == Sources == * {{BookReference|Number Theory|1971|George E. Andrews|prev = Quadratic Residue/Examples/3|next = Quadratic Residue/Examples/7}}: $\\text {3-5}$ The Use of Computers in Number Theory: Exercise $6$ Category:Examples of Quadratic Residues Category:5 siq4yv3zvjp16uejhkb1053p13l75s9"}
+{"_id": "33013", "title": "Quadratic Residue/Examples/7", "text": "Quadratic Residue/Examples/7 0 74689 392364 392354 2019-02-14T07:45:22Z Prime.mover 59 wikitext text/x-wiki == Example of Quadratic Residues == The set of quadratic residues modulo $7$ is: :$\\set {1, 2, 4}$ == Proof == To list the quadratic residues of $7$ it is enough to work out the squares $1^2, 2^2, \\dotsc, 6^2$ modulo $7$. {{begin-eqn}} {{eqn | l = 1^2 | o = \\equiv | r = 1 | rr= \\pmod 7 }} {{eqn | l = 2^2 | o = \\equiv | r = 4 | rr= \\pmod 7 }} {{eqn | l = 3^2 | o = \\equiv | r = 2 | rr= \\pmod 7 }} {{eqn | l = 4^2 | o = \\equiv | r = 2 | rr= \\pmod 7 }} {{eqn | l = 5^2 | o = \\equiv | r = 4 | rr= \\pmod 7 }} {{eqn | l = 6^2 | o = \\equiv | r = 1 | rr= \\pmod 7 }} {{end-eqn}} So the set of quadratic residues modulo $7$ is: :$\\set {1, 2, 4}$ The set of quadratic non-residues of $7$ therefore consists of all the other non-zero least positive residues: :$\\set {3, 5, 6}$ {{qed}} == Sources == * {{BookReference|Number Theory|1971|George E. Andrews|prev = Quadratic Residue/Examples/5|next = Quadratic Residue/Examples/17}}: $\\text {3-5}$ The Use of Computers in Number Theory: Exercise $6$ Category:Examples of Quadratic Residues Category:7 3igdqrcv9cp30opd1bnv3momeyleese"}
+{"_id": "33014", "title": "Quadratic Residue/Examples/17", "text": "Quadratic Residue/Examples/17 0 74690 433460 392363 2019-11-01T13:30:35Z Prime.mover 59 wikitext text/x-wiki == Example of Quadratic Residues == The set of quadratic residues modulo $17$ is: :$\\set {1, 2, 4, 8, 9, 13, 15, 16}$ {{OEIS|A010379}} == Proof == To list the quadratic residues of $17$ it is enough to work out the squares $1^2, 2^2, \\dotsc, 16^2$ modulo $17$. {{begin-eqn}} {{eqn | l = 1^2 | o = \\equiv | r = 1 | rr= \\pmod {17} }} {{eqn | l = 2^2 | o = \\equiv | r = 4 | rr= \\pmod {17} }} {{eqn | l = 3^2 | o = \\equiv | r = 9 | rr= \\pmod {17} }} {{eqn | l = 4^2 | o = \\equiv | r = 16 | rr= \\pmod {17} }} {{eqn | l = 5^2 | o = \\equiv | r = 8 | rr= \\pmod {17} }} {{eqn | l = 6^2 | o = \\equiv | r = 2 | rr= \\pmod {17} }} {{eqn | l = 7^2 | o = \\equiv | r = 15 | rr= \\pmod {17} }} {{eqn | l = 8^2 | o = \\equiv | r = 13 | rr= \\pmod {17} }} {{eqn | l = 9^2 | o = \\equiv | r = 13 | rr= \\pmod {17} }} {{eqn | l = 10^2 | o = \\equiv | r = 15 | rr= \\pmod {17} }} {{eqn | l = 11^2 | o = \\equiv | r = 2 | rr= \\pmod {17} }} {{eqn | l = 12^2 | o = \\equiv | r = 8 | rr= \\pmod {17} }} {{eqn | l = 13^2 | o = \\equiv | r = 16 | rr= \\pmod {17} }} {{eqn | l = 14^2 | o = \\equiv | r = 9 | rr= \\pmod {17} }} {{eqn | l = 15^2 | o = \\equiv | r = 4 | rr= \\pmod {17} }} {{eqn | l = 16^2 | o = \\equiv | r = 1 | rr= \\pmod {17} }} {{end-eqn}} So the set of quadratic residues modulo $17$ is: :$\\set {1, 2, 4, 8, 9, 13, 15, 16}$ The set of quadratic non-residues of $17$ therefore consists of all the other non-zero least positive residues: :$\\set {3, 5, 6, 7, 10, 11, 12, 14}$ {{OEIS|A028730}}{{qed}} == Sources == * {{BookReference|Number Theory|1971|George E. Andrews|prev = Quadratic Residue/Examples/7|next = Quadratic Residue/Examples/29}}: $\\text {3-5}$ The Use of Computers in Number Theory: Exercise $6$ Category:Examples of Quadratic Residues Category:17 5bdaz6nnpoy6ye4vre6u1ec5wxq45oc"}
+{"_id": "33015", "title": "Quadratic Residue/Examples/29", "text": "Quadratic Residue/Examples/29 0 74691 433461 392370 2019-11-01T13:31:01Z Prime.mover 59 wikitext text/x-wiki == Example of Quadratic Residues == The set of quadratic residues modulo $29$ is: :$\\set {1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28}$ {{OEIS|A010391}} == Proof == From Square Modulo n Congruent to Square of Inverse Modulo n, to list the quadratic residues of $29$ it is sufficient to work out the squares $1^2, 2^2, \\dotsc, \\paren {\\dfrac {28} 2}^2$ modulo $29$. So: {{begin-eqn}} {{eqn | l = 1^2 | o = \\equiv | r = 1 | rr= \\pmod {29} }} {{eqn | l = 2^2 | o = \\equiv | r = 4 | rr= \\pmod {29} }} {{eqn | l = 3^2 | o = \\equiv | r = 9 | rr= \\pmod {29} }} {{eqn | l = 4^2 | o = \\equiv | r = 16 | rr= \\pmod {29} }} {{eqn | l = 5^2 | o = \\equiv | r = 25 | rr= \\pmod {29} }} {{eqn | l = 6^2 | o = \\equiv | r = 7 | rr= \\pmod {29} }} {{eqn | l = 7^2 | o = \\equiv | r = 20 | rr= \\pmod {29} }} {{eqn | l = 8^2 | o = \\equiv | r = 6 | rr= \\pmod {29} }} {{eqn | l = 9^2 | o = \\equiv | r = 23 | rr= \\pmod {29} }} {{eqn | l = 10^2 | o = \\equiv | r = 13 | rr= \\pmod {29} }} {{eqn | l = 11^2 | o = \\equiv | r = 5 | rr= \\pmod {29} }} {{eqn | l = 12^2 | o = \\equiv | r = 28 | rr= \\pmod {29} }} {{eqn | l = 13^2 | o = \\equiv | r = 24 | rr= \\pmod {29} }} {{eqn | l = 14^2 | o = \\equiv | r = 22 | rr= \\pmod {29} }} {{end-eqn}} So the set of quadratic residues modulo $29$ is: :$\\set {1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28}$ The set of quadratic non-residues of $29$ therefore consists of all the other non-zero least positive residues: :$\\set {2, 3, 8, 10, 11, 12, 14, 15, 17, 18, 19, 21, 26, 27}$ {{OEIS|A028742}}{{qed}} == Sources == * {{BookReference|Number Theory|1971|George E. Andrews|prev = Quadratic Residue/Examples/17|next = Quadratic Residue/Examples/61}}: $\\text {3-5}$ The Use of Computers in Number Theory: Exercise $6$ Category:Examples of Quadratic Residues Category:29 fwkl4anq98hwx4k3p3b5ma1cxx5z5p1"}
+{"_id": "33016", "title": "Reduced Residue System/Examples/Modulo 18/Least Positive Residues", "text": "Reduced Residue System/Examples/Modulo 18/Least Positive Residues 0 74833 392896 392895 2019-02-20T07:49:41Z Prime.mover 59 wikitext text/x-wiki == Examples of Reduced Residue Systems == The least positive reduced residue system of $18$ is the set of positive integers: :$\\set {1, 5, 7, 11, 13, 17}$ == Proof == The least positive residues of $18$ are: :$S := \\set {0, 1, 2, \\dotsc, 17}$ We have that: :$18 = 2 \\times 3^2$ so the least positive reduced residue system of $18$ is the set of elements of $S$ which have neither $2$ or $3$ as a prime factor. That is: :$S \\setminus \\set {0, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16}$ Hence the result. {{Qed}} == Sources == * {{BookReference|Number Theory|1971|George E. Andrews|prev = Reduced Residue System/Examples/Modulo 18/Square Numbers|next = Congruence Modulo Power of p as Linear Combination of Congruences Modulo p}}: $\\text {4-2}$ Residue Systems: Exercise $2 \\ \\text {(d)}$ Category:Examples of Residue Systems 48gahudxbhrdrfntwdnfmgl02jw3rqk"}
+{"_id": "33017", "title": "Binomial Theorem/Examples/Cube of Difference", "text": "Binomial Theorem/Examples/Cube of Difference 0 74934 393424 393370 2019-02-23T11:47:30Z Prime.mover 59 wikitext text/x-wiki == Example of Use of Binomial Theorem == :$\\paren {x - y}^3 = x^3 - 3 x^2 y + 3 x y^2 - y^3$ == Proof == Follows directly from the Binomial Theorem: :$\\displaystyle \\forall n \\in \\Z_{\\ge 0}: \\paren {x + \\paren {-y} }^n = \\sum_{k \\mathop = 0}^n \\binom n k x^{n - k} \\paren {-y}^k$ putting $n = 3$. {{qed}} == Sources == * {{BookReference|Mathematical Handbook of Formulas and Tables|1968|Murray R. Spiegel|prev = Cube of Sum|next = Fourth Power of Sum}}: $\\S 2$: Special Products and Factors: $2.4$ * {{BookReference|Mathematical Handbook of Formulas and Tables|1968|Murray R. Spiegel|prev = Square of Sum/Algebraic Proof 2|next = Fourth Power of Sum}}: $\\S 20$: Binomial Series: $20.6$ Category:Examples of Use of Binomial Theorem Category:Third Powers slkcwun4hpi3tv9f8xfnyqmchcwkcuv"}
+{"_id": "33018", "title": "Binomial Theorem/Examples/4th Power of Difference", "text": "Binomial Theorem/Examples/4th Power of Difference 0 74937 393380 393379 2019-02-23T11:05:01Z Prime.mover 59 Prime.mover moved page Fourth Power of Difference to Binomial Theorem/Examples/4th Power of Difference wikitext text/x-wiki == Example of Use of Binomial Theorem == :$\\paren {x - y}^4 = x^4 - 4 x^3 y + 6 x^2 y^2 - 4 x y^3 + y^4$ == Proof == Follows directly from the Binomial Theorem: :$\\displaystyle \\forall n \\in \\Z_{\\ge 0}: \\paren {x + \\paren {-y} }^n = \\sum_{k \\mathop = 0}^n \\binom n k x^{n - k} \\paren {-y}^k$ putting $n = 4$. {{qed}} == Sources == * {{BookReference|Mathematical Handbook of Formulas and Tables|1968|Murray R. Spiegel|prev = Fourth Power of Sum|next = Fifth Power of Sum}}: $\\S 2$: Special Products and Factors: $2.6$ Category:Examples of Use of Binomial Theorem Category:Fourth Powers mfi4lv1t7avb4bdvyt7g8fh69w8a8ku"}
+{"_id": "33019", "title": "Square Root of Complex Number in Cartesian Form/Examples/-15-8i", "text": "Square Root of Complex Number in Cartesian Form/Examples/-15-8i 0 75200 394768 2019-03-05T20:37:56Z Prime.mover 59 Created page with \"== Example of Square Root of Complex Number in Cartesian Form == :$\\sqrt {-15 - 8 i} = \\pm \\paren {1 - 4 i}$ == Square Root of Complex Numb...\" wikitext text/x-wiki == Example of Square Root of Complex Number in Cartesian Form == :$\\sqrt {-15 - 8 i} = \\pm \\paren {1 - 4 i}$ == Proof 1 == {{:Square Root of Complex Number in Cartesian Form/Examples/-15-8i/Proof 1}} == Proof 2 == {{:Square Root of Complex Number in Cartesian Form/Examples/-15-8i/Proof 2}} Category:Examples of Square Roots 98oypb55b6zaacw4n4kdz9vczrzctm0"}
+{"_id": "33020", "title": "Complex Dot Product/Examples/3-4i dot -4+3i", "text": "Complex Dot Product/Examples/3-4i dot -4+3i 0 75209 394832 394815 2019-03-05T23:07:31Z Prime.mover 59 wikitext text/x-wiki == Examples of Complex Dot Product == Let: :$z_1 = 3 - 4 i$ :$z_2 = -4 + 3 i$ Then: :$z_1 \\circ z_2 = -24$ where $\\circ$ denotes (complex) dot product. == Proof 1 == {{:Complex Dot Product/Examples/3-4i dot -4+3i/Proof 1}} == Proof 2 == {{:Complex Dot Product/Examples/3-4i dot -4+3i/Proof 2}} Category:Examples of Complex Dot Product eg5l3le7w8vqt9naxty6h6qiylu358n"}
+{"_id": "33021", "title": "Condition for Points in Complex Plane to form Isosceles Triangle", "text": "Condition for Points in Complex Plane to form Isosceles Triangle 0 75372 395335 2019-03-11T07:44:51Z Prime.mover 59 Created page with \"== Theorem == Let $A = z_1 = x_1 + i y_1$, $B = z_2 = x_2 + i y_2$ and $C = z_3 = x_3 + i y_3$ represent on the complex plane the ...\" wikitext text/x-wiki == Theorem == Let $A = z_1 = x_1 + i y_1$, $B = z_2 = x_2 + i y_2$ and $C = z_3 = x_3 + i y_3$ represent on the complex plane the vertices of a triangle. Then $\\triangle ABC$ is isosceles, where $A$ is the apex, {{iff}}: :${x_2}^2 + {y_2}^2 - 2 \\paren {x_1 x_2 + y_1 y_2} = {x_3}^2 + {y_3}^2 - 2 \\paren {x_1 x_3 + y_1 y_3}$ == Proof == By definition of isosceles triangle: :$\\triangle ABC$ is isosceles, where $A$ is the apex, {{iff}} $AB = AC$. Hence: {{begin-eqn}} {{eqn | l = \\cmod {z_1 - z_2} | r = \\cmod {z_1 - z_3} | c = }} {{eqn | ll= \\leadstoandfrom | l = \\cmod {x_1 + i y_1 - x_2 + i y_2}^2 | r = \\cmod {x_1 + i y_1 - x_3 + i y_3}^2 | c = }} {{eqn | ll= \\leadstoandfrom | l = \\paren {x_1 - x_2}^2 + \\paren {y_1 - y_2}^2 | r = \\paren {x_1 - x_3}^2 + \\paren {y_1 - y_3}^2 | c = {{Defof|Complex Modulus}} }} {{eqn | ll= \\leadstoandfrom | l = {x_1}^2 - 2 x_1 x_2 + {x_2}^2 + {y_1}^2 - 2 y_1 y_2 + {y_2}^2 | r = {x_1}^2 - 2 x_1 x_3 + {x_3}^2 + {y_1}^2 - 2 y_1 y_3 + {y_3}^2 | c = }} {{eqn | ll= \\leadstoandfrom | l = {x_2}^2 + {y_2}^2 - 2 \\paren {x_1 x_2 + y_1 y_2} | r = {x_3}^2 + {y_3}^2 - 2 \\paren {x_1 x_3 + y_1 y_3} | c = }} {{end-eqn}} {{qed}} == Examples == {{:Condition for Points in Complex Plane to form Isosceles Triangle/Examples}} Category:Isosceles Triangles Category:Geometry of Complex Plane 0lnphteume90914gxuq2b9xzokin3qx"}
+{"_id": "33022", "title": "Equation of Hyperbola in Complex Plane", "text": "Equation of Hyperbola in Complex Plane 0 75404 395426 2019-03-12T06:57:38Z Prime.mover 59 Created page with \"== Theorem == Let $\\C$ be the complex plane. Let $H$ be a hyperbola in $\\C$ whose Definition:Major Axis...\" wikitext text/x-wiki == Theorem == Let $\\C$ be the complex plane. Let $H$ be a hyperbola in $\\C$ whose major axis is $d \\in \\R_{>0}$ and whose foci are at $\\alpha, \\beta \\in \\C$. Then $C$ may be written as: :$\\cmod {z - \\alpha} - \\cmod {z - \\beta} = d$ where $\\cmod {\\, \\cdot \\,}$ denotes complex modulus. == Proof == By definition of complex modulus: :$\\cmod {z - \\alpha}$ is the distance from $z$ to $\\alpha$ :$\\cmod {z - \\beta}$ is the distance from $z$ to $\\beta$. Thus $\\cmod {z - \\alpha} - \\cmod {z - \\beta}$ is the difference of the distance from $z$ to $\\alpha$ and from $z$ to $\\beta$. This is precisely the equidistance property of the hyperbola. From Equidistance of Hyperbola equals Transverse Axis, the constant distance $d$ is equal to the transverse axis of $H$. {{qed}} == Examples == {{:Equation of Hyperbola in Complex Plane/Examples}} Category:Hyperbolas Category:Geometry of Complex Plane Category:Equation of Hyperbola in Complex Plane d6w7jvqz2etr8cp7z27p3nl5n2t38kf"}
+{"_id": "33023", "title": "Complex Algebra/Examples/z^4 - 3z^2 + 1 = 0", "text": "Complex Algebra/Examples/z^4 - 3z^2 + 1 = 0 0 75476 441412 441410 2019-12-29T23:47:35Z Prime.mover 59 wikitext text/x-wiki == Example of Complex Algebra == The roots of the equation: :$z^4 - 3z^2 + 1 = 0$ are: :$2 \\cos 36 \\degrees, 2 \\cos 72 \\degrees, 2 \\cos 216 \\degrees, 2 \\cos 252 \\degrees$ == Proof == {{begin-eqn}} {{eqn | l = z^4 - 3z^2 + 1 | r = z^4 - 2z^2 + 1 - z^2 | c = Separating the $z^2$ term }} {{eqn | r = (z^2 - 1)^2 - z^2 | c = Completing the Square }} {{eqn | r = (z^2 - 1 - z)(z^2 - 1 + z) | c = Difference of Two Squares }} {{end-eqn}} From the Quadratic Formula applied to each of the above quadratic factors we can easily see that the four roots are: :$\\dfrac {\\pm 1 \\pm \\sqrt 5} 2$ $360 \\degrees = 2 \\pi \\radians$, so $72 \\degrees = 2 \\pi / 5 \\radians$ From De Moivre's Formula, the roots of $x^5 - 1 = 0$ are: :$(\\cos(2 n \\pi) + i \\sin(2 n \\pi))^{1/5}= \\cos \\dfrac {2 n \\pi} 5 + i \\sin \\dfrac {2 n \\pi} 5$ However, the coefficient of $x^4$ is $0$ and therefore, by Viète's Formulas, the sum of the roots of $x^5 - 1 = 0$ are also $0$ which means that the sum of the real parts of the roots are also $0$: {{begin-eqn}} {{eqn | l = 0 | r = \\cos 0 + \\cos \\dfrac {2 \\pi} 5 + \\cos \\dfrac {4 \\pi} 5 + \\cos \\dfrac {6 \\pi} 5 + \\cos \\dfrac {8 \\pi} 5 | c }} {{eqn | r = 1 + \\cos \\dfrac {2 \\pi} 5 + \\cos \\dfrac {4 \\pi} 5 + \\cos \\dfrac {6 \\pi} 5 + \\cos \\dfrac {8 \\pi} 5 | c }} {{end-eqn}} Now: {{begin-eqn}} {{eqn | l = \\cos(\\pi + x) | r = -\\cos(x) | c = Cosine of Angle plus Straight Angle }} {{eqn | r = \\cos(-x) | c = Cosine Function is Even }} {{eqn | r = -\\cos(\\pi - x) | c = Cosine of Angle plus Straight Angle }} {{eqn | r = \\cos(\\pi - x) | c = Cosine Function is Even }} {{end-eqn}} Hence: {{begin-eqn}} {{eqn | l = \\cos \\dfrac {6 \\pi} 5 | r = \\map {\\cos} {\\pi + \\dfrac \\pi 5} | c = }} {{eqn | r = \\map {\\cos} {\\pi - \\dfrac \\pi 5} | c = }} {{eqn | r = \\cos \\dfrac {4 \\pi} 5 | c = }} {{end-eqn}} and {{begin-eqn}} {{eqn | l = \\cos \\dfrac {8 \\pi} 5 | r = \\map {\\cos} {\\pi + \\dfrac {3 \\pi} 5} | c = }} {{eqn | r = \\map {\\cos} {\\pi - \\dfrac {3 \\pi} 5} | c = }} {{eqn | r = \\cos \\dfrac {2 \\pi} 5 | c = }} {{end-eqn}} We can now simplify the sum of the real parts of the roots of $x^5 - 1 = 0$: {{begin-eqn}} {{eqn | l = 0 | r = 1 + \\cos \\dfrac {2 \\pi} 5 + \\cos \\dfrac {4 \\pi} 5 + \\cos \\dfrac {6 \\pi} 5 + \\cos \\dfrac {8 \\pi} 5 | c = }} {{eqn | r = 1 + 2 \\cos \\dfrac {2 \\pi} 5 + 2 \\cos \\dfrac {4 \\pi} 5 | c = $\\cos(\\pi + x) = \\cos(\\pi - x)$ }} {{eqn | r = 1 + 2 \\cos \\dfrac {2 \\pi} 5 + 4 \\cos^2 \\dfrac {2 \\pi} 5 - 2 | c = Double Angle Formula for Cosine, $\\cos 2 \\theta = 2 \\cos^2 \\theta - 1$ }} {{eqn | r = 4 \\cos^2 \\dfrac {2 \\pi} 5 + 2 \\cos \\dfrac {2 \\pi} 5 - 1 | c = simplifying }} {{end-eqn}} From the Quadratic Formula we then have two '''potential''' values: :$\\cos \\dfrac {2 \\pi} 5 = \\dfrac {-1 \\pm \\sqrt 5} 4$ $0 < 2 \\pi / 5 < \\pi / 2$, so we know that $\\cos \\dfrac {2 \\pi} 5 > 0$, hence: :$2 \\cos 72 \\degrees = 2 \\cos \\dfrac {2 \\pi} 5 = \\dfrac {-1 + \\sqrt 5} 2$ From Cosine of Angle plus Straight Angle, $\\map \\cos {x + 180 \\degrees} = -\\cos x$, hence: :$2 \\cos 252 \\degrees = \\dfrac {1 - \\sqrt 5} 2$ Now: {{begin-eqn}} {{eqn | l = 2 \\cos 36 \\degrees | r = 2 \\cos \\dfrac \\pi 5 | c = }} {{eqn | r = 2 \\map {\\cos} {\\dfrac {- \\pi} 5} | c = Cosine Function is Even }} {{eqn | r = - 2 \\map {\\cos} {\\pi - \\dfrac \\pi 5} | c = Cosine of Angle plus Straight Angle }} {{eqn | r = - 2 \\map {\\cos} {\\dfrac {4 \\pi} 5} | c = simplifying }} {{eqn | r = 1 + 2 \\cos \\dfrac {2 \\pi} 5 | c = Sum of the real parts, $1 + 2 \\cos \\dfrac {2 \\pi} 5 + 2 \\cos \\dfrac {4 \\pi} 5 = 0$ }} {{eqn | r = 1 + \\dfrac {-1 + \\sqrt 5} 2 | c = }} {{eqn | r = \\dfrac {1 + \\sqrt 5} 2 | c = }} {{end-eqn}} From Cosine of Angle plus Straight Angle, $\\map \\cos {x + 180 \\degrees} = -\\cos x$, hence: :$2 \\cos 216 \\degrees = \\dfrac {- 1 - \\sqrt 5} 2$ We have therefore shown that the four roots of $z^4 - 3z^2 + 1 = 0$ are $\\dfrac {\\pm 1 \\pm \\sqrt 5} 2$ and that these four values are also equal to $2 \\cos 36 \\degrees, 2 \\cos 72 \\degrees, 2 \\cos 216 \\degrees, 2 \\cos 252 \\degrees$ {{qed}} == Sources == * {{BookReference|Theory and Problems of Complex Variables|1981|Murray R. Spiegel|ed = SI|edpage = SI (Metric) Edition|prev = Triple Angle Formula for Cosine|next = Cosine of 36 Degrees/Proof 2}}: $1$: Complex Numbers: Supplementary Problems: De Moivre's Theorem: $91$ Category:Examples of Complex Algebra khrbdqo2y3dxrz51j3mg5370ewlxrmp"}
+{"_id": "33024", "title": "Complex Dot Product/Examples/2+5i dot 3-i", "text": "Complex Dot Product/Examples/2+5i dot 3-i 0 75561 395995 395983 2019-03-17T12:19:53Z Prime.mover 59 wikitext text/x-wiki == Example of Complex Dot Product == Let: :$z_1 = 2 + 5 i$ :$z_2 = 3 - i$ Then: :$z_1 \\circ z_2 = 1$ where $\\circ$ denotes (complex) dot product. == Proof == {{begin-eqn}} {{eqn | l = z_1 \\circ z_2 | r = \\paren {2 + 5 i} \\circ \\paren {3 - i} | c = }} {{eqn | r = 2 \\times 3 + 5 \\times \\paren {-1} | c = {{Defof|Dot Product|subdef = Complex|index = 1}} }} {{eqn | r = 6 - 5 | c = }} {{eqn | r = 1 | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Theory and Problems of Complex Variables|1981|Murray R. Spiegel|ed = SI|edpage = SI (Metric) Edition|prev = Complex Algebra/Examples/(1+z)^5 = (1-z)^5|next = Complex Cross Product/Examples/2+5i cross 3-i}}: $1$: Complex Numbers: Supplementary Problems: The Dot and Cross Product: $110 \\ \\text {(a)}$ Category:Examples of Complex Dot Product 0r746nc4d54hjyo2e5id9idadr1g0o9"}
+{"_id": "33025", "title": "Complex Cross Product/Examples/2+5i cross 3-i", "text": "Complex Cross Product/Examples/2+5i cross 3-i 0 75562 395984 2019-03-17T11:32:37Z Prime.mover 59 Created page with \"== Example of Complex Cross Product == Let: :$z_1 = 2 + 5 i$ :$z_2 = 3 - i$ Then: :$z_1 \\times z_2 = -17$ where $\\times$ den...\" wikitext text/x-wiki == Example of Complex Cross Product == Let: :$z_1 = 2 + 5 i$ :$z_2 = 3 - i$ Then: :$z_1 \\times z_2 = -17$ where $\\times$ denotes (complex) cross product. == Proof == {{begin-eqn}} {{eqn | l = z_1 \\circ z_2 | r = \\paren {2 + 5 i} \\times \\paren {3 - i} | c = }} {{eqn | r = 2 \\times \\paren {-1} - 3 \\times 5 | c = {{Defof|Vector Cross Product|subdef = Complex|index = 1|Complex Cross Product}} }} {{eqn | r = -2 - 15 | c = }} {{eqn | r = -17 | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Theory and Problems of Complex Variables|1981|Murray R. Spiegel|ed = SI|edpage = SI (Metric) Edition|prev = Complex Dot Product/Examples/2+5i dot 3-i|next = Complex Dot Product/Examples/3-i dot 2+5i}}: $1$: Complex Numbers: Supplementary Problems: The Dot and Cross Product: $110 \\ \\text {(b)}$ Category:Examples of Complex Cross Product 1so6w2l42oop38p1lok9kwclfkrmzy5"}
+{"_id": "33026", "title": "Complex Dot Product/Examples/3-i dot 2+5i", "text": "Complex Dot Product/Examples/3-i dot 2+5i 0 75563 395985 2019-03-17T11:33:50Z Prime.mover 59 Created page with \"== Examples of Complex Dot Product == Let: :$z_1 = 3 - i$ :$z_1 = 2 + 5 i$ Then: :$z_1 \\circ z_2 = 1$ where $\\circ$ denotes ...\" wikitext text/x-wiki == Examples of Complex Dot Product == Let: :$z_1 = 3 - i$ :$z_1 = 2 + 5 i$ Then: :$z_1 \\circ z_2 = 1$ where $\\circ$ denotes (complex) dot product. == Proof == {{begin-eqn}} {{eqn | l = z_1 \\circ z_2 | r = \\paren {3 - i} \\circ \\paren {2 + 5 i} | c = }} {{eqn | r = 3 \\times 2 + \\paren {-1} \\times 5 | c = {{Defof|Dot Product|subdef = Complex|index = 1}} }} {{eqn | r = 6 - 5 | c = }} {{eqn | r = 1 | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Theory and Problems of Complex Variables|1981|Murray R. Spiegel|ed = SI|edpage = SI (Metric) Edition|prev = Complex Cross Product/Examples/2+5i cross 3-i|next = Complex Cross Product/Examples/3-i cross 2+5i}}: $1$: Complex Numbers: Supplementary Problems: The Dot and Cross Product: $110 \\ \\text {(c)}$ Category:Examples of Complex Dot Product jnyt7mr50lf1umwf9f3uzoywtl1p3jo"}
+{"_id": "33027", "title": "Complex Cross Product/Examples/3-i cross 2+5i", "text": "Complex Cross Product/Examples/3-i cross 2+5i 0 75568 395997 395996 2019-03-17T12:24:37Z Prime.mover 59 wikitext text/x-wiki == Example of Complex Cross Product == Let: :$z_1 = 3 - i$ :$z_2 = 2 + 5 i$ Then: :$z_1 \\times z_2 = 17$ where $\\times$ denotes (complex) cross product. == Proof == {{begin-eqn}} {{eqn | l = z_1 \\circ z_2 | r = \\paren {3 - i} \\times \\paren {2 + 5 i} | c = }} {{eqn | r = 3 \\times \\paren 5 - \\paren {-1} \\times 2 | c = {{Defof|Vector Cross Product|subdef = Complex|index = 1|Complex Cross Product}} }} {{eqn | r = 15 - \\paren {-2} | c = }} {{eqn | r = 17 | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Theory and Problems of Complex Variables|1981|Murray R. Spiegel|ed = SI|edpage = SI (Metric) Edition|prev = Complex Dot Product/Examples/3-i dot 2+5i|next = Complex Dot Product/Examples/Size of 2+5i dot 3-i}}: $1$: Complex Numbers: Supplementary Problems: The Dot and Cross Product: $110 \\ \\text {(d)}$ Category:Examples of Complex Cross Product 3diaq2k5gsoeu2jimbxz9j8ddhrl80x"}
+{"_id": "33028", "title": "Property of Group Automorphism which Fixes Identity Only/Corollary 2", "text": "Property of Group Automorphism which Fixes Identity Only/Corollary 2 0 75766 397082 397081 2019-03-24T13:41:56Z Prime.mover 59 wikitext text/x-wiki == Corollary to Property of Group Automorphism which Fixes Identity Only == Let $G$ be a finite group whose identity is $e$. Let $\\phi: G \\to G$ be a group automorphism. Let $\\phi$ have the property that: :$\\forall g \\in G \\setminus \\set e: \\map \\phi t \\ne t$ That is, the only fixed element of $\\phi$ is $e$. Let: :$\\phi^2 = I_G$ where $I_G$ denotes the identity mapping on $G$. Then: :$\\forall g \\in G: \\map \\phi g = g^{-1}$ == Proof == Let $g \\in G$. Then: {{begin-eqn}} {{eqn | lo= \\exists x \\in G: | l = \\map \\phi g | r = \\map \\phi {x^{-1} \\, \\map \\phi x} | c = Corollary 1 }} {{eqn | r = \\paren {\\map \\phi x}^{-1} x | c = }} {{eqn | r = g^{-1} | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|An Introduction to Abstract Algebra|1978|Thomas A. Whitelaw|prev = Property of Group Automorphism which Fixes Identity Only/Corollary 1|next = Property of Group Automorphism which Fixes Identity Only/Corollary 3}}: Chapter $8$: Homomorphisms, Normal Subgroups and Quotient Groups: Exercise $26$ Category:Property of Group Automorphism which Fixes Identity Only 5gql12bgeelztra6b58ljh7glyqgfui"}
+{"_id": "33029", "title": "Ideal of Ring/Examples/Order 2 Matrices with some Zero Entries", "text": "Ideal of Ring/Examples/Order 2 Matrices with some Zero Entries 0 75836 398716 398710 2019-04-01T06:57:59Z Prime.mover 59 wikitext text/x-wiki == Example of Ideal of Ring == Let $R$ be the set of all order $2$ square matrices of the form $\\begin{pmatrix} x & y \\\\ 0 & z \\end{pmatrix}$ with $x, y, z \\in \\R$. Let $S$ be the set of all order $2$ square matrices of the form $\\begin{pmatrix} x & y \\\\ 0 & 0 \\end{pmatrix}$ with $x, y \\in \\R$. Then $R$ is a ring and $S$ is an ideal of $R$. === Corollary === {{:Ideal of Ring/Examples/Order 2 Matrices with some Zero Entries/Corollary}} == Proof 1 == {{:Ideal of Ring/Examples/Order 2 Matrices with some Zero Entries/Proof 1}} == Proof 2 == {{:Ideal of Ring/Examples/Order 2 Matrices with some Zero Entries/Proof 2}} Category:Examples of Ideals of Rings 2k524j7dyy588n7efhx04zowmioa2vr"}
+{"_id": "33030", "title": "Cyclotomic Ring/Examples/5th", "text": "Cyclotomic Ring/Examples/5th 0 76116 399083 399078 2019-04-05T05:01:24Z Prime.mover 59 wikitext text/x-wiki == Examples of Cyclotomic Rings == The '''$5$th cyclotomic ring''' is the algebraic structure: :$\\struct {\\Z \\sqbrk {i \\sqrt 5}, +, \\times}$ where $\\Z \\sqbrk {i \\sqrt 5}$ is the set $\\set {a + i b \\sqrt 5: a, b \\in \\Z}$. $\\struct {\\Z \\sqbrk {i \\sqrt 5}, +, \\times}$ is a ring. == Proof == We have that $\\Z \\sqbrk {i \\sqrt 5}$ is a subset of the Field of Complex Numbers $\\struct {\\C, +, \\times}$. So to prove that $\\struct {\\Z \\sqbrk {i \\sqrt 5}, +, \\times}$ is a ring it is sufficient to demonstrate that $\\struct {\\Z \\sqbrk {i \\sqrt 5}, +, \\times}$ fulfils the conditions of the Subring Test. First we note that setting $a = 1, b = 0$ we have that $1 + 0 i \\in \\Z \\sqbrk {i \\sqrt 5}$ and so $\\Z \\sqbrk {i \\sqrt 5} \\ne \\O$. Let $z_1 = a_1 + i b_1 \\sqrt 5$ and $z_2 = a_2 + i b_2 \\sqrt 5$ be arbitrary elements of $\\Z \\sqbrk {i \\sqrt 5}$ Then: {{begin-eqn}} {{eqn | l = z_1 - z_2 | r = \\paren {a_1 + i b_1 \\sqrt 5} - \\paren {a_2 + i b_2 \\sqrt 5} | c = }} {{eqn | r = \\paren {a_1 - a_2} + i \\paren {b_1 - b_2} \\sqrt 5 | c = {{Defof|Complex Addition}} }} {{eqn | o = \\in | r = \\Z \\sqbrk {i \\sqrt 5} | c = as $a_1 - a_2$ and $b_1 - b_2$ are both integers }} {{end-eqn}} and: {{begin-eqn}} {{eqn | l = z_1 z_2 | r = \\paren {a_1 + i b_1 \\sqrt 5} \\paren {a_2 + i b_2 \\sqrt 5} | c = }} {{eqn | r = \\paren {a_1 a_2 - 5 b_1 b_2} + i \\sqrt 5 \\paren {a_1 b_2 + a_2 b_1} | c = {{Defof|Complex Multiplication}} }} {{eqn | o = \\in | r = \\Z \\sqbrk {i \\sqrt 5} | c = as $a_1 a_2 - 5 b_1 b_2$ and $a_1 b_2 + a_2 b_1$ are both integers }} {{end-eqn}} The Subring Test is satisfied, and so $\\struct {\\Z \\sqbrk {i \\sqrt 5}, +, \\times}$ is a ring. {{qed}} == Sources == * {{BookReference|An Introduction to Abstract Algebra|1978|Thomas A. Whitelaw|prev = Field Norm of Complex Number is Multiplicative Function|next = Field Norm on 5th Cyclotomic Ring}}: Chapter $9$: Rings: Exercise $19$ Category:Cyclotomic Rings png51kxp7hzzwt12dzlxh9d5ya3oj6z"}
+{"_id": "33031", "title": "Matrix Entrywise Addition/Examples/Real 2 x 2", "text": "Matrix Entrywise Addition/Examples/Real 2 x 2 0 76177 399417 2019-04-07T13:43:52Z Prime.mover 59 Created page with \"== Example of Matrix Entrywise Addition == Let $\\mathbf A = \\begin {pmatrix} p & q \\\\ r & s \\end {pmatrix}$ and $\\mathbf...\" wikitext text/x-wiki == Example of Matrix Entrywise Addition == Let $\\mathbf A = \\begin {pmatrix} p & q \\\\ r & s \\end {pmatrix}$ and $\\mathbf B = \\begin {pmatrix} w & x \\\\ y & z \\end {pmatrix}$ be order $2$ square matrices over the real numbers. Then the matrix sum of $\\mathbf A$ and $\\mathbf B$ is given by: :$\\mathbf A + \\mathbf B = \\begin {pmatrix} p + w & q + x \\\\ r + y & s + z \\end {pmatrix}$ == Sources == * {{BookReference|Introduction to Abstract Algebra|1969|C.R.J. Clapham|prev = Square Matrix/Examples/Real 2 x 2|next = Matrix Product (Conventional)/Examples/2 x 2 Real Matrices}}: Chapter $1$: Integral Domains: $\\S 3$. Definition of an Integral Domain: Example $3$ Category:Examples of Matrix Entrywise Addition 4chl61eqf35mue4u9kw7nimhso3gh3z"}
+{"_id": "33032", "title": "Matrix Product (Conventional)/Examples/2 x 2 Real Matrices", "text": "Matrix Product (Conventional)/Examples/2 x 2 Real Matrices 0 76178 399456 399418 2019-04-07T22:37:11Z Prime.mover 59 wikitext text/x-wiki == Example of (Conventional) Matrix Product == Let $\\mathbf A = \\begin {pmatrix} p & q \\\\ r & s \\end {pmatrix}$ and $\\mathbf B = \\begin {pmatrix} w & x \\\\ y & z \\end {pmatrix}$ be order $2$ square matrices over the real numbers. Then the matrix product of $\\mathbf A$ with $\\mathbf B$ is given by: :$\\mathbf A \\mathbf B = \\begin {pmatrix} p w + q y & p x + q z \\\\ r w + s y & r x + s z \\end {pmatrix}$ == Sources == * {{BookReference|Introduction to Abstract Algebra|1969|C.R.J. Clapham|prev = Matrix Entrywise Addition/Examples/Real 2 x 2|next = Ring of Square Matrices over Real Numbers/Examples/2 x 2}}: Chapter $1$: Integral Domains: $\\S 3$. Definition of an Integral Domain: Example $3$ Category:Examples of Matrix Product 8z73wwbi4jtocrp4s7psqg6r3kraskx"}
+{"_id": "33033", "title": "Irreducible Polynomial/Examples/8 x^3 - 6 x - 1 in Rationals", "text": "Irreducible Polynomial/Examples/8 x^3 - 6 x - 1 in Rationals 0 76645 402320 402308 2019-04-23T15:08:49Z Prime.mover 59 wikitext text/x-wiki == Examples of Irreducible Polynomials == Consider the polynomial: :$\\map P x = 8 x^3 - 6 x - 1$ over the ring of polynomials $\\Q \\sqbrk X$ over the rational numbers. Then $\\map P x$ is irreducible. == Proof == {{AimForCont}} $\\map P x$ has proper factors. Then one of these has to be of degree $1$. Thus from Factors of Polynomial with Integer Coefficients have Integer Coefficients we have: :$8 x^3 - 6 x - 1 = \\paren {a x + b} \\paren {c^2 + d x + e}$ for some $a, b, c, d, e \\in \\Z$. Hence: {{begin-eqn}} {{eqn | l = a c | r = 8 | c = }} {{eqn | ll= \\leadsto | l = a | o = \\divides | r = 8 | c = }} {{eqn | l = b e | r = -1 | c = }} {{eqn | ll= \\leadsto | l = b | o = \\divides | r = 1 | c = }} {{end-eqn}} The only possible degree $1$ factors with integer coefficients are: :$x \\pm 1, 2 x \\pm 1, 4 x \\pm 1, 8 x \\pm 1$ By trying each of these possibilities, it is determined that no integer value of $d$ gives the correct values. Hence the result. {{qed}} == Sources == * {{BookReference|Introduction to Abstract Algebra|1969|C.R.J. Clapham|prev = Polynomial which is Irreducible over Integers is Irreducible over Rationals|next = Square Root of Prime is Irrational/Proof 2}}: Chapter $6$: Polynomials and Euclidean Rings: $\\S 31$. Polynomials with Integer Coefficients: Example $59$ Category:Examples of Irreducible Polynomials iid2qj8cu0183a2m7m4cpq3hogfbkko"}
+{"_id": "33034", "title": "Vector Space over Division Subring/Examples/Real Numbers in Complex Numbers", "text": "Vector Space over Division Subring/Examples/Real Numbers in Complex Numbers 0 76773 403683 403680 2019-05-01T11:44:59Z Prime.mover 59 wikitext text/x-wiki == Example of Vector Space over Division Subring == Consider the field of complex numbers $\\struct {\\C, +, \\times}$, which is a ring with unity whose unity is $1$. Consider the field of real numbers $\\struct {\\R, +, \\times}$, which is a division subring of $\\struct {\\C, +, \\circ}$ such that $1 \\in \\R$. Then $\\struct {\\C, +, \\times_\\R}_\\R$ is an $\\R$-vector space, where $\\times_\\R$ is the restriction of $\\times$ to $\\R \\times \\C$. $\\struct {\\C, +, \\times_\\R}_\\R$ is of dimension $2$. The set $\\paren {1 + 0 i, 0 + i}$ forms a basis of $\\struct {\\C, +, \\times_\\R}_\\R$, as do any two complex numbers which are not real multiples of each other. == Sources == * {{BookReference|Introduction to Abstract Algebra|1969|C.R.J. Clapham|prev = Vector Space over Division Subring is Vector Space|next = Definition:Generator of Vector Space}}: Chapter $7$: Vector Spaces: $\\S 32$. Definition of a Vector Space: Example $64$ * {{BookReference|Introduction to Abstract Algebra|1969|C.R.J. Clapham|prev = Dimension of Vector Space of Polynomial Functions|next = Linearly Independent Set is Contained in some Basis/Proof 2}}: Chapter $7$: Vector Spaces: $\\S 34$. Dimension: Example $68$ Category:Examples of Vector Spaces hhi02na2gim992gybj174abzqorm2nq"}
+{"_id": "33035", "title": "Smallest Field containing Subfield and Complex Number/Examples/Numbers of Type Rational a plus b root 2", "text": "Smallest Field containing Subfield and Complex Number/Examples/Numbers of Type Rational a plus b root 2 0 76845 458060 458058 2020-03-28T20:26:37Z Prime.mover 59 wikitext text/x-wiki == Example of Smallest Field containing Subfield and Complex Number == Let $\\Q \\sqbrk {\\sqrt 2}$ denote the set: :$\\Q \\sqbrk {\\sqrt 2} := \\set {a + b \\sqrt 2: a, b \\in \\Q}$ that is, all numbers of the form $a + b \\sqrt 2$ where $a$ and $b$ are rational numbers. Then $\\Q \\sqbrk {\\sqrt 2}$ is the smallest field containing $\\Q$ and $\\sqrt 2$. {{refactor|The following material needs to go on a page explaining splitting fields.}} Formally, $\\Q \\sqbrk {\\sqrt 2}$ is the field extension of $\\Q$ for the minimal polynomial of $\\sqrt 2$, the second-degree polynomial $x^2 - 2$. Therefore, $\\Q \\sqbrk {\\sqrt 2}$ is the vector space of dimension $2$ isomorphic to $\\Q \\sqbrk x / \\left\\langle x^2 - 2 \\right\\rangle$. == Sources == * {{BookReference|Introduction to Abstract Algebra|1969|C.R.J. Clapham|prev = Definition:Smallest Field containing Subfield and Complex Number/General Definition|next = Smallest Field containing Subfield and Complex Number/Examples/Complex Numbers}}: Chapter $8$: Field Extensions: $\\S 36$. The Degree of a Field Extension: Example $72$ * {{BookReference|Contemporary Abstract Algebra|2017|Joseph A. Gallian|ed = 9th|edpage = Ninth Edition|prev = Definition:Vector Space|next = Definition:Algebraic Field Extension}}: Chapter $20$: Extension Fields: $\\S 1$. Splitting Fields Category:Examples of Field Extensions ftu2qn8d0qoqq44yx3cl24kh3zvomzr"}
+{"_id": "33036", "title": "Algebraic Number/Examples/Root of (2 plus Root 3)", "text": "Algebraic Number/Examples/Root of (2 plus Root 3) 0 76862 403850 2019-05-02T17:55:58Z Prime.mover 59 Created page with \"== Example of Algebraic Number == :$\\sqrt {2 + \\sqrt 3}$ is an algebraic number. ...\" wikitext text/x-wiki == Example of Algebraic Number == :$\\sqrt {2 + \\sqrt 3}$ is an algebraic number. == Proof == Let $x = \\sqrt {2 + \\sqrt 3}$. We have that: {{begin-eqn}} {{eqn | l = x^2 | r = 2 + \\sqrt 3 | c = }} {{eqn | ll= \\leadsto | l = \\paren {x^2 - 2}^2 | r = 3 | c = }} {{eqn | ll= \\leadsto | l = x^4 - 4 x^2 + 4 | r = 3 | c = }} {{eqn | ll= \\leadsto | l = x^4 - 4 x^2 + 1 | r = 0 | c = }} {{end-eqn}} Thus $\\sqrt {2 + \\sqrt 3}$ is a root of $x^4 - 4 x^2 + 1 = 0$. Hence the result by definition of algebraic number. {{qed}} == Sources == * {{BookReference|Introduction to Abstract Algebra|1969|C.R.J. Clapham|prev = Algebraic Number/Examples/Imaginary Unit|next = Pi is Transcendental}}: Chapter $8$: Field Extensions: $\\S 38$. Simple Algebraic Extensions: Example $76$ Category:Examples of Algebraic Numbers qzt6n7kxbx8nk1c3ui3cbzc2ln82ngy"}
+{"_id": "33037", "title": "Group of Order 30 is not Simple", "text": "Group of Order 30 is not Simple 0 76938 404179 2019-05-04T14:22:49Z Prime.mover 59 Created page with \"== Theorem == Let $G$ be a group of order $30$. Then $G$ is not simple. Let $G$ be a group of order $30$. Then $G$ is not simple. == Proof == From Group of Order 30 has Normal Cyclic Subgroup of Order 15, $G$ has a normal subgroup of order $15$. Hence the result, by definition of simple group. {{qed}} == Sources == * {{BookReference|Elements of Abstract Algebra|1971|Allan Clark|prev = Prime Group is Simple|next = Group of Order p^2 q is not Simple}}: Chapter $2$: The Sylow Theorems: $\\S 59 \\epsilon$ Category:Groups of Order 30 Category:Simple Groups qegxmxy6exuousudjz43olsur3diedn"}
+{"_id": "33038", "title": "Bessel Function of the First Kind/Instances/Order 0", "text": "Bessel Function of the First Kind/Instances/Order 0 0 77298 405970 405969 2019-05-30T08:42:23Z Prime.mover 59 wikitext text/x-wiki == Specific Instance of Bessel Functions of the First Kind == Let $\\map {J_n} x$ denote the Bessel function of the first kind of order $n$. {{begin-eqn}} {{eqn | l = \\map {J_0} x | r = \\sum_{k \\mathop = 0}^\\infty \\dfrac {\\paren {-1}^k} {\\paren {k!}^2} \\paren {\\dfrac x 2}^{2 k} | c = }} {{eqn | r = 1 - \\dfrac {x^2} {2^2} + \\dfrac {x^4} {2^2 \\times 4^2} - \\dfrac {x^6} {2^2 \\times 4^2 \\times 6^2} + \\dotsb | c = }} {{end-eqn}} == Proof == From Series Expansion of Bessel Function of the First Kind: {{begin-eqn}} {{eqn | l = \\map {J_n} x | r = \\dfrac {x^n} {2^n \\, \\map \\Gamma {n + 1} } \\paren {1 - \\dfrac {x^2} {2 \\paren {2 n + 2} } + \\dfrac {x^4} {2 \\times 4 \\paren {2 n + 2} \\paren {2 n + 4} } - \\cdots} | c = }} {{eqn | r = \\sum_{k \\mathop = 0}^\\infty \\dfrac {\\paren {-1}^k} {k! \\, \\map \\Gamma {n + k + 1} } \\paren {\\dfrac x 2}^{n + 2 k} | c = }} {{end-eqn}} where $n$ is not a (strictly) negative integer. $0$ fits that category, and so: {{begin-eqn}} {{eqn | l = \\map {J_0} x | r = \\sum_{k \\mathop = 0}^\\infty \\dfrac {\\paren {-1}^k} {k! \\, \\map \\Gamma {0 + k + 1} } \\paren {\\dfrac x 2}^{0 + 2 k} | c = }} {{eqn | r = \\sum_{k \\mathop = 0}^\\infty \\dfrac {\\paren {-1}^k} {k! \\, \\map \\Gamma {k + 1} } \\paren {\\dfrac x 2}^{2 k} | c = }} {{eqn | r = \\sum_{k \\mathop = 0}^\\infty \\dfrac {\\paren {-1}^k} {\\paren {k!}^2} \\paren {\\dfrac x 2}^{2 k} | c = Gamma Function Extends Factorial }} {{end-eqn}} Or working directly upon the terms themselves: {{begin-eqn}} {{eqn | l = \\map {J_0} x | r = \\dfrac {x^0} {2^0 \\, \\map \\Gamma {0 + 1} } \\paren {1 - \\dfrac {x^2} {2 \\paren {2 \\times 0 + 2} } + \\dfrac {x^4} {2 \\times 4 \\paren {2 \\times 0 + 2} \\paren {2 \\times 0 + 4} } - \\cdots} | c = }} {{eqn | r = \\dfrac 1 {1 \\times \\map \\Gamma 1} \\paren {1 - \\dfrac {x^2} {2 \\times 2} + \\dfrac {x^4} {2 \\times 4 \\times 2 \\times 4} - \\cdots} | c = }} {{eqn | r = 1 - \\dfrac {x^2} {2^2} + \\dfrac {x^4} {2^2 \\times 4^2} - \\cdots | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Mathematical Handbook of Formulas and Tables|1968|Murray R. Spiegel|prev = Bessel Function of the First Kind for Negative Non-Integer Order is Unbounded|next = Bessel Function of the First Kind/Instances/Order 1}}: $\\S 24$: Bessel Functions: Bessel Function of the First Kind of Order $n$: $24.5$ Category:Examples of Bessel Functions 5wp5vajmwmg214g25lzd0sog675f43v"}
+{"_id": "33039", "title": "Laplace Transform of Dirac Delta Function/Lemma", "text": "Laplace Transform of Dirac Delta Function/Lemma 0 77407 406282 2019-06-03T06:43:29Z Prime.mover 59 Created page with \"== Lemma for Laplace Transform of Dirac Delta Function == Let $F_\\epsilon: \\R \\to \\R$ be the real function defined as: :$\\map {...\" wikitext text/x-wiki == Lemma for Laplace Transform of Dirac Delta Function == Let $F_\\epsilon: \\R \\to \\R$ be the real function defined as: :$\\map {F_\\epsilon} t = \\begin{cases} 0 & : x < 0 \\\\ \\dfrac 1 \\epsilon & : 0 \\le t \\le \\epsilon \\\\ 0 & : t > \\epsilon \\end{cases}$ Then: :$\\laptrans {\\map {F_\\epsilon} t} = \\dfrac {1 - e^{-s \\epsilon} } {\\epsilon s}$ == Proof == {{begin-eqn}} {{eqn | l = \\laptrans {\\map {F_\\epsilon} t} | r = \\int_0^\\infty e^{-s t} \\map {F_\\epsilon} t \\rd t | c = }} {{eqn | r = \\int_0^\\epsilon e^{-s t} \\map {F_\\epsilon} t \\rd t + \\int_\\epsilon^\\infty e^{-s t} \\map {F_\\epsilon} t \\rd t | c = Sum of Integrals on Adjacent Intervals for Integrable Functions }} {{eqn | r = \\int_0^\\epsilon e^{-s t} \\dfrac 1 \\epsilon \\rd t + \\int_\\epsilon^\\infty e^{-s t} \\times 0 \\rd t | c = Definition of $F_\\epsilon$ }} {{eqn | r = \\dfrac 1 \\epsilon \\int_0^\\epsilon e^{-s t} \\rd t | c = simplification }} {{eqn | r = \\dfrac 1 \\epsilon \\intlimits {\\dfrac {e^{-s t} } {-s} } 0 \\epsilon | c = Primitive of $e^{a x}$ }} {{eqn | r = \\dfrac 1 \\epsilon \\paren {\\dfrac {e^{-s \\epsilon} - e^{-s \\times 0} } {-s} } | c = }} {{eqn | r = \\dfrac {1 - e^{-s \\epsilon} } {\\epsilon s} | c = simplification }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Theory and Problems of Laplace Transforms|1965|Murray R. Spiegel|prev = Laplace Transform of Heaviside Step Function/Proof 2|next = Laplace Transform of Dirac Delta Function/Proof 2}}: Chapter $1$: The Laplace Transform: Solved Problems: Impulse Functions. The Dirac Delta Function: $41$ Category:Laplace Transform of Dirac Delta Function dec9evt703r3ni8ww9fpol3yp13c8wl"}
+{"_id": "33040", "title": "Infimum of Subset of Real Numbers/Examples/Example 3", "text": "Infimum of Subset of Real Numbers/Examples/Example 3 0 77566 407912 407276 2019-06-14T14:53:18Z Prime.mover 59 wikitext text/x-wiki == Example of Infimum of Subset of Real Numbers == The subset $V$ of the real numbers $\\R$ defined as: :$V := \\set {x \\in \\R: x > 0}$ admits an infimum: :$\\inf V = 0$ == Sources == * {{BookReference|Mathematical Analysis: A Straightforward Approach|1977|K.G. Binmore|prev = Supremum of Subset of Real Numbers/Examples/Example 3|next = Definition:Supremum of Subset of Real Numbers}}: $\\S 2$: Continuum Property: $\\S 2.5$: Examples: $\\text{(iii)}$ Category:Examples of Infima erold9knxsoe1w6d6sh0ju16cv8vx7x"}
+{"_id": "33041", "title": "Real Null Sequence/Examples/n^alpha x^n/Lemma", "text": "Real Null Sequence/Examples/n^alpha x^n/Lemma 0 77733 408456 408444 2019-06-16T09:09:59Z Prime.mover 59 wikitext text/x-wiki == Lemma for Real Null Sequence: $n^\\alpha x^n$ == Let $\\alpha \\in \\Q$ be a (strictly) positive rational number. Let $x \\in \\R$ be a real number such that $\\size x < 1$. There exists $N \\in \\N$ such that: :$\\paren {1 + \\dfrac 1 N}^{\\alpha + 1} \\, \\size x \\le 1$ == Proof == {{AimForCont}}: :$\\forall n \\in \\N: \\paren {1 + \\dfrac 1 n}^{\\alpha + 1} \\, \\size x > 1$ Then: {{begin-eqn}} {{eqn | lo= \\forall n \\in \\N: | l = \\dfrac 1 n | o = > | r = \\paren {\\dfrac 1 {\\size x} }^{1 / \\paren {\\alpha + 1} } - 1 | c = }} {{eqn | o = > | r = 0 | c = }} {{eqn | ll= \\leadsto | l = \\paren {\\dfrac 1 {\\size x} }^{1 / \\paren {\\alpha + 1} } | o = > | r = 1 | c = as $\\dfrac 1 n > 0$ for all $n \\in \\N$ }} {{end-eqn}} But this contradicts Sequence of Powers of Reciprocals is Null Sequence. Hence by Proof by Contradiction: :$\\exists N \\in \\N: \\paren {1 + \\dfrac 1 N}^{\\alpha + 1} \\, \\size x \\le 1$ {{qed}} == Sources == * {{BookReference|Mathematical Analysis: A Straightforward Approach|1977|K.G. Binmore|prev = Power over Factorial|next = Real Null Sequence/Examples/n^alpha x^n}}: $\\S 4$: Convergent Sequences: Exercise $\\S 4.20 \\ (5)$ Category:Real Null Sequence/Examples/n^alpha x^n 9krbowsncd6pnacbratgp3py4jh6cx1"}
+{"_id": "33042", "title": "Hero's Method/Lemma 1", "text": "Hero's Method/Lemma 1 0 77808 419809 419795 2019-08-23T07:17:28Z Prime.mover 59 wikitext text/x-wiki == Lemma for Hero's Method == Let $a \\in \\R$ be a real number such that $a > 0$. Let $x_1 \\in \\R$ be a real number such that $x_1 > 0$. Let $\\sequence {x_n}$ be the sequence in $\\R$ defined recursively by: :$\\forall n \\in \\N_{>0}: x_{n + 1} = \\dfrac {x_n + \\dfrac a {x_n} } 2$ Then: :$\\forall n \\in \\N_{>0}: x_n > 0$ == Proof == The proof proceeds by induction. For all $n \\in \\Z_{>0}$, let $\\map P n$ be the proposition: :$x_n > 0$ === Basis for the Induction === $\\map P 1$ is the case: :$x_1 > 0$ which is assumed. Thus $\\map P 1$ is seen to hold. This is the basis for the induction. === Induction Hypothesis === Now it needs to be shown that if $\\map P k$ is true, where $k \\ge 1$, then it logically follows that $\\map P {k + 1}$ is true. So this is the induction hypothesis: :$x_k > 0$ from which it is to be shown that: :$x_{k + 1} > 0$ === Induction Step === This is the induction step: We have that: :$x_{k + 1} = \\dfrac {x_k + \\dfrac a {x_k} } 2$ But as $x_k > 0$ and $a > 0$, it follows that: :$\\dfrac a {x_k} > 0$ Then as $x_k > 0$ and $\\dfrac a {x_k} > 0$, it follows that: :$\\dfrac 1 2 \\paren {x_k + \\dfrac a {x_k} } > 0$ So $\\map P k \\implies \\map P {k + 1}$ and the result follows by the Principle of Mathematical Induction. Therefore: :$\\forall n \\in \\N_{>0}: x_n > 0$ {{qed}} == Sources == * {{BookReference|Mathematical Analysis: A Straightforward Approach|1977|K.G. Binmore|prev = Hero's Method|next = Hero's Method/Lemma 2}}: $\\S 5$: Subsequences: $\\S 5.5$: Example Category:Hero's Method 6oibp2a6jgh5au897um27rh5vca257g"}
+{"_id": "33043", "title": "Hero's Method/Lemma 2", "text": "Hero's Method/Lemma 2 0 77814 419810 419797 2019-08-23T07:18:13Z Prime.mover 59 wikitext text/x-wiki == Lemma for Hero's Method == Let $a \\in \\R$ be a real number such that $a > 0$. Let $x_1 \\in \\R$ be a real number such that $x_1 > 0$. Let $\\sequence {x_n}$ be the sequence in $\\R$ defined recursively by: :$\\forall n \\in \\N_{>0}: x_{n + 1} = \\dfrac {x_n + \\dfrac a {x_n} } 2$ Then: :$\\forall n \\ge 2: x_n \\ge \\sqrt a$ == Proof == === Lemma 1 === {{:Hero's Method/Lemma 1}}{{qed|lemma}} We have: {{begin-eqn}} {{eqn | l = x_{n + 1} | r = \\frac {x_n + \\dfrac a {x_n} } 2 | c = }} {{eqn | ll= \\leadstoandfrom | l = 2 x_n x_{n + 1} | r = x_n^2 + a | c = }} {{eqn | ll= \\leadstoandfrom | l = x_n^2 - 2 x_n x_{n + 1} + a | r = 0 | c = }} {{end-eqn}} This is a quadratic equation in $x_n$. We know that this equation must have a real solution with respect to $x_n$, because $x_n$ has been explicitly constructed by the iterative process. Thus its discriminant is $b^2 - 4 a c \\ge 0$, where: :$a = 1$ :$b = -2 x_{n + 1}$ :$c = a$ Thus $x_{n + 1}^2 \\ge a$. From Lemma 1: :$x_{n + 1} > 0$ It follows that: :$\\forall n \\ge 1: x_{n + 1} \\ge \\sqrt a$ for $n \\ge 1$ Thus: :$\\forall n \\ge 2: x_n \\ge \\sqrt a$ for $n \\ge 2$ {{qed}} == Sources == {{SourceReview|username = Prime.mover}} * {{BookReference|Mathematical Analysis: A Straightforward Approach|1977|K.G. Binmore|prev = Hero's Method/Lemma 1|next = Hero's Method/Proof 1}}: $\\S 5$: Subsequences: $\\S 5.5$: Example Category:Hero's Method fnm4qakm9gr0gsrk7pwre9y0zlkta6c"}
+{"_id": "33044", "title": "Convergent Real Sequence/Examples/x (n+1) = x n^2 + k/Lemma 1", "text": "Convergent Real Sequence/Examples/x (n+1) = x n^2 + k/Lemma 1 0 77817 408882 408871 2019-06-18T14:21:24Z Prime.mover 59 wikitext text/x-wiki == Example of Convergent Real Sequence == Let $\\sequence {x_n}$ be the real sequence defined as: :$x_n = \\begin {cases} h & : n = 1 \\\\ {x_{n - 1} }^2 + k & : n > 1 \\end {cases}$ where: :$0 < k < \\dfrac 1 4$ :$a < h < b$, where $a$ and $b$ are the roots of the quadratic equation $x^2 - x + k = 0$. Then: :$\\forall n \\in \\N_{>0}: a < x_n < b$ == Proof == The proof proceeds by induction. For all $n \\in \\Z_{\\ge 0}$, let $\\map P n$ be the proposition: :$a < x_n < b$ === Basis for the Induction === $\\map P 1$ is the case: :$a < x_1 < b$ By assertion: :$a < h < b$ and: :$x_1 = h$ Thus $\\map P 1$ is seen to hold. This is the basis for the induction. === Induction Hypothesis === Now it needs to be shown that if $\\map P k$ is true, where $k \\ge 1$, then it logically follows that $\\map P {k + 1}$ is true. So this is the induction hypothesis: :$a < x_k < b$ from which it is to be shown that: :$a < x_{k + 1} < b$ === Induction Step === This is the induction step: {{begin-eqn}} {{eqn | l = x_{k + 1} - a | r = {x_k}^2 + k - a | c = Definition of $x_{k + 1}$ }} {{eqn | o = > | r = a^2 - a + k | c = as $x_k > a$ }} {{eqn | r = 0 | c = Definition of $a$ }} {{eqn | ll= \\leadsto | l = x_{k + 1} | o = > | r = a | c = }} {{end-eqn}} Similarly: {{begin-eqn}} {{eqn | l = x_{k + 1} - b | r = {x_k}^2 + k - b | c = Definition of $x_{k + 1}$ }} {{eqn | o = < | r = b^2 - b + k | c = as $x_k < b$ }} {{eqn | r = 0 | c = Definition of $b$ }} {{eqn | ll= \\leadsto | l = x_{k + 1} | o = < | r = b | c = }} {{end-eqn}} So $\\map P k \\implies \\map P {k + 1}$ and the result follows by the Principle of Mathematical Induction. Therefore: :$\\forall n \\in \\N_{>0}: a < x_n < b$ {{qed}} == Sources == * {{BookReference|Mathematical Analysis: A Straightforward Approach|1977|K.G. Binmore|prev = Convergent Real Sequence/Examples/x (n+1) = x n^2 + k|next = Convergent Real Sequence/Examples/x (n+1) = x n^2 + k/Lemma 2}}: $\\S 5$: Subsequences: Exercise $\\S 5.7 \\ (2)$ Category:Convergent Real Sequence/Examples/x (n+1) = x n^2 + k a8stp465ywvsogvr8u3ug937ibusiqx"}
+{"_id": "33045", "title": "Convergent Real Sequence/Examples/x (n+1) = x n^2 + k/Lemma 2", "text": "Convergent Real Sequence/Examples/x (n+1) = x n^2 + k/Lemma 2 0 77819 408885 408864 2019-06-18T14:29:03Z Prime.mover 59 wikitext text/x-wiki == Example of Convergent Real Sequence == Let $a$ and $b$ be the roots of the quadratic equation: :$(1): \\quad x^2 - x + k = 0$ Let: :$0 < k < \\dfrac 1 4$ Then $a$ and $b$ are both strictly positive real numbers. == Proof == First we investigate the consequences of the condition $k < \\dfrac 1 4$. By Solution to Quadratic Equation with Real Coefficients: :In order for the quadratic equation $a x^2 + b x + c$ to have real roots, its discriminant $b^2 - 4 a c$ needs to be strictly positive. The discriminant $D$ of $(1)$ is: {{begin-eqn}} {{eqn | l = D | r = \\paren {-1}^2 - 4 \\times 1 \\times k | c = }} {{eqn | r = 1 - 4 k | c = }} {{end-eqn}} Thus: {{begin-eqn}} {{eqn | l = k | o = < | r = \\dfrac 1 4 | c = }} {{eqn | ll= \\leadsto | l = 1 - 4 k | o = > | r = 0 | c = }} {{end-eqn}} and so when $k < \\dfrac 1 4$, $(1)$ has real roots. {{qed|lemma}} Next we investigate the consequences of the condition $0 < k$. By Solution to Quadratic Equation: {{begin-eqn}} {{eqn | l = x | r = \\dfrac {-b \\pm \\sqrt {b^2 - 4 a c} } {2 a} | c = where $b = -1$, $a = 1$, $c = k$ in $(1)$ }} {{eqn | r = \\dfrac {-\\paren {-1} \\pm \\sqrt {\\paren {-1}^2 - 4 \\times 1 \\times k} } {2 \\times 1} | c = }} {{eqn | r = \\dfrac {1 \\pm \\sqrt {1 - 4 k} } 2 | c = }} {{end-eqn}} We have that: {{begin-eqn}} {{eqn | l = 0 | o = < | r = k | c = }} {{eqn | ll= \\leadsto | l = 1 | o = > | r = 1 - 4 k | c = }} {{eqn | ll= \\leadsto | l = 1 | o = > | r = +\\sqrt {1 - 4 k} | c = }} {{eqn | l = -1 | o = < | r = -\\sqrt {1 - 4 k} | c = }} {{eqn | ll= \\leadsto | l = \\dfrac {1 \\pm \\sqrt {1 - 4 k} } 2 | o = > | r = 0 | c = }} {{end-eqn}} That is, when $0 < k$ both roots of $(1)$ are strictly positive. {{qed|lemma}} Hence when $0 < k < \\dfrac 1 4$, both roots of $(1)$ are strictly positive real numbers. {{qed}} == Sources == * {{BookReference|Mathematical Analysis: A Straightforward Approach|1977|K.G. Binmore|prev = Convergent Real Sequence/Examples/x (n+1) = x n^2 + k/Lemma 1|next = Convergent Real Sequence/Examples/x (n+1) = k over 1 + x n}}: $\\S 5$: Subsequences: Exercise $\\S 5.7 \\ (2)$ Category:Convergent Real Sequence/Examples/x (n+1) = x n^2 + k 47tbne0b2az5ehu854zf2el1ldm973l"}
+{"_id": "33046", "title": "Convergent Real Sequence/Examples/x (n+1) = k over 1 + x n/Lemma 1", "text": "Convergent Real Sequence/Examples/x (n+1) = k over 1 + x n/Lemma 1 0 77823 408895 2019-06-18T15:50:09Z Prime.mover 59 Created page with \"== Example of Convergent Real Sequence == Let $h, k \\in \\R_{>0}$. Let $\\sequence {x_n}$ be the Definition:Real Sequence|real sequen...\" wikitext text/x-wiki == Example of Convergent Real Sequence == Let $h, k \\in \\R_{>0}$. Let $\\sequence {x_n}$ be the real sequence defined as: :$x_n = \\begin {cases} h & : n = 1 \\\\ \\dfrac k {1 + x_{n - 1} } & : n > 1 \\end {cases}$ Then: :$\\forall n \\in \\N_{>1}: k > x_n > 0$ == Proof == The proof proceeds by induction. For all $n \\in \\Z_{>1}$, let $\\map P n$ be the proposition: :$k > x_n > 0$ === Basis for the Induction === $\\map P 2$ is the case: :$k > x_2 > 0$ We have: {{begin-eqn}} {{eqn | l = x_2 | r = \\dfrac k {1 + x_1} | c = }} {{eqn | o = < | r = \\dfrac k 1 | c = as $x_1 > 0$ }} {{eqn | r = k | c = }} {{end-eqn}} Also, as $k > 0$ and $x_1 > 0$ we have that: :$\\dfrac k {1 + x_1} > 0$ Thus $\\map P 2$ is seen to hold. This is the basis for the induction. === Induction Hypothesis === Now it needs to be shown that if $\\map P r$ is true, where $r \\ge 2$, then it logically follows that $\\map P {r + 1}$ is true. So this is the induction hypothesis: :$k > x_r > 0$ from which it is to be shown that: :$k > x_{r + 1} > 0$ === Induction Step === This is the induction step: {{begin-eqn}} {{eqn | l = x_{r + 1} | r = \\dfrac k {1 + x_r} | c = }} {{eqn | o = < | r = \\dfrac k 1 | c = Induction Hypothesis: $x_r > 0$ }} {{eqn | r = k | c = }} {{end-eqn}} Also, as $k > 0$ and $x_r > 0$ we have that: :$\\dfrac k {1 + x_r} > 0$ So $\\map P r \\implies \\map P {r + 1}$ and the result follows by the Principle of Mathematical Induction. Therefore: :$\\forall n \\in \\N_{>1}: k > x_n > 0$ {{qed}} == Sources == * {{BookReference|Mathematical Analysis: A Straightforward Approach|1977|K.G. Binmore|prev = Convergent Real Sequence/Examples/x (n+1) = k over 1 + x n|next = Convergent Real Sequence/Examples/x (n+1) = k over 1 + x n/Mistake}}: $\\S 5$: Subsequences: Exercise $\\S 5.7 \\ (3)$ Category:Convergent Real Sequence/Examples/x (n+1) = k over 1 + x n bb2tocxnxw2uu7d3q7cfbgoncgs8myz"}
+{"_id": "33047", "title": "Convergent Real Sequence/Examples/x (n+1) = k over 1 + x n/Lemma 2", "text": "Convergent Real Sequence/Examples/x (n+1) = k over 1 + x n/Lemma 2 0 77831 408946 408930 2019-06-18T22:26:35Z Prime.mover 59 wikitext text/x-wiki == Example of Convergent Real Sequence == Let $h, k \\in \\R_{>0}$. Let $\\sequence {x_n}$ be the real sequence defined as: :$x_n = \\begin {cases} h & : n = 1 \\\\ \\dfrac k {1 + x_{n - 1} } & : n > 1 \\end {cases}$ Consider the subsequences $\\sequence {x_{2 n} }$ and $\\sequence {x_{2 n - 1} }$. One of them is strictly increasing and the other is strictly decreasing. == Proof == We have that: {{begin-eqn}} {{eqn | l = x_{n + 1} - x_{n - 1} | r = \\dfrac k {1 + x_n} - \\dfrac k {1 + x_{n - 2} } | c = }} {{eqn | r = \\dfrac {k \\paren {x_{n - 2} - x_n} } {\\paren {1 + x_n} \\paren {1 + x_{n - 2} } } | c = }} {{end-eqn}} and so $x_{n + 1} - x_{n - 1}$ has the opposite sign to $x_{n - 2} - x_n$. It can be proved by induction that one of the sequences $\\sequence {x_{2 n} }$ and $\\sequence {x_{2 n - 1} }$ increases and one decreases. {{finish|Provide the workings for the above}} In fact: :$\\sequence {x_{2 n - 1} }$ is strictly increasing {{iff}} $x_3 > x_1$ and is strictly decreasing {{iff}} $x_3 < x_1$. {{finish|Prove the above as well.}} == Sources == * {{BookReference|Mathematical Analysis: A Straightforward Approach|1977|K.G. Binmore|prev = Convergent Real Sequence/Examples/x (n+1) = k over 1 + x n/Mistake|next = Convergent Real Sequence/Examples/x n = root x n-1 y n-1, 1 over y n = half (1 over x n + 1 over y n-1)}}: $\\S 5$: Subsequences: Exercise $\\S 5.7 \\ (3)$ Category:Convergent Real Sequence/Examples/x (n+1) = k over 1 + x n 50e8ta82z9l1obkx7f6th0hiv29yzvx"}
+{"_id": "33048", "title": "Square of Chi Random Variable has Chi-Squared Distribution", "text": "Square of Chi Random Variable has Chi-Squared Distribution 0 77952 409556 2019-06-22T10:16:19Z Caliburn 3218 Created page with \"== Theorem == Let $n$ be a strictly positive integer. Let $X \\sim \\chi_n$ where $\\chi_n$ is the Definition:Chi Distr...\" wikitext text/x-wiki == Theorem == Let $n$ be a strictly positive integer. Let $X \\sim \\chi_n$ where $\\chi_n$ is the chi distribution with $n$ degrees of freedom. Then $X^2 \\sim \\chi^2_n$ where $\\chi^2_n$ is the chi-squared distribution with $n$ degrees of freedom. == Proof == Let $Y \\sim \\chi^2_n$. We aim to show that: :$\\map \\Pr {Y < x^2} = \\map \\Pr {X < x}$ for all $x \\in \\hointr 0 \\infty$. We have: {{begin-eqn}} {{eqn\t| l = \\map \\Pr {Y < x^2} \t| r = \\int_0^{x^2} \\frac 1 {2^{n / 2} \\map \\Gamma {n / 2} } t^{\\paren {n / 2} - 1} e^{- t / 2} \\rd t \t| c = {{Defof|Chi-Squared Distribution}} }} {{eqn\t| r = \\frac 2 {2^{n / 2} \\map \\Gamma {n / 2} } \\int_0^x u \\paren {u^2}^{\\paren {n / 2} - 1} e^{- u^2 / 2} \\rd u \t| c = substituting $t = u^2$ }} {{eqn\t| r = \\frac 1 {2^{\\paren {n / 2} - 1} \\map \\Gamma {n / 2} } \\int_0^x u u^{2 \\paren {\\paren {n / 2} - 1} } e^{- u^2 / 2} \\rd u }} {{eqn\t| r = \\frac 1 {2^{\\paren {n / 2} - 1} \\map \\Gamma {n / 2} } \\int_0^x u^{n - 1} e^{- u^2 / 2} \\rd u }} {{eqn\t| r = \\map \\Pr {X < x} \t| c = {{Defof|Chi Distribution}} }} {{end-eqn}} {{qed}} Category:Chi Distribution Category:Chi-Squared Distribution 4plq49xte1ivxn4xpdvm9dx8g2ibaq9"}
+{"_id": "33049", "title": "Multiple of Chi-Squared Random Variable has Gamma Distribution", "text": "Multiple of Chi-Squared Random Variable has Gamma Distribution 0 77989 409843 2019-06-23T13:22:53Z Caliburn 3218 Created page with \"== Theorem == Let $n$ be a strictly positive integer. Let $k > 0$ be a real number. Let...\" wikitext text/x-wiki == Theorem == Let $n$ be a strictly positive integer. Let $k > 0$ be a real number. Let $X \\sim \\chi^2_n$ where $\\chi^2_n$ is the chi-squared distribution with $n$ degrees of freedom. Then: :$k X \\sim \\map \\Gamma {\\dfrac n 2, \\dfrac 1 {2 k}}$ where $\\map \\Gamma {\\dfrac n 2, \\dfrac 1 {2 k}}$ is the gamma distribution with parameters $\\dfrac n 2$ and $\\dfrac 1 {2 k}$. == Proof == Let: :$Y \\sim \\map \\Gamma {\\dfrac n 2, \\dfrac 1 {2 k}}$ We aim to show that: :$\\map \\Pr {Y < k x} = \\map \\Pr {X < x}$ for all real $x \\ge 0$. We have: {{begin-eqn}} {{eqn\t| l = \\map \\Pr {Y < k x} \t| r = \\frac 1 {\\map \\Gamma {n / 2} } \\paren {\\frac 1 {2 k} }^{n / 2} \\int_0^{k x} t^{\\paren {n / 2} - 1} e^{-\\paren {1 / k} t / 2} \\rd t \t| c = {{Defof|Gamma Distribution}} }} {{eqn\t| r = \\frac 1 {\\map \\Gamma {n / 2} } \\paren {\\frac 1 {2 k} }^{n / 2} \\int_0^x k \\paren {k u}^{\\paren {n / 2} - 1} e^{-u / 2} \\rd u \t| c = substituting $t = k u$ }} {{eqn\t| r = \\frac {k^{n / 2} } {\\map \\Gamma {n / 2} \\paren {2 k}^{n / 2} } \\int_0^x u^{\\paren {n / 2} - 1} e^{-u / 2} \\rd u }} {{eqn\t| r = \\frac 1 {2^{n / 2} \\map \\Gamma {n / 2} } \\int_0^x u^{\\paren {n / 2} - 1} e^{-u / 2} \\rd u }} {{eqn\t| r = \\map \\Pr {X < x} \t| c = {{Defof|Chi-Squared Distribution}} }} {{end-eqn}} {{qed}} Category:Chi-Squared Distribution Category:Gamma Distribution iemi4sla1j0pqk0tb8sxnp2gkq4hd72"}
+{"_id": "33050", "title": "Expectation of Student's t-Distribution", "text": "Expectation of Student's t-Distribution 0 78121 410154 2019-06-25T13:45:04Z Caliburn 3218 Created page with \"== Theorem == Let $k$ be a strictly positive integer. Let $X \\sim t_k$ where $t_k$ is the Definition:Student's t-Dis...\" wikitext text/x-wiki == Theorem == Let $k$ be a strictly positive integer. Let $X \\sim t_k$ where $t_k$ is the $t$-distribution with $k$ degrees of freedom. Then the expectation of $X$ is equal to $0$ for $k > 1$, and does not exist otherwise. == Proof == {{ProofWanted}} Category:Expectation Category:Student's t-Distribution n1kupkw20s6aloggikkrhn7j4h9r356"}
+{"_id": "33051", "title": "Raw Moment of Erlang Distribution", "text": "Raw Moment of Erlang Distribution 0 78142 410309 2019-06-26T11:05:45Z Caliburn 3218 Created page with \"== Theorem == Let $n, k$ be strictly positive integers. Let $\\lambda$ be a Definition:Strictly Positive Real Number|...\" wikitext text/x-wiki == Theorem == Let $n, k$ be strictly positive integers. Let $\\lambda$ be a strictly positive real number. Let $X$ have a continuous random variable with an Erlang distribution with parameters $k$ and $\\lambda$. Then the $n$th raw moment of $X$ is given by: :$\\displaystyle \\expect {X^n} = \\frac 1 {\\lambda^n} \\prod_{m \\mathop = 0}^{n - 1} \\paren {k + m}$ == Proof == From the definition of the Erlang distribution, $X$ has probability density function: :$\\map {f_X} x = \\dfrac {\\lambda^k x^{k - 1} e^{- \\lambda x} } {\\map \\Gamma k}$ From the definition of the expected value of a continuous random variable: :$\\displaystyle \\expect {X^n} = \\int_0^\\infty x^n \\map {f_X} x \\rd x$ So: {{begin-eqn}} {{eqn\t| l = \\expect {X^n} \t| r = \\frac {\\lambda^k} {\\map \\Gamma k} \\int_0^\\infty x^{n + k - 1} e^{- \\lambda x} \\rd x }} {{eqn\t| r = \\frac {\\lambda^k} {\\lambda \\map \\Gamma k} \\int_0^\\infty \\paren {\\frac u \\lambda}^{n + k - 1} e^{- u} \\rd u \t| c = substituting $u = \\lambda x$ }} {{eqn\t| r = \\frac {\\lambda^k} {\\lambda^{n + k} \\map \\Gamma k} \\int_0^\\infty u^{n + k - 1} e^{- u} \\rd u }} {{eqn\t| r = \\frac 1 {\\lambda^n \\map \\Gamma k} \\map \\Gamma {n + k} \t| c = {{Defof|Gamma Function}} }} {{eqn\t| r = \\frac 1 {\\lambda^n} \\frac {\\map \\Gamma k} {\\map \\Gamma k} \\prod_{m \\mathop = 0}^{n - 1} \\paren {k + m} \t| c = Gamma Difference Equation }} {{eqn\t| r = \\frac 1 {\\lambda^n} \\prod_{m \\mathop = 0}^{n - 1} \\paren {k + m} }} {{end-eqn}} {{qed}} Category:Raw Moments Category:Erlang Distribution jou9tst4u65j3aafpjsdh7jycni2zu7"}
+{"_id": "33052", "title": "Linear Transformation of Gaussian Random Variable", "text": "Linear Transformation of Gaussian Random Variable 0 78298 411601 2019-07-04T13:50:30Z Caliburn 3218 Created page with \"== Theorem == Let $\\mu$, $\\alpha$ and $\\beta$ be real numbers. Let $\\sigma$ be a Definition:Positive Real Number|positive real nu...\" wikitext text/x-wiki == Theorem == Let $\\mu$, $\\alpha$ and $\\beta$ be real numbers. Let $\\sigma$ be a positive real number. Let $X \\sim \\Gaussian \\mu {\\sigma^2}$ where $\\Gaussian \\mu {\\sigma^2}$ is the Gaussian distribution with parameters $\\mu$ and $\\sigma^2$. Then: :$\\alpha X + \\beta \\sim \\Gaussian {\\alpha \\mu + \\beta} {\\alpha^2 \\sigma^2}$ == Proof == Let $Z = \\alpha X + \\beta$. Let $M_Z$ be the moment generating function of $Z$. We aim to show that: :$Z \\sim \\Gaussian {\\alpha \\mu + \\beta} {\\alpha^2 \\sigma^2}$ By Moment Generating Function of Gaussian Distribution and Moment Generating Function is Unique, it is sufficient to show that: :$\\displaystyle \\map {M_Z} t = \\map \\exp {\\paren {\\alpha \\mu + \\beta} t + \\frac 1 2 \\alpha^2 \\sigma^2 t^2}$ We also have, by Moment Generating Function of Gaussian Distribution, that the moment generating function of $X$, $M_X$, is given by: :$\\displaystyle \\map {M_X} t = \\map \\exp {\\mu t + \\frac 1 2 \\sigma^2 t^2}$ We have: {{begin-eqn}} {{eqn\t| l = \\map {M_Z} t \t| r = e^{\\beta t} \\map {M_X} {\\alpha t} \t| c = Moment Generating Function of Linear Combination of Independent Random Variables }} {{eqn\t| r = e^{\\beta t} \\map \\exp {\\alpha \\mu t + \\frac 1 2 \\sigma^2 \\paren {\\alpha t}^2} }} {{eqn\t| r = \\map \\exp {\\paren {\\alpha \\mu + \\beta} t + \\frac 1 2 \\sigma^2 \\alpha^2 t^2} \t| c = Exponential of Sum }} {{end-eqn}} {{qed}} Category:Gaussian Distribution nc5ethpa6uic5hj0lh5och2t610pcii"}
+{"_id": "33053", "title": "Quotient of Independent Random Variables with Chi-Squared Distribution Divided by Degrees of Freedom has F-Distribution", "text": "Quotient of Independent Random Variables with Chi-Squared Distribution Divided by Degrees of Freedom has F-Distribution 0 78327 411751 2019-07-05T11:40:51Z Caliburn 3218 Created page with \"== Theorem == Let $n$ and $m$ be strictly positive integers. Let $X$ and $Y$ be Definition:Independent Random Variabl...\" wikitext text/x-wiki == Theorem == Let $n$ and $m$ be strictly positive integers. Let $X$ and $Y$ be independent random variables. Let $X \\sim \\chi^2_n$ where $\\chi^2_n$ is the chi-squared distribution with $n$ degrees of freedom. Let $Y \\sim \\chi^2_m$ where $\\chi^2_m$ is the chi-squared distribution with $m$ degrees of freedom. Then: :$\\dfrac {X / n} {Y / m} \\sim F_{n, m}$ where $F_{n, m}$ is the F-distribution with $\\tuple {n, m}$ degrees of freedom. == Proof == {{ProofWanted}} Category:Chi-Squared Distribution Category:F-Distribution cta2r07liq22w6ls6deby0820pfi5tc"}
+{"_id": "33054", "title": "Derivative of Function plus Constant", "text": "Derivative of Function plus Constant 0 78816 414752 2019-07-27T07:52:21Z Prime.mover 59 Created page with \"== Theorem == Let $f$ be a real function which is differentiable on $\\R$. Let $c \\in \\R$...\" wikitext text/x-wiki == Theorem == Let $f$ be a real function which is differentiable on $\\R$. Let $c \\in \\R$ be a constant. Then: :$\\map {D_x} {\\map f x + c} = \\map {D_x} {\\map f x}$ == Proof == {{begin-eqn}} {{eqn | l = \\map {D_x} {\\map f x + c} | r = \\map {D_x} {\\map f x} + \\map f x \\, c | c = Sum Rule for Derivatives }} {{eqn | r = \\map {D_x} {\\map f x} + 0 | c = Derivative of Constant }} {{eqn | r = \\map {D_x} {\\map f x} | c = }} {{end-eqn}} {{qed}} Category:Differential Calculus stxghwu9hz138be4dsaxr1oyx8br1bi"}
+{"_id": "33055", "title": "Definite Integral from 0 to Half Pi of Logarithm of Sine x/Lemma", "text": "Definite Integral from 0 to Half Pi of Logarithm of Sine x/Lemma 0 78911 415395 2019-07-30T15:31:34Z Caliburn 3218 need this for another page or two wikitext text/x-wiki == Lemma for Definite Integral from 0 to Half Pi of Logarithm of Sine x == :$\\displaystyle \\int_0^\\pi \\map \\ln {\\sin x} \\rd x = 2 \\int_0^{\\pi/2} \\map \\ln {\\sin x} \\rd x$ == Proof == We have: {{begin-eqn}} {{eqn\t| l = \\int_{\\pi/2}^\\pi \\map \\ln {\\sin x} \\rd x \t| r = -\\int_{\\pi/2}^0 \\map \\ln {\\map \\sin {\\pi - x} } \\rd x \t| c = substituting $x \\mapsto \\pi - x$ }} {{eqn\t| r = \\int_0^{\\pi/2} \\map \\ln {\\sin x} \\rd x \t| c = Reversal of Limits of Definite Integral, Sine of Supplementary Angle }} {{end-eqn}} We can therefore write: {{begin-eqn}} {{eqn\t| l = \\int_0^\\pi \\map \\ln {\\sin x} \\rd x \t| r = \\int_0^{\\pi/2} \\map \\ln {\\sin x} \\rd x + \\int_{\\pi/2}^\\pi \\map \\ln {\\sin x} \\rd x \t| c = Sum of Integrals on Adjacent Intervals for Integrable Functions }} {{eqn\t| r = 2 \\int_0^{\\pi/2} \\map \\ln {\\sin x} \\rd x }} {{end-eqn}} {{qed|lemma}} Category:Definite Integral from 0 to Half Pi of Logarithm of Sine x 5q2g8m27o01zps1mk2jo1crqxcaa6a5"}
+{"_id": "33056", "title": "Lowest Common Multiple/Examples/6 and 15", "text": "Lowest Common Multiple/Examples/6 and 15 0 79059 416693 2019-08-05T07:01:34Z Prime.mover 59 Created page with \"== Example of Lowest Common Multiple of Integers == The Definition:Lowest Common Multiple|lowest common multi...\" wikitext text/x-wiki == Example of Lowest Common Multiple of Integers == The lowest common multiple of $6$ and $15$ is: :$\\lcm \\set {6, 15} = 30$ == Proof == We find the greatest common divisor of $6$ and $15$ using the Euclidean Algorithm: {{begin-eqn}} {{eqn | n = 1 | l = 15 | r = 2 \\times 6 + 3 }} {{eqn | n = 2 | l = 6 | r = 2 \\times 3 }} {{end-eqn}} Thus $\\gcd \\set {6, 15} = 3$. Then: {{begin-eqn}} {{eqn | l = \\lcm \\set {6, 15} | r = \\dfrac {6 \\times 15} {\\gcd \\set {6, 15} } | c = Product of GCD and LCM }} {{eqn | r = \\dfrac {\\paren {2 \\times 3} \\times \\paren {3 \\times 5} } 3 | c = }} {{eqn | r = 2 \\times 3 \\times 5 | c = }} {{eqn | r = 30 | c = }} {{end-eqn}} {{qed}} Category:Examples of Lowest Common Multiples Category:30 k9gdjvcsr46fx5lmvholwp81g8j1236"}
+{"_id": "33057", "title": "Definite Integral from 0 to Half Pi of Logarithm of Sine x/Proof 1", "text": "Definite Integral from 0 to Half Pi of Logarithm of Sine x/Proof 1 0 79137 417073 2019-08-07T15:17:48Z Caliburn 3218 Created page with \"== Theorem == {{:Definite Integral from 0 to Half Pi of Logarithm of Sine x}} == Proof == By Definite Integral from 0 to Half Pi of Logarithm of Sine x/Lemma|...\" wikitext text/x-wiki == Theorem == {{:Definite Integral from 0 to Half Pi of Logarithm of Sine x}} == Proof == By Definite Integral from $0$ to $\\dfrac \\pi 2$ of $\\map \\ln {\\sin x}$: Lemma, we have: :$\\displaystyle \\int_0^\\pi \\map \\ln {\\sin x} \\rd x = 2 \\int_0^{\\pi/2} \\map \\ln {\\sin x} \\rd x$ We also have: {{begin-eqn}} {{eqn\t| l = \\int_0^{\\pi/2} \\map \\ln {\\sin x} \\rd x \t| r = \\int_0^{\\pi/2} \\map \\ln {\\map \\sin {\\frac \\pi 2 - x} } \\rd x \t| c = Integral between Limits is Independent of Direction }} {{eqn\t| r = \\int_0^{\\pi/2} \\map \\ln {\\cos x} \\rd x \t| c = Sine of Complement equals Cosine }} {{end-eqn}} giving: {{begin-eqn}} {{eqn\t| l = 2 \\int_0^{\\pi/2} \\map \\ln {\\sin x} \\rd x \t| r = \\int_0^{\\pi/2} \\map \\ln {\\sin x \\cos x} \\rd x \t| c = Sum of Logarithms }} {{eqn\t| r = \\int_0^{\\pi/2} \\map \\ln {\\frac 1 2 \\sin 2 x} \\rd x \t| c = Double Angle Formula for Sine }} {{eqn\t| r = \\frac \\pi 2 \\map \\ln {\\frac 1 2} + \\int_0^{\\pi/2} \\map \\ln {\\sin 2 x} \\rd x \t| c = Primitive of Constant, Sum of Logarithms }} {{eqn\t| r = \\frac \\pi 2 \\map \\ln {\\frac 1 2} + \\frac 1 2 \\int_0^\\pi \\map \\ln {\\sin u} \\rd u \t| c = substituting $u = 2 x$ }} {{eqn\t| r = -\\frac \\pi 2 \\ln 2 + \\int_0^{\\pi/2} \\map \\ln {\\sin u} \\rd u \t| c = Logarithm of Reciprocal }} {{end-eqn}} Therefore: :$\\displaystyle \\int_0^{\\pi/2} \\map \\ln {\\sin x} \\rd x = -\\frac \\pi 2 \\ln 2$ {{qed}} Category:Definite Integral from 0 to Half Pi of Logarithm of Sine x mybzaitrvxdq39bjnc0ju2ey2qdui8b"}
+{"_id": "33058", "title": "Equivalence Class/Examples/Months that Start on the Same Day of the Week", "text": "Equivalence Class/Examples/Months that Start on the Same Day of the Week 0 79374 418399 418395 2019-08-16T05:31:13Z Prime.mover 59 wikitext text/x-wiki == Examples of Equivalence Class == Let $M$ be the set of months of the (calendar) year according to the (usual) Gregorian calendar. Let $\\sim$ be the relation on $M$ defined as: :$\\forall x, y \\in M: x \\sim y \\iff \\text {$x$ and $y$ both start on the same day of the week}$ The set of equivalence classes under $\\sim$ depends on whether the year is a leap year. For a non-leap year, the set of equivalence classes is: :$\\set {\\set {\\text {January}, \\text {October} }, \\set {\\text {February}, \\text {March}, \\text {November} }, \\set {\\text {April}, \\text {July} }, \\set {\\text {May} }, \\set {\\text {June} }, \\set {\\text {August} }, \\set {\\text {September}, \\text {December} } }$ For a leap year, the set of equivalence classes is: :$\\set {\\set {\\text {January}, \\text {April}, \\text {July} }, \\set {\\text {February}, \\text {August} }, \\set {\\text {March}, \\text {November} }, \\set {\\text {May} }, \\set {\\text {June} }, \\set {\\text {September}, \\text {December} }, \\set {\\text {October} } }$ == Proof == We have that: :The months with $30$ days are: ::$\\text {April}, \\text {June}, \\text {September}, \\text {November}$ :The months with $31$ days are: ::$\\text {January}, \\text {March}, \\text {May}, \\text {July}, \\text {August}, \\text {October}, \\text {December}$ :In a non-leap year, $\\text {February}$ has $28$ days :In a leap year, $\\text {February}$ has $29$ days. Let month $m$ have $m_d$ days in it. Let month $m$ start on day $d$, where $d$ is in the range $0$ to $6$ (which day of the week corresponds to which number is irrelevant at this stage). Then month $m + 1$ starts on day $\\paren {d + m_d} \\pmod 7$. For reference: {{begin-eqn}} {{eqn | l = 28 | o = \\equiv | r = 0 \\pmod 7 | c = }} {{eqn | l = 29 | o = \\equiv | r = 0 \\pmod 7 | c = }} {{eqn | l = 30 | o = \\equiv | r = 0 \\pmod 7 | c = }} {{eqn | l = 31 | o = \\equiv | r = 0 \\pmod 7 | c = }} {{end-eqn}} {{WLOG}}, let $\\text {January}$ start on day $0$. Then the sequence of the days which are the $1$st of the month are as follows: For a non-leap year: :$\\tuple {0, 3, 3, 6, 1, 4, 6, 2, 5, 0, 3, 5}$ {{OEIS|A189915}} For a leap year: :$\\tuple {0, 3, 4, 0, 2, 5, 0, 3, 6, 1, 4, 6}$ {{OEIS|A189916}} The result follows. {{qed}} == Sources == * {{BookReference|Set Theory and Abstract Algebra|1975|T.S. Blyth|prev = Equivalence Relation/Examples/Months that Start on the Same Day of the Week|next = Number of Friday 13ths in a Year}}: $\\S 6$. Indexed families; partitions; equivalence relations: Exercise $7$ Category:Examples of Equivalence Classes Category:Calendars i37jokwxlf2u7mc5q9xhufclfbsaq5v"}
+{"_id": "33059", "title": "Symbols:Abbreviations/W/WFF", "text": "Symbols:Abbreviations/W/WFF 104 79554 446989 424930 2020-02-06T23:42:49Z Prime.mover 59 wikitext text/x-wiki == Abbreviation: WFF == :Well-formed formula. == Sources == * {{BookReference|The Penguin Dictionary of Mathematics|1998|David Nelson|ed = 2nd|edpage = Second Edition|prev = Mathematician:Hermann Klaus Hugo Weyl|next = Mathematician:Alfred North Whitehead|entry = wff}} * {{BookReference|The Penguin Dictionary of Mathematics|2008|David Nelson|ed = 4th|edpage = Fourth Edition|prev = Mathematician:Hermann Klaus Hugo Weyl|next = Mathematician:Alfred North Whitehead|entry = wff}} Category:Symbols/Abbreviations/W oip6gzhhqge2br7jpl3lq08vts6f7ml"}
+{"_id": "33060", "title": "Symbols:Number Theory/Does Not Divide", "text": "Symbols:Number Theory/Does Not Divide 104 80006 421036 421033 2019-08-26T16:02:36Z Prime.mover 59 wikitext text/x-wiki == Is Not a Divisor == :$x \\nmid y$ This means '''$x$ is not a divisor of $y$'''. {{LatexFor|for = x \\nmid y}} == Also denoted as == This symbol is preferable to $x \\mathrel {\\not \\backslash} y$ due to the somewhat confusing appearance of this symbol: {{LatexFor|for = x \\mathrel {\\not \\backslash} y}} Category:Symbols/Number Theory f7u01z8p54adxwuyz5rv8ksyyd8bar0"}
+{"_id": "33061", "title": "Principle of Stationary Action", "text": "Principle of Stationary Action 0 80401 479412 479410 2020-07-22T16:15:04Z Prime.mover 59 wikitext text/x-wiki == Physical Law == The '''principle of stationary actions''' states that the equations of motion of a physical system can be acquired by finding a stationary point of the action. In other words, the first variation of the action has to vanish. == Also known as == The '''principle of stationary action''' is also known as the '''principle of least action'''. == Notes == {{refactor|Extract the appropriate bit of this into a historical note, and the other bits into separate pages of their own as statement and proof. Hence lose the \"notes\" section.}} The '''principle of least action''' attained its name due to classical problems of minimization. However, if broken trajectories are allowed, the action can sometimes acquire lower values than for any allowed smooth trajectory. Since smooth trajectories are more realistic, leastness has been weakened to stationarity. Category:Mechanics Category:Physics Category:Applied Mathematics Category:Lagrangian Mechanics 0d1283hbybpfcwj6pcfhzchm2qcxr43"}
+{"_id": "33062", "title": "Powers of 3 Modulo 8", "text": "Powers of 3 Modulo 8 0 80449 424107 2019-09-08T12:06:35Z Prime.mover 59 Created page with \"== Theorem == Let $n \\in \\Z_{\\ge 0}$ be a strictly positive integer. Then: :$3^n \\equiv \\begin {cases} 1 \\pmod 8 & : \\t...\" wikitext text/x-wiki == Theorem == Let $n \\in \\Z_{\\ge 0}$ be a strictly positive integer. Then: :$3^n \\equiv \\begin {cases} 1 \\pmod 8 & : \\text {$n$ even} \\\\ 3 \\pmod 8 & : \\text {$n$ odd} \\end {cases}$ == Proof 1 == {{:Powers of 3 Modulo 8/Proof 1}} == Proof 2 == {{:Powers of 3 Modulo 8/Proof 2}} Category:Powers of 3 Category:Modulo Arithmetic Category:Powers of 3 Modulo 8 lxmoxenu4w6om1ahif62euwc57p46is"}
+{"_id": "33063", "title": "Common Logarithm/Examples/2.36", "text": "Common Logarithm/Examples/2.36 0 80916 432976 426975 2019-10-30T18:28:15Z Prime.mover 59 wikitext text/x-wiki == Example of Common Logarithm == The common logarithm of $2 \\cdotp 36$ is: :$\\log_{10} 2 \\cdotp 36 = 0 \\cdotp 3729$ == Sources == * {{BookReference|Theory and Problems of Statistics|1972|Murray R. Spiegel|author2 = R.W. Boxer|ed = SI|edpage = SI Edition|prev = Range of Common Logarithm of Number between 1 and 10|next = Common Logarithm/Examples/23.6}}: Chapter $1$: Logarithms: '''Example 1.''' Category:Examples of Common Logarithms k8050bu2cizg984eixbrl73qdt96g8s"}
+{"_id": "33064", "title": "Jensen's Inequality (Real Analysis)/Corollary", "text": "Jensen's Inequality (Real Analysis)/Corollary 0 81312 429062 429061 2019-10-01T19:51:22Z Caliburn 3218 wikitext text/x-wiki == Corollary to Jensen's Inequality: Real Analysis == Let $I$ be a real interval. Let $\\phi: I \\to \\R$ be a concave function. Let $x_1, x_2, \\ldots, x_n \\in I$. Let $\\lambda_1, \\lambda_2, \\ldots, \\lambda_n \\ge 0$ be real numbers, at least one of which is non-zero. Then: :$\\displaystyle \\map \\phi {\\frac {\\sum_{k \\mathop = 1}^n \\lambda_k x_k} {\\sum_{k \\mathop = 1}^n \\lambda_k} } \\ge \\frac {\\sum_{k \\mathop = 1}^n \\lambda_k \\map \\phi {x_k} } {\\sum_{k \\mathop = 1}^n \\lambda_k}$ For $\\phi$ strictly concave, equality holds {{iff}} $x_1 = x_2 = \\cdots = x_n$. == Proof == By Real Function is Concave iff its Negative is Convex, $-\\phi: I \\to \\R$ is a convex function. Therefore, we can apply Jensen's Inequality: Real Analysis with $-\\phi$ to obtain: :$\\displaystyle -\\map \\phi {\\frac {\\sum_{k \\mathop = 1}^n \\lambda_k x_k} {\\sum_{k \\mathop = 1}^n \\lambda_k} } \\le -\\frac {\\sum_{k \\mathop = 1}^n \\lambda_k \\map \\phi {x_k} } {\\sum_{k \\mathop = 1}^n \\lambda_k}$ with equality for $-\\phi$ strictly convex {{iff}} $x_1 = x_2 = \\cdots = x_n$. That is, for $\\phi$ strictly concave, equality holds {{iff}} $x_1 = x_2 = \\cdots = x_n$. With that, we have established the equality case. Multiplying through $-1$ in our inequality gives: :$\\displaystyle \\map \\phi {\\frac {\\sum_{k \\mathop = 1}^n \\lambda_k x_k} {\\sum_{k \\mathop = 1}^n \\lambda_k} } \\ge \\frac {\\sum_{k \\mathop = 1}^n \\lambda_k \\map \\phi {x_k} } {\\sum_{k \\mathop = 1}^n \\lambda_k}$ as required. {{qed}} Category:Jensen's Inequality (Real Analysis) 8y2kpnwksu76razdzqnd66qcoxwmfd2"}
+{"_id": "33065", "title": "Axiom:Axioms of Uncertainty/Axiom 5", "text": "Axiom:Axioms of Uncertainty/Axiom 5 100 81786 431708 2019-10-18T00:07:10Z Prime.mover 59 Created page with \"== Axiom == {{:Axiom:Axioms of Uncertainty}} ${H_n}$ fulfils the following axiom: :$\\map {H_n} {\\dfrac 1 n, \\dfrac 1 n, \\dotsc, \\dfrac 1 n}...\" wikitext text/x-wiki == Axiom == {{:Axiom:Axioms of Uncertainty}} ${H_n}$ fulfils the following axiom: :$\\map {H_n} {\\dfrac 1 n, \\dfrac 1 n, \\dotsc, \\dfrac 1 n} \\le \\map {H_{n + 1} } {\\dfrac 1 {n + 1}, \\dfrac 1 {n + 1}, \\dotsc, \\dfrac 1 {n + 1} }$ Thus, for example, a $2$-horse race is less uncertain than a $3$-horse race. == Sources == * {{BookReference|Codes and Cryptography|1988|Dominic Welsh|prev = Axiom:Axioms of Uncertainty/Axiom 4|next = Axiom:Axioms of Uncertainty/Axiom 6}}: $\\S 1$: Entropy = uncertainty = information: $1.1$ Uncertainty Category:Axioms/Axioms of Uncertainty d9zz9602wmis3uhox6g9pqlboesvvc1"}
+{"_id": "33066", "title": "Axiom:Axioms of Uncertainty/Axiom 6", "text": "Axiom:Axioms of Uncertainty/Axiom 6 100 81787 431709 2019-10-18T00:08:51Z Prime.mover 59 Created page with \"== Axiom == {{:Axiom:Axioms of Uncertainty}} ${H_n}$ fulfils the following axiom: :$H_n$ is a Definition:Continuous Real-Valued Function|...\" wikitext text/x-wiki == Axiom == {{:Axiom:Axioms of Uncertainty}} ${H_n}$ fulfils the following axiom: :$H_n$ is a continuous function of its arguments. == Sources == * {{BookReference|Codes and Cryptography|1988|Dominic Welsh|prev = Axiom:Axioms of Uncertainty/Axiom 5|next = Axiom:Axioms of Uncertainty/Axiom 7}}: $\\S 1$: Entropy = uncertainty = information: $1.1$ Uncertainty Category:Axioms/Axioms of Uncertainty 93a1kzzyzfb8d1h9vfh8lseoqttcern"}
+{"_id": "33067", "title": "Axiom:Axioms of Uncertainty/Axiom 7", "text": "Axiom:Axioms of Uncertainty/Axiom 7 100 81788 431710 2019-10-18T00:15:50Z Prime.mover 59 Created page with \"== Axiom == {{:Axiom:Axioms of Uncertainty}} ${H_n}$ fulfils the following axiom: :$\\map {H_{m n} } {\\dfrac 1 {m n}, \\dfrac 1 {m n}, \\dotsc...\" wikitext text/x-wiki == Axiom == {{:Axiom:Axioms of Uncertainty}} ${H_n}$ fulfils the following axiom: :$\\map {H_{m n} } {\\dfrac 1 {m n}, \\dfrac 1 {m n}, \\dotsc, \\dfrac 1 {m n} } = \\map {H_m} {\\dfrac 1 m, \\dfrac 1 m, \\dotsc, \\dfrac 1 m} + \\map {H_n} {\\dfrac 1 n, \\dfrac 1 n, \\dotsc, \\dfrac 1 n}$ == Sources == * {{BookReference|Codes and Cryptography|1988|Dominic Welsh|prev = Axiom:Axioms of Uncertainty/Axiom 6|next = Axiom:Axioms of Uncertainty/Axiom 8}}: $\\S 1$: Entropy = uncertainty = information: $1.1$ Uncertainty Category:Axioms/Axioms of Uncertainty ehf4tp5ajzwggteo2hcaxjxu9x0wfrm"}
+{"_id": "33068", "title": "Axiom:Axioms of Uncertainty/Axiom 8", "text": "Axiom:Axioms of Uncertainty/Axiom 8 100 81789 431757 431711 2019-10-18T23:15:59Z Prime.mover 59 wikitext text/x-wiki == Axiom == {{:Axiom:Axioms of Uncertainty}} ${H_n}$ fulfils the following axiom: Let: :$p = p_1 + p_2 + \\dotsb + p_m$ :$q = q_1 + q_2 + \\dotsb + q_n$ such that: :each of $p_i$ and $q_j$ are non-negative :$p + q = 1$ Then: :$\\map {H_{m + n} } {p_1, p_2, \\dotsc, p_m, q_1, q_2, \\dotsc q_n} = \\map {H_2} {p, q} + p \\map {H_m} {\\dfrac {p_1} p, \\dfrac {p_2} p, \\dotsc, \\dfrac {p_m} p} + q \\map {H_n} {\\dfrac {q_1} q, \\dfrac {q_2} q, \\dotsc, \\dfrac {q_n} q}$ == Sources == * {{BookReference|Codes and Cryptography|1988|Dominic Welsh|prev = Axiom:Axioms of Uncertainty/Axiom 7|next = Function that Satisfies Axioms of Uncertainty}}: $\\S 1$: Entropy = uncertainty = information: $1.1$ Uncertainty Category:Axioms/Axioms of Uncertainty drq6oflopludhg4ygoda2ost1fg9qs1"}
+{"_id": "33069", "title": "Complex Exponential Function is Entire", "text": "Complex Exponential Function is Entire 0 81953 432464 2019-10-27T15:09:41Z Caliburn 3218 Created page with \"== Theorem == Let $\\exp: \\C \\to \\C$ be the complex exponential function. Then $\\exp$ is Definition:Entire Functio...\" wikitext text/x-wiki == Theorem == Let $\\exp: \\C \\to \\C$ be the complex exponential function. Then $\\exp$ is entire. == Proof == By the definition of the complex exponential function, $\\exp$ admits a power series expansion about $0$: :$\\displaystyle \\exp z = \\sum_{n \\mathop = 0}^\\infty \\frac {z^n} {n!}$ By Complex Function is Entire iff it has Everywhere Convergent Power Series, to show that $\\exp$ is entire it suffices to show that this series is everywhere convergent. Note that this power series is of the form: :$\\displaystyle \\sum_{n \\mathop = 0}^\\infty \\frac {\\paren {z - \\xi}^n} {n!}$ with $\\xi = 0$. Therefore, by Radius of Convergence of Power Series over Factorial: Complex Case, we have that the former power series is everywhere convergent. Hence the result. {{qed}} Category:Exponential Function bs3ajz8lpqth8r3s5pmgrrjvyc98dq8"}
+{"_id": "33070", "title": "Elementary Symmetric Function/Examples/Recursion", "text": "Elementary Symmetric Function/Examples/Recursion 0 82170 493064 493063 2020-10-07T14:06:14Z Prime.mover 59 wikitext text/x-wiki == Example of Elementary Symmetric Function: Recursion == Let $\\set {z_1, z_2, \\ldots, z_{n + 1} }$ be a set of $n + 1$ values, duplicate values permitted. Then for $1 \\le m \\le n$: :$\\map {e_m} {\\set {z_1, \\ldots, z_n, z_{n + 1} } } = z_{n + 1} \\map {e_{m - 1} } {\\set {z_1, \\ldots, z_n} } + \\map {e_m} {\\set {z_1, \\ldots, z_n} }$ == Proof == Case $m = 1$ holds because $e_0$ is $1$ and $e_1$ is the sum of the elements. Assume $2 \\le m \\le n$. Define four sets: :$A = \\set {\\set {p_1, \\ldots, p_m} : 1 \\le p_1 < \\cdots < p_m \\le n + 1}$ :$B = \\set {\\set {p_1, \\ldots, p_m} : 1 \\le p_1 < \\cdots < p_{m - 1} \\le n, p_m = n + 1}$ :$C = \\set {\\set {p_1, \\ldots, p_m} : 1 \\le p_1 < \\cdots < p_m \\le n}$ :$D = \\set {\\set {p_1, \\ldots, p_{m - 1} } : 1 \\le p_1 < \\cdots < p_{m - 1} \\le n}$ Then $A = B \\cup C$ and $B \\cap C = \\O$ implies: :$\\ds \\sum_A z_{p_1} \\cdots z_{p_m} = \\sum_B z_{p_1} \\cdots z_{p_m} + \\sum_C z_{p_1} \\cdots z_{p_m}$ Simplify: :$\\ds \\sum_B z_{p_1} \\cdots z_{p_m} = z_{n + 1} \\sum_D z_{p_1} \\cdots z_{p_{m - 1} }$ Notation for Elementary Symmetric Functions: :$\\ds \\map {e_m} {\\set {z_1, \\ldots, z_n, z_{n + 1} } } = \\sum_A z_{p_1} \\cdots z_{p_m}$ :$\\ds \\sum_D z_{p_1} \\cdots z_{p_{m - 1} } = \\map {e_{m - 1} } {\\set {z_1, \\ldots, z_n} }$ :$\\ds \\sum_C z_{p_1} \\cdots z_{p_m} = \\map {e_m} {\\set {z_1, \\ldots, z_n} }$ Assemble the preceding equations: {{begin-eqn}} {{eqn | l = \\map {e_m} {\\set {z_1, \\ldots, z_n, z_{n + 1} } } | r = \\sum_A z_{p_1} \\cdots z_{p_m} }} {{eqn | r = \\sum_B z_{p_1} \\cdots z_{p_m} + \\sum_C z_{p_1} \\cdots z_{p_m} }} {{eqn | r = z_{n + 1} \\sum_D z_{p_1} \\cdots z_{p_m} + \\sum_C z_{p_1} \\cdots z_{p_m} }} {{eqn | r = z_{n + 1} \\map {e_{m - 1} } {\\set {z_1, \\ldots, z_n} } + \\map {e_m} {\\set {z_1, \\ldots, z_n} } }} {{end-eqn}} {{qed}} Category:Elementary Symmetric Functions mlp1kflfs6ugu7nw9q8rvovs64gt3mb"}
+{"_id": "33071", "title": "Inverse of Vandermonde Matrix/Corollary", "text": "Inverse of Vandermonde Matrix/Corollary 0 82308 443085 436852 2020-01-09T20:59:23Z Prime.mover 59 wikitext text/x-wiki {{refactor}} == Corollary to Inverse of Vandermonde Matrix == Define for variables $\\set {y_1,\\ldots, y_k}$ elementary symmetric functions: {{begin-eqn}} {{eqn | l = \\map {e_m} {\\set {y_1, \\ldots, y_k} } | r = \\sum_{1 \\mathop \\le j_1 \\mathop < j_2 \\mathop < \\mathop \\cdots \\mathop < j_m \\mathop \\le k } y_{j_1} y_{j_2} \\cdots y_{j_m} | c = for $m = 0, 1, \\ldots, k$ }} {{end-eqn}} Let $\\set {x_1, \\ldots, x_n}$ be a set of distinct values. Let $W_n$ and $V_n$ be Vandermonde matrices of order $n$: :$W_n = \\begin{bmatrix} 1 & x_1 & \\cdots & x_1^{n-1} \\\\ 1 & x_2 & \\cdots & x_2^{n-1} \\\\ \\vdots & \\vdots & \\ddots & \\vdots \\\\ 1 & x_1^{n-1} & \\cdots & x_n^{n-1} \\\\ \\end{bmatrix}, \\quad V_n = \\begin{bmatrix} x_1 & x_2 & \\cdots & x_n \\\\ x_1^2 & x_2^2 & \\cdots & x_n^2 \\\\ \\vdots & \\vdots & \\ddots & \\vdots \\\\ x_1^n & x_2^n & \\cdots & x_n^n \\\\ \\end{bmatrix}$ Let their matrix inverses be written as $W_n^{-1} = \\begin{bmatrix} b_{ij} \\end{bmatrix}$ $V_n^{-1} = \\begin{bmatrix} c_{ij} \\end{bmatrix}$. Then: {{begin-eqn}} {{eqn | l = b_{ij} | r = \\dfrac {\\paren {-1}^{n - i} \\map {e_{n - i} } {\\set {x_1, \\ldots, x_n} \\setminus \\set {x_j} } } {\\prod_{m \\mathop = 1, m \\mathop \\ne j }^n \\paren {x_j - x_m} } | c = for $i, j = 1, \\ldots, n$ }} {{eqn | l = c_{ij} | r = \\dfrac 1 {x_i} \\, b_{j i} | c = for $i, j = 1, \\ldots, n$ }} {{end-eqn}} == Proof == The details appear in Inverse of Vandermonde Matrix/Proof 1, same notation.{{qed}} Category:Inverse of Vandermonde Matrix 2g40bipql82wprdkeuo5qloqoohp17t"}
+{"_id": "33072", "title": "Equation of Cardioid/Parametric", "text": "Equation of Cardioid/Parametric 0 82574 435490 2019-11-17T00:32:52Z Prime.mover 59 Created page with \"== Theorem == Let $C$ be a cardioid embedded in a Cartesian coordinate plane such that: :its Definition:...\" wikitext text/x-wiki == Theorem == Let $C$ be a cardioid embedded in a Cartesian coordinate plane such that: :its stator of radius $a$ is positioned with its center at $\\tuple {a, 0}$ :there is a cusp at the origin. Then $C$ can be expressed by the parametric equation: :$\\begin {cases} x = 2 a \\cos t \\paren {1 + \\cos t} \\\\ y = 2 a \\sin t \\paren {1 + \\cos t} \\end {cases}$ == Proof == :525px Let $P = \\polar {x, y}$ be an arbitrary point on $C$. From Polar Form of Equation of Cardioid, $C$ is expressed as a polar equation as: :$r = 2 a \\paren {1 + \\cos \\theta}$ We have that: :$x = r \\cos \\theta$ :$y = r \\sin \\theta$ Replace $\\theta$ with $t$ and the required parametric equation is the result. {{qed}} == Sources == * {{MathWorld|Cardioid|Cardioid}} Category:Cardioids 6d8qpudg46rkavewi2qwje22robgjgh"}
+{"_id": "33073", "title": "Irrational Number divided by Rational Number is Irrational", "text": "Irrational Number divided by Rational Number is Irrational 0 82682 435876 2019-11-20T16:53:26Z Caliburn 3218 Created page with \"== Theorem == Let $x$ be a irrational number. Let $y$ be a non-zero Definition:Rational Number|rational...\" wikitext text/x-wiki == Theorem == Let $x$ be a irrational number. Let $y$ be a non-zero rational number. Then: :$\\dfrac x y$ is irrational. == Proof == {{AimForCont}} $\\dfrac x y$ is rational number. Then there exists an integer $p_1$ and a natural number $q_1$ such that: :$\\dfrac x y = \\dfrac {p_1} {q_1}$ That is: :$x = \\dfrac {p_1} {q_1} y$ From the fact that $y$ is rational, we similarly have that there exists an integer $p_2$ and a natural number $q_2$ such that: :$y = \\dfrac {p_2} {q_2}$ Then: :$x = \\dfrac {p_1 p_2} {q_1 q_2}$ From Integer Multiplication is Closed, we have that $p_1 p_2$ is an integer. From Natural Number Multiplication is Closed, we have that $q_1 q_2$ is a natural number. Let $p_3 = p_1 p_2$ and $q_3 = q_1 q_2$. Then $x$ is expressible in the form: :$x = \\dfrac {p_3} {q_3}$ where $p_3$ is an integer and $q_3$ is a natural number. This, however, implies that $x$ is rational, which is a contradiction. By Proof by Contradiction, we conclude that $\\dfrac x y$ is irrational. {{qed}} Category:Rational Numbers Category:Irrational Numbers 8lpmk0l0uozjamjcnib2a455dg7oqoi"}
+{"_id": "33074", "title": "Equation of Confocal Ellipses/Formulation 1", "text": "Equation of Confocal Ellipses/Formulation 1 0 82816 436936 436930 2019-11-27T12:50:20Z Prime.mover 59 wikitext text/x-wiki == Definition == The equation: :$(1): \\quad \\dfrac {x^2} {a^2 + \\lambda} + \\dfrac {y^2} {b^2 + \\lambda} = 1$ where: :$\\tuple {x, y}$ denotes an arbitrary point in the cartesian plane :$a$ and $b$ are (strictly) positive constants such that $a^2 > b^2$ :$\\lambda$ is a (strictly) positive parameter such that $b^2 > -\\lambda$ defines the set of all confocal ellipses whose foci are at $\\tuple {\\pm \\sqrt {a^2 - b^2}, 0}$. == Proof == Let $a$ and $b$ be arbitrary (strictly) positive real numbers fulfilling the constraints as defined. Let $E$ be the locus of the equation: :$(1): \\quad \\dfrac {x^2} {a^2 + \\lambda} + \\dfrac {y^2} {b^2 + \\lambda} = 1$ As $b^2 > -\\lambda$ it follows that: :$b^2 + \\lambda > 0$ and as $a^2 > b^2$: :$a^2 + \\lambda > 0$ Thus $(1)$ is in the form: :$\\dfrac {x^2} {r^2} + \\dfrac {y^2} {s^2} = 1$ where: :$r^2 = a^2 + \\lambda$ :$s^2 = b^2 + \\lambda$ From Equation of Ellipse in Reduced Form, this is the equation of an ellipse in reduced form. It follows that: :$\\tuple {\\pm \\sqrt {a^2 + \\lambda}, 0}$ are the positions of the vertices of $E$ :$\\tuple {0, \\pm \\sqrt {b^2 + \\lambda} }$ are the positions of the covertices of $E$ From Focus of Ellipse from Major and Minor Axis, the positions of the foci of $E$ are given by: :$\\paren {a^2 + \\lambda} - \\paren {b^2 + \\lambda} = c^2$ where $\\tuple {\\pm c, 0}$ are the positions of the foci of $E$. Thus we have: {{begin-eqn}} {{eqn | l = c^2 | r = \\paren {a^2 + \\lambda} - \\paren {b^2 + \\lambda} | c = Focus of Ellipse from Major and Minor Axis }} {{eqn | r = a^2 - b^2 | c = }} {{end-eqn}} Hence the result. {{qed}} == Also see == * Equation of Confocal Conics * Equation of Confocal Hyperbolas Category:Ellipses Category:Confocal Conics 1sp1wxwjfbglclrywxkh8n4hhl7u2v3"}
+{"_id": "33075", "title": "Equation of Confocal Hyperbolas/Formulation 1", "text": "Equation of Confocal Hyperbolas/Formulation 1 0 82817 436938 436937 2019-11-27T13:01:49Z Prime.mover 59 wikitext text/x-wiki == Definition == The equation: :$(1): \\quad \\dfrac {x^2} {a^2 + \\lambda} + \\dfrac {y^2} {b^2 + \\lambda} = 1$ where: :$\\tuple {x, y}$ denotes an arbitrary point in the cartesian plane :$a$ and $b$ are (strictly) positive constants such that $a^2 > b^2$ :$\\lambda$ is a (strictly) positive parameter such that $b^2 < -\\lambda < a^2$ defines the set of all confocal hyperbolas whose foci are at $\\tuple {\\pm \\sqrt {a^2 + b^2}, 0}$. == Proof == Let $a$ and $b$ be arbitrary (strictly) positive real numbers fulfilling the constraints as defined. Let $E$ be the locus of the equation: :$(1): \\quad \\dfrac {x^2} {a^2 + \\lambda} + \\dfrac {y^2} {b^2 + \\lambda} = 1$ As $b^2 < -\\lambda$ it follows that: :$b^2 + \\lambda < 0$ and as $-\\lambda < a^2$: :$a^2 + \\lambda > 0$ Thus $(1)$ is in the form: :$\\dfrac {x^2} {r^2} - \\dfrac {y^2} {s^2} = 1$ where: :$r^2 = a^2 + \\lambda$ :$s^2 = -\\lambda + b^2$ From Equation of Hyperbola in Reduced Form, this is the equation of an hyperbola in reduced form. It follows that: :$\\tuple {\\pm \\sqrt {a^2 + \\lambda}, 0}$ are the positions of the vertices of $E$ :$\\tuple {0, \\pm \\sqrt {b^2 - \\lambda} }$ are the positions of the covertices of $E$ From Focus of Hyperbola from Transverse and Conjugate Axis, the positions of the foci of $E$ are given by: :$\\paren {a^2 + \\lambda} + \\paren {b^2 - \\lambda} = c^2$ where $\\tuple {\\pm c, 0}$ are the positions of the foci of $E$. Thus we have: {{begin-eqn}} {{eqn | l = c^2 | r = \\paren {a^2 + \\lambda} + \\paren {b^2 - \\lambda} | c = Focus of Hyperbola from Transverse and Conjugate Axis }} {{eqn | r = a^2 + b^2 | c = }} {{end-eqn}} Hence the result. {{qed}} == Also see == * Equation of Confocal Conics * Equation of Confocal Ellipses Category:Hyperbolas Category:Confocal Conics 87l6gatjd3w8a9fg9zqn0l1bxm9d1ra"}
+{"_id": "33076", "title": "Method of Undetermined Coefficients/Exponential of Sine and Cosine", "text": "Method of Undetermined Coefficients/Exponential of Sine and Cosine 0 82927 439147 437659 2019-12-10T21:32:12Z Prime.mover 59 wikitext text/x-wiki == Proof Technique == Consider the nonhomogeneous linear second order ODE with constant coefficients: :$(1): \\quad y'' + p y' + q y = \\map R x$ Let $\\map R x$ be of the form: :$\\map R x = e^{a x} \\paren {\\alpha \\sin b x + \\beta \\cos b x}$ The '''Method of Undetermined Coefficients''' can be used to solve $(1)$ in the following manner. == Method and Proof == Let $\\map {y_g} x$ be the general solution to: :$(2): \\quad y'' + p y' + q y = 0$ From Solution of Constant Coefficient Homogeneous LSOODE, $\\map {y_g} x$ can be found systematically. Let $\\map {y_p} x$ be a particular solution to $(1)$. Then from General Solution of Linear 2nd Order ODE from Homogeneous 2nd Order ODE and Particular Solution: :$\\map {y_g} x + \\map {y_p} x$ is the general solution to $(1)$. It remains to find $\\map {y_p} x$. Substitute a trial solution of similar form, either: :$e^{a x} \\paren {A \\sin b x + B \\cos b x}$ or replace the {{RHS}} of $(1)$ by: :$\\paren {\\alpha - i \\beta} e^{i \\paren {a + i b} x}$ find a solution, and take the real part. If $e^{a x} \\sin b x$ and $e^{a x} \\cos b x$ appear in the general solution to $(2)$, then insert a factor of $x$: :$x e^{a x} \\paren {A \\sin b x + B \\cos b x}$ or: :$x \\paren {\\alpha - i \\beta} e^{i \\paren {a + i b} x}$ {{qed}} == Sources == * {{BookReference|Elementary Differential Equations & Operators|1958|G.E.H. Reuter|prev = Linear Second Order ODE/y'' + 4 y = 3 sin 2 x|next = Method of Undetermined Coefficients/Product of Polynomial and Exponential}}: Chapter $1$: Linear Differential Equations with Constant Coefficients: $\\S 2$. The second order equation: $\\S 2.6$ Particular solution: some further cases $\\text{(i)}$ Category:Method of Undetermined Coefficients jdbghwqd5u95hfnwjk7vhou2369z49v"}
+{"_id": "33077", "title": "Method of Undetermined Coefficients/Product of Polynomial and Exponential", "text": "Method of Undetermined Coefficients/Product of Polynomial and Exponential 0 82928 437658 437656 2019-12-03T22:24:07Z Prime.mover 59 wikitext text/x-wiki == Proof Technique == Consider the nonhomogeneous linear second order ODE with constant coefficients: :$(1): \\quad y'' + p y' + q y = \\map R x$ Let $\\map R x$ be of the form: :$\\map R x = e^{a x} \\paren {\\map f x}$ where $\\map f x$ is a real polynomial function. The '''Method of Undetermined Coefficients''' can be used to solve $(1)$ in the following manner. == Method and Proof == Let $\\map {y_g} x$ be the general solution to: :$(2): \\quad y'' + p y' + q y = 0$ From Solution of Constant Coefficient Homogeneous LSOODE, $\\map {y_g} x$ can be found systematically. Let $\\map {y_p} x$ be a particular solution to $(1)$. Then from General Solution of Linear 2nd Order ODE from Homogeneous 2nd Order ODE and Particular Solution: :$\\map {y_g} x + \\map {y_p} x$ is the general solution to $(1)$. It remains to find $\\map {y_p} x$. Substitute a trial solution of similar form: :$e^{a x} \\paren {\\map g x}$ where $\\map g x$ is a real polynomial function with undetermined coefficients of as high a degree as $f$. Then: :differentiate twice {{WRT|Differentiation}} $x$ :establish a set of simultaneous equations by equating powers :solve these equations for the coefficients. If $e^{a x} \\paren {\\map g x}$ appears in the general solution to $(2)$, then add a further degree to $g$. The last step may need to be repeated if that last polynomial also appears as a general solution to $(2)$. {{qed}} == Sources == * {{BookReference|Elementary Differential Equations & Operators|1958|G.E.H. Reuter|prev = Method of Undetermined Coefficients/Exponential of Sine and Cosine|next = Method of Undetermined Coefficients/Product of Polynomial and Function of Sine and Cosine}}: Chapter $1$: Linear Differential Equations with Constant Coefficients: $\\S 2$. The second order equation: $\\S 2.6$ Particular solution: some further cases $\\text{(ii)}$ Category:Method of Undetermined Coefficients mctg71208riib0jzabmvpl29c71c0n5"}
+{"_id": "33078", "title": "Method of Undetermined Coefficients/Product of Polynomial and Function of Sine and Cosine", "text": "Method of Undetermined Coefficients/Product of Polynomial and Function of Sine and Cosine 0 82929 437677 437657 2019-12-03T22:44:13Z Prime.mover 59 wikitext text/x-wiki == Proof Technique == Consider the nonhomogeneous linear second order ODE with constant coefficients: :$(1): \\quad y'' + p y' + q y = \\map R x$ Let $\\map R x$ be of the form: :$\\map R x = \\paren {\\alpha \\cos b x + \\beta \\sin b x} \\paren {\\map f x}$ where $\\map f x$ is a real polynomial function. The '''Method of Undetermined Coefficients''' can be used to solve $(1)$ in the following manner. == Method and Proof == Let $\\map {y_g} x$ be the general solution to: :$(2): \\quad y'' + p y' + q y = 0$ From Solution of Constant Coefficient Homogeneous LSOODE, $\\map {y_g} x$ can be found systematically. Let $\\map {y_p} x$ be a particular solution to $(1)$. Then from General Solution of Linear 2nd Order ODE from Homogeneous 2nd Order ODE and Particular Solution: :$\\map {y_g} x + \\map {y_p} x$ is the general solution to $(1)$. It remains to find $\\map {y_p} x$. Substitute a trial solution of similar form, either: :$\\paren {\\alpha \\cos b x + \\beta \\sin b x} \\paren {\\map g x}$ or replace the {{RHS}} of $(1)$ by: :$\\paren {\\alpha - i \\beta} e^{i \\paren {a + i b} x} \\paren {\\map g x}$ find a solution, and take the real part. In the above, $\\map g x$ is a real polynomial function with undetermined coefficients of as high a degree as $f$. Then: :differentiate twice {{WRT|Differentiation}} $x$ :establish a set of simultaneous equations by equating powers :solve these equations for the coefficients. If $\\paren {\\alpha \\cos b x + \\beta \\sin b x} \\paren {\\map g x}$ appears in the general solution to $(2)$, then add a further degree to $g$. The last step may need to be repeated if that last polynomial also appears as a general solution to $(2)$. {{qed}} == Sources == * {{BookReference|Elementary Differential Equations & Operators|1958|G.E.H. Reuter|prev = Method of Undetermined Coefficients/Product of Polynomial and Exponential|next = Method of Undetermined Coefficients/Sum of Several Terms}}: Chapter $1$: Linear Differential Equations with Constant Coefficients: $\\S 2$. The second order equation: $\\S 2.6$ Particular solution: some further cases $\\text{(iii)}$ Category:Method of Undetermined Coefficients b3b0v1ep33jfqbzqz6q6wud2gav5a6p"}
+{"_id": "33079", "title": "Solution of Constant Coefficient Linear nth Order ODE", "text": "Solution of Constant Coefficient Linear nth Order ODE 0 82960 437885 437884 2019-12-06T06:33:33Z Prime.mover 59 wikitext text/x-wiki {{refactor|Extract the homogeneous case into its own page and improve its rigour and its structure. Then address the particular case by means of Method of Undetermined Coefficients as per usual.}} == Proof Technique == Consider the linear second order ODE with constant coefficients: :$(1): \\quad \\displaystyle \\sum_{k \\mathop = 0}^n a_k \\dfrac {\\d^k y} {d x^k} = \\map R x$ where $a_k$ is a constant for $0 \\le k \\le n$ and $\\map R x$ is a function of $x$. The general solution to $(1)$ can be found as follows. ;Find the roots $m_1, m_2, \\ldots, m_n$ of the auxiliary equation: :$(2): \\quad \\displaystyle \\sum_{k \\mathop = 0}^n a_k m^k = 0$. If $(2)$ has distinct roots, then the general solution $\\map {y_g} x$ is of the form: :$y_g = \\sum_{k \\mathop = 0}^n A_k e^{m_k x}$ If there are repeated roots of $(2)$, further needs to be done. Let $m_j$ be a repeated root of $(2)$ with multiplicity $r$. Then the {{LHS}} of $(2)$ can be written: :$\\map P m \\paren {m - m_j}^r$ where $\\map P m$ is a polynomial which does not contain the factor $m - m_j$. Then the $r$ instances of $m_j$ give rise to the solutions: :$(4): \\quad y = A_{j_0} e^{m_j x} + A_{j_1} x e^{m_j x} + \\dotsb + A_{j_{r - 1} } x^{r - 1} e^{m_j x}$ == Proof == Let the reduced equation of $(1)$ be written: :$(3): \\quad \\paren {a_n D^n + a_{n - 1} D^{n - 1} + \\dotsb + a_1 D + a_0} y = 0$ By factoring the {{LHS}} we get: :$\\map P D \\paren {D - m_j}^r y = 0$ It remains to be shown that $(4)$ is a solution to $(3)$. Each of the terms is of the form $p e^{m_j x} u$, where $u$ is a power of $x$ and $p$ is a constant. So: {{begin-eqn}} {{eqn | l = \\map {\\paren {D - m_j} } {p e^{m_j x} u} | r = \\map D {p e^{m_j x} u} - m_j p e^{m_j x} u | c = }} {{eqn | r = p e^{m_j x} D u | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | l = \\map {\\paren {D - m_j}^2} {p e^{m_j x} u} | r = \\map {\\paren {D - m_j} } {p e^{m_j x} D u} | c = }} {{eqn | r = p e^{m_j x} \\map D {D u} | c = }} {{eqn | r = p e^{m_j x} \\map {D^2} u | c = }} {{end-eqn}} and so on until: {{begin-eqn}} {{eqn | l = \\map {\\paren {D - m_j}^r} {p e^{m_j x} u} | r = p e^{m_j x} D^r u | c = }} {{eqn | r = 0 | c = }} {{end-eqn}} because $D^r u = 0$ when $u = 1, x, x^2, \\ldots, x^{r - 1}$. {{finish}} == Sources == * {{BookReference|Elementary Differential Equations & Operators|1958|G.E.H. Reuter|prev = Definition:Reduced Equation of Linear ODE with Constant Coefficients|next = ODE/(D^4 - 1) y = sin x}}: Chapter $1$: Linear Differential Equations with Constant Coefficients: $\\S 3$. Equations of higher order and systems of first order equations: $\\S 3.1$ The $n$th order equation Category:Linear ODEs f3keoplpt0ksewiw6w9xeg7ybcn2q48"}
+{"_id": "33080", "title": "Lindelöf's Lemma/Lemma/Lemma/Lemma", "text": "Lindelöf's Lemma/Lemma/Lemma/Lemma 0 83033 443077 438449 2020-01-09T12:14:37Z Prime.mover 59 wikitext text/x-wiki {{rename|This is such a basic result it really should not be hidden as obscurely as a lemma of a lemma of a lemma of a lemma.}} == Lemma == Let $S$ be countable set. Let $T$ be a set. Let $T$ be in one-to-one correspondence with $S$. Then $T$ is countable. == Proof == $S$ is countable. Therefore, $S$ is in one-to-one correspondence with a subset of the natural numbers by a definition of countable set. $T$ is in one-to-one correspondence with $S$. Therefore, $T$ is in one-to-one correspondence with a subset of the natural numbers by Composite of Bijections is Bijection. Accordingly, $T$ is countable by a definition of countable. {{qed}} Category:Real Analysis sj6s0ge2aqhc7uapyw70f858jj3xbgs"}
+{"_id": "33081", "title": "Lindelöf's Lemma/Lemma/Lemma", "text": "Lindelöf's Lemma/Lemma/Lemma 0 83034 443076 439243 2020-01-09T12:12:24Z Prime.mover 59 wikitext text/x-wiki == Lemma == Let $R$ be a set of real intervals with rational numbers as endpoints. Let every interval in $R$ be of the same type of which there are four: $\\openint \\ldots \\ldots$, $\\closedint \\ldots \\ldots$, $\\hointr \\ldots \\ldots$, and $\\hointl \\ldots \\ldots$. Then $R$ is countable. == Proof == === Lemma 2 === {{:Lindelöf's Lemma/Lemma/Lemma/Lemma|Lemma 2}} {{qed|lemma}} By Rational Numbers are Countably Infinite, the rationals are countable. By Subset of Countably Infinite Set is Countable, a subset of the rationals is countable. The endpoint of an interval in $R$ is characterized by a rational number as every interval in $R$ is of the same type. Therefore, the set consisting of the left hand endpoints of every interval in $R$ is countable. Also, the set consisting of the right hand endpoints of every interval in $R$ is countable. The cartesian product of countable sets is countable. Therefore, the cartesian product of the sets consisting of the respectively left hand and right hand endpoints of every interval in $R$ is countable. A subset of this cartesian product is in one-to-one correspondence with $R$. This subset is countable by Subset of Countably Infinite Set is Countable. $R$ is countable by Lemma 2 as $R$ is in one-to-one correspondence with a countable set. {{qed}} Category:Real Analysis t5y1vlhdt2cj7xhliqjwgn4fq4etsog"}
+{"_id": "33082", "title": "Absolute Value of Cut is Greater Than or Equal To Zero Cut", "text": "Absolute Value of Cut is Greater Than or Equal To Zero Cut 0 83472 441244 441243 2019-12-28T20:44:19Z Prime.mover 59 wikitext text/x-wiki == Definition == Let $\\alpha$ be a cut. Let $\\size \\alpha$ denote the '''absolute value of $\\alpha$'''. Then: :$\\size \\alpha \\ge 0^*$ where: :$0^*$ denotes the rational cut associated with the (rational) number $0$ :$\\ge$ denotes the ordering on cuts. == Proof == Let $\\alpha \\ge 0^*$. Then by definition $\\size \\alpha = \\alpha \\ge 0^*$. Let $\\alpha < 0^*$. Then: :$\\exists \\beta: \\beta + \\alpha = 0^*$ Thus: :$\\alpha = -\\beta$ and it follows that $\\beta > 0^*$. The result follows. {{qed}} == Sources == * {{BookReference|Principles of Mathematical Analysis|1964|ed = 2nd|edpage = Second Edition|Walter Rudin|prev = Definition:Absolute Value of Cut|next = Absolute Value of Cut is Zero iff Cut is Zero}}: Chapter $1$: The Real and Complex Number Systems: Dedekind Cuts: $1.24$. Definition Category:Cuts Category:Absolute Value Function 5zo6m47unf76etmjv8jv6zu8jj659cg"}
+{"_id": "33083", "title": "Absolute Value of Cut is Zero iff Cut is Zero", "text": "Absolute Value of Cut is Zero iff Cut is Zero 0 83473 441246 441245 2019-12-28T20:47:06Z Prime.mover 59 wikitext text/x-wiki == Definition == Let $\\alpha$ be a cut. Let $\\size \\alpha$ denote the '''absolute value of $\\alpha$'''. Then: :$\\size \\alpha = 0^*$ {{iff}} $\\alpha = 0^*$ where $0^*$ denotes the rational cut associated with the (rational) number $0$. == Proof == Let $\\alpha 0^*$. Then by definition $\\size \\alpha = \\alpha = 0^*$. Let $\\alpha \\ne 0^*$. Then either: :$\\alpha > 0^*$ in which case $\\size \\alpha = \\alpha > 0^*$ or: :$\\alpha < 0^*$ in which case $\\size \\alpha = -\\alpha > 0^*$ In either case $\\size \\alpha \\ne 0^*$. The result follows. {{qed}} == Sources == * {{BookReference|Principles of Mathematical Analysis|1964|ed = 2nd|edpage = Second Edition|Walter Rudin|prev = Absolute Value of Cut is Greater Than or Equal To Zero Cut|next = Definition:Multiplication of Cuts}}: Chapter $1$: The Real and Complex Number Systems: Dedekind Cuts: $1.24$. Definition Category:Cuts Category:Absolute Value Function nlxiqqazy04xx2adz93ayrrs0e4pfko"}
+{"_id": "33084", "title": "Dedekind's Theorem/Corollary", "text": "Dedekind's Theorem/Corollary 0 83566 441930 2020-01-01T22:30:08Z Prime.mover 59 Created page with \"== Theorem == Let $\\tuple {L, R}$ be a Dedekind cut of the set of real numbers $\\R$. Then either $L$ con...\" wikitext text/x-wiki == Theorem == Let $\\tuple {L, R}$ be a Dedekind cut of the set of real numbers $\\R$. Then either $L$ contains a largest number or $R$ contains a smallest number. == Proof == From Dedekind's Theorem, there exists a unique real number such that: :$l \\le \\gamma$ for all $l \\in L$ :$\\gamma \\le r$ for all $r \\in R$. Let $\\gamma \\in L$. Then by definition $\\gamma$ is the largest number in $L$. Let $\\gamma \\in R$. Then by definition $\\gamma$ is the smallest number in $R$. By the definition of Dedekind cut, $\\tuple {L, R}$ is a partition of $\\R$. Hence $\\gamma$ is either in $L$ or $R$, but not both. That is, $\\gamma$ is either: :the largest number in $L$ or: :the smallest number in $R$. Hence the result. {{Qed}} == Sources == * {{BookReference|Principles of Mathematical Analysis|1964|ed = 2nd|edpage = Second Edition|Walter Rudin|prev = Dedekind's Theorem|next = Dedekind's Theorem/Proof 3}}: Chapter $1$: The Real and Complex Number Systems: Real Numbers: $1.32$. Corollary Category:Real Analysis Category:Dedekind's Theorem i5bjas4p73f66davhsz1m87fy9g50kb"}
+{"_id": "33085", "title": "Uniqueness of Positive Root of Positive Real Number/Negative Exponent", "text": "Uniqueness of Positive Root of Positive Real Number/Negative Exponent 0 83583 442142 2020-01-03T21:18:38Z Prime.mover 59 Created page with \"== Theorem == Let $x \\in \\R$ be a real number such that $x > 0$. Let $n \\in \\Z$ be an integer such that $n < 0...\" wikitext text/x-wiki == Theorem == Let $x \\in \\R$ be a real number such that $x > 0$. Let $n \\in \\Z$ be an integer such that $n < 0$. Then there is at most one $y \\in \\R: y \\ge 0$ such that $y^n = x$. == Proof == Let $m = -n$. Let $g$ be the real function defined on $\\hointr 0 \\to$ defined by: :$\\map g y = y^m$ From the definition of power: :$\\map g y = \\dfrac 1 {\\map f y}$ Hence $\\map g y$ is strictly decreasing. {{explain|Needs to invoke a result about reciprocals inverting the sense.}} From Strictly Monotone Mapping with Totally Ordered Domain is Injective: :there is at most one $y \\in \\R: y \\ge 0$ such that $y^n = x$. {{qed}} Category:Uniqueness of Positive Root of Positive Real Number fgjw4321lcbb33b8bbthpra853zansn"}
+{"_id": "33086", "title": "Russell's Paradox/Corollary", "text": "Russell's Paradox/Corollary 0 83748 444615 444300 2020-01-23T20:40:50Z Prime.mover 59 wikitext text/x-wiki == Corollary to Russell's Paradox == :$\\not \\exists x: \\forall y: \\paren {\\map \\RR {x, y} \\iff \\neg \\map \\RR {y, y} }$ Given a relation $\\RR$, there cannot exist an element $x$ that bears $\\RR$ to all $y$ that do not bear $\\RR$ to $y$. == Proof == {{AimForCont}} there does exist such an $x$. Let $\\RR$ be such that $\\map \\RR {x, x}$. Then $\\neg \\map \\RR {x, x}$. Hence it cannot be the case that $\\map \\RR {x, x}$. Now suppose that $\\neg \\map \\RR {x, x}$. Then by definition of $x$ it follows that $\\map \\RR {x, x}$. In both cases a contradiction results. Hence there can be no such $x$. {{qed}} == Sources == * {{BookReference|Set Theory and the Continuum Problem|2010|Raymond M. Smullyan|author2 = Melvin Fitting|ed = revised|edpage = Revised Edition|prev = Barber Paradox|next = Axiom:Axiom of Specification/Set Theory}}: Chapter $1$: General Background: $\\S 8$ Russell's paradox Category:Russell's Paradox 4m9sguygtvjcki18ilwru953leixhdu"}
+{"_id": "33087", "title": "Axiom:Axiom of Extension/Class Theory", "text": "Axiom:Axiom of Extension/Class Theory 100 83823 444630 444266 2020-01-23T20:48:15Z Prime.mover 59 Prime.mover moved page Axiom:Axiom of Extension/Classes to Axiom:Axiom of Extension/Class Theory wikitext text/x-wiki == Axiom == Let $A$ and $B$ be classes. Then: :$\\forall x: \\paren {x \\in A \\iff x \\in B} \\iff A = B$ Hence the order in which the elements are listed in the sets is immaterial. == Also known as == {{:Axiom:Axiom of Extension/Also known as}} == Also see == * Definition:Class Equality * Definition:Equals == Linguistic Note == {{:Axiom:Axiom of Extension/Linguistic Note}} == Sources == * {{BookReference|Set Theory and the Continuum Problem|2010|Raymond M. Smullyan|author2 = Melvin Fitting|ed = revised|edpage = Revised Edition|prev = Definition:Subclass|next = Definition:Class Equality/Definition 2}}: Chapter $2$: Some Basics of Class-Set Theory: $\\S 1$ Extensionality and separation Extension Extension Extension d49c7lcjvs32dhy04hu4mqht7odovxl"}
+{"_id": "33088", "title": "Axiom:Axiom of Extension/Set Theory", "text": "Axiom:Axiom of Extension/Set Theory 100 83836 497668 491976 2020-11-03T06:13:01Z Prime.mover 59 wikitext text/x-wiki == Axiom == Let $A$ and $B$ be sets. The '''axiom of extension''' states that $A$ and $B$ are equal {{iff}} they contain the same elements. That is, {{iff}}: :every element of $A$ is also an element of $B$ and: :every element of $B$ is also an element of $A$. This can be formulated as follows: === Formulation 1 === {{:Axiom:Axiom of Extension/Set Theory/Formulation 1}} === Formulation 2 === In set theories that define $=$ instead of admitting it as a primitive, the '''axiom of extension''' can be formulated as: {{:Axiom:Axiom of Extension/Set Theory/Formulation 2}} The order of the elements in the sets is immaterial. Hence a set is completely and uniquely determined by its elements. == Also known as == {{:Axiom:Axiom of Extension/Also known as}} == Also see == * Definition:Set Equality * Definition:Equals * Axiom:Axiom of Extension (Classes) == Linguistic Note == {{:Axiom:Axiom of Extension/Linguistic Note}} == Sources == * {{BookReference|Naive Set Theory|1960|Paul R. Halmos|prev = Definition:Set Equality/Definition 1|next = Definition:Subset}}: $\\S 1$: The Axiom of Extension * {{BookReference|Abstract Algebra|1964|W.E. Deskins|prev = Definition:Uniqueness of Set Elements|next = Axiom:Axiom of Extension/Also known as}}: Chapter $1$: A Common Language: $\\S 1.1$ Sets * {{BookReference|Elements of Abstract Algebra|1966|Richard A. Dean|prev = Definition:Set Equality/Definition 1|next = Definition:Explicit Set Definition}}: $\\S 0.2$. Sets * {{BookReference|The Joy of Sets: Fundamentals of Contemporary Set Theory|1993|Keith Devlin|ed = 2nd|edpage = Second Edition|prev = Definition:Set Equality/Definition 1|next = Axiom:Axiom of Extension/Set Theory/Formulation 1}}: $\\S 1$: Naive Set Theory: $\\S 1.1$: What is a Set? Extension Extension Extension Extension ezzwxmd0yb8s2uo5azlvo4angx795ly"}
+{"_id": "33089", "title": "Axiom:Axiom of Specification/Class Theory", "text": "Axiom:Axiom of Specification/Class Theory 100 83846 444613 444609 2020-01-23T20:39:57Z Prime.mover 59 wikitext text/x-wiki == Axiom == The '''axiom of specification''' is an axiom schema which can be formally stated as follows: Let $\\map \\phi {A_1, A_2, \\ldots, A_n, x}$ be a function of propositional logic such that: :$A_1, A_2, \\ldots, A_n$ are a finite number of free variables whose domain ranges over all classes :$x$ is a free variable whose domain ranges over all sets. Then the '''axiom of specification''' gives that: :$\\forall A_1, A_2, \\ldots, A_n: \\exists B: \\forall x: \\paren {x \\in B \\iff \\paren {x \\in B \\land \\phi {A_1, A_2, \\ldots, A_n, x} } }$ where each of $B$ ranges over arbitrary classes. This means that for any finite number $A_1, A_2, \\ldots, A_n$ of subclasses of the universal class $V$, the class $B$ exists (or can be formed) of all sets $x \\in V$ that satisfy the function $\\map \\phi {A_1, A_2, \\ldots, A_n, x}$. == Also known as == {{:Axiom:Axiom of Specification/Also known as}} == Also see == * Axiom:Axiom of Specification/Set Theory == Historical Note == {{:Axiom:Axiom of Specification/Historical Note}} {{Languages|Axiom of specification}} {{language|German|Aussonderungsaxiom|lit = axiom of segregation}} {{end-languages}} == Sources == * {{BookReference|Set Theory and the Continuum Problem|2010|Raymond M. Smullyan|author2 = Melvin Fitting|ed = revised|edpage = Revised Edition|prev = Axiom:Axiom of Specification/Also known as|next = Not Every Class is a Set/Proof 1}}: Chapter $2$: Some Basics of Class-Set Theory: $\\S 1$ Extensionality and separation Specification Specification Specification 4ucgl8faz73dvwupsgvw7quikszyn4c"}
+{"_id": "33090", "title": "Axiom:Axiom of Transitivity", "text": "Axiom:Axiom of Transitivity 100 83863 449994 449988 2020-02-19T10:27:16Z Prime.mover 59 wikitext text/x-wiki == Axiom == Let $V$ be a basic universe. :$V$ is a transitive class. That is, every set $S$ which is an element of $V$ is a subclass of $V$. Briefly: :Every set is a class. == Sources == * {{BookReference|Set Theory and the Continuum Problem|2010|Raymond M. Smullyan|author2 = Melvin Fitting|ed = revised|edpage = Revised Edition|prev = Definition:Basic Universe Axioms|next = Axiom:Axiom of Swelledness}}: Chapter $2$: Some Basics of Class-Set Theory: $\\S 2$ Transitivity and supercompleteness Transitivity scdhzlpwz76qf6x9m0n8b032aanphlz"}
+{"_id": "33091", "title": "Axiom:Axiom of Swelledness", "text": "Axiom:Axiom of Swelledness 100 83864 449996 449987 2020-02-19T10:27:52Z Prime.mover 59 wikitext text/x-wiki == Axiom == Let $V$ be a basic universe. :$V$ is a swelled class. That is, every subclass of a set which is an element of $V$ is a set in $V$. Briefly: :Every subclass of a set is a set. == Sources == * {{BookReference|Set Theory and the Continuum Problem|2010|Raymond M. Smullyan|author2 = Melvin Fitting|ed = revised|edpage = Revised Edition|prev = Axiom:Axiom of Transitivity|next = Basic Universe is Supercomplete}}: Chapter $2$: Some Basics of Class-Set Theory: $\\S 2$ Transitivity and supercompleteness Swelledness qts7d0jpsbn35fi3ipb1mrhwouvkz41"}
+{"_id": "33092", "title": "Axiom:Axiom of Empty Set/Class Theory", "text": "Axiom:Axiom of Empty Set/Class Theory 100 83881 449995 449989 2020-02-19T10:27:32Z Prime.mover 59 wikitext text/x-wiki == Axiom == Let $V$ be a basic universe. The empty class $\\O$ is a set, that is: :$\\O \\in V$ == Sources == * {{BookReference|Set Theory and the Continuum Problem|2010|Raymond M. Smullyan|author2 = Melvin Fitting|ed = revised|edpage = Revised Edition|prev = Empty Class is Supercomplete|next = Basic Universe is not Empty}}: Chapter $2$: Some Basics of Class-Set Theory: $\\S 3$ Axiom of the empty set Empty Set Empty Set Empty Set 5q3ryuct4vv49oes7o7j8g6p3i4z23x"}
+{"_id": "33093", "title": "Axiom:Axiom of Pairing/Set Theory/Formulation 1", "text": "Axiom:Axiom of Pairing/Set Theory/Formulation 1 100 83902 491372 444586 2020-09-28T07:53:10Z Prime.mover 59 wikitext text/x-wiki == Axiom == For any two sets, there exists a set to which only those two sets are elements: :$\\forall A: \\forall B: \\exists x: \\forall y: \\paren {y \\in x \\iff y = A \\lor y = B}$ Thus it is possible to create a set that contains as elements any two sets that have already been created. == Also known as == {{:Axiom:Axiom of Pairing/Also known as}} == Also see == * Equivalence of Definitions of Axiom of Pairing == Sources == * {{BookReference|Point Set Topology|1964|Steven A. Gaal|prev = Set Definition by Predicate/Examples/Sums of Two Squares|next = Definition:Doubleton}}: Introduction to Set Theory: $1$. Elementary Operations on Sets * {{MathWorld|Zermelo-Fraenkel Axioms|Zermelo-FraenkelAxioms}} * {{MathWorld|Axiom of the Unordered Pair|AxiomoftheUnorderedPair}} Pairing 0vps8rk1gp0i13mvkkqa7sam5szgj7u"}
+{"_id": "33094", "title": "Axiom:Axiom of Pairing/Set Theory/Formulation 2", "text": "Axiom:Axiom of Pairing/Set Theory/Formulation 2 100 83903 444588 444570 2020-01-23T20:23:15Z Prime.mover 59 Prime.mover moved page Axiom:Axiom of Pairing/Sets/Formulation 2 to Axiom:Axiom of Pairing/Set Theory/Formulation 2 wikitext text/x-wiki == Axiom == For any two sets, there exists a set containing those two sets as elements: :$\\forall A: \\forall B: \\exists x: \\forall y: \\paren {y \\in x \\implies y = A \\lor y = B}$ Thus it is possible to create a set that contains as elements '''at least''' two sets that have already been created. == Also known as == {{:Axiom:Axiom of Pairing/Also known as}} == Also see == * Equivalence of Definitions of Axiom of Pairing == Sources == * {{BookReference|Naive Set Theory|1960|Paul R. Halmos|prev = Empty Set is Subset of All Sets/Proof 2|next = Definition:Doubleton}}: $\\S 3$: Unordered Pairs Pairing 4kdr8tfqdpzc7yqjhyixitdy2i6nkbp"}
+{"_id": "33095", "title": "Axiom:Axiom of Pairing/Class Theory", "text": "Axiom:Axiom of Pairing/Class Theory 100 83907 449997 449990 2020-02-19T10:28:05Z Prime.mover 59 wikitext text/x-wiki == Axiom == === Formulation 1 === {{:Axiom:Axiom of Pairing/Class Theory/Formulation 1}} === Formulation 2 === {{:Axiom:Axiom of Pairing/Class Theory/Formulation 2}} == Also known as == {{:Axiom:Axiom of Pairing/Also known as}} == Also see == * Equivalence of Definitions of Axiom of Pairing for Classes * Definition:Doubleton Class * Doubleton Class can be Formed from Two Sets, which demonstrates the fact that the class $\\set {a, b}$ can be created in the first place Pairing Pairing Pairing Pairing 0dvx4rpabm6uigw4fmmjdmfferroicn"}
+{"_id": "33096", "title": "Axiom:Axiom of Pairing/Class Theory/Formulation 1", "text": "Axiom:Axiom of Pairing/Class Theory/Formulation 1 100 83923 444674 444667 2020-01-23T23:19:24Z Prime.mover 59 wikitext text/x-wiki == Axiom == Let $a$ and $b$ be sets. Then the class $\\set {a, b}$ is likewise a set. == Also known as == {{:Axiom:Axiom of Pairing/Also known as}} == Also see == * Equivalence of Definitions of Axiom of Pairing for Classes == Sources == * {{BookReference|Set Theory and the Continuum Problem|2010|Raymond M. Smullyan|author2 = Melvin Fitting|ed = revised|edpage = Revised Edition|prev = Doubleton Class of Equal Sets is Singleton Class|next = Axiom:Axiom of Pairing/Class Theory/Formulation 2}}: Chapter $2$: Some Basics of Class-Set Theory: $\\S 4$ The pairing axiom Pairing b0jm1h7muszglmtaayg9uzvuujle2at"}
+{"_id": "33097", "title": "Axiom:Axiom of Pairing/Class Theory/Formulation 2", "text": "Axiom:Axiom of Pairing/Class Theory/Formulation 2 100 83924 444676 444675 2020-01-23T23:20:12Z Prime.mover 59 wikitext text/x-wiki == Axiom == Let $a$ and $b$ be sets. Then there exists a set $c$ such that $a \\in c$ and $b \\in c$. == Also known as == {{:Axiom:Axiom of Pairing/Also known as}} == Also see == * Equivalence of Definitions of Axiom of Pairing for Classes == Sources == * {{BookReference|Set Theory and the Continuum Problem|2010|Raymond M. Smullyan|author2 = Melvin Fitting|ed = revised|edpage = Revised Edition|prev = Axiom:Axiom of Pairing/Class Theory/Formulation 1|next = Equivalence of Definitions of Axiom of Pairing for Classes}}: Chapter $2$: Some Basics of Class-Set Theory: $\\S 4$ The pairing axiom Pairing b0z2difchl5tiyxr25667hu45jlh9bi"}
+{"_id": "33098", "title": "Axiom:Axiom of Unions/Class Theory", "text": "Axiom:Axiom of Unions/Class Theory 100 83953 449993 449991 2020-02-19T10:26:56Z Prime.mover 59 wikitext text/x-wiki == Axiom == Let $x$ be a set (of sets). Then its union $\\displaystyle \\bigcup x$ is also a set. == Also known as == {{:Axiom:Axiom of Unions/Also known as}} == Sources == * {{BookReference|Set Theory and the Continuum Problem|2010|Raymond M. Smullyan|author2 = Melvin Fitting|ed = revised|edpage = Revised Edition|prev = Definition:Set Union/General Definition|next = Definition:Intersection of Class}}: Chapter $2$: Some Basics of Class-Set Theory: $\\S 5$ The union axiom Unions Unions Unions Unions 1r5hxyqtplv3nii7ppvijkwqih0qqga"}
+{"_id": "33099", "title": "Axiom:Axiom of Powers/Class Theory", "text": "Axiom:Axiom of Powers/Class Theory 100 83988 473014 449992 2020-06-10T02:05:34Z RandomUndergrad 3904 wikitext text/x-wiki == Axiom == Let $x$ be a set. Then its power set $\\powerset x$ is also a set. == Also known as == {{:Axiom:Axiom of Powers/Also known as}} == Sources == * {{BookReference|Set Theory and the Continuum Problem|2010|Raymond M. Smullyan|author2 = Melvin Fitting|ed = revised|edpage = Revised Edition|prev = Power Set Exists and is Unique|next = Axiom:Axiom of Powers/Set Theory}}: Chapter $2$: Some Basics of Class-Set Theory: $\\S 6$ The power axiom :::''although there exists a misprint: it is referred to as the '''Power aet axiom'''.'' Powers Powers Powers Powers lbb7ba64npqzd7u1kflb2nwjvfmvn82"}
+{"_id": "33100", "title": "Chain Rule", "text": "Chain Rule 0 84211 447653 447652 2020-02-09T01:09:31Z Prime.mover 59 wikitext text/x-wiki {{Disambiguation}} * Chain Rule for Derivatives * Chain Rule for Probability ropx1clmxaww5s5fmzg03to31b4a8kc"}
+{"_id": "33101", "title": "Projection from Product Topology is Continuous/General Result/Proof", "text": "Projection from Product Topology is Continuous/General Result/Proof 0 84475 449480 2020-02-16T13:02:03Z Prime.mover 59 Created page with \"== Theorem == {{:Projection from Product Topology is Continuous/General Result}} == Proof == By definition of the Definition:Tychonoff Topology|Tychonoff topo...\" wikitext text/x-wiki == Theorem == {{:Projection from Product Topology is Continuous/General Result}} == Proof == By definition of the Tychonoff topology on $S$: :$\\tau$ is the initial topology on $S$ with respect to $\\family {\\pr_i}_{i \\mathop \\in I}$ By definition of the Initial Topoplogy:Definition 2: :$\\tau$ is the coarsest topology on $S$ such that each $\\pr_i: S \\to S_i$ is a $\\struct{\\tau, \\tau_i}$-continuous. {{qed}} Category:Projection from Product Topology is Open and Continuous t3mxbrerdivq2amckxjvljr3exiz6zm"}
+{"_id": "33102", "title": "Projection from Product Topology is Open/General Result/Proof", "text": "Projection from Product Topology is Open/General Result/Proof 0 84476 449481 2020-02-16T13:08:46Z Prime.mover 59 Created page with \"== Theorem == {{:Projection from Product Topology is Open/General Result}} == Proof == Let $U \\in \\tau$. It follows from the definition of Definition:Tychono...\" wikitext text/x-wiki == Theorem == {{:Projection from Product Topology is Open/General Result}} == Proof == Let $U \\in \\tau$. It follows from the definition of Tychonoff topology that $U$ can be expressed as: :$\\displaystyle U = \\bigcup_{j \\mathop \\in J} \\bigcap_{k \\mathop = 1}^{n_j} \\map {\\pr_{i_{k, j} }^{-1} } {U_{k, j} }$ where: :$J$ is an arbitrary index set :$n_j \\in \\N$ :$i_{k, j} \\in I$ :$U_{k, j} \\in \\tau_{i_{k, j} }$. For all $i' \\in I$, define $V_{i', k, j} \\in \\tau_{i'}$ by: :$V_{i', k, j} = \\begin {cases} U_{k, j} & : i' = i_{k, j} \\\\ S_{i'} & : i' \\ne i_{k, j} \\end {cases}$ For all $i \\in I$, we have: {{begin-eqn}} {{eqn | l = \\map {\\pr_i} U | r = \\bigcup_{j \\mathop \\in J} \\map {\\pr_i} {\\bigcap_{k \\mathop = 1}^{n_j} \\map {\\pr_{i_{k,j} }^{-1} } { U_{k,j} } } | c = Image of Union under Relation: Family of Sets }} {{eqn | r = \\bigcup_{j \\mathop \\in J} \\map {\\pr_i} {\\bigcap_{k \\mathop = 1}^{n_j} \\prod_{i' \\mathop \\in I} V_{i', k, j} } | c = {{Defof|Projection (Mapping Theory)|Projection}} }} {{eqn | r = \\bigcup_{j \\mathop \\in J} \\map {\\pr_i} {\\prod_{i' \\mathop \\in I} \\bigcap_{k \\mathop = 1}^{n_j} V_{i', k, j} } | c = Cartesian Product of Intersections: General Case }} {{eqn | r = \\bigcup_{j \\mathop \\in J} \\bigcap_{k \\mathop = 1}^{n_j} V_{i,k,j} | c = {{Defof|Projection (Mapping Theory)|Projection}} }} {{end-eqn}} As: :$\\displaystyle \\bigcup_{j \\mathop \\in J} \\bigcap_{k \\mathop = 1}^{n_j} V_{i, k, j} \\in \\tau_i$ it follows that $\\pr_i$ is open. {{qed}} Category:Projection from Product Topology is Open and Continuous id4pkftu0oqbob7rnlrhlpcasyrdq3a"}
+{"_id": "33103", "title": "Axiom:Axiom of Infinity/Class Theory", "text": "Axiom:Axiom of Infinity/Class Theory 100 84547 449998 449984 2020-02-19T10:28:41Z Prime.mover 59 wikitext text/x-wiki == Axiom == === Formulation 1 === {{:Axiom:Axiom of Infinity/Class Theory/Formulation 1}} === Formulation 2 === {{:Axiom:Axiom of Infinity/Class Theory/Formulation 2}} === Formulation 3 === {{:Axiom:Axiom of Infinity/Class Theory/Formulation 3}} == Also see == * Equivalence of Formulations of Axiom of Infinity for Zermelo Universe Infinity Infinity Infinity klx7xc3gld1khpe2k745q44yanxdsls"}
+{"_id": "33104", "title": "Axiom:Axiom of Infinity/Class Theory/Formulation 1", "text": "Axiom:Axiom of Infinity/Class Theory/Formulation 1 100 84548 450002 449985 2020-02-19T10:36:44Z Prime.mover 59 wikitext text/x-wiki == Axiom == Let $\\omega$ be the class of natural numbers as constructed by the Von Neumann construction: {{begin-eqn}} {{eqn | l = 0 | o = := | r = \\O | c = }} {{eqn | l = 1 | o = := | r = 0 \\cup \\set 0 | c = }} {{eqn | l = 2 | o = := | r = 1 \\cup \\set 1 | c = }} {{eqn | l = 3 | o = := | r = 2 \\cup \\set 2 | c = }} {{eqn | o = \\vdots | c = }} {{eqn | l = n + 1 | o = := | r = n \\cup \\set n | c = }} {{eqn | o = \\vdots | c = }} {{end-eqn}} Then $\\omega$ is a set. == Also see == * Equivalence of Formulations of Axiom of Infinity for Zermelo Universe == Sources == * {{BookReference|Set Theory and the Continuum Problem|2010|Raymond M. Smullyan|author2 = Melvin Fitting|ed = revised|edpage = Revised Edition|prev = Definition:Inductive Set Definition for Natural Numbers|next = Definition:Zermelo Universe}}: Chapter $3$: The Natural Numbers: $\\S 2$ Definition of the Natural Numbers: Axiom $A_7$ Infinity Infinity mhsvoa9flwdf1bidqd73qx0ix0q0dsl"}
+{"_id": "33105", "title": "Axiom:Axiom of Infinity/Class Theory/Formulation 2", "text": "Axiom:Axiom of Infinity/Class Theory/Formulation 2 100 84551 450010 450004 2020-02-19T11:04:10Z Prime.mover 59 wikitext text/x-wiki == Axiom == There exists an inductive set. == Also see == * Equivalence of Formulations of Axiom of Infinity for Zermelo Universe == Sources == * {{BookReference|Set Theory and the Continuum Problem|2010|Raymond M. Smullyan|author2 = Melvin Fitting|ed = revised|edpage = Revised Edition|prev = Definition:Zermelo Universe|next = Axiom:Axiom of Infinity/Class Theory/Formulation 3/Historical Note}}: Chapter $3$: The Natural Numbers: $\\S 2$ Definition of the Natural Numbers Infinity Infinity lu67jeskhv591puclw4kt2ka86u3h0s"}
+{"_id": "33106", "title": "Axiom:Axiom of Infinity/Class Theory/Formulation 3", "text": "Axiom:Axiom of Infinity/Class Theory/Formulation 3 100 84554 450009 450007 2020-02-19T11:03:55Z Prime.mover 59 wikitext text/x-wiki == Axiom == Not every set is a natural number. == Also see == * Equivalence of Formulations of Axiom of Infinity for Zermelo Universe == Historical Note == {{:Axiom:Axiom of Infinity/Class Theory/Formulation 3/Historical Note}} == Sources == * {{BookReference|Set Theory and the Continuum Problem|2010|Raymond M. Smullyan|author2 = Melvin Fitting|ed = revised|edpage = Revised Edition|prev = Axiom:Axiom of Infinity/Class Theory/Formulation 3/Historical Note|next = Equivalence of Formulations of Axiom of Infinity for Zermelo Universe}}: Chapter $3$: The Natural Numbers: $\\S 2$ Definition of the Natural Numbers Infinity Infinity 5rohtd602vj2snp31dz1wzeorlmvcax"}
+{"_id": "33107", "title": "Condition for Expectation of Non-Negative Random Variable to be Zero", "text": "Condition for Expectation of Non-Negative Random Variable to be Zero 0 85335 455455 2020-03-18T11:29:40Z Caliburn 3218 Created page with \"== Theorem == Let $X$ be a random variable. Let: :$\\map \\Pr {X \\ge 0} = 1$ Then $\\expect X = 0$ {{iff}} $\\map \\Pr {X = 0} =...\" wikitext text/x-wiki == Theorem == Let $X$ be a random variable. Let: :$\\map \\Pr {X \\ge 0} = 1$ Then $\\expect X = 0$ {{iff}} $\\map \\Pr {X = 0} = 1$. == Proof == {{ProofWanted}} Category:Expectation fnf3epu60to075znwj0nr2hoeytp6ot"}
+{"_id": "33108", "title": "Covariance of Linear Combination of Random Variables with Another", "text": "Covariance of Linear Combination of Random Variables with Another 0 85343 455483 2020-03-18T12:17:31Z Caliburn 3218 Created page with \"== Theorem == Let $X, Y, Z$ be random variables. Let $a, b$ be real numbers. Then: :$\\cov {a X +...\" wikitext text/x-wiki == Theorem == Let $X, Y, Z$ be random variables. Let $a, b$ be real numbers. Then: :$\\cov {a X + b Y, Z} = a \\cov {X, Z} + b \\cov {Y, Z}$ == Proof == {{begin-eqn}} {{eqn\t| l = \\cov {a X + b Y, Z} \t| r = \\expect {\\paren {a X + b Y} Z} - \\expect {a X + b Y} \\expect Z \t| c = Covariance as Expectation of Product minus Product of Expectations }} {{eqn\t| r = a \\expect {X Z} + b \\expect {Y Z} - \\paren {a \\expect X + b \\expect Y} \\expect Z \t| c = Linearity of Expectation Function }} {{eqn\t| r = a \\paren {\\expect {X Z} - \\expect X \\expect Z} + b \\paren {\\expect {Y Z} - \\expect Y \\expect Z} }} {{eqn\t| r = a \\cov {X, Z} + b \\cov {Y, Z} \t| c = Covariance as Expectation of Product minus Product of Expectations }} {{end-eqn}} {{qed}} Category:Covariance clomckc88pxcsw54tysvlx7zl4j66xw"}
+{"_id": "33109", "title": "Covariance of Sums of Random Variables/Lemma", "text": "Covariance of Sums of Random Variables/Lemma 0 85345 455505 2020-03-18T14:14:08Z Caliburn 3218 Created page with \"== Theorem == Let $n$ be a strictly positive integer. Let $\\sequence {X_i}_{1 \\le i \\le n}$ be a Definition:Sequence|...\" wikitext text/x-wiki == Theorem == Let $n$ be a strictly positive integer. Let $\\sequence {X_i}_{1 \\le i \\le n}$ be a sequence of random variables. Let $Y$ be a random variable. Then: :$\\displaystyle \\cov {\\sum_{i \\mathop = 1}^n X_i, Y} = \\sum_{i \\mathop = 1}^n \\cov {X_i, Y}$ == Proof == Proof by induction: For all $n \\in \\N$, let $\\map P n$ be the proposition: :$\\displaystyle \\cov {\\sum_{i \\mathop = 1}^n X_i, Y} = \\sum_{i \\mathop = 1}^n \\cov {X_i, Y}$ === Basis for the Induction === We have that: :$\\displaystyle \\cov {\\sum_{i \\mathop = 1}^n X_i, Y} = \\cov {X_1, Y} = \\sum_{i \\mathop = 1}^1 \\cov {X_i, Y}$ We therefore have that $\\map P 1$ is true. This is our base case. === Induction Hypothesis === Suppose that $\\map P n$ is true for some fixed $n \\in \\N$. That is: :$\\displaystyle \\cov {\\sum_{i \\mathop = 1}^n X_i, Y} = \\sum_{i \\mathop = 1}^n \\cov {X_i, Y}$ We aim to show that it logically follows that $\\map P {n + 1}$ is true. That is: :$\\displaystyle \\cov {\\sum_{i \\mathop = 1}^{n + 1} X_i, Y} = \\sum_{i \\mathop = 1}^{n + 1} \\cov {X_i, Y}$ === Induction Step === This is our induction step: We have: {{begin-eqn}} {{eqn\t| l = \\cov {\\sum_{i \\mathop = 1}^{n + 1} X_i, Y} \t| r = \\cov {\\sum_{i \\mathop = 1}^n X_i + X_{n + 1}, Y} \t| c = splitting up the sum }} {{eqn\t| r = \\cov {\\sum_{i \\mathop = 1}^n X_i, Y} + \\cov {X_{n + 1}, Y} \t| c = Covariance of Linear Combination of Random Variables with Another }} {{eqn\t| r = \\sum_{i \\mathop = 1}^n \\cov {X_i, Y} + \\cov {X_{n + 1}, Y} \t| c = induction hypothesis }} {{eqn\t| r = \\sum_{i \\mathop = 1}^{n + 1} \\cov {X_i, Y} }} {{end-eqn}} Hence the result by induction. {{qed}} Category:Covariance Category:Covariance of Sums of Random Variables di2bhly3lry6nhiskt1rq3obzfzf9i3"}
+{"_id": "33110", "title": "Expectation of Linear Transformation of Random Variable", "text": "Expectation of Linear Transformation of Random Variable 0 85348 455529 2020-03-18T16:10:35Z Caliburn 3218 Created page with \"== Theorem == Let $X$ be a random variable. Let $a, b$ be real numbers. Then we have: :$\\expect...\" wikitext text/x-wiki == Theorem == Let $X$ be a random variable. Let $a, b$ be real numbers. Then we have: :$\\expect {a X + b} = a \\expect X + b$ where $\\expect X$ denotes the expectation of $X$. == Proof == === Discrete Random Variable === {{:Expectation of Linear Transformation of Random Variable/Discrete}} === Continuous Random Variable === {{:Expectation of Linear Transformation of Random Variable/Continuous}} Category:Expectation Category:Expectation of Linear Transformation of Random Variable s4z0ah7c7vdt0d5628c128pjokk1yvv"}
+{"_id": "33111", "title": "Definite Integral of Odd Function/Corollary", "text": "Definite Integral of Odd Function/Corollary 0 85650 457201 2020-03-23T11:39:22Z Prime.mover 59 Created page with \"== Corollary to Definite Integral of Odd Function == Let $f$ be an odd function with a Definition:Primitive (Calculus)|primitiv...\" wikitext text/x-wiki == Corollary to Definite Integral of Odd Function == Let $f$ be an odd function with a primitive on the open interval $\\openint {-a} a$, where $a > 0$. Then the improper integral of $f$ on $\\openint {-a} a$ is: :$\\displaystyle \\int_{\\mathop \\to -a}^{\\mathop \\to a} \\map f x \\rd x = 0$ == Proof == {{begin-eqn}} {{eqn | l = \\int_{\\mathop \\to -a}^{\\mathop \\to a} \\map f x \\rd x | r = \\lim_{y \\mathop \\to a} \\int_{-y}^y \\map f x \\rd x | c = {{Defof|Improper Integral over Open Interval}} }} {{eqn | r = \\lim_{y \\mathop \\to a} 0 | c = Definite Integral of Odd Function }} {{eqn | r = 0 | c = }} {{end-eqn}} {{qed}} Category:Integral Calculus Category:Odd Functions Category:Improper Integrals ds0u8xk48wh9kabypnu744covo100ww"}
+{"_id": "33112", "title": "Coulomb's Law of Electrostatics", "text": "Coulomb's Law of Electrostatics 0 86443 462481 462451 2020-04-17T07:38:30Z Prime.mover 59 wikitext text/x-wiki == Physical Law == :400pxrightthumbForce Between two Like Charges Let $a$ and $b$ be stationary particles in a vacuum, each carrying an electric charge of $q_a$ and $q_b$ respectively. Then $a$ and $b$ exert a force upon each other whose magnitude and direction are given by '''Coulomb's law (of electrostatics)''': :$\\mathbf F_{a b} \\propto \\dfrac {q_a q_b {\\mathbf r_{a b} } } {r^3}$ where: :$\\mathbf F_{a b}$ is the force exerted on $b$ by the electric charge on $a$ :$\\mathbf r_{a b}$ is the displacement vector from $a$ to $b$ :$r$ is the distance between $a$ and $b$. :the constant of proportion is defined as being positive. By exchanging $a$ and $b$ in the above, it is seen that $b$ exerts the same force on $a$ as $a$ does on $b$, but in the opposite direction. == SI Units == {{:Coulomb's Law of Electrostatics/SI Units}} Thus the equation becomes: :$\\mathbf F_{a b} = \\dfrac 1 {4 \\pi \\varepsilon_0} \\dfrac {q_a q_b {\\mathbf r_{a b} } } {r^3}$ == Also presented as == :$\\mathbf F_{a b} \\propto \\dfrac {q_a q_b \\hat {\\mathbf r}_{a b} } {r^2}$ where $\\hat {\\mathbf r}_{a b}$ is the unit vector in the direction from $a$ to $b$. == Also known as == '''Coulomb's Law of Electrostatics''' is also known as just '''Coulomb's Law'''. {{Namedfor|Charles-Augustin de Coulomb|cat = Coulomb}} == Historical Note == {{:Coulomb's Law of Electrostatics/Historical Note}} == Sources == * {{BookReference|Electromagnetism|1990|I.S. Grant|author2 = W.R. Phillips|ed = 2nd|edpage = Second Edition|prev = Newton's Law of Universal Gravitation|next = Newton's Law of Universal Gravitation/Historical Note}}: Chapter $1$: Force and energy in electrostatics * {{BookReference|Electromagnetism|1990|I.S. Grant|author2 = W.R. Phillips|ed = 2nd|edpage = Second Edition|prev = Definition:Negative Electric Charge|next = Definition:Unit Vector}}: Chapter $1$: Force and energy in electrostatics: $1.1$ Electric Charge Category:Electrostatics Category:Coulomb's Law of Electrostatics 4l3qloy2d1vr2or0tyutli4spkychjd"}
+{"_id": "33113", "title": "Bijection/Examples/Real Cube Function", "text": "Bijection/Examples/Real Cube Function 0 86552 463120 2020-04-20T09:42:42Z Prime.mover 59 Created page with \"== Example of Bijection == Let $f: \\R \\to \\R$ be the mapping defined on the Definition:Real Numbers|set of real...\" wikitext text/x-wiki == Example of Bijection == Let $f: \\R \\to \\R$ be the mapping defined on the set of real numbers as: :$\\forall x \\in \\R: \\map f x = x^3$ Then $f$ is a bijection. == Proof == A direct application of Integer Power Function is Bijective iff Index is Odd. {{qed}} == Sources == * {{BookReference|Topology: An Introduction with Application to Topological Groups|1967|George McCarty|prev = Inverse of Identity Mapping|next = Inverse Mapping/Examples/Real Cube Function}}: Chapter $\\text{I}$: Sets and Functions: Composition of Functions Category:Examples of Bijections r50xzx9y89yeysojmrvmxud5nr5raov"}
+{"_id": "33114", "title": "Limit of Subsequence equals Limit of Sequence/Normed Vector Space", "text": "Limit of Subsequence equals Limit of Sequence/Normed Vector Space 0 86622 463604 2020-04-22T17:22:12Z Julius 3095 Created page with \"== Theorem == Let $\\struct {X, \\norm {\\, \\cdot \\,} }$ be a normed vector space. Let $\\sequence {x_n}$ be a Definition:Seque...\" wikitext text/x-wiki == Theorem == Let $\\struct {X, \\norm {\\, \\cdot \\,} }$ be a normed vector space. Let $\\sequence {x_n}$ be a sequence in $X$. Let $\\sequence {x_n}$ be convergent in the norm $\\norm {\\, \\cdot \\,}$ to the following limit: :$\\displaystyle \\lim_{n \\mathop \\to \\infty} x_n = l$ Let $\\sequence {x_{n_r} }$ be a subsequence of $\\sequence {x_n}$. Then: :$\\sequence {x_{n_r} }$ is convergent and $\\displaystyle \\lim_{r \\mathop \\to \\infty} x_{n_r} = l$ That is, the limit of a convergent sequence equals the limit of a subsequence of it. == Proof == Let $\\epsilon > 0$. Since $\\displaystyle \\lim_{n \\mathop \\to \\infty} x_n = l$, it follows from the definition of limit that: :$\\exists N \\in \\N : \\forall n \\in \\N : n > N \\implies \\norm{x_n - l} < \\epsilon$ Now let $R = N$. Then from Strictly Increasing Sequence of Natural Numbers: : $\\forall r > R: n_r \\ge r$ Thus $n_r > N$ and so: :$\\norm {x_n - l} < \\epsilon$ The result follows. {{qed}} Category:Normed Vector Spaces Category:Convergence Category:Limits of Sequences 8oblsbs01cotfach8fs1lr7skim9xsd"}
+{"_id": "33115", "title": "Natural Numbers under Addition do not form Group/Corollary", "text": "Natural Numbers under Addition do not form Group/Corollary 0 86692 492381 464126 2020-10-03T15:43:14Z Prime.mover 59 wikitext text/x-wiki == Corollary to Natural Numbers under Addition do not form Group == The algebraic structure $\\struct {\\Z_{\\ge 0}, +}$ consisting of the set of non-negative integers $\\Z_{\\ge 0}$ under addition $+$ does not form a subgroup of the additive group of integers. == Proof == By Natural Numbers are Non-Negative Integers, $\\struct {\\Z_{\\ge 0}, +}$ and $\\struct {\\N, +}$ are the same (or if not exactly the same, at least isomorphic). The result follows from Natural Numbers under Addition do not form Group. {{qed}} == Sources == * {{BookReference|Topology: An Introduction with Application to Topological Groups|1967|George McCarty|prev = Group Product Identity therefore Inverses/Part 2/Proof 2|next = Subgroups of Additive Group of Integers/Examples/Even Integers}}: Chapter $\\text{II}$: Groups: Exercise $\\text{E i}$ Category:Natural Numbers 8drkvaruqw9i95ilcv9v2r7eibuglwc"}
+{"_id": "33116", "title": "Existence and Uniqueness of Direct Limit of Sequence of Groups/Lemma 1", "text": "Existence and Uniqueness of Direct Limit of Sequence of Groups/Lemma 1 0 87099 466013 465985 2020-05-05T09:53:58Z Prime.mover 59 wikitext text/x-wiki {{MissingLinks}} == Lemma == On $\\widehat G_\\infty := \\displaystyle \\coprod_{n \\mathop \\in \\N} G_n$ the relation: :$\\tuple {x_n, n} \\sim \\tuple {y_m, m} \\iff \\exists k \\ge n, m: \\map {g_{n, k} } {x_n} = \\map {g_{m, k} } {y_m}$ is an equivalence relation. == Proof == === Reflexivity === Since $g_{n,n} = \\mathop {Id}_{G_n}$ we have: :$\\forall \\tuple {x_n, n} \\in \\widehat G_\\infty: \\map {g_{n, n} } {x_n} = \\map {g_{n, n} } {x_n}$ Hence: :$\\tuple {x_n, n} \\sim \\tuple {x_n, n}$ {{qed|lemma}} === Symmetry === Let $\\tuple {x_n, n} \\sim \\tuple {y_m, m}$. Then there exists a $k \\ge n, m$ such that: :$\\map {g_{n, k} } {x_n} = \\map {g_{m, k} } {x_m}$ Hence also: :$\\map {g_{m, k} } {x_m} = \\map {g_{n, k} } {x_n}$ That is: :$\\tuple {y_m, m} \\sim \\tuple {x_n, n}$ {{qed|lemma}} === Transitivity === Let $\\tuple {x_n, n} \\sim \\tuple {y_m, m}$ and $\\tuple {y_m, m} \\sim \\tuple {z_r, r}$. Then there exist $k \\ge m, n$ and $l \\ge n, r$ such that: :$\\map {g_{n, k} } {x_n} = \\map {g_{m, k} } {y_m}$ :$\\map {g_{m, l} } {y_m} = \\map {g_{r, l} } {z_r}$ Let $q:= \\max \\set {k, l}$. Then we have: {{begin-eqn}} {{eqn | l = \\map {g_{n, q} } {x_n} | r = \\map {g_{k, q} } {\\map {g_{m, k} } {y_m} } | c = }} {{eqn | r = \\map {g_{m, q} } {y_m} | c = }} {{eqn | r = \\map {g_{l,q} } {\\map {g_{m, l} } {y_m} } | c = }} {{eqn | r = \\map {g_{l, q} } {\\map {g_{r, l} } {z_r} } | c = }} {{eqn | r = \\map {g_{r,q} } {z_r} | c = }} {{end-eqn}} that is: :$\\tuple {x_n, n} \\sim \\tuple {z_r, r}$ {{qed}} Category:Existence and Uniqueness of Direct Limit of Sequence of Groups fir5rrdz7eqpwgerchypsxfad5j9us8"}
+{"_id": "33117", "title": "Existence and Uniqueness of Direct Limit of Sequence of Groups/Lemma 2", "text": "Existence and Uniqueness of Direct Limit of Sequence of Groups/Lemma 2 0 87100 466052 466043 2020-05-05T12:42:39Z Prime.mover 59 wikitext text/x-wiki {{tidy}} {{MissingLinks}} == Lemma == The following defines a group structure on $G_\\infty$: Let $\\struct {G_\\infty, \\cdot}$ be the algebraic structure defined as follows. Let $\\eqclass {\\tuple {x_n, n} } {}, \\eqclass {\\tuple {y_m, m} } {} \\in G_\\infty$ be arbitrary elements of $G_\\infty$. Let $l := \\max \\set {m, n}$. Let the operation $\\cdot$ on $G_\\infty$ be defined as: :$\\tuple {\\eqclass {\\tuple {x_n, n} } {} \\cdot \\eqclass {\\tuple {y_m, m} } {} } := \\eqclass {\\tuple {\\map {g_{n l} } {x_n} \\map {g_{m l} } {y_m}, l} } {}$ Then $\\struct {G_\\infty, \\cdot}$ is a group. == Proof == === Well-Definedness === The definition depends on the choice $\\tuple {x_n, n}$ and $\\tuple {y_m, m}$ of representatives of $\\eqclass {\\tuple {x_n, n} } {}$ and $\\eqclass {\\tuple {y_m, m} } {}$. We have to show that the product element is independent of this choice. Let $\\tuple {x_{n'}, n'}$ and $\\tuple {y_{m'}, m'}$ be different representatives of the chosen equivalence classes. Let $l' := \\max \\set {n', m'}$. {{WLOG}}, suppose that $l' \\ge l$. We have that: :$\\tuple {x_n, n} \\sim \\tuple {x_{n'}, n'}$ and: :$\\tuple {y_m, m} \\sim \\tuple {y_{m'}, m'}$ \t\t and so: :$\\map {g_{n, l'} } {x_n} = \\map {g_{n', l'} } {x_{n'} }$ and: :$\\map {g_{m, l'} } {y_m} = \\map {g_{m', l'} } {y_{m'} }$ \t\t Then we have, since all our maps are group homomorphisms: {{begin-eqn}} {{eqn | l = \\map {g_{ l, l'} } {\\map {g_{n, l} } {x_n} \\map {g_{m, l} } {y_m} } | r = \\map {g_{ l, l'} } {\\map {g_{n, l} } {x_n} } \\map{ g_{ l,l' } } { \\map{ g_{ m,l } } {y_m} } | c = }} {{eqn | r = \\map {g_{n, l'} } {x_n} \\map {g_{m, l'} } {y_m} | c = }} {{eqn | r = \\map{ g_{ n',l' } } { x_{ n' } } \\map{ g_{m',l'} } { y_{ m' } } | c = }} \t\t {{end-eqn}}\t that is: :$\\map {g_{n, l} } {x_n} \\map {g_{m,l} } {y_m} \\sim \\map {g_{ n', l'} } {x_{n'} } \\map {g_{ m',l' } } {y_{m'} }$ This proves that our definition is independent of the choice of representative. {{qed|lemma}} === Group Axioms === By the definition of the group operation, we may assume, without loss of generality, that the representatives are always in the same group $G_l \\in \\sequence {G_n}_{n \\mathop \\in \\N}$. To see this we note that we always consider a finite collection of group elements :$\\{ \\eqclass{ \\tuple{ x_{n_1}, {n_1} } }{}, \\dots, \\eqclass{ \\tuple{ x_{n_k}, {n_k} } }{} \\} \\subset G_\\infty$. Define $l:= \\max\\{n_1,\\dots, n_k\\}$. Then :$\\forall i \\in \\{1,\\dots, k\\} : \\map{ g_{n_i,l} } { x_{n_i} } \\in G_n \\land \\tuple{ x_{n_1}, {n_1} } \\sim \\tuple{ \\map{ g_{n_i,l} } { x_{n_i} }, l}$ ==== $\\text G 1$: Associativity ==== Let $\\eqclass{\\tuple{x_n, n}}{},\\eqclass{\\tuple{y_m, m}}{},\\eqclass{\\tuple{y_n, n}}{},\\eqclass{\\tuple{z_n, n}}{} \\in G_\\infty$. Then: {{begin-eqn}} {{eqn | l = \\paren{\\eqclass{\\tuple{x_n, n} }{} \\cdot \\eqclass{ \\tuple{y_n, n} }{} } \\cdot \\eqclass{ \\tuple{z_n, n} }{} | r = \\eqclass{ \\tuple{ x_n y_n, n} }{} \\cdot \\eqclass{ \\tuple{z_n, n} }{} | c = }} {{eqn | r = \\eqclass{ \\tuple{ \\paren{x_n y_n}z_n, n} }{} | c = }} {{eqn | r = \\eqclass{ \\tuple{ x_n \\paren{y_n z_n}, n} }{} | c = $G_n$ is a group }} {{eqn | r =\\eqclass{ \\tuple{ x_n, n} }{} \\cdot \\eqclass{ \\tuple{ y_n z_n, n} }{} | c = }} {{eqn | r = \\eqclass{ \\tuple{ x_n, n} }{} \\cdot \\paren{\\eqclass{ \\tuple{ y_n, n} }{} \\cdot \\eqclass{ \\tuple{ z_n, n} }{} } | c = }} {{end-eqn}} ==== $\\text G 2$: Identity ==== Let $\\eqclass{\\tuple{x_n, n}}{} \\in G_\\infty$ and let $1_n$ be the identity of $G_n$. Note that :$\\forall k, n \\in \\N : \\paren{ k \\ge n \\implies \\map{ g_{nk} }{1_n} = 1_k}$ because the maps $g_{nk}$ are group homomorphisms. Then: {{begin-eqn}} {{eqn | l = \\eqclass{\\tuple{x_n, n} }{} \\cdot \\eqclass{ \\tuple{1_n, n} }{} | r = \\eqclass{\\tuple{x_n 1_n, n} }{} | c = }} {{eqn | r = \\eqclass{\\tuple{x_n, n} }{} | c = }} {{end-eqn}} Similarly we also find that $\\eqclass{\\tuple{1_n, n} }{} \\cdot \\eqclass{\\tuple{x_n, n} }{} = \\eqclass{\\tuple{x_n, n} }{}$. Thus $\\eqclass{\\tuple{1_n, n} }{}$ is the identity of $G_\\infty$. ==== $\\text G 3$: Inverses ==== Let $\\eqclass{\\tuple{x_n, n}}{} \\in G_\\infty$. Then : {{begin-eqn}} {{eqn | l = \\eqclass{\\tuple{x_n, n} }{} \\cdot \\eqclass{ \\tuple{x_n^{-1}, n} }{} | r = \\eqclass{\\tuple{x_n x^{-1}_n, n} }{} | c = }} {{eqn | r = \\eqclass{\\tuple{1_n, n} }{} | c = }} {{end-eqn}} Similarly we also find that $\\eqclass{\\tuple{x^{-1}_n, n} }{} \\cdot \\eqclass{\\tuple{x_n, n} }{} = \\eqclass{\\tuple{1_n, n} }{}$. Thus $\\eqclass{\\tuple{x_n, n} }{}$ has an inverse, that is: :$\\eqclass{\\tuple{x_n^{-1}, n} }{}$ in $G_\\infty$. {{qed}} Category:Existence and Uniqueness of Direct Limit of Sequence of Groups 656h564i43fjh6iurxncjg9e44p4vb4"}
+{"_id": "33118", "title": "Existence and Uniqueness of Direct Limit of Sequence of Groups/Lemma 3", "text": "Existence and Uniqueness of Direct Limit of Sequence of Groups/Lemma 3 0 87101 466053 466031 2020-05-05T12:44:48Z Prime.mover 59 wikitext text/x-wiki {{MissingLinks|It is important for all pages to be self-contained, so we need to include on this page the required definitions from its parent page.}} == Lemma == Let $h_\\infty: G_\\infty \\to H$ be the mapping defined as: :$\\eqclass {\\tuple {x_n, n} } {} \\mapsto \\map {h_n} {x_n}$ Then $h_\\infty$ is a well-defined group homomorphism. == Proof == === Well-Definedness of $h_\\infty$ === Let $\\tuple {x_n, n}, \\tuple{x_{n'}, n'} \\in \\eqclass {\\tuple {x_n, n} } {}$. {{WLOG}}, let $n' \\ge n$. Then we have: :$\\map {g_{n, n'} } {x_n} = x_{n'}$ and: {{begin-eqn}} {{eqn | l = \\map {h_{n'} } {x_{n'} } | r = \\map {h_{n'} } {\\map {g_{n,n'} } {x_n} } }} {{eqn | r = \\map {\\paren {h_{n'} \\circ g_{n, n'} } } {x_n} | c = because $h_{n'} \\circ g_{n, n'} = h_n$ }} {{eqn | r = \\map {h_n} {x_n} }} {{end-eqn}} This proves that $h_\\infty$ is independent of the representative chosen. That is, $h_\\infty$ is well-defined. {{qed|lemma}} === Homomorphism Property === Let $\\eqclass {\\tuple{x_n, n} } {}, \\eqclass {\\tuple {y_m, m} } {} \\in G_\\infty$. By the definition of the group operation, we may assume, without loss of generality, that $n = m$. See Lemma 2 for details. {{handwaving|Can that be demonstrated?}} It follows that: {{begin-eqn}} {{eqn | l = \\map {h_{\\infty} } {\\eqclass {\\tuple {x_n, n} } {} \\circ \\eqclass {\\tuple {y_n, n} } {} } | r = \\map {h_n} {x_n y_n} | c = Definition of $h_\\infty$ }} {{eqn | r = \\map {h_n} {x_n} \\map {h_n} {y_n} | c = $h_n$ is a homomorphism }} {{eqn | r = \\map {h_\\infty} {\\eqclass {\\tuple {x_n, n} } {} } \\circ \\map {h_\\infty} {\\eqclass {\\tuple {y_n, n} } {} } | c = Definition of $h_\\infty$ }} {{end-eqn}} Thus $h_\\infty$ is a homomorphism. {{qed}} Category:Existence and Uniqueness of Direct Limit of Sequence of Groups nswa1slfide05n79yjxj9m0v5r6vdcj"}
+{"_id": "33119", "title": "Schwarz's Lemma/Lemma", "text": "Schwarz's Lemma/Lemma 0 87118 466065 2020-05-05T14:18:32Z Caliburn 3218 Created page with \"== Theorem == Let $D$ be the unit disk centred at $0$. Let $g : D \\to \\C$ be a complex function with:...\" wikitext text/x-wiki == Theorem == Let $D$ be the unit disk centred at $0$. Let $g : D \\to \\C$ be a complex function with: :$\\map g z = \\begin{cases}\\frac {\\map f z} z & z \\ne 0 \\\\ \\map {f'} 0 & z = 0\\end{cases}$ Then $g$ is holomorphic on $D$. == Proof == By Differentiable Function is Continuous, $f$ is continuous, so by Combination Theorem for Continuous Functions: Quotient Rule: :$g$ is continuous on $D \\setminus \\set 0$. We aim to show that $f$ is continuous on $D$. Note that since $f$ is holomorphic on $D$ and $0 \\in D$ we have, by the definition of the complex derivative: :$\\displaystyle \\lim_{z \\mathop \\to 0} \\frac {\\map f z - \\map f 0} z = \\map {f'} 0 \\in \\C$ Since $\\map f 0 = 0$, we furthermore have: :$\\displaystyle \\map {f'} 0 = \\lim_{z \\mathop \\to 0} \\frac {\\map f z} z$ That is: :$\\displaystyle \\map g 0 = \\lim_{z \\mathop \\to 0} \\map g z$ so $g$ is continuous at $0$. Since $f$ is holomorphic on $D$, by the Combination Theorem for Complex Derivatives: Quotient Rule: :$g$ is differentiable on $D \\setminus \\set 0$. It remains to show that $g$ is differentiable at $0$. Take $z \\ne 0$ and consider: :$\\dfrac {\\map g z - \\map g 0} z$ We have: {{begin-eqn}} {{eqn\t| l = \\frac {\\map g z - \\map g 0} z \t| r = \\frac {\\frac {\\map f z} z - \\map {f'} 0} z \t| c = as $\\map g z = \\dfrac {\\map f z} z$ for $z \\ne 0$ and $\\map g 0 = \\map {f'} 0$ }} {{eqn\t| r = \\frac {\\map f z - z \\map {f'} 0} {z^2} }} {{end-eqn}} Since $f$ is holomorphic on $D$, by Holomorphic Function is Analytic, there exists a positive real number $R$ such that the series: :$\\displaystyle \\sum_{n \\mathop = 0}^\\infty \\frac {\\map {f^{\\paren n} } 0} {n!} z^n$ converges to $\\map f z$ on $\\cmod z < R$. Note that since $\\map f 0 = 0$, the first term of this series is zero. With that, we have: {{begin-eqn}} {{eqn\t| l = \\frac {\\map f z - z \\map {f'} 0} {z^2} \t| r = \\frac {\\sum_{n \\mathop = 1}^\\infty \\frac {\\map {f^{\\paren n} } 0} {n!} z^n - z \\map {f'} 0} {z^2} }} {{eqn\t| r = \\frac {z \\map {f'} 0 + \\frac {z^2} 2 \\map {f''} 0 + \\sum_{n \\mathop = 3}^\\infty \\frac {\\map {f^{\\paren n} } 0} {n!} z^n - z \\map {f'} 0} {z^2} }} {{eqn\t| r = \\frac 1 2 \\map {f''} 0 + \\sum_{n \\mathop = 3}^\\infty \\frac {\\map {f^{\\paren n} } 0} {n!} z^{n - 2} }} {{end-eqn}} Taking $z \\to 0$ we have: :$\\displaystyle \\lim_{z \\mathop \\to 0} \\frac {\\map g z - \\map g 0} z = \\frac 1 2 \\map {f''} 0$ so $g$ is indeed differentiable at $0$ and hence holomorphic on $D$. {{qed}} Category:Complex Analysis Category:Schwarz's Lemma 1o8sfwvysfvchvd5xuw4lup45d07t6p"}
+{"_id": "33120", "title": "Partial Derivative/Examples/x^(x y)/wrt x", "text": "Partial Derivative/Examples/x^(x y)/wrt x 0 87256 466578 2020-05-08T07:34:37Z Prime.mover 59 Created page with \"== Example of Partial Derivative == Let $\\map f {x, y} = x^{x y}$ be a Definition:Real Function of Two Variables|real function of $2$ vari...\" wikitext text/x-wiki == Example of Partial Derivative == Let $\\map f {x, y} = x^{x y}$ be a real function of $2$ variables such that $x, y \\in \\R_{>0}$. Then: :$\\dfrac {\\partial f} {\\partial x} = x^{x y} \\paren {y \\ln x + y}$ == Proof == By definition, the partial derivative {{WRT|Differentiation}} $x$ is obtained by holding $y$ constant. Hence Derivative of $x^{a x}$ can be directly used: :$\\dfrac \\d {\\d x} x^{y x} = y x^{y x} \\paren {\\ln x + 1}$ The result can then be rearranged to match the form given. {{qed}} == Sources == * {{BookReference|Advanced Calculus|1961|David V. Widder|ed = 2nd|edpage = Second Edition|prev = Partial Derivative/Examples/x^(x y)|next = Partial Derivative/Examples/x^(x y)/wrt y}}: $1$ Partial Differentiation: $\\S 1$. Introduction: $1.1$ Partial Derivatives: Example $\\text A$ Category:Examples of Partial Derivatives okref889tzskah8eegtcifw5thw7tbe"}
+{"_id": "33121", "title": "Partial Derivative/Examples/x^(x y)/wrt y", "text": "Partial Derivative/Examples/x^(x y)/wrt y 0 87257 466680 466583 2020-05-08T14:23:04Z Prime.mover 59 wikitext text/x-wiki == Example of Partial Derivative == Let $\\map f {x, y} = x^{x y}$ be a real function of $2$ variables such that $x, y \\in \\R_{>0}$. Then: :$\\dfrac {\\partial f} {\\partial y} = x^{x y + 1} \\ln x$ == Proof == By definition, the partial derivative {{WRT|Differentiation}} $y$ is obtained by holding $x$ constant. From Derivative of Power of Constant: :$\\map {D_y} {x^y} = x^y \\ln x$ for constant $a$. Then: {{begin-eqn}} {{eqn | l = \\map {D_y} {x^{x y} } | r = x \\map {D_{x y} } {x^{x y} } | c = Derivative of Function of Constant Multiple }} {{eqn | r = x \\paren {x^{x y} } \\ln x | c = }} {{eqn | r = x^{x y + 1} \\ln x | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Advanced Calculus|1961|David V. Widder|ed = 2nd|edpage = Second Edition|prev = Partial Derivative/Examples/x^(x y)/wrt x|next = Partial Derivative/Examples/x sine y z}}: $1$ Partial Differentiation: $\\S 1$. Introduction: $1.1$ Partial Derivatives: Example $\\text A$ Category:Examples of Partial Derivatives lleozosukca2zilh8np4wdog51r2uuu"}
+{"_id": "33122", "title": "Partial Derivative/Examples/u + ln u = x y", "text": "Partial Derivative/Examples/u + ln u = x y 0 87272 466715 2020-05-08T22:40:08Z Prime.mover 59 Created page with \"== Example of Partial Derivative == Let $u + \\ln u = x y$ be an implicit function. Th...\" wikitext text/x-wiki == Example of Partial Derivative == Let $u + \\ln u = x y$ be an implicit function. Then: {{begin-eqn}} {{eqn | l = \\dfrac {\\partial u} {\\partial x} | r = \\dfrac {u y} {u + 1} | c = }} {{eqn | l = \\dfrac {\\partial u} {\\partial y} | r = \\dfrac {u x} {u + 1} | c = }} {{end-eqn}} == Proof == {{begin-eqn}} {{eqn | l = u + \\ln u | r = x y | c = }} {{eqn | ll= \\leadsto | l = \\dfrac \\partial {\\partial x} u + \\dfrac \\partial {\\partial x} \\ln u | r = \\dfrac \\partial {\\partial x} x y | c = }} {{eqn | ll= \\leadsto | l = \\dfrac {\\partial u} {\\partial x} + \\dfrac 1 u \\dfrac {\\partial u} {\\partial x} | r = y | c = }} {{eqn | ll= \\leadsto | l = \\dfrac {\\partial u} {\\partial x} \\paren {1 + \\dfrac 1 u} | r = y | c = }} {{eqn | ll= \\leadsto | l = \\dfrac {\\partial u} {\\partial x} | r = \\dfrac {u y} {u + 1} | c = }} {{end-eqn}} and: {{begin-eqn}} {{eqn | l = u + \\ln u | r = x y | c = }} {{eqn | ll= \\leadsto | l = \\dfrac \\partial {\\partial y} u + \\dfrac \\partial {\\partial y} \\ln u | r = \\dfrac \\partial {\\partial y} x y | c = }} {{eqn | ll= \\leadsto | l = \\dfrac {\\partial u} {\\partial y} + \\dfrac 1 u \\dfrac {\\partial u} {\\partial y} | r = x | c = }} {{eqn | ll= \\leadsto | l = \\dfrac {\\partial u} {\\partial y} \\paren {1 + \\dfrac 1 u} | r = x | c = }} {{eqn | ll= \\leadsto | l = \\dfrac {\\partial u} {\\partial y} | r = \\dfrac {u x} {u + 1} | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Advanced Calculus|1961|David V. Widder|ed = 2nd|edpage = Second Edition|prev = Partial Derivative/Examples/u^2 + x^2 + y^2 = a^2|next = Partial Derivative/Examples/v + ln u = x y, u + ln v = x - y}}: $1$ Partial Differentiation: $\\S 1$. Introduction: $1.2$ Implicit Functions Category:Examples of Partial Derivatives fvlsrhhtykoswl8uglatw8x5ai8pi4y"}
+{"_id": "33123", "title": "Function of Bounded Variation is Bounded", "text": "Function of Bounded Variation is Bounded 0 87489 467886 2020-05-14T12:35:35Z Caliburn 3218 Created page with \"== Theorem == Let $a, b$ be real numbers with $a < b$. Let $f : \\closedint a b \\to \\R$ be a function of...\" wikitext text/x-wiki == Theorem == Let $a, b$ be real numbers with $a < b$. Let $f : \\closedint a b \\to \\R$ be a function of bounded variation. Then $f$ is bounded. == Proof == We use the notation from the definition of bounded variation. Since $f$ is of bounded variation, there exists $M \\in \\R$ such that: :$\\map {V_f} P \\le M$ for all finite subdivisions $P$ of $\\closedint a b$. Let $x$ be a real number with: :$a < x < b$ Then $\\set {a, x, b}$ is a finite subdivision of $\\closedint a b$. We have: :$\\map {V_f} {\\set {a, x, b} } = \\size {\\map f x - \\map f a} + \\size {\\map f b - \\map f x}$ Since $x \\in \\openint a b$ was arbitrary, we therefore have: :$\\size {\\map f x - \\map f a} + \\size {\\map f b - \\map f x} \\le M$ for all $x \\in \\openint a b$. We have: {{begin-eqn}} {{eqn\t| l = \\size {\\map f x - \\map f a} + \\size {\\map f b - \\map f x} \t| o = \\ge \t| r = \\size {\\map f x - \\map f a} }} {{eqn\t| o = \\ge \t| r = \\size {\\size {\\map f x} - \\size {\\map f a} } \t| c = Reverse Triangle Inequality: Real and Complex Fields }} {{eqn\t| o = \\ge \t| r = \\size {\\map f x} - \\size {\\map f a} }} {{end-eqn}} So for all $x \\in \\openint a b$, we have: :$\\size {\\map f x} \\le \\size {\\map f a} + M$ Since $M \\ge 0$, this inequality is also satisfied for $x = a$. We therefore have: :$\\size {\\map f x} \\le \\map \\max {\\size {\\map f a} + M, \\size {\\map f b} }$ for all $x \\in \\closedint a b$. So $f$ is is bounded. {{qed}} == Sources == * {{BookReference|Mathematical Analysis|1973|Tom M. Apostol|prev = Differentiable Function with Bounded Derivative is of Bounded Variation|next = Definition:Total Variation|ed = 2nd|edpage = Second Edition}}: $\\S 6.3$: Functions of Bounded Variation: Theorem $6.7$ Category:Bounded Variation atydoyyyc1561qo943yi4zocd8iv4p0"}
+{"_id": "33124", "title": "Multiple of Function of Bounded Variation is of Bounded Variation", "text": "Multiple of Function of Bounded Variation is of Bounded Variation 0 87633 469076 2020-05-19T14:59:04Z Caliburn 3218 Created page with \"== Theorem == Let $a, b, k$ be real numbers with $a < b$. Let $f : \\closedint a b \\to \\R$ be a functions...\" wikitext text/x-wiki == Theorem == Let $a, b, k$ be real numbers with $a < b$. Let $f : \\closedint a b \\to \\R$ be a functions of bounded variation. Let the total variations of $f$ be $V_f$. Then $k f$ is of bounded variation with: :$V_{k f} = \\size k V_f$ where $V_{k f}$ is the total variation of $k f$. == Proof == For each finite subdivision $P$ of $\\closedint a b$, write: :$P = \\set {x_0, x_1, \\ldots, x_n }$ with: :$a = x_0 < x_1 < x_2 < \\cdots < x_{n - 1} < x_n = b$ Then: {{begin-eqn}} {{eqn\t| l = \\map {V_{k f} } P \t| r = \\sum_{i \\mathop = 1}^n \\size {k \\map f {x_i} - k \\map f {x_{i - 1} } } \t| c = using the notation from the definition of bounded variation }} {{eqn\t| r = \\size k \\sum_{i \\mathop = 1}^n \\size {\\map f {x_i} - \\map f {x_{i - 1} } } }} {{eqn\t| r = \\size k \\map {V_f} P }} {{end-eqn}} Since $f$ is of bounded variation, there exists $M \\in \\R$ such that: :$\\map {V_f} P \\le M$ for all finite subdivisions $P$. So: :$\\map {V_{k f} } P \\le \\size k M$ So $k f$ is of bounded variation. We then have: {{begin-eqn}} {{eqn\t| l = V_{k f} \t| r = \\sup_P \\paren {\\map {V_{k f} } P} \t| c = {{Defof|Total Variation}} }} {{eqn\t| r = \\sup_P \\paren {\\size k \\map {V_f} P} }} {{eqn\t| r = \\size k \\sup_P \\paren {\\map {V_f} P} \t| c = Multiple of Supremum }} {{eqn\t| r = \\size k V_f }} {{end-eqn}} {{qed}} Category:Bounded Variation Category:Total Variation tm2b1jjxz079gs06iegfka06ihtvebc"}
+{"_id": "33125", "title": "Constant Real Function is Absolutely Continuous", "text": "Constant Real Function is Absolutely Continuous 0 87716 470257 2020-05-24T14:39:47Z Caliburn 3218 Created page with \"== Theorem == Let $I \\subseteq \\R$ be a real interval. Let $f : I \\to \\R$ be an Definition:Constant Mapping|constant real functio...\" wikitext text/x-wiki == Theorem == Let $I \\subseteq \\R$ be a real interval. Let $f : I \\to \\R$ be an constant real function. Then $f$ is absolutely continuous. == Proof == Let $\\delta, \\varepsilon$ be positive real numbers. Let $\\closedint {a_1} {b_1}, \\dotsc, \\closedint {a_n} {b_n} \\subseteq I$ be a collection of disjoint closed real intervals with: :$\\displaystyle \\sum_{i \\mathop = 1}^n \\paren {b_i - a_i} < \\delta$ Since $f$ is constant, for all $i \\in \\set {1, 2, \\ldots, n}$ we have: :$\\size {\\map f {b_i} - \\map f {a_i} } = 0$ so: :$\\displaystyle \\sum_{i = 1}^n \\size {\\map f {b_i} - \\map f {a_i} } = 0 < \\varepsilon$ Since $\\varepsilon$ was arbitrary: :$f$ is absolutely continuous. {{qed}} Category:Absolutely Continuous Functions gxiz5ue31jl2hsjw5qjzh2h1iwsifgs"}
+{"_id": "33126", "title": "Multiple of Absolutely Continuous Function is Absolutely Continuous", "text": "Multiple of Absolutely Continuous Function is Absolutely Continuous 0 87718 470270 2020-05-24T15:56:02Z Caliburn 3218 Created page with \"== Theorem == Let $k$ be a real number. Let $I \\subseteq \\R$ be a real interval. Let $f : I \\to \\R$ be...\" wikitext text/x-wiki == Theorem == Let $k$ be a real number. Let $I \\subseteq \\R$ be a real interval. Let $f : I \\to \\R$ be absolutely continuous function. Then $k f$ is absolutely continuous. == Proof == Note that if $k = 0$, then $k f$ is constant. Hence, by Constant Real Function is Absolutely Continuous: :$k f$ is absolutely continuous if $k = 0$. Take now $k \\ne 0$. Let $\\varepsilon$ be a positive real number. Since $f$ is absolutely continuous, there exists real $\\delta > 0$ such that for all collections of disjoint closed real intervals $\\closedint {a_1} {b_1}, \\dotsc, \\closedint {a_n} {b_n} \\subseteq I$ with: :$\\displaystyle \\sum_{i \\mathop = 1}^n \\paren {b_i - a_i} < \\delta$ we have: :$\\displaystyle \\sum_{i \\mathop = 1}^n \\size {\\map f {b_i} - \\map f {a_i} } < \\frac {\\varepsilon} {\\size k}$ Then: {{begin-eqn}} {{eqn\t| l = \\sum_{i \\mathop = 1}^n \\size {\\map {\\paren {k f} } {b_i} - \\map {\\paren {k f} } {a_i} } \t| r = \\size k \\sum_{i \\mathop = 1}^n \\size {\\map f {b_i} - \\map f {a_i} } }} {{eqn\t| o = < \t| r = \\size k \\times \\frac {\\varepsilon} {\\size k} }} {{eqn\t| r = \\varepsilon }} {{end-eqn}} whenever: :$\\displaystyle \\sum_{i \\mathop = 1}^n \\paren {b_i - a_i} < \\delta$ Since $\\varepsilon$ was arbitrary: :$k f$ is absolutely continuous if $k \\ne 0$. Therefore: :$k f$ is absolutely continuous for all $k \\in \\R$. {{qed}} Category:Absolutely Continuous Functions 0fnxe36o4cbzvbtdwfv9uhnt7ari2tz"}
+{"_id": "33127", "title": "Elementary Row Operation/Examples/r3 + 2r2", "text": "Elementary Row Operation/Examples/r3 + 2r2 0 88375 476229 476182 2020-06-26T21:46:13Z Prime.mover 59 wikitext text/x-wiki == Examples of Elementary Row Operations == Consider the elementary row operation $e$ defined as: :$e := r_3 \\to r_3 + 2 r_2$ acting on a matrix space $\\map \\MM {3, n}$ for some $n \\in \\Z_{>0}$. The elementary row matrix corresponding to $e$ is: :$\\begin {pmatrix} 1 & 0 & 0 \\\\ 0 & 1 & 0 \\\\ 0 & 2 & 1 \\end {pmatrix}$ == Proof == Let $\\mathbf E$ denote the elementary row matrix corresponding to $e$. From Elementary Matrix corresponding to Elementary Row Operation: Scale Row and Add: :$E_{a b} = \\delta_{a b} + 2 \\delta_{a 3} \\cdot \\delta_{2 b}$ where: :$E_{a b}$ denotes the element of $\\mathbf E$ whose indices are $\\tuple {a, b}$ :$\\delta_{a b}$ is the Kronecker delta: ::$\\delta_{a b} = \\begin {cases} 1 & : \\text {if $a = b$} \\\\ 0 & : \\text {if $a \\ne b$} \\end {cases}$ That is: :When $a \\ne 3$ and $b \\ne 2$, elements of $\\mathbf E$ are $0$ except for those on the main diagonal :When $a = 3$ and $b = 2$, $E_{a b}$ equals $2 + \\delta_{a b}$. But as $a \\ne b$ it follows that $\\delta_{a b} = 0$. Hence $\\mathbf E$ can be constructed as described. {{qed}} == Sources == * {{BookReference|Linear Algebra|1998|Richard Kaye|author2 = Robert Wilson|prev = Elementary Row Operations as Matrix Multiplications|next = Elementary Row Operation/Examples/lambda r2}}: Part $\\text I$: Matrices and vector spaces: $1$ Matrices: $1.5$ Row and column operations: $1$ Category:Examples of Elementary Row Operations pze5znfymx9cgsoxx9krw861l622ojf"}
+{"_id": "33128", "title": "Elementary Row Operation/Examples/lambda r2", "text": "Elementary Row Operation/Examples/lambda r2 0 88376 476177 474167 2020-06-26T19:39:05Z Prime.mover 59 wikitext text/x-wiki == Examples of Elementary Row Operations == Consider the elementary row operation $e$ defined as: :$e := r_2 \\to \\lambda r_2$ acting on a matrix space $\\map \\MM {3, n}$ for some $n \\in \\Z_{>0}$. The elementary row matrix corresponding to $e$ is: :$\\begin {pmatrix} 1 & 0 & 0 \\\\ 0 & \\lambda & 0 \\\\ 0 & 0 & 1 \\end {pmatrix}$ == Proof == Let $\\mathbf E$ denote the elementary row matrix corresponding to $e$. From Elementary Matrix corresponding to Elementary Row Operation: Scale Row and Add: :$E_{a b} = \\begin {cases} \\delta_{a b} & : a \\ne 2 \\\\ \\lambda \\cdot \\delta_{a b} & : a = 2 \\end{cases}$ where: :$E_{a b}$ denotes the element of $\\mathbf E$ whose indices are $\\tuple {a, b}$ :$\\delta_{a b}$ is the Kronecker delta: ::$\\delta_{a b} = \\begin {cases} 1 & : \\text {if $a = b$} \\\\ 0 & : \\text {if $a \\ne b$} \\end {cases}$ That is: :When $a \\ne 2$, the elements of $\\mathbf E$ are $0$ except for those on the main diagonal, when they are $1$ :When $a = 2$, the elements of $\\mathbf E$ are $0$ except for those on the main diagonal, when they are $\\lambda$. Hence $\\mathbf E$ can be constructed as described. {{qed}} == Sources == * {{BookReference|Linear Algebra|1998|Richard Kaye|author2 = Robert Wilson|prev = Elementary Row Operation/Examples/r3 + 2r2|next = Elementary Row Operation/Examples/Swap r1 and r2}}: Part $\\text I$: Matrices and vector spaces: $1$ Matrices: $1.5$ Row and column operations: $2$ Category:Examples of Elementary Row Operations aqxgu67irgyx1epnqekbhtdfw41zxwb"}
+{"_id": "33129", "title": "Elementary Row Operation/Examples/Swap r1 and r2", "text": "Elementary Row Operation/Examples/Swap r1 and r2 0 88377 476183 474168 2020-06-26T19:42:13Z Prime.mover 59 wikitext text/x-wiki == Examples of Elementary Row Operations == Consider the elementary row operation $e$ defined as: :$e := r_1 \\leftrightarrow r_2$ acting on a matrix space $\\map \\MM {3, n}$ for some $n \\in \\Z_{>0}$. The elementary row matrix corresponding to $e$ is: :$\\begin {pmatrix} 0 & 1 & 0 \\\\ 1 & 0 & 0 \\\\ 0 & 0 & 1 \\end {pmatrix}$ == Proof == By definition, the elementary row matrix corresponding to $e$ is found by applying $e$ to the unit matrix. By definition of unit matrix: :$\\mathbf I = \\begin {pmatrix} 1 & 0 & 0 \\\\ 0 & 1 & 0 \\\\ 0 & 0 & 1 \\end {pmatrix}$ Let $\\mathbf E$ denote the elementary row matrix corresponding to $e$. $\\mathbf E$ is constructed by exchanging row $1$ with row $2$. {{qed}} == Sources == * {{BookReference|Linear Algebra|1998|Richard Kaye|author2 = Robert Wilson|prev = Elementary Row Operation/Examples/lambda r2|next = Definition:Row Operation}}: Part $\\text I$: Matrices and vector spaces: $1$ Matrices: $1.5$ Row and column operations: $3$ Category:Examples of Elementary Row Operations ge9rfuj2jkwfytemgp4pnri8bevnl66"}
+{"_id": "33130", "title": "Matrix is Row Equivalent to Echelon Matrix/Examples/Arbitrary Matrix 1", "text": "Matrix is Row Equivalent to Echelon Matrix/Examples/Arbitrary Matrix 1 0 88443 474449 2020-06-17T06:35:30Z Prime.mover 59 Created page with \"== Examples of Use of Matrix is Row Equivalent to Echelon Matrix == Let $\\mathbf A = \\begin {bmatrix} 0 & 1 & 1 \\\\ 0 & 1 & 0 \\\\ 1 & 1 & 0 \\\\ \\end {bmatrix}$...\" wikitext text/x-wiki == Examples of Use of Matrix is Row Equivalent to Echelon Matrix == Let $\\mathbf A = \\begin {bmatrix} 0 & 1 & 1 \\\\ 0 & 1 & 0 \\\\ 1 & 1 & 0 \\\\ \\end {bmatrix}$ This can be converted into the echelon form: :$\\mathbf E = \\begin {bmatrix} 1 & 1 & 0 \\\\ 0 & 1 & 0 \\\\ 0 & 0 & 1 \\\\ \\end {bmatrix}$ == Proof == Using Row Operation to Clear First Column of Matrix we obtain: :$\\mathbf B = \\begin {bmatrix} 1 & 1 & 0 \\\\ 0 & 1 & 0 \\\\ 0 & 1 & 1 \\\\ \\end {bmatrix}$ which happens on the first step, exchanging row $1$ with row $3$. Then we investigate the submatrix: :$\\mathbf B' = \\begin {bmatrix} 1 & 0 \\\\ 1 & 1 \\\\ \\end {bmatrix}$ Using Row Operation to Clear First Column of Matrix we obtain: :$\\mathbf C' = \\begin {bmatrix} 1 & 0 \\\\ 0 & 1 \\\\ \\end {bmatrix}$ which is obtained by adding $-1$ of row $1$ of $\\mathbf B'$ to row $2$ of $\\mathbf B'$. This is the same as adding $-1$ of row $2$ of $\\mathbf B$ to row $3$ of $\\mathbf B$. Thus we are left with: :$\\mathbf E = \\begin {bmatrix} 1 & 1 & 0 \\\\ 0 & 1 & 0 \\\\ 0 & 0 & 1 \\\\ \\end {bmatrix}$ {{qed}} == Sources == * {{BookReference|Linear Algebra|1998|Richard Kaye|author2 = Robert Wilson|prev = Matrix is Row Equivalent to Echelon Matrix/Examples|next = Matrix is Row Equivalent to Echelon Matrix/Examples/Arbitrary Matrix 2}}: Part $\\text I$: Matrices and vector spaces: $1$ Matrices: $1.5$ Row and column operations: Exercise $1.4 \\ \\text {(a)}$ Category:Matrix is Row Equivalent to Echelon Matrix q1s1xe6u108ddrmiocao6mc40fo9ieu"}
+{"_id": "33131", "title": "Matrix is Row Equivalent to Echelon Matrix/Examples/Arbitrary Matrix 2", "text": "Matrix is Row Equivalent to Echelon Matrix/Examples/Arbitrary Matrix 2 0 88444 474450 2020-06-17T06:39:44Z Prime.mover 59 Created page with \"== Examples of Use of Matrix is Row Equivalent to Echelon Matrix == Let $\\mathbf A = \\begin {bmatrix} 1 & 1 & 1 & 1 \\\\ 2 & 3 & 4 & 5 \\\\ 3 & 4 & 5 & 6 \\\\ \\end...\" wikitext text/x-wiki == Examples of Use of Matrix is Row Equivalent to Echelon Matrix == Let $\\mathbf A = \\begin {bmatrix} 1 & 1 & 1 & 1 \\\\ 2 & 3 & 4 & 5 \\\\ 3 & 4 & 5 & 6 \\\\ \\end {bmatrix}$ This can be converted into the echelon form: :$\\mathbf E = \\begin {bmatrix} 1 & 1 & 1 & 1 \\\\ 0 & 1 & 2 & 3 \\\\ 0 & 0 & 0 & 0 \\\\ \\end {bmatrix}$ == Proof == Using Row Operation to Clear First Column of Matrix we obtain: :$\\mathbf B = \\begin {bmatrix} 1 & 1 & 1 & 1 \\\\ 0 & 1 & 2 & 3 \\\\ 0 & 1 & 2 & 3 \\\\ \\end {bmatrix}$ which is obtained by: :adding $-2$ of row $1$ to row $2$ :adding $-3$ of row $1$ to row $3$. Then we investigate the submatrix: :$\\mathbf B' = \\begin {bmatrix} 1 & 2 & 3 \\\\ 1 & 2 & 3 \\\\ \\end {bmatrix}$ Using Row Operation to Clear First Column of Matrix we obtain: :$\\mathbf C' = \\begin {bmatrix} 1 & 2 & 3 \\\\ 0 & 0 & 0 \\\\ \\end {bmatrix}$ which is obtained by adding $-1$ of row $1$ of $\\mathbf B'$ to row $2$ of $\\mathbf B'$. Thus we are left with: :$\\mathbf E = \\begin {bmatrix} 1 & 1 & 1 & 1 \\\\ 0 & 1 & 2 & 3 \\\\ 0 & 0 & 0 & 0 \\\\ \\end {bmatrix}$ {{qed}} == Sources == * {{BookReference|Linear Algebra|1998|Richard Kaye|author2 = Robert Wilson|prev = Matrix is Row Equivalent to Echelon Matrix/Examples/Arbitrary Matrix 1|next = Matrix is Row Equivalent to Echelon Matrix/Examples/Arbitrary Matrix 3}}: Part $\\text I$: Matrices and vector spaces: $1$ Matrices: $1.5$ Row and column operations: Exercise $1.4 \\ \\text {(b)}$ Category:Matrix is Row Equivalent to Echelon Matrix 4umk6y8jvs2i4g6ijtc9oo6yuahan7o"}
+{"_id": "33132", "title": "Matrix is Row Equivalent to Echelon Matrix/Examples/Arbitrary Matrix 3", "text": "Matrix is Row Equivalent to Echelon Matrix/Examples/Arbitrary Matrix 3 0 88445 474451 2020-06-17T06:52:35Z Prime.mover 59 Created page with \"== Examples of Use of Matrix is Row Equivalent to Echelon Matrix == Let $\\mathbf A = \\begin {bmatrix} 1 & 2 & 3 & 5 \\\\ 1 & 2 & 3 & 4 \\\\ 0 & 0 & 1 & 1 \\\\ \\end...\" wikitext text/x-wiki == Examples of Use of Matrix is Row Equivalent to Echelon Matrix == Let $\\mathbf A = \\begin {bmatrix} 1 & 2 & 3 & 5 \\\\ 1 & 2 & 3 & 4 \\\\ 0 & 0 & 1 & 1 \\\\ \\end {bmatrix}$ This can be converted into the echelon form: :$\\mathbf E = \\begin {bmatrix} 1 & 2 & 3 & 5 \\\\ 0 & 0 & 1 & 1 \\\\ 0 & 0 & 0 & 1 \\\\ \\end {bmatrix}$ == Proof == Using Row Operation to Clear First Column of Matrix we obtain: :$\\mathbf B = \\begin {bmatrix} 1 & 2 & 3 & 5 \\\\ 0 & 0 & 0 & -1 \\\\ 0 & 0 & 1 & 1 \\\\ \\end {bmatrix}$ which is obtained by adding $-2$ of row $1$ to row $2$. Then we investigate the submatrix: :$\\mathbf B' = \\begin {bmatrix} 0 & 0 & -1 \\\\ 0 & 1 & 1 \\\\ \\end {bmatrix}$ Using Row Operation to Clear First Column of Matrix we obtain: :$\\mathbf C' = \\begin {bmatrix} 0 & 1 & 1 \\\\ 0 & 0 & 1 \\\\ \\end {bmatrix}$ which is obtained by: :$(1): \\quad$ exchanging row $1$ of $\\mathbf B'$ with row $2$ of $\\mathbf B'$. :$(2): \\quad$ multiplying row $2$ of $\\mathbf B'$ by $-1$. Thus we are left with: :$\\mathbf E = \\begin {bmatrix} 1 & 2 & 3 & 5 \\\\ 0 & 0 & 1 & 1 \\\\ 0 & 0 & 0 & 1 \\\\ \\end {bmatrix}$ {{qed}} == Also presented as == Some sources use the non-unity variant of the echelon matrix. Such sources do not require that the leading coefficients necessarily have to equal to $1$. Hence they consider the final step to convert row $3$ of $\\mathbf E$ from $\\begin {bmatrix} 0 & 0 & 0 & -1 \\end {bmatrix}$ to $\\begin {bmatrix} 0 & 0 & 0 & 1 \\end {bmatrix}$ as optional. == Sources == * {{BookReference|Linear Algebra|1998|Richard Kaye|author2 = Robert Wilson|prev = Matrix is Row Equivalent to Echelon Matrix/Examples/Arbitrary Matrix 2|next = Matrix is Row Equivalent to Echelon Matrix/Examples/Arbitrary Matrix 4}}: Part $\\text I$: Matrices and vector spaces: $1$ Matrices: $1.5$ Row and column operations: Exercise $1.4 \\ \\text {(c)}$ Category:Matrix is Row Equivalent to Echelon Matrix j5ktt0est6bisyso96lj4ls8hqanuxe"}
+{"_id": "33133", "title": "Matrix is Row Equivalent to Echelon Matrix/Examples/Arbitrary Matrix 4", "text": "Matrix is Row Equivalent to Echelon Matrix/Examples/Arbitrary Matrix 4 0 88446 474452 2020-06-17T06:57:05Z Prime.mover 59 Created page with \"== Examples of Use of Matrix is Row Equivalent to Echelon Matrix == Let $\\mathbf A = \\begin {bmatrix} 1 & 1 & 2 & 3 \\\\ 0 & 0 & 1 & 1 \\\\ 0 & 0 & 3 & 3 \\\\ \\end...\" wikitext text/x-wiki == Examples of Use of Matrix is Row Equivalent to Echelon Matrix == Let $\\mathbf A = \\begin {bmatrix} 1 & 1 & 2 & 3 \\\\ 0 & 0 & 1 & 1 \\\\ 0 & 0 & 3 & 3 \\\\ \\end {bmatrix}$ This can be converted into the echelon form: :$\\mathbf E = \\begin {bmatrix} 1 & 1 & 2 & 3 \\\\ 0 & 0 & 1 & 1 \\\\ 0 & 0 & 0 & 0 \\\\ \\end {bmatrix}$ == Proof == It is noted that $\\mathbf A$ is already most of the way there. It remains to use the elementary row operation: :$e := r_3 \\to r_3 - 3 r_2$ to convert $\\mathbf A$ to the form: :$\\mathbf E = \\begin {bmatrix} 1 & 1 & 2 & 3 \\\\ 0 & 0 & 1 & 1 \\\\ 0 & 0 & 0 & 0 \\\\ \\end {bmatrix}$ {{qed}} == Sources == * {{BookReference|Linear Algebra|1998|Richard Kaye|author2 = Robert Wilson|prev = Matrix is Row Equivalent to Echelon Matrix/Examples/Arbitrary Matrix 3|next = Matrix is Row Equivalent to Echelon Matrix/Examples/Arbitrary Matrix 5}}: Part $\\text I$: Matrices and vector spaces: $1$ Matrices: $1.5$ Row and column operations: Exercise $1.4 \\ \\text {(d)}$ Category:Matrix is Row Equivalent to Echelon Matrix gjjde47xvgm9q7oghx3f8qxbkms6pr4"}
+{"_id": "33134", "title": "Matrix is Row Equivalent to Echelon Matrix/Examples/Arbitrary Matrix 5", "text": "Matrix is Row Equivalent to Echelon Matrix/Examples/Arbitrary Matrix 5 0 88447 475261 474454 2020-06-21T21:00:54Z Prime.mover 59 wikitext text/x-wiki == Examples of Use of Matrix is Row Equivalent to Echelon Matrix == Let $\\mathbf A = \\begin {bmatrix} -1 & 0 & 1 & 2 & 3 \\\\ 0 & 1 & 2 & 3 & 4 \\\\ -1 & -2 & -3 & -4 & -5 \\\\ \\end {bmatrix}$ This can be converted into the echelon form: :$\\mathbf E = \\begin {bmatrix} 1 & 0 & -1 & -2 & -3 \\\\ 0 & 1 & 2 & 3 & 4 \\\\ 0 & 0 & 0 & 0 & 0 \\\\ \\end {bmatrix}$ == Proof == This matrix can more easily be handled by direct application of elementary row operations, as follows. Let $e_1$ be the elementary row operation: :$e_1 := r_3 \\to r_3 - r_1$ which leaves: $\\mathbf A_1 = \\begin {bmatrix} -1 & 0 & 1 & 2 & 3 \\\\ 0 & 1 & 2 & 3 & 4 \\\\ 0 & -2 & -4 & -6 & -8 \\\\ \\end {bmatrix}$ Let $e_2$ be the elementary row operation: :$e_2 := r_3 \\to r_3 + 2 r_2$ which leaves: :$\\mathbf A_2 = \\begin {bmatrix} -1 & 0 & 1 & 2 & 3 \\\\ 0 & 1 & 2 & 3 & 4 \\\\ 0 & 0 & 0 & 0 & 0 \\\\ \\end {bmatrix}$ $\\mathbf A_2$ is in non-unity echelon form. It remains to perform the elementary row operation $e_3$ to convert it into echelon form: :$e_3 := r_1 \\to -r_1$ which leaves: :$\\mathbf E = \\begin {bmatrix} 1 & 0 & -1 & -2 & -3 \\\\ 0 & 1 & 2 & 3 & 4 \\\\ 0 & 0 & 0 & 0 & 0 \\\\ \\end {bmatrix}$ {{qed}} == Also presented as == Some sources use the non-unity variant of the echelon matrix. Such sources do not require that the leading coefficients necessarily have to equal to $1$. Hence they consider the final step to convert row $1$ of $\\mathbf E$ from $\\begin {bmatrix} -1 & 0 & 1 & 2 & 3 \\end {bmatrix}$ to $\\begin {bmatrix} 1 & 0 & -1 & -2 & -3 \\end {bmatrix}$ as optional. == Sources == * {{BookReference|Linear Algebra|1998|Richard Kaye|author2 = Robert Wilson|prev = Matrix is Row Equivalent to Echelon Matrix/Examples/Arbitrary Matrix 4|next = Definition:Rank/Matrix/Definition 2}}: Part $\\text I$: Matrices and vector spaces: $1$ Matrices: $1.5$ Row and column operations: Exercise $1.4 \\ \\text {(e)}$ Category:Matrix is Row Equivalent to Echelon Matrix 5x7co12j9kvmvmkvqmyiia2t825x5kb"}
+{"_id": "33135", "title": "Simultaneous Linear Equations/Examples/Arbitrary System 1", "text": "Simultaneous Linear Equations/Examples/Arbitrary System 1 0 88460 475448 474529 2020-06-23T06:30:57Z Prime.mover 59 wikitext text/x-wiki == Example of Simultaneous Linear Equations == The system of simultaneous linear equations: {{begin-eqn}} {{eqn | n = 1 | l = x_1 - 2 x_2 + x_3 | r = 1 }} {{eqn | n = 2 | l = 2 x_1 - x_2 + x_3 | r = 2 }} {{eqn | n = 3 | l = 4 x_1 + x_2 - x_3 | r = 1 }} {{end-eqn}} has as its solution set: {{begin-eqn}} {{eqn | l = x_1 | r = -\\dfrac 1 2 }} {{eqn | l = x_2 | r = \\dfrac 1 2 }} {{eqn | l = x_3 | r = \\dfrac 3 2 }} {{end-eqn}} == Proof == Subtract $2 \\times$ equation $(1)$ from equation $(2)$. Subtract $4 \\times$ equation $(1)$ from equation $(3)$. This gives us: {{begin-eqn}} {{eqn | n = 1 | l = x_1 - 2 x_2 + x_3 | r = 1 }} {{eqn | n = 2' | l = 3 x_2 - x_3 | r = 0 }} {{eqn | n = 3' | l = 9 x_2 - 5 x_3 | r = -3 }} {{end-eqn}} Divide equation $(2')$ by $3$ to get $(2'')$. Add $2 \\times$ equation $(2'')$ to equation $(1)$. Subtract $9 \\times$ equation $(2'')$ from equation $(3')$. This gives us: {{begin-eqn}} {{eqn | n = 1' | l = x_1 + \\dfrac {x_3} 3 | r = 1 }} {{eqn | n = 2'' | l = x_2 - \\dfrac {x_3} 3 | r = 0 }} {{eqn | n = 3'' | l = -2 x_3 | r = -3 }} {{end-eqn}} From equation $(3'')$ we have directly that $x_3 = \\dfrac 3 2$. Substituting for $x_3$ in equation $(1')$ and equation $(2'')$ gives the single solution: {{begin-eqn}} {{eqn | l = x_1 | r = -\\dfrac 1 2 }} {{eqn | l = x_2 | r = \\dfrac 1 2 }} {{eqn | l = x_3 | r = \\dfrac 3 2 }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Linear Algebra: An Introduction|1982|A.O. Morris|ed = 2nd|edpage = Second Edition|next = Simultaneous Linear Equations/Examples/Arbitrary System 2}}: Chapter $1$: Linear Equations and Matrices: $1.1$ Introduction: Example $\\text {(i)}$ Category:Examples of Simultaneous Linear Equations 13dg15ivlcdbesrvf4ppbezrsjuf304"}
+{"_id": "33136", "title": "Simultaneous Linear Equations/Examples/Arbitrary System 2", "text": "Simultaneous Linear Equations/Examples/Arbitrary System 2 0 88461 475449 474528 2020-06-23T06:31:10Z Prime.mover 59 wikitext text/x-wiki == Example of Simultaneous Linear Equations == The system of simultaneous linear equations: {{begin-eqn}} {{eqn | n = 1 | l = x_1 + x_2 | r = 2 }} {{eqn | n = 2 | l = 2 x_1 + 2 x_2 | r = 3 }} {{end-eqn}} has no solutions. == Proof == {{AimForCont}} $(1)$ and $(2)$ together have a solution. Subtract $2 \\times$ equation $(1)$ from equation $(2)$. {{begin-eqn}} {{eqn | n = 1 | l = x_1 - 2 x_2 + x_3 | r = 1 }} {{eqn | n = 2' | l = 0 | r = -1 }} {{end-eqn}} which is an inconsistency. Hence there is no such solution. {{qed}} == Sources == * {{BookReference|Linear Algebra: An Introduction|1982|A.O. Morris|ed = 2nd|edpage = Second Edition|prev = Simultaneous Linear Equations/Examples/Arbitrary System 1|next = Simultaneous Linear Equations/Examples/Arbitrary System 3}}: Chapter $1$: Linear Equations and Matrices: $1.1$ Introduction: Example $\\text {(ii)}$ Category:Examples of Simultaneous Linear Equations 93lvo8ybsxkb39742mc7kad62bzvkfx"}
+{"_id": "33137", "title": "Elementary Row Operation on Augmented Matrix leads to Equivalent System of Simultaneous Linear Equations/Corollary 1", "text": "Elementary Row Operation on Augmented Matrix leads to Equivalent System of Simultaneous Linear Equations/Corollary 1 0 88536 476404 476375 2020-06-30T06:03:14Z Prime.mover 59 wikitext text/x-wiki == Corollary to Elementary Row Operation on Augmented Matrix leads to Equivalent System of Simultaneous Linear Equations == Let $S$ be a system of simultaneous linear equations: :$\\displaystyle \\forall i \\in \\set {1, 2, \\ldots, m}: \\sum_{j \\mathop = 1}^n \\alpha_{i j} x_j = \\beta_i$ Let $\\begin {pmatrix} \\mathbf A & \\mathbf b \\end {pmatrix}$ denote the augmented matrix of $S$. Let $\\begin {pmatrix} \\mathbf R & \\mathbf s \\end {pmatrix}$ be a reduced echelon matrix derived from $\\begin {pmatrix} \\mathbf A & \\mathbf b \\end {pmatrix}$. Let $S'$ be the system of simultaneous linear equations: :$\\displaystyle \\forall i \\in \\set {1, 2, \\ldots, m}: \\sum_{j \\mathop = 1}^n \\rho_{i j} x_j = \\sigma_i$ whose augmented matrix is $\\begin {pmatrix} \\mathbf R & \\mathbf s \\end {pmatrix}$. Then $S$ and $S'$ are equivalent. == Proof == By Matrix is Row Equivalent to Reduced Echelon Matrix, $\\begin {pmatrix} \\mathbf R & \\mathbf s \\end {pmatrix}$ can be obtained from $\\begin {pmatrix} \\mathbf A & \\mathbf b \\end {pmatrix}$ by means of a finite sequence of elementary row operations. By Elementary Row Operation on Augmented Matrix leads to Equivalent System of Simultaneous Linear Equations, the system of simultaneous linear equations whose augmented matrix is obtained from $\\begin {pmatrix} \\mathbf A & \\mathbf b \\end {pmatrix}$ in this way is equivalent to $S$ after each elementary row operation. Hence the entire sequence of such systems of simultaneous linear equations are equivalent to $S$. In particular, this applies to $S'$. {{qed}} == Sources == * {{BookReference|Linear Algebra: An Introduction|1982|A.O. Morris|ed = 2nd|edpage = Second Edition|prev = Definition:Inverse of Elementary Row Operation|next = Elementary Row Operation on Augmented Matrix leads to Equivalent System of Simultaneous Linear Equations/Corollary 2}}: Chapter $1$: Linear Equations and Matrices: $1.3$ Applications to Linear Equations: Corollary $1$ Category:Elementary Row Operation on Augmented Matrix leads to Equivalent System of Simultaneous Linear Equations oam0mx3c7tnxpnhhn57ngl7tev13wwu"}
+{"_id": "33138", "title": "Elementary Row Operation on Augmented Matrix leads to Equivalent System of Simultaneous Linear Equations/Corollary 3", "text": "Elementary Row Operation on Augmented Matrix leads to Equivalent System of Simultaneous Linear Equations/Corollary 3 0 88538 475394 474883 2020-06-22T16:20:15Z Prime.mover 59 wikitext text/x-wiki == Corollary to Elementary Row Operation on Augmented Matrix leads to Equivalent System of Simultaneous Linear Equations == Let $S$ be a system of homogeneous simultaneous linear equations: :$\\displaystyle \\forall i \\in \\set {1, 2, \\ldots, m}: \\sum_{j \\mathop = 1}^n \\alpha_{i j} x_j = 0$ If $m < n$, then $S$ has at least one non-trivial solution. == Proof == Let $\\begin {pmatrix} \\mathbf A & \\mathbf b \\end {pmatrix}$ denote the augmented matrix of $S$. Because $S$ is homogeneous, we have that $\\mathbf b = \\mathbf 0$, and so its augmented matrix is $\\begin {pmatrix} \\mathbf A & \\mathbf 0 \\end {pmatrix}$. Let $\\begin {pmatrix} \\mathbf R & \\mathbf 0 \\end {pmatrix}$ be a reduced echelon matrix derived from $\\begin {pmatrix} \\mathbf A & \\mathbf 0 \\end {pmatrix}$. Let $S'$ be the system of simultaneous linear equations: :$\\displaystyle \\forall i \\in \\set {1, 2, \\ldots, m}: \\sum_{j \\mathop = 1}^n \\rho_{i j} x_j = 0$ whose augmented matrix is $\\begin {pmatrix} \\mathbf R & \\mathbf 0 \\end {pmatrix}$. By Corollary 1, $S$ and $S'$ are equivalent. Hence any every solution to $S'$ is also a solution to $S$. Consider the structure of $\\begin {pmatrix} \\mathbf R & \\mathbf 0 \\end {pmatrix}$. Suppose the leading coefficients appear in columns which we name $j_1, j_2, \\ldots, j_l$. Let the remaining columns be named $j_{l + 1}, j_{l + 2}, \\ldots, j_n$. Then we have that $S'$ can be expressed as: {{begin-eqn}} {{eqn | l = x_{j_1} + \\sum_{k \\mathop = l + 1}^n \\rho_{i j_k} x_{j_k} | r = 0 }} {{eqn | l = x_{j_2} + \\sum_{k \\mathop = l + 1}^n \\rho_{2 j_k} x_{j_k} | r = 0 }} {{eqn | o = \\cdots }} {{eqn | l = x_{j_l} + \\sum_{k \\mathop = l + 1}^n \\rho_{2 j_k} x_{j_k} | r = 0 }} {{end-eqn}} where $l + 1 \\le m$. Setting arbitrary values to $x_{j_k}$ for $l < k \\le n$ gives us a non-trivial solution for $S$. {{qed}} == Sources == * {{BookReference|Linear Algebra: An Introduction|1982|A.O. Morris|ed = 2nd|edpage = Second Edition|prev = Elementary Row Operation on Augmented Matrix leads to Equivalent System of Simultaneous Linear Equations/Corollary 2|next = Elementary Row Operation on Augmented Matrix leads to Equivalent System of Simultaneous Linear Equations/Corollary 4}}: Chapter $1$: Linear Equations and Matrices: $1.3$ Applications to Linear Equations: Corollary $3$ Category:Elementary Row Operation on Augmented Matrix leads to Equivalent System of Simultaneous Linear Equations 8ifa6ehw6jyhti1mfzf2hng29hhikxb"}
+{"_id": "33139", "title": "Elementary Row Operation on Augmented Matrix leads to Equivalent System of Simultaneous Linear Equations/Corollary 4", "text": "Elementary Row Operation on Augmented Matrix leads to Equivalent System of Simultaneous Linear Equations/Corollary 4 0 88539 474887 2020-06-20T12:54:48Z Prime.mover 59 Created page with \"== Corollary to Elementary Row Operation on Augmented Matrix leads to Equivalent System of Simultaneous Linear Equations == Let $S$ be a system of Definiti...\" wikitext text/x-wiki == Corollary to Elementary Row Operation on Augmented Matrix leads to Equivalent System of Simultaneous Linear Equations == Let $S$ be a system of homogeneous simultaneous linear equations: :$\\displaystyle \\forall i \\in \\set {1, 2, \\ldots, m}: \\sum_{j \\mathop = 1}^n \\alpha_{i j} x_j = 0$ Let $\\begin {pmatrix} \\mathbf R & \\mathbf 0 \\end {pmatrix}$ be a reduced echelon matrix derived from $\\begin {pmatrix} \\mathbf A & \\mathbf 0 \\end {pmatrix}$. Let the number of non-zero rows of $\\begin {pmatrix} \\mathbf R & \\mathbf 0 \\end {pmatrix}$ be $l$. If $l = n$, then the only solution to $S$ is the trivial solution. == Proof == Consider the structure of $\\begin {pmatrix} \\mathbf R & \\mathbf 0 \\end {pmatrix}$. Suppose the leading coefficients appear in columns which we name $j_1, j_2, \\ldots, j_n$. As there are $n$ columns as well as $n$ non-zero rows: :each row has exactly one $1$ in it :each column has exactly one $1$ in it. Thus $S'$ can be expressed as: {{begin-eqn}} {{eqn | l = x_{j_1} | r = 0 }} {{eqn | l = x_{j_2} | r = 0 }} {{eqn | o = \\cdots }} {{eqn | l = x_{j_n} | r = 0 }} {{end-eqn}} and the result follows. {{qed}} == Sources == * {{BookReference|Linear Algebra: An Introduction|1982|A.O. Morris|ed = 2nd|edpage = Second Edition|prev = Elementary Row Operation on Augmented Matrix leads to Equivalent System of Simultaneous Linear Equations/Corollary 3|next = Elementary Row Operation on Augmented Matrix leads to Equivalent System of Simultaneous Linear Equations/Corollary 5}}: Chapter $1$: Linear Equations and Matrices: $1.3$ Applications to Linear Equations: Corollary $3$ Category:Elementary Row Operation on Augmented Matrix leads to Equivalent System of Simultaneous Linear Equations 6gal5yyvtfrmls1qx2ti5kldjih0to5"}
+{"_id": "33140", "title": "Elementary Row Matrix for Inverse of Elementary Row Operation is Inverse", "text": "Elementary Row Matrix for Inverse of Elementary Row Operation is Inverse 0 88767 476442 476440 2020-06-30T09:23:35Z Prime.mover 59 Replaced content with \"== Theorem == Let $e$ be an elementary row operation. Let $\\mathbf E$ be the Definition:Elementary Row Matrix|elem...\" wikitext text/x-wiki == Theorem == Let $e$ be an elementary row operation. Let $\\mathbf E$ be the elementary row matrix corresponding to $e$. Let $e'$ be the inverse of $e$. Then the elementary row matrix corresponding to $e'$ is the inverse of $\\mathbf E$. == Proof 1 == {{:Elementary Row Matrix for Inverse of Elementary Row Operation is Inverse/Proof 1}} == Proof 2 == {{:Elementary Row Matrix for Inverse of Elementary Row Operation is Inverse/Proof 2}} == Also see == * Elementary Column Matrix for Inverse of Elementary Column Operation is Inverse Category:Elementary Row Operations Category:Elementary Matrices Category:Elementary Row Matrix for Inverse of Elementary Row Operation is Inverse b7onpxovwpfws6crk4vyoqqino8jaqy"}
+{"_id": "33141", "title": "Elementary Column Matrix for Inverse of Elementary Column Operation is Inverse", "text": "Elementary Column Matrix for Inverse of Elementary Column Operation is Inverse 0 88788 476460 2020-06-30T10:39:05Z Prime.mover 59 Created page with \"== Theorem == Let $e$ be an elementary column operation. Let $\\mathbf E$ be the Definition:Elementary Column Matrix...\" wikitext text/x-wiki == Theorem == Let $e$ be an elementary column operation. Let $\\mathbf E$ be the elementary column matrix corresponding to $e$. Let $e'$ be the inverse of $e$. Then the elementary column matrix corresponding to $e'$ is the inverse of $\\mathbf E$. == Proof 1 == {{:Elementary Column Matrix for Inverse of Elementary Column Operation is Inverse/Proof 1}} == Proof 2 == {{:Elementary Column Matrix for Inverse of Elementary Column Operation is Inverse/Proof 2}} == Also see == * Elementary Row Matrix for Inverse of Elementary Row Operation is Inverse Category:Elementary Column Operations Category:Elementary Matrices Category:Elementary Column Matrix for Inverse of Elementary Column Operation is Inverse hcex4o5gt7xef84ftxuu3z9n252qmd2"}
+{"_id": "33142", "title": "Elementary Column Operations as Matrix Multiplications/Corollary", "text": "Elementary Column Operations as Matrix Multiplications/Corollary 0 88796 476469 2020-06-30T13:33:38Z Prime.mover 59 Created page with \"== Theorem == Let $\\mathbf X$ and $\\mathbf Y$ be two $m \\times n$ matrices that differ by exactly one Definition:Elementary Column Operat...\" wikitext text/x-wiki == Theorem == Let $\\mathbf X$ and $\\mathbf Y$ be two $m \\times n$ matrices that differ by exactly one elementary column operation. Then there exists an elementary column matrix $\\mathbf E$ of order $n$ such that: :$\\mathbf X \\mathbf E = \\mathbf Y$ == Proof == Let $e$ be the elementary column operation such that $e \\paren {\\mathbf X} = \\mathbf Y$. Then this result follows immediately from Elementary Column Operations as Matrix Multiplications: :$e \\paren {\\mathbf X} = \\mathbf X \\mathbf E = \\mathbf Y$ where $\\mathbf E = e \\paren {\\mathbf I}$. {{qed}} Category:Conventional Matrix Multiplication Category:Elementary Column Operations ntseqkowo0j4dpokncrjvwc10rc0lfv"}
+{"_id": "33143", "title": "Fibonacci's Greedy Algorithm", "text": "Fibonacci's Greedy Algorithm 0 89051 478027 477999 2020-07-12T15:37:32Z Prime.mover 59 wikitext text/x-wiki == Algorithm == Let $\\dfrac p q$ denote a proper fraction expressed in canonical form. '''Fibonacci's greedy algorithm''' is a greedy algorithm which calculates a sequence of distinct unit fractions which together sum to $\\dfrac p q$: {{begin-eqn}} {{eqn | l = \\dfrac p q | r = \\sum_{\\substack {1 \\mathop \\le k \\mathop \\le m \\\\ n_j \\mathop \\le n_{j + 1} } } \\dfrac 1 {n_k} | c = }} {{eqn | r = \\dfrac 1 {n_1} + \\dfrac 1 {n_2} + \\dotsb + \\dfrac 1 {n_m} | c = }} {{end-eqn}} '''Fibonacci's Greedy Algorithm''' is as follows: :$(1) \\quad$ Let $p = x_0$ and $q = y_0$ and set $k = 0$. :$(2) \\quad$ Is $x_k = 1$? If so, the algorithm has finished. :$(3) \\quad$ Find the largest unit fraction $\\dfrac 1 {m_k}$ less than $\\dfrac {x_k} {y_k}$. :$(4) \\quad$ Calculate $\\dfrac {x_{k + 1} } {y_{k + 1} } = \\dfrac {x_k} {y_k} - \\dfrac 1 {m_k}$ expressed in canonical form. :$(5) \\quad$ Go to step $(2)$. == Also see == * Proper Fraction can be Expressed as Finite Sum of Unit Fractions/Fibonacci's Greedy Algorithm, which proves that Fibonacci's Greedy Algorithm works as expected {{Namedfor|Leonardo Fibonacci|cat = Fibonacci}} == Sources == * {{BookReference|Liber Abaci|1202|Leonardo Fibonacci}} * {{BookReference|Curious and Interesting Puzzles|1992|David Wells|prev = Proper Fraction can be Expressed as Finite Sum of Unit Fractions|next = Proper Fraction can be Expressed as Finite Sum of Unit Fractions/Fibonacci's Greedy Algorithm}}: Egyptian Fractions Category:Greedy Algorithms Category:Fibonacci's Greedy Algorithm o09ig10g3tj3495ctsekudc30kafuya"}
+{"_id": "33144", "title": "Largest Number not Expressible as Sum of Multiples of Coprime Integers/Generalization", "text": "Largest Number not Expressible as Sum of Multiples of Coprime Integers/Generalization 0 89295 479146 2020-07-22T04:02:15Z RandomUndergrad 3904 Created page with \"== Theorem == Let $a, b$ be integers greater than $1$. Let $d = \\gcd \\set {a, b}$. Then the largest multiple of $d$ not expressible as...\" wikitext text/x-wiki == Theorem == Let $a, b$ be integers greater than $1$. Let $d = \\gcd \\set {a, b}$. Then the largest multiple of $d$ not expressible as a sum of multiples of $a$ and $b$ is the number: :$\\dfrac {a b} d - a - b$ == Proof == By Integers Divided by GCD are Coprime: :$\\dfrac a d \\perp \\dfrac b d$ By Largest Number not Expressible as Sum of Multiples of Coprime Integers, the largest number not expressible as a sum of multiples of $\\dfrac a d$ and $\\dfrac b d$ is the number: :$\\dfrac {a b} {d^2} - \\dfrac a d - \\dfrac b d$ Let $k d$ be a multiple of $d$ expressible as a sum of multiples of $a$ and $b$: :$\\exists s, t \\in \\N: s a + t b = k d$ Then: :$s \\dfrac a d + t \\dfrac b d = k$ showing that $k$ is a sum of multiples of $\\dfrac a d$ and $\\dfrac b d$. This argument reverses. Hence the largest multiple of $d$ not expressible as a sum of multiples of $a$ and $b$ is the number: :$d \\paren {\\dfrac {a b} {d^2} - \\dfrac a d - \\dfrac b d} = \\dfrac {a b} d - a - b$ {{qed}} Category:Largest Number not Expressible as Sum of Multiples of Coprime Integers Category:Integer Combinations 9j77t0y7ednibo94kkth5ti58vhi8i0"}
+{"_id": "33145", "title": "Inscribing Equilateral Triangle inside Square with a Coincident Vertex/Construction 4", "text": "Inscribing Equilateral Triangle inside Square with a Coincident Vertex/Construction 4 0 89408 479724 479717 2020-07-25T12:59:29Z Prime.mover 59 wikitext text/x-wiki == Construction for Inscribing Equilateral Triangle inside Square with a Coincident Vertex == {{:Inscribing Equilateral Triangle inside Square with a Coincident Vertex}} == Construction == :300px By Construction of Equilateral Triangle, let an equilateral triangle $\\triangle ABN$ be constructed on $AB$ such that $N$ is inside $\\Box ABCD$. Let $DN$ be produced to cut $BC$ at $H$. Construct $H$ on $BC$ such that $DH = DG$. Then $DGH$ is the required equilateral triangle. == Proof == First a lemma: === Lemma === {{:Inscribing Equilateral Triangle inside Square with a Coincident Vertex/Lemma}}{{qed|lemma}} Because $\\triangle ABN$ is equilateral: :$AB = AN$ :$\\angle BAN = 60 \\degrees$ Thus $\\triangle ADN$ is isosceles with apex at $A$. Then $\\angle DAN = 90 \\degrees - 60 \\degrees = 30 \\degrees$. From Sum of Angles of Triangle equals Two Right Angles: :$\\angle ADN + \\angle AND = 180 \\degrees - 30 \\degrees = 150 \\degrees$ From Isosceles Triangle has Two Equal Angles: :$\\angle ADN = \\angle AND = \\dfrac {150 \\degrees} 2 = 75 \\degrees$ Thus: :$\\angle CDH = 15 \\degrees$ The result follows from the lemma. {{qed}} Category:Inscribing Equilateral Triangle inside Square with a Coincident Vertex qskjduxorus4x54p5ch2u4abeqe9wnc"}
+{"_id": "33146", "title": "Inscribing Equilateral Triangle inside Square with a Coincident Vertex/Lemma", "text": "Inscribing Equilateral Triangle inside Square with a Coincident Vertex/Lemma 0 89410 479728 479723 2020-07-25T13:15:46Z Prime.mover 59 wikitext text/x-wiki == Lemma == Let $\\Box ABCD$ be a square. Let $\\triangle DGH$ be an isosceles triangle inscribed within $\\Box ABCD$ such that the apex $D$ of $\\triangle DGH$ coincides with vertex $D$ of $\\Box ABCD$. :300px Then: :$\\triangle DGH$ is equilateral triangle {{iff}}: :$\\angle ADG = 15 \\degrees \\text { or } \\angle CDH = 15 \\degrees$ (and in fact both are the case). == Proof == First note that $\\triangle DGH$ is isosceles. First we note that: {{begin-eqn}} {{eqn | l = CD | r = AD | c = as they are the sides of a square }} {{eqn | l = DH | r = DG | c = as $\\triangle DGH$ is isosceles }} {{eqn | l = \\angle DCH | r = \\angle DAG = 90 \\degrees | c = as $\\Box ABCD$ is a square }} {{end-eqn}} Then: {{begin-eqn}} {{eqn | l = CH^2 | r = DH^2 - CD^2 | c = Pythagoras's Theorem }} {{eqn | r = DG^2 - AD^2 | c = }} {{eqn | r = AG^2 | c = }} {{eqn | ll= \\leadsto | l = CH | r = AG | c = }} {{end-eqn}} So by Triangle Side-Side-Side Equality: :$\\triangle GAD = \\triangle CDH$ and in particular: :$\\angle GAD = \\angle CDH$ === Necessary Condition === Let $\\angle GAD = \\angle CDH = 15 \\degrees$. Then: :$\\angle GDH = 90 \\degrees - 2 \\times 15 \\degrees = 60 \\degrees$ We have that $\\triangle DGH$ is isosceles. Hence from Isosceles Triangle has Two Equal Angles: :$\\angle DGH = \\angle DHG$ From Sum of Angles of Triangle equals Two Right Angles it follows that: :$\\angle DGH + \\angle DHG = 180 \\degrees - 60 \\degrees = 120 \\degrees$ from which: :$\\angle DGH = \\angle DHG = 60 \\degrees$ Hence all the vertices of $\\triangle DGH$ equal $60 \\degrees$. It follows from Equiangular Triangle is Equilateral that $\\triangle DGH$ is equilateral. {{qed|lemma}} === Sufficient Condition === Let $\\triangle DGH$ be equilateral. From Internal Angle of Equilateral Triangle: :$\\angle GDH = 60 \\degrees$ Because $\\Box ABCD$ is a square: :$\\angle ADC = 90 \\degrees$ Thus: {{begin-eqn}} {{eqn | l = \\angle GAD + \\angle GDH + \\angle CDH | r = 90 \\degrees | c = }} {{eqn | ll= \\leadsto | l = \\angle GAD + \\angle CDH | r = 90 \\degrees - \\angle GDH | c = }} {{eqn | r = 90 \\degrees - 60 \\degrees | c = }} {{eqn | r = 30 \\degrees | c = }} {{end-eqn}} But we have that: :$\\angle GAD = \\angle CDH$ and so: :$\\angle GAD = \\angle CDH = 15 \\degrees$ {{qed}} Category:Inscribing Equilateral Triangle inside Square with a Coincident Vertex lnchnr9pz5v2faxis0mmygg664pqlz9"}
+{"_id": "33147", "title": "Returning Explorer Puzzle", "text": "Returning Explorer Puzzle 0 90240 482712 482685 2020-08-23T09:36:27Z Prime.mover 59 wikitext text/x-wiki == Puzzle == An explorer walks: :one mile due south, :one mile due east, :and one mile due north. He finds himself back where he started. He shoots a {{WP|Bear|bear}}. What colour is that {{WP|Bear|bear}}? === Variant === {{:Returning Explorer Puzzle/Variant}} == Solution == White. == Proof == The explorer starts from the North Pole. Every direction from the North Pole is due south. Walking due east keeps him the same distance (one mile) from the North Pole. Walking due north takes him back to the North Pole again. The bear, as a consequence, must be a {{WP|Polar_bear|polar bear}}. {{qed}} == Sources == * {{BookReference|Mathematical Puzzles and Diversions|1965|Martin Gardner|prev = |next = Returning Explorer Puzzle/Variant}}: Nine Problems: $1$ * {{BookReference|Hexaflexagons and Other Mathematical Diversions|1988|Martin Gardner|prev = |next = Returning Explorer Puzzle/Variant}}: Nine Problems: $1$ Category:Geography Puzzles 9udj5kjwnpqk3j4x5bwj5pxk5aku2a4"}
+{"_id": "33148", "title": "Rationals are Everywhere Dense in Reals/Topology", "text": "Rationals are Everywhere Dense in Reals/Topology 0 90798 486361 2020-09-08T09:33:47Z Julius 3095 Created page with \"== Theorem == Let $\\struct {\\R, \\tau_d}$ denote the real number line with the usual (Euclidean) topology....\" wikitext text/x-wiki == Theorem == Let $\\struct {\\R, \\tau_d}$ denote the real number line with the usual (Euclidean) topology. Let $\\Q$ be the set of rational numbers. Then $\\Q$ is everywhere dense in $\\struct {\\R, \\tau_d}$. == Proof == Let $x \\in \\R$. Let $U \\subseteq \\R$ be an open set of $\\struct {\\R, \\tau_d}$ such that $x \\in U$. From Basis for Euclidean Topology on Real Number Line, there exists an open interval $V = \\openint {x - \\epsilon} {x + \\epsilon} \\subseteq U$ for some $\\epsilon > 0$ such that $x \\in V$. Now consider the open interval $\\openint x {x + \\epsilon} \\subseteq V$. By Subset Relation is Transitive it follows that $\\openint x {x + \\epsilon} \\subseteq U$. Note that $x \\notin \\openint x {x + \\epsilon}$. From Between two Real Numbers exists Rational Number, there exists $y \\in \\Q: y \\in \\openint x {x + \\epsilon}$. As $x \\notin \\openint x {x + \\epsilon}$, it must be the case that $x \\ne y$. That is, $V$ is an open set of $\\struct {\\R, \\tau_d}$ containing $x$ which also contains an element of $\\Q$ other than $x$. As $V$ is arbitrary, it follows that every open set of $\\struct {\\R, \\tau_d}$ containing $x$ also contains an element of $\\Q$ other than $x$. That is, $x$ is by definition a limit point of $\\Q$. As $x$ is arbitrary, it follows that all elements of $\\R$ are limit points of $\\Q$. The result follows from the definition of everywhere dense. {{qed}} Category:Real Analysis Category:Rational Number Space Category:Real Number Line with Euclidean Topology Category:Denseness gqg5ugj8zepiyrt2c4szbkgnh6767q7"}
+{"_id": "33149", "title": "Convergent Sequence is Cauchy Sequence/Metric Space", "text": "Convergent Sequence is Cauchy Sequence/Metric Space 0 91017 487795 2020-09-14T11:31:55Z Julius 3095 Created page with \"== Theorem == Let $M = \\struct {A, d}$ be a metric space. Every Definition:Convergent Sequence in Metric Space|convergent sequenc...\" wikitext text/x-wiki == Theorem == Let $M = \\struct {A, d}$ be a metric space. Every convergent sequence in $M$ is a Cauchy sequence. == Proof == Let $\\sequence {x_n}$ be a sequence in $A$ that converges to the limit $l \\in A$. Let $\\epsilon > 0$. Then also $\\dfrac \\epsilon 2 > 0$. Because $\\sequence {x_n}$ converges to $l$, we have: :$\\exists N: \\forall n > N: \\map d {x_n, l} < \\dfrac \\epsilon 2$ So if $m > N$ and $n > N$, then: {{begin-eqn}} {{eqn | l = \\map d {x_n, x_m} | o = \\le | r = \\map d {x_n, l} + \\map d {l, x_m} | c = Triangle Inequality }} {{eqn | o = < | r = \\frac \\epsilon 2 + \\frac \\epsilon 2 | c = (by choice of $N$) }} {{eqn | r = \\epsilon | c = }} {{end-eqn}} Thus $\\sequence {x_n}$ is a Cauchy sequence. {{qed}} == Also see == * Definition:Complete Metric Space, where the converse is true. * Real Convergent Sequence is Cauchy Sequence * Complex Sequence is Cauchy iff Convergent == Sources == * {{BookReference|Principles of Mathematical Analysis|1953|Walter Rudin|next = Compact Metric Space is Complete}}: $3.11a$ * {{BookReference|Introduction to Metric and Topological Spaces|1975|W.A. Sutherland|prev = Definition:Cauchy Sequence (Metric Space)|next = Subsequence of Sequence in Metric Space with Limit}}: $7.2$: Sequential compactness: Proposition $7.2.4$ * {{BookReference|Counterexamples in Topology|1978|Lynn Arthur Steen|author2 = J. Arthur Seebach, Jr.|ed = 2nd|edpage = Second Edition|prev = Definition:Cauchy Sequence (Metric Space)|next = Cauchy Sequence in Metric Space is not necessarily Convergent}}: Part $\\text I$: Basic Definitions: Section $5$: Metric Spaces: Complete Metric Spaces Category:Cauchy Sequences 3fp1bcpai3vu42ov3pmvs4jpzk155qx"}
+{"_id": "33150", "title": "Cauchy Sequence is Bounded/Metric Space", "text": "Cauchy Sequence is Bounded/Metric Space 0 91058 488083 2020-09-15T11:26:19Z Julius 3095 Created page with \"== Theorem == Let $M = \\struct {A, d}$ be a metric space. Then every Cauchy sequence...\" wikitext text/x-wiki == Theorem == Let $M = \\struct {A, d}$ be a metric space. Then every Cauchy sequence in $M$ is bounded. == Proof == Let $\\sequence {x_n}$ be a Cauchy sequence in $M$. By definition: :$\\forall \\epsilon > 0: \\exists N \\in \\N: \\forall m, n > N: \\map d {x_n, x_m} < \\epsilon$ Particularly, setting $\\epsilon = 1$: :$\\exists N_1: \\forall m, n > N_1: \\map d {x_n, x_m} < 1$ Note that since $N_1 \\ge N_1$, this means that: :$\\forall n \\ge N_1: \\map d {x_n, x_{N_1} } < 1$ To show $\\sequence {x_n}$ is bounded, we need to show that there exists $a \\in A$ and $K \\in \\R$ such that $\\map d {x_n, a} \\le K$ for all $x_n \\in \\sequence {x_n}$. Let $K'$ be the maximum distance from $x_{N_1}$ to any of the earlier terms in the sequence. That is, $K' = \\max \\set {\\map d {x_{N_1}, x_1}, \\map d {x_{N_1}, x_2}, \\ldots, \\map d {x_{N_1}, x_{N_1 - 1} } }$ Then: :Each $x_n$ for $n \\ge N_1$ satisfies $\\map d {x_{N_1}, x_n} \\le 1$ by choice of $N_1$ as mentioned above :Each $x_n$ for $n < N_1$ satisfies $\\map d {x_{N_1}, x_n} \\le K'$ by choice of $K'$. Thus, taking $a = x_{N_1}$ and $K = \\max \\set {K', 1}$, we have shown that each $x_n$ satisfies $\\map d {a, x_n} \\le K$. So, $\\sequence {x_n}$ is bounded. {{qed}} == Sources == * {{BookReference|Mathematical Analysis|1957|Tom M. Apostol|prev = Real Convergent Sequence is Cauchy Sequence|next = Unbounded Sequence is Divergent}}: $\\S 12$-$2$: Convergent and divergent sequences Category:Cauchy Sequences s8kcwka7sx73viuxqvaryz87ba99gi3"}
+{"_id": "33151", "title": "Autocorrelation of Strictly Stationary Stochastic Process", "text": "Autocorrelation of Strictly Stationary Stochastic Process 0 91323 493070 489826 2020-10-07T15:20:48Z Prime.mover 59 wikitext text/x-wiki == Example of Strictly Stationary Stochastic Process == Let $S$ be a strictly stationary stochastic process giving rise to a time series $T$. It is necessary that: :The autocorrelation between every two observations $z_t, z_{t + k}$ separated by a given lag $k$ is the same as: :the autocorrelation between every other two observations $z_{t + m}, z_{t + m + k}$ separated by a given lag $k$ For such a strictly stationary stochastic process: :$\\rho_k = \\dfrac {\\gamma_k} {\\gamma_0}$ where $\\gamma_k$ denotes the autocovariance of $S$. == Proof == The autocorrelation is defined as: :$\\rho_k := \\dfrac {\\expect {\\paren {z_t - \\mu} \\paren {z_{t + k} - \\mu} } } {\\sqrt {\\expect {\\paren {z_t - \\mu}^2} \\expect {\\paren {z_{t + k} - \\mu}^2} } }$ The autocovariance is defined as: :$\\gamma_k := \\expect {\\paren {z_t - \\mu} \\paren {z_{t - k} - \\mu} }$ Hence: :$\\rho_k := \\dfrac {\\gamma_k} {\\sqrt {\\expect {\\paren {z_t - \\mu}^2} \\expect {\\paren {z_{t + k} - \\mu}^2} } }$ Then we have that for a strictly stationary stochastic process: :$\\expect {\\paren {z_t - \\mu}^2} = \\sigma_z^2$ where $\\sigma_z^2$ is the variance of $S$ and, for a strictly stationary stochastic process, is constant. Thus: :$\\rho_k := \\dfrac {\\gamma_k} {\\sigma_t^2}$ Then from Autocovariance at Zero Lag for Strictly Stationary Stochastic Process is Variance: :$\\sigma_z^2 = \\gamma_0$ Hence: :$\\rho_k = \\dfrac {\\gamma_k} {\\gamma_0}$ {{qed}} == Sources == * {{BookReference|Time Series Analysis: Forecasting and Control|1994|George E.P. Box|author2 = Gwilym M. Jenkins|author3 = Gregory C. Reinsel|ed = 3rd|edpage = Third Edition|prev = Definition:Autocorrelation|next = Autocovariance at Zero Lag for Strictly Stationary Stochastic Process is Variance}}: ::Part $\\text {I}$: Stochastic Models and their Forecasting: :::$2$: Autocorrelation Function and Spectrum of Stationary Processes: ::::$2.1$ Autocorrelation Properties of Stationary Models: :::::$2.1.2$ Stationary Stochastic Processes: Autocovariance and autocorrelation coefficients: $(2.1.6)$ Category:Autocorrelation Category:Stationary Stochastic Processes oxk3s6u49i9odf3w3jttrcnsq6frhb7"}
+{"_id": "33152", "title": "Autocovariance at Zero Lag for Strictly Stationary Stochastic Process is Variance", "text": "Autocovariance at Zero Lag for Strictly Stationary Stochastic Process is Variance 0 91332 489817 489808 2020-09-21T15:36:53Z Prime.mover 59 wikitext text/x-wiki == Example of Strictly Stationary Stochastic Process == Let $S$ be a strictly stationary stochastic process giving rise to a time series $T$. Then the autocovariance at zero lag is given by: :$\\gamma_0 = \\sigma_z^2$ where $\\sigma_z^2$ is the variance of $S$. == Proof == By definition, the '''autocovariance''' of $S$ at lag $k$ is defined as: :$\\gamma_k := \\cov {z_t, z_{t + k} } = \\expect {\\paren {z_t - \\mu} \\paren {z_{t - k} - \\mu} }$ where: :$z_t$ is the observation at time $t$ :$\\mu$ is the mean of $S$ :$\\expect \\cdot$ is the expectation. For a strictly stationary stochastic process: :$\\expect {\\paren {z_t - \\mu}^2} = \\sigma_z^2$ where: :$\\mu$ is the constant mean level of $S$ :$\\expect {\\paren {z_t - \\mu}^2}$ is the expectation of $\\paren {z_t - \\mu}^2$ :$\\sigma_z^2$ is the variance of $S$ and, for a strictly stationary stochastic process, is constant. Hence we have that: {{begin-eqn}} {{eqn | l = \\gamma_0 | r = \\expect {\\paren {z_t - \\mu} \\paren {z_{t + 0} - \\mu} } | c = }} {{eqn | r = \\expect {\\paren {z_t - \\mu}^2} | c = }} {{eqn | r = \\sigma_z^2 | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Time Series Analysis: Forecasting and Control|1994|George E.P. Box|author2 = Gwilym M. Jenkins|author3 = Gregory C. Reinsel|ed = 3rd|edpage = Third Edition|prev = Autocorrelation of Strictly Stationary Stochastic Process|next = Autocorrelation at Zero Lag for Strictly Stationary Stochastic Process is 1}}: ::Part $\\text {I}$: Stochastic Models and their Forecasting: :::$2$: Autocorrelation Function and Spectrum of Stationary Processes: ::::$2.1$ Autocorrelation Properties of Stationary Models: :::::$2.1.2$ Stationary Stochastic Processes: Autocovariance and autocorrelation coefficients Category:Stationary Stochastic Processes Category:Autocovariance csnx3gtbincn8tjz9921ydy7z84u086"}
+{"_id": "33153", "title": "Determinant of Autocorrelation Matrix is Strictly Positive/Examples/Order 2", "text": "Determinant of Autocorrelation Matrix is Strictly Positive/Examples/Order 2 0 91368 490102 2020-09-22T10:34:28Z Prime.mover 59 Created page with \"== Example of Use of Determinant of Autocorrelation Matrix is Strictly Positive == Let $\\rho_1$ be the autocorrelation of a ...\" wikitext text/x-wiki == Example of Use of Determinant of Autocorrelation Matrix is Strictly Positive == Let $\\rho_1$ be the autocorrelation of a strictly stationary stochastic process $S$ at lag $1$. Then: :$-1 < \\rho_1 < 1$ == Proof == Consider the autocorrelation matrix of order $2$: {{begin-eqn}} {{eqn | l = \\map \\det {\\mathbf P_2} | o = > | r = 0 | c = Determinant of Autocorrelation Matrix is Strictly Positive }} {{eqn | l = \\begin {vmatrix} 1 & \\rho_1 \\\\ \\rho_1 & 1 \\end {vmatrix} | o = > | r = 0 | c = {{Defof|Autocorrelation Matrix}} }} {{eqn | l = 1 - \\rho_1^2 | o = > | r = 0 | c = {{Defof|Determinant}} }} {{eqn | ll= \\leadsto | l = \\rho_1^2 | o = < | r = 1 | c = }} {{eqn | ll= \\leadsto | l = \\size {\\rho_1} | o = < | r = 1 | c = }} {{end-eqn}} {{qed}} == Sources == * {{BookReference|Time Series Analysis: Forecasting and Control|1994|George E.P. Box|author2 = Gwilym M. Jenkins|author3 = Gregory C. Reinsel|ed = 3rd|edpage = Third Edition|prev = Determinant of Autocorrelation Matrix is Strictly Positive|next = Determinant of Autocorrelation Matrix is Strictly Positive/Examples/Order 3}}: ::Part $\\text {I}$: Stochastic Models and their Forecasting: :::$2$: Autocorrelation Function and Spectrum of Stationary Processes: ::::$2.1$ Autocorrelation Properties of Stationary Models: :::::$2.1.3$ Positive Definiteness and the Autocovariance Matrix: Conditions satisfied by the autocorrelations of a stationary process Category:Determinant of Autocorrelation Matrix is Strictly Positive nsyymouh42ctehv27y9wj35pcqp9uyw"}
+{"_id": "33154", "title": "Negative of Logarithm of x plus Root x squared plus a squared/Corollary", "text": "Negative of Logarithm of x plus Root x squared plus a squared/Corollary 0 91523 490958 2020-09-26T13:22:45Z Prime.mover 59 Created page with \"== Theorem == Let $x \\in \\R: \\size x > 1$. Let $x > 1$. Then: :$-\\map \\ln {x + \\sqrt {x^2 + a^2} } = \\ln \\size {x - \\sqrt {x^2 + a^2} } - \\map \\ln {a^2}$ 1$. Let $x > 1$. Then: :$-\\map \\ln {x + \\sqrt {x^2 + a^2} } = \\ln \\size {x - \\sqrt {x^2 + a^2} } - \\map \\ln {a^2}$ == Proof == We have that $\\sqrt {x^2 + a^2} > x$ for all $x$. Hence for all $x$: :$-x + \\sqrt {x^2 + a^2} > 0$ and so: :$x - \\sqrt {x^2 + a^2} < 0$ Hence: :$-x + \\sqrt {x^2 + a^2} = \\size {x - \\sqrt {x^2 + a^2} }$ Then we have: {{begin-eqn}} {{eqn | l = -\\map \\ln {x + \\sqrt {x^2 - a^2} } | r = \\map \\ln {-x + \\sqrt {x^2 + a^2} } - \\map \\ln {a^2} | c = Negative of Logarithm of x plus Root x squared plus a squared }} {{eqn | ll= \\leadsto | l = -\\map \\ln {x + \\sqrt {x^2 - a^2} } | r = \\ln \\size {x - \\sqrt {x^2 + a^2} } - \\map \\ln {a^2} | c = }} {{end-eqn}} {{qed}} == Also see == * Negative of Logarithm of x plus Root x squared plus a squared Category:Logarithms bq1gb4ofmsp608jt6gjqt15zeqxcjlc"}
+{"_id": "33155", "title": "Primitive of Reciprocal of a squared minus x squared/Logarithm Form/Lemma", "text": "Primitive of Reciprocal of a squared minus x squared/Logarithm Form/Lemma 0 91571 491217 2020-09-27T16:21:54Z Prime.mover 59 Created page with \"== Lemma == Let $a \\in \\R_{>0}$ be a strictly positive real constant. Then: :$\\map \\ln {\\df...\" wikitext text/x-wiki == Lemma == Let $a \\in \\R_{>0}$ be a strictly positive real constant. Then: :$\\map \\ln {\\dfrac {a + x} {a - x} }$ is defined {{iff}} $\\size x < a$ :$\\map \\ln {\\dfrac {x + a} {x - a} }$ is defined {{iff}} $\\size x > a$ == Proof == We have that the real natural logarithm is defined only on the strictly positive real numbers. Hence: :$\\map \\ln {\\dfrac {a + x} {a - x} }$ is defined {{iff}} $\\dfrac {a + x} {a - x} > 0$ :$\\map \\ln {\\dfrac {x + a} {x - a} }$ is defined {{iff}} $\\dfrac {x + a} {x - a} > 0$ First we note that if $\\size x = a$, then either the numerator or denominator of the arguments of the logarithm functions in question are either $0$ or undefined. Hence the expressions have no meaning unless $\\size x \\ne a$. The following table indicates whether each of $x + a$, $a - x$ and $x - a$ are positive $(+)$ or negative $(-)$ on the domains in question. $\\begin {array} {c|ccc|cc} & x + a & a - x & x - a & \\dfrac {a + x} {a - x} & \\dfrac {x + a} {x - a} \\\\ \\hline a < x & + & - & + & + & - \\\\ 0 < x < a & + & + & - & - & + \\\\ -a < x < 0 & + & + & - & - & + \\\\ x < -a & - & + & - & + & - \\\\ \\end {array}$ Hence: :$\\map \\ln {\\dfrac {a + x} {a - x} }$ is defined {{iff}} $-a < x < a$ :$\\map \\ln {\\dfrac {x + a} {x - a} }$ is defined {{iff}} $x > a$ or $x < -a$ as we were required to show. {{qed}} Category:Logarithms Category:Primitive of Reciprocal of a squared minus x squared czlzx7khcp4z5tjwrrh1qrxjlihs7d6"}
+{"_id": "33156", "title": "Primitive of Reciprocal of x squared minus a squared/Logarithm Form/Lemma", "text": "Primitive of Reciprocal of x squared minus a squared/Logarithm Form/Lemma 0 91592 491313 2020-09-27T22:16:21Z Prime.mover 59 Created page with \"== Lemma == Let $a \\in \\R_{>0}$ be a strictly positive real constant. Then: :$\\map \\ln {\\df...\" wikitext text/x-wiki == Lemma == Let $a \\in \\R_{>0}$ be a strictly positive real constant. Then: :$\\map \\ln {\\dfrac {x - a} {x + a} }$ is defined {{iff}} $\\size x > a$ :$\\map \\ln {\\dfrac {a - x} {a + x} }$ is defined {{iff}} $\\size x < a$ == Proof == We have that the real natural logarithm is defined only on the strictly positive real numbers. Hence: :$\\map \\ln {\\dfrac {x - a} {x + a} }$ is defined {{iff}} $\\dfrac {x - a} {x + a} > 0$ :$\\map \\ln {\\dfrac {a - x} {a + x} }$ is defined {{iff}} $\\dfrac {a - x} {a + x} > 0$ First we note that if $\\size x = a$, then either the numerator or denominator of the arguments of the logarithm functions in question are either $0$ or undefined. Hence the expressions have no meaning unless $\\size x \\ne a$. The following table indicates whether each of $x + a$, $a - x$ and $x - a$ are positive $(+)$ or negative $(-)$ on the domains in question. $\\begin {array} {c|ccc|cc} & x + a & a - x & x - a & \\dfrac {x - a} {x + a} & \\dfrac {a - x} {a + x} \\\\ \\hline a < x & + & - & + & + & - \\\\ 0 < x < a & + & + & - & - & + \\\\ -a < x < 0 & + & + & - & - & + \\\\ x < -a & - & + & - & + & - \\\\ \\end {array}$ Hence: :$\\map \\ln {\\dfrac {x - a} {x + a} }$ is defined {{iff}} $x > a$ or $x < -a$ :$\\map \\ln {\\dfrac {a - x} {a + x} }$ is defined {{iff}} $-a < x < a$ as we were required to show. {{qed}} Category:Logarithms Category:Primitive of Reciprocal of x squared minus a squared 2du9lctlzc521fqaiwvjzyok1zbdl2o"}
+{"_id": "33157", "title": "Primitive of Reciprocal of x squared minus a squared/Inverse Hyperbolic Tangent Form/Proof", "text": "Primitive of Reciprocal of x squared minus a squared/Inverse Hyperbolic Tangent Form/Proof 0 91596 491322 2020-09-27T22:30:09Z Prime.mover 59 Created page with \"== Theorem == {{:Primitive of Reciprocal of x squared minus a squared/Inverse Hyperbolic Tangent Form}} == Proof == Let $\\size x < a$. Let: {{begin-eqn}} {{eq...\" wikitext text/x-wiki == Theorem == {{:Primitive of Reciprocal of x squared minus a squared/Inverse Hyperbolic Tangent Form}} == Proof == Let $\\size x < a$. Let: {{begin-eqn}} {{eqn | l = u | r = \\tanh^{-1} {\\frac x a} | c = {{Defof|Real Inverse Hyperbolic Tangent}}, which is defined where $\\size {\\dfrac x a} < 1$ }} {{eqn | ll= \\leadsto | l = x | r = a \\tanh u | c = }} {{eqn | ll= \\leadsto | l = \\frac {\\d x} {\\d u} | r = a \\sech^2 u | c = Derivative of Hyperbolic Cotangent }} {{eqn | ll= \\leadsto | l = \\int \\frac 1 {x^2 - a^2} \\rd x | r = \\int \\frac {a \\sech^2 u} {a^2 \\tanh^2 u - a^2} \\rd u | c = Integration by Substitution }} {{eqn | r = \\frac a {a^2} \\int \\frac {\\sech^2 u} {-\\paren {1 - \\tanh^2 u} } \\rd u | c = Primitive of Constant Multiple of Function }} {{eqn | r = \\frac 1 a \\int \\frac {\\sech^2 u} {-\\sech^2 u} \\rd u | c = Sum of Squares of Hyperbolic Secant and Tangent }} {{eqn | r = -\\frac 1 a \\int \\rd u }} {{eqn | r = -\\frac 1 a u + C | c = Integral of Constant }} {{eqn | r = -\\frac 1 a \\tanh^{-1} {\\frac x a} + C | c = Definition of $u$ }} {{end-eqn}} {{qed}} Category:Primitive of Reciprocal of x squared minus a squared cum8etbjs33ubz9sorsuh7ts10svvrq"}
+{"_id": "33158", "title": "Leigh.Samphier/Sandbox/Matroid Satisfies Base Axiom/Sufficient Condition/Lemma/Lemma 1", "text": "Leigh.Samphier/Sandbox/Matroid Satisfies Base Axiom/Sufficient Condition/Lemma/Lemma 1 0 91645 491748 491696 2020-09-30T06:34:44Z Leigh.Samphier 3031 wikitext text/x-wiki {{Proofread}} == Theoren == Let $U, V$ be finite sets. Let $\\card V < \\card U$. Then: :$\\card{V \\setminus U} < \\card{U \\setminus V}$ == Proof == We have: {{begin-eqn}} {{eqn | l = \\card{U \\setminus V} | r = \\card U - \\card{U \\cap V} | c = Cardinality of Set Difference }} {{eqn | o = > | r = \\card V - \\card{U \\cap V} | c = As $\\card V < \\card U$ }} {{eqn | r = \\card{V \\setminus U} | c = Cardinality of Set Difference }} {{end-eqn}} {{qed}} Category:Matroid Satisfies Base Axiom ncp1vmjeal1kfh62yi04bort1blni90"}
+{"_id": "33159", "title": "Transitivity of Integrality/Lemma", "text": "Transitivity of Integrality/Lemma 0 92667 497829 2020-11-05T14:11:07Z Prime.mover 59 Created page with \"== Lemma for Transitivity of Integrality == Let $A \\subseteq B$ be a ring extension. Let $x_1, \\dotsc, x_n \\in B$ be Definit...\" wikitext text/x-wiki == Lemma for Transitivity of Integrality == Let $A \\subseteq B$ be a ring extension. Let $x_1, \\dotsc, x_n \\in B$ be integral over $A$. Let $A \\sqbrk {x_1, \\dotsc, x_n}$ be the subring of $B$ generated by $A \\cup \\set {x_1, \\dotsc, x_n}$ over $A$. Then $A \\sqbrk {x_1, \\dotsc, x_n}$ is integral over $A$. == Proof == Let $C$ be the integral closure of $A$ in $B$. Since the $x_i$ are integral over $A$, they lie in $C$. So by Integral Closure is Subring, all sums of the form: :$\\ds \\sum_{\\text {finite} } r x_1^{\\alpha_1} \\dotsm x_n^{\\alpha_n}, \\quad r \\in A,\\ \\alpha_j \\in \\N \\cup \\set 0$ lie in $C$. That is, they are integral over $A$. But the set of such sums is precisely $A \\sqbrk {x_1, \\dotsc, x_n}$. {{qed}} == Linguistic Note == {{:Transitivity of Integrality/Linguistic Note}} Category:Transitivity of Integrality qnem75iriv50mo5gee7s0cgqervax5e"}
+{"_id": "11", "title": "Schur-Zassenhaus Theorem", "text": "Let $G$ be a finite group and $N$ be a normal subgroup in $G$. Let $N$ be a Hall subgroup of $G$. Then there exists $H$, a complement of $N$, such that $G$ is the semidirect product of $N$ and $H$."}
+{"_id": "8228", "title": "Non-Zero Integer has Unique Positive Integer Associate", "text": "Let $a \\in \\Z$ be an integer such that $a \\ne 0$. Then $a$ has a unique associate $b \\in \\Z_{>0}$."}
+{"_id": "16436", "title": "Element of Cyclic Group is not necessarily Generator", "text": "Let $\\gen g = G$ be a cyclic group. Let $a \\in G$ Then it is not necessarily the case that $a$ is also a generator of $G$."}
+{"_id": "16444", "title": "Equivalent Statements for Congruence Modulo Subgroup/Left", "text": "Let $x \\equiv^l y \\pmod H$ denote that $x$ is left congruent modulo $H$ to $y$. Then the following statements are equivalent: {{begin-eqn}} {{eqn | n = 1 | l = x | o = \\equiv^l | r = y \\pmod H }} {{eqn | n = 2 | l = x^{-1} y | o = \\in | r = H }} {{eqn | n = 3 | l = \\exists h \\in H: x^{-1} y | r = h }} {{eqn | n = 4 | l = \\exists h \\in H: y | r = x h }} {{end-eqn}}"}
+{"_id": "16448", "title": "Element of Group is in Unique Coset of Subgroup/Left", "text": "There exists a exactly one left coset of $H$ containing $x$, that is: $x H$"}
+{"_id": "16453", "title": "Order of Product of Commuting Group Elements of Coprime Order is Product of Orders", "text": "Let $G$ be a group. Let $g_1, g_2 \\in G$ be commuting elements such that: {{begin-eqn}} {{eqn | l = \\order {g_1} | r = n_1 }} {{eqn | l = \\order {g_1} | r = n_2 }} {{end-eqn}} where $\\order {g_1}$ denotes the order of $g_1$ in $G$. Let $n_1$ and $n_2$ be coprime. Then: :$\\order {g_1 g_2} = n_1 n_2$"}
+{"_id": "8268", "title": "Trivial Norm on Division Ring is Norm", "text": "Let $\\struct {R, +, \\circ}$ be a division ring, and denote its ring zero by $0_R$. Then the trivial norm $\\norm {\\, \\cdot \\,}: R \\to \\R_{\\ge 0}$, which is given by: :$\\norm x = \\begin{cases} 0 & \\text { if } x = 0_R\\\\ 1 & \\text { otherwise} \\end{cases}$ defines a norm on $R$."}
+{"_id": "16469", "title": "Coset of Subgroup of Subgroup", "text": "Let $G$ be a group. Let $H, K \\le G$ be subgroups of $G$. Let $K \\subseteq H$. Let $x \\in G$. Then either: :$x K \\subseteq H$ or: :$x K \\cap H = \\O$ where $x K$ denotes the left coset of $K$ by $x$."}
+{"_id": "8278", "title": "Equivalence of Definitions of Characteristic of Ring", "text": "Let $\\struct {R, +, \\circ}$ be a ring with unity whose zero is $0_R$ and whose unity is $1_R$. {{TFAE|def = Characteristic of Ring}}"}
+{"_id": "16485", "title": "Non-Cyclic Group of Order p^2 has p+3 Subgroups", "text": "Let $p$ be a prime number. Let $G$ be a non-cyclic group whose order is $p^2$. Then $G$ has exactly $p + 3$ subgroups."}
+{"_id": "16488", "title": "General Morphism Property for Groups", "text": "Let $\\struct {G, \\circ}$ and $\\struct {H, *}$ be groups. Let $\\phi: G \\to H$ be a homomorphism. Then: :$\\forall g_k \\in H: \\map \\phi {g_1 \\circ g_2 \\circ \\cdots \\circ g_n} = \\map \\phi {g_1} * \\map \\phi {g_2} * \\cdots * \\map \\phi {g_n}$"}
+{"_id": "111", "title": "Set Difference is Anticommutative", "text": "Set difference is an anticommutative operation: :$S = T \\iff S \\setminus T = T \\setminus S = \\varnothing$"}
+{"_id": "8313", "title": "Integers under Addition form Monoid", "text": "The set of integers under addition $\\struct {\\Z, +}$ forms a monoid."}
+{"_id": "16512", "title": "Klein Four-Group is Group", "text": "The Klein $4$-group $K_4$ is a group."}
+{"_id": "16515", "title": "Dihedral Group is Non-Abelian", "text": "Let $n \\in \\N$ be a natural number such that $n > 2$. Let $D_n$ denote the dihedral group of order $2 n$. Then $D_n$ is not abelian."}
+{"_id": "16518", "title": "Summation Formula (Complex Analysis)", "text": ":$\\displaystyle \\sum_{n \\in \\Z \\setminus X} \\map f n = - \\sum_{z_0 \\mathop \\in X} \\Res {\\pi \\cot \\paren {\\pi z} \\map f z} {z_0}$"}
+{"_id": "136", "title": "Set with Complement forms Partition", "text": "Let $\\varnothing \\subset S \\subset \\mathbb U$. Then $S$ and its complement $\\complement \\left({S}\\right)$ form a partition of the universal set $\\mathbb U$."}
+{"_id": "16523", "title": "Subgroups of Additive Group of Integers Modulo m", "text": "Let $n \\in \\Z_{> 0}$ be a (strictly) positive integer. Let $\\struct {\\Z_m, +_m}$ denote the additive group of integers modulo $m$. The subgroups of $\\struct {\\Z_m, +_m}$ are the additive groups of integers modulo $k$ where: :$k \\divides m$"}
+{"_id": "8336", "title": "Finite Monoid with Left Cancellable Operation is Group", "text": "Let $\\left({S, \\circ}\\right)$ be a finite monoid. Let $\\circ$ be a left cancellable operation. Then $\\left({S, \\circ}\\right)$ is a group."}
+{"_id": "145", "title": "Cartesian Product is Anticommutative", "text": "Let $S, T \\ne \\O$. Then: :$S \\times T = T \\times S \\implies S = T$"}
+{"_id": "16535", "title": "Groups of Order 6", "text": "There exist exactly $2$ groups of order $6$, up to isomorphism: :$C_6$, the cyclic group of order $6$ :$S_3$, the symmetric group on $3$ letters."}
+{"_id": "16541", "title": "Normalizer of Rotation in Dihedral Group", "text": "Let $n \\in \\N$ be a natural number such that $n \\ge 3$. Let $D_n$ be the dihedral group of order $2 n$, given by: :$D_n = \\gen {\\alpha, \\beta: \\alpha^n = \\beta^2 = e, \\beta \\alpha \\beta = \\alpha^{−1} }$ Let $\\map {N_{D_n} } {\\set \\alpha}$ denote the normalizer of the singleton containing the rotation element $\\alpha$. Then: :$\\map {N_{D_n} } {\\set \\alpha} = \\gen \\alpha$ where $\\gen \\alpha$ is the subgroup generated by $\\alpha$."}
+{"_id": "8355", "title": "Möbius Strip has Euler Characteristic Zero", "text": "Let $M$ be a Möbius Strip. Then: :$\\map \\chi M = 0$ where $\\map \\chi M$ denotes the Euler characteristic of the graph $M$."}
+{"_id": "8359", "title": "Group Action of Symmetric Group Acts Transitively", "text": "Let $S$ be a set. Let $\\struct {\\map \\Gamma S, \\circ}$ be the symmetric group on $S$. Let $*: \\map \\Gamma S \\times S \\to S$ be the group action defined as: :$\\forall \\pi \\in \\map \\Gamma S, \\forall s \\in S: \\pi * s = \\map \\pi s$ Then $*$ is a transitive group action. In other words, $\\struct {\\map \\Gamma S, \\circ}$ acts transitively on $S$ by $*$."}
+{"_id": "8361", "title": "Orbit of Trivial Group Action is Singleton", "text": "Let $\\left({G, \\circ}\\right)$ be a group whose identity is $e$. Let $S$ be a set. Let $*: G \\times S \\to S$ be the trivial group action: :$\\forall \\left({g, s}\\right) \\in G \\times S: g * s = s$ Let $s \\in S$. Then the orbit of $s$ under $*$ is $\\left\\{{s}\\right\\}$."}
+{"_id": "16559", "title": "Length of Orbit of Subgroup Action on Left Coset Space", "text": "Let $G$ be a group. Let $H$ and $K$ be subgroups of $G$. Let $K$ act on the left coset space $G / H^l$ by: :$\\forall \\tuple {k, g H} \\in K \\times G / H^l: k * g H := \\paren {k g} H$ The length of the orbit of $g H$ is $\\index K {K \\cap H^g}$."}
+{"_id": "8367", "title": "Conjugacy Action on Abelian Group is Trivial", "text": "Let $\\struct {G, \\circ}$ be an abelian group whose identity is $e$. Let $*: G \\times G \\to G$ be the conjugacy group action: : $\\forall g, h \\in G: g * h = g \\circ h \\circ g^{-1}$ Then $*$ is a trivial group action."}
+{"_id": "179", "title": "Relation Symmetry", "text": "Every non-null relation has exactly one of these properties: it is either: :symmetric, :asymmetric or :non-symmetric."}
+{"_id": "8379", "title": "Stabilizer of Cartesian Product of Group Actions", "text": "Let $\\struct {G, \\circ}$ be a group. Let $S$ and $T$ be sets. Let $*_S: G \\times S \\to S$ and $*_T: G \\times T \\to T$ be group actions. Let the group action $*: G \\times \\paren {S \\times T} \\to S \\times T$ be defined as: :$\\forall \\tuple {g, \\tuple {s, t} } \\in G \\times \\paren {S \\times T}: g * \\tuple {s, t} = \\tuple {g *_S s, g *_T t}$ Then the stabilizer of $\\tuple {s, t} \\in S \\times T$ is given by: :$\\Stab {s, t} = \\Stab s \\cap \\Stab t$ where $\\Stab s$ and $\\Stab t$ are the stabilizers of $s$ and $t$ under $*_S$ and $*_T$ respectively."}
+{"_id": "16572", "title": "Divisibility by 12", "text": "Let $N \\in \\N$ be expressed as: :$N = a_0 + a_1 10 + a_2 10^2 + \\cdots + a_n 10^n$ Then $N$ is divisible by $12$ {{iff}} $a_0 - 2 a_1 + 4 \\paren {\\displaystyle \\sum_{r \\mathop = 2}^n a_r}$ is divisible by $12$."}
+{"_id": "192", "title": "Composite Relation with Inverse is Symmetric", "text": "Let $\\mathcal R \\subseteq S \\times T$ be a relation. Then the composition of $\\mathcal R$ with its inverse $\\mathcal R^{-1}$ is symmetric: * $\\mathcal R^{-1} \\circ \\mathcal R$ is a symmetric relation on $S$ * $\\mathcal R \\circ \\mathcal R^{-1}$ is a symmetric relation on $T$."}
+{"_id": "16576", "title": "Minimum Rule for Real Sequences", "text": ":$\\displaystyle \\lim_{n \\mathop \\to \\infty} \\min \\set {x_n, y_n} = \\min \\set {l, m}$"}
+{"_id": "209", "title": "Union of Equivalences", "text": "The union of two equivalence relations is '''not''' necessarily an equivalence relation itself."}
+{"_id": "16604", "title": "Topological Properties of Non-Archimedean Division Rings/Intersection of Open Balls", "text": ":$\\map {B_r} x \\cap \\map {B_s} y \\ne \\O \\iff \\map {B_r} x \\subseteq \\map {B_s} y$ or $\\map {B_s} y \\subseteq \\map {B_r} x$"}
+{"_id": "8416", "title": "Universal Negative implies Particular Negative iff First Predicate is not Vacuous", "text": "Consider the categorical statements: :$\\map {\\mathbf E} {S, P}: \\quad$ The universal negative: $\\forall x: \\map S x \\implies \\neg \\map P x$ :$\\map {\\mathbf O} {S, P}: \\quad$ The particular negative: $\\exists x: \\map S x \\land \\neg \\map P x$ Then: :$\\map {\\mathbf E} {S, P} \\implies \\map {\\mathbf O} {S, P}$ {{iff}}: :$\\exists x: \\map S x$ Using the symbology of predicate logic: :$\\exists x: \\map S x \\iff \\paren {\\paren {\\forall x: \\map S x \\implies \\neg \\map P x} \\implies \\paren {\\exists x: \\map S x \\land \\neg \\map P x} }$"}
+{"_id": "16615", "title": "Addition on Numbers has no Zero Element", "text": "On all the number systems: * natural numbers $\\N$ * integers $\\Z$ * rational numbers $\\Q$ * real numbers $\\R$ * complex numbers $\\C$ there exists no zero element for addition."}
+{"_id": "16618", "title": "Group has Latin Square Property/Additive Notation", "text": "Let $\\struct {G, +}$ be a group. Then $G$ satisfies the Latin square property. That is, for all $a, b \\in G$, there exists a unique $g \\in G$ such that $a + g = b$. Similarly, there exists a unique $h \\in G$ such that $h + a = b$."}
+{"_id": "16626", "title": "Normed Division Ring Operations are Continuous/Inversion", "text": ":$\\iota : \\struct {R^* ,d^*} \\to \\struct {R, d} : \\map \\iota x = x^{-1}$ is continuous."}
+{"_id": "16641", "title": "Intersection Operation on Supersets of Subset is Closed", "text": "Let $S$ be a set. Let $T \\subseteq S$ be a given subset of $S$. Let $\\powerset S$ denote the power set of $S$ Let $\\mathscr S$ be the subset of $\\powerset S$ defined as: :$\\mathscr S = \\set {Y \\in \\powerset S: T \\subseteq Y}$ Then the algebraic structure $\\struct {\\mathscr S, \\cap}$ is closed."}
+{"_id": "259", "title": "Composite of Quotient Mappings", "text": "Let $S$ be a set. Let $\\mathcal R_1$ be an equivalence on $S$, and $\\mathcal R_2$ be an equivalence on the quotient set $S / \\mathcal R_1$. We can find an equivalence $\\mathcal R_3$ on $S$ such that $\\paren {S / \\mathcal R_1} / \\mathcal R_2$ is in one-to-one correspondence with $S / \\mathcal R_3$ under the mapping: :$\\phi: \\paren {S / \\mathcal R_1} / \\mathcal R_2 \\to S / \\mathcal R_3: \\eqclass {\\eqclass x {\\mathcal R_1} } {\\mathcal R_2} \\mapsto \\eqclass x {\\mathcal R_3}$."}
+{"_id": "16648", "title": "Subgroup Generated by Commuting Elements is Abelian", "text": "Let $\\struct {G, \\circ}$ be a group. Let $S \\subseteq G$ such that: :$\\forall x, y \\in S: x \\circ y = y \\circ x$ Then the subgroup generated by $S$ is abelian."}
+{"_id": "16665", "title": "Stabilizer is Normal iff Stabilizer of Each Element of Orbit", "text": "Let $\\struct {G, \\circ}$ be a group. Let $S$ be a set. Let $*: G \\times S \\to S$ be a group action. Let $x \\in S$. Let $\\Stab x$ denote the stabilizer of $x$ under $*$. Let $\\Orb x$ denote the orbit of $x$ under $*$. Then $\\Stab x$ is normal in $G$ {{iff}} $\\Stab x$ is also the stabilizer of every element in $\\Orb x$."}
+{"_id": "16670", "title": "Additive Group of Integers is Normal Subgroup of Rationals", "text": "Let $\\struct {\\Z, +}$ be the additive group of integers. Let $\\struct {\\Q, +}$ be the additive group of rational numbers. Then $\\struct {\\Z, +}$ is a normal subgroup of $\\struct {\\Q, +}$."}
+{"_id": "8480", "title": "Empty Set and Set form Algebra of Sets", "text": "Let $S$ be any non-empty set. Then $\\left\\{{S, \\varnothing}\\right\\}$ is (trivially) an algebra of sets, where $S$ is the unit."}
+{"_id": "8481", "title": "Closure of Union and Complement imply Closure of Set Difference", "text": "Let $\\RR$ be a system of sets on a universe $\\mathbb U$ such that for all $A, B \\in \\RR$: :$(1): \\quad A \\cup B \\in \\RR$ :$(2): \\quad \\map \\complement A \\in \\RR$ where $\\cup$ denotes set union and $\\complement$ denotes complement (relative to $\\mathbb U$). Then: :$\\forall A, B \\in \\RR: A \\setminus B \\in \\RR$ where $\\setminus$ denotes set difference."}
+{"_id": "16676", "title": "Order of Alternating Group", "text": "Let $n \\in \\Z$ be an integer such that $n > 1$. Let $A_n$ be the alternating group on $n$ letters. Then: :$\\order {A_n} = \\dfrac {n!} 2$ where $\\order {A_n}$ denotes the order of $A_n$."}
+{"_id": "8488", "title": "Plane contains Infinite Number of Lines", "text": "A plane contains an infinite number of distinct lines."}
+{"_id": "8490", "title": "Three Non-Collinear Planes have One Point in Common", "text": "Three planes which are not collinear have exactly one point in all three planes."}
+{"_id": "8494", "title": "Union of Mappings which Agree is Mapping", "text": "Let $A, B, Y$ be sets. Let $f: A \\to Y$ and $g: B \\to Y$ be mappings. Let $X = A \\cup B$. Let $f$ and $g$ agree on $A \\cap B$. Then $f \\cup g: X \\to Y$ is a mapping."}
+{"_id": "307", "title": "Right Operation is Idempotent", "text": "The right operation is idempotent: :$\\forall x: x \\rightarrow x = x$"}
+{"_id": "16693", "title": "Index of Intersection of Subgroups/Corollary", "text": "Let $H$ be a subgroup of $G$. Let $K$ be a subgroup of finite index of $G$. Then: :$\\index H {H \\cap K} \\le \\index G K$"}
+{"_id": "16705", "title": "Centralizer of Self-Inverse Element of Non-Abelian Finite Simple Group is not That Group", "text": "Let $G$ be a non-abelian finite simple group. Let $t \\in G$ be a self-inverse element of $G$. Then: :$\\map {C_G} t \\ne G$ where $\\map {C_G} t$ denotes the centralizer of $t$ in $G$."}
+{"_id": "16715", "title": "Sum of Sequence of Squares of Fibonacci Numbers", "text": ":$\\forall n \\ge 1: \\displaystyle \\sum_{j \\mathop = 1}^n {F_j}^2 = F_n F_{n + 1}$ That is: :${F_1}^2 + {F_2}^2 + {F_3}^2 + \\cdots + {F_n}^2 = F_n F_{n + 1}$"}
+{"_id": "16725", "title": "Properties of Norm on Division Ring/Norm of Integer", "text": "For all $n \\in \\N_{\\gt 0}$, let $n \\cdot 1_R$ denote the sum of $1_R$ with itself $n$-times. That is: :$n \\cdot 1_R = \\underbrace {1_R + 1_R + \\dots + 1_R}_{n \\, times}$ Then: :$\\norm {n \\cdot 1_R} \\le n$."}
+{"_id": "359", "title": "Equivalence Relation is Congruence for Constant Operation", "text": "Every equivalence relation is a congruence relation for the constant operation."}
+{"_id": "361", "title": "Quotient Structure on Subset Product", "text": "Let $\\left({S, \\circ}\\right)$ be an algebraic structure. Let $\\mathcal R$ be a congruence for $\\circ$ on $S$. Then: :$\\forall X, Y \\in S / \\mathcal R: X \\circ_\\mathcal P Y \\subseteq X \\circ_\\mathcal R Y$ where: : $S / \\mathcal R$ is the quotient of $S$ by $\\mathcal R$ : $\\circ_\\mathcal P$ is the operation induced on $\\mathcal P \\left({S}\\right)$ by $\\circ$ : $\\circ_\\mathcal R$ is the operation induced on $S / \\mathcal R$ by $\\circ$"}
+{"_id": "16749", "title": "Even Power of 3 as Sum of Consecutive Positive Integers", "text": "Take the positive integers and group them in sets such that the $n$th set contains the next $3^n$ positive integers: :$\\set 1, \\set {2, 3, 4}, \\set {5, 6, \\ldots, 13}, \\set {14, 15, \\cdots, 40}, \\ldots$ Let the $n$th such set be denoted $S_{n - 1}$, that is, letting $S_0 := \\set 1$ be considered as the zeroth. Then the sum of all the elements of $S_n$ is $3^{2 n}$."}
+{"_id": "8564", "title": "Exterior of Union of Singleton Rationals is Empty", "text": "Let $B_\\alpha$ be the singleton containing the rational number $\\alpha$. Let $\\struct {\\R, \\tau_d}$ be the real number line with the usual (Euclidean) topology $\\tau_d$. Then the exterior in $\\struct {\\R, \\tau_d}$ of the union of all $B_\\alpha$ is the empty set: :$\\displaystyle \\paren {\\bigcup_{\\alpha \\mathop \\in \\Q} B_\\alpha}^e = \\O$"}
+{"_id": "16773", "title": "Smallest 18 Primes in Arithmetic Sequence", "text": "The smallest $18$ primes in arithmetic sequence are: :$107\\,928\\,278\\,317 + 9\\,922\\,782\\,870 n$ for $n = 0, 1, \\ldots, 16$."}
+{"_id": "8582", "title": "Irrational Number Space is Non-Meager", "text": "Let $\\struct {\\R \\setminus \\Q, \\tau_d}$ be the irrational number space under the Euclidean topology $\\tau_d$. Then $\\struct {\\R \\setminus \\Q, \\tau_d}$ is non-meager."}
+{"_id": "394", "title": "Quotient Structure of Inverse Completion", "text": "Let $\\left({T, \\circ'}\\right)$ be an inverse completion of a commutative semigroup $\\left({S, \\circ}\\right)$, where $C$ is the set of cancellable elements of $S$. Let $f: S \\times C: T$ be the mapping defined as: :$\\forall x \\in S, y \\in C: f \\left({x, y}\\right) = x \\circ' y^{-1}$ Then the mapping $g: \\left({S \\times C}\\right) / \\mathcal R_f \\to T$ defined by $g \\left({\\left[\\!\\left[{x, y}\\right]\\!\\right]_{\\mathcal R_f}}\\right) = x \\circ' y^{-1}$, where $\\left({S \\times C}\\right) / \\mathcal R_f$ is a quotient structure, is an isomorphism."}
+{"_id": "16785", "title": "Square Matrices with +1 or -1 Determinant under Multiplication forms Group", "text": "Let $n \\in \\Z_{> 0}$ be a strictly positive integer. Let $S$ be the set of square matrices of order $n$ of real numbers whose determinant is either $1$ or $-1$. Let $\\struct {S, \\times}$ denote the algebraic structure formed by $S$ whose operation is (conventional) matrix multiplication. Then $\\struct {S, \\times}$ is a group."}
+{"_id": "8593", "title": "Rational Number Space is not Weakly Sigma-Locally Compact", "text": "Let $\\struct {\\Q, \\tau_d}$ be the rational number space under the Euclidean topology $\\tau_d$. Then $\\struct {\\Q, \\tau_d}$ is not weakly $\\sigma$-locally compact."}
+{"_id": "16792", "title": "Group of Order 3 is Unique", "text": "There exists exactly $1$ group of order $3$, up to isomorphism: :$C_3$, the cyclic group of order $3$."}
+{"_id": "8606", "title": "Integer Reciprocal Space is Topological Space", "text": "Let $\\struct {\\R, \\tau_d}$ be the real number line $\\R$ under the usual (Euclidean) topology $\\tau_d$. Let $A \\subseteq \\R$ be the set of all points on $\\R$ defined as: :$A := \\set {\\dfrac 1 n: n \\in \\Z_{>0} }$ Then the integer reciprocal space $\\struct {A, \\tau_d}$ is a topological space."}
+{"_id": "8619", "title": "Integer Reciprocal Space with Zero is not Extremally Disconnected", "text": "Let $A \\subseteq \\R$ be the set of all points on $\\R$ defined as: :$A := \\set 0 \\cup \\set {\\dfrac 1 n : n \\in \\Z_{>0} }$ Let $\\struct {A, \\tau_d}$ be the integer reciprocal space with zero under the usual (Euclidean) topology. Then $A$ is not extremally disconnected."}
+{"_id": "8617", "title": "Components of Integer Reciprocal Space with Zero are Single Points", "text": "Let $A \\subseteq \\R$ be the set of all points on $\\R$ defined as: :$A := \\set 0 \\cup \\set {\\dfrac 1 n : n \\in \\Z_{>0} }$ Let $\\struct {A, \\tau_d}$ be the integer reciprocal space with zero under the usual (Euclidean) topology. Then the components of $A$ are singletons."}
+{"_id": "8637", "title": "Non-Homeomorphic Sets may be Homeomorphic to Subsets of Each Other", "text": "Let $T_1 = \\struct {S_1, \\tau_1}$ and $T_2 = \\struct {S_2, \\tau_2}$ be topological spaces. Let $H_1 \\subseteq S_1$ and $H_2 \\subseteq S_2$. Then it is possible for: :$(1): \\quad T_1$ to be homeomorphic to $H_2$ :$(2): \\quad T_2$ to be homeomorphic to $H_1$ but: :$(3): \\quad T_1$ and $T_2$ to not be homeomorphic."}
+{"_id": "8638", "title": "Superspace of Homeomorphic Subspaces may not have Homeomorphism to Itself containing Subspace Homeomorphism", "text": "Let $T_1 = \\struct {S_1, \\tau_1}$ and $T_2 = \\struct {S_2, \\tau_2}$ be topological spaces. Let $H_1 \\subseteq S_1$ and $H_2 \\subseteq S_2$. Let $H_1$ and $H_2$ be a homeomorphic. Then it may be the case that there does not exist a homeomorphism $g: T_1 \\to T_2$ such that: :$g \\restriction_{H_1} = f$ where: :$g \\restriction_{H_1}$ is the restriction of $g$ to $H_1$ :$f: H_1 \\to H_2$ is a homeomorphism."}
+{"_id": "8640", "title": "Finite Group is p-Group iff Order is Power of p", "text": "Let $p$ be a prime number. Let $G$ be a finite group. Then $G$ is a $p$-group {{iff}} the order of $G$ is a power of $p$."}
+{"_id": "448", "title": "Trivial Ring from Abelian Group", "text": "Any abelian group $\\struct {G, +}$ may be turned into a trivial ring by defining the ring product to be: :$\\forall x, y \\in G: x \\circ y = e_G$"}
+{"_id": "16837", "title": "Product with Inverse on Homomorphic Image is Group Homomorphism", "text": "Let $G$ be a group. Let $H$ be an abelian group. Let $\\theta: G \\to H$ be a (group) homomorphism. Let $\\phi: G \\times G \\to H$ be the mapping defined as: :$\\forall \\tuple {g_1, g_2} \\in G \\times G: \\map \\phi {g_1, g_2} = \\map \\theta {g_1} \\map \\theta {g_2}^{-1}$ Then $\\phi$ is a homomorphism."}
+{"_id": "8645", "title": "Divisor of Product may not be Divisor of Factors", "text": "Let $a, b, c \\in \\Z_{>0}$ be (strictly) positive integers. Let: :$c \\divides a b$ where $\\divides$ expresses the relation of divisibility. Then it is not necessarily the case that either $c \\divides a$ or $c \\divides b$."}
+{"_id": "8671", "title": "Equality of Complex Numbers", "text": "Let $z_1 := a_1 + i b_1$ and $z_2 := a_2 + i b_2$ be complex numbers. Then $z_1 = z_2$ {{iff}} $a_1 = a_2$ and $b_1 = b_2$."}
+{"_id": "482", "title": "Divisor of Unit is Unit", "text": "Let $\\struct {D, +, \\circ}$ be an integral domain whose unity is $1_D$. Let $\\struct {U_D, \\circ}$ be the group of units of $\\struct {D, +, \\circ}$. Then: :$x \\in D, u \\in U_D: x \\divides u \\implies x \\in U_D$ That is, if $x$ is a divisor of a unit, $x$ must itself be a unit."}
+{"_id": "483", "title": "Associatehood is Equivalence Relation", "text": "Let $\\struct {D, +, \\circ}$ be an integral domain whose zero is $0_D$ and whose unity is $1_D$. Let $\\sim$ be the relation defined on $D$ as: $\\forall x, y \\in D: x \\sim y$ {{iff}} $x$ is an associate of $y$ Then $\\sim$ is an equivalence relation."}
+{"_id": "490", "title": "Field is Subfield of Itself", "text": "Let $\\struct {F, +, \\circ}$ be a field. Then $\\struct {F, +, \\circ}$ is a subfield of $\\struct {F, +, \\circ}$."}
+{"_id": "8693", "title": "Tangent Exponential Formulation/Formulation 1", "text": ":$\\tan z = i \\dfrac {1 - e^{2 i z} } {1 + e^{2 i z} }$"}
+{"_id": "8695", "title": "Tangent Exponential Formulation/Formulation 3", "text": ":$\\tan z = -i \\paren {\\dfrac {e^{i z} - e^{-i z} } {e^{i z} + e^{-i z} } }$"}
+{"_id": "8705", "title": "Roots of Complex Number/Exponential Form", "text": ":$z^{1 / n} = \\set {r^{1 / n} e^{i \\paren {\\theta + 2 \\pi k} / n}: k \\in \\set {0, 1, 2, \\ldots, n - 1} }$"}
+{"_id": "523", "title": "Normalizer of Center is Group", "text": "Let $G$ be a group. Let $\\map Z G$ be the center of $G$. Let $x \\in G$. Let $\\map {N_G} x$ be the normalizer of $x$ in $G$. Then: :$\\map Z G = \\set {x \\in G: \\map {N_G} x = G}$ That is, the center of a group $G$ is the set of elements $x$ of $G$ such that the normalizer of $x$ is the whole of $G$. Thus: :$x \\in \\map Z G \\iff \\map {N_G} x = G$ and so: :$\\index G {\\map {N_G} x} = 1$ where $\\index G {\\map {N_G} x}$ is the index of $\\map {N_G} x$ in $G$."}
+{"_id": "16908", "title": "Characterisation of Non-Archimedean Division Ring Norms/Corollary 4", "text": "Let $R$ have characteristic $p > 0$. Then $\\norm {\\,\\cdot\\,}$ is a non_Archimedean norm on $R$."}
+{"_id": "16912", "title": "Relations with Combinations of Reflexivity, Symmetry and Transitivity Properties", "text": "Let $S$ be a set which has at least $3$ elements. Then it is possible to set up a relation $\\circledcirc$ on $S$ which has any combination of the $3$ properties: :Reflexivity :Symmetry :Transitivity but this is not possible for a set which has fewer than $3$ elements."}
+{"_id": "8725", "title": "Half Angle Formulas/Hyperbolic Tangent/Corollary 1", "text": ":$\\tanh \\dfrac x 2 = \\dfrac {\\sinh x} {\\cosh x + 1}$"}
+{"_id": "16918", "title": "Even Integer Plus 5 is Odd", "text": "Let $x \\in \\Z$ be an even integer. Then $x + 5$ is odd."}
+{"_id": "16938", "title": "Minimal Smooth Surface Spanned by Contour", "text": "Let $\\map z {x, y}: \\R^2 \\to \\R$ be a real-valued function. Let $\\Gamma$ be a closed contour in $3$-dimensional Euclidean space. Suppose this surface is smooth for every $x$ and $y$. Then it has to satisfy the following Euler's equation: :$r \\paren {1 + q^2} - 2 s p q + t \\paren {1 + p^2} = 0$ where: {{begin-eqn}} {{eqn | l = p | r = z_x }} {{eqn | l = q | r = z_y }} {{eqn | l = r | r = z_{xx} }} {{eqn | l = s | r = z_{xy} }} {{eqn | l = t | r = z_{yy} }} {{end-eqn}} with subscript denoting respective partial derivatives. In other words, its mean curvature has to vanish."}
+{"_id": "560", "title": "Principle of Induction applied to Interval of Naturally Ordered Semigroup", "text": "Let $\\left({S, \\circ, \\preceq}\\right)$ be a naturally ordered semigroup. Let $\\left[{p \\,.\\,.\\, q}\\right]$ be a closed interval of $\\left({S, \\circ, \\preceq}\\right)$. Let $T \\subseteq \\left[{p \\,.\\,.\\, q}\\right]$ such that the minimal element of $\\left[{p \\,.\\,.\\, q}\\right]$ is in $T$. Let: : $x \\in T: x \\prec q \\implies x \\circ 1 \\in T$ Then: : $T = \\left[{p \\,.\\,.\\, q}\\right]$"}
+{"_id": "16944", "title": "Lowest Common Multiple of Integers with Common Divisor", "text": "Let $b, d \\in \\Z_{>0}$ be (strictly) positive integers Then: :$\\lcm \\set {a b, a d} = a \\lcm \\set {b, d}$ where: :$a \\in \\Z_{>0}$ :$\\lcm \\set {b, d}$ denotes the lowest common multiple of $m$ and $n$."}
+{"_id": "16946", "title": "GCD of Sum and Difference of Integers", "text": ":$\\gcd \\set {a + b, a - b} \\ge \\gcd \\set {a, b}$"}
+{"_id": "8757", "title": "Inverse Hyperbolic Cotangent is Odd Function", "text": ":$\\map {\\coth^{-1} } {-x} = -\\coth^{-1} x$"}
+{"_id": "8783", "title": "Inverse Cosine of Imaginary Number", "text": ":$\\cos^{-1} x = \\pm \\, i \\cosh^{-1} x$"}
+{"_id": "8785", "title": "Inverse Tangent of Imaginary Number", "text": ":$\\tan^{-1} \\left({i x}\\right) = i \\tanh^{-1} x$"}
+{"_id": "16982", "title": "LCM of 3 Integers in terms of GCDs of Pairs of those Integers", "text": "Let $a, b, c \\in \\Z_{>0}$ be strictly positive integers. Then: :$\\lcm \\set {a, b, c} = \\dfrac {a b c \\gcd \\set {a, b, c} } {d_1 d_2 d_3}$ where: :$\\gcd$ denotes greatest common divisor :$\\lcm$ denotes lowest common multiple :$d_1 = \\gcd \\set {a, b}$ :$d_2 = \\gcd \\set {b, c}$ :$d_3 = \\gcd \\set {a, c}$"}
+{"_id": "599", "title": "Integer Multiplication is Well-Defined", "text": "Integer multiplication is well-defined."}
+{"_id": "8790", "title": "Inverse Hyperbolic Secant of Imaginary Number", "text": ":$\\sech^{-1} x = \\pm \\, i \\sec^{-1} x$"}
+{"_id": "16987", "title": "Sum of Sequence of Product of Fibonacci Number with Binomial Coefficient", "text": "Let $F_n$ denote the $n$th Fibonacci number. Then: {{begin-eqn}} {{eqn | lo= \\forall n \\in \\Z_{>0}: | l = F_{2 n} | r = \\sum_{k \\mathop = 1}^n \\dbinom n k F_k | c = }} {{eqn | r = \\dbinom n 1 F_1 + \\dbinom n 2 F_2 + \\dbinom n 3 F_3 + \\dotsb + \\dbinom n {n - 1} F_{n - 1} + \\dbinom n n F_n | c = }} {{end-eqn}} where $\\dbinom n k$ denotes a binomial coefficient."}
+{"_id": "8800", "title": "Cardano's Formula/Real Coefficients", "text": ":$(1): \\quad$ If $D > 0$, then one root is real and two are complex conjugates. :$(2): \\quad$ If $D = 0$, then all roots are real, and at least two are equal. :$(3): \\quad$ If $D < 0$, then all roots are real and unequal."}
+{"_id": "8801", "title": "Cardano's Formula/Trigonometric Form", "text": "Let $a, b, c, d \\in \\R$. Let the discriminant $D < 0$, where $D := Q^3 + R^2$. Then the solutions of $P$ can be expressed as: :$x_1 = 2 \\sqrt {-Q} \\map \\cos {\\dfrac \\theta 3} - \\dfrac b {3 a}$ :$x_2 = 2 \\sqrt {-Q} \\map \\cos {\\dfrac \\theta 3 + \\dfrac {2 \\pi} 3} - \\dfrac b {3 a}$ :$x_3 = 2 \\sqrt {-Q} \\map \\cos {\\dfrac \\theta 3 + \\dfrac {4 \\pi} 3} - \\dfrac b {3 a}$ where: : $\\cos \\theta = \\dfrac R {\\sqrt{-Q^3} }$"}
+{"_id": "8809", "title": "Triangle Inequality/Complex Numbers/General Result", "text": "Let $z_1, z_2, \\dotsc, z_n \\in \\C$ be complex numbers. Let $\\cmod z$ be the modulus of $z$. Then: :$\\cmod {z_1 + z_2 + \\dotsb + z_n} \\le \\cmod {z_1} + \\cmod {z_2} + \\dotsb + \\cmod {z_n}$"}
+{"_id": "8821", "title": "Substitution for Equivalent Subformula is Equivalent", "text": "Let $\\mathbf B$ a WFF of propositional logic. Let $\\mathbf A, \\mathbf A'$ be equivalent WFFs. Let $\\mathbf A$ be a subformula of $\\mathbf B$. Let $\\mathbf B' = \\mathbf B \\left({\\mathbf A \\,//\\, \\mathbf A'}\\right)$ be the substitution of $\\mathbf A'$ for $\\mathbf A$ in $\\mathbf B$. Then $\\mathbf B$ and $\\mathbf B'$ are equivalent."}
+{"_id": "17017", "title": "Congruence Modulo Power of p as Linear Combination of Congruences Modulo p", "text": "Let $p$ be a prime number. Let $S = \\set {a_1, a_2, \\ldots, a_p}$ be a complete residue system modulo $p$. Then for all integers $n \\in \\Z$ and non-negative integer $s \\in \\Z_{\\ge 0}$, there exists a congruence of the form: :$n \\equiv \\displaystyle \\sum_{j \\mathop = 0}^s b_j p^j \\pmod {p^{s + 1} }$ where $b_j \\in S$."}
+{"_id": "17023", "title": "Number of Modified Perfect Faro Shuffles to return Deck of Cards to Original Order/Examples/Deck of 62 Cards", "text": "Let $D$ be a deck of $62$ cards. Let $D$ be given a sequence of modified perfect faro shuffles. Then after $6$ such shuffles, the cards of $D$ will be in the same order they started in."}
+{"_id": "17025", "title": "Number of Modified Perfect Faro Shuffles to return Deck of Cards to Original Order/Examples/Deck of 12 Cards", "text": "Let $D$ be a deck of $12$ cards. Let $D$ be given a sequence of modified perfect faro shuffles. Then after $6$ such shuffles, the cards of $D$ will be in the same order they started in."}
+{"_id": "8842", "title": "Exclusive Or with Tautology", "text": ":$p \\oplus \\top \\dashv \\vdash \\neg p$"}
+{"_id": "17038", "title": "Difference of Two Even-Times Odd Powers", "text": "Let $\\F$ be one of the standard number systems, that is $\\Z, \\Q, \\R$ and so on. Let $n \\in \\Z_{> 0}$ be a (strictly) positive odd integer. Then: {{begin-eqn}} {{eqn | l = a^{2 n} - b^{2 n} | r = \\paren {a - b} \\paren {a + b} \\paren {\\sum_{j \\mathop = 0}^{n - 1} a^{n - j - 1} b^j} \\paren {\\sum_{j \\mathop = 0}^{n - 1} \\paren {-1}^j a^{n - j - 1} b^j} | c = }} {{eqn | r = \\paren {a - b} \\paren {a + b} \\paren {a^{n - 1} + a^{n - 2} b + a^{n - 3} b^2 + \\dotsb + a b^{n - 2} + b^{n - 1} } \\paren {a^{n - 1} - a^{n - 2} b + a^{n - 3} b^2 - \\dotsb - a b^{n - 2} + b^{n - 1} } | c = }} {{end-eqn}}"}
+{"_id": "17046", "title": "Existence of Real Polynomial with no Real Root", "text": "There exist polynomials in real numbers $\\R$ which have no roots in $\\R$."}
+{"_id": "673", "title": "GCD from Congruence Modulo m", "text": "Let $a, b \\in \\Z, m \\in \\N$. Let $a$ be congruent to $b$ modulo $m$. Then the GCD of $a$ and $m$ is equal to the GCD of $b$ and $m$. That is: :$a \\equiv b \\pmod m \\implies \\gcd \\set {a, m} = \\gcd \\set {b, m}$"}
+{"_id": "8877", "title": "Equivalence of Definitions of Closed Set in Metric Space", "text": "{{TFAE|def = Closed Set (Metric Space)|view = Closed Set|context = Metric Space|contextview = Metric Spaces}} Let $M = \\left({A, d}\\right)$ be a metric space. Let $H \\subseteq A$."}
+{"_id": "8881", "title": "Bolzano-Weierstrass Theorem/General Form", "text": "Every infinite bounded space in a real Euclidean space has at least one limit point."}
+{"_id": "693", "title": "Sum of Euler Phi Function over Divisors", "text": "Let $n \\in \\Z_{>0}$ be a strictly positive integer. Then $\\displaystyle \\sum_{d \\mathop \\divides n} \\map \\phi d = n$ where: :$\\displaystyle \\sum_{d \\mathop \\divides n}$ denotes the sum over all of the divisors of $n$ :$\\map \\phi d$ is the Euler $\\phi$ function, the number of integers less than $d$ that are prime to $d$. That is, the total of all the totients of all divisors of a number equals that number."}
+{"_id": "17078", "title": "Valuation Ideal is Maximal Ideal of Induced Valuation Ring/Corollary 1", "text": ":$\\OO$ is a local ring."}
+{"_id": "17089", "title": "Bessel's Correction", "text": "Let $X_1, X_2, \\ldots, X_n$ form a random sample from a population with mean $\\mu$ and variance $\\sigma^2$. Let: :$\\displaystyle \\bar X = \\frac 1 n \\sum_{i \\mathop = 1}^n X_i$ Then: :$\\displaystyle \\hat {\\sigma^2} = \\frac 1 {n - 1} \\sum_{i \\mathop = 1}^n \\paren {X_i - \\bar X}^2$ is an unbiased estimator of $\\sigma^2$."}
+{"_id": "8898", "title": "Sum of Cosines of Fractions of Pi", "text": "Let $n \\in \\Z$ such that $n > 1$. Then: :$\\displaystyle \\sum_{k \\mathop = 1}^{n - 1} \\cos \\frac {2 k \\pi} n = -1$"}
+{"_id": "17105", "title": "Area of Quadrilateral in Determinant Form", "text": "Let $A = \\tuple {x_1, y_1}$, $B = \\tuple {x_2, y_2}$, $C = \\tuple {x_3, y_3}$ and $D = \\tuple {x_4, y_4}$ be points in the Cartesian plane. Let $A$, $B$, $C$ and $D$ form the vertices of a quadrilateral. The area $\\mathcal A$ of $\\Box ABCD$ is given by: :$\\mathcal A = \\dfrac 1 2 \\paren {\\size {\\paren {\\begin{vmatrix} x_1 & y_1 & 1 \\\\ x_2 & y_2 & 1 \\\\ x_3 & y_3 & 1 \\\\ \\end{vmatrix} } } + \\size {\\paren {\\begin{vmatrix} x_1 & y_1 & 1 \\\\ x_4 & y_4 & 1 \\\\ x_3 & y_3 & 1 \\\\ \\end{vmatrix} } } }$"}
+{"_id": "17117", "title": "Equation for Perpendicular Bisector of Two Points", "text": "Let $\\tuple {x_1, y_1}$ and $\\tuple {y_1, y_2}$ be two points in the cartesian plane. Let $L$ be the perpendicular bisector of the straight line through $z_1$ and $z_2$ in the complex plane. $L$ can be expressed by the equation: :$y - \\dfrac {y_1 + y_2} 2 = \\dfrac {x_1 - x_2} {y_2 - y_1} \\paren {x - \\dfrac {x_1 + x_2} 2}$"}
+{"_id": "17122", "title": "Finite Order Elements of Infinite Abelian Group form Normal Subgroup", "text": "Let $G$ be an infinite abelian group. Let $H \\subseteq G$ be the subset of $G$ defined as: :$H := \\set {x \\in G: x \\text { is of finite order in } G}$ Then $H$ forms a normal subgroup of $G$."}
+{"_id": "17131", "title": "Subgroup of Index 3 does not necessarily contain all Cubes of Group Elements", "text": "Let $G$ be a group. Let $H$ be a subgroup of $G$ whose index is $3$. Then it is not necessarily the case that: :$\\forall x \\in G: x^3 \\in H$"}
+{"_id": "8951", "title": "Complex Cross Product Distributes over Addition", "text": "Let $z_1, z_2, z_3 \\in \\C$ be complex numbers. Then: :$z_1 \\times \\paren {z_2 + z_3} = z_1 \\times z_2 + z_1 \\times z_3$ where $\\times$ denotes cross product."}
+{"_id": "8954", "title": "Finite Union of Open Sets in Complex Plane is Open", "text": "Let $S_1, S_2, \\ldots, S_n$ be open sets of $\\C$. Then $\\displaystyle \\bigcup_{k \\mathop = 1}^n S_k$ is an open set of $\\C$."}
+{"_id": "8955", "title": "Limit Point of Set in Complex Plane not Element is Boundary Point", "text": "Let $S \\subseteq \\C$ be a subset of the complex plane. Let $z \\in \\C$ be a limit point of $S$ such that $z \\notin S$. Then $z$ is a boundary point of $S$."}
+{"_id": "768", "title": "Order of Isomorphic Image of Group Element", "text": "Let $G$ and $H$ be groups whose identities are $e_G$ and $e_H$. Let $\\phi: G \\to H$ be a group isomorphism. Then: :$a \\in G \\implies \\order {\\map \\phi a} = \\order a$"}
+{"_id": "17151", "title": "Ring is Subring of Itself", "text": "Let $R$ be a ring. Then $R$ is a subring of itself."}
+{"_id": "776", "title": "Cyclic Group Elements whose Powers equal Identity", "text": "Let $G$ be a cyclic group whose identity is $e$ and whose order is $n$. Let $d \\divides n$. Then there exist exactly $d$ elements $x \\in G$ satisfying the equation $x^d = e$. These are the elements of the group $G_d$ generated by $g^{n / d}$: :$G_d = \\gen {g^{n / d} }$"}
+{"_id": "8971", "title": "Conditional iff Biconditional of Antecedent with Conjunction", "text": ":$p \\implies q \\dashv \\vdash p \\iff \\left({p \\land q}\\right)$"}
+{"_id": "17164", "title": "Element in Integral Domain is Unit iff Principal Ideal is Whole Domain", "text": ":$x \\in U_D \\iff \\ideal x = D$"}
+{"_id": "8973", "title": "Conjunction iff Biconditional of Biconditional with Disjunction", "text": ":$p \\land q \\dashv \\vdash \\left({p \\iff q}\\right) \\iff \\left({p \\lor q}\\right)$"}
+{"_id": "785", "title": "Group Generated by Normal Intersection is Normal", "text": "Let $I$ be an indexing set, and $\\left\\{{N_i: i \\in I}\\right\\}$ be a set of normal subgroups of the group $G$. Then $\\left \\langle {N_i: i \\in I} \\right \\rangle$ is a normal subgroup of $G$."}
+{"_id": "796", "title": "Abelian Quotient Group", "text": "Let $G$ be a group. Let $H$ be a normal subgroup of $G$. Let $G / H$ denote the quotient group of $G$ by $H$. Then $G / H$ is abelian {{iff}} $H$ contains every element of $G$ of the form $a b a^{-1} b^{-1}$ where $a, b \\in G$."}
+{"_id": "798", "title": "Generator of Quotient Groups", "text": "Let $N \\lhd G$ be a normal subgroup of $G$. Let: :$N \\le A \\le G$ :$N \\le B \\le G$ For a subgroup $H$ of $G$, let $\\alpha$ be the bijection defined as: :$\\map \\alpha H = \\set {h N: h \\in H}$ Then: :$\\map \\alpha {\\gen {A, B} } = \\gen {\\map \\alpha A, \\map \\alpha B}$ where $\\gen {A, B}$ denotes the subgroup of $G$ generated by $\\set {A, B}$."}
+{"_id": "808", "title": "Inner Automorphism Group is Isomorphic to Quotient Group with Center", "text": "Let $G$ be a group. Let $\\Inn G$ be the inner automorphism group of $G$. Let $\\map Z G$ be the center of $G$. Let $G / \\map Z G$ be the quotient group of $G$ by $\\map Z G$. Then $G / \\map Z G \\cong \\Inn G$."}
+{"_id": "9001", "title": "Real Natural Logarithm is Restriction of Complex Natural Logarithm", "text": "Let $\\ln: \\C_{\\ne 0} \\to \\C$ be the complex natural logarithm. Let $\\ln': \\R_{>0} \\to \\R$ be the real natural logarithm. Then: :$\\ln' = \\ln \\restriction_{\\R_{>0} \\times \\R}$ That is, the real natural logarithm is the restriction of the complex natural logarithm."}
+{"_id": "17202", "title": "Inverse of Central Unit of Ring is in Center", "text": "Let $R$ be a ring. Let $\\map Z R$ denote the center of $R$. Let $u \\in R$ be a unit of $R$. Then: :$u \\in \\map Z R \\implies u^{-1} \\in \\map Z R$"}
+{"_id": "821", "title": "Commutativity of Group Direct Product", "text": "Let $\\struct {G, \\circ_g}$ and $\\struct {H, \\circ_h}$ be groups. Let $\\struct {G \\times H, \\circ}$ be the group direct product of $\\struct {G, \\circ_g}$ and $\\struct {H, \\circ_h}$, where the operation $\\circ$ is defined as: :$\\tuple {g_1, h_1} \\circ \\tuple {g_2, h_2} = \\tuple {g_1 \\circ_g g_2, h_1 \\circ_h h_2}$ Let $\\struct {H \\times G, \\star}$ be the group direct product of $\\struct {H, \\circ_h}$ and $\\struct {G, \\circ_g}$, where the operation $\\star$ is defined as: :$\\tuple {h_1, g_1} \\star \\tuple {h_2, g_2} = \\tuple {h_1 \\circ_h h_2, g_1 \\circ_g g_2}$ The group direct product $\\struct {G \\times H, \\circ}$ is isomorphic to the $\\struct {H \\times G, \\star}$."}
+{"_id": "823", "title": "Associativity of Group Direct Product", "text": "The group direct product $G \\times \\paren {H \\times K}$ is (group) isomorphic to $\\paren {G \\times H} \\times K$."}
+{"_id": "833", "title": "Cyclic Group of Order 6", "text": "Let $C_n$ be the cyclic group of order $n$. Then: : $C_2 \\times C_3 \\cong C_6$ : $C_6$ is the internal group direct product of $C_2$ and $C_3$."}
+{"_id": "837", "title": "Direct Product of Central Subgroup with Inverse Isomorphism is Central Subgroup", "text": "Let $G$ and $H$ be groups. Let $\\map Z G$ denote the center of $G$. Let $Z$ and $W$ be central subgroups of $G$ and $H$ respectively. Let: :$Z \\cong W$ where $\\cong$ denotes isomorphism. Let such a group isomorphism be $\\theta: Z \\to W$. Let $X$ be the set defined as: :$X = \\set {\\tuple {x, \\map \\theta x^{-1} }: x \\in Z}$ Then $X$ is a central subgroup of $G \\times H$."}
+{"_id": "17224", "title": "Non-Commutative Ring with Unity and 2 Ideals not necessarily Division Ring", "text": "Let $\\struct {R, +, \\circ}$ be a ring with unity whose zero is $0_F$ and whose unity is $1_F$. Let $\\struct {R, +, \\circ}$ specifically not be commutative. Let $\\struct {R, +, \\circ}$ be such that the only ideals of $\\struct {R, +, \\circ}$ are $\\set {0_R}$ and $R$ itself. Then it is not necessarily the case that $\\struct {R, +, \\circ}$ is a division ring."}
+{"_id": "9035", "title": "Equivalence of Definitions of Complex Inverse Hyperbolic Tangent", "text": "{{TFAE|def = Complex Inverse Hyperbolic Tangent}} Let $S$ be the subset of the complex plane: :$S = \\C \\setminus \\left\\{{-1 + 0 i, 1 + 0 i}\\right\\}$"}
+{"_id": "9037", "title": "Natural Numbers form Inductive Set", "text": "Let $\\N$ denote the natural numbers as subset of the real numbers $\\R$. Then $\\N$ is an inductive set."}
+{"_id": "851", "title": "Additive Group of Reals is Normal Subgroup of Complex", "text": "Let $\\struct {\\R, +}$ be the additive group of real numbers. Let $\\struct {\\C, +}$ be the additive group of complex numbers. Then $\\struct {\\R, +}$ is a normal subgroup of $\\struct {\\C, +}$."}
+{"_id": "857", "title": "Generators of Additive Group of Integers", "text": "The only generators of the additive group of integers $\\struct {\\Z, +}$ are $1$ and $-1$."}
+{"_id": "17244", "title": "Prime Power Mapping on Galois Field is Automorphism", "text": "Let $\\GF$ be a Galois field whose zero is $0_\\GF$ and whose characteristic is $p$. Let $\\sigma: \\GF \\to \\GF$ be defined as: :$\\forall x \\in \\GF: \\map \\sigma x = x^p$ Then $\\sigma$ is an automorphism of $\\GF$."}
+{"_id": "17246", "title": "Principal Ideal Domain cannot have Infinite Strictly Increasing Sequence of Ideals", "text": "Let $\\struct {D, +, \\circ}$ be a principal ideal domain. Then $D$ cannot have an infinite sequence of ideals $\\sequence {j_n}_{n \\mathop \\in \\N}$ such that: :$\\forall n \\in \\N: J_n \\subsetneq j_{n + 1}$"}
+{"_id": "17249", "title": "Field Norm of Complex Number is not Norm", "text": "Let $\\C$ denote the set of complex numbers. Let $N: \\C \\to \\R_{\\ge 0}$ denote the field norm on complex numbers: :$\\forall z \\in \\C: \\map N z = \\cmod z^2$ where $\\cmod z$ denotes the complex modulus of $z$. Then $N$ is not a norm on $\\C$."}
+{"_id": "874", "title": "Internal Angles of Square", "text": "The internal angles of a square are right angles."}
+{"_id": "17261", "title": "Ideal of Ring of Polynomials over Field has Unique Monic Polynomial forming Principal Ideal", "text": "Let $F$ be a field. Let $F \\sqbrk X$ be the ring of polynomials in $X$ over $F$. Let $J$ be a non-null ideal of $F \\sqbrk X$. Then there exists exactly one monic polynomial $f \\in F \\sqbrk X$ such that: :$J = \\ideal f$ where $\\ideal f$ is the principal ideal generated by $f$ in $F \\sqbrk X$."}
+{"_id": "878", "title": "Fixed Elements form 1-Cycles", "text": "Let $S_n$ denote the symmetric group on $n$ letters. Let $\\pi \\in S_n$. Let $\\Fix \\pi$ be the set of elements fixed by $\\pi$. For any $\\pi \\in S_n$, all the elements of $\\Fix \\pi$ form $1$-cycles."}
+{"_id": "17263", "title": "Polynomial X^2 + 1 is Irreducible in Ring of Real Polynomials", "text": "Let $\\R \\sqbrk X$ be the ring of polynomials in $X$ over the real numbers $\\R$. Then the polynomial $X^2 + 1$ is an irreducible element of $\\R \\sqbrk X$."}
+{"_id": "9073", "title": "Equivalence of Definitions of Concave Real Function", "text": "Let $f$ be a real function which is defined on a real interval $I$. {{TFAE|def = Concave Real Function}}"}
+{"_id": "17267", "title": "Ring Subtraction equals Zero iff Elements are Equal", "text": "Let $\\struct {R, +, \\circ}$ be a ring whose zero is $0_R$ Then: :$\\forall a, b \\in R: a - b = 0_R \\iff a = b$ where $a - b$ denotes ring subtraction."}
+{"_id": "884", "title": "Powers of Disjoint Permutations", "text": "Let $S_n$ denote the symmetric group on $n$ letters. Let $\\rho, \\sigma$ be disjoint permutations. Then: : $\\forall k \\in \\Z: \\paren {\\sigma \\rho}^k = \\sigma^k \\rho^k$"}
+{"_id": "9078", "title": "Equivalence of Definitions of Strictly Concave Real Function", "text": "Let $f$ be a real function which is defined on a real interval $I$. {{TFAE|def = Strictly Concave Real Function}}"}
+{"_id": "9079", "title": "Equivalence of Definitions of Strictly Convex Real Function", "text": "Let $f$ be a real function which is defined on a real interval $I$. {{TFAE|def = Strictly Convex Real Function}}"}
+{"_id": "896", "title": "Group Action on Subgroup of Symmetric Group", "text": "Let $S_n$ be the symmetric group of $n$ elements. Let $H$ be a subgroup of $S_n$. Let $X$ be any set with $n$ elements. Then $H$ acts on $X$ as a group of transformations on $X$."}
+{"_id": "897", "title": "Kernel of Group Action is Normal Subgroup", "text": "Let $G$ be a group whose identity is $e$. Let $X$ be a set. Let $\\phi: G \\times X \\to X$ be a group action. Let $G_0$ denote the kernel of $\\phi$. Then $G_0$ is a normal subgroup of $G$."}
+{"_id": "17289", "title": "Equivalence of Definitions of Well-Ordered Integral Domain", "text": "{{TFAE|def = Well-Ordered Integral Domain}} Let $\\struct {D, +, \\times \\le}$ be an ordered integral domain whose zero is $0_D$."}
+{"_id": "17294", "title": "Second Principle of Finite Induction/Zero-Based", "text": "Let $S \\subseteq \\N$ be a subset of the natural numbers. Suppose that: :$(1): \\quad 0 \\in S$ :$(2): \\quad \\forall n \\in \\N: \\paren {\\forall k: 0 \\le k \\le n \\implies k \\in S} \\implies n + 1 \\in S$ Then: :$S = \\N$"}
+{"_id": "9104", "title": "Integral of Exponent of Half Square over Reals", "text": ":$\\displaystyle \\int_{\\mathop \\to -\\infty}^{\\mathop \\to +\\infty} e^{- x^2 / 2} \\rd x = \\sqrt {2 \\pi}$"}
+{"_id": "920", "title": "Cayley's Representation Theorem", "text": "Let $S_n$ denote the symmetric group on $n$ letters. Every finite group is isomorphic to a subgroup of $S_n$ for some $n \\in \\Z$."}
+{"_id": "17310", "title": "Coprimality Relation is not Antisymmetric", "text": ":$\\perp$ is not antisymmetric."}
+{"_id": "17311", "title": "Coprimality Relation is Non-Transitive", "text": ":$\\perp$ is non-transitive."}
+{"_id": "932", "title": "Canonical Injection into Cartesian Product of Modules", "text": "Let $G$ be the cartesian product of a sequence $\\sequence {G_n}$ of $R$-modules. Then for each $j \\in \\closedint 1 n$, the canonical injection $\\inj_j$ from $G_j$ into $G$ is a monomorphism."}
+{"_id": "17318", "title": "Gaussian Integers does not form Subfield of Complex Numbers", "text": "The ring of Gaussian integers: :$\\struct {\\Z \\sqbrk i, +, \\times}$ is not a subfield of $\\C$."}
+{"_id": "17316", "title": "Even Integers form Commutative Ring", "text": "Let $2 \\Z$ be the set of even integers. Then $\\struct {2 \\Z, +, \\times}$ is a commutative ring. However, $\\struct {2 \\Z, +, \\times}$ is not an integral domain."}
+{"_id": "9142", "title": "Leibniz's Rule/One Variable/Second Derivative", "text": "Let $f$ and $g$ be real functions defined on the open interval $I$. Let $x \\in I$ be a point in $I$ at which both $f$ and $g$ are twice differentiable. Then: :$\\paren {\\map f x \\, \\map g x}'' = \\map f x \\, \\map {g''} x + 2 \\map {f'} x \\, \\map {g'} x + \\map {f''} x \\, \\map g x$"}
+{"_id": "17357", "title": "Vector Space on Cartesian Product is Vector Space", "text": "Let $\\struct {K, +, \\circ}$ be a division ring. Let $n \\in \\N_{>0}$. Let $\\struct {K^n, +, \\times}_K$ be the '''$K$-vector space $K^n$'''. Then $\\struct {K^n, +, \\times}_K$ is a $K$-vector space."}
+{"_id": "977", "title": "Ring of Linear Operators", "text": "Let $\\map {\\LL_R} G$ be the set of all linear operators on $G$. {{explain|the precise nature of $G$}} Let $\\phi \\circ \\psi$ denote the composition of the two linear operators $\\phi$ and $\\psi$. Then $\\struct {\\map {\\LL_R} G, +, \\circ}$ is a ring."}
+{"_id": "17362", "title": "No Non-Trivial Norm on Rational Numbers is Complete", "text": "No non-trivial norm on the set of the rational numbers is complete."}
+{"_id": "980", "title": "Inverse Evaluation Isomorphism of Annihilator", "text": "Let $R$ be a commutative ring. Let $G$ be a module over $R$ whose dimension is finite. Let $G^*$ be the algebraic dual of $G$. Let $G^{**}$ be the algebraic dual of $G^*$. Let $N$ be a submodule of $G^*$. Let $J$ be the evaluation isomorphism from $G$ onto $G^{**}$. Let $N^\\circ$ be the annihilator of $N$. Then: :$J^{-1} \\left({N^\\circ}\\right) = \\left\\{{x \\in G: \\forall t' \\in N: t' \\left({x}\\right) = 0}\\right\\}$"}
+{"_id": "987", "title": "Complex Numbers form Vector Space over Reals", "text": "Let $\\R$ be the set of real numbers. Let $\\C$ be the set of complex numbers. Then the $\\R$-module $\\C$ is a vector space."}
+{"_id": "17377", "title": "Dimension of Vector Space on Cartesian Product", "text": "Let $\\struct {K, +, \\circ}$ be a division ring. Let $n \\in \\N_{>0}$. Let $\\mathbf V := \\struct {K^n, +, \\times}_K$ be the '''$K$-vector space $K^n$'''. Then the dimension of $\\mathbf V$ is $n$."}
+{"_id": "995", "title": "Finitely Generated Vector Space has Basis", "text": "Let $K$ be a division ring. Let $V$ be a finitely generated vector space over $K$. Then $V$ has a finite basis."}
+{"_id": "9197", "title": "Primitive of Hyperbolic Cosecant Function/Logarithm Form", "text": ":$\\displaystyle \\int \\csch x \\rd x = -\\ln \\size {\\csch x + \\coth x} + C$ where $\\csch x + \\coth x \\ne 0$."}
+{"_id": "9199", "title": "Primitive of Hyperbolic Cosecant Function/Inverse Hyperbolic Cotangent Form", "text": ":$\\displaystyle \\int \\csch x \\rd x = -2 \\map {\\coth^{-1} } {e^x} + C$"}
+{"_id": "9210", "title": "Primitive of Product of Hyperbolic Secant and Tangent", "text": ":$\\ds \\int \\sech x \\tanh x \\rd x = -\\sech x + C$ where $C$ is an arbitrary constant."}
+{"_id": "17404", "title": "Existence of Subgroup whose Index is Prime Power", "text": "Let $G$ be a finite group. Let $H$ be a normal subgroup of $G$ which has a finite index in $G$. Let: :$p^k \\divides \\index G H$ where: :$p$ is a prime number :$k \\in \\Z_{>0}$ is a (strictly) positive integer :$\\divides$ denotes divisibility. Then $G$ contains a subgroup $K$ such that: :$\\index K H = p^k$"}
+{"_id": "1021", "title": "Condition for Planes to be Parallel", "text": "Let $P: \\alpha_1 x_1 + \\alpha_2 x_2 + \\alpha_3 x_3 = \\gamma$ be a plane in $\\R^3$. Then the plane $P'$ is parallel to $P$ iff there is a $\\gamma' \\in \\R$ such that: :$P' = \\left\\{{ \\left({x_1, x_2, x_3}\\right) \\in \\R^3 : \\alpha_1 x_1 + \\alpha_2 x_2 + \\alpha_3 x_3 = \\gamma' }\\right\\}$"}
+{"_id": "9214", "title": "Primitive of Reciprocal of x squared minus a squared/Logarithm Form 2", "text": ":$\\ds \\int \\frac {\\d x} {x^2 - a^2} = \\frac 1 {2 a} \\ln \\size {\\frac {x - a} {x + a} } + C$"}
+{"_id": "1036", "title": "Invertible Matrix Corresponds with Change of Basis", "text": "Let $R$ be a commutative ring with unity. Let $G$ be an $n$-dimensional unitary $R$-module. Let $\\left \\langle {a_n} \\right \\rangle$ be an ordered basis of $G$. Let $\\mathbf P = \\left[{\\alpha}\\right]_{n}$ be a square matrix of order $n$ over $R$. Let $\\displaystyle \\forall j \\in \\left[{1 \\,.\\,.\\, n}\\right]: b_j = \\sum_{i \\mathop = 1}^n \\alpha_{i j} a_i$. Then $\\left \\langle {b_n} \\right \\rangle$ is an ordered basis of $G$ iff $\\mathbf P$ is invertible."}
+{"_id": "1039", "title": "Matrix Similarity is Equivalence Relation", "text": "Matrix similarity is an equivalence relation."}
+{"_id": "1040", "title": "Similar Matrices are Equivalent", "text": "If two square matrices over a ring with unity $R$ are similar, then they are equivalent. It follows directly that every equivalence class for the relation of similarity on $\\mathcal M_R \\left({n}\\right)$ is contained in an equivalence class for the relation of matrix equivalence. Here, $\\mathcal M_R \\left({n}\\right)$ denotes the $n \\times n$ matrix space over $R$."}
+{"_id": "1044", "title": "Rank is Dimension of Subspace", "text": "Let $K$ be a field. Let $\\mathbf A$ be an $m \\times n$ matrix over $K$. Then the rank of $\\mathbf A$ is the dimension of the subspace of $K^n$ generated by the rows of $\\mathbf A$."}
+{"_id": "9238", "title": "Primitive of Function of Nth Root of a x + b", "text": ":$\\displaystyle \\int F \\left({\\sqrt [n] {a x + b}}\\right) \\ \\mathrm d x = \\frac n a \\int u^{n-1} F \\left({u}\\right) \\ \\mathrm d u$ where $u = \\sqrt [n] {a x + b}$."}
+{"_id": "9240", "title": "Primitive of Function of Root of a squared plus x squared", "text": ":$\\displaystyle \\int F \\left({\\sqrt {a^2 + x^2}}\\right) \\ \\mathrm d x = a \\int \\sec^2 u \\ F \\left({a \\sec u}\\right) \\ \\mathrm d u$ where $x = a \\tan u$."}
+{"_id": "9243", "title": "Primitive of Function of Natural Logarithm", "text": ":$\\displaystyle \\int F \\left({\\ln x}\\right) \\rd x = \\int F \\left({u}\\right) e^u \\rd u$ where $u = \\ln x$."}
+{"_id": "9250", "title": "Primitive of Function of Arccosecant", "text": ":$\\displaystyle \\int F \\left({\\operatorname{arccsc} \\frac x a}\\right) \\ \\mathrm d x = -a \\int F \\left({u}\\right) \\left\\vert{\\csc u}\\right\\vert \\cot u \\ \\mathrm d u$ where $u = \\operatorname{arccsc} \\dfrac x a$."}
+{"_id": "17456", "title": "Subtraction of Subring is Subtraction of Ring", "text": "Let $\\struct {R, +, \\circ}$ be an ring. For each $x, y \\in R$ let $x - y$ denote the subtraction of $x$ and $y$ in $R$. Let $\\struct {S, + {\\restriction_S}, \\circ {\\restriction_S}}$ be a subring of $R$. For each $x, y \\in S$ let $x \\sim y$ denote the subtraction of $x$ and $y$ in $S$. Then: :$\\forall x, y \\in S: x \\sim y = x - y$"}
+{"_id": "17463", "title": "Area between Smooth Curve and Line is Maximized by Semicircle", "text": "Let $y$ be a smooth curve, embedded in $2$-dimensional Euclidean space. Let $y$ have a total length of $l$. Let it be contained in the upper half-plane with an exception of endpoints, which are on the $x$-axis. Suppose, $y$, together with a line segment connecting $y$'s endpoints, maximizes the enclosed area. Then $y$ is a semicircle."}
+{"_id": "1082", "title": "Unique Representation in Polynomial Forms", "text": "Let $\\struct {R, +, \\circ}$ be a commutative ring with unity whose zero is $0_R$ and whose unity is $1_R$. Let $\\struct {D, +, \\circ}$ be an integral subdomain of $R$. Let $X \\in R$ be transcendental over $D$. Let $D \\sqbrk X$ be the ring of polynomials in $X$ over $D$. Then each non-zero member of $D \\left[{X}\\right]$ can be expressed in just one way in the form: :$\\ds f \\in D \\sqbrk X: f = \\sum_{k \\mathop = 0}^n {a_k \\circ X^k}$"}
+{"_id": "1084", "title": "Rings of Polynomials in Ring Elements are Isomorphic", "text": "Let $R_1, R_2$ be commutative rings with unity. Let $D$ be an integral subdomain of both $R_1$ and $R_2$. Let $X_1, X_2 \\in R$ be transcendental over $D$. Let $D \\sqbrk {X_1}, D \\sqbrk {X_2}$ be the rings of polynomials in $X_1$ and $X_2$ over $D$. Then $D \\sqbrk {X_1}$ is isomorphic to $D \\sqbrk {X_2}$."}
+{"_id": "9278", "title": "Laplace Transform of Higher Order Derivatives", "text": "{{begin-eqn}} {{eqn | l = \\laptrans {\\map {f^{\\paren n} } t} | r = s^n \\laptrans {\\map f t} - \\sum_{j \\mathop = 1}^n s^{j - 1} \\map {f^{\\paren {n - j} } } 0 }} {{eqn | r = s^n \\map F s - s^{n - 1} \\, \\map f 0 - s^{n - 2} \\, \\map {f'} 0 - s^{n - 3} \\, \\map {f''} 0 - \\ldots - s \\, \\map {f^{\\paren {n - 2} } } 0 - \\map {f^{\\paren {n - 1} } } 0 }} {{end-eqn}}"}
+{"_id": "17481", "title": "Laplace Transform of Error Function", "text": ":$\\laptrans {\\map \\erf t} = \\dfrac 1 s \\, \\map \\exp {\\dfrac {s^2} 4} \\, \\map \\erfc {\\dfrac s 2}$ where: :$\\laptrans f$ denotes the Laplace transform of the function $f$ :$\\erf$ denotes the error function :$\\erfc$ denotes the complementary error function :$\\exp$ denotes the exponential function."}
+{"_id": "17485", "title": "Laplace Transform of Exponential Integral Function", "text": ":$\\laptrans {\\map \\Ei t} = \\dfrac {\\map \\ln {s + 1} } s$ where: :$\\laptrans f$ denotes the Laplace transform of the function $f$ :$\\Ei$ denotes the exponential integral function."}
+{"_id": "17488", "title": "Laplace Transform of Shifted Dirac Delta Function", "text": "Let $\\map \\delta t$ denote the Dirac delta function. The Laplace transform of $\\map \\delta {t - a}$ is given by: :$\\laptrans {\\map \\delta {t - a} } = e^{-a s}$"}
+{"_id": "9301", "title": "Primitive of x over Root of a x + b", "text": ":$\\displaystyle \\int \\frac {x \\ \\mathrm d x} {\\sqrt{a x + b} } = \\frac {2 \\left({a x - 2 b}\\right) \\sqrt{a x + b} } {3 a^2}$"}
+{"_id": "17495", "title": "Laplace Transform of t by Sine a t", "text": "Let $\\sin$ denote the real sine function. Let $\\laptrans f$ denote the Laplace transform of a real function $f$. Then: :$\\laptrans {t \\sin a t} = \\dfrac {2 a s} {\\paren {s^2 + a^2}^2}$"}
+{"_id": "17494", "title": "Laplace Transform of Sine of t over t/Corollary", "text": ":$\\laptrans {\\dfrac {\\sin a t} t} = \\arctan \\dfrac a s$"}
+{"_id": "17529", "title": "Laplace Transform of Natural Logarithm", "text": ":$\\laptrans {\\ln t} = \\dfrac {\\map {\\Gamma'} 1 - \\ln s} s = -\\dfrac {\\gamma + \\ln s} s$ where: :$\\laptrans f$ denotes the Laplace transform of the function $f$ :$\\Gamma$ denotes the Gamma function :$\\gamma$ denotes the Euler-Mascheroni constant."}
+{"_id": "17533", "title": "Convolution Theorem", "text": "Let $\\mathbb F \\in \\set {\\R, \\C}$. Let $f: \\R \\to \\F$ and $g: \\R \\to \\F$ be functions. Let their Laplace transforms $\\laptrans {\\map f t} = \\map F s$ and $\\laptrans {\\map g t} = \\map G s$ exist. Then: :$\\map F s \\map G s = \\displaystyle \\laptrans {\\int_0^t \\map f u \\map g {t - u} \\rd u}$"}
+{"_id": "9352", "title": "Primitive of p x + q over Root of a x + b", "text": ":$\\displaystyle \\int \\frac {p x + q} {\\sqrt {a x + b} } \\rd x = \\frac {2 \\paren {a p x + 3 a q - 2 b p} } {3 a^2} \\sqrt{a x + b}$"}
+{"_id": "1206", "title": "Negative of Supremum is Infimum of Negatives", "text": "Let $S$ be a subset of the real numbers $\\R$. Let $S$ be bounded above. Then: :$(1): \\quad \\set {x \\in \\R: -x \\in S}$ is bounded below :$(2): \\quad \\displaystyle -\\sup_{x \\mathop \\in S} x = \\map {\\inf_{x \\mathop \\in S} } {-x}$ where $\\sup$ and $\\inf$ denote the supremum and infimum respectively."}
+{"_id": "17590", "title": "Propagation of Light in Inhomogeneous Medium", "text": "Let $v: \\R^3 \\to \\R$ be a real function. Let $M$ be a 3-dimensional Euclidean space. Let $\\gamma:t \\in \\R \\to M$ be a smooth curve embedded in $M$, where $t$ is time. Denote its derivative {{WRT}} time by $v$. Suppose $M$ is filled with an optically inhomogeneous medium such that at each point speed of light is $v = \\map v {x, y, z}$ Suppose $\\map y x$ and $\\map z x$ are real functions. Let the light move according to Fermat's principle. Then equations of motion have the following form: :$\\dfrac {\\partial v} {\\partial y} \\dfrac {\\sqrt {1 + y'^2 + z'^2} } {v^2} + \\dfrac \\d {\\d x} \\dfrac {y'} {v \\sqrt {1 + y'^2 + z'^2} } = 0$ :$\\dfrac {\\partial v} {\\partial z} \\dfrac {\\sqrt {1 + y'^2 + z'^2} } {v^2} + \\dfrac \\d {\\d x} \\dfrac {z'} {v \\sqrt {1 + y'^2 + z'^2} } = 0$"}
+{"_id": "9403", "title": "Primitive of Reciprocal of x by Power of x squared minus a squared", "text": ":$\\displaystyle \\int \\frac {\\mathrm d x} {x \\left({x^2 - a^2}\\right)^n} = \\frac {-1} {2 \\left({n - 1}\\right) a^2 \\left({x^2 - a^2}\\right)^{n - 1} } - \\frac 1 {a^2} \\int \\frac {\\mathrm d x} {x \\left({x^2 - a^2}\\right)^{n - 1} }$ for $x^2 > a^2$."}
+{"_id": "9405", "title": "Primitive of Reciprocal of Power of x by Power of x squared minus a squared", "text": ":$\\displaystyle \\int \\frac {\\d x} {x^m \\paren {x^2 - a^2}^n} = \\frac 1 {a^2} \\int \\frac {\\d x} {x^{m - 2} \\paren {x^2 - a^2}^n} - \\frac 1 {a^2} \\int \\frac {\\d x} {x^m \\paren {x^2 - a^2}^{n - 1} }$ for $x^2 > a^2$."}
+{"_id": "9408", "title": "Signum Function is Quotient of Number with Absolute Value", "text": "Let $x \\in \\R_{\\ne 0}$ be a non-zero real number. Then: :$\\operatorname{sgn} \\left({x}\\right) = \\dfrac x {\\left\\vert{x}\\right\\vert} = \\dfrac {\\left\\vert{x}\\right\\vert} x$ where: :$\\operatorname{sgn} \\left({x}\\right)$ denotes the signum function of $x$ :$\\left\\vert{x}\\right\\vert$ denotes the absolute value of $x$."}
+{"_id": "17602", "title": "Local Basis Generated from Neighborhood Basis", "text": "Let $T = \\struct {S, \\tau}$ be a topological space. Let $x$ be an element of $S$. Let $\\BB$ be a neighborhood basis of $x$. For any subset $A \\subseteq S$, let $A^\\circ$ denote the interior of $A$. Then the set: :$\\BB' = \\set {H^\\circ: H \\in B}$ is a local basis of $x$."}
+{"_id": "17609", "title": "Excess Kurtosis of Bernoulli Distribution", "text": "Let $X$ be a discrete random variable with a Bernoulli distribution with parameter $p$. Then the excess kurtosis $\\gamma_2$ of $X$ is given by: :$\\gamma_2 = \\dfrac {1 - 6 p q} {p q}$ where $q = 1 - p$."}
+{"_id": "17612", "title": "Skewness of Beta Distribution", "text": "Let $X \\sim \\BetaDist \\alpha \\beta$ for some $\\alpha, \\beta > 0$, where $\\operatorname {Beta}$ denotes the Beta distribution. Then the skewness $\\gamma_1$ of $X$ is given by: :$\\gamma_1 = \\dfrac {2 \\paren {\\beta - \\alpha} \\sqrt {\\alpha + \\beta + 1} } {\\paren {\\alpha + \\beta + 2} \\sqrt {\\alpha \\beta} }$"}
+{"_id": "9423", "title": "Primitive of x over Power of a squared minus x squared", "text": ":$\\displaystyle \\int \\frac {x \\rd x} {\\paren {a^2 - x^2}^n} = \\frac 1 {2 \\paren {n - 1} \\paren {a^2 - x^2}^{n - 1} }$ for $x^2 < a^2$."}
+{"_id": "9424", "title": "Primitive of Reciprocal of x by Power of a squared minus x squared", "text": ":$\\displaystyle \\int \\frac {\\mathrm d x} {x \\left({a^2 - x^2}\\right)^n} = \\frac 1 {2 \\left({n - 1}\\right) a^2 \\left({a^2 - x^2}\\right)^{n - 1} } + \\frac 1 {a^2} \\int \\frac {\\mathrm d x} {x \\left({a^2 - x^2}\\right)^{n - 1} }$ for $x^2 < a^2$."}
+{"_id": "9434", "title": "Primitive of x squared by Root of x squared plus a squared", "text": ":$\\displaystyle \\int x^2 \\sqrt {x^2 + a^2} \\rd x = \\frac {x \\paren {\\sqrt {x^2 + a^2} }^3} 4 - \\frac {a^2 x \\sqrt {x^2 + a^2} } 8 - \\frac {a^4} 8 \\map \\ln {x + \\sqrt {x^2 + a^2} } + C$"}
+{"_id": "17628", "title": "Sum of Squares of Standard Gaussian Random Variables has Chi-Squared Distribution", "text": "Let $X_1, X_2, \\ldots, X_n$ be independent random variables. Let $X_i \\sim \\Gaussian 0 1$ for $1 \\le i \\le n$ where $\\Gaussian 0 1$ is the standard Gaussian Distribution. Then: :$\\displaystyle \\sum_{i \\mathop = 1}^n X^2_i \\sim \\chi^2_n$ where $\\chi^2_n$ is the chi-squared distribution with $n$ degrees of freedom."}
+{"_id": "9441", "title": "Primitive of x squared over Root of x squared plus a squared cubed", "text": ":$\\displaystyle \\int \\frac {x^2 \\ \\mathrm d x} {\\left({\\sqrt {x^2 + a^2} }\\right)^3} = \\frac {-x} {\\sqrt {x^2 + a^2} } + \\ln \\left({x + \\sqrt {x^2 + a^2} }\\right) + C$"}
+{"_id": "9444", "title": "Primitive of Reciprocal of x squared by Root of x squared plus a squared cubed", "text": ":$\\displaystyle \\int \\frac {\\d x} {x^2 \\paren {\\sqrt {x^2 + a^2} }^3} = \\frac {-\\sqrt {x^2 + a^2} } {a^4 x} - \\frac x {a^4 \\sqrt {x^2 + a^2} } + C$"}
+{"_id": "17641", "title": "Variance of Student's t-Distribution", "text": "Let $k$ be a strictly positive integer. Let $X \\sim t_k$ where $t_k$ is the $t$-distribution with $k$ degrees of freedom. Then the variance of $X$ is given by: :$\\var X = \\dfrac k {k - 2}$ for $k > 2$, and does not exist otherwise."}
+{"_id": "9450", "title": "Primitive of Root of x squared plus a squared cubed over x", "text": ":$\\ds \\int \\frac {\\paren {\\sqrt {x^2 + a^2} }^3} x \\rd x = \\frac {\\paren {\\sqrt {x^2 + a^2} }^3} 3 + a^2 \\sqrt {x^2 + a^2} - a^3 \\map \\ln {\\frac {a + \\sqrt {x^2 + a^2} } x} + C$"}
+{"_id": "9451", "title": "Primitive of Root of x squared plus a squared cubed over x squared", "text": ":$\\displaystyle \\int \\frac{\\left({\\sqrt {x^2 + a^2} }\\right)^3} {x^2} \\ \\mathrm d x = \\frac {-\\left({\\sqrt {x^2 + a^2} }\\right)^3} x + \\frac{3 x \\sqrt {x^2 + a^2} } 2 + \\frac {3 a^2} 2 \\ln \\left({x + \\sqrt {x^2 + a^2} }\\right) + C$"}
+{"_id": "1258", "title": "Weak Whitney Immersion Theorem", "text": "Every $k$-dimensional manifold $X$ admits a one-to-one immersion in $\\R^{2 k + 1}$. {{MissingLinks|$k$-dimensional}}"}
+{"_id": "9452", "title": "Primitive of Root of x squared plus a squared cubed over x cubed", "text": ":$\\displaystyle \\int \\frac {\\paren {\\sqrt {x^2 + a^2} }^3} {x^3} \\rd x = \\frac {-\\paren {\\sqrt {x^2 + a^2} }^3} {2 x^2} + \\frac {3 \\sqrt {x^2 + a^2} } 2 - \\frac {3 a} 2 \\map \\ln {\\frac {a + \\sqrt {x^2 + a^2} } x} + C$"}
+{"_id": "1263", "title": "Homotopy Group is Homeomorphism Invariant", "text": "Let $X$ and $Y$ be two topological spaces. Let $\\phi: X \\to Y$ be a homeomorphism. Let $x_0 \\in X$, $y_0 \\in Y$. Then for all $n \\in \\N$ the induced mapping: :$\\phi_* : \\pi_n \\left({X, x_0}\\right) \\to \\pi_n \\left({Y, y_0}\\right):$ ::$\\left[{\\!\\left[{\\, c \\,}\\right]\\!}\\right] \\mapsto \\left[{\\!\\left[{\\, \\phi \\circ c \\,}\\right]\\!}\\right]$ is an isomorphism, where $\\pi_n$ denotes the $n$th homotopy group."}
+{"_id": "9461", "title": "Primitive of x cubed by Root of x squared minus a squared", "text": ":$\\displaystyle \\int x^3 \\sqrt {x^2 - a^2} \\rd x = \\frac {\\paren {\\sqrt {x^2 - a^2} }^5} 5 + \\frac {a^2 \\paren {\\sqrt {x^2 - a^2} }^3} 3 + C$"}
+{"_id": "9470", "title": "Primitive of Reciprocal of x squared by Root of x squared minus a squared cubed", "text": ":$\\displaystyle \\int \\frac {\\d x} {x^2 \\paren {\\sqrt {x^2 - a^2} }^3} = \\frac {-\\sqrt {x^2 - a^2} } {a^4 x} - \\frac x {a^4 \\sqrt {x^2 - a^2} } + C$"}
+{"_id": "9474", "title": "Primitive of x squared by Root of x squared minus a squared cubed", "text": ":$\\displaystyle \\int x^2 \\paren {\\sqrt {x^2 - a^2} }^3 \\rd x = \\frac {x \\paren {\\sqrt {x^2 - a^2} }^5} 6 + \\frac {a^2 x \\paren {\\sqrt {x^2 - a^2} }^3} {24} - \\frac {a^4 x \\sqrt {x^2 - a^2} } {16} + \\frac {a^6} {16} \\ln \\size {x + \\sqrt {x^2 - a^2} } + C$"}
+{"_id": "17668", "title": "Binomial Coefficient 2 n Choose n is Divisible by All Primes between n and 2 n", "text": "Let $\\dbinom {2 n} n$ denote a binomial coefficient. Then for all prime numbers $p$ such that $n < p < 2 n$: :$p \\divides \\dbinom {2 n} n$ where $\\divides$ denotes divisibility."}
+{"_id": "17674", "title": "Linear Combination of Gaussian Random Variables", "text": "Let $X_1, X_2, X_3, \\ldots, X_n$ be independent random variables. Let $\\sequence {\\alpha_i}_{1 \\le i \\le n}$ and $\\sequence {\\mu_i}_{1 \\le i \\le n}$ be sequences of real numbers. Let $\\sequence {\\sigma_i}_{1 \\le i \\le n}$ be a sequence of positive real numbers. Let $X_i \\sim \\Gaussian {\\mu_i} {\\sigma^2_i}$ for $1 \\le i \\le n$, where $\\Gaussian {\\mu_i} {\\sigma^2_i}$ is the Gaussian distribution with parameters $\\mu_i$ and $\\sigma^2_i$. Then: :$\\displaystyle \\sum_{i \\mathop = 1}^n \\alpha_i X_i \\sim \\Gaussian {\\sum_{i \\mathop = 1}^n \\alpha_i \\mu_i} {\\sum_{i \\mathop = 1}^n \\alpha^2_i \\sigma^2_i}$"}
+{"_id": "9485", "title": "Primitive of x squared by Root of a squared minus x squared", "text": ":$\\displaystyle \\int x^2 \\sqrt {a^2 - x^2} \\rd x = \\frac {-x \\paren {\\sqrt {a^2 - x^2} }^3} 4 + \\frac {a^2 x \\sqrt {a^2 - x^2} } 8 + \\frac {a^4} 8 \\sinh^{-1} \\frac x a + C$"}
+{"_id": "1303", "title": "Existence of Non-Measurable Subset of Real Numbers", "text": "There exists a subset of the real numbers which is not measurable."}
+{"_id": "17696", "title": "Cube as Difference between Two Squares", "text": "A cube number can be expressed as the difference between two squares."}
+{"_id": "17698", "title": "Factorial Greater than Cube for n Greater than 5", "text": "Let $n \\in \\Z$ be an integer such that $n > 5$. Then $n! > n^3$."}
+{"_id": "1328", "title": "Existence of Euler-Mascheroni Constant", "text": "The real sequence: :$\\displaystyle \\sequence {\\sum_{k \\mathop = 1}^n \\frac 1 k - \\ln n}$ converges to a limit. This limit is known as the Euler-Mascheroni constant."}
+{"_id": "17721", "title": "Square Product of Three Consecutive Triangular Numbers", "text": "Let $T_n$ denote the $n$th triangular number for $n \\in \\Z_{>0}$ a (strictly) positive integer. Let $T_n \\times T_{n + 1} \\times T_{n + 2}$ be a square number. Then at least one value of $n$ fulfils this condition: :$n = 3$"}
+{"_id": "17727", "title": "Cube Modulo 9", "text": "Let $x \\in \\Z$ be an integer. Then one of the following holds: {{begin-eqn}} {{eqn | l = x^3 | o = \\equiv | r = 0 \\pmod 9 | c = }} {{eqn | l = x^3 | o = \\equiv | r = 1 \\pmod 9 | c = }} {{eqn | l = x^3 | o = \\equiv | r = 8 \\pmod 9 | c = }} {{end-eqn}}"}
+{"_id": "17748", "title": "Acceleration of Particle moving in Circle", "text": "Let $P$ be a particle moving in a circular path $C$. Then the acceleration of $P$ is given as: :$\\mathbf a = -\\dfrac {\\size {\\mathbf v}^2 \\mathbf r} {\\size {\\mathbf r}^2}$ where: :$\\mathbf v$ is the instantaneous velocity of $P$ :$\\mathbf r$ is the vector whose magnitude equals the length of the radius of $C$ and whose direction is from the center of $C$ to $P$ :$\\size {\\, \\cdot \\,}$ denotes the magnitude of a vector."}
+{"_id": "9568", "title": "Primitive of Reciprocal of Root of a x squared plus b x plus c/a equal to 0", "text": ":$\\displaystyle \\int \\frac {\\mathrm d x} {\\sqrt {a x^2 + b x + c} } = \\frac {2 \\sqrt {b x + c} } b + C$ when $a = 0$."}
+{"_id": "9592", "title": "Primitive of x squared over Cube of Root of a x squared plus b x plus c", "text": "Let $a \\in \\R_{\\ne 0}$. Then: :$\\displaystyle \\int \\frac {x^2 \\ \\mathrm d x} {\\left({\\sqrt {a x^2 + b x + c} }\\right)^3} = \\frac {\\left({2 b^2 - 4 a c}\\right) x + 2 b c} {a \\left({4 a c - b^2}\\right) \\sqrt {a x^2 + b x + c} } + \\frac 1 a \\int \\frac {\\mathrm d x} {\\sqrt {a x^2 + b x + c} }$"}
+{"_id": "9594", "title": "Primitive of Reciprocal of x squared by Cube of Root of a x squared plus b x plus c", "text": "Let $a \\in \\R_{\\ne 0}$. Then: :$\\displaystyle \\int \\frac {\\d x} {x^2 \\paren {\\sqrt {a x^2 + b x + c} }^3} = -\\frac {a x^2 + 2 b x + c} {c^2 x \\sqrt {a x^2 + b x + c} } + \\frac {b^2 - 2 a c} {2 c^2} \\int \\frac {\\d x} {\\paren {\\sqrt {a x^2 + b x + c} }^3} - \\frac {3 b} {2 c^2} \\int \\frac {\\d x} {x \\sqrt {a x^2 + b x + c} }$"}
+{"_id": "17787", "title": "Dirichlet Beta Function at Odd Positive Integers", "text": ":$\\map \\beta {2 n + 1} = \\paren {-1}^n \\dfrac {E_{2 n} \\pi^{2 n + 1} } {4^{n + 1} \\paren {2 n}!}$"}
+{"_id": "9597", "title": "Primitive of Reciprocal of Half Integer Power of a x squared plus b x plus c", "text": "Let $a \\in \\R_{\\ne 0}$. Then: :$\\displaystyle \\int \\frac {\\mathrm d x} {\\left({a x^2 + b x + c}\\right)^{n + \\frac 1 2} } = \\frac {2 \\left({2 a x + b}\\right)} {\\left({2 n - 1}\\right) \\left({4 a c - b^2}\\right) \\left({a x^2 + b x + c}\\right)^{n - \\frac 1 2} } + \\frac {8 a \\left({n - 1}\\right)} {\\left({2 n - 1}\\right) \\left({4 a c - b^2}\\right)} \\int \\frac {\\mathrm d x} {\\left({a x^2 + b x + c}\\right)^{n - \\frac 1 2} }$"}
+{"_id": "9601", "title": "Primitive of x squared over x cubed plus a cubed", "text": ":$\\displaystyle \\int \\frac {x^2 \\rd x} {x^3 + a^3} = \\frac 1 3 \\ln \\size {x^3 + a^3} + C$"}
+{"_id": "9605", "title": "Primitive of x over x cubed plus a cubed squared", "text": ":$\\displaystyle \\int \\frac {x \\ \\mathrm d x} {\\left({x^3 + a^3}\\right)^2} = \\frac {x^2} {3 a^3 \\left({x^3 + a^3}\\right)} + \\frac 1 {18 a^4} \\ln \\left({\\frac {x^2 - a x + a^2} {\\left({x + a}\\right)^2} }\\right) + \\frac 1 {3 a^4 \\sqrt 3} \\arctan \\frac {2 x - a} {a \\sqrt 3}$"}
+{"_id": "1437", "title": "Compact First-Countable Space is Sequentially Compact", "text": "Let $T = \\struct {S, \\tau}$ be a compact first-countable topological space. Then every infinite sequence in $S$ has a convergent subsequence; that is, $T$ is sequentially compact."}
+{"_id": "1441", "title": "Convergence in Indiscrete Space", "text": "Let $\\left({S, \\left\\{{S, \\varnothing}\\right\\}}\\right)$ be an indiscrete space. Let $\\left \\langle {x_n} \\right \\rangle$ be any sequence in $S$. Then $\\left \\langle {x_n} \\right \\rangle$ converges to any point $x$ of $S$."}
+{"_id": "17828", "title": "Möbius Transformation is Bijection/Restriction to Reals", "text": "Let $a, b, c, d \\in \\R$ be real numbers. Let $f: \\R^* \\to \\R^*$ be the Möbius transformation restricted to the real numbers: :$\\map f x = \\begin {cases} \\dfrac {a x + b} {c x + d} & : x \\ne -\\dfrac d c \\\\ \\infty & : x = -\\dfrac d c \\\\ \\dfrac a c & : x = \\infty \\\\ \\infty & : x = \\infty \\text { and } c = 0 \\end {cases}$ Then: :$f: \\R^* \\to \\R^*$ is a bijection {{iff}}: :$a c - b d \\ne 0$"}
+{"_id": "17831", "title": "Definite Integral from 0 to 1 of Logarithm of x over One plus x", "text": ":$\\displaystyle \\int_0^1 \\frac {\\ln x} {1 + x} \\rd x = -\\frac {\\pi^2} {12}$"}
+{"_id": "9640", "title": "Primitive of Reciprocal of x by Root of Power of x minus Power of a", "text": ":$\\displaystyle \\int \\frac {\\d x} {x \\sqrt {x^n - a^n} } = \\frac 2 {n \\sqrt {a^n} } \\arccos \\sqrt {\\frac {a^n} {x^n} }$"}
+{"_id": "17838", "title": "Set of Sets can be Defined as Family", "text": "Let $\\Bbb S$ be a set of sets. Then $\\Bbb S$ can be defined as an indexed family of sets."}
+{"_id": "9648", "title": "Primitive of Sine of a x over x", "text": "{{begin-eqn}} {{eqn | l = \\int \\frac {\\sin a x \\d x} x | r = \\sum_{k \\mathop \\ge 0} \\frac {\\paren {-1}^k \\paren {a x}^{2 k + 1} } {\\paren {2 k + 1} \\paren {2 k + 1}!} + C }} {{eqn | r = a x - \\frac {\\paren {a x}^3} {3 \\times 3!} + \\frac {\\paren {a x}^5} {5 \\times 5!} - \\cdots }} {{end-eqn}}"}
+{"_id": "9650", "title": "Primitive of Reciprocal of Sine of a x/Logarithm of Cosecant minus Cotangent Form", "text": ":$\\ds \\int \\frac {\\d x} {\\sin a x} = \\frac 1 a \\ln \\size {\\csc a x - \\cot a x} + C$"}
+{"_id": "9666", "title": "Primitive of Reciprocal of Square of 1 minus Sine of a x", "text": ":$\\displaystyle \\int \\frac {\\mathrm d x} {\\left({1 - \\sin a x}\\right)^2} = \\frac 1 {2 a} \\tan \\left({\\frac \\pi 4 + \\frac {a x} 2}\\right) + \\frac 1 {6 a} \\tan^3 \\left({\\frac \\pi 4 + \\frac {a x} 2}\\right) + C$"}
+{"_id": "1482", "title": "Converse Hinge Theorem", "text": "If two triangles have two pairs of sides which are the same length, the triangle in which the third side is longer also has the larger angle contained by the first two sides. {{:Euclid:Proposition/I/25}}"}
+{"_id": "17866", "title": "Definite Integral over Reals of Exponential of -(a x^2 plus b x plus c)", "text": ":$\\displaystyle \\int_{-\\infty}^\\infty \\map \\exp {-\\paren {a x^2 + b x + c} } \\rd x = \\sqrt {\\frac \\pi a} \\map \\exp {\\frac {b^2 - 4 a c} {4 a} }$"}
+{"_id": "17868", "title": "Definite Integral to Infinity of Exponential of -(a x^2 plus b over x^2)", "text": ":$\\displaystyle \\int_0^\\infty \\map \\exp {-\\paren {a x^2 + \\frac b {x^2} } } \\rd x = \\frac 1 2 \\sqrt {\\frac \\pi a} \\map \\exp {-2 \\sqrt {a b} }$"}
+{"_id": "1484", "title": "Invariance of Extremal Length under Conformal Mappings", "text": "Let $X, Y$ be Riemann surfaces (usually, subsets of the complex plane). Let $\\phi: X \\to Y$ be a conformal isomorphism between $X$ and $Y$. Let $\\Gamma$ be a family of rectifiable curves (or, more generally, of unions of rectifiable curves) in $X$. Let $\\Gamma'$ be the family of their images under $\\phi$. Then $\\Gamma$ and $\\Gamma'$ have the same extremal length: :$\\map \\lambda \\Gamma = \\map \\lambda {\\Gamma'}$"}
+{"_id": "17874", "title": "Set is Subset of Intersection of Supersets/Set of Sets", "text": "Let $T$ be a set. Let $\\mathbb S$ be a set of sets. Suppose that for each $S \\in \\mathbb S$, $T \\subseteq S$. Then: :$T \\subseteq \\displaystyle \\bigcap \\mathbb S$"}
+{"_id": "17887", "title": "Membership Relation is Not Symmetric", "text": "Let $\\Bbb S$ be a set of sets in the context of pure set theory Let $\\RR$ denote the membership relation on $\\Bbb S$: :$\\forall \\tuple {a, b} \\in \\Bbb S \\times \\Bbb S: \\tuple {a, b} \\in \\RR \\iff a \\in b$ $\\RR$ is not in general a symmetric relation."}
+{"_id": "17884", "title": "Complementary Error Function of Zero", "text": ":$\\displaystyle \\map \\erfc 0 = 1$"}
+{"_id": "9699", "title": "Primitive of Cosine of a x over x", "text": "{{begin-eqn}} {{eqn | l = \\int \\frac {\\cos a x \\rd x} x | r = \\ln \\size x + \\sum_{k \\mathop \\ge 1} \\frac {\\paren {-1}^k \\paren {a x}^{2 k} } {\\paren {2 k} \\paren {2 k}!} + C }} {{eqn | r = \\ln \\size x - \\frac {\\paren {a x}^2} {2 \\times 2!} + \\frac {\\paren {a x}^4} {4 \\times 4!} - \\frac {\\paren {a x}^6} {6 \\times 6!} - \\cdots + C }} {{end-eqn}}"}
+{"_id": "9700", "title": "Primitive of Cosine of a x over x squared", "text": ":$\\displaystyle \\int \\frac {\\cos a x \\ \\mathrm d x} {x^2} = \\frac {-\\cos a x} x - a \\int \\frac {\\sin a x \\ \\mathrm d x} x$"}
+{"_id": "17900", "title": "Definite Integral to Infinity of x over Hyperbolic Sine of a x", "text": ":$\\displaystyle \\int_0^\\infty \\frac x {\\sinh a x} \\rd x = \\frac {\\pi^2} {4 a^2}$"}
+{"_id": "17904", "title": "Empty Set from Principle of Non-Contradiction", "text": "The empty set can be characterised as: :$\\O := \\set {x: x \\in E \\text { and } x \\notin E}$ where $E$ is an arbitrary set."}
+{"_id": "9721", "title": "Primitive of Reciprocal of Square of 1 plus Cosine of a x", "text": ":$\\displaystyle \\int \\frac {\\mathrm d x} {\\left({1 + \\cos a x}\\right)^2} = \\frac 1 {2a} \\tan \\frac {a x} 2 + \\frac 1 {6 a} \\tan^3 \\frac {a x} 2 + C$"}
+{"_id": "17914", "title": "Definite Integral from 0 to 2 Pi of Reciprocal of One minus 2 a Cosine x plus a Squared", "text": ":$\\displaystyle \\int_0^{2 \\pi} \\frac {\\d x} {1 - 2 a \\cos x + a^2} = \\frac {2 \\pi} {1 - a^2}$"}
+{"_id": "1530", "title": "Divisibility by 7", "text": "An integer $X$ with $n$ digits ($X_0$ in the ones place, $X_1$ in the tens place, and so on) is divisible by $7$ {{iff}}: :$\\displaystyle \\sum_{i \\mathop = 0}^{n - 1} \\paren {3^i X_i}$ is divisible by $7$."}
+{"_id": "17916", "title": "Intersection is Empty and Union is Universe if Sets are Complementary", "text": "Let $A$ and $B$ be subsets of a universe $\\Bbb U$. Then: :$A \\cap B = \\O$ and $A \\cup B = \\Bbb U$ {{iff}}: :$B = \\relcomp {\\Bbb U} A$ where $\\relcomp {\\Bbb U} A$ denotes the complement of $A$ with respect to $\\Bbb U$."}
+{"_id": "17925", "title": "Definite Integral to Infinity of Reciprocal of Exponential of x minus One minus Exponential of -x over x", "text": ":$\\displaystyle \\int_0^\\infty \\paren {\\frac 1 {e^x - 1} - \\frac {e^{-x} } x} \\rd x = \\gamma$"}
+{"_id": "17927", "title": "Set Intersection expressed as Intersection Complement", "text": "Let $A$ and $B$ be subsets of a universal set $\\Bbb U$. Let $\\uparrow$ denote the operation on $A$ and $B$ defined as: :$\\paren {A \\uparrow B} \\iff \\paren {\\relcomp {\\Bbb U} {A \\cap B} }$ where $\\relcomp {\\Bbb U} A$ denotes the complement of $A$ in $\\Bbb U$. Then: :$A \\cap B = \\paren {A \\uparrow B} \\uparrow \\paren {A \\uparrow B}$"}
+{"_id": "9738", "title": "Primitive of Power of Secant of a x by Tangent of a x", "text": ":$\\displaystyle \\int \\sec^n a x \\tan a x \\ \\mathrm d x = \\frac {\\sec^n a x} {n a} + C$"}
+{"_id": "9739", "title": "Primitive of Reciprocal of Square of Sine of a x by Square of Cosine of a x", "text": ":$\\displaystyle \\int \\frac {\\d x} {\\sin^2 a x \\cos^2 a x} = \\frac {-2 \\cot 2 a x} a + C$"}
+{"_id": "17930", "title": "Singleton of Subset is Element of Powerset of Powerset", "text": "Let $S \\subseteq T$ where $S$ and $T$ are both sets. Then: :$\\set S \\in \\powerset {\\powerset T}$ where $\\powerset T$ denotes the power set of $T$."}
+{"_id": "1558", "title": "Power Function is Completely Multiplicative", "text": "Let $K$ be a field. Let $z \\in K$. Let $f_z: K \\to K$ be the mapping defined as: :$\\forall x \\in K: f_z \\left({x}\\right) = x^z$ Then $f_z$ is completely multiplicative."}
+{"_id": "9753", "title": "Primitive of Cosine of a x over p plus q of Sine of a x", "text": ":$\\displaystyle \\int \\frac {\\cos a x \\rd x} {p + q \\sin a x} = \\frac 1 {a q} \\ln \\left\\vert{p + q \\sin a x}\\right\\vert + C$"}
+{"_id": "9755", "title": "Primitive of Cosine of a x over Power of p plus q of Sine of a x", "text": ":$\\displaystyle \\int \\frac {\\cos a x \\ \\mathrm d x} {\\left({p + q \\sin a x}\\right)^n} = \\frac {-1} {a q \\left({n - 1}\\right) \\left({p + q \\sin a x}\\right)^{n - 1} } + C$"}
+{"_id": "1570", "title": "Number of Quadratic Residues of Prime", "text": "Let $p$ be an odd prime. Then $p$ has $\\dfrac {p-1} 2$ quadratic residues and $\\dfrac {p-1} 2$ quadratic non-residues. The quadratic residues are congruent modulo $p$ to the integers $1^2, 2^2, \\ldots, \\left({\\dfrac {p-1} 2}\\right)$."}
+{"_id": "17967", "title": "Limit to Infinity of Fresnel Sine Integral Function", "text": ":$\\displaystyle \\lim_{x \\mathop \\to \\infty} \\map {\\operatorname S} x = \\frac 1 2$"}
+{"_id": "1584", "title": "Solution to Simultaneous Linear Congruences", "text": "Let: {{begin-eqn}} {{eqn | l = a_1 x | o = \\equiv | r = b_1 | rr= \\pmod {n_1} | c = }} {{eqn | l = a_2 x | o = \\equiv | r = b_2 | rr= \\pmod {n_2} | c = }} {{eqn | o = \\ldots | c = }} {{eqn | l = a_r x | o = \\equiv | r = b_r | rr= \\pmod {n_r} | c = }} {{end-eqn}} be a system of simultaneous linear congruences. This system has a simultaneous solution {{iff}}: :$\\forall i, j: 1 \\le i, j \\le r: \\gcd \\set {n_i, n_j}$ divides $b_j - b_i$. If a solution exists then it is unique modulo $\\lcm \\set {n_1, n_2, \\ldots, n_r}$."}
+{"_id": "9784", "title": "Primitive of Reciprocal of Tangent of a x", "text": ":$\\displaystyle \\int \\frac {\\d x} {\\tan a x} = \\frac 1 a \\ln \\size {\\sin a x} + C$"}
+{"_id": "9789", "title": "Primitive of Power of Tangent of a x", "text": ":$\\displaystyle \\int \\tan^n a x \\ \\mathrm d x = \\frac {\\tan^{n - 1} a x} {\\left({n - 1}\\right) a} - \\int \\tan^{n - 2} a x \\ \\mathrm d x + C$"}
+{"_id": "17982", "title": "Logarithm of One plus x in terms of Gaussian Hypergeometric Function", "text": ":$\\displaystyle \\map \\ln {1 + x} = x \\, {}_2 \\map {F_1} {1, 1; 2; -x}$"}
+{"_id": "17984", "title": "Laplace Transform of Exponential times Cosine", "text": ":$\\map {\\laptrans {e^{b t} \\cos a t} } s = \\dfrac {s - b} {\\paren {s - b}^2 + a^2}$"}
+{"_id": "17985", "title": "Complement of Direct Image Mapping of Injection equals Direct Image of Complement", "text": "Let $f: S \\to T$ be an injection. Let $f^\\to: \\powerset S \\to \\powerset T$ denote the direct image mapping of $f$. Then: :$\\forall A \\in \\powerset S: \\map {\\paren {\\complement_{\\Img f} \\circ f^\\to} } A = \\map {\\paren {f^\\to \\circ \\complement_S} } A$ where $\\circ$ denotes composition of mappings."}
+{"_id": "17986", "title": "Direct Image of Inverse Image of Direct Image equals Direct Image Mapping", "text": "Let $f: S \\to T$ be a mapping. Let: :$f^\\to: \\powerset S \\to \\powerset T$ denote the direct image mapping of $f$ :$f^\\gets: \\powerset T \\to \\powerset S$ denote the inverse image mapping of $f$ where $\\powerset S$ denotes the power set of $S$. Then: :$f^\\to \\circ f^\\gets \\circ f^\\to = f^\\to$ where $\\circ$ denotes composition of mappings."}
+{"_id": "9795", "title": "Primitive of x by Cotangent of a x", "text": ":$\\displaystyle \\int x \\cot a x \\rd x = \\frac 1 {a ^ 2} \\paren {a x - \\frac {\\paren {a x}^3} 9 - \\frac {\\paren {a x}^5} {225} - \\cdots + \\frac {\\paren {-1}^n 2^{2 n} B_{2 n} \\paren {a x}^{2 n + 1} } {\\paren {2 n + 1} !} + \\cdots} + C$ where $B_{2 n}$ denotes the $2 n$th Bernoulli number."}
+{"_id": "9798", "title": "Primitive of Reciprocal of p plus q by Cotangent of a x", "text": ":$\\displaystyle \\int \\frac {\\d x} {p + q \\cot a x} = \\frac {p x} {p^2 + q^2} - \\frac q {a \\paren {p^2 + q^2} } \\ln \\size {p \\sin a x + q \\cos a x} + C$"}
+{"_id": "9801", "title": "Primitive of Reciprocal of Secant of a x", "text": ":$\\displaystyle \\int \\frac {\\d x} {\\sec a x} = \\frac {\\sin a x} a + C$"}
+{"_id": "9807", "title": "Primitive of Reciprocal of Cosecant of a x", "text": ":$\\displaystyle \\int \\frac {\\d x} {\\csc a x} = \\frac {-\\cos a x} a + C$"}
+{"_id": "9813", "title": "Primitive of x by Arcsine of x over a", "text": ":$\\displaystyle \\int x \\arcsin \\frac x a \\ \\mathrm d x = \\left({\\frac {x^2} 2 - \\frac {a^2} 4}\\right) \\arcsin \\frac x a + \\frac {x \\sqrt {a^2 - x^2} } 4 + C$"}
+{"_id": "1627", "title": "Elements of Primitive Pythagorean Triples Modulo 4", "text": "Let $x \\in \\Z: x > 2$. Then $x$ is an element of some primitive Pythagorean triple {{iff}} $x \\not \\equiv 2 \\pmod 4$."}
+{"_id": "18016", "title": "Ceva's Theorem", "text": "Let $\\triangle ABC$ be a triangle. Let $L$, $M$ and $N$ be points on the sides $BC$, $AC$ and $AB$ respectively. Then the lines $AL$, $BM$ and $CN$ are concurrent {{iff}}: :$\\dfrac {BL} {LC} \\times \\dfrac {CM} {MA} \\times \\dfrac {AN} {NB} = 1$"}
+{"_id": "9828", "title": "Primitive of Arccosine of x over a over x", "text": ":$\\displaystyle \\int \\frac {\\arccos \\frac x a \\rd x} x = \\frac \\pi 2 \\ln \\size x - \\int \\frac {\\arcsin \\frac x a \\rd x} x + C$"}
+{"_id": "18025", "title": "Left Ideal is Left Module over Ring/Ring is Left Module over Ring", "text": "Let $\\struct {R, +, \\times}$ be a ring. Then $\\struct {R, +, \\times}$ is a left module over $\\struct {R, +, \\times}$."}
+{"_id": "9837", "title": "Primitive of x squared by Arccotangent of x over a", "text": ":$\\displaystyle \\int x^2 \\operatorname{arccot} \\frac x a \\ \\mathrm d x = \\frac {x^3} 3 \\operatorname{arccot} \\frac x a + \\frac {a x^2} 6 - \\frac {a^3} 6 \\ln \\left({x^2 + a^2}\\right) + C$"}
+{"_id": "9839", "title": "Primitive of Arccotangent of x over a over x", "text": ":$\\displaystyle \\int \\frac {\\operatorname{arccot} \\frac x a \\ \\mathrm d x} x = \\frac \\pi 2 \\ln \\left\\vert{x}\\right\\vert - \\int \\frac {\\arctan \\frac x a \\ \\mathrm d x} x$"}
+{"_id": "9852", "title": "Primitive of Arcsecant of x over a over x squared", "text": ":$\\displaystyle \\int \\frac {\\operatorname{arcsec} \\frac x a} {x^2} \\ \\mathrm d x = \\begin{cases} \\displaystyle \\frac {-\\operatorname{arcsec} \\frac x a} x + \\frac {\\sqrt{x^2 - a^2} } {a x} + C & : 0 < \\operatorname{arcsec} \\dfrac x a < \\dfrac \\pi 2 \\\\ \\displaystyle \\frac {-\\operatorname{arcsec} \\frac x a} x - \\frac {\\sqrt{x^2 - a^2} } {a x} + C & : \\dfrac \\pi 2 < \\operatorname{arcsec} \\dfrac x a < \\pi \\\\ \\end{cases}$"}
+{"_id": "9855", "title": "Primitive of Power of x by Arcsecant of x over a", "text": ":$\\displaystyle \\int x^m \\operatorname{arcsec} \\frac x a \\ \\mathrm d x = \\begin{cases} \\displaystyle \\frac {x^{m + 1} } {m + 1} \\operatorname{arcsec} \\frac x a - \\frac a {m + 1} \\int \\frac {x^m \\ \\mathrm d x} {\\sqrt {x^2 - a^2} } + C & : 0 < \\operatorname{arcsec} \\dfrac x a < \\dfrac \\pi 2 \\\\ \\displaystyle \\frac {x^{m + 1} } {m + 1} \\operatorname{arcsec} \\frac x a + \\frac a {m + 1} \\int \\frac {x^m \\ \\mathrm d x} {\\sqrt {x^2 - a^2} } + C & : \\dfrac \\pi 2 < \\operatorname{arcsec} \\dfrac x a < \\pi \\\\ \\end{cases}$"}
+{"_id": "1670", "title": "Linear Function is Primitive Recursive", "text": "The function $f: \\N \\to \\N$, defined as: :$\\map f n = a n + b$ where $a$ and $b$ are constants, is primitive recursive."}
+{"_id": "1671", "title": "Substitution of Constant yields Primitive Recursive Function", "text": "Let $f: \\N^{k+1} \\to \\N$ be a primitive recursive function. Then $g: \\N^k \\to \\N$ given by: :$g \\left({n_1, n_2, \\ldots, n_k}\\right) = f \\left({n_1, n_2, \\ldots, n_{i-1}, a, n_i \\ldots, n_k}\\right)$ is primitive recursive."}
+{"_id": "9865", "title": "Primitive of Reciprocal of Square of p plus q by Exponential of a x", "text": ":$\\displaystyle \\int \\frac {\\d x} {\\paren {p + q e^{a x} }^2} = \\frac x {p^2} + \\frac 1 {a p \\paren {p + q e^{a x} } } - \\frac 1 {a p^2} \\ln \\size {p + q e^{a x} } + C$"}
+{"_id": "1678", "title": "Minimum Function is Primitive Recursive", "text": "The minimum function $\\min: \\N^2 \\to \\N$, defined as: :$\\min \\left({n, m}\\right) = \\begin{cases} n: & n \\le m \\\\ m: & m \\le n \\end{cases}$ is primitive recursive."}
+{"_id": "18070", "title": "Additive Regular Representations of Topological Ring are Homeomorphisms", "text": "Let $\\struct {R, + , \\circ, \\tau}$ be a topological ring. Let $x \\in R$. Let $\\lambda_x$ and $\\rho_x$ be the left and right regular representations of $\\struct {R, +}$ with respect to $x$. Then $\\lambda_x, \\,\\rho_x: \\struct {R, \\tau} \\to \\struct {R, \\tau}$ are homeomorphisms with inverses $\\lambda_{-x}, \\,\\rho_{-x}: \\struct {R, \\tau} \\to \\struct {R, \\tau}$ respectively."}
+{"_id": "18071", "title": "Multiplicative Regular Representations of Units of Topological Ring are Homeomorphisms", "text": "Let $\\struct{R, + , \\circ, \\tau}$ be a topological ring with unity $1_R$. For all $y \\in R$, let $\\lambda_y$ and $\\rho_y$ denote the left and right regular representations of $\\struct{R, \\circ}$ with respect to $y$. Let $x \\in R$ be a unit of $R$ with product inverse $x^{-1}$. Then $\\lambda_x, \\, \\rho_x: \\struct{R, \\tau} \\to \\struct{R, \\tau}$ are homeomorphisms with inverse mappings $\\lambda_{x^{-1} }, \\, \\rho_{x^{-1} }: \\struct{R, \\tau} \\to \\struct{R, \\tau}$ respectively."}
+{"_id": "9882", "title": "Primitive of Logarithm of x over x squared", "text": ":$\\displaystyle \\int \\frac {\\ln x} {x^2} \\ \\mathrm d x = \\frac {-\\ln x} x - \\frac 1 x + C$"}
+{"_id": "1691", "title": "Sylow Subgroup is Hall Subgroup", "text": "Let $G$ be a group. Let $H$ be a Sylow $p$-subgroup of $G$. Then $H$ is a Hall subgroup of $G$."}
+{"_id": "9886", "title": "Primitive of Reciprocal of Logarithm of x", "text": ":$\\displaystyle \\int \\frac {\\d x} {\\ln x} = \\map \\ln {\\ln x} + \\ln x + \\sum_{k \\mathop \\ge 2}^n \\frac {\\paren {\\ln x}^k} {k \\times k!} + C$"}
+{"_id": "9888", "title": "Primitive of Power of Logarithm of x", "text": ":$\\displaystyle \\int \\ln^n x \\rd x = x \\ln^n x - n \\int \\ln^{n - 1} x \\rd x + C$"}
+{"_id": "9891", "title": "Primitive of Logarithm of x squared minus a squared", "text": ":$\\displaystyle \\int \\ln \\left({x^2 - a^2}\\right) \\rd x = x \\ln \\left({x^2 - a^2}\\right) - 2 x + a \\ln \\left({\\frac {x + a} {x - a} }\\right) + C$ for $x^2 > a^2$."}
+{"_id": "18091", "title": "Conservation of Energy", "text": "Let $P$ be a physical system. Let it have the action $S$: :$\\displaystyle S = \\int_{t_0}^{t_1} L \\rd t$ where $L$ is the standard Lagrangian, and $t$ is time. Suppose $L$ does not depend on time explicitly: :$\\dfrac {\\partial L} {\\partial t} = 0$ Then the total energy of $P$ is conserved."}
+{"_id": "9902", "title": "Primitive of x squared by Hyperbolic Sine of a x", "text": ":$\\displaystyle \\int x^2 \\sinh a x \\ \\mathrm d x = \\left({\\frac {x^2} a + \\frac 2 {a^3} }\\right) \\cosh a x - \\frac {2 x \\sinh a x} {a^2} + C$"}
+{"_id": "18101", "title": "Poisson Brackets of Harmonic Oscillator", "text": "Let $P$ be a classical harmonic oscillator. Let the real-valued function $\\map x t$ be the position of $P$, where $t$ is time. Then $P$ has the following Poisson brackets: :$\\sqbrk {x, p} = 1$ :$\\sqbrk {x, H} = \\dfrac p m$ :$\\sqbrk {p, H} = - k x$"}
+{"_id": "1719", "title": "Primitive Recursive Function is Total Recursive Function", "text": "Every primitive recursive function is a total recursive function."}
+{"_id": "9918", "title": "Primitive of Reciprocal of Hyperbolic Secant of a x", "text": ":$\\displaystyle \\int \\frac {\\mathrm d x} {\\operatorname{sech} a x} = \\frac {\\sinh a x} a + C$"}
+{"_id": "1738", "title": "Triangle Angle-Side-Angle and Side-Angle-Angle Equality", "text": "=== Triangle Angle-Side-Angle Equality === {{:Triangle Angle-Side-Angle Equality}} === Triangle Side-Angle-Angle Equality === {{:Triangle Side-Angle-Angle Equality}}"}
+{"_id": "9935", "title": "Primitive of x by Square of Hyperbolic Cosecant of a x", "text": ":$\\displaystyle \\int x \\csch^2 a x \\rd x = \\frac {-x \\coth a x} a + \\frac 1 {a^2} \\ln \\size {\\sinh a x} + C$"}
+{"_id": "9936", "title": "Primitive of Reciprocal of Square of Hyperbolic Sine of a x", "text": ":$\\displaystyle \\int \\frac {\\mathrm d x} {\\sinh^2 a x} = - \\frac {\\coth a x} a + C$"}
+{"_id": "9937", "title": "Primitive of Reciprocal of Square of Hyperbolic Cosine of a x", "text": ":$\\displaystyle \\int \\frac {\\mathrm d x} {\\cosh^2 a x} = \\frac {\\tanh a x} a + C$"}
+{"_id": "1748", "title": "Sum of Sequence of Odd Index Fibonacci Numbers", "text": "{{begin-eqn}} {{eqn | lo= \\forall n \\ge 1: | l = \\sum_{j \\mathop = 1}^n F_{2 j - 1} | r = F_1 + F_3 + F_5 + \\cdots + F_{2 n - 1} | c = }} {{eqn | r = F_{2 n} | c = }} {{end-eqn}}"}
+{"_id": "9941", "title": "Primitive of Hyperbolic Sine of a x by Cosine of p x", "text": ":$\\displaystyle \\int \\sinh a x \\cos p x \\ \\mathrm d x = \\frac {a \\cosh a x \\cos p x + p \\sinh a x \\sin p x} {a^2 + p^2} + C$"}
+{"_id": "9956", "title": "Primitive of Power of x by Hyperbolic Sine of a x", "text": ":$\\displaystyle \\int x^m \\sinh a x \\ \\mathrm d x = \\frac {x^m \\cosh a x} a - \\frac m a \\int x^{m - 1} \\cosh a x \\ \\mathrm d x + C$"}
+{"_id": "18153", "title": "Summary of Topology on P-adic Numbers", "text": "Let $p$ be a prime number. Let $\\struct {\\Q_p, \\norm {\\,\\cdot\\,}_p}$ be the $p$-adic numbers. Let $\\tau_p$ be the topology induced by the non-Archimedean norm $\\norm {\\,\\cdot\\,}_p$. Then $\\struct{\\Q_p, \\tau_p}$ is: :$(1): \\quad$ Hausdorff :$(2): \\quad$ second-countable :$(3): \\quad$ totally disconnected :$(4): \\quad$ locally compact"}
+{"_id": "18154", "title": "Napier's Cosine Rule for Right Spherical Triangles", "text": "Let $\\triangle ABC$ be a right spherical triangle on the surface of a sphere whose center is $O$. Let the sides $a, b, c$ of $\\triangle ABC$ be measured by the angles subtended at $O$, where $a, b, c$ are opposite $A, B, C$ respectively. Let the angle $\\sphericalangle C$ be a right angle. Let the remaining parts of $\\triangle ABC$ be arranged according to the '''interior''' of this circle, where the symbol $\\Box$ denotes a right angle. :410px Let one of the parts of this circle be called a '''middle part'''. Let the two parts which do not neighbor the '''middle part''' be called '''opposite parts'''. Then the sine of the '''middle part''' equals the product of the cosine of the '''opposite parts'''."}
+{"_id": "18157", "title": "Napier's Tangent Rule for Quadrantal Triangles", "text": "Let $\\triangle ABC$ be a quadrantal triangle on the surface of a sphere whose center is $O$. Let the sides $a, b, c$ of $\\triangle ABC$ be measured by the angles subtended at $O$, where $a, b, c$ are opposite $A, B, C$ respectively. Let the side $c$ be a right angle. Let the remaining parts of $\\triangle ABC$ be arranged according to the '''exterior''' of this circle, where the symbol $\\Box$ denotes a right angle. :410px Let one of the parts of this circle be called a '''middle part'''. Let the two neighboring parts of the '''middle part''' be called '''adjacent parts'''. Then the sine of the '''middle part''' equals the product of the tangents of the '''adjacent parts'''."}
+{"_id": "18158", "title": "Reciprocal of 7", "text": "The decimal expansion of the reciprocal of $7$ has the maximum period, that is: $6$: :$\\dfrac 1 {7} = 0 \\cdotp \\dot 14285 \\, \\dot 7$ {{OEIS|A020806}}"}
+{"_id": "9974", "title": "Primitive of Reciprocal of Hyperbolic Cosine of a x minus 1", "text": ":$\\ds \\int \\frac {\\d x} {\\cosh a x - 1} = \\frac {-1} a \\coth \\frac {a x} 2 + C$"}
+{"_id": "9975", "title": "Primitive of Reciprocal of Square of Hyperbolic Cosine of a x plus 1", "text": ":$\\displaystyle \\int \\frac {\\mathrm d x} {\\left({\\cosh a x + 1}\\right)^2} = \\frac 1 {2 a} \\tanh \\frac {a x} 2 - \\frac 1 {6 a} \\tanh^3 \\frac {a x} 2 + C$"}
+{"_id": "18168", "title": "Equation of Witch of Agnesi/Cartesian", "text": "The equation of the Witch of Agnesi is given in cartesian coordinates as: :$y = \\dfrac {8 a^3} {x^2 + 4 a^2}$"}
+{"_id": "9978", "title": "Primitive of Hyperbolic Sine of p x by Hyperbolic Cosine of q x", "text": ":$\\displaystyle \\int \\sinh p x \\cosh q x \\ \\mathrm d x = \\frac {\\cosh \\left({p + q}\\right) x} {2 \\left({p + q}\\right)} + \\frac {\\cosh \\left({p - q}\\right) x} {2 \\left({p - q}\\right)} + C$"}
+{"_id": "1789", "title": "Proof of Theorem by Truth Table", "text": "Let $\\phi$ be a propositional formula whose atoms are $p_1, p_2, \\ldots, p_n$. Let $l$ be the line number of any row in the truth table of $\\phi$. For all $i: 1 \\le i \\ne n$, let $\\hat {p_i}$ be defined as: : $\\hat {p_i} = \\begin{cases} p_i & : \\text {the entry in line } l \\text { of } p_i \\text { is } T \\\\ \\neg p_i & : \\text {the entry in line } l \\text { of } p_i \\text { is } F \\end{cases}$ Then: * $\\hat {p_1}, \\hat {p_2}, \\ldots, \\hat {p_n} \\vdash \\phi$ is provable if the entry for $\\phi$ in line $l$ is $T$ * $\\hat {p_1}, \\hat {p_2}, \\ldots, \\hat {p_n} \\vdash \\neg \\phi$ is provable if the entry for $\\phi$ in line $l$ is $F$"}
+{"_id": "1796", "title": "Soundness Theorem for Propositional Tableaus and Boolean Interpretations", "text": "Tableau proofs (in terms of propositional tableaus) are a sound proof system for boolean interpretations. That is, for every WFF $\\mathbf A$: :$\\vdash_{\\mathrm{PT}} \\mathbf A$ implies $\\models_{\\mathrm{BI}} \\mathbf A$"}
+{"_id": "9990", "title": "Primitive of Reciprocal of Hyperbolic Sine of a x by Square of Hyperbolic Cosine of a x", "text": ":$\\displaystyle \\int \\frac {\\mathrm d x} {\\sinh a x \\cosh^2 a x} = \\frac 1 a \\ln \\left\\vert{\\tanh \\frac {a x} 2}\\right\\vert + \\frac {\\operatorname{sech} a x} a + C$"}
+{"_id": "18186", "title": "Celestial Equator is Parallel to Geographical Equator", "text": "Consider the celestial sphere with observer $O$. The plane of the celestial equator is parallel to the plane of the geographical equator."}
+{"_id": "1809", "title": "Disjunction of Conjunctions", "text": ": $\\left({p \\land q}\\right) \\lor \\left({r \\land s}\\right) \\vdash p \\lor r$"}
+{"_id": "1830", "title": "Borel-Cantelli Lemma", "text": "Let $\\struct {X, \\Sigma, \\mu}$ be a measure space. Let $E_n \\subseteq \\Sigma$ be a countable collection of measurable sets. If: :$\\displaystyle \\sum_{n \\mathop = 1}^\\infty \\map \\mu {E_n} < \\infty$ then: :$\\displaystyle \\map \\mu {\\limsup_{n \\mathop \\to \\infty} } {E_n} = 0$ where $\\limsup$ denotes limit superior of sets."}
+{"_id": "10022", "title": "Primitive of Inverse Hyperbolic Cosine of x over a", "text": ":$\\displaystyle \\int \\cosh^{-1} \\frac x a \\ \\mathrm d x = \\begin{cases} x \\cosh^{-1} \\dfrac x a - \\sqrt {x^2 - a^2} + C & : \\cosh^{-1} \\dfrac x a > 0 \\\\ x \\cosh^{-1} \\dfrac x a + \\sqrt {x^2 - a^2} + C & : \\cosh^{-1} \\dfrac x a < 0 \\end{cases}$"}
+{"_id": "18221", "title": "Vandermonde Matrix Identity for Hilbert Matrix", "text": "Define polynomial root sets $\\set {1,2,\\ldots, n}$ and $\\set { 0,-1,\\ldots,-n+1}$ for Definition:Cauchy Matrix. Let: {{begin-eqn}} {{eqn | l = H | r = \\paren {\\begin{smallmatrix}\\displaystyle 1 & \\dfrac {1} {2} & \\cdots & \\dfrac {1} {n} \\\\ \\dfrac {1} {2} & \\dfrac 1 {3} & \\cdots & \\dfrac {1} {n+1} \\\\ \\vdots & \\vdots & \\cdots & \\vdots \\\\ \\dfrac {1} {n} & \\dfrac {1} {n+1} & \\cdots & \\dfrac {1} {2n-1} \\\\ \\end{smallmatrix} } | c = Hilbert matrix of order $n$ }} {{end-eqn}} Then: {{begin-eqn}} {{eqn | l = H | r = -P V_x^{-1} V_y Q^{-1} | c = Vandermonde Matrix Identity for Cauchy Matrix and Hilbert Matrix is Cauchy Matrix }} {{end-eqn}} Definitions of Vandermonde matrices $V_x$, $V_y$ and diagonal matrices $P$, $Q$: :$\\displaystyle V_x=\\paren {\\begin{smallmatrix} 1 & 1 & \\cdots & 1 \\\\ 1 & 2 & \\cdots & n \\\\ \\vdots & \\vdots & \\ddots & \\vdots \\\\ 1 & 2^{n-1} & \\cdots & n^{n-1} \\\\ \\end{smallmatrix} },\\quad V_y=\\paren {\\begin{smallmatrix} \\displaystyle 1 & 1 & \\cdots & 1 \\\\ 0 & -1 & \\cdots & -n+1 \\\\ \\vdots & \\vdots & \\ddots & \\vdots \\\\ 0 & \\paren {-1}^{n-1} & \\cdots & \\paren {-n+1}^{n-1} \\\\ \\end{smallmatrix} }$ Vandermonde matrices :$\\displaystyle P= \\paren {\\begin{smallmatrix} p_1(1) & \\cdots & 0 \\\\ \\vdots & \\ddots & \\vdots \\\\ 0 & \\cdots & p_n(n) \\\\ \\end{smallmatrix} }, \\quad Q= \\paren {\\begin{smallmatrix} p(0) & \\cdots & 0 \\\\ \\vdots & \\ddots & \\vdots \\\\ 0 & \\cdots & p(-n+1) \\\\ \\end{smallmatrix} }$ Diagonal matrices Definitions of polynomials $p$, $p_1$, $\\ldots$, $p_n$: :$\\displaystyle p(x) = \\prod_{i \\mathop = 1}^n \\paren {x - i}$ :$\\displaystyle p_k(x) = \\dfrac{ \\map p x}{x-k} = \\prod_{i \\mathop = 1,i \\mathop \\ne k}^n \\, \\paren {x - i}$, $1 \\mathop \\le k \\mathop \\le n$"}
+{"_id": "1840", "title": "Egorov's Theorem", "text": "Let $\\struct {X, \\Sigma, \\mu}$ be a measure space. Let $D \\in \\Sigma$ be such that $\\map \\mu D < +\\infty$. Let $\\sequence {f_n}_{n \\mathop \\in \\N}, f_n: D \\to \\R$ be a sequence of $\\Sigma$-measurable functions. Suppose that $f_n$ converges a.e. to $f$, for some $\\Sigma$-measurable function $f: D \\to \\R$. Then $f_n$ converges a.u. to $f$."}
+{"_id": "10034", "title": "Primitive of Root of x squared plus a squared/Logarithm Form", "text": ":$\\displaystyle \\int \\sqrt {x^2 + a^2} \\rd x = \\frac {x \\sqrt {x^2 + a^2} } 2 + \\frac {a^2} 2 \\map \\ln {x + \\sqrt {x^2 + a^2} } + C$"}
+{"_id": "1843", "title": "Existence of Solution of 2nd Order Linear ODE", "text": "Let $P \\left({x}\\right)$, $Q \\left({x}\\right)$ and $R \\left({x}\\right)$ be continuous real functions on a closed interval $I = \\left[{a . . b}\\right]$. Let $x_0 \\in I$, and let $y_0 \\in \\R$ and $y_0' \\in \\R$ be arbitrary. Then the initial value problem: :$\\displaystyle \\frac {d^2y}{dx^2} + P \\left({x}\\right) \\frac {dy}{dx} + Q \\left({x}\\right) y = R \\left({x}\\right), y \\left({x_0}\\right) = y_0, y' \\left({x_0}\\right) = y_0'$ has one and only one solution $y = y \\left({x}\\right)$ on the interval $a \\le x \\le b$."}
+{"_id": "1845", "title": "Cartesian Metric is Rotation Invariant", "text": "The cartesian metric does not change under rotation."}
+{"_id": "10048", "title": "Primitive of x squared by Inverse Hyperbolic Cosine of x over a", "text": ":$\\displaystyle \\int x^2 \\cosh^{-1} \\frac x a \\ \\mathrm d x = \\begin{cases} \\displaystyle \\frac {x^3} 3 \\cosh^{-1} \\frac x a - \\frac {\\left({x^2 + 2 a^2}\\right) \\sqrt {x^2 - a^2} } 9 + C & : \\cosh^{-1} \\frac x a > 0 \\\\ \\displaystyle \\frac {x^3} 3 \\cosh^{-1} \\frac x a - \\frac {\\left({x^2 + 2 a^2}\\right) \\sqrt {x^2 - a^2} } 9 + C & : \\cosh^{-1} \\frac x a < 0 \\end{cases}$"}
+{"_id": "1869", "title": "Odd Vertices Determines Edge-Disjoint Trails", "text": "Let $G$ be a loop-multigraph with $2 n$ odd vertices, $n > 0$. Then $G$ has $n$ edge-disjoint trails such that every edge of $G$ is contained in one of these trails. Each of these trails starts and ends on an odd vertex."}
+{"_id": "18256", "title": "Yff's Conjecture", "text": "Let $\\triangle ABC$ be a triangle. Let $\\omega$ be the Brocard angle of $\\triangle ABC$. Then: :$8 \\omega^3 < ABC$ where $A, B, C$ are measured in radians."}
+{"_id": "18261", "title": "Reciprocal of One minus x in terms of Gaussian Hypergeometric Function", "text": ":$\\dfrac 1 {1 - x} = {}_2 \\map {F_1} {1, p; p; x}$"}
+{"_id": "18268", "title": "Rational Number Expressible as Sum of Reciprocals of Distinct Squares", "text": "Let $x$ be a rational number such that $0 < x < \\dfrac {\\pi^2} 6 - 1$. Then $x$ can be expressed as the sum of a finite number of reciprocals of distinct squares."}
+{"_id": "1886", "title": "Adding Edge to Tree Creates One Cycle", "text": "Adding a new edge to a tree can create no more than one cycle."}
+{"_id": "1891", "title": "Sophie Germain's Identity", "text": ":$x^4 + 4 y^4 = \\paren {x^2 + 2 y^2 + 2 x y} \\paren {x^2 + 2 y^2 - 2 x y}$"}
+{"_id": "1894", "title": "Coreflexive Relation Subset of Diagonal Relation", "text": "A coreflexive relation is a subset of the diagonal relation."}
+{"_id": "1899", "title": "Strict Weak Ordering Induces Partition", "text": "Let $\\struct {S, \\prec}$ be a relational structure such that $\\prec$ is a strict weak ordering on $S$. Then $S$ can be partitioned into equivalence classes whose equivalence relation is \"is non-comparable\". That is, each of the partitions $A$ of $S$ is a relational structure $\\struct {\\mathbb S, <}$ such that: :$\\mathbb S$ is the set of these partitions of $S$; :$<$ is the strict total ordering on $\\mathbb S$ '''induced by''' $\\prec$."}
+{"_id": "18286", "title": "Coherent Sequence Converges to P-adic Integer", "text": "Let $p$ be a prime number. Let $\\struct {\\Q_p, \\norm {\\,\\cdot\\,}_p}$ be the $p$-adic numbers. Let $\\sequence {\\alpha_n}$ be a coherent sequence. Let $\\Z_p$ be the $p$-adic integers. Then the sequence $\\sequence {\\alpha_n}$ converges to some $x \\in \\Z_p$. That is, there exists $x \\in \\Z_p$ such that: :$\\displaystyle \\lim_{n \\mathop \\to \\infty} \\alpha_n = x$"}
+{"_id": "10101", "title": "Space in which All Convergent Sequences have Unique Limit not necessarily Hausdorff", "text": "Let $T = \\left({S, \\tau}\\right)$ be a topological space. Let $T$ be such that all convergent sequences have a unique limit point. Then it is not necessarily the case that $T$ is a Hausdorff space."}
+{"_id": "1929", "title": "Equal Sized Triangles on Equal Base have Same Height", "text": "Triangles of equal area which are on equal bases, and on the same side of it, are also in the same parallels. {{:Euclid:Proposition/I/40}}"}
+{"_id": "10142", "title": "Characteristic Function of Union/Variant 3", "text": ":$\\chi_{A \\mathop \\cup B} = \\max \\set {\\chi_A, \\chi_B}$"}
+{"_id": "10144", "title": "Characteristic Function of Intersection/Variant 2", "text": ":$\\chi_{A \\cap B} = \\min \\left\\{{\\chi_A, \\chi_B}\\right\\}$"}
+{"_id": "10145", "title": "Tangent Space is Vector Space", "text": "Let $M$ be a smooth manifold of dimension $n \\in \\N$. Let $m \\in M$ be a point. Let $\\left({U, \\kappa}\\right)$ be a chart with $m \\in U$. Let $T_m M$ be the tangent space at $m$. Then $T_m M$ is a real vector space of dimension $n$, spanned by the basis: :$\\left\\{ {\\left.{\\dfrac \\partial {\\partial \\kappa^i} }\\right\\vert_m : i \\in \\left\\{{1, \\dotsc, n}\\right\\} }\\right\\}$ that is, the set of partial derivatives with respect to the $i$th coordinate function $\\kappa^i$ evaluated at $m$."}
+{"_id": "18337", "title": "Parametric Equation of Involute of Circle", "text": "Let $C$ be a circle of radius $a$ whose center is at the origin of a cartesian plane. The involute $V$ of $C$ can be described by the parametric equation: :$\\begin {cases} x = a \\paren {\\cos \\theta + \\theta \\sin \\theta} \\\\ y = a \\paren {\\sin \\theta - \\theta \\cos \\theta} \\end {cases}$"}
+{"_id": "1974", "title": "Basis Expansion of Irrational Number", "text": "A basis expansion of an irrational number never terminates and does not recur."}
+{"_id": "10171", "title": "Composite Number has Prime Factor", "text": "Let $a$ be a composite number. Then there exists a prime number $p$ such that: :$p \\divides a$ where $\\divides$ means '''is a divisor of'''. {{:Euclid:Proposition/VII/31}}"}
+{"_id": "10184", "title": "General Associativity Theorem/Formulation 3", "text": "Let $\\struct {S, \\circ}$ be a semigroup. Let $a_i$ denote elements of $S$. Let $\\circ$ be associative. Let $n \\in \\Z$ be a positive integer such that $n \\ge 3$. Then all possible parenthesizations of the expression: :$a_1 \\circ a_2 \\circ \\cdots \\circ a_n$ are equivalent."}
+{"_id": "18384", "title": "Partial Differential Equation of Planes in 3-Space", "text": "The set of planes in real Cartesian $3$-dimensional space can be described by the system of partial differential equations: {{begin-eqn}} {{eqn | l = \\dfrac {\\partial^2 z} {\\partial x^2} | r = 0 }} {{eqn | l = \\dfrac {\\partial^2 z} {\\partial x \\partial y} | r = 0 }} {{eqn | l = \\dfrac {\\partial^2 z} {\\partial y^2} | r = 0 }} {{end-eqn}}"}
+{"_id": "2002", "title": "Equivalence of Definitions of Congruence", "text": "{{TFAE|def = Congruence (Number Theory)|view = Congruence|context = Number Theory}} Let $z \\in \\R$."}
+{"_id": "2004", "title": "Congruence Modulo Zero is Diagonal Relation", "text": "Congruence modulo zero is the diagonal relation. That is: :$x \\equiv y \\pmod 0 \\iff x = y$"}
+{"_id": "10202", "title": "Numbers between which exist two Mean Proportionals are Similar Solid", "text": "Let $a, b \\in \\Z$ be the extremes of a geometric sequence of integers whose length is $4$: :$\\tuple {a, m_1, m_2, b}$ That is, such that $a$ and $b$ have $2$ mean proportionals. Then $a$ and $b$ are similar solid numbers. {{:Euclid:Proposition/VIII/21}}"}
+{"_id": "10203", "title": "If First of Three Numbers in Geometric Sequence is Square then Third is Square", "text": "Let $P = \\tuple {a, b, c}$ be a geometric sequence of integers. Let $a$ be a square number. Then $c$ is also a square number. {{:Euclid:Proposition/VIII/22}}"}
+{"_id": "2012", "title": "Finite Fourier Series", "text": "Let $\\map a n$ be any finite periodic function on $\\Z$ with period $b$. Let $\\xi = e^{2 \\pi i/ b}$ be the first $b$th root of unity. Then: :$\\displaystyle \\map a n = \\sum_{k \\mathop = 0}^{b - 1} \\map {a_*} k \\xi^{n k}$ where: :$\\displaystyle \\map {a_*} n = \\frac 1 b \\sum_{k \\mathop = 0}^{b - 1} \\map a k \\xi^{-n k}$"}
+{"_id": "18408", "title": "Linear Second Order ODE/y'' - y = 3 exp -x", "text": "The second order ODE: :$(1): \\quad y'' - y = 3 e^{-x}$ has the general solution: :$y = C_1 e^x + C_2 e^{-x} - \\dfrac {3 x e^{-x} } 2$"}
+{"_id": "10220", "title": "Elements of Geometric Sequence from One which Divide Later Elements", "text": "Let $G_n = \\sequence {a_n}_{0 \\mathop \\le i \\mathop \\le n}$ be a geometric Sequence of integers. Let $a_0 = 1$. Let $m \\in \\Z_{> 0}$. Then: :$\\forall r \\in \\set {0, 1, \\ldots, m}: a_k \\divides a_m$ where $\\divides$ denotes divisibility. {{:Euclid:Proposition/IX/11}}"}
+{"_id": "10221", "title": "Elements of Geometric Sequence from One Divisible by Prime", "text": "Let $G_n = \\sequence {a_n}_{0 \\mathop \\le i \\mathop \\le n}$ be a geometric sequence of integers. Let $a_0 = 1$. Let $p$ be a prime number such that: :$p \\divides a_n$ where $\\divides$ denotes divisibility. Then $p \\divides a_1$. {{:Euclid:Proposition/IX/12}}"}
+{"_id": "10222", "title": "Divisibility of Elements of Geometric Sequence from One where First Element is Prime", "text": "Let $Q_n = \\sequence {a_j}_{0 \\mathop \\le j \\mathop \\le n}$ be a geometric sequence of length $n$ consisting of integers only. Let $a_0 = 1$. Let $a_1$ be a prime number. Then the only divisors of $a_n$ are $a_j$ for $j \\in \\set {1, 2, \\ldots, n}$. {{:Euclid:Proposition/IX/13}}"}
+{"_id": "18409", "title": "Linear Second Order ODE/y'' - 2 y' + y = exp x", "text": "The second order ODE: :$(1): \\quad y'' - 2 y' + y = e^x$ has the general solution: :$y = C_1 e^x + C_2 x e^x + \\dfrac {x^2 e^x} 2$"}
+{"_id": "18428", "title": "Linear First Order ODE/y' - y = x^2", "text": "The linear first order ODE: :$(1): \\quad \\dfrac {\\d y} {\\d x} - y = x^2$ has the general solution: :$y = C e^x - \\paren {x^2 + 2 x + 2}$"}
+{"_id": "18432", "title": "Linear Second Order ODE/y'' + y = exp -x cos x", "text": "The second order ODE: :$(1): \\quad y'' + y = e^{-x} \\cos x$ has the general solution: :$y = \\dfrac {e^{-x} } 5 \\paren {\\cos x - 2 \\sin x} + C_1 \\sin x + C_2 \\cos x$"}
+{"_id": "10252", "title": "Restriction of Homeomorphism is Homeomorphism", "text": "Let $T_1 = \\left({S_1, \\tau_1}\\right)$, $T_2 = \\left({S_2, \\tau_2}\\right)$ be topological spaces. Let $f: S_1 \\to S_2$ be a homeomorphism between $T_1$ and $T_2$. Let $S$ be a subset of $S_1$. Let $f {\\restriction_{S \\times f\\left[{S}\\right]}} : S \\to f \\left[{S}\\right]$ be the restriction of $f$ to $S \\times f \\left[{S}\\right]$. Let $S$ and $f \\left[{S}\\right]$ bear their respective subspace topologies. Then $f {\\restriction_{S \\times f \\left[{S}\\right]}}$ is a homeomorphism."}
+{"_id": "2073", "title": "Disjoint Independent Events means One is Void", "text": "Let $A$ and $B$ be events in a probability space. Suppose $A$ and $B$ are: :disjoint :independent. Then either $\\map \\Pr A = 0$ or $\\map \\Pr B = 0$. That is, if two events are disjoint and independent, at least one of them can't happen."}
+{"_id": "18502", "title": "Product of Rational Cuts is Rational Cut", "text": "Let $p \\in\\ Q$ and $q \\in \\Q$ be rational numbers. Let $p^*$ and $q^*$ denote the rational cuts associated with $p$ and $q$. Then: :$p^* q^* = \\paren {p q}^*$ Thus the operation of multiplication on the set of rational cuts is closed."}
+{"_id": "18508", "title": "Set of Rational Cuts forms Ordered Field", "text": "Let $\\RR$ denote the set of rational cuts. Let $\\struct {\\RR, +, \\times, \\le}$ denote the ordered structure formed from $\\RR$ and: :the operation $+$ of addition of cuts :the operation $\\times$ of multiplication of cuts :the ordering $\\le$ of cuts. Then $\\struct {\\RR, + \\times, \\le}$ is an ordered field."}
+{"_id": "18513", "title": "Infimum of Subset of Real Numbers May or May Not be in Subset", "text": "Let $S \\subset \\R$ be a proper subset of the set $\\R$ of real numbers. Let $S$ admit an infimum $m$. Then $m$ may or may not be an element of $S$."}
+{"_id": "10327", "title": "Apotome is Irrational", "text": "Every apotome is irrational, i.e.: : $\\displaystyle \\forall a, b \\in \\set {x \\in \\R_{>0} : x^2 \\in \\Q}: \\paren {\\frac a b \\notin \\Q \\land \\paren {\\frac a b}^2 \\in \\Q} \\implies \\paren {\\paren {a - b} \\notin \\Q \\land \\paren {a - b}^2 \\notin \\Q}$ {{:Euclid:Proposition/X/73}}"}
+{"_id": "18519", "title": "Basis Condition for Coarser Topology/Corollary 1", "text": "If $\\BB_1$ and $\\BB_2$ satisfy: :$\\forall U \\in \\BB_1: \\forall x \\in U: \\exists V \\in \\BB_2: x \\in V \\subseteq U$ then $\\tau_1$ is coarser than $\\tau_2$."}
+{"_id": "2138", "title": "Derivatives of PGF of Discrete Uniform Distribution", "text": "Let $X$ be a discrete random variable with the discrete uniform distribution with parameter $n$. Then the derivatives of the PGF of $X$ {{WRT|Differentiation}} $s$ are: :$\\dfrac {\\d^m} {\\d s^m} \\map {\\Pi_X} s = \\begin{cases} \\displaystyle \\dfrac 1 n \\sum_{k \\mathop = m}^n k^{\\underline m} s^{k - m} & : m \\le n \\\\ 0 & : k > n \\end{cases}$ where $k^{\\underline m}$ is the falling factorial."}
+{"_id": "18532", "title": "Set of Doubletons of Natural Numbers is Countable", "text": "Let $S$ be the set defined as: :$S = \\set {\\set {n_1, n_2}: n_1, n_2 \\in \\N, n_1 \\ne n_2}$ where $\\N$ denotes the set of natural numbers. Then $S$ is countably infinite."}
+{"_id": "18545", "title": "Frege Set Theory is Logically Inconsistent", "text": "The system of axiomatic set theory that is Frege set theory is inconsistent."}
+{"_id": "18557", "title": "Empty Class is Unique", "text": "There is exactly one empty class."}
+{"_id": "18561", "title": "Existence of Set is Equivalent to Existence of Empty Set", "text": "Let $V$ be a basic universe. Let $P$ be the axiom: :$V$ has at least one element. Then $P$ is equivalent to the axiom of the empty set: :The empty class $\\O$ is a set."}
+{"_id": "2178", "title": "Associativity on Four Elements", "text": "Let $\\struct {S, \\circ}$ be a semigroup. Let $a, b, c, d \\in S$. Then: :$a \\circ b \\circ c \\circ d$ gives a unique answer no matter how the elements are associated."}
+{"_id": "18581", "title": "Intersection of Class is Subset of Intersection of Subclass", "text": "Let $V$ be a basic universe. Let $A$ and $B$ be classes of $V$: :$A \\subseteq V, B \\subseteq V$ such that it is not the case that $A = B = \\O$. Let $\\displaystyle \\bigcap A$ and $\\displaystyle \\bigcap B$ denote the intersection of $A$ and intersection of $B$ respectively. Let $A$ be a subclass of $B$: :$A \\subseteq B$ Then $\\displaystyle \\bigcap B$ is a subset of $\\displaystyle \\bigcap A$: :$\\displaystyle \\bigcap B \\subseteq \\displaystyle \\bigcap A$"}
+{"_id": "2212", "title": "Frobenius's Theorem", "text": "An algebraic associative real division algebra $A$ is isomorphic to $\\R, \\C$ or $\\Bbb H$."}
+{"_id": "10417", "title": "Areas of Circles are as Squares on Diameters/Lemma", "text": "{{:Euclid:Proposition/XII/2/Lemma}}"}
+{"_id": "2239", "title": "Dominance Relation is Ordering", "text": "Let $S$ and $T$ be cardinals. Let $S \\preccurlyeq T$ denote that $S$ is dominated by $T$. Let $\\mathbb S$ be any set of cardinals. Then the relational structure $\\struct {\\mathbb S, \\preccurlyeq}$ is an ordered set. That is, $\\preccurlyeq$ is an ordering (at least partial) on $\\mathbb S$."}
+{"_id": "18628", "title": "Basic Universe is Inductive", "text": "Let $V$ be a basic universe. Then $V$ is an inductive class."}
+{"_id": "2274", "title": "Image of Subset is Image of Restriction", "text": "Let $f: S \\to T$ be a mapping. Let $X \\subseteq S$. Let $f {\\restriction_X}$ be the restriction of $f$ to $X$. Then: :$f \\sqbrk X = \\Img {f {\\restriction_X} }$ where $\\Img f$ denotes the image of $f$, defined as: :$\\Img f = \\set {t \\in T: \\exists s \\in S: t = \\map f s}$"}
+{"_id": "2275", "title": "Binomial Distribution PMF", "text": "The probability mass function (pmf) of a binomially distributed random variable $X$ is equal to: :$\\displaystyle \\Pr \\left({X = x}\\right) = \\binom n x p^x(1-p)^{n-x}$ where $n$ is the number of trials and $p$ is the probability of success."}
+{"_id": "10478", "title": "Successor Mapping of Peano Structure has no Fixed Point", "text": "Let $\\PP = \\struct {P, s, 0}$ be a Peano structure. Then: :$\\forall n \\in P: \\map s n \\ne n$ That is, the successor mapping has no fixed points."}
+{"_id": "2296", "title": "Closed Set is F-Sigma Set", "text": "Let $T = \\struct {S, \\tau}$ be a topological space. Let $V$ be a closed set of $T$. Then $V$ is an $F_\\sigma$ set of $T$."}
+{"_id": "10488", "title": "Union of Open Intervals of Positive Reals is Set of Strictly Positive Reals", "text": "Let $\\R_{> 0}$ be the set of strictly positive real numbers. For all $x \\in \\R_{> 0}$, let $A_x$ be the open real interval $\\openint 0 x$. Then: :$\\displaystyle \\bigcup_{x \\mathop \\in \\R_{> 0} } A_x = \\R_{> 0}$"}
+{"_id": "10489", "title": "Intersection of Closed Intervals of Positive Reals is Zero", "text": "Let $\\R_{> 0}$ be the set of strictly positive real numbers. For all $x \\in \\R_{> 0}$, let $B_x$ be the closed real interval $\\closedint 0 x$. Then: :$\\displaystyle \\bigcap_{x \\mathop \\in \\R_{> 0} } B_x = \\set 0$"}
+{"_id": "18684", "title": "Minimally Closed Class under Progressing Mapping is Well-Ordered", "text": "$N$ is well-ordered under the inclusion relation."}
+{"_id": "2301", "title": "Sum of Independent Poisson Random Variables is Poisson", "text": "Let $X$ and $Y$ be independent discrete random variables with: :$X \\sim \\Poisson {\\lambda_1}$ and :$Y \\sim \\Poisson {\\lambda_2}$ for some $\\lambda_1, \\lambda_2 \\in \\R_{> 0}$. Then their sum $X + Y$ is distributed: :$X + Y \\sim \\Poisson {\\lambda_1 + \\lambda_2}$"}
+{"_id": "2312", "title": "Order of General Linear Group over Galois Field", "text": "Let $\\GF$ be a Galois field with $p$ elements. Then the order of the general linear group $\\GL {n, \\GF}$ is: :$\\displaystyle \\prod_{j \\mathop = 1}^n \\paren {p^n - p^{j - 1} }$"}
+{"_id": "2313", "title": "Existence of Latin Squares", "text": "For each $n \\in \\Z_{>0}$ there exists at least one Latin square of order $n$."}
+{"_id": "2315", "title": "Lipschitz Condition implies Uniform Continuity", "text": "Let $\\left({M_1, d_1}\\right)$ and $\\left({M_2, d_2}\\right)$ be metric spaces. Let $g: M_1 \\to M_2$ satisfy the Lipschitz condition. Then $g$ is uniformly continuous on $M_1$."}
+{"_id": "10511", "title": "Repeated Composition of Injection is Injection", "text": "Let $S$ be a set. Let $f: S \\to S$ be an injection. Let the sequence of mappings: :$f^0, f^1, f^2, \\ldots, f^n, \\ldots$ be defined as: :$\\forall n \\in \\N: \\map {f^n} x = \\begin {cases} x & : n = 0 \\\\ \\map f x & : n = 1 \\\\ \\map f {\\map {f^{n - 1} } x} & : n > 1 \\end{cases}$ Then for all $n \\in \\N$, $f^n$ is an injection."}
+{"_id": "10519", "title": "Renaming Mapping from Set of Mappings on Single Element", "text": "Let $X$ and $Y$ be sets. Let $E$ be the set of all mappings from $X$ to $Y$. Let $b \\in X$. Let $\\mathcal R \\subseteq E \\times E$ be the relation on $E$ defined as: :$\\mathcal R := \\set {\\tuple {f, g} \\in \\mathcal R: \\map f b = \\map g b}$ Let $e_b: E / \\mathcal R \\to Y$ be the renaming mapping induced by $\\mathcal R$. Then $e_b$ is a bijection."}
+{"_id": "18722", "title": "Power of Random Variable with Continuous Uniform Distribution has Beta Distribution", "text": "Let $X \\sim \\ContinuousUniform 0 1$ where $\\ContinuousUniform 0 1$ is the continuous uniform distribution on $\\closedint 0 1$. Let $n$ be a positive real number. Then: :$X^n \\sim \\BetaDist {\\dfrac 1 n} 1$ where $\\operatorname {Beta}$ is the beta distribution."}
+{"_id": "18735", "title": "Variance of Linear Transformation of Random Variable", "text": "Let $X$ be a random variable. Let $a, b$ be real numbers. Then we have: :$\\var {a X + b} = a^2 \\var X$ where $\\var X$ denotes the variance of $X$."}
+{"_id": "18754", "title": "Versed Sine Function is Even", "text": "The versed sine is an even function: :$\\forall \\theta \\in \\R: \\map \\vers {-\\theta} = \\vers \\theta$"}
+{"_id": "10563", "title": "Supremum Metric on Continuous Real Functions is Metric", "text": "Let $\\left[{a \\,.\\,.\\, b}\\right] \\subseteq \\R$ be a closed real interval. Let $\\mathscr C \\left[{a \\,.\\,.\\, b}\\right]$ be the set of all continuous functions $f: \\left[{a \\,.\\,.\\, b}\\right] \\to \\R$. Let $d$ be the supremum metric on $\\mathscr C \\left[{a \\,.\\,.\\, b}\\right]$. Then $d$ is a metric."}
+{"_id": "18758", "title": "P-Norm of Real Sequence is Strictly Decreasing Function of P", "text": "Let $p \\ge 1$ be a real number. Let $\\ell^p$ denote the $p$-sequence space. Let $\\mathbf x = \\sequence {x_n} \\in \\ell^p$. Suppose $\\mathbf x$ is not a sequence of zero elements. Let $\\norm {\\mathbf x}_p$ denote the $p$-norm. Then the mapping $p \\to \\norm {\\mathbf x}_p$ is strictly decreasing {{WRT}} $p$."}
+{"_id": "18760", "title": "Extension of Half-Range Fourier Cosine Function to Symmetric Range", "text": "Let $\\map f x$ be a real function defined on the interval $\\openint 0 \\lambda$. Let $\\map f x$ be represented by the half-range Fourier cosine series $\\map S x$: :$\\map f x \\sim \\map S x = \\dfrac {a_0} 2 + \\displaystyle \\sum_{n \\mathop = 1}^\\infty a_n \\cos \\frac {n \\pi x} \\lambda$ where for all $n \\in \\Z_{> 0}$: :$a_n = \\displaystyle \\frac 2 \\lambda \\int_0^\\lambda \\map f x \\cos \\frac {n \\pi x} \\lambda \\rd x$ Then $\\map S x$ also represents the extension to the even function $g: \\openint {-\\lambda} \\lambda \\to \\R$ of $f$, defined as: :$\\forall x \\in \\openint {-\\lambda} \\lambda: \\map g x = \\begin {cases} \\map f x & : x > 0 \\\\ \\map f {-x} & : x < 0 \\\\ \\displaystyle \\lim_{x \\mathop \\to 0} \\map g x & : x = 0 \\end {cases}$"}
+{"_id": "10572", "title": "P-adic Metric is Metric", "text": "Let $p \\in \\N$ be a prime. Let $\\norm{\\,\\cdot\\,}_p: \\Q \\to \\R_{\\ge 0}$ be the $p$-adic norm on $\\Q$. Let $d_p$ be the $p$-adic metric on $\\Q$: :$\\forall x, y \\in \\Q: \\map {d_p} {x, y} = \\norm{x - y}_p$ Then $d_p$ is a metric."}
+{"_id": "18769", "title": "Sum over Integers of Sine of n + alpha of theta over n + alpha", "text": "For $0 < \\theta < 2 \\pi$: :$\\displaystyle \\sum_{n \\mathop \\in \\Z} \\dfrac {\\sin \\paren {n + \\alpha} \\theta} {n + \\alpha} = \\pi$"}
+{"_id": "18773", "title": "Mittag-Leffler Expansion for Cotangent Function/Real Domain", "text": ":$\\displaystyle \\dfrac 1 \\alpha + \\sum_{n \\mathop \\ge 1} \\dfrac {2 \\alpha} {\\alpha^2 - n^2} = \\pi \\cot \\pi \\alpha$"}
+{"_id": "18779", "title": "Sum of Cosines of Arithmetic Sequence of Angles/Formulation 1", "text": "{{begin-eqn}} {{eqn | l = \\sum_{k \\mathop = 0}^n \\map \\cos {\\theta + k \\alpha} | r = \\cos \\theta + \\map \\cos {\\theta + \\alpha} + \\map \\cos {\\theta + 2 \\alpha} + \\map \\cos {\\theta + 3 \\alpha} + \\dotsb }} {{eqn | r = \\frac {\\map \\sin {\\alpha \\paren {n + 1} / 2} } {\\map \\sin {\\alpha / 2} } \\map \\cos {\\theta + \\frac {n \\alpha} 2} }} {{end-eqn}}"}
+{"_id": "2394", "title": "Count of Binary Operations Without Identity", "text": "Let $S$ be a set whose cardinality is $n$. The number $N$ of possible different binary operations which do not have an identity element that can be applied to $S$ is given by: :$N = n^{\\left({\\left({n-1}\\right)^2 + 1}\\right)} \\left({n^{2 \\left({n-1}\\right)} - 1}\\right)$"}
+{"_id": "10589", "title": "Addition of Coordinates on Cartesian Plane under Chebyshev Distance is Continuous Function", "text": "Let $\\R^2$ be the real number plane. Let $d_\\infty$ be the Chebyshev distance on $\\R^2$. Let $f: \\R^2 \\to \\R$ be the real-valued function defined as: :$\\forall \\left({x_1, x_2}\\right) \\in \\R^2: f \\left({x_1, x_2}\\right) = x_1 + x_2$ Then $f$ is continuous."}
+{"_id": "2399", "title": "Equivalence of Definitions of Order of Group Element", "text": "{{TFAE|def = Order of Group Element}} Let $G$ be a group whose identity is $e$. Let $x \\in G$."}
+{"_id": "18802", "title": "Maximum Rule for Continuous Functions", "text": "Let $\\struct {S, \\tau}$ be a topological space. Let $f, g: S \\to \\R$ be continuous real-valued functions. Let $\\max \\set {f, g}: S \\to \\R$ denote the pointwise maximum of $f$ and $g$. Then: :$\\max \\set {f, g}$ is continuous."}
+{"_id": "10621", "title": "Continuity of Mapping to Cartesian Product under Chebyshev Distance", "text": "Let $M_1 = \\left({A_1, d_1}\\right), M_2 = \\left({A_2, d_2}\\right), \\ldots, M_n = \\left({A_n, d_n}\\right)$ be metric spaces. Let $\\displaystyle \\mathcal A = \\prod_{i \\mathop = 1}^n A_i$ be the cartesian product of $A_1, A_2, \\ldots, A_n$. Let $d_\\infty: \\mathcal A \\times \\mathcal A \\to \\R$ be the Chebyshev distance on $\\mathcal A$: : $\\displaystyle d_\\infty \\left({x, y}\\right) = \\max_{i \\mathop = 1}^n \\left\\{ {d_i \\left({x_i, y_i}\\right)}\\right\\}$ where $x = \\left({x_1, x_2, \\ldots, x_n}\\right), y = \\left({y_1, y_2, \\ldots, y_n}\\right) \\in \\mathcal A$. For all $i \\in \\left\\{ {1, 2, \\ldots, n}\\right\\}$, let $\\operatorname{pr}_i: \\mathcal A \\to A_i$ be the $i$th projection on $\\mathcal A$: :$\\forall a \\in \\mathcal A: \\operatorname{pr}_i \\left({a}\\right) = a_i$ where $a = \\left({a_1, a_2, \\ldots, a_n}\\right) \\in \\mathcal A$. Let $M' = \\left({X, d'}\\right)$ be a metric space. Let $f: X \\to \\mathcal A$ be a mapping. Then $f$ is continuous on $X$ {{iff}} each of $\\operatorname{pr}_i \\circ f: X \\to A_i$ is continuous on $X$."}
+{"_id": "2437", "title": "Union of Mappings with Disjoint Domains is Mapping", "text": "Let $S_1, S_2, T_1, T_2$ be sets. Let $f: S_1 \\to T_1$ and $g: S_2 \\to T_2$ be mappings. Let $h = f \\cup g$ be their union. If $S_1 \\cap S_2 = \\O$, then $h: S_1 \\cup S_2 \\to T_1 \\cup T_2$ is a mapping whose domain is $S_1 \\cup S_2$."}
+{"_id": "18825", "title": "Natural Number m is Less than n iff m is an Element of n", "text": "Let $\\omega$ be the set of natural numbers defined as the von Neumann construction. Let $m, n \\in \\omega$. Then: :$m < n \\iff m \\in n$ That is, every natural number is the set of all smaller natural numbers."}
+{"_id": "10638", "title": "Limit of Image of Sequence/Real Number Line", "text": "Let $f$ be a real function which is continuous on the interval $\\Bbb I$. Let $\\left \\langle {x_n} \\right \\rangle$ be a sequence of points in $\\Bbb I$ such that: : $\\displaystyle \\lim_{n \\mathop \\to \\infty} x_n = \\xi$ where: : $(1): \\quad \\xi \\in \\Bbb I$ : $(2): \\quad \\displaystyle \\lim_{n \\mathop \\to \\infty} x_n$ denotes the limit of $x_n$. Then: : $\\displaystyle \\lim_{n \\mathop \\to \\infty} f \\left({x_n}\\right) = f \\left({\\xi}\\right)$ That is: : $\\displaystyle \\lim_{n \\mathop \\to \\infty} f \\left({x_n}\\right) = f \\left({\\lim_{n \\mathop \\to \\infty} x_n}\\right)$"}
+{"_id": "18836", "title": "Like Electric Charges Repel", "text": "Let $a$ and $b$ be stationary particles, each carrying an electric charge of $q_a$ and $q_b$ respectively. Let $q_a$ and $q_b$ be of the same sign. That is, let $q_a$ and $q_b$ be like charges. Then the forces exerted by $a$ on $b$, and by $b$ on $a$, are such as to cause $a$ and $b$ to repel each other."}
+{"_id": "18847", "title": "P-Sequence Space with P-Norm forms Banach Space", "text": "Let $\\ell^p$ be a p-sequence space. Let $\\norm {\\, \\cdot \\,}_p$ be a p-norm. Then $\\struct {\\ell^p, \\norm {\\, \\cdot \\,}_p}$ is a Banach space."}
+{"_id": "10658", "title": "Neighbourhood of Point Contains Point of Subset iff Distance is Zero", "text": "Let $M = \\struct {X, d}$ be a metric space. Let $A \\subseteq X$ be a non-empty subset of $X$. Let $x \\in X$. Then every neighborhood of $x$ contains a point of $A$ {{iff}}: :$\\map d {x, A} = 0$ where $\\map d {x, A}$ denotes the distance from $x$ to $A$."}
+{"_id": "10660", "title": "Set is Open iff Union of Open Balls", "text": "Let $M = \\struct {A, d}$ be a metric space. Let $U \\subseteq A$. Then $U$ is open in $M$ {{iff}} it is a union of open balls."}
+{"_id": "10661", "title": "Empty Set is Open and Closed in Metric Space", "text": "Let $M = \\left({A, d}\\right)$ be a metric space. Then the empty set $\\varnothing$ is both open and closed in $M$."}
+{"_id": "2479", "title": "Equivalence of Definitions of Independent Subgroups", "text": "{{TFAE|def = Independent Subgroups}} Let $G$ be a group whose identity is $e$. Let $\\left \\langle {H_n} \\right \\rangle$ be a sequence of independent subgroups of $G$."}
+{"_id": "18866", "title": "Condition for Factoring of Quotient Mapping between Modulo Addition Groups", "text": "Let $m, n \\in \\Z_{>0}$ be strictly positive integers. Let $\\struct {\\Z, +}$ denote the additive group of integers. Let $\\struct {\\Z_m, +_m}$ and $\\struct {\\Z_n, +_n}$ denote the additive groups of integers modulo $m$ and $n$ respectively. Let $f: \\Z \\to \\Z_n$ be the quotient epimorphism from $\\struct {\\Z, +}$ to $\\struct {\\Z_n, +_n}$. Let $q: \\Z \\to \\Z_m$ be the quotient epimorphism from $\\struct {\\Z, +}$ to $\\struct {\\Z_m, +_m}$. Then Then $N \\subseteq K$ Then: :there exists a group homomorphism $\\psi: \\struct {\\Z_m, +_m} \\to \\struct {\\Z_n, +_n}$ {{iff}} :$m \\divides n$ where $\\divides$ denotes divisibility."}
+{"_id": "2494", "title": "Construction of Inverse Completion/Quotient Structure", "text": "Let the quotient structure defined by $\\boxtimes$ be: : $\\displaystyle \\left({T', \\oplus'}\\right) := \\left({\\frac {S \\times C} \\boxtimes, \\oplus_\\boxtimes}\\right)$ where $\\oplus_\\boxtimes$ is the operation induced on $\\displaystyle \\frac {S \\times C} \\boxtimes$ by $\\oplus$. === Quotient Structure is Commutative Semigroup === {{:Construction of Inverse Completion/Quotient Structure is Commutative Semigroup}} === Quotient Mapping is Injective === {{:Construction of Inverse Completion/Quotient Mapping is Injective}} === Quotient Mapping is Monomorphism === {{:Construction of Inverse Completion/Quotient Mapping is Monomorphism}} === Image of Quotient Mapping is Subsemigroup === {{:Construction of Inverse Completion/Image of Quotient Mapping is Subsemigroup}} === Quotient Mapping to Image is Isomorphism === {{:Construction of Inverse Completion/Quotient Mapping to Image is Isomorphism}} === Image of Cancellable Elements in Quotient Mapping === {{:Construction of Inverse Completion/Quotient Mapping/Image of Cancellable Elements}}"}
+{"_id": "10691", "title": "Inclusion Mapping on Metric Space is Continuous", "text": "Let $M = \\left({A, d}\\right)$ be a metric space. Let $\\left({H, d_H}\\right)$ be a metric subspace of $M$. Then the inclusion mapping $i_H: H \\to A$ is continuous."}
+{"_id": "18884", "title": "Set of Transpositions is not Subgroup of Symmetric Group", "text": "Let $S$ be a finite set with $n$ elements such that $n > 2$. Let $G = \\struct {\\map \\Gamma S, \\circ}$ denote the symmetric group on $S$. Let $H \\subseteq G$ denote the set of all transpositions of $S$ along with the identity mapping which moves no elements of $S$. Then $H$ does not form a subgroup of $G$."}
+{"_id": "18886", "title": "Homomorphism from Reals to Circle Group/Corollary", "text": "Let $\\struct {\\R, +}$ be the additive group of real numbers. Let $\\struct {C_{\\ne 0}, \\times}$ be the multiplicative group of complex numbers. Let $\\phi: \\struct {\\R, +} \\to \\struct {C_{\\ne 0}, \\times}$ be the mapping defined as: :$\\forall x \\in \\R: \\map \\phi x = \\cos x + i \\sin x$ Then $\\phi$ is a (group) homomorphism."}
+{"_id": "2508", "title": "Projection onto Ideal of External Direct Sum of Rings", "text": "Let $\\left({R_1, +_1, \\circ_1}\\right), \\left({R_2, +_2, \\circ_2}\\right), \\ldots, \\left({R_n, +_n, \\circ_n}\\right)$ be rings. Let $\\displaystyle \\left({R, +, \\circ}\\right) = \\prod_{k \\mathop = 1}^n \\left({R_k, +_k, \\circ_k}\\right)$ be their direct product. For each $k \\in \\left[{1 \\,.\\,.\\, n}\\right]$, let: :$R'_k = \\left\\{{\\left({x_1, \\ldots, x_n}\\right) \\in R: \\forall j \\ne k: x_j = 0}\\right\\}$ Let $\\operatorname{pr}_k: R \\to R'_k$ be the projection on the $k$th coordinate of $\\left({R, +, \\circ}\\right)$ onto $R'_k$. Then $\\operatorname{pr}_k$ is an epimorphism."}
+{"_id": "18893", "title": "Edgeless Graph is Bipartite", "text": "Let $N_n$ denote the edgeless graph with $n$ vertices. Then $N_n$ is a bipartite graph."}
+{"_id": "2513", "title": "Set of Subfields forms Complete Lattice", "text": "Let $\\struct {F, +, \\circ}$ be a field. Let $\\mathbb F$ be the set of all subfields of $F$. Then $\\struct {\\mathbb F, \\subseteq}$ is a complete lattice."}
+{"_id": "18905", "title": "Simple Graph of Maximum Size is Complete Graph", "text": "Let $G$ be a simple graph of order $n$ such that $n \\ge 1$. Let $G$ have the largest size of all simple graphs of order $n$. Then: :$G$ is the complete graph $K_n$ :its size is $\\dfrac {n \\paren {n - 1} } 2$."}
+{"_id": "10717", "title": "Sum of Integrals on Complementary Sets", "text": "Let $\\struct {X, \\Sigma, \\mu}$ be a measure space. Let $A, E \\in \\Sigma$ with $A \\subseteq E$. Let $f$ be a $\\mu$-integrable function on $X$. Then :$\\displaystyle \\int_E f \\rd \\mu = \\int_A f \\rd \\mu + \\int_{E \\mathop \\setminus A} f \\rd \\mu$"}
+{"_id": "18915", "title": "Characteristics of Cycle Graph", "text": "Let $G = \\struct {V, E}$ be an (undirected) graph whose order is greater than $2$. Then $G$ is a cycle graph {{iff}}: :$G$ is connected :every vertex of $G$ is adjacent to $2$ other vertices :every edge of $G$ is adjacent to $2$ other edges."}
+{"_id": "10726", "title": "Neighborhood of Point in Metrizable Space contains Closed Neighborhood", "text": "Let $T = \\struct {S, \\tau}$ be a metrizable topological space. Let $x \\in S$ be an arbitrary point of $T$. Let $N$ be a neighborhood of $x$. Then $N$ has as a subset a neighborhood $V$ of $x$ such that $V$ is closed."}
+{"_id": "10741", "title": "Induced Neighborhood Space is Neighborhood Space", "text": "Let $S$ be a set. Let $\\tau$ be a topology on $S$, thus forming the topological space $\\left({S, \\tau}\\right)$. Let $\\left({S, \\mathcal N}\\right)$ be the neighborhood space induced by $\\left({S, \\tau}\\right)$. Then $\\left({S, \\mathcal N}\\right)$ is a neighborhood space."}
+{"_id": "18933", "title": "Order 1 Simple Graph is Unique up to Isomorphism", "text": "Let $G_1 = \\struct {\\map V {G_1}, \\map E {G_1} }$ and $G_2 = \\struct {\\map V {G_2}, \\map E {G_2} }$ be simple graphs of order $1$. Then $G_1$ and $G_2$ are isomorphic."}
+{"_id": "2564", "title": "Definition of Polynomial from Polynomial Ring over Sequence", "text": "Let $\\struct {R, +, \\circ}$ be a ring with unity. Let $\\struct {P \\sqbrk R, \\oplus, \\odot}$ be the polynomial ring over the set of all sequences in $R$: :$P \\sqbrk R = \\set {\\sequence {r_0, r_1, r_2, \\ldots} }$ where the operations $\\oplus$ and $\\odot$ on $P \\sqbrk R$ be defined as: {{:Definition:Operations on Polynomial Ring of Sequences}} Let $\\struct {R \\sqbrk X, +, \\circ}$ be the ring of polynomials over $R$ in $X$. {{explain|Strictly speaking the definition in terms of Definition:Polynomial Form is needed here, with $X$ specifically being an Definition:Indeterminate (Polynomial Theory) or Definition:Transcendental over Integral Domain.}} Then $\\struct {R \\sqbrk X, +, \\circ}$ and $\\struct {P \\sqbrk R, \\oplus, \\odot}$ are isomorphic."}
+{"_id": "10757", "title": "Bertrand's Theorem", "text": "Let $U: \\R_{>0} \\to \\R$ be analytic for $r > 0$. Let $M > 0$ be a nonvanishing angular momentum such that a stable circular orbit exists. Suppose that every orbit sufficiently close to the circular orbit is closed. Then $U$ is either $k r^2$ or $-\\dfrac k r$ (for $k > 0$) up to an additive constant."}
+{"_id": "10758", "title": "Cube Root of 2 is Irrational", "text": ":$\\sqrt [3] 2$ is irrational."}
+{"_id": "2565", "title": "Integers under Multiplication form Countably Infinite Semigroup", "text": "The set of integers under multiplication $\\struct {\\Z, \\times}$ is a countably infinite semigroup."}
+{"_id": "18955", "title": "Third Derivative of Natural Logarithm Function", "text": "Let $\\ln x$ be the natural logarithm function. Then: :$\\map {D^3_x} {\\ln x} = \\dfrac 2 {x^3}$"}
+{"_id": "10766", "title": "Bounded Piecewise Continuous Function may not have One-Sided Limits", "text": "Let $f$ be a real function defined on a closed interval $\\left[{a \\,.\\,.\\, b}\\right]$, $a < b$. Let $f$ be a bounded piecewise continuous function. {{:Definition:Bounded Piecewise Continuous Function}} Then it is not necessarily the case that $f$ is a piecewise continuous function with one-sided limits: {{:Definition:Piecewise Continuous Function with One-Sided Limits}}"}
+{"_id": "18959", "title": "Linear Second Order ODE/y'' = 1 over 1 - x^2", "text": "The second order ODE: :$(1): \\quad y'' = \\dfrac 1 {1 - x^2}$ has the general solution: :$y = x \\tanh^{-1} x + \\map \\ln {1 - x^2} + C x + D$"}
+{"_id": "2598", "title": "Universal Property of Polynomial Ring/Free Monoid on Set", "text": "Let $R, S$ be commutative and unitary rings. Let $\\left\\langle{s_j}\\right\\rangle_{j \\mathop \\in J}$ be an indexed family of elements of $S$. Let $\\psi: R \\to S$ be a ring homomorphism. Let $R \\left[{\\left\\{{X_j: j \\in J}\\right\\}}\\right]$ be a polynomial ring. Then there exists a unique evaluation homomorphism $\\phi: R \\left[{\\left\\{{X_j: j \\in J}\\right\\}}\\right] \\to S$ at $\\langle s_j\\rangle_{j \\in J}$ extending $\\psi$."}
+{"_id": "2601", "title": "Polynomial Addition is Associative", "text": "Addition of polynomials is an associative operation."}
+{"_id": "2602", "title": "Null Polynomial is Additive Identity", "text": "The set of polynomial forms has an additive identity. {{explain|Context}}"}
+{"_id": "10800", "title": "De Morgan's Laws (Set Theory)/Proof by Induction/Difference with Union/Proof", "text": "Let $\\mathbb T = \\set {T_i: i \\mathop \\in I}$, where each $T_i$ is a set and $I$ is some finite indexing set. Then: : $\\displaystyle S \\setminus \\bigcup_{i \\mathop \\in I} T_i = \\bigcap_{i \\mathop \\in I} \\paren {S \\setminus T_i}$"}
+{"_id": "10808", "title": "Parity Addition is Commutative", "text": "Let $R := \\struct {\\set {\\text{even}, \\text{odd} }, +, \\times}$ be the parity ring. The operation $+$ is commutative: :$\\forall a, b \\in R: a + b = b + a$"}
+{"_id": "10809", "title": "Parity Multiplication is Associative", "text": "Let $R := \\struct {\\set {\\text{even}, \\text{odd} }, +, \\times}$ be the parity ring. The operation $\\times$ is associative: :$\\forall a, b, c \\in R: \\paren {a \\times b} \\times c = a \\times \\paren {b \\times c}$"}
+{"_id": "19007", "title": "Events One of Which equals Union", "text": "Let the probability space of an experiment $\\EE$ be $\\struct {\\Omega, \\Sigma, \\Pr}$. Let $A, B \\in \\Sigma$ be events of $\\EE$, so that $A \\subseteq \\Omega$ and $B \\subseteq \\Omega$. Let $A$ and $B$ be such that: :$A \\cup B = A$ Then whenever $B$ occurs, it is always the case that $A$ occurs as well."}
+{"_id": "2641", "title": "Direct Product iff Nontrivial Idempotent", "text": "Let $R$ be a commutative ring with unity whose zero is $0_R$ and whose unity is $1_R$. Then $R$ is the direct product of two non-trivial rings {{iff}} $R$ contains an idempotent element not equal to $0_R$ or $1_R$."}
+{"_id": "10833", "title": "Real Numbers under Multiplication do not form Group", "text": "The algebraic structure $\\struct {\\R, \\times}$ consisting of the set of real numbers $\\R$ under multiplication $\\times$ is not a group."}
+{"_id": "19027", "title": "Total Variation is Non-Negative", "text": "Let $a, b$ be real numbers with $a < b$. Let $f : \\closedint a b \\to \\R$ be a function of bounded variation. Let $V_f$ be the total variation of $f$ on $\\closedint a b$. Then: :$V_f \\ge 0$ with equality {{iff}} $f$ is constant."}
+{"_id": "2650", "title": "Numbers of Type Integer a plus b root 2 Form Ordered Integral Domain", "text": "Let $\\Z \\sqbrk {\\sqrt 2}$ denote the set: :$\\Z \\sqbrk {\\sqrt 2} := \\set {a + b \\sqrt 2: a, b \\in \\Z}$ that is, all numbers of the form $a + b \\sqrt 2$ where $a$ and $b$ are integers. Then the algebraic structure: :$\\struct {\\Z \\sqbrk {\\sqrt 2}, +, \\times}$ where $+$ and $\\times$ are conventional addition and multiplication on real numbers, is an ordered integral domain."}
+{"_id": "19044", "title": "Basis Test for Isolated Point", "text": "Let $T = \\struct {S, \\tau}$ be a topological space. Let $\\BB$ be a synthetic basis of $T$. Let $H \\subseteq S$. Then $x \\in H$ is an isolated point of $H$ {{iff}}: :$\\exists U \\in \\BB : U \\cap H = \\set x$"}
+{"_id": "19050", "title": "Boundary of Boundary is not necessarily Equal to Boundary", "text": "Let $T$ be a topological space. Let $H \\subseteq T$. Let $\\partial H$ denote the boundary of $H$. While it is true that: :$\\map \\partial {\\partial H} \\subseteq \\partial H$ it is not necessarily the case that: :$\\map \\partial {\\partial H} = \\partial H$"}
+{"_id": "10861", "title": "Right Congruence Class Modulo Subgroup is Right Coset", "text": "Let $\\mathcal R^r_H$ be the equivalence defined as right congruence modulo $H$. The equivalence class $\\eqclass g {\\mathcal R^r_H}$ of an element $g \\in G$ is the right coset $H g$. This is known as the '''right congruence class of $g \\bmod H$'''."}
+{"_id": "19067", "title": "Equivalence of Definitions of Filter Basis", "text": "{{TFAE|def = Filter Basis}} Let $S$ be a set. Let $\\FF$ be a filter on $S$."}
+{"_id": "10877", "title": "Lexicographic Order on Pair of Well-Ordered Sets is Well-Ordering", "text": "Let $\\struct {S_1, \\preceq_1}$ and $\\struct {S_2, \\preceq_2}$ be ordered sets. Let $\\preccurlyeq$ be the lexicographic order on $S_1 \\times S_2$''': :$\\tuple {x_1, x_2} \\preccurlyeq \\tuple {y_1, y_2} \\iff \\tuple {x_1 \\prec_1 y_1} \\lor \\tuple {x_1 = y_1 \\land x_2 \\preceq_2 y_2}$ Then: :$\\preccurlyeq$ is a well-ordering on $S_1 \\times S_2$ {{iff}} :both $\\preceq_1$ and $\\preceq_2$ are well-orderings."}
+{"_id": "19070", "title": "Product of Functions of Bounded Variation is of Bounded Variation", "text": "Let $a, b$ be real numbers with $a < b$. Let $f, g : \\closedint a b \\to \\R$ be functions of bounded variation. Let $V_f$ and $V_g$ be the total variations of $f$ and $g$ respectively. Then $f \\times g$ is of bounded variation with: :$V_{f \\times g} \\le A V_f + B V_g$ where: :$V_{f \\times g}$ denotes the total variation of $f \\times g$ :$A, B$ are non-negative real numbers."}
+{"_id": "19069", "title": "Difference of Functions of Bounded Variation is of Bounded Variation", "text": "Let $a, b$ be real numbers with $a < b$. Let $f, g : \\closedint a b \\to \\R$ be functions of bounded variation. Let $V_f$ and $V_g$ be the total variations of $f$ and $g$ respectively. Then $f - g$ is of bounded variation with: :$V_{f - g} \\le V_f + V_g$ where $V_{f - g}$ denotes the total variation of $f - g$."}
+{"_id": "2692", "title": "Approximation to Stirling's Formula for Gamma Function", "text": "Let: :$D_\\epsilon = \\left\\{{z \\in \\C : \\left\\vert{\\operatorname{Arg} \\left({z}\\right)}\\right\\vert < \\pi - \\epsilon,\\ \\left\\vert{z}\\right\\vert > 1}\\right\\}$ where: :$\\left\\vert{\\operatorname{Arg} \\left({z}\\right)}\\right\\vert$ denotes the absolute value of the principal argument of $z$ :$\\left\\vert{z}\\right\\vert$ denotes the modulus of $z$ :$\\epsilon \\in \\R_{>0}$. Then for all $z \\in D_\\epsilon$, the gamma function of $z$ satisfies: :$\\Gamma \\left({z}\\right) = \\sqrt{\\dfrac {2 \\pi} z} \\left({\\dfrac z e}\\right)^z\\left({1 + \\mathcal O \\left({z^{-1} }\\right)}\\right)$ where $\\mathcal O \\left({z^{-1} }\\right)$ denotes big-O of $z^{-1}$."}
+{"_id": "19082", "title": "Cauchy Sequence in Metric Space is not necessarily Convergent", "text": "Let $M = \\struct {A, d}$ be a metric space. Let $\\sequence {x_n}$ be a Cauchy sequence in $M$. Then it is not necessarily the case that $M$ is a convergent sequence in $M$."}
+{"_id": "10892", "title": "Integers are not Close Packed", "text": "The integers $\\Z$ are not close packed. That is: :$\\forall n \\in \\Z: \\not \\exists m \\in \\Z: n < m < n + 1$"}
+{"_id": "2700", "title": "Linear Combination of Integers is Ideal", "text": "Let $a, b$ be any integers. Let $\\Bbb S = \\set {a x + b y: x, y \\in \\Z}$. Then the algebraic structure: :$\\struct {\\Bbb S, +, \\times}$ is an ideal of $\\Z$."}
+{"_id": "10900", "title": "Negative of Sum of Real Numbers/Corollary", "text": ":$\\forall x, y \\in \\R: -\\paren {x - y} = -x + y$"}
+{"_id": "10905", "title": "Real Division by One", "text": ":$\\forall x, y \\in \\R: \\dfrac x 1 = x$"}
+{"_id": "10909", "title": "Reciprocal of Real Number is Non-Zero", "text": ":$\\forall x \\in \\R: x \\ne 0 \\implies \\dfrac 1 x \\ne 0$"}
+{"_id": "19102", "title": "Differentiable Function with Bounded Derivative is Absolutely Continuous", "text": "Let $a, b$ be real numbers with $a < b$. Let $f: \\closedint a b \\to \\R$ be a continuous function. Let $f$ be differentiable on $\\openint a b$, with bounded derivative. Then $f$ is absolutely continuous."}
+{"_id": "19101", "title": "Limit Points in Open Extension Space/Subset", "text": "Let $U \\subseteq S^*_p$. Then $p$ is a limit point of $U$."}
+{"_id": "2723", "title": "Polynomial Forms is PID Implies Coefficient Ring is Field", "text": "Let $D$ be an integral domain. Let $D \\sqbrk X$ be the ring of polynomial forms in $X$ over $D$. Let $D sqbrk X$ be a principal ideal domain; Then $D$ is a field."}
+{"_id": "10916", "title": "Sum of Strictly Positive Real Numbers is Strictly Positive", "text": ":$x, y \\in \\R_{>0} \\implies x + y \\in \\R_{>0}$"}
+{"_id": "19116", "title": "Lagrange's Theorem (Number Theory)", "text": "Let $f$ be a polynomial in one variable of degree $n$ over $\\Z_p$ for some prime $p$. Then $f$ has at most $n$ roots in $\\Z_p$."}
+{"_id": "2735", "title": "Finite Intersection of Regular Open Sets is Regular Open", "text": "Let $T$ be a topological space. Let $n \\in \\N$. Suppose that: :$\\forall i \\in \\set {1, 2, \\dotsc, n}: H_i \\subseteq T$ where all the $H_i$ are regular open in $T$. That is: :$\\forall i \\in \\set {1, 2, \\dotsc, n}: H_i = H_i^{- \\circ}$ where $H_i^{- \\circ}$ denotes the interior of the closure of $H_i$. Then $\\displaystyle \\bigcap_{i \\mathop = 1}^n H_i$ is regular open in $T$. That is: :$\\displaystyle \\bigcap_{i \\mathop = 1}^n H_i = \\paren {\\bigcap_{i \\mathop = 1}^n H_i}^{- \\circ}$"}
+{"_id": "19153", "title": "Closure of Subspace of Normed Vector Space is Subspace", "text": "Let $\\struct {X, \\norm {\\, \\cdot \\,}}$ be a normed vector space. Let $Y \\subseteq X$ be a subspace of $X$. Let $Y^-$ be the closure of $Y$. Then $Y^- \\subseteq X$ is also a subspace of $X$."}
+{"_id": "10963", "title": "Not every Open Set is F-Sigma Set", "text": "Let $T = \\struct {S, \\tau}$ be a topological space. Let $V$ be an open set of $T$. Then it is not necessarily the case that $V$ is an $F_\\sigma$ set of $T$."}
+{"_id": "19160", "title": "Subset of Normed Vector Space is Everywhere Dense iff Closure is Normed Vector Space", "text": "Let $\\struct {X, \\norm {\\, \\cdot \\,}}$ is a normed vector space. Let $D \\subseteq X$ be a subset of $X$. Let $D^-$ be the closure of $D$. Then $D$ is dense iff $D^- = X$."}
+{"_id": "2787", "title": "Tychonoff Space is Preserved under Homeomorphism", "text": "If $T_A$ is a Tychonoff (completely regular) space, then so is $T_B$."}
+{"_id": "2788", "title": "Normal Space is Preserved under Homeomorphism", "text": "If $T_A$ is a normal space, then so is $T_B$."}
+{"_id": "19192", "title": "Left and Right Inverses of Square Matrix over Field are Equal", "text": "Let $\\Bbb F$ be a field, usually one of the standard number fields $\\Q$, $\\R$ or $\\C$. Let $n \\in \\Z_{>0}$ be a (strictly) positive integer. Let $\\map \\MM n$ denote the matrix space of order $n$ square matrices over $\\Bbb F$. Let $\\mathbf B$ be a left inverse matrix of $\\mathbf A$. Then $\\mathbf B$ is also a right inverse matrix of $\\mathbf A$. Similarly, let $\\mathbf B$ be a right inverse matrix of $\\mathbf A$. Then $\\mathbf B$ is also a right inverse matrix of $\\mathbf A$."}
+{"_id": "11018", "title": "Principle of Finite Induction/Peano Structure", "text": "Let $\\struct {P, s, 0}$ be a Peano structure. Let $S \\subseteq P$. Suppose that: :$(1): \\quad 0 \\in S$ :$(2): \\quad \\forall n: n \\in S \\implies \\map s n \\in S$ Then: :$S = P$"}
+{"_id": "19214", "title": "System of Simultaneous Equations may have Multiple Solutions", "text": "Let $S$ be a system of simultaneous equations. Then it is possible that $S$ may have a solution set which is a singleton."}
+{"_id": "11027", "title": "Fibonacci Number as Sum of Binomial Coefficients", "text": "{{begin-eqn}} {{eqn | lo= \\forall n \\in \\Z_{>0}: | l = F_n | r = \\sum_{k \\mathop = 0}^{\\floor {\\frac {n - 1} 2} } \\dbinom {n - k - 1} k | c = }} {{eqn | r = \\binom {n - 1} 0 + \\binom {n - 2} 1 + \\binom {n - 3} 2 + \\dotsb + \\binom {n - j} {j - 1} + \\binom {n - j - 1} j | c = where $j = \\floor {\\frac {n - 1} 2}$ }} {{end-eqn}}"}
+{"_id": "2852", "title": "Countably Metacompact Lindelöf Space is Metacompact", "text": "Let $T = \\struct {S, \\tau}$ be a Lindelöf space which is also countably metacompact. Then $T$ is metacompact."}
+{"_id": "2854", "title": "Dirichlet's Approximation Theorem", "text": "Let $\\alpha, x \\in \\R$. Then there exist integers $a, q$ such that: : $\\gcd \\left\\{{a, q}\\right\\} = 1$, $1 \\le q \\le x$ and: :$\\left|{\\alpha - \\dfrac a q}\\right| \\le \\dfrac 1 {q x}$"}
+{"_id": "11059", "title": "Secant in terms of Tangent", "text": "{{begin-eqn}} {{eqn | l = \\sec x | r = +\\sqrt {\\tan ^2 x + 1} | c = if there exists an integer $n$ such that $\\paren {2 n - \\dfrac 1 2} \\pi < x < \\paren {2 n + \\dfrac 1 2} \\pi$ }} {{eqn | l = \\sec x | r = -\\sqrt {\\tan ^2 x + 1} | c = if there exists an integer $n$ such that $\\paren {2 n + \\dfrac 1 2} \\pi < x < \\paren {2 n + \\dfrac 3 2} \\pi$ }} {{end-eqn}}"}
+{"_id": "2869", "title": "Compact Hausdorff Topology is Minimal Hausdorff", "text": "Let $T = \\struct {S, \\tau}$ be a Hausdorff space which is compact. Then $\\tau$ is the minimal subset of the power set $\\powerset S$ such that $T$ is a Hausdorff space."}
+{"_id": "2870", "title": "Compact Hausdorff Topology is Maximally Compact", "text": "Let $T = \\struct {S, \\tau}$ be a Hausdorff space which is compact. Then $\\tau$ is maximally compact."}
+{"_id": "11063", "title": "Cosine is Reciprocal of Secant", "text": ":$\\cos \\theta = \\dfrac 1 {\\sec \\theta}$"}
+{"_id": "19259", "title": "Column Equivalence is Equivalence Relation", "text": "Column equivalence is an equivalence relation."}
+{"_id": "11067", "title": "Cosine in terms of Sine", "text": "{{begin-eqn}} {{eqn | l = \\cos x | r = +\\sqrt {1 - \\sin^2 x} | c = if there exists an integer $n$ such that $\\paren {2 n - \\dfrac 1 2} \\pi < x < \\paren {2 n + \\dfrac 1 2} \\pi$ }} {{eqn | l = \\cos x | r = -\\sqrt {1 - \\sin^2 x} | c = if there exists an integer $n$ such that $\\paren {2 n + \\dfrac 1 2} \\pi < x < \\paren {2 n + \\dfrac 3 2} \\pi$ }} {{end-eqn}}"}
+{"_id": "11077", "title": "Sign of Cosecant", "text": "Let $x$ be a real number. Then: {{begin-eqn}} {{eqn | l = \\csc x | o = > | r = 0 | c = if there exists an integer $n$ such that $2 n \\pi < x < \\paren {2 n + 1} \\pi$ }} {{eqn | l = \\csc x | o = < | r = 0 | c = if there exists an integer $n$ such that $\\paren {2 n + 1} \\pi < x < \\paren {2 n + 2} \\pi$ }} {{end-eqn}} where $\\csc$ is the real cosecant function."}
+{"_id": "19282", "title": "Square Root of Number Minus Square Root/Proof 2", "text": "Let $a$ and $b$ be (strictly) positive real numbers such that $a^2 - b > 0$. Then: {{:Square Root of Number Minus Square Root}}"}
+{"_id": "2900", "title": "Atlas Belongs to Unique Differentiable Structure", "text": "Let $M$ be a locally Euclidean space of dimension $d$. Let $\\mathcal A$ be an atlas on $M$. Then there exists a unique differentiable structure $\\mathcal F$ on $M$ with $\\mathcal A \\in \\mathcal F$."}
+{"_id": "2905", "title": "Topological Space with One Quasicomponent is Connected", "text": "Let $T = \\struct {S, \\tau}$ be a topological space which has one quasicomponent. Then $T$ is connected."}
+{"_id": "19289", "title": "Multiple of Column Added to Column of Determinant", "text": "Let $\\mathbf A = \\begin {bmatrix} a_{1 1} & \\cdots & a_{1 r} & \\cdots & a_{1 s} & \\cdots & a_{1 n} \\\\ a_{2 1} & \\cdots & a_{2 r} & \\cdots & a_{2 s} & \\cdots & a_{2 n} \\\\ \\vdots & \\ddots & \\vdots & \\ddots & \\vdots & \\ddots & \\vdots \\\\ a_{n 1} & \\cdots & a_{n r} & \\cdots & a_{n s} & \\cdots & a_{n n} \\\\ \\end {bmatrix}$ be a square matrix of order $n$. Let $\\map \\det {\\mathbf A}$ denote the determinant of $\\mathbf A$. Let $\\mathbf B = \\begin{bmatrix} a_{1 1} & \\cdots & a_{1 r} + \\lambda a_{1 s} & \\cdots & a_{1 s} & \\cdots & a_{1 n} \\\\ a_{2 1} & \\cdots & a_{2 r} + \\lambda a_{2 s} & \\cdots & a_{2 s} & \\cdots & a_{2 n} \\\\ \\vdots & \\ddots & \\vdots & \\ddots & \\vdots & \\ddots & \\vdots \\\\ a_{n 1} & \\cdots & a_{n r} + \\lambda a_{n s} & \\cdots & a_{n s} & \\cdots & a_{n n} \\\\ \\end{bmatrix}$. Then $\\map \\det {\\mathbf B} = \\map \\det {\\mathbf A}$. That is, the value of a determinant remains unchanged if a constant multiple of any column is added to any other column."}
+{"_id": "2908", "title": "Integral Closure is Integrally Closed", "text": "Let $A \\subseteq B$ be an extension of commutative rings with unity. Let $C$ be the integral closure of $A$ in $B$. Then $C$ is integrally closed."}
+{"_id": "19297", "title": "Determinant of Lower Triangular Matrix", "text": "Let $\\mathbf T_n$ be a lower triangular matrix of order $n$. Let $\\map \\det {\\mathbf T_n}$ be the determinant of $\\mathbf T_n$. Then $\\map \\det {\\mathbf T_n}$ is equal to the product of all the diagonal elements of $\\mathbf T_n$. That is: :$\\displaystyle \\map \\det {\\mathbf T_n} = \\prod_{k \\mathop = 1}^n a_{k k}$"}
+{"_id": "2916", "title": "Relationship between Component Types", "text": "Let $T = \\struct {S, \\tau}$ be a topological space. Let $p \\in S$. Let: : $A$ be the arc component of $p$ : $P$ be the path component of $p$ : $C$ be the component of $p$ : $Q$ be the quasicomponent of $p$. Then: :$A \\subseteq P \\subseteq C \\subseteq Q$ In general, the inclusions do not hold in the other direction."}
+{"_id": "2928", "title": "Ultraconnected Space is T4", "text": "Let $T = \\struct {S, \\tau}$ be a topological space which is ultraconnected. Then $T$ is a $T_4$ space."}
+{"_id": "19317", "title": "Squares Ending in n Occurrences of m-Digit Pattern", "text": "Suppose there exists some integer $x$ such that $x^2$ ends in some $m$-digit pattern ending in an odd number not equal to $5$ and is preceded by another odd number, i.e.: :$\\exists x \\in \\Z: x^2 \\equiv \\sqbrk {1 a_1 a_2 \\cdots a_m} \\pmod {2 \\times 10^m}$ where $a_m$ is odd, $a_m \\ne 5$ and $m \\ge 1$. Then for any $n \\ge 1$, there exists some integer with not more than $m n$-digits such that its square ends in $n$ occurrences of the $m$-digit pattern."}
+{"_id": "2935", "title": "Locally Arc-Connected Space is Locally Path-Connected", "text": "Let $T = \\struct {S, \\tau}$ be a topological space which is locally arc-connected. Then $T$ is also locally path-connected."}
+{"_id": "2939", "title": "Unique Factorization Domain is Integrally Closed", "text": "Let $A$ be a unique factorization domain (UFD). Then $A$ is integrally closed."}
+{"_id": "11136", "title": "Lindelöf's Lemma", "text": "Let $C$ be a set of open real sets. Let $S$ be a real set that is covered by $C$. Then there exists a countable subset of $C$ that covers $S$."}
+{"_id": "11146", "title": "Mellin Transform of Heaviside Step Function", "text": "Let $c$ be a constant real number. Let $u_c \\left({t}\\right)$ be the Heaviside step function. Let $\\mathcal M$ be the Mellin transform. Then: :$\\mathcal M \\left\\{ {u_c \\left({t}\\right)}\\right\\} \\left({s}\\right) = - \\dfrac {c^s} s$ for $c > 0, \\Re \\left({s}\\right) < 0$."}
+{"_id": "11162", "title": "Complex Numbers as External Direct Product", "text": "Let $\\struct {\\C_{\\ne 0}, \\times}$ be the group of non-zero complex numbers under multiplication. Let $\\struct {\\R_{> 0}, \\times}$ be the group of positive real numbers under multiplication. Let $\\struct {K, \\times}$ be the circle group. Then: :$\\struct {\\C_{\\ne 0}, \\times} \\cong \\struct {\\R_{> 0}, \\times} \\times \\struct {K, \\times}$ {{explain|It is apparent that the second $\\times$ is Cartesian product, but this is not obvious.}}"}
+{"_id": "19359", "title": "Definite Integral from 0 to Half Pi of Square of Logarithm of Cosine x", "text": ":$\\displaystyle \\int_0^{\\pi/2} \\paren {\\map \\ln {\\cos x} }^2 \\rd x = \\frac \\pi 2 \\paren {\\ln 2}^2 + \\frac {\\pi^3} {24}$"}
+{"_id": "2994", "title": "Metric Space Completeness is Preserved by Isometry", "text": "Let $M_1 = \\struct {A_1, d_1}$ and $M_2 = \\struct {A_2, d_2}$ be metric spaces. Let $\\phi: M_1 \\to M_2$ be an isometry. If $M_1$ is complete then so is $M_2$."}
+{"_id": "19378", "title": "3 Proper Integer Heronian Triangles whose Area and Perimeter are Equal", "text": "There are exactly $3$ proper integer Heronian triangles whose area and perimeter are equal. These are the triangles whose sides are: :$\\tuple {6, 25, 29}$ :$\\tuple {7, 15, 20}$ :$\\tuple {9, 10, 17}$"}
+{"_id": "3004", "title": "Multiplication is Superfunction", "text": "The function $f: \\C \\to \\C$, defined as: :$\\map f z = z \\times c$ is a superfunction for any complex number $c$."}
+{"_id": "19417", "title": "Integration by Substitution/Definite Integral", "text": "The definite integral of $f$ from $a$ to $b$ can be evaluated by: :$\\displaystyle \\int_{\\map \\phi a}^{\\map \\phi b} \\map f t \\rd t = \\int_a^b \\map f {\\map \\phi u} \\dfrac \\d {\\d u} \\map \\phi u \\rd u$ where $x = \\map \\phi u$."}
+{"_id": "3039", "title": "Discrete Space is Non-Meager", "text": "Let $T = \\left({S, \\tau}\\right)$ be a discrete topological space. Then $T$ is non-meager."}
+{"_id": "3053", "title": "Subset of Indiscrete Space is Dense-in-itself", "text": "Let $T = \\struct {S, \\set {\\O, S} }$ be an indiscrete topological space. Let $H \\subseteq S$ be a subset of $S$ containing more than one point. Then $H$ is dense-in-itself."}
+{"_id": "3054", "title": "Indiscrete Space is Non-Meager", "text": "Let $T = \\struct {S, \\set {\\O, S} }$ be an indiscrete topological space. Then $T$ is non-meager."}
+{"_id": "11245", "title": "Equivalence of Definitions of Minimal Element", "text": "Let $\\struct {S, \\preceq}$ be an ordered set. Let $T \\subseteq S$ be a subset of $S$. {{TFAE|def = Minimal Element}}"}
+{"_id": "11249", "title": "Non-Zero Natural Numbers under Addition form Semigroup", "text": "Let $\\N_{>0}$ be the set of natural numbers without zero, that is: :$\\N_{>0} = \\N \\setminus \\set 0$ Let $+$ denote natural number addition. The structure $\\struct {\\N_{>0}, +}$ forms a semigroup."}
+{"_id": "3063", "title": "Indiscrete Space is Second-Countable", "text": "Let $T = \\struct {S, \\set {\\O, S} }$ be an indiscrete topological space. Then $T$ is a second-countable space."}
+{"_id": "11255", "title": "Doubling the Cube by Compass and Straightedge Construction is Impossible", "text": "There is no compass and straightedge construction to allow a cube to be constructed whose volume is double that of a given cube."}
+{"_id": "19445", "title": "Derivative of Inverse Hyperbolic Cotangent Function", "text": ":$\\map {\\dfrac \\d {\\d x} } {\\coth^{-1} u} = \\dfrac {-1} {u^2 - 1} \\dfrac {\\d u} {\\d x}$ where $\\size u > 1$"}
+{"_id": "3072", "title": "Indiscrete Space is T4", "text": "Let $T = \\struct {S, \\set {\\O, S} }$ be an indiscrete topological space. Then $T$ is a $T_4$ space."}
+{"_id": "19456", "title": "Derivative of Cosine of Function", "text": ":$\\map {\\dfrac \\d {\\d x} } {\\cos u} = -\\sin u \\dfrac {\\d u} {\\d x}$"}
+{"_id": "11272", "title": "Equation of Circle/Polar", "text": ": $r^2 - 2 r r_0 \\map \\cos {\\theta - \\varphi} + \\paren {r_0}^2 = R^2$"}
+{"_id": "3080", "title": "Singleton Partition yields Indiscrete Topology", "text": "Let $S$ be a set which is not empty. Let $\\PP$ be the (trivial) singleton partition $\\set S$ on $S$. Then the partition topology on $\\PP$ is the indiscrete topology."}
+{"_id": "19471", "title": "Derivative of Even Function is Odd", "text": "Let $f$ be a differentiable real function such that $f$ is even. Then its derivative $f'$ is an odd function."}
+{"_id": "11281", "title": "Graph of Quadratic describes Parabola/Corollary 2", "text": "The locus of the equation of the square root function on the non-negative reals: :$\\forall x \\in \\R_{\\ge 0}: \\map f x = \\sqrt x$ describes half of a parabola."}
+{"_id": "11286", "title": "Westwood's Puzzle", "text": ":500px Take any rectangle $ABCD$ and draw the diagonal $AC$. Inscribe a circle $GFJ$ in one of the resulting triangles $\\triangle ABC$. Drop perpendiculars $IEF$ and $HEJ$ from the center of this incircle $E$ to the sides of the rectangle. Then the area of the rectangle $DHEI$ equals half the area of the rectangle $ABCD$."}
+{"_id": "19486", "title": "Number of Parameters of ARMA Model", "text": "Let $S$ be a stochastic process based on an equispaced time series. Let the values of $S$ at timestamps $t, t - 1, t - 2, \\dotsc$ be $z_t, z_{t - 1}, z_{t - 2}, \\dotsc$ Let $\\tilde z_t, \\tilde z_{t - 1}, \\tilde z_{t - 2}, \\dotsc$ be deviations from a constant mean level $\\mu$: :$\\tilde z_t = z_t - \\mu$ Let $a_t, a_{t - 1}, a_{t - 2}, \\dotsc$ be a sequence of independent shocks at timestamps $t, t - 1, t - 2, \\dotsc$ Let $M$ be an '''ARMA model''' on $S$ of order $p$: :$\\tilde z_t = \\phi_1 \\tilde z_{t - 1} + \\phi_2 \\tilde z_{t - 2} + \\dotsb + \\phi_p \\tilde z_{t - p} + a_t - \\theta_1 a_{t - 1} - \\theta_2 a_{t - 2} - \\dotsb - \\theta_q a_{t - q}$ Then $M$ has $p + q + 2$ parameters. "}
+{"_id": "11295", "title": "Summation Formula for Polygonal Numbers", "text": "Let $P \\left({k, n}\\right)$ be the $n$th $k$-gonal number. Then: : $\\displaystyle P \\left({k, n}\\right) = \\sum_{j \\mathop = 1}^n \\left({\\left({k - 2}\\right) \\left({j - 1}\\right) + 1}\\right)$"}
+{"_id": "19493", "title": "ARIMA Model subsumes Moving Average Model", "text": "Let $S$ be a stochastic process based on an equispaced time series. Let $M$ be a moving average model for $S$. Then $M$ is also an implementation of an ARIMA model."}
+{"_id": "3115", "title": "Infinite Particular Point Space is not Strongly Locally Compact", "text": "Let $T = \\struct {S, \\tau_p}$ be an infinite particular point space. Then $T$ is not strongly locally compact."}
+{"_id": "3124", "title": "Kronecker’s Theorem", "text": "Let $K$ be a field. Let $f$ be a polynomial over $K$ of degree $n \\ge 1$. Then there exists a finite extension $L / K$ of $K$ such that $f$ has at least one root in $L$. Moreover, we can choose $L$ such that the degree $\\index L K$ of $L / K$ satisfies $\\index L K \\le n$. {{explain|Work out exactly which definitions of Polynomial and Degree are appropriate here.}}"}
+{"_id": "19511", "title": "Cancellation Law for Field Product", "text": "Let $\\struct {F, +, \\times}$ be a field whose zero is $0_F$ and whose unity is $1_F$. Let $a, b, c \\in F$. Then: :$a \\times b = a \\times c \\implies a = 0_F \\text { or } b = c$"}
+{"_id": "11323", "title": "Edge is Bridge iff in All Spanning Trees", "text": "Let $G$ be a simple graph. Let $e$ be an edge of $G$. Then $e$ is a bridge in $G$ {{iff}} $e$ belongs to every spanning tree for $G$."}
+{"_id": "19520", "title": "Leigh.Samphier/Sandbox/Set Difference of Distinct Equal Cardinality Sets is Not Empty", "text": "Let $S$ and $T$ be distinct finite sets. Let $\\card S = \\card T$. Then: :$S \\setminus T \\ne \\O$"}
+{"_id": "3144", "title": "Particular Point Space is Locally Path-Connected", "text": "Let $T = \\struct {S, \\tau_p}$ be a particular point space. Then $T$ is locally path-connected."}
+{"_id": "19537", "title": "Derivative of Inverse Hyperbolic Sine of x over a/Corollary 2", "text": ":$\\map {\\dfrac \\d {\\d x} } {\\ln \\size {x - \\sqrt {x^2 + a^2} } } = -\\dfrac 1 {\\sqrt {x^2 + a^2} }$"}
+{"_id": "3159", "title": "Tarski-Vaught Test", "text": "Let $\\mathcal M, \\mathcal N$ be $\\mathcal L$-structures such that $\\mathcal M$ is a substructure of $\\mathcal N$. {{wtd|The page Definition:Structure is a disambiguation page, in which the form in which it is used here may not be included. The level of clarity in this page generally needs improving. Hence the invocation of the Disambiguate template.}} {{Disambiguate|Definition:Structure}} Then $\\mathcal M$ is an elementary substructure of $\\mathcal N$ {{iff}}: :for every $\\mathcal L$-formula $\\phi \\left({x, \\bar v}\\right)$ and for every $\\bar a$ in $\\mathcal M$: ::if there exists an $n$ in $\\mathcal N$ such that $\\mathcal N \\models \\phi \\left({n, \\bar a}\\right)$ ::then there exists an $m$ in $\\mathcal M$ such that $\\mathcal N \\models \\phi \\left({m, \\bar a}\\right)$. {{wtd|Before sense can be made of this page, Definition:Substructure and Definition:Elementary Substructure need to be written.}} {{Disambiguate|Definition:Logical Formula}} The condition on the right side of the {{iff}} statement above can be rephrased as: :Every existential statement with parameters from $\\mathcal M$ which is satisfied in $\\mathcal N$ can be witnessed by an element from the substructure $\\mathcal M$."}
+{"_id": "11360", "title": "Conditional and Inverse are not Equivalent", "text": "A conditional statement: :$p \\implies q$ is not logically equivalent to its inverse: :$\\lnot p \\implies \\lnot q$"}
+{"_id": "11361", "title": "Weight of Discrete Topology equals Cardinality of Space", "text": "Let $T = \\left({S, \\tau}\\right)$ be a discrete topological space. Then: :$w \\left({T}\\right) = \\left\\vert{S}\\right\\vert$ where :$w \\left({T}\\right)$ denotes the weight of $T$ :$\\left\\vert{S}\\right\\vert$ denotes the cardinality of $S$."}
+{"_id": "19559", "title": "Primitive of Reciprocal of a squared minus x squared/Logarithm Form 2", "text": ":$\\displaystyle \\int \\frac {\\d x} {a^2 - x^2} = \\dfrac 1 {2 a} \\ln \\size {\\dfrac {a + x} {a - x} } + C$"}
+{"_id": "3176", "title": "Open Extension Topology is Topology", "text": "Let $T = \\struct {S, \\tau}$ be a topological space. Let $\\tau^*_{\\bar p}$ be the open extension topology of $\\tau$. Then $\\tau^*_{\\bar p}$ is a topology on $S^*_p = S \\cup \\set p$."}
+{"_id": "19567", "title": "Symmetric Difference with Intersection forms Boolean Ring", "text": "Let $S$ be a set. Then $\\struct {\\powerset S, *, \\cap}$ is a Boolean ring."}
+{"_id": "19571", "title": "1-Seminorm on Continuous on Closed Interval Real-Valued Functions is Norm", "text": "Let $\\CC \\closedint a b$ be the space of continuous on closed interval real-valued functions. Let $x \\in \\CC \\closedint a b$ be a continuous real valued function. Let $\\displaystyle \\norm x_1 := \\int_a^b \\size {\\map x t} \\rd t$ be the 1-seminorm. Then $\\norm {\\, \\cdot \\,}_1$ is a norm on $\\CC \\closedint a b$."}
+{"_id": "19573", "title": "Perpendicularity is Symmetric Relation", "text": "Let $S$ be the set of straight lines in the plane. For $l_1, l_2 \\in S$, let $l_1 \\perp l_2$ denote that $l_1$ is perpendicular to $l_2$. Then $\\perp$ is a symmetric relation on $S$."}
+{"_id": "19576", "title": "Perpendicularity is Antitransitive Relation", "text": "Let $S$ be the set of straight lines in the plane. For $l_1, l_2 \\in S$, let $l_1 \\perp l_2$ denote that $l_1$ is perpendicular to $l_2$. Then $\\perp$ is an antitransitive relation on $S$."}
+{"_id": "11393", "title": "Multiplication using Parabola", "text": ":500pxrightthumb Let the parabola $P$ defined as $y = x^2$ be plotted on the Cartesian plane. Let $A = \\tuple {x_a, y_a}$ and $B = \\tuple {x_b, y_b}$ be points on the curve $\\map f x$ so that $x_a < x_b$. Then the line segment joining $A B$ will cross the $y$-axis at $-x_a x_b$. Thus $P$ can be used as a nomogram to calculate the product of two numbers $x_a$ and $x^b$, as follows: :$(1) \\quad$ Find the points $-x_a$ and $x_b$ on the $x$-axis. :$(2) \\quad$ Find the points $A$ and $B$ where the lines $x = -x_a$ and $x = x_b$ cut $P$. :$(3) \\quad$ Lay a straightedge on the straight line joining $A$ and $B$ and locate its $y$-intercept $c$. Then $x_a x_b$ can be read off from the $y$-axis as the position of $c$."}
+{"_id": "3212", "title": "Excluded Point Space is Locally Path-Connected", "text": "Let $T = \\struct {S, \\tau_{\\bar p} }$ be an excluded point space. Then $T$ is locally path-connected."}
+{"_id": "11405", "title": "Occurrence in Polish Notation has Unique Scope", "text": "Let $\\mathcal F$ be a formal language in Polish notation. Let $\\mathbf A$ be a well-formed formula of $\\mathcal F$. Let $a$ be an occurrence in $\\mathbf A$. Then $a$ has a unique scope."}
+{"_id": "11407", "title": "Exclusive Or as Conjunction of Disjunctions", "text": ": $p \\oplus q \\dashv \\vdash \\left({p \\lor q}\\right) \\land \\left({\\neg p \\lor \\neg q}\\right)$"}
+{"_id": "19602", "title": "Space of Almost-Zero Sequences is Everywhere Dense in 2-Sequence Space", "text": "Let $\\struct {\\ell^2, \\norm {\\, \\cdot \\,}_2}$ be the 2-sequence space equipped with Euclidean norm. Let $c_{00}$ be the space of almost-zero sequences. Then $c_{00}$ is everywhere dense in $\\struct {\\ell^2, \\norm {\\, \\cdot \\,}_2}$"}
+{"_id": "19605", "title": "Ordering of Integers is Reversed by Negation", "text": "Let $x, y \\in \\Z$ such that $x > y$. Then: :$-x < -y$"}
+{"_id": "3226", "title": "Excluded Point Space is Sequentially Compact", "text": "Let $T = \\struct {S, \\tau_{\\bar p} }$ be an excluded point space. Then $T$ is a sequentially compact space."}
+{"_id": "19611", "title": "Sufficient Conditions for Weak Stationarity of Order 2", "text": "Let $S$ be a stochastic process giving rise to a time series $T$. Let the mean of $S$ be fixed. Let the autocovariance matrix of $S$ be of the form: :$\\boldsymbol \\Gamma_n = \\begin {pmatrix} \\gamma_0 & \\gamma_1 & \\gamma_2 & \\cdots & \\gamma_{n - 1} \\\\ \\gamma_1 & \\gamma_0 & \\gamma_1 & \\cdots & \\gamma_{n - 2} \\\\ \\gamma_2 & \\gamma_1 & \\gamma_0 & \\cdots & \\gamma_{n - 3} \\\\ \\vdots & \\vdots & \\vdots & \\ddots & \\vdots \\\\ \\gamma_{n - 1} & \\gamma_{n - 2} & \\gamma_{n - 3} & \\cdots & \\gamma_0 \\end {pmatrix} = \\sigma_z^2 \\mathbf P_n = \\begin {pmatrix} 1 & \\rho_1 & \\rho_2 & \\cdots & \\rho_{n - 1} \\\\ \\rho_1 & 1 & \\rho_1 & \\cdots & \\rho_{n - 2} \\\\ \\rho_2 & \\rho_1 & 1 & \\cdots & \\rho_{n - 3} \\\\ \\vdots & \\vdots & \\vdots & \\ddots & \\vdots \\\\ \\rho_{n - 1} & \\rho_{n - 2} & \\rho_{n - 3} & \\cdots & 1 \\end {pmatrix}$ Then $S$ is weakly stationary of order $2$."}
+{"_id": "19616", "title": "Strict Ordering on Integers is Trichotomy", "text": "Let $\\eqclass {a, b} {}$ and $\\eqclass {c, d} {}$ be integers, as defined by the formal definition of integers. Then exactly one of the following holds: {{begin-eqn}} {{eqn | l = \\eqclass {a, b} {} | o = < | r = \\eqclass {c, d} {} | c = }} {{eqn | l = \\eqclass {a, b} {} | o = = | r = \\eqclass {c, d} {} | c = }} {{eqn | l = \\eqclass {a, b} {} | o = > | r = \\eqclass {c, d} {} | c = }} {{end-eqn}} That is, strict ordering is a trichotomy."}
+{"_id": "3233", "title": "Excluded Set Topology is not T0", "text": "Let $T = \\struct {S, \\tau_{\\bar H} }$ be an excluded set space where $H$ has at least two distinct points. Then $T$ is not a $T_0$ (Kolmogorov) space."}
+{"_id": "3236", "title": "Boubaker's Theorem", "text": "Let $\\left({R, +, \\circ}\\right)$ be a commutative ring. Let $\\left({D, +, \\circ}\\right)$ be an integral subdomain of $R$ whose zero is $0_D$ and whose unity is $1_D$. Let $X \\in R$ be transcendental over $D$. Let $D \\left[{X}\\right]$ be the ring of polynomial forms in $X$ over $D$. Finally, consider the following properties: {{begin-eqn}} {{eqn | n = 1 | l = \\sum_{k \\mathop = 1}^N {p_n \\left({0}\\right)} | r = -2N }} {{eqn | n = 2 | l = \\sum_{k \\mathop = 1}^N {p_n \\left({\\alpha_k}\\right)} | r = 0 }} {{eqn | n = 3 | l = \\left.{\\sum_{k \\mathop = 1}^N \\frac {\\mathrm d p_x \\left({x}\\right)} {\\mathrm d x} }\\right\\vert_{x \\mathop = 0} | r = 0 }} {{eqn | n = 4 | l = \\left.{\\sum_{k \\mathop = 1}^N \\frac {\\mathrm d {p_n}^2 \\left({x}\\right)} {\\mathrm d x^2} }\\right\\vert_{x \\mathop = 0} | r = \\frac 8 3 N \\left({N^2 - 1}\\right) }} {{end-eqn}} where, for a given positive integer $n$, $p_n \\in D \\left[{X}\\right]$ is a non-null polynomial such that $p_n$ has $N$ roots $\\alpha_k$ in $F$. Then the subsequence $\\left \\langle {B_{4 n} \\left({x}\\right)}\\right \\rangle$ of the Boubaker polynomials is the unique polynomial sequence of $D \\left[{X}\\right]$ which verifies simultaneously the four properties $(1) - (4)$."}
+{"_id": "3238", "title": "Either-Or Topology is T0", "text": "Let $T = \\struct {S, \\tau}$ be the either-or space. Then $T$ is a $T_0$ (Kolmogorov) space."}
+{"_id": "3239", "title": "Either-Or Topology is not T1", "text": "Let $T = \\struct {S, \\tau}$ be the either-or space. Then $T$ is not a $T_1$ (Fréchet) space."}
+{"_id": "19627", "title": "Cardinality of Set of Self-Mappings on Finite Set", "text": "Let $S$ be a finite set. Let the cardinality of $S$ be $n$. The cardinality of the set of all mappings from $S$ to itself (that is, the total number of self-maps on $S$) is: :$\\card {S^S} = n^n$"}
+{"_id": "3246", "title": "Cover of Interval By Closed Intervals is not Pairwise Disjoint", "text": "Let $\\closedint a b$ be a closed interval in $\\R$. {{explain|Title mentions only \"interval\"; this does not affect truth of statement so may \"closed\" above line be removed as superfluous?}} Let $\\JJ$ be a set of two or more closed intervals contained in $\\closedint a b$ such that $\\displaystyle \\bigcup \\JJ = \\closedint a b$. Then the intervals in $\\JJ$ are not pairwise disjoint."}
+{"_id": "11447", "title": "Factorization of Natural Numbers within 4 n + 1 not Unique", "text": "Let: :$S = \\set {4 n + 1: n \\in \\N} = \\set {1, 5, 9, 13, 17, \\ldots}$ be the set of natural numbers of the form $4 n + 1$. Then not all elements of $S$ have a complete factorization by other elements of $S$ which is unique."}
+{"_id": "3256", "title": "Either-Or Topology is not T3", "text": "Let $T = \\struct {S, \\tau}$ be the either-or space. Then $T$ is not a $T_3$ space."}
+{"_id": "19643", "title": "Definite Integral to Infinity of Reciprocal of x Squared plus a Squared/Corollary", "text": ":$\\ds \\int_0^\\infty \\dfrac {\\d x} {1 + x^2} = \\frac \\pi 2$ for $a \\ne 0$."}
+{"_id": "3262", "title": "Either-Or Topology is First-Countable", "text": "Let $T = \\struct {S, \\tau}$ be the either-or space. Then $T$ is a first-countable space."}
+{"_id": "11457", "title": "Construction of Regular Heptadecagon", "text": "It is possible to construct a regular hepadecagon (that is, a regular polygon with $17$ sides) using a compass and straightedge construction."}
+{"_id": "3268", "title": "Countable Stability implies Stability for All Infinite Cardinalities", "text": "Let $T$ be a complete $\\mathcal L$-theory whose language $\\mathcal L$ is countable. If $T$ is $\\omega$-stable, then $T$ is $\\kappa$-stable for all infinite $\\kappa$."}
+{"_id": "3269", "title": "Finite Complement Topology is Topology", "text": "Let $T = \\struct {S, \\tau}$ be a finite complement space. Then $\\tau$ is a topology on $T$."}
+{"_id": "19654", "title": "Event Space of Experiment with Final Sample Space has Even Cardinality", "text": "Let $\\EE$ be an experiment with a probability space $\\struct {\\Omega, \\Sigma, \\Pr}$. Let $\\Omega$ be a finite set. Then the event space $\\Sigma$ consists of an even number of subsets of $\\Omega$."}
+{"_id": "19653", "title": "Set of Elementary Events belonging to k Events is Event", "text": "Let $\\EE$ be an experiment with a probability space $\\struct {\\Omega, \\Sigma, \\Pr}$. Let $A_1, A_2, \\ldots, A_m$ be events in the event space $\\Sigma$ of $\\EE$. Let $S$ denote the set of all elementary events of $\\EE$ which are elements of exactly $k$ of the events $A_1, A_2, \\ldots, A_m$. Then $S$ is an event of $\\Sigma$."}
+{"_id": "19659", "title": "Probability of Set Difference of Events", "text": "Let $\\EE$ be an experiment with probability space $\\struct {\\Omega, \\Sigma, \\Pr}$. Let $A, B \\in \\Sigma$ be events of $\\EE$. Let $\\map \\Pr A$ denote the probability of event $A$ occurring. Then: :$\\map \\pr {A \\setminus B} = \\map \\Pr A - \\map \\Pr {A \\cap B}$"}
+{"_id": "11468", "title": "Distance Moved by Body from Rest under Constant Acceleration", "text": "Let a body $B$ be stationary. Let $B$ be subject to a constant acceleration. Then the distance travelled by $B$ is proportional to the square of the length of time $B$ is under the acceleration."}
+{"_id": "19685", "title": "Set of Endomorphisms of Non-Abelian Group is not Ring", "text": "Let $\\struct {G, \\oplus}$ be a group which is non-abelian. Let $\\mathbb G$ be the set of all group endomorphisms of $\\struct {G, \\oplus}$. Let $*: \\mathbb G \\times \\mathbb G \\to \\mathbb G$ be the operation defined as: :$\\forall u, v \\in \\mathbb G: u * v = u \\circ v$ where $u \\circ v$ is defined as composition of mappings. Then the algebraic structure $\\struct {\\mathbb G, \\oplus, *}$ is not a ring."}
+{"_id": "11498", "title": "Density not greater than Weight", "text": "Let $T = \\left({S, \\tau}\\right)$ be a topological space. Then :$d \\left({T}\\right) \\leq w \\left({T}\\right)$ where :$d \\left({T}\\right)$ denotes the density of $T$, :$w \\left({T}\\right)$ denotes the weight of $T$."}
+{"_id": "3316", "title": "Countable Complement Space is not Countably Compact", "text": "Let $T = \\struct {S, \\tau}$ be a countable complement topology on an uncountable set $S$. Then $T$ is not a countably compact space."}
+{"_id": "3319", "title": "Closed Form for Number of Derangements on Finite Set", "text": "The number of derangements $D_n$ on a finite set $S$ of cardinality $n$ is: :$D_n = n! \\paren {1 - \\dfrac 1 {1!} + \\dfrac 1 {2!} - \\dfrac 1 {3!} + \\cdots + \\dfrac {\\paren {-1}^n} {n!} }$"}
+{"_id": "19704", "title": "Characteristics of Birkhoff-James Orthogonality", "text": "Let $\\struct {V, \\norm {\\,\\cdot\\,} }$ be a normed linear space. Let $x, y \\in V$. Then $x$ and $y$ are '''Birkhoff-James orthogonal''' {{iff}} either: :$(1): \\quad x = 0$ or: :$(2): \\quad$ there exists a continuous functional $ f$ on $\\struct {V, \\norm {\\,\\cdot\\,} }$ such that: ::::$\\norm f = 1$ ::::$\\map f x = \\norm x$ ::::$\\map f y = 0$"}
+{"_id": "3325", "title": "Countable Complement Space is Pseudocompact", "text": "Let $T = \\struct {S, \\tau}$ be a countable complement topology on an uncountable set $S$. Then $T$ is pseudocompact."}
+{"_id": "3326", "title": "Countable Complement Space is not Countably Metacompact", "text": "Let $T = \\struct {S, \\tau}$ be a countable complement topology on an uncountable set $S$. Then $T$ is not countably metacompact."}
+{"_id": "19711", "title": "Direct Product of Banach Spaces is Banach Space", "text": "Let $\\struct {X, \\norm {\\, \\cdot \\,}}$ and $\\struct {Y, \\norm {\\, \\cdot \\,}}$ be normed vector spaces. Let $V = X \\times Y$ be a direct product of vector spaces $X$ and $Y$ together with induced component-wise operations. Let $\\norm {\\tuple {x, y} }$ be the direct product norm. Suppose $X$ and $Y$ are Banach spaces. Then $V$ is a Banach space."}
+{"_id": "11527", "title": "Rational Numbers are F-Sigma Set in Real Line", "text": "Let $\\left({\\R, \\tau}\\right)$ be the real number line considered asa topological space with the usual (Euclidean) topology. Then: :$\\Q$ is an $F_\\sigma$ set in $\\left({\\R, \\tau}\\right)$."}
+{"_id": "11529", "title": "Confocal Conics are Self-Orthogonal", "text": "The confocal conics defined by: :$\\quad \\dfrac {x^2} {a^2} + \\dfrac {y^2} {a^2 - c^2} = 1$ forms a family of orthogonal trajectories which is self-orthogonal. :500px"}
+{"_id": "3339", "title": "Compact Complement Topology is Connected", "text": "Let $T = \\struct {\\R, \\tau}$ be the compact complement topology. Then $T$ is a connected space."}
+{"_id": "3341", "title": "Compact Complement Topology is not Ultraconnected", "text": "Let $T = \\struct {\\R, \\tau}$ be the compact complement topology on $\\R$. Then $T$ is not an ultraconnected space."}
+{"_id": "19726", "title": "Partial Derivatives of x tan^-1 (x^2 + y)", "text": "Let: :$\\map f {x, y} = x \\map \\arctan {x^2 + y}$ Then: {{begin-eqn}} {{eqn | l = \\map {f_1} {1, 0} | r = \\dfrac \\pi 4 + 1 }} {{eqn | l = \\map {f_2} {x, y} | r = \\dfrac x {1 + \\paren {x^2 + y}^2} }} {{end-eqn}}"}
+{"_id": "19727", "title": "Partial Derivatives of x ln y^2 + y e^z", "text": "Let: :$\\map f {x, y, z} = x \\ln y^2 + y e^z$ Then: {{begin-eqn}} {{eqn | l = \\map {f_1} {1, -1, 0} | r = 0 }} {{eqn | l = \\map {f_2} {x, x y, y + z} | r = \\dfrac 2 y + e^{y + z} }} {{end-eqn}}"}
+{"_id": "19725", "title": "Partial Derivative/Examples/u - v + 2 w, 2 u + v + 2 w, u - v + w", "text": "Let: {{begin-eqn}} {{eqn | l = u - v + 2 w | r = x + 2 z }} {{eqn | l = 2 u + v - 2 w | r = 2 x - 2 z }} {{eqn | l = u - v + w | r = z - y }} {{end-eqn}} Then: {{begin-eqn}} {{eqn | l = \\dfrac {\\partial u} {\\partial y} | r = 0 }} {{eqn | l = \\dfrac {\\partial v} {\\partial y} | r = 2 }} {{eqn | l = \\dfrac {\\partial w} {\\partial y} | r = 1 }} {{end-eqn}}"}
+{"_id": "3346", "title": "Compact Complement Topology is Sequentially Compact", "text": "Let $T = \\struct {\\R, \\tau}$ be the compact complement topology on $\\R$. Then $T$ is a sequentially compact space."}
+{"_id": "3348", "title": "Theories with Infinite Models have Models with Order Indiscernibles", "text": "Let $T$ be an $\\LL$-theory with infinite models. Let $\\struct {I, <$ be an infinite strict linearly ordered set. There is a model $\\MM \\models T$ containing an order indiscernible set $\\set {x_i : i \\in I}$."}
+{"_id": "3358", "title": "Fort Space is Sequentially Compact", "text": "Let $T = \\struct {S, \\tau_p}$ be a Fort space on an infinite set $S$. Then $T$ is a sequentially compact space."}
+{"_id": "11553", "title": "First Order ODE/x y' = y + 2 x exp (- y over x)", "text": "is a homogeneous differential equation with solution: :$e^{y / x} = \\ln x^2 + C$"}
+{"_id": "3365", "title": "Fort Space is not Extremally Disconnected", "text": "Let $T = \\struct {S, \\tau_p}$ be a Fort space on an infinite set $S$. Then $T$ is not an extremally disconnected space."}
+{"_id": "3368", "title": "Non-Forking Types have Non-Forking Completions", "text": "Let $T$ be a complete $\\mathcal L$-theory. Let $\\mathfrak C$ be a monster model for $T$. Let $A\\subseteq B$ be subsets of the universe of $\\mathfrak C$. Let $\\pi(\\bar x)$ be an $n$-type over $B$. If $\\pi$ does not fork over $A$, then there is a complete $n$-type $p$ over $B$ such that $\\pi \\subseteq p$ and $p$ does not fork over $A$."}
+{"_id": "3373", "title": "Fortissimo Space is Completely Normal", "text": "Let $T = \\struct {S, \\tau_p}$ be a Fortissimo space. Then $T$ is a completely normal space. Consequently, $T$ satisfies all weaker separation axioms."}
+{"_id": "11568", "title": "First Order ODE/-1 over y sine x over y dx + x over y^2 sine x over y dy", "text": "is an exact differential equation with solution: :$\\dfrac x y = C$"}
+{"_id": "11570", "title": "First Order ODE/dx = (y over (1 - x^2 y^2)) dx + (x over (1 - x^2 y^2)) dy", "text": "is an exact differential equation with solution: :$\\map \\ln {\\dfrac {1 + x y} {1 - x y} } - 2 x = C$"}
+{"_id": "3399", "title": "First-Countability is not Continuous Invariant", "text": "Let $T_A = \\struct {A, \\tau_A}$ and $T_B = \\struct {B, \\tau_B}$ be topological spaces. Let $\\phi: T_A \\to T_B$ be a continuous mapping. If $T_A$ is a first-countable space, then it does not necessarily follow that $T_B$ is also first-countable."}
+{"_id": "11591", "title": "First Order ODE/(x y - 1) dx + (x^2 - x y) dy = 0", "text": "The first order ODE: :$(1): \\quad \\paren {x y - 1} \\rd x + \\paren {x^2 - x y} \\rd y = 0$ has the general solution: :$x y - \\ln x - \\dfrac {y^2} 2 + C$"}
+{"_id": "11605", "title": "First Order ODE/x dy = (x^5 + x^3 y^2 + y) dx", "text": "The first order ODE: :$(1): \\quad x \\rd y = \\paren {x^5 + x^3 y^2 + y} \\rd x$ has the general solution: :$\\arctan \\dfrac x y = -\\dfrac {x^4} 4 + C$"}
+{"_id": "11617", "title": "Linear First Order ODE/y' + y = 2 x exp -x + x^2", "text": "The linear first order ODE: :$(1): \\quad y' + y = 2 x e^{-x} + x^2$ has the general solution: :$y = x^2 e^{-x} + x^2 - 2 x + 2 + C e^{-x}$"}
+{"_id": "11623", "title": "First Order ODE/(exp y - 2 x y) y' = y^2", "text": "The first order ODE: :$(1): \\quad \\paren {e^y - 2 x y} y' = y^2$ has the general solution: :$x y^2 = e^y + C$"}
+{"_id": "11627", "title": "Differential Equation of Family of Linear Combination of Functions is Linear", "text": "Consider the one-parameter family of curves: :$(1): \\quad y = C \\map f x + \\map g x$ The differential equation that describes $(1)$ is linear and of first order."}
+{"_id": "3436", "title": "Trivial Topological Space is Non-Meager", "text": "Let $T = \\struct {S, \\tau}$ be a trivial topological space. Then $T$ is non-meager."}
+{"_id": "3452", "title": "Hermitian Operators have Orthogonal Eigenvectors", "text": "The eigenvectors of a Hermitian operation are orthogonal."}
+{"_id": "11668", "title": "First Order ODE/(exp x - 3 x^2 y^2) y' + y exp x = 2 x y^3", "text": "The first order ordinary differential equation: :$(1): \\quad \\paren {e^x - 3 x^2 y^2} y' + y e^x = 2 x y^3$ is an exact differential equation with solution: :$y e^x - x^2 y^3 = C$"}
+{"_id": "11704", "title": "First Order ODE/(y^2 exp x y + cosine x) dx + (exp x y + x y exp x y) dy = 0", "text": "The first order ordinary differential equation: :$(1): \\quad \\paren {y^2 e^{x y} + \\cos x} \\rd x + \\paren {e^{x y} + x y e^{x y} } \\rd y = 0$ is an exact differential equation with solution: :$y e^{x y} + \\sin x = C$"}
+{"_id": "11707", "title": "First Order ODE/(y^2 - 3 x y - 2 x^2) dx = (x^2 - x y) dy", "text": "The first order ordinary differential equation: :$(1): \\quad \\paren {y^2 - 3 x y - 2 x^2} \\rd x = \\paren {x^2 - x y} \\rd y$ is a homogeneous differential equation with solution: :$y^2 x^2 - 2 y x^3 + x^4 = C$"}
+{"_id": "11709", "title": "First Order ODE/exp x sine y dx + exp x cos y dy = y sine x y dx + x sine x y dy", "text": "The first order ordinary differential equation: :$(1): \\quad e^x \\sin y \\rd x + e^x \\cos y \\rd y = y \\sin x y \\rd x + x \\sin x y \\rd y$ is an exact differential equation with solution: :$e^x \\sin y + \\cos x y = C$"}
+{"_id": "11711", "title": "Linear Second Order ODE/(1 + x^2) y'' + x y' = 0", "text": "The second order ODE: :$\\paren {1 + x^2} y'' + x y' = 0$ has the general solution: :$y = C_1 \\map \\ln {x + \\sqrt {x^2 + 1} } + C_2$"}
+{"_id": "3520", "title": "Circumscribing Circle about Regular Pentagon", "text": "About any given regular pentagon it is possible to circumscribe a circle. {{:Euclid:Proposition/IV/14}}"}
+{"_id": "3527", "title": "Pólya-Vinogradov Inequality", "text": "Let $p$ be a positive odd prime. Then: :$\\forall m, n \\in \\N: \\displaystyle \\size {\\sum_{k \\mathop = m}^{m + n} \\paren {\\frac k p} } < \\sqrt p \\, \\ln p$ where $\\paren {\\dfrac k p}$ is the Legendre symbol."}
+{"_id": "3528", "title": "Multiplication of Real Numbers is Left Distributive over Subtraction", "text": "{{:Euclid:Proposition/V/5}} That is, for any numbers $a, b$ and for any integer $m$: : $m a - m b = m \\paren {a - b}$"}
+{"_id": "11739", "title": "Linear Second Order ODE/y'' + y = 0/y(0) = 2, y'(0) = 3", "text": "The second order ODE: :$(1): \\quad y'' + y = 0$ with initial conditions: :$\\map y 0 = 2$ :$\\map {y'} 0 = 3$ has the particular solution: :$y = 3 \\sin x + 2 \\cos x$"}
+{"_id": "11754", "title": "Legendre's Differential Equation/(1 - x^2) y'' - 2 x y' + 2 y = 0", "text": "The special case of Legendre's differential equation: :$(1): \\quad \\paren {1 - x^2} y'' - 2 x y' + 2 y = 0$ has the general solution: :$y = C_1 x + C_2 \\paren {\\dfrac x 2 \\, \\map \\ln {\\dfrac {1 + x} {1 - x} } - 1}$"}
+{"_id": "11762", "title": "Second Order ODE/y'' - f(x) y' + (f(x) - 1) y = 0", "text": "The second order ODE: :$(1): \\quad y'' - \\map f x y' + \\paren {\\map f x - 1} y = 0$ has the general solution: :$\\displaystyle y = C_1 e^x + C_2 e^x \\int e^{-2 x + \\int \\map f x \\rd x} \\rd x$"}
+{"_id": "11781", "title": "Linear Second Order ODE/2 x^2 y'' + 10 x y' + 8 y = 0", "text": "The second order ODE: :$(1): \\quad 2 x^2 y'' + 10 x y' + 8 y = 0$ has the general solution: :$y = C_1 x^{-2} + C_2 x^{-2} \\ln x$"}
+{"_id": "3594", "title": "Divisors obey Distributive Law", "text": "{{:Euclid:Proposition/VII/5}} In modern algebraic language: :$\\displaystyle a = \\frac 1 n b, c = \\frac 1 n d \\implies a + c = \\frac 1 n \\left({b + d}\\right)$"}
+{"_id": "3597", "title": "Real Numbers under Addition Modulo 1 form Group", "text": "Let $S = \\left\\{{x \\in \\R: 0 \\le x < 1}\\right\\}$. Let $\\circ: S \\times S \\to S$ be the operation defined as: : $x \\circ y = x + y - \\left \\lfloor {x + y} \\right \\rfloor$ That is, $\\circ$ is defined as addition modulo $1$. Then $\\left({S, \\circ}\\right)$ is a group."}
+{"_id": "11821", "title": "Linear Second Order ODE/y'' + y = 2 cosine x", "text": "The second order ODE: :$(1): \\quad y'' + y = 2 \\cos x$ has the general solution: :$y = C_1 \\sin x + C_2 \\cos x + x \\cos x$"}
+{"_id": "11831", "title": "Linear Second Order ODE/y'' + y = cosecant x", "text": "The second order ODE: :$(1): \\quad y'' + y = \\csc x$ has the general solution: :$y = C_1 \\sin x + C_2 \\cos x - x \\cos x + \\sin x \\map \\ln {\\sin x}$"}
+{"_id": "3645", "title": "Quaternions Defined by Ordered Pairs", "text": "Consider the quaternions $\\Bbb H$ as numbers in the form: : $a \\mathbf 1 + b \\mathbf i + c \\mathbf j + d \\mathbf k$ where: : $a, b, c, d$ are real numbers; : $\\mathbf 1, \\mathbf i, \\mathbf j, \\mathbf k$ are entities related to each other in the following way: {{begin-eqn}} {{eqn | l = \\mathbf i \\mathbf j = - \\mathbf j \\mathbf i | r = \\mathbf k | c = }} {{eqn | l = \\mathbf j \\mathbf k = - \\mathbf k \\mathbf j | r = \\mathbf i | c = }} {{eqn | l = \\mathbf k \\mathbf i = - \\mathbf i \\mathbf k | r = \\mathbf j | c = }} {{eqn | l = \\mathbf i^2 = \\mathbf j^2 = \\mathbf k^2 = \\mathbf i \\mathbf j \\mathbf k | r = - \\mathbf 1 | c = }} {{end-eqn}} Now consider the quaternions $\\Bbb H$ defined as ordered pairs $\\left({x, y}\\right)$ where $x, y \\in \\C$ are complex numbers, on which the operation of multiplication is defined as follows: Let $w = a_1 + b_1 i, x = c_1 + d_1 i, y = a_2 + b_2 i, z = c_2 + d_2 i$ be complex numbers. Then $\\left({w, x}\\right) \\left({y, z}\\right)$ is defined as: :$\\left({w, x}\\right) \\left({y, z}\\right) := \\left({w y - z \\overline x, \\overline w z + x y}\\right)$ where $\\overline w$ and $\\overline x$ are the complex conjugates of $w$ and $x$ respectively. These two definitions are equivalent."}
+{"_id": "11845", "title": "Linear Second Order ODE/y'' - 2 y' - 3 y = 64 x exp -x", "text": "The second order ODE: :$(1): \\quad y'' - 2 y' - 3 y = 64 x e^{-x}$ has the general solution: :$y = C_1 e^{3 x} + C_2 e^{-x} - e^{-x} \\paren {8 x^2 + 4 x + 1}$"}
+{"_id": "11854", "title": "Linear Second Order ODE/(x^2 + x) y'' + (2 - x^2) y' - (2 + x) y = x (x + 1)^2", "text": "The second order ODE: :$(1): \\quad \\paren {x^2 + x} y'' + \\paren {2 - x^2} y' - \\paren {2 + x} y = x \\paren {x + 1}^2$ has the general solution: :$y = C_1 e^x + \\dfrac {C_2} x - x - 1 - \\dfrac {x^2} 3$"}
+{"_id": "11870", "title": "Position of Cart attached to Wall by Spring under Damping/Critically Damped/x = x0 at t = 0", "text": "Let $C$ be pulled aside to $x = x_0$ and released from stationary at time $t = 0$. Then the horizontal position of $C$ at time $t$ can be expressed as: :$x = x_0 e^{-a t} \\left({1 + a t}\\right)$"}
+{"_id": "3685", "title": "Ring of Square Matrices over Real Numbers", "text": "Let $n \\in \\Z_{>0}$ be a (strictly) positive integer. Let $\\struct {\\map {\\mathcal M_\\R} n, +, \\times}$ denote the ring of square matrices of order $n$ over $\\R$. Then $\\struct {\\map {\\mathcal M_\\R} n, +, \\times}$ is a ring with unity, but is not a commutative ring."}
+{"_id": "11886", "title": "Resonance Frequency is less than Natural Frequency", "text": "Consider a physical system $S$ whose behaviour is defined by the second order ODE: :$(1): \\quad \\dfrac {\\d^2 y} {\\d x^2} + 2 b \\dfrac {\\d y} {\\d x} + a^2 x = K \\cos \\omega x$ where: :$K \\in \\R: k > 0$ :$a, b \\in \\R_{>0}: b < a$ Then the resonance frequency of $S$ is smaller than the natural frequency of the associated second order ODE: :$(2): \\quad \\dfrac {\\d^2 y} {\\d x^2} + 2 b \\dfrac {\\d y} {\\d x} + a^2 x = 0$"}
+{"_id": "11903", "title": "Circle is Bisected by Diameter", "text": "A circle is bisected by a diameter."}
+{"_id": "3718", "title": "Power to Characteristic Power of Field is Monomorphism", "text": "Let $F$ be a field whose characteristic is $p$ where $p \\ne 0$. Let $n \\in \\Z_{\\ge 0}$ be any positive integer. Let $\\phi_n: F \\to F$ be the mapping on $F$ defined as: :$\\forall x \\in F: \\map {\\phi_n} x = x^{p^n}$ Then $\\phi_n$ is a (field) monomorphism."}
+{"_id": "11949", "title": "Logarithmic Spiral is Equiangular", "text": "The logarithmic spiral is '''equiangular''', in the following sense: Let $P = \\left\\langle{r, \\theta}\\right\\rangle$ be a point on a logarithmic spiral $S$ expressed in polar coordinates as: :$r = a e^{b \\theta}$ Then the angle $\\psi$ that the tangent makes to the radius vector of $S$ is constant."}
+{"_id": "11997", "title": "Area Enclosed by First Turn of Archimedean Spiral", "text": "Let $S$ be the Archimedean spiral defined by the equation: :$r = a \\theta$ The area $\\mathcal A$ enclosed by the first turn of $S$ and the polar axis is given by: :$\\mathcal A = \\dfrac {4 \\pi^3 a^2} 3$ :500px"}
+{"_id": "11998", "title": "Trisecting the Angle/Archimedean Spiral", "text": "Let $\\alpha$ be an angle which is to be trisected. This can be achieved by means of an Archimedean spiral."}
+{"_id": "12003", "title": "Upper Adjoint Preserves All Infima", "text": "Let $\\left({S, \\preceq}\\right)$, $\\left({T, \\precsim}\\right)$ be ordered sets. Let $g: S \\to T$ be an upper adjoint of Galois connection. Then $g$ preserves all infima."}
+{"_id": "12006", "title": "Trisecting the Angle/Parabola", "text": "Let $\\alpha$ be an angle which is to be trisected. This can be achieved by means of a parabola."}
+{"_id": "3818", "title": "Cardinality of Set of Induced Equivalence Classes of Injection", "text": "Let $f: S \\to T$ be a mapping. Let $\\mathcal R_f \\subseteq S \\times S$ be the relation induced by $f$: :$\\tuple {s_1, s_2} \\in \\mathcal R_f \\iff \\map f {s_1} = \\map f {s_2}$ Let $f$ be an injection. Then there are $\\card S$ different $\\mathcal R_f$-classes."}
+{"_id": "3836", "title": "Multiplicative Group of Positive Rationals is Non-Cyclic", "text": "Let $\\struct {\\Q_{>0}, \\times}$ be the multiplicative group of positive rational numbers. Then $\\struct {\\Q_{>0}, \\times}$ is not a cyclic group."}
+{"_id": "12052", "title": "Top equals to Relative Pseudocomplement in Brouwerian Lattice", "text": "Let $\\struct {S, \\vee, \\wedge, \\preceq}$ be a Brouwerian lattice with greatest element $\\top$. Let $a, b \\in S$. Then :$\\top = a \\to b$ {{iff}} $a \\preceq b$"}
+{"_id": "12071", "title": "Approximate Value of Nth Prime Number", "text": "The $n$th prime number is approximately $n \\ln n$."}
+{"_id": "3885", "title": "Fortissimo Space is not Compact", "text": "Let $T = \\struct {S, \\tau_p}$ be a Fortissimo space. Then $T$ is not a compact space."}
+{"_id": "3886", "title": "Fortissimo Space is not Sequentially Compact", "text": "Let $T = \\struct {S, \\tau_p}$ be a Fortissimo space. Then $T$ is not sequentially compact."}
+{"_id": "12081", "title": "Rational Number is Algebraic of Degree 1", "text": "Let $r \\in \\Q$ be a rational number. Then $r$ is an algebraic number of degree $1$."}
+{"_id": "3890", "title": "Double Pointed Fortissimo Space is Lindelöf", "text": "Let $T = \\struct {S, \\tau}$ be a Fortissimo space. Let $T \\times D$ be the double pointed topology on $T$. Then $T \\times D$ is a Lindelöf space."}
+{"_id": "3889", "title": "Double Pointed Fortissimo Space is Weakly Countably Compact", "text": "Let $T = \\struct {S, \\tau_p}$ be a Fortissimo space. Let $T \\times D$ be the double pointed topology on $T$. Then $T \\times D$ is weakly countably compact."}
+{"_id": "3892", "title": "Double Pointed Fortissimo Space is not Pseudocompact", "text": "Let $T = \\struct {S, \\tau}$ be a Fortissimo space. Let $T \\times D$ be the double pointed topology on $T$. Then $T \\times D$ is not pseudocompact."}
+{"_id": "3897", "title": "Modified Fort Space is not Locally Connected", "text": "Let $T = \\struct {S, \\tau_{a, b} }$ be a modified Fort space. Then $T$ is not locally connected."}
+{"_id": "3900", "title": "Clopen Sets in Modified Fort Space", "text": "Let $T = \\struct {S, \\tau_{a, b} }$ be a modified Fort space. Let $A \\subseteq S$ be both closed and open in $T$. If $a \\in A$, then $b \\in A$ as well. That is, any clopen set of $T$ must contain '''both''' or '''neither''' of $a$ and $b$."}
+{"_id": "12120", "title": "Maximum Rate of Change of Y Coordinate of Cycloid", "text": "Let a circle $C$ of radius $a$ roll without slipping along the x-axis of a cartesian plane at a constant speed such that the center moves with a velocity $\\mathbf v_0$ in the direction of increasing $x$. Consider a point $P$ on the circumference of this circle. Let $\\tuple {x, y}$ be the coordinates of $P$ as it travels over the plane. The maximum rate of change of $y$ is $\\mathbf v_0$, which happens when $\\theta = \\dfrac \\pi 2 + 2 n \\pi$ where $n \\in \\Z$."}
+{"_id": "3931", "title": "Vertices in Locally Finite Graph", "text": "Let $G$ be a locally finite graph. Then if $G$ is infinite, it contains an infinite number of vertices."}
+{"_id": "12135", "title": "Relation between Equations for Hypocycloid and Epicycloid", "text": "Consider the hypocycloid defined by the equations: :$x = \\paren {a - b} \\cos \\theta + b \\map \\cos {\\paren {\\dfrac {a - b} b} \\theta}$ :$y = \\paren {a - b} \\sin \\theta - b \\map \\sin {\\paren {\\dfrac {a - b} b} \\theta}$ By replacing $b$ with $-b$, this converts to the equations which define an epicycloid: :$x = \\paren {a + b} \\cos \\theta - b \\map \\cos {\\paren {\\dfrac {a + b} b} \\theta}$ :$y = \\paren {a + b} \\sin \\theta - b \\map \\sin {\\paren {\\dfrac {a + b} b} \\theta}$"}
+{"_id": "3946", "title": "Derivative of Hyperbolic Sine Function", "text": ":$\\map {\\dfrac \\d {\\d x} } {\\sinh u} = \\cosh u \\dfrac {\\d u} {\\d x}$"}
+{"_id": "12144", "title": "Radius of Curvature in Cartesian Form", "text": "Let $C$ be a curve defined by a real function which is twice differentiable. Let $C$ be embedded in a cartesian plane. The '''radius of curvature''' $\\rho$ of $C$ at a point $P = \\tuple {x, y}$ is given by: :$\\rho = \\dfrac {\\paren {1 + y'^2}^{3/2} } {\\size {y''} }$ where: :$y' = \\dfrac {\\d y} {\\d x}$ is the derivative of $y$ {{WRT|Differentiation}} $x$ at $P$ :$y'' = \\dfrac {\\d^2 y} {\\d x^2}$ is the second derivative of $y$ {{WRT|Differentiation}} $x$ at $P$."}
+{"_id": "3954", "title": "Derivative of Hyperbolic Tangent Function", "text": ":$\\map {\\dfrac \\d {\\d x} } {\\tanh u} = \\sech^2 u \\dfrac {\\d u} {\\d x}$"}
+{"_id": "12159", "title": "Quaternion Multplication is not Commutative", "text": "The operation of multplication on the quaternions $H$ is not commutative."}
+{"_id": "12166", "title": "Vectors in Three Dimensional Space with Cross Product forms Lie Algebra", "text": "Let $S$ be the set of vectors in $3$ dimensional Euclidean space. Let $\\times$ denote the vector cross product on $S$. Then $\\struct {S, \\times}$ is a Lie algebra."}
+{"_id": "4012", "title": "Tangent Line to Convex Graph", "text": "Let $f$ be a real function that is continuous on some closed interval $\\left[{a \\,.\\,.\\, b}\\right]$ and differentiable and convex on the open interval $\\left({a \\,.\\,.\\, b}\\right)$. Then all the tangent lines to $f$ are below the graph of $f$. {{explain|\"below\"}}"}
+{"_id": "4013", "title": "Characterization of Lower Semicontinuity", "text": "Let $f: S \\to \\overline \\R$ be an extended real valued function. Let $S$ be endowed with a topology $\\tau$. The following are equivalent: :$(1): \\quad$ $f$ is lower semicontinuous (LSC) on $S$. :$(2): \\quad$ The epigraph $\\map {\\operatorname{epi}} f$ of $f$ is a closed set in $S \\times \\R$ with the product topology. :$(3): \\quad$ All lower level sets of $f$ are closed in $S$."}
+{"_id": "12204", "title": "Power is Well-Defined/Rational", "text": "Let $x \\in \\R_{> 0}$ be a (strictly) positive real number. Let $q$ be a rational number. Then $x^q$ is well-defined."}
+{"_id": "4019", "title": "Integral of Arcsine Function", "text": ":$\\displaystyle \\int \\arcsin x \\rd x = x \\arcsin x + \\sqrt {1 - x^2} + C$ for $x \\in \\closedint {-1} 1$."}
+{"_id": "4024", "title": "Ordinal is Subset of Ordinal Class", "text": "Suppose $A$ is an ordinal. Then: :$A \\subseteq \\On$ where $\\On$ represents the class of all ordinals."}
+{"_id": "12223", "title": "Power Function on Base Greater than One is Strictly Increasing/Integer", "text": "Let $a \\in \\R$ be a real number such that $a > 1$. Let $f: \\Z \\to \\R$ be the real-valued function defined as: :$\\map f k = a^k$ where $a^k$ denotes $a$ to the power of $k$. Then $f$ is strictly decreasing."}
+{"_id": "4074", "title": "Subset Products of Normal Subgroup with Normal Subgroup of Subgroup", "text": "Let $G$ be a group. Let: :$(1): \\quad H$ be a subgroup of $G$ :$(2): \\quad K$ be a normal subgroup of $H$ :$(3): \\quad N$ be a normal subgroup of $G$ Then: :$N K \\lhd N H$ where: : $N K$ and $N H$ denote subset product : $\\lhd$ denotes the relation of being a normal subgroup."}
+{"_id": "4078", "title": "Intersection with Normal Subgroup is Normal/Examples/Subset Product of Normal Subgroup with Intersection", "text": "Let $\\struct G$ be a group whose identity is $e$. Let $H_1, H_2$ be subgroups of $G$. Let: : $N_1 \\lhd H_1$ : $N_2 \\lhd H_2$ where $\\lhd$ denotes the relation of being a normal subgroup. Then: :$N_1 \\paren {H_1 \\cap N_2} \\lhd N_1 \\paren {H_1 \\cap H_2}$"}
+{"_id": "4079", "title": "Quotient Group of Direct Products", "text": "Let $G$ and $G'$ be groups. Let: :$H \\lhd G$ :$H' \\lhd G'$ where $\\lhd$ denotes the relation of being a normal subgroup. Then: :$\\paren {G \\times G'} / \\paren {H \\times H'}$ is isomorphic to $\\paren {G / H} \\times \\paren {G' / H'}$ where: :$G \\times G'$ denotes the group direct product of $H$ and $H'$ :$G / H$ denotes the quotient group of $G$ by $H$."}
+{"_id": "12275", "title": "Set of Non-Negative Real Numbers is not Well-Ordered by Usual Ordering", "text": "The set of non-negative real numbers $\\R_{\\ge 0}$ is not well-ordered under the usual ordering $\\le$."}
+{"_id": "4091", "title": "Characteristic Subgroup is Transitive", "text": "Let $G$ be a group. Let $H$ be a characteristic subgroup of $G$. Let $K$ be a characteristic subgroup of $H$. Then $K$ is a characteristic subgroup of $G$."}
+{"_id": "4096", "title": "Integral Resulting in Arcsecant", "text": ":$\\displaystyle \\int \\frac 1 {x \\sqrt{x^2 - a^2} }\\ \\mathrm dx = \\begin{cases} \\dfrac 1 {\\left\\vert{a}\\right\\vert} \\operatorname {arcsec} \\dfrac x {\\left\\vert{a}\\right\\vert} + C & : x > \\left\\vert{a}\\right\\vert \\\\ -\\dfrac 1 {\\left\\vert{a}\\right\\vert} \\operatorname {arcsec} \\dfrac x {\\left\\vert{a}\\right\\vert} + C & : x < -\\left\\vert{a}\\right\\vert \\end{cases}$ where $a$ is a constant."}
+{"_id": "12316", "title": "Upper Bound of Natural Logarithm/Corollary", "text": ":$\\forall s \\in \\R_{>0}: \\ln x \\le \\dfrac {x^s} s$"}
+{"_id": "4125", "title": "Finite Abelian Group is Solvable", "text": "Let $G$ be a finite abelian group. Then $G$ is solvable."}
+{"_id": "12317", "title": "Powers Drown Logarithms/Corollary", "text": ":$\\displaystyle \\lim_{y \\mathop \\to 0_+} y^r \\ln y = 0$"}
+{"_id": "12319", "title": "Logarithm of Logarithm in terms of Natural Logarithms", "text": "Let $b, x \\in \\R_{>0}$ be (strictly) positive real numbers. Then: :$\\map {\\log_b} {\\log_b x} = \\dfrac {\\map \\ln {\\ln x} - \\map \\ln {\\ln b} } {\\ln b}$ where $\\ln x$ denotes the natural logarithm of $x$."}
+{"_id": "4146", "title": "Intersection is Subset of Union of Intersections with Complements", "text": "Let $R, S, T$ be sets. Then: :$S \\cap T \\subseteq \\paren {R \\cap S} \\cup \\paren {\\overline R \\cap T}$ where $\\overline R$ denotes the complement of $R$."}
+{"_id": "4241", "title": "Adjoining Commutes with Inverting", "text": "Let $H$ be a Hilbert space. Let $A \\in B \\left({H, K}\\right)$ be a bounded linear operator. Let $A^{-1} \\in B \\left({K, H}\\right)$ be an inverse for $A$. Then the adjoint of $A$, $A^*$, is invertible. Furthermore, $\\left({A^*}\\right)^{-1} = \\left({A^{-1}}\\right)^*$."}
+{"_id": "12444", "title": "Sum of Elements in Inverse of Combinatorial Matrix", "text": "Let $C_n$ be the combinatorial matrix of order $n$ given by: :$C_n = \\begin{bmatrix} x + y & y & \\cdots & y \\\\ y & x + y & \\cdots & y \\\\ \\vdots & \\vdots & \\ddots & \\vdots \\\\ y & y & \\cdots & x + y \\end{bmatrix}$ Let $C_n^{-1}$ be its inverse, from Inverse of Combinatorial Matrix: :$b_{i j} = \\dfrac {-y + \\delta_{i j} \\left({x + n y}\\right)} {x \\left({x + n y}\\right)}$ where $\\delta_{i j}$ is the Kronecker delta. The sum of all the elements of $C_n^{-1}$ is: :$\\displaystyle \\sum_{1 \\mathop \\le i, \\ j \\mathop \\le n} b_{i j} = \\dfrac n {x + n y}$"}
+{"_id": "12449", "title": "Elements of Inverse of Hilbert Matrix are Integers", "text": "Let $H_n$ be the Hilbert matrix of order $n$: :$\\begin{bmatrix} a_{i j} \\end{bmatrix} = \\begin{bmatrix} \\dfrac 1 {i + j - 1} \\end{bmatrix}$ Consider its inverse $H_n^{-1}$. All the elements of $H_n^{-1}$ are integers."}
+{"_id": "12461", "title": "Auxiliary Relation is Transitive", "text": "Let $\\left({S, \\vee, \\preceq}\\right)$ be a bounded below join semilattice. Let $\\mathcal R$ be relation on $S$ satisfying conditions $(i)$ and $(ii)$ of auxiliary relation. Then :$\\mathcal R$ is a transitive relation."}
+{"_id": "12473", "title": "Ordered Set of Auxiliary Relations is Complete Lattice", "text": "Let $L = \\left({S, \\vee, \\preceq}\\right)$ be a bounded below join semilattice. Let $\\operatorname {Aux} \\left({L}\\right)$ be the set of all auxiliary relations on $S$. Let $P = \\left({\\operatorname {Aux} \\left({L}\\right), \\precsim}\\right)$ be an ordered set where $\\precsim \\mathop = \\subseteq \\restriction_{\\operatorname {Aux} \\left({L}\\right) \\times \\operatorname {Aux} \\left({L}\\right)}$ Then :$P$ is a complete lattice."}
+{"_id": "4283", "title": "Zorn's Lemma Implies Axiom of Choice", "text": "If Zorn's Lemma is true, then so must the Axiom of Choice be."}
+{"_id": "12503", "title": "Number minus Modulo is Integer Multiple", "text": "Let $x, y \\in \\R$ be real numbers. Let $x \\bmod y$ denote the modulo operation: :$x \\bmod y := \\begin{cases} x - y \\left \\lfloor {\\dfrac x y}\\right \\rfloor & : y \\ne 0 \\\\ x & : y = 0 \\end{cases}$ where $\\left \\lfloor {\\dfrac x y}\\right \\rfloor$ denotes the floor of $\\dfrac x y$. Let $y < 0$. Then: :$x - \\left({x \\bmod y}\\right)$ is an integer multiple of $y$."}
+{"_id": "12504", "title": "Modulo Operation/Examples/5 mod 3", "text": ":$5 \\bmod 3 = 2$"}
+{"_id": "12521", "title": "Modulo Multiplication is Well-Defined/Warning", "text": "Let $z \\in \\R$ be a real number. Let: :$a \\equiv b \\pmod z$ and: :$x \\equiv y \\pmod z$ where $a, b, x, y \\in \\R$. Then it does '''not''' necessarily hold that: : $a x \\equiv b y \\pmod z$"}
+{"_id": "12528", "title": "Constant to Power of Number of Distinct Prime Divisors is Multiplicative Function", "text": "Let $c \\in \\R$ be a constant. Let $f: \\N \\to \\R$ denotes the mapping defined as: :$\\forall n \\in \\N: f \\left({n}\\right) = c^k$ where $k$ is number of distinct primes that divide $n$. Then $f$ is multiplicative."}
+{"_id": "4338", "title": "Clopen Sets in Finite Complement Topology", "text": "Let $T = \\struct {S, \\tau}$ be a finite complement topology on an infinite set $S$. Then the only clopen sets of $T$ are $S$ and $\\O$."}
+{"_id": "12534", "title": "Number of Digits in Factorial", "text": "Let $n!$ denote the factorial of $n$. The number of digits in $n!$ is approximately: :$1 + \\left\\lfloor{\\dfrac 1 2 \\left({\\log_{10} 2 + \\log_{10} \\pi}\\right) + \\dfrac 1 2 \\log_{10} n + n \\left({\\log_{10} n - \\log_{10} e}\\right)}\\right\\rfloor$ when $n!$ is shown in decimal notation. This evaluates to: :$1 + \\left\\lfloor{\\left({n + \\dfrac 1 2}\\right) \\log_{10} n - 0.43429 \\ 4481 \\, n + 0.39908 \\ 9934}\\right\\rfloor$"}
+{"_id": "4354", "title": "Transformation of Unit Matrix into Inverse", "text": "Let $\\mathbf A$ be a square matrix of order $n$ of the matrix space $\\map {\\MM_\\R} n$. Let $\\mathbf I$ be the unit matrix of order $n$. Suppose there exists a sequence of elementary row operations that reduces $\\mathbf A$ to $\\mathbf I$. Then $\\mathbf A$ is invertible. Futhermore, the same sequence, when performed on $\\mathbf I$, results in the inverse of $\\mathbf A$."}
+{"_id": "12566", "title": "Sum over k of r-kt Choose k by r over r-kt by s-(n-k)t Choose n-k by s over s-(n-k)t", "text": "For $n \\in \\Z_{\\ge 0}$: :$\\displaystyle \\sum_k A_k \\left({r, t}\\right) A_{n - k} \\left({s, t}\\right) = A_n \\left({r + s, t}\\right)$ where $A_n \\left({x, t}\\right)$ is the polynomial of degree $n$ defined as: :$A_n \\left({x, t}\\right) = \\dbinom {x - n t} n \\dfrac x {x - n t}$ where $x \\ne n t$."}
+{"_id": "4414", "title": "Integer Multiples Greater than Positive Integer Closed under Addition", "text": "Let $n \\Z$ be the set of integer multiples of $n$. Let $p \\in \\Z: p \\ge 0$ be a positive integer. Let $S \\subseteq n \\Z$ be defined as: :$S := \\set {x \\in n \\Z: x > p}$ that is, the set of integer multiples of $n$ greater than $p$. Then the algebraic structure $\\struct {S, +}$ is closed under addition."}
+{"_id": "12617", "title": "Signed Stirling Number of the First Kind of n+1 with 0", "text": ":$\\map s {n + 1, 0} = 0$"}
+{"_id": "4429", "title": "Subset of Natural Numbers under Max Operation is Monoid", "text": "Let $S \\subseteq \\N$ be a subset of the natural numbers $\\N$. Let $\\left({S, \\max}\\right)$ denote the algebraic structure formed from $S$ and the max operation. Then $\\left({S, \\max}\\right)$ is a monoid. Its identity element is the smallest element of $S$."}
+{"_id": "12621", "title": "Stirling Number of the Second Kind of n+1 with 2", "text": ":$\\displaystyle {n + 1 \\brace 2} = 2^n - 1$"}
+{"_id": "12625", "title": "Preceding is Approximating Relation", "text": "Let $\\left({S, \\preceq}\\right)$ be an ordered set. Then $\\preceq$ is an approximating relation on $S$."}
+{"_id": "12628", "title": "Substitution Instance of WFF is WFF", "text": "Let $\\mathbf A$ be a WFF of predicate logic. Let $\\tau$ be a term of predicate logic. Let $x \\in \\mathrm{VAR}$ be a variable. Let $\\mathbf A \\left({x \\gets \\tau}\\right)$ be the substitution instance of $\\mathbf A$ substituting $\\tau$ for $x$. Then $\\mathbf A \\left({x \\gets \\tau}\\right)$ is a WFF."}
+{"_id": "4446", "title": "Sequence Converges to Within Half Limit/Real Numbers", "text": "Let $\\sequence {x_n}$ be a sequence in $\\R$. Let $\\sequence {x_n}$ be convergent to the limit $l$. That is, let $\\displaystyle \\lim_{n \\mathop \\to \\infty} x_n = l$. Suppose $l > 0$. Then: : $\\exists N: \\forall n > N: x_n > \\dfrac l 2$ Similarly, suppose $l < 0$. Then: : $\\exists N: \\forall n > N: x_n < \\dfrac l 2$"}
+{"_id": "12652", "title": "Binomial Coefficient/Examples/Number of Bridge Hands", "text": "The total number $N$ of possible different hands for a game of [https://en.wikipedia.org/wiki/Contract_bridge bridge] is: :$N = \\dfrac {52!} {13! \\, 39!} = 635 \\ 013 \\ 559 \\ 600$"}
+{"_id": "4474", "title": "Symmetric Difference is Subset of Union of Symmetric Differences", "text": "Let $R, S, T$ be sets. Then: :$R * S \\subseteq \\left({R * T}\\right) \\cup \\left({S * T}\\right)$ where $R * S$ denotes the symmetric difference between $R$ and $S$."}
+{"_id": "12680", "title": "Continuous iff Meet-Continuous and There Exists Smallest Auxiliary Approximating Relation", "text": "Let $L = \\struct {S, \\vee, \\wedge, \\preceq}$ be a complete lattice. Then: :$L$ is continuous {{iff}} :$L$ is meet-continuous and there exists the smallest auxiliary approximating relation on $S$ That is: :$L$ is continuous {{iff}} :$L$ is meet-continuous and there exists an auxiliary approximating relation $\\mathcal R$ on $S$ ::for every auxiliary approximating relation $\\mathcal Q$ on $S$: $\\mathcal R \\subseteq \\mathcal Q$"}
+{"_id": "12696", "title": "Sum over k of r+tk choose k by s-tk choose n-k", "text": "Let $n \\in \\Z_{\\ge 0}$ be a non-negative integer. Then: :$\\displaystyle \\sum_k \\dbinom {r + t k} k \\dbinom {s - t k} {n - k} = \\sum_{k \\mathop \\ge 0} \\dbinom {r + s - k} {n - k} t^k$ where $\\dbinom {r + t k} k$ etc. denotes a binomial coefficient."}
+{"_id": "4523", "title": "Homogeneous System has Zero Vector as Solution", "text": "Every homogeneous system of linear equations has the zero vector as a solution."}
+{"_id": "12720", "title": "Summation over Lower Index of Unsigned Stirling Numbers of the First Kind", "text": "Let $n \\in \\Z_{\\ge 0}$ be a positive integer. Then: :$\\displaystyle \\sum_k \\left[{n \\atop k}\\right] = n!$ where: :$\\displaystyle \\left[{n \\atop k}\\right]$ denotes an unsigned Stirling number of the first kind :$n!$ denotes the factorial of $n$."}
+{"_id": "4531", "title": "Co-Countable Measure is Probability Measure", "text": "Let $X$ be an uncountable set. Let $\\mathcal A$ be the $\\sigma$-algebra of countable sets on $X$. Then the co-countable measure $\\mu$ on $X$ is a probability measure."}
+{"_id": "12744", "title": "Supremum of Ideals is Upper Adjoint", "text": "Let $L = \\left({S, \\vee, \\preceq}\\right)$ be a bounded below continuous join semilattice. Let $\\mathit{Ids}\\left({L}\\right)$ be the set of all ideals in $L$. Let $P = \\left({\\mathit{Ids}\\left({L}\\right), \\precsim}\\right)$ be an ordered set where $\\mathord \\precsim = \\subseteq\\restriction_{\\mathit{Ids}\\left({L}\\right)\\times \\mathit{Ids}\\left({L}\\right)}$ Let $f: \\mathit{Ids}\\left({L}\\right) \\to S$ be a mapping such that :$\\forall I \\in \\mathit{Ids}\\left({L}\\right): f\\left({I}\\right) = \\sup I$ Then $f$ is an upper adjoint of Galois connection."}
+{"_id": "12749", "title": "Summation of Summation over Divisors of Function of Two Variables", "text": "Let $c, d, n \\in \\Z$. Then: :$\\displaystyle \\sum_{d \\mathop \\divides n} \\sum_{c \\mathop \\divides d} \\map f {c, d} = \\sum_{c \\mathop \\divides n} \\sum_{d \\mathop \\divides \\paren {n / c} } \\map f {c, c d}$ where $c \\divides d$ denotes that $c$ is a divisor of $d$."}
+{"_id": "12766", "title": "Summation over k of Ceiling of k over 2", "text": ":$\\displaystyle \\sum_{k \\mathop = 1}^n \\left \\lceil{\\dfrac k 2}\\right \\rceil = \\left \\lceil{\\dfrac {n \\left({n + 2}\\right)} 4}\\right \\rceil$"}
+{"_id": "4580", "title": "Open Rectangles Closed under Intersection", "text": "Let $\\left(({\\mathbf a \\,.\\,.\\, \\mathbf b}\\right))$ and $\\left(({\\mathbf c \\,.\\,.\\, \\mathbf d}\\right))$ be open $n$-rectangles. Then $\\left(({\\mathbf a \\,.\\,.\\, \\mathbf b}\\right)) \\cap \\left(({\\mathbf c \\,.\\,.\\, \\mathbf d}\\right))$ is also an open $n$-rectangle."}
+{"_id": "4581", "title": "Euclidean Borel Sigma-Algebra Closed under Scalar Multiplication", "text": "Let $\\mathcal B \\left({\\R^n}\\right)$ be the Borel $\\sigma$-algebra on $\\R^n$. Let $B \\in \\mathcal B$, and let $t \\in \\R_{>0}$. Then also $t \\cdot B := \\left\\{{t \\mathbf b: \\mathbf b \\in B}\\right\\} \\in \\mathcal B$."}
+{"_id": "4582", "title": "Lebesgue Measure of Scalar Multiple", "text": "Let $\\lambda^n$ be the $n$-dimensional Lebesgue measure on $\\R^n$ equipped with the Borel $\\sigma$-algebra $\\mathcal B \\left({\\R^n}\\right)$. Let $B \\in \\mathcal B$, and let $t \\in \\R_{>0}$. Then $\\lambda^n \\left({t \\cdot B}\\right) = t^n \\lambda^n \\left({B}\\right)$, where $t \\cdot B$ is the set $\\left\\{{t \\mathbf b: \\mathbf b \\in B}\\right\\}$."}
+{"_id": "12779", "title": "Membership of Set of Strictly Positive Integers is Replicative Function", "text": "Let $f: \\R \\to \\R$ be the real function defined as: :$\\forall x \\in \\R: \\map f x = \\sqbrk {x \\in \\Z_{> 0} }$ where $\\sqbrk \\cdots$ is Iverson's convention. Then $f$ is a replicative function."}
+{"_id": "12780", "title": "Membership of Equivalence Class of m mod pi is Replicative Function", "text": "Let $f: \\R \\to \\R$ be the real function defined as: :$\\forall x \\in \\R: \\map f x = \\sqbrk {\\exists r \\in \\Q, \\exists m \\in \\Z: x = r \\pi + m}$ where $\\sqbrk {\\cdots}$ is Iverson's convention. Then $f$ is a replicative function."}
+{"_id": "12783", "title": "Sum of Replicative Functions is Replicative", "text": "Let $f: \\R \\to \\R$ and $g: \\R \\to \\R$ be real functions. Let $f$ and $g$ both be replicative functions. Then the pointwise sum of $f$ and $g$ is also a replicative function."}
+{"_id": "12794", "title": "Meet Irreducible iff Finite Infimum equals Element", "text": "Let $L = \\left({S, \\wedge, \\preceq}\\right)$ be a meet semilattice. Let $x \\in S$. Then :$x$ is meet irreducible {{iff}} :for every non-empty finite subset $A$ of $S$: $x = \\inf A \\implies x \\in A$"}
+{"_id": "12796", "title": "Sum over j of Function of Floor of mj over n", "text": "Let $f$ be a real function. Then: :$\\displaystyle \\sum_{0 \\mathop \\le j \\mathop < n} \\map f {\\floor {\\dfrac {m j} n} } = \\sum_{0 \\mathop \\le r \\mathop < m} \\ceiling {\\dfrac {r n} m} \\paren {\\map f {r - 1} - \\map f r} + n \\map f {m - 1}$"}
+{"_id": "4632", "title": "Isomorphism of External Direct Products/General Result", "text": "Let: : $(1): \\quad \\displaystyle \\left({S, \\circ}\\right) = \\prod_{k \\mathop = 1}^n S_k = \\left({S_1, \\circ_1}\\right) \\times \\left({S_2, \\circ_2}\\right) \\times \\cdots \\times \\left({S_n, \\circ_n}\\right)$ : $(2): \\quad \\displaystyle \\left({T, \\ast}\\right) = \\prod_{k \\mathop = 1}^n T_k = \\left({T_1, \\ast_1}\\right) \\times \\left({T_2, \\ast_2}\\right) \\times \\cdots \\times \\left({T_n, \\ast_n}\\right)$ be external direct products of algebraic structures. Let $\\phi_k: \\left({S_k, \\circ_k}\\right) \\to \\left({T_k, \\ast_k}\\right)$ be an isomorphism for each $k \\in \\left[{1 \\,.\\,.\\, n}\\right]$. Then: :$\\phi: \\left({s_1, \\ldots, s_n}\\right) \\to \\left({\\phi_1 \\left({s_1}\\right), \\ldots, \\phi_n \\left({s_n}\\right)}\\right)$ is an isomorphism from $\\left({S, \\circ}\\right)$ to $\\left({T, \\ast}\\right)$."}
+{"_id": "12836", "title": "Cancellable Infinite Semigroup is not necessarily Group", "text": "Let $\\struct {S, \\circ}$ be a semigroup whose underlying set is infinite. Let $\\struct {S, \\circ}$ be such that all elements of $S$ are cancellable. Then it is not necessarily the case that $\\struct {S, \\circ}$ is a group."}
+{"_id": "12840", "title": "Latin Square is not necessarily Cayley Table of Group", "text": "While it is true that the Cayley table of a (finite) group is in the form of a Latin square it is not necessarily the case that a Latin square is the Cayley table of a group."}
+{"_id": "4652", "title": "Projection is Epimorphism/General Result", "text": "Let $\\left({S, \\circ}\\right)$ be the external direct product of the algebraic structures $\\left({S_1, \\circ_1}\\right), \\left({S_2, \\circ_2}\\right), \\ldots, \\left({S_k, \\circ_k}\\right), \\ldots, \\left({S_n, \\circ_n}\\right)$. Then: :for each $j \\in \\left[{1 \\,.\\,.\\, n}\\right]$, $\\operatorname{pr}_j$ is an epimorphism from $\\left({S, \\circ}\\right)$ to $\\left({S_j, \\circ_j}\\right)$ where $\\operatorname{pr}_j: \\left({S, \\circ}\\right) \\to \\left({S_j, \\circ_j}\\right)$ is the $j$th projection from $\\left({S, \\circ}\\right)$ to $\\left({S_j, \\circ_j}\\right)$."}
+{"_id": "4653", "title": "External Direct Product of Projection with Canonical Injection/General Result", "text": "Let $\\struct {S_1, \\circ_1}, \\struct {S_2, \\circ_2}, \\dotsc, \\struct {S_j, \\circ_j}, \\dotsc, \\struct {S_n, \\circ_n}$ be algebraic structures with identities $e_1, e_2, \\dotsc, e_j, \\dotsc, e_n$ respectively. Let $\\displaystyle \\struct {S, \\circ} = \\prod_{i \\mathop = 1}^n \\struct {S_i, \\circ_i}$ be the external direct product of $\\struct {S_1, \\circ_1}, \\struct {S_2, \\circ_2}, \\dotsc, \\struct {S_j, \\circ_j}, \\dotsc, \\struct {S_n, \\circ_n}$. Let $\\pr_j: \\struct {S, \\circ} \\to \\struct {S_j, \\circ_j}$ be the $j$th projection from $\\struct {S, \\circ}$ to $\\struct {S_j, \\circ_j}$. Let $\\inj_j: \\struct {S_j, \\circ_j} \\to \\struct {S, \\circ}$ be the canonical injection from $\\struct {S_j, \\circ_j}$ to $\\struct {S, \\circ}$. Then: :$\\pr_j \\circ \\inj_j = I_{S_j}$ where $I_{S_j}$ is the identity mapping from $S_j$ to $S_j$."}
+{"_id": "4668", "title": "Pre-Image Sigma-Algebra on Codomain is Sigma-Algebra", "text": "Let $X, X'$ be sets, and let $f: X \\to X'$ be a mapping. Let $\\Sigma$ be a $\\sigma$-algebra on $X$. Denote with $\\Sigma'$ the pre-image $\\sigma$-algebra on the domain of $f$. Then $\\Sigma'$ is a $\\sigma$-algebra on $X'$."}
+{"_id": "12873", "title": "Multiplicative Group of Reduced Residues Modulo 8 is Klein Four-Group", "text": "Let $K_4$ denote the Klein $4$-group. Let $R_4$ be the multiplicative group of reduced residues Modulo $8$. Then $K_4$ and $R_4$ are isomorphic algebraic structures."}
+{"_id": "4685", "title": "Properties of Relation Not Preserved by Restriction", "text": "If a relation is: * serial, * non-reflexive, * non-symmetric, * non-transitive or * non-connected it is impossible to state without further information whether or not any restriction of that relation has the same properties."}
+{"_id": "4703", "title": "Totally Ordered Set is Well-Ordered iff Subsets Contain Infima", "text": "Let $\\left({S, \\preccurlyeq}\\right)$ be a totally ordered set. Then $\\left({S, \\preccurlyeq}\\right)$ is a well-ordered set iff every non-empty subset of $T \\subseteq S$ has an infimum such that $\\inf \\left({T}\\right) \\in T$."}
+{"_id": "4708", "title": "Cantor Set has Zero Lebesgue Measure", "text": "Let $\\mathcal C$ be the Cantor set. Let $\\lambda$ be the Lebesgue measure on the Borel $\\sigma$-algebra $\\mathcal B \\left({\\R}\\right)$ on $\\R$. Then $\\mathcal C$ is $\\mathcal B \\left({\\R}\\right)$-measurable, and $\\lambda \\left({\\mathcal C}\\right) = 0$. That is, $\\mathcal C$ is a $\\lambda$-null set."}
+{"_id": "4709", "title": "Factorization Lemma/Real-Valued Function", "text": "Then a mapping $g: X \\to \\R$ is $\\map \\sigma f \\, / \\, \\map {\\mathcal B} \\R$-measurable {{iff}}: :There exists a $\\Sigma \\, / \\, \\map {\\mathcal B} \\R$-measurable mapping $\\tilde g: Y \\to \\R$ such that $g = \\tilde g \\circ f$ where: :$\\map \\sigma f$ denotes the $\\sigma$-algebra generated by $f$ :$\\map {\\mathcal B} \\R$ denotes the Borel $\\sigma$-algebra on $\\R$"}
+{"_id": "12904", "title": "Non-Zero-Sum Game as Zero-Sum Game", "text": "Let $G$ be a non-zero-sum game for $n$ players. Then $G$ can be modelled as a zero-sum game for $n + 1$ players."}
+{"_id": "12905", "title": "Two-Person Zero-Sum Game is Non-Cooperative", "text": "A two-person zero-sum game necessarily has to be non-cooperative."}
+{"_id": "12906", "title": "Simple Graph with Finite Vertex Set is Finite", "text": "Let $G$ be a simple graph. Suppose that the vertex set of $G$ is finite. Then $G$ is a finite graph. That is to say, its edge set is also finite."}
+{"_id": "12916", "title": "Tarski's Geometry is Complete/Corollary", "text": "Tarski's geometry does not contain minimal arithmetic."}
+{"_id": "12917", "title": "Symmetric Closure of Symmetric Relation", "text": "Let $\\mathcal R$ be a relation on a set $S$. Let $\\mathcal R^\\leftrightarrow$ be the symmetric closure of $\\mathcal R$. Then $\\mathcal R = \\mathcal R^\\leftrightarrow$."}
+{"_id": "12919", "title": "Eluding Game has no Saddle Point", "text": "The eluding game has no saddle point."}
+{"_id": "12928", "title": "Prime Element iff Element Greater is Top", "text": "Let $L = \\left({S, \\vee, \\wedge, \\preceq}\\right)$ be a Boolean lattice. Let $p \\in S$ such that :$p \\ne \\top$ Then :$p$ is prime element {{iff}} :$\\forall x \\in S: \\left({ p \\prec x \\implies x = \\top }\\right)$"}
+{"_id": "4738", "title": "Relation Isomorphism Preserves Antisymmetry", "text": "Let $\\left({S, \\mathcal R_1}\\right)$ and $\\left({T, \\mathcal R_2}\\right)$ be relational structures. Let $\\left({S, \\mathcal R_1}\\right)$ and $\\left({T, \\mathcal R_2}\\right)$ be (relationally) isomorphic. Then $\\mathcal R_1$ is an antisymmetric relation {{iff}} $\\mathcal R_2$ is also an antisymmetric relation."}
+{"_id": "12947", "title": "Anomalous Cancellation on 2-Digit Numbers", "text": "There are exactly four anomalously cancelling vulgar fractions having two-digit numerator and denominator when expressed in base $10$ notation: {{:Anomalous Cancellation on 2-Digit Numbers/Examples}}"}
+{"_id": "4774", "title": "Intersection of Strict Lower Closures in Toset", "text": "Let $\\left({S, \\preceq}\\right)$ be a totally ordered set. Let $a,b \\in S$. Then: :$a^\\prec \\cap b^\\prec = \\left({\\min \\left({a, b}\\right)}\\right)^\\prec$ where: : $a^\\prec$ denotes strict lower closure of $a$ : $\\min$ denotes the min operation."}
+{"_id": "4818", "title": "Intermediate Value Theorem (Topology)", "text": "Let $X$ be a connected topological space. Let $\\struct {Y, \\preceq, \\tau}$ be a totally ordered set equipped with the order topology. Let $f: X \\to Y$ be a continuous mapping. Let $a$ and $b$ are two points of $a, b \\in X$ such that: :$\\map f a \\prec \\map f b$ Let: :$r \\in Y: \\map f a \\prec r \\prec \\map f b$ Then there exists a point $c$ of $X$ such that: :$\\map f c = r$"}
+{"_id": "13016", "title": "Equivalence of Definitions of Upper Wythoff Sequence", "text": "The following definitions of the upper Wythoff sequence are equivalent:"}
+{"_id": "13034", "title": "Positive Integer is Sum of Consecutive Positive Integers iff not Power of 2", "text": "Let $n \\in \\Z_{>0}$ be a (strictly) positive integer. Then $n$ can be expressed as the sum of $2$ or more consecutive (strictly) positive integers {{iff}} $n$ is not a power of $2$."}
+{"_id": "4885", "title": "Baire-Osgood Theorem", "text": "Let $X$ be a Baire space. Let $Y$ be a metrizable topological space Let $f: X \\to Y$ be a mapping which is the pointwise limit of a sequence $\\left \\langle{f_n}\\right\\rangle$ in $C \\left({X, Y}\\right)$. {{explain|$C \\left({X, Y}\\right)$}} Let $D \\left({f}\\right)$ be the set of points where $f$ is discontinuous. Then $D \\left({f}\\right)$ is a meager subset of $X$."}
+{"_id": "13089", "title": "Ramanujan's Infinite Nested Roots", "text": ":$3 = \\sqrt {1 + 2 \\sqrt {1 + 3 \\sqrt { 1 + \\cdots} } }$"}
+{"_id": "13090", "title": "Product of Three Consecutive Integers is never Perfect Power", "text": "Let $n \\in \\Z_{> 1}$ be a (strictly) positive integer. Then: :$\\paren {n - 1} n \\paren {n + 1}$ cannot be expressed in the form $a^k$ for $a, k \\in \\Z$ where $k \\ge 2$. That is, the product of $3$ consecutive (strictly) positive integers can never be a perfect power."}
+{"_id": "4899", "title": "Maximal Element need not be Greatest Element", "text": "Let $\\struct {S, \\preccurlyeq}$ be an ordered set. Let $M \\in $ be a maximal element of $S$. Then $M$ is not necessarily the greatest element of $S$."}
+{"_id": "4900", "title": "Maximal Ideal of Division Ring", "text": "Let $\\left({D, +, \\circ}\\right)$ be a Division Ring whose zero is $0$. :Let $\\left({J, +, \\circ}\\right)$ be a maximal ideal of $D$. Then $J = \\left\\{{0}\\right\\}$."}
+{"_id": "4908", "title": "Identity Mapping is Ordered Ring Automorphism", "text": "Let $\\struct {S, +, \\circ, \\preceq}$ be an ordered ring. Then the identity mapping $I_S: S \\to S$ is an ordered ring automorphism."}
+{"_id": "13117", "title": "Number of Binary Digits in Power of 10/Example/1000", "text": "When expressed in binary notation, the number of digits in $1000$ is $10$."}
+{"_id": "4934", "title": "Characteristic of Integral Domain is Zero or Prime", "text": "Let $\\struct {D, +, \\circ}$ be an integral domain. Let $\\operatorname{Char} \\left({D}\\right)$ be the characteristic of $D$. Then $\\operatorname{Char} \\left({D}\\right)$ is either $0$ or a prime number."}
+{"_id": "13135", "title": "Number is Sum of Five Cubes", "text": "Let $n \\in \\Z$ be an integer. Then $n$ can be expressed as the sum of $5$ cubes (either positive or negative) in an infinite number of ways."}
+{"_id": "13146", "title": "Exponential is of Exponential Order Real Part of Index", "text": "Let $\\map f t = e^{\\psi t}$ be the complex exponential function, where $t \\in \\R, \\psi \\in \\C$. Let $a = \\map \\Re \\psi$. Then $e^{\\psi t}$ is of exponential order $a$."}
+{"_id": "4963", "title": "Scalar Product with Multiple of Unity", "text": ":$\\paren {n \\cdot 1_R} \\circ x = n \\cdot x$ that is: :$\\paren {\\map {\\paren {+_R}^n} {1_R} } \\circ x = \\map {\\paren {+_G}^n} x$"}
+{"_id": "13162", "title": "Pythagorean Triangle from Fibonacci Numbers", "text": "Take $4$ consecutive Fibonacci numbers: :$F_n, F_{n + 1}, F_{n + 2}, F_{n + 3}$ Let: :$a := F_n F_{n + 3}$ :$b := 2 F_{n + 1} F_{n + 2}$ :$c := F_{2 n + 3}$ Then: :$a^2 + b^2 = c^2$ and: :$\\dfrac {a b} 2 = F_n \\times F_{n + 1} \\times F_{n + 2} \\times F_{n + 3}$ That is, if the legs of a right triangle are the product of the outer terms and twice the inner terms, then: :the hypotenuse is the Fibonacci number whose index is half the sum of the indices of the four given Fibonacci numbers. :the area is the product of the four given Fibonacci numbers."}
+{"_id": "4989", "title": "Conditions for Homogeneity/Plane", "text": "The plane $P = \\alpha_1 x_1 + \\alpha_2 x_2 + \\alpha_3 x_3 = \\gamma$ is homogeneous iff $\\gamma = 0$."}
+{"_id": "5012", "title": "Field Homomorphism Preserves Subfields", "text": "Let $\\struct {F_1, +_1, \\circ_1}$ and $\\struct {F_2, +_2, \\circ_2}$ be fields. Let $\\phi: F_1 \\to F_2$ be a field homomorphism such that $\\phi$ is not the trivial homomorphism. If $K$ is a subfield of $F_1$, then $\\phi \\sqbrk K$ is a subfield of $F_2$."}
+{"_id": "13210", "title": "Fermat Quotient of 2 wrt p is Square iff p is 3 or 7", "text": "Let $p$ be a prime number. The Fermat quotient of $2$ with respect to $p$: :$\\map {q_p} 2 = \\dfrac {2^{p - 1} - 1} p$ is a square {{iff}} $p = 3$ or $p = 7$."}
+{"_id": "5049", "title": "Integer Addition is Well-Defined", "text": "Let $\\struct {\\N, +}$ be the semigroup of natural numbers under addition. Let $\\struct {\\N \\times \\N, \\oplus}$ be the (external) direct product of $\\struct {\\N, +}$ with itself, where $\\oplus$ is the operation on $\\N \\times \\N$ induced by $+$ on $\\N$. Let $\\boxtimes$ be the cross-relation defined on $\\N \\times \\N$ by: :$\\tuple {x_1, y_1} \\boxtimes \\tuple {x_2, y_2} \\iff x_1 + y_2 = x_2 + y_1$ Let $\\eqclass {x, y} {}$ denote the equivalence class of $\\tuple {x, y}$ under $\\boxtimes$. The operation $\\oplus$ on these equivalence classes is well-defined, in the sense that: {{begin-eqn}} {{eqn | l = \\eqclass {a_1, b_1} {} | r = \\eqclass {a_2, b_2} {} | c = }} {{eqn | l = \\eqclass {c_1, d_1} {} | r = \\eqclass {c_2, d_2} {} | c = }} {{eqn | ll= \\leadsto | l = \\eqclass {a_1, b_1} {} \\oplus \\eqclass {c_1, d_1} {} | r = \\eqclass {a_2, b_2} {} \\oplus \\eqclass {c_2, d_2} {} | c = }} {{end-eqn}}"}
+{"_id": "5060", "title": "Preimage of Serial Relation is Domain", "text": "Let $\\mathcal R$ be a serial relation on $S$. Then the preimage of $\\mathcal R$ is $S$ (the domain of $\\mathcal R$)."}
+{"_id": "13273", "title": "Closed Form for Octagonal Numbers", "text": "The closed-form expression for the $n$th octagonal number is: :$O_n = n \\left({3 n - 2}\\right)$"}
+{"_id": "13277", "title": "Number of Distinct Deltahedra is Unlimited", "text": "There are an unlimited number of distinct deltahedra."}
+{"_id": "5092", "title": "Set Intersection Preserves Subsets/Corollary/Proof 1", "text": "Let $A, B, S$ be sets. Then: :$A \\subseteq B \\implies A \\cap S \\subseteq B \\cap S$"}
+{"_id": "13323", "title": "Characteristic of Increasing Mapping from Toset to Order Complete Toset", "text": "Let $\\struct {S, \\preceq}$ and $\\struct {T, \\preccurlyeq}$ be tosets. Let $T$ be order complete. Let $H \\subseteq S$ be a subset of $S$. Let $f: H \\to T$ be an increasing mapping from $H$ to $T$. Then: :$f$ has an extension to $S$ which is increasing {{iff}}: :for all $A \\subseteq H$: if $A$ is bounded in $S$, then $f \\sqbrk A$ is bounded in $T$ where $f \\sqbrk A$ denotes the image set of $A$ under $f$."}
+{"_id": "5145", "title": "A.E. Equal Positive Measurable Functions have Equal Integrals", "text": "Let $\\struct {X, \\Sigma, \\mu}$ be a measure space. Let $f, g: X \\to \\overline \\R_{\\ge 0}$ be positive $\\mu$-measurable functions. Suppose that $f = g$ almost everywhere. Then: :$\\displaystyle \\int f \\rd \\mu = \\int g \\rd \\mu$"}
+{"_id": "13337", "title": "Characterization of Euler's Number by Inequality", "text": "Let $a$ be a (strictly) positive real number. Then: :$a = e \\iff \\forall x \\in \\R: a^x \\ge x + 1$ where $e$ denotes Euler's number."}
+{"_id": "13353", "title": "Limit of x to the x", "text": "Let $f: \\R \\to \\R$ be defined on $\\left [{0 \\,.\\,.\\, \\to} \\right)$ with $f \\left({x}\\right) = x^x$. Then: :$\\displaystyle \\lim_{x \\to 0^+} x^x = 1$ Equivalently, from the definition of power: :$\\displaystyle \\lim_{x \\to 0^+} \\exp \\left({x \\ln x}\\right) = 1$"}
+{"_id": "13356", "title": "Schanuel's Conjecture Implies Transcendence of Log Pi", "text": "Let Schanuel's Conjecture be true. Then the logarithm of $\\pi$ (pi): :$\\ln \\pi$ is transcendental."}
+{"_id": "5175", "title": "Cauchy-Bunyakovsky-Schwarz Inequality/Lebesgue 2-Space", "text": "Let $\\struct {X, \\Sigma, \\mu}$ be a measure space. Let $f, g: X \\to \\R$ be $\\mu$-square integrable functions, that is $f, g \\in \\map {\\LL^2} \\mu$, Lebesgue $2$-space. Then: :$\\displaystyle \\int \\size {f g} \\rd \\mu \\le \\norm f_2^2 \\cdot \\norm g_2^2$ where $\\norm {\\, \\cdot \\,}_2$ is the $2$-norm."}
+{"_id": "5180", "title": "Preimage of Intersection under Relation/Family of Sets", "text": "Let $S$ and $T$ be sets. Let $\\family {T_i}_{i \\mathop \\in I}$ be a family of subsets of $T$. Let $\\RR \\subseteq S \\times T$ be a relation. Then: :$\\ds \\RR^{-1} \\sqbrk {\\bigcap_{i \\mathop \\in I} T_i} \\subseteq \\bigcap_{i \\mathop \\in I} \\RR^{-1} \\sqbrk {T_i}$ where $\\ds \\bigcap_{i \\mathop \\in I} T_i$ denotes the intersection of $\\family {T_i}_{i \\mathop \\in I}$."}
+{"_id": "5181", "title": "Image of Intersection under Injection/Family of Sets", "text": "Let $S$ and $T$ be sets. Let $\\family {S_i}_{i \\mathop \\in I}$ be a family of subsets of $S$. Let $f: S \\to T$ be a mapping. Then: :$\\displaystyle f \\sqbrk {\\bigcap_{i \\mathop \\in I} S_i} = \\bigcap_{i \\mathop \\in I} f \\sqbrk {S_i}$ {{iff}} $f$ is an injection."}
+{"_id": "13375", "title": "Lines through Center Square of Order 3 Magic Square are in Arithmetic Sequence", "text": "Consider the order 3 magic square: {{:Magic Square/Examples/Order 3}} Each of the lines through the center cell contain $3$ integers in arithmetic sequence."}
+{"_id": "13377", "title": "Omega Constant is Transcendental", "text": "The omega constant is transcendental."}
+{"_id": "13389", "title": "Divisibility by Power of 10", "text": "Let $r \\in \\Z_{\\ge 1}$ be a strictly positive integer. An integer $N$ expressed in decimal notation is divisible by $10^r$ {{iff}} the last $r$ digits of $N$ are all $0$. That is: :$N = \\sqbrk {a_n \\ldots a_2 a_1 a_0}_{10} = a_0 + a_1 10 + a_2 10^2 + \\cdots + a_n 10^n$ is divisible by $10^r$ {{iff}}: :$a_0 + a_1 10 + a_2 10^2 + \\cdots + a_r 10^r = 0$"}
+{"_id": "5201", "title": "Correspondence Theorem (Set Theory)", "text": "Let $S$ be a set. Let $\\RR \\subseteq S \\times S$ be an equivalence relation on $S$. Let $\\mathscr A$ be the set of partitions of $S$ associated with equivalence relations $\\RR'$ on $S$ such that: :$\\tuple {x, y} \\in \\RR \\iff \\tuple {x, y} \\in \\RR'$ Then there exists a bijection $\\phi$ from $\\mathscr A$ onto the set of partitions of the quotient set $S / \\RR$."}
+{"_id": "13399", "title": "Factorial as Product of Three Factorials", "text": "This general pattern can be used to find a factorial which is the product of three factorials: :$\\left({\\left({n!}\\right)!}\\right)! = n! \\left({n! - 1}\\right)! \\left({\\left({n!}\\right)! - 1}\\right)!$ while there are instances of factorials which do not fit that pattern."}
+{"_id": "5215", "title": "Right Quasigroup if (1-3) Parastrophe of Magma is Magma", "text": "Let $\\struct {S, \\circ}$ be a magma. Let the $(1-3)$ parastrophe of $\\struct {S, \\circ}$ be a magma. Then $\\struct {S, \\circ}$ is a right quasigroup."}
+{"_id": "5216", "title": "Left Quasigroup if (2-3) Parastrophe of Magma is Magma", "text": "Let $\\struct {S, \\circ}$ be a magma. Let the $\\paren {2 - 3}$ parastrophe of $\\struct {S, \\circ}$ be a magma. Then $\\struct {S, \\circ}$ is a left quasigroup."}
+{"_id": "5221", "title": "Product of Cardinals is Associative", "text": "Let $\\mathbf a$, $\\mathbf b$ and $\\mathbf c$ be cardinals. Then: : $\\mathbf a \\left({\\mathbf b \\mathbf c}\\right) = \\left({\\mathbf a \\mathbf b}\\right) \\mathbf c$ where $\\mathbf a \\mathbf b$ denotes the product of $\\mathbf a$ and $\\mathbf b$."}
+{"_id": "13425", "title": "Fundamental Theorem of Line Integrals", "text": "Let $\\mathcal C$ be a smooth curve given by the vector function $\\mathbf r \\left({t}\\right)$ for $a \\le t \\le b$. Let $f$ be a differentiable function of two or three variables whose gradient vector $\\nabla f$ is continuous on $\\mathcal C$. Then: :$\\displaystyle \\int_\\mathcal C \\nabla f \\cdot d \\mathbf r = f \\left({\\mathbf r \\left({b}\\right)}\\right) - f \\left({\\mathbf r \\left({a}\\right)}\\right)$"}
+{"_id": "5235", "title": "Abelian Group Induces Commutative B-Algebra", "text": "Let $\\left({G, \\circ}\\right)$ be an abelian group whose identity element is $e$. Let $*$ be the binary operation on $G$ defined as: :$\\forall a, b \\in G: a * b = a \\circ b^{-1}$ where $b^{-1}$ is the inverse element of $b$ under the operation $\\circ$. Then the algebraic structure $\\left({G, *}\\right)$ is a commutative $B$-algebra. That is: :$\\forall a, b \\in G: a * \\left({0 * b}\\right) = b * \\left({0 * a}\\right)$"}
+{"_id": "5239", "title": "Sum of Cardinals is Associative", "text": "Let $\\mathbf a$, $\\mathbf b$ and $\\mathbf c$ be cardinals. Then: : $\\mathbf a + \\left({\\mathbf b + \\mathbf c}\\right) = \\left({\\mathbf a + \\mathbf b}\\right) + \\mathbf c$ where $\\mathbf a + \\mathbf b$ denotes the sum of $\\mathbf a$ and $\\mathbf b$."}
+{"_id": "13435", "title": "Lucas Number 2n in terms of Square of Lucas Number n", "text": "Let $L_n$ denote the $n$th Lucas number. Then: :$L_{2 n} = {L_n}^2 + 2 \\left({-1}\\right)^n$"}
+{"_id": "5252", "title": "Natural Numbers as Cardinals", "text": "The natural numbers $\\N = \\set {0, 1, 2, 3, \\ldots}$ can be defined as the set of cardinals."}
+{"_id": "5273", "title": "Young's Inequality for Convolutions", "text": "Let $p, q, r \\in \\R_{\\ge 1}$ satisfy: :$1 + \\dfrac 1 r = \\dfrac 1 p + \\dfrac 1 q$ Let $L^p \\left({\\R^n}\\right)$, $L^q \\left({\\R^n}\\right)$, and $L^r \\left({\\R^n}\\right)$ be Lebesgue spaces with seminorms $\\left\\Vert{\\cdot}\\right\\Vert_p$, $\\left\\Vert{\\cdot}\\right\\Vert_q$, and $\\left\\Vert{\\cdot}\\right\\Vert_r$ respectively. Let $f \\in L^p \\left({\\R^n}\\right)$ and $g \\in L^q \\left({\\R^n}\\right)$. Then the convolution $f * g$ is in $L^r \\left({\\R^n}\\right)$ and the following inequality is satisfied: :$\\left\\Vert{f * g}\\right\\Vert_r \\le \\left\\Vert{f}\\right\\Vert_p \\cdot \\left\\Vert{g}\\right\\Vert_q$"}
+{"_id": "13471", "title": "Conditions for C^1 Smooth Solution of Euler's Equation to have Second Derivative", "text": "Let $\\map y x:\\R \\to \\R$ be a real function. Let $\\map F {x, y, y'}:\\R^3 \\to \\R$ be a real function. Suppose $\\map F {x, y, y'}$ has continuous first and second derivatives {{WRT|Differentiation}} all its arguments. Suppose $y$ has a continuous first derivative and satisfies Euler's equation: :$F_y - \\dfrac \\d {\\d x} F_{y'} = 0$ Suppose: :$\\map {F_{y' y'} } {x, \\map y x, \\map y x'} \\ne 0$ Then $\\map y x$ has continuous second derivatives."}
+{"_id": "13476", "title": "If Double Integral of a(x, y)h(x, y) vanishes for any C^2 h(x, y) then C^0 a(x, y) vanishes", "text": "Let $\\alpha \\left({x, y}\\right)$, $h \\left({x, y}\\right)$ be functions in $\\R$. Let $\\alpha \\in C^0$ in a closed region $R$ whose boundary is $\\Gamma$. Let $h \\in C^2$ in $R$ and $h = 0$ on $\\Gamma$. Let: : $\\displaystyle \\int \\int_R \\alpha \\left({x, y}\\right) h \\left({x, y}\\right) \\rd x \\rd y = 0$ Then $\\alpha \\left({x, y}\\right)$ vanishes everywhere in $R$."}
+{"_id": "13479", "title": "Simple Variable End Point Problem", "text": "Let $y$ and $F$ be mappings. {{explain|Define their domain and codomain}} Suppose the endpoints of $y$ lie on two given vertical lines $x = a$ and $x = b$. Suppose $J$ is a functional of the form :$(1): \\quad J \\sqbrk y = \\displaystyle \\int_a^b \\map F {x, y, y'} \\rd x$ and has an extremum for a certain function $\\hat y$. Then $y$ satisfies the system of equations :$\\begin {cases} F_y - \\dfrac \\d {\\d x} F_{y'} = 0 \\\\ \\bigvalueat {F_{y'} } {x \\mathop = a} = 0 \\\\ \\bigvalueat {F_{y'} } {x \\mathop = b} = 0 \\end {cases}$"}
+{"_id": "13480", "title": "Ordered Set of Closure Operators and Dual Ordered Set of Closure Systems are Isomorphic", "text": "Let $L = \\left({S, \\vee, \\wedge, \\preceq}\\right)$ be a complete lattice. Then $\\operatorname{Closure}\\left({L}\\right)$ and $\\operatorname{ClSystems}\\left({L}\\right)^{-1}$ are order isomorphic where :$\\operatorname{Closure}\\left({L}\\right)$ denotes the ordered set of closure operators of $L$, :$\\operatorname{ClSystems}\\left({L}\\right)$ denotes the ordered set of closure systems oj $L$, :$\\operatorname{ClSystems}\\left({L}\\right)^{-1}$ denotes the dual to $\\operatorname{ClSystems}\\left({L}\\right)$."}
+{"_id": "13486", "title": "Euler's Equation for Vanishing Variation is Invariant under Coordinate Transformations", "text": "Euler's Equation for Vanishing Variation is invariant under coordinate transformations."}
+{"_id": "5302", "title": "Minimal Infinite Successor Set is Limit Ordinal", "text": "Let $\\omega$ denote the minimal infinite successor set. Then $\\omega$ is a limit ordinal."}
+{"_id": "5305", "title": "Ordinals Isomorphic to the Same Well-Ordered Set", "text": "Let $A$ and $B$ be ordinals. Let $\\left({\\prec, S}\\right)$ be a strict well-ordering. Let $\\left({\\in, A}\\right)$ and $\\left({\\prec, S}\\right)$ be order isomorphic. Let $\\left({\\in, B}\\right)$ and $\\left({\\prec, S}\\right)$ be order isomorphic. Then: : $A = B$"}
+{"_id": "13500", "title": "Topological Group is T1 iff T2", "text": "Let $G$ be a topological group. Then $G$ is a $T_1$ space {{iff}} $G$ is Hausdorff."}
+{"_id": "13509", "title": "Logarithm of Infinite Product of Complex Numbers", "text": "Let $\\sequence {z_n}$ be a sequence of nonzero complex numbers. {{TFAE}} :$(1): \\quad$ The infinite product $\\displaystyle \\prod_{n \\mathop = 1}^\\infty z_n$ converges to $z \\in \\C_{\\ne 0}$. :$(2): \\quad$ The series $\\displaystyle \\sum_{n \\mathop = 1}^\\infty \\log z_n$ converges to $\\log z + 2 k \\pi i$ for some integer $k \\in \\Z$."}
+{"_id": "5344", "title": "Infinite Ordinal can be expressed Uniquely as Sum of Limit Ordinal plus Finite Ordinal", "text": "Let $x$ be an ordinal. Suppose $x$ satisfies $\\omega \\subseteq x$. Then $x$ has a unique representation as $\\paren {y + z}$ where $y$ is a limit ordinal and $z$ is a finite ordinal."}
+{"_id": "13552", "title": "Legs of Pythagorean Triangle used as Generator for another Pythagorean Triangle", "text": "Let $a$ and $b$ be the legs of a Pythagorean triangle $P_1$. Let $\\tuple {a, b}$ be used as the generator for a new Pythagorean triangle $P_2$. Then the hypotenuse of $P_2$ is the square of the hypotenuse of $P_1$."}
+{"_id": "13564", "title": "Conditions for Function to be First Integral of Euler's Equations for Vanishing Variation", "text": "Let $\\Phi = \\map {\\Phi} {x, \\family {y_i}_{1 \\mathop \\le i \\mathop \\le n}, \\family {p_i}_{1 \\mathop \\le i \\mathop \\le n} }$ be a real function. Let $H$ be Hamiltonian. Then a necessary and sufficient condition for $\\Phi$ to be the first integral of Euler's Equations is :$\\dfrac {\\partial \\Phi} {\\partial x} + \\sqbrk{\\Phi, H} = 0$"}
+{"_id": "13568", "title": "Homotopic Paths Implies Homotopic Composition", "text": "Let $T = \\left({S, \\tau}\\right)$ be a topological space. Let $f_1, f_2, g_1, g_2: \\left[{0 \\,.\\,.\\, 1}\\right] \\to S$ be paths in $T$. Let $f_1$ be homotopic to $f_2$ and $g_1$ be homotopic to $g_2$. Then the concatenated paths $f_1 * g_1$ and $f_2 * g_2$ are homotopic."}
+{"_id": "13589", "title": "Product of Two Triangular Numbers to make Square", "text": "Let $T_n$ be a triangular number. Then there is an infinite number of $m \\in \\Z_{>0}$ such that $T_n \\times T_m$ is a square number."}
+{"_id": "13616", "title": "Numbers of form 31 x 16^n are sum of 16 Powers of 4", "text": "Let $m \\in \\Z$ be an integer of the form $31 \\times 16^n$ for $n \\in \\Z_{\\ge 0}$. Then in order express $m$ as the sum of powers of $4$, you need $16$ of them."}
+{"_id": "13619", "title": "Element of Ordered Set of Topology is Dense iff is Everywhere Dense", "text": "Let $T = \\struct {S, \\tau}$ be a topological space. Let $P = \\struct {\\tau, \\preceq}$ be an ordered set where $\\mathord\\preceq = \\mathord\\subseteq \\cap \\paren {\\tau \\times \\tau}$ Let $A \\in \\tau$. Then $A$ is a dense element in $P$ {{iff}} $A$ is everywhere dense."}
+{"_id": "5431", "title": "Element Commutes with Product of Commuting Elements/General Theorem", "text": "Let $(S,\\circ)$ be a semigroup. Let $\\left \\langle {a_k} \\right \\rangle_{1 \\mathop \\le k \\mathop \\le n}$ be a sequence of terms of $S$. Let $b \\in S$. If $b$ commutes with $a_k$ for each $k \\in \\left[{1 \\,.\\,.\\, n}\\right]$, then $b$ commutes with $a_1 \\circ \\cdots \\circ a_n$."}
+{"_id": "5446", "title": "Set is Small Class", "text": "Let $x$ be a set. Then $x$ is a small class."}
+{"_id": "5450", "title": "Group Induced by B-Algebra Induced by Group", "text": "Let $\\left({S, \\circ}\\right)$ be a group. Let $\\left({S, *}\\right)$ be the $B$-algebra described on Group Induces $B$-Algebra. Let $\\left({S, \\circ'}\\right)$ be the group described on $B$-Algebra Induces Group. Then $\\left({S, \\circ'}\\right) = \\left({S, \\circ}\\right)$."}
+{"_id": "5458", "title": "Category of Ordered Sets is Category", "text": "Let $\\mathbf{OrdSet}$ be the category of ordered sets. Then $\\mathbf{OrdSet}$ is a metacategory."}
+{"_id": "13651", "title": "Magic Hexagon of Order 3 is Unique", "text": "Apart from the trivial order $1$ magic hexagon, there exists only one magic hexagon: the order $3$ magic hexagon: {{:Definition:Order 3 Magic Hexagon}}"}
+{"_id": "5463", "title": "Universal Class is Proper", "text": "Let $V$ denote the universal class. Then $V$ is a proper class."}
+{"_id": "13655", "title": "Squares Ending in 5 Occurrences of 2-Digit Pattern", "text": "Let $n$ be a square number whose decimal representation ends in the pattern $\\mathtt {xyxyxyxyxy}$. Then $\\mathtt {xy}$ is one of: :$21, 29, 61, 69, 84$ The smallest examples of such numbers are: {{begin-eqn}} {{eqn | l = 508 \\, 853 \\, 989^2 | r = \\phantom {0 \\,} 258 \\, 932 \\, 38 \\mathbf {2 \\, 121 \\, 212 \\, 121} }} {{eqn | l = 162 \\, 459 \\, 327^2 | r = \\phantom {0 \\, 0} 26 \\, 393 \\, 03 \\mathbf {2 \\, 929 \\, 292 \\, 929} }} {{eqn | l = 1 \\, 318 \\, 820 \\, 881^2 | r = 1 \\, 739 \\, 288 \\, 51 \\mathbf {6 \\, 161 \\, 616 \\, 161} }} {{eqn | l = 541 \\, 713 \\, 187^2 | r = \\phantom {0 \\,} 293 \\, 453 \\, 17 \\mathbf {6 \\, 969 \\, 696 \\, 969} }} {{eqn | l = 509 \\, 895 \\, 478^2 | r = \\phantom {0 \\,} 259 \\, 993 \\, 39 \\mathbf {8 \\, 484 \\, 848 \\, 484} }} {{end-eqn}}"}
+{"_id": "13663", "title": "Sufficient Condition for Twice Differentiable Functional to have Minimum", "text": "Let $J$ be a twice differentiable functional. Let $J$ have an extremum for $y=\\hat y$. Let the second variation $\\delta^2 J \\sqbrk {\\hat y; h}$ be strongly positive {{WRT}} $h$. Then $J$ acquires the minimum for $y = \\hat y$ ."}
+{"_id": "5476", "title": "Discrete Category is Order Category", "text": "Let $\\mathbf{Dis} \\left({S}\\right)$ be a discrete category. Then $\\mathbf{Dis} \\left({S}\\right)$ is also an order category."}
+{"_id": "5480", "title": "Category of Monoids is Category", "text": "Let $\\mathbf{Mon}$ be the category of monoids. Then $\\mathbf{Mon}$ is a metacategory."}
+{"_id": "5481", "title": "Cayley's Representation Theorem/General Case", "text": "Let $\\struct {G, \\cdot}$ be a group. Then there exists a permutation group $P$ on some set $S$ such that: :$G \\cong P$ That is, such that $G$ is isomorphic to $P$."}
+{"_id": "5482", "title": "Permutation of Cosets/Corollary 1", "text": "Let $G$ be a group. Let $H \\le G$ such that $\\index G H = n$ where $n \\in \\Z$. Then: : $\\exists N \\lhd G: N \\lhd H: n \\divides \\index G H \\divides n!$"}
+{"_id": "5493", "title": "Cartesian Product is Small iff Inverse is Small", "text": "Let $A$ and $B$ be classes. Then the Cartesian product $A \\times B$ is a small class {{iff}} $B \\times A$ is small."}
+{"_id": "5502", "title": "Order Isomorphism on Foundational Relation preserves Foundational Structure", "text": "Let $A_1$ and $A_2$ be classes. Let $\\prec_1$ and $\\prec_2$ be relations. Let $\\phi: \\left({A_1, \\prec_1}\\right) \\to \\left({A_2, \\prec_2}\\right)$ be an order isomorphism. Then $\\left({A_1, \\prec_1}\\right)$ is a foundational structure iff $\\left({A_2, \\prec_2}\\right)$ is also a foundational structure."}
+{"_id": "5527", "title": "Kleene Closure is Free Monoid", "text": "Let $S$ be a set. Let $S^*$ be its Kleene closure, and let $i: S \\to S^*$ be the insertion of generators. Then $\\left({S^*, i}\\right)$ is a free monoid over $S$."}
+{"_id": "5547", "title": "Transitive Closure Always Exists (Set Theory)", "text": "Let $S$ be a set. Let $G$ be a mapping such that $\\map G x = x \\cup \\bigcup x$. {{explain|Domain and range of $G$ needed}} Let $F$ be defined using the Principle of Recursive Definition: :$\\map F 0 = S$ :$\\map F {n^+} = \\map G {\\map F n}$ Let $\\displaystyle T = \\bigcup_{n \\mathop \\in \\omega} \\map F n$. Then: :$T$ is a set and is transitive :$S \\subseteq T$ :If $R$ is transitive and $S \\subseteq R$, then $T \\subseteq R$. That is, given any set $S$, there is an explicit construction for its transitive closure."}
+{"_id": "5553", "title": "Stabilizer of Polynomial", "text": "Let $n \\in \\Z: n > 0$. Let $\\map f {x_1, x_2, \\ldots, x_n}$ be a polynomial in $n$ variables $x_1, x_2, \\ldots, x_n$. Let $S_n$ denote the symmetric group on $n$ letters. Let $\\pi, \\rho \\in S_n$. Let the group action $\\pi * f$ be defined as the permutation on the polynomial $f$ by $\\pi$. Then the stabilizer of $f$ is the set of permutations on $n$ letters which fix $f$."}
+{"_id": "5554", "title": "Stabilizer of Element of Group Acting on Itself is Trivial", "text": "Let $\\struct {G, \\circ}$ be a group whose identity is $e$. Let $*$ be the group action of $\\struct {G, \\circ}$ on itself by the rule: :$\\forall g, h \\in G: g * h = g \\circ h$ Then the stabilizer of an element $x \\in G$ is given by: :$\\Stab x = \\set e$"}
+{"_id": "13753", "title": "Even Perfect Number except 6 is Congruent to 1 Modulo 9", "text": "Let $n$ be an even perfect number, but not $6$. Then: :$n \\equiv 1 \\pmod 9$"}
+{"_id": "13765", "title": "Divisibility of Sum of 3 Fourth Powers", "text": "Let $n \\in \\Z_{\\ge 0}$ be the sum of three $4$th powers. Then: :$n$ is divisible by $5$ {{iff}} all three addends are also divisible by $5$ :$n$ is divisible by $29$ {{iff}} all three addends are also divisible by $29$."}
+{"_id": "13767", "title": "Prime-Generating Quadratics of form 2 a squared plus p", "text": "The quadratic form: :$2 a^2 + p$ yields prime numbers for $a = 0, 1, \\ldots, p - 1$ for values of $p$: :$3, 5, 11, 29$"}
+{"_id": "5577", "title": "Trivial Group is Initial Object", "text": "Let $\\mathbf{Grp}$ be the category of groups. Let $1 = \\left\\{{e}\\right\\}$ be the trivial group. Then $1$ is an initial object of $\\mathbf{Grp}$."}
+{"_id": "5587", "title": "Rank is Ordinal", "text": "Let $S$ be a small class The rank of $S$ is an ordinal."}
+{"_id": "5589", "title": "Group Direct Product of Cyclic Groups/Corollary", "text": "Let $n_1, n_2, \\ldots, n_s$ be a finite sequence of integers, all greater than $1$, such that for any pair of them $n_i$ and $n_j$, $n_1 \\perp n_j$. Let $G_i$ be a cyclic group of order $n_i$ for each $i: 1 \\le i \\le s$. Then $G_1 \\times G_2 \\times \\cdots \\times G_s$ is cyclic of order $n_1 n_2 \\ldots n_s$."}
+{"_id": "13792", "title": "Compact Closure of Element is Principal Ideal on Compact Subset iff Element is Compact", "text": "Let $L = \\left({S, \\vee, \\preceq}\\right)$ be a bounded below algebraic join semilattice. Let $P = \\left({K \\left({L} \\right), \\precsim}\\right)$ be an ordered subset of $L$ where $K \\left({L} \\right)$ denotes the compact subset of $L$. Let $x \\in S$. Then $x^{\\mathrm{compact} }$ is principal ideal in $P$ {{iff}} $x$ is a compact element."}
+{"_id": "13814", "title": "Arithmetic Sequence of 4 Terms with 3 Distinct Prime Factors", "text": "The arithmetic sequence: :$30, 66, 102, 138$ is the smallest of $4$ terms which consists entirely of positive integers each with $3$ distinct prime factors."}
+{"_id": "5623", "title": "Identity Morphism is Terminal Object in Slice Category", "text": "Let $\\mathbf C$ be a metacategory, and let $C \\in \\mathbf C_0$ be an object of $\\mathbf C$. Let $\\operatorname{id}_C: C \\to C$ be the identity morphism for $C$. Then $\\operatorname{id}_C$ is a terminal object in the slice category $\\mathbf C \\mathop / C$."}
+{"_id": "5624", "title": "Identity Morphism is Initial Object in Coslice Category", "text": "Let $\\mathbf C$ be a metacategory, and let $C \\in \\mathbf C_0$ be an object of $\\mathbf C$. Let $\\operatorname{id}_C: C \\to C$ be the identity morphism for $C$. Then $\\operatorname{id}_C$ is an initial object in the coslice category $C \\mathop / \\mathbf C$."}
+{"_id": "5652", "title": "Ordinal Subset is Well-Ordered", "text": "Let $S$ be a class. Let every element of $S$ be an ordinal. Then $\\struct {S, \\in}$ is a strict well-ordering."}
+{"_id": "13851", "title": "Real Symmetric Matrix is Hermitian", "text": "Every real symmetric matrix is Hermitian."}
+{"_id": "13863", "title": "Sufficient Conditions for Weak Extremum", "text": "Let $J$ be a functional such that: :$\\ds J \\sqbrk y = \\int_a^b \\map F {x, y, y'} \\rd x$ :$\\map y a = A$ :$\\map y b = B$ Let $y = \\map y x$ be an extremum. Let the strengthened Legendre's Condition hold. Let the strengthened Jacobi's Necessary Condition hold. {{explain|specific links to those strengthened versions}} Then the functional $J$ has a weak minimum for $y = \\map y x$."}
+{"_id": "13868", "title": "Equivalence Class of Fixed Element/Corollary", "text": ":$i \\notin \\Fix \\sigma$ {{iff}} $\\eqclass i {\\RR_\\sigma}$ contains more than one element"}
+{"_id": "13872", "title": "Rows in Pascal's Triangle containing Numbers in Arithmetic Sequence", "text": "There are an infinite number of rows of Pascal's triangle which contain $3$ integers in arithmetic sequence."}
+{"_id": "13873", "title": "Rows in Pascal's Triangle containing Numbers in Geometric Sequence", "text": "There exist no rows of Pascal's triangle which contain $3$ integers in geometric sequence."}
+{"_id": "13874", "title": "Rows in Pascal's Triangle containing Numbers in Harmonic Sequence", "text": "There exist no rows of Pascal's triangle which contain $3$ integers in harmonic sequence."}
+{"_id": "13876", "title": "Element of Leibniz Harmonic Triangle is Sum of Numbers Below", "text": "The elements in the Leibniz harmonic triangle are the sum of the elements immediately below them. {{refactor|Rework this as another definition of LHT, establishing that column and diagonal $0$ are defined as the reciprocals.}}"}
+{"_id": "13888", "title": "Characterization of Prime Element in Inclusion Ordered Set of Topology", "text": "Let $T = \\struct {S, \\tau}$ be a topological space. Let $L = \\struct {\\tau, \\preceq}$ be an inclusion ordered set of $\\tau$. Let $Z \\in \\tau$. Then $Z$ is prime element in $L$ {{iff}}: :$\\forall X, Y \\in \\tau: X \\cap Y \\subseteq Z \\implies X \\subseteq Z \\lor Y \\subseteq Z$"}
+{"_id": "5698", "title": "Permutation is Cyclic iff At Most One Non-Trivial Orbit", "text": "Let $S$ be a set. Let $\\rho: S \\to S$ be a permutation on $S$. Then: :$\\rho$ is a cyclic permutation {{iff}}: :$S$ has no more than one orbit under $\\rho$ with more than one element."}
+{"_id": "5707", "title": "Class of Cardinals Contains Minimal Infinite Successor Set", "text": "Let $\\mathcal N$ denote the class of all cardinal numbers. Then: :$\\omega \\subseteq \\mathcal N$ Where $\\omega$ denotes the minimal infinite successor set."}
+{"_id": "5727", "title": "Nonlimit Ordinal Cofinal to One", "text": "Let $x$ be a nonlimit non-empty ordinal. Let $\\operatorname{cof}$ denote the cofinal relation. Let $1$ denote the ordinal one. Then: :$\\operatorname{cof} \\left({x, 1}\\right)$"}
+{"_id": "13919", "title": "GCD of Polynomials does not depend on Base Field", "text": "Let $E / F$ be a field extension. Let $P, Q \\in F \\sqbrk X$ be polynomials. Let: :$\\gcd \\set {P, Q} = R$ in $F \\sqbrk X$ :$\\gcd \\set {P, Q} = S$ in $E \\sqbrk X$. Then $R = S$. In particular, $S \\in F \\sqbrk X$."}
+{"_id": "13935", "title": "Sequences of 4 Consecutive Integers with Falling Sigma", "text": "The following ordered quadruple of consecutive integers have sigma values which are strictly decreasing: :$44, 45, 46, 47$ :$104, 105, 106, 107$"}
+{"_id": "13936", "title": "Pairs of Consecutive Integers with 6 Divisors", "text": "The following sequence of integers are those $n$ which fulfil the equation: :$\\tau \\left({n}\\right) = \\tau \\left({n + 1}\\right) = 6$ where $\\tau \\left({n}\\right)$ denotes the $\\tau$ function. That is, they are the first of pairs of consecutive integers which each have $6$ divisors: :$44, 75, 98, 116, 147, 171, 242, 243, 244, 332, \\ldots$ {{OEIS|A049103}}"}
+{"_id": "5743", "title": "Intersection of Subsemigroups/General Result", "text": "Let $\\mathbb S$ be a set of subsemigroups of $\\left({S, \\circ}\\right)$, where $\\mathbb S \\ne \\varnothing$. Then the intersection $\\bigcap \\mathbb S$ of the members of $\\mathbb S$ is itself a subsemigroup of $\\left({S, \\circ}\\right)$. Also, $\\bigcap \\mathbb S$ is the largest subsemigroup of $\\left({S, \\circ}\\right)$ contained in each member of $\\mathbb S$."}
+{"_id": "5746", "title": "Abelian Group of Order Twice Odd has Exactly One Order 2 Element", "text": "Let $G$ be an abelian group whose identity element is $e$. Let the order of $G$ be $2 n$ such that $n$ is odd. Then there exists exactly one $g \\in G$ with $g \\ne e$ such that $g = g^{-1}$."}
+{"_id": "13946", "title": "Numbers which Multiplied by 2 are the Reverse of when Added to 2", "text": "{{begin-eqn}} {{eqn | l = 47 + 2 | r = 49 }} {{eqn | l = 47 \\times 2 | r = 94 }} {{end-eqn}} {{begin-eqn}} {{eqn | l = 497 + 2 | r = 499 }} {{eqn | l = 497 \\times 2 | r = 994 }} {{end-eqn}} {{begin-eqn}} {{eqn | l = 4997 + 2 | r = 4999 }} {{eqn | l = 4997 \\times 2 | r = 9994 }} {{end-eqn}} ... and so on:"}
+{"_id": "5757", "title": "Third Isomorphism Theorem/Groups/Corollary 1", "text": "Let $G$ be a group. Let $N$ be a normal subgroup of $G$. Let $q: G \\to \\dfrac G N$ be the quotient epimorphism from $G$ to the quotient group $\\dfrac G N$. Let $K$ be the kernel of $q$. Then: :$\\dfrac G N \\cong \\dfrac {G / K} {N / K}$"}
+{"_id": "5761", "title": "Morphisms-Only Metacategory Induces Metacategory", "text": "Let $\\mathbf C$ be a morphisms-only metacategory. Then $\\mathbf C$ induces a metacategory $\\mathbf C'$, as follows (phrased to fit with Characterization of Metacategory via Equations): :Define $\\mathbf C'_1$ to be the collection $\\mathbf C_1$ of morphisms of $\\mathbf C$. :Define $\\mathbf C'_0$ to be the image of the operation $\\operatorname{dom}$ on $\\mathbf C_1$. :Define $\\operatorname{id}$ to be the identity on $\\mathbf C'_0$, and take $\\operatorname{dom}$ and $\\operatorname{cod}$ as in $\\mathbf C$. :Define $\\circ$ to be as in $\\mathbf C$; i.e., $g \\circ f$ is the unique element of $\\mathbf C_1$ with $R_\\circ \\left({g, f, g \\circ f}\\right)$."}
+{"_id": "13953", "title": "Smallest Pair of Quasiamicable Numbers", "text": "The smallest pair of quasiamicable numbers is $48$ and $75$."}
+{"_id": "13956", "title": "Equivalence of Definitions of Quasiamicable Numbers", "text": "Let $m \\in \\Z_{>0}$ and $n \\in \\Z_{>0}$ be (strictly) positive integers. {{TFAE|def = Quasiamicable Numbers}}"}
+{"_id": "5769", "title": "Duality Principle (Category Theory)/Formal Duality", "text": "=== Morphisms-Only Category Theory === Let $\\Sigma$ be a statement in the language of category theory. Suppose $\\Sigma$ is provable from the axioms for morphisms-only category theory $\\mathrm{MOCT}$: :$\\mathrm{MOCT} \\vdash \\Sigma$ Then the dual statement $\\Sigma^*$ is also provable from these axioms, i.e.: :$\\mathrm{MOCT} \\vdash \\Sigma^*$ === Object Category Theory === Let $\\mathrm{CT}$ be the collection of seven axioms on Characterization of Metacategory via Equations. Suppose a statement $\\Sigma$ about metacategories follows from the axioms $\\mathrm{CT}$. Then so does its dual statement $\\Sigma^*$."}
+{"_id": "13972", "title": "Logarithm of Divergent Product of Real Numbers/Zero", "text": "The following are equivalent: * The infinite product $\\displaystyle \\prod_{n \\mathop = 1}^\\infty a_n$ diverges to $0$. * The series $\\displaystyle \\sum_{n \\mathop = 1}^\\infty \\log a_n$ diverges to $-\\infty$."}
+{"_id": "5796", "title": "Disjoint Union is Coproduct in Category of Sets", "text": "Let $\\mathbf{Set}$ be the category of sets. Let $S$ and $T$ be sets. Then their disjoint union $S \\sqcup T$ is a coproduct in $\\mathbf{Set}$."}
+{"_id": "14006", "title": "Continuous Implies Locally Bounded", "text": "Let $X$ be a topological space. Let $M$ be a metric space. Let $f: X \\to M$ be continuous. Then $f$ is locally bounded."}
+{"_id": "5828", "title": "Image of Canonical Injection is Normal Subgroup", "text": "Let $\\struct {G_1, \\circ_1}$ and $\\struct {G_2, \\circ_2}$ be groups with identity elements $e_1$ and $e_2$ respectively. Let $\\struct {G_1 \\times G_2, \\circ}$ be the group direct product of $\\struct {G_1, \\circ_1}$ and $\\struct {G_2, \\circ_2}$. Let: :$\\inj_1: \\struct {G_1, \\circ_1} \\to \\struct {G_1 \\times G_2, \\circ}$ be the canonical injection from $\\struct {G_1, \\circ_1}$ to $\\struct {G_1 \\times G_2, \\circ}$ :$\\inj_2: \\struct {G_2, \\circ_2} \\to \\struct {G_1 \\times G_2, \\circ}$ be the canonical injection from $\\struct {G_2, \\circ_2}$ to $\\struct {G_1 \\times G_2, \\circ}$. Then: :$(1): \\quad \\Img {\\inj_1} \\lhd \\struct {G_1 \\times G_2, \\circ}$ :$(2): \\quad \\Img {\\inj_2} \\lhd \\struct {G_1 \\times G_2, \\circ}$ That is, the images of the canonical injections are normal subgroups of the group direct product of $\\struct {G_1, \\circ_1}$ and $\\struct {G_2, \\circ_2}$."}
+{"_id": "14021", "title": "Period of Reciprocal of 53 is of Quarter Maximal Length", "text": "The decimal expansion of the reciprocal of $53$ has $\\dfrac 1 4$ the maximum period, that is: $13$: :$\\dfrac 1 {53} = 0 \\cdotp \\dot 01886 \\, 79245 \\, 28 \\dot 3$ {{OEIS|A007450}}"}
+{"_id": "5842", "title": "Pointwise Addition on Real-Valued Functions is Associative", "text": "Let $f, g, h: S \\to \\R$ be real-valued functions. Let $f + g: S \\to \\R$ denote the pointwise sum of $f$ and $g$. Then: :$\\paren {f + g} + h = f + \\paren {g + h}$"}
+{"_id": "5849", "title": "Pointwise Addition on Integer-Valued Functions is Associative", "text": "Let $f, g, h: S \\to \\Z$ be integer-valued functions. Let $f + g: S \\to \\Z$ denote the pointwise sum of $f$ and $g$. Then: :$\\paren {f + g} + h = f + \\paren {g + h}$"}
+{"_id": "5850", "title": "Pointwise Addition on Rational-Valued Functions is Associative", "text": "Let $f, g, h: S \\to \\Q$ be rational-valued functions. Let $f + g: S \\to \\Q$ denote the pointwise sum of $f$ and $g$. Then: :$\\paren {f + g} + h = f + \\paren {g + h}$"}
+{"_id": "14045", "title": "Dirichlet Convolution Preserves Multiplicativity", "text": "Let $f, g: \\N \\to \\C$ be multiplicative arithmetic functions. Then their Dirichlet convolution $f * g$ is again multiplicative."}
+{"_id": "14048", "title": "Closed Form for Pentatope Numbers", "text": "The closed-form expression for the $n$th pentatope number is: :$P_n = \\dfrac {n \\paren {n + 1} \\paren {n + 2} \\paren {n + 3} } {24}$"}
+{"_id": "14050", "title": "Necessary and Sufficient Condition for First Order System to be Field for Second Order System", "text": "Let $\\mathbf y$, $\\mathbf f$, $\\boldsymbol \\psi$ be N-dimensional vectors. Let $\\boldsymbol\\psi$ be continuously differentiable. Then $\\forall x \\in \\closedint a b$ the first-order system of differential equations: :$\\mathbf y' = \\map {\\boldsymbol \\psi} {x, \\mathbf y}$ is a field for the second-order system :$\\mathbf y'' = \\map {\\mathbf f} {x, \\mathbf y, \\mathbf y'}$ {{iff}} $\\boldsymbol \\psi$ satisfies : :$\\displaystyle \\frac {\\partial \\boldsymbol \\psi} {\\partial x} + \\sum_{i \\mathop = 1}^N \\frac {\\partial \\boldsymbol \\psi} {\\partial y_i} \\psi_i = \\map {\\mathbf f} {x, \\mathbf y, \\boldsymbol \\psi}$ That is, every solution to Hamilton-Jacobi system is a field for the original system."}
+{"_id": "14051", "title": "Tetrahedral Number as Sum of Squares", "text": ":$H_n = \\displaystyle \\sum_{k \\mathop = 0}^{n / 2} \\paren {n - 2 k}^2$ where $H_n$ denotes the $n$th tetrahedral number."}
+{"_id": "5864", "title": "Smooth Homotopy is an Equivalence Relation", "text": "Let $X$ and $Y$ be smooth manifolds. Let $K \\subseteq X$ be a (possibly empty) subset of $X$. Let $\\mathcal C^\\infty \\left({X, Y}\\right)$ be the set of all smooth mappings from $X$ to $Y$. Define a relation $\\sim$ on $\\mathcal C \\left({X, Y}\\right)$ by $f \\sim g$ if $f$ and $g$ are smoothly homotopic relative to $K$. Then $\\sim$ is an equivalence relation."}
+{"_id": "14105", "title": "Positive Even Integers as Sum of 2 Composite Odd Integers in 2 Ways", "text": "Let $n \\in \\Z_{>0}$ be a positive even integer. Let $n$ be such that it cannot be expressed as the sum of $2$ odd positive composite integers in at least $2$ different ways. Then $n$ belongs to the set: :$\\left\\{ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 32, 34, 38, 40, 44, 46, 52, 56, 62, 68}\\right\\}$ {{OEIS|A284788}}"}
+{"_id": "5923", "title": "Continuous Image of Path-Connected Set is Path-Connected", "text": "Let $M_1, M_2$ be metric spaces whose metrics are $d_1, d_2$ respectively. Let $f: M_1 \\to M_2$ be a continuous mapping. Let $S \\subseteq M_1$ be a path-connected subspace of $M_1$. Then $f \\sqbrk S$ is a a path-connected subspace of $M_2$."}
+{"_id": "5937", "title": "Quotient Mapping is Coequalizer", "text": "Let $\\mathbf{Set}$ be the category of sets. Let $S$ be a Set, and let $\\mathcal R \\subseteq S \\times S$ be an equivalence relation on $S$. Let $r_1, r_2: \\mathcal R \\to S$ be the projections corresponding to the inclusion mapping $\\mathcal R \\hookrightarrow S \\times S$. Let $q: S \\to S / \\mathcal R$ be the quotient mapping induced by $\\mathcal R$. Then $q$ is a coequalizer of $r_1$ and $r_2$ in $\\mathbf{Set}$."}
+{"_id": "14132", "title": "Reciprocal of 81", "text": "The decimal expansion of the reciprocal of $81$ has a particularly interesting pattern: :$\\dfrac 1 {81} = 0 \\cdotp \\dot 01234 \\, 567 \\dot 9$"}
+{"_id": "5951", "title": "Open Real Interval is not Closed Set/Corollary", "text": "Let: :$I_a = \\openint \\gets a$ :$I_b = \\openint b \\to$ be unbounded open real intervals. Then neither $I_a$ nor $I_b$ are closed sets of $\\R$."}
+{"_id": "14144", "title": "Necessary and Sufficient Condition for First Order System to be Mutually Consistent", "text": "Let $\\mathbf y$, $\\boldsymbol \\psi$ be N-dimensional vectors. Let $g$ be a twice differentiable mapping. Let :$(1): \\quad \\map {\\boldsymbol \\psi} {x, \\mathbf y} = \\map {\\mathbf y'} {x, \\mathbf y}$ :$(2): \\quad \\mathbf p \\sqbrk {x, \\mathbf y, \\map {\\boldsymbol \\psi} {x, \\mathbf y} } = \\map {g_{\\mathbf y} } {x, \\mathbf y}$ where $\\mathbf p$ is a momentum. Then the boundary conditions defined by $(1)$ are mutually consistent {{iff}} the mapping $\\map g {x, \\mathbf y}$ satisfies the Hamilton-Jacobi equation: :$(3): \\quad \\dfrac {\\partial g} {\\partial x} + \\map H {x, \\mathbf y, \\dfrac {\\partial g} {\\partial \\mathbf y} } = 0$"}
+{"_id": "14146", "title": "Reciprocal of 89", "text": "The decimal expansion of the reciprocal of $89$ contains the Fibonacci sequence: :$\\dfrac 1 {89} = 0 \\cdotp \\dot 01123 \\, 59550 \\, 56179 \\, 77528 \\, 08988 \\, 76404 \\, 49438 \\, 20224 \\, 719 \\dot 1$"}
+{"_id": "14148", "title": "Reciprocal as Sum of Fibonacci Numbers by Negative Powers of 10", "text": ":$\\displaystyle \\sum_{k \\mathop \\ge 0} \\dfrac {F_k} {10^{k + 1} } = \\dfrac 1 {89}$ where $F_k$ is the $k$th Fibonacci number: :$F_0 = 0, F_1 = 1, F_k = F_{k - 1} + F_{k - 2}$ That is: 1 / 89 = 0.0 + 0.01 + 0.001 + 0.0002 + 0.00003 + 0.000005 + 0.0000008 + 0.00000013 + 0.000000021 + 0.0000000034 + 0.00000000055 + ..............
"}
+{"_id": "5957", "title": "Continuous Function on Compact Space is Uniformly Continuous", "text": "Let $\\R^n$ be the $n$-dimensional Euclidean space. Let $S \\subseteq \\R^n$ be a compact subspace of $\\R^n$. Let $f: S \\to \\R$ be a continuous function. Then $f$ is uniformly continuous in $\\R$."}
+{"_id": "14150", "title": "91 is Pseudoprime to 35 Bases less than 91", "text": "$91$ is a Fermat pseudoprime in $35$ bases less than itself: :$3, 4, 9, 10, 12, 16, 17, 22, 23, 25, 27, 29, 30, 36, 38, 40, 43, 48, 51, 53, 55, 61, 62, 64, 66, 68, 69, 74, 75, 79, 81, 82, 87, 88, 90$"}
+{"_id": "14152", "title": "Reciprocal of 97", "text": "The decimal expansion of the reciprocal of $97$ has the maximum period, that is: $96$: :$\\dfrac 1 {97} = 0 \\cdotp \\dot 01030 \\, 92783 \\, 50515 \\, 46391 \\, 75257 \\, 73195 \\, 87628 \\, 86597 \\, 93814 \\, 43298 \\, 96907 \\, 21649 \\, 48453 \\, 60824 \\, 74226 \\, 80412 \\, 37113 \\, 40206 \\, 18556 \\, \\dot 7$ {{OEIS|A007450}}"}
+{"_id": "14156", "title": "Reciprocal of 98", "text": "The decimal expansion of the reciprocal of $98$ starts with the powers of $2$: :$\\dfrac 1 {98} = 0 \\cdotp 0 \\dot 1020 \\, 40816 \\, 32653 \\, 06122 \\, 44897 \\, 95918 \\, 36734 \\, 69387 \\, 75 \\dot 5$ {{OEIS|A021102}}"}
+{"_id": "14166", "title": "Reciprocal of 103", "text": ":$\\dfrac 1 {103} = 0 \\cdotp \\dot 00970 \\, 87378 \\, 64077 \\, 66990 \\, 29126 \\, 21359 \\, 223 \\dot 3$"}
+{"_id": "6002", "title": "Infinite Set in Compact Space has Omega-Accumulation Point", "text": "Let $\\struct {X, \\tau}$ be a compact topological space. Let $A \\subseteq X$ be infinite. Then $A$ has an $\\omega$-accumulation point in $X$."}
+{"_id": "14209", "title": "Cube of 11 is Palindromic", "text": "::$11^3 = 1331$"}
+{"_id": "14210", "title": "Fourth Power of 11 is Palindromic", "text": "::$11^4 = 14641$"}
+{"_id": "6023", "title": "Local Membership of Equalizer", "text": "Let $\\mathbf C$ be a metacategory. Let $e: E \\to C$ be the equalizer of $f,g : C \\to D$. Then a variable element $z: Z \\to C$ is a local member of $e$ iff $f \\circ z = g \\circ z$: :$z \\in_C e \\iff f \\circ z = g \\circ z$"}
+{"_id": "6026", "title": "Topological Equivalence is Equivalence Relation", "text": "Let $A$ be a set. Let $\\mathcal D$ be the set of all metrics on $A$. Let $\\sim$ be the relation on $\\mathcal D$ defined as: :$\\forall d_1, d_2 \\in \\mathcal D: d_1 \\sim d_2 \\iff d_1$ is topologically equivalent to $d_2$ Then $\\sim$ is an equivalence relation."}
+{"_id": "14227", "title": "Prime Gaps of 10", "text": "The following pairs of consecutive prime numbers are those whose difference is $10$: :$\\tuple {139, 149}, \\tuple {181, 191}, \\tuple {241, 251}, \\tuple {283, 293}, \\ldots$ {{OEIS|A031928|order = lower}}"}
+{"_id": "6043", "title": "Euclidean Plane is Abstract Geometry", "text": "The Euclidean plane $\\left({\\R^2, L_E}\\right)$ is an abstract geometry."}
+{"_id": "14237", "title": "Factorions Base 10", "text": "The following positive integers are the only factorions base $10$: :$1, 2, 145, 40 \\, 585$"}
+{"_id": "6056", "title": "Strong Separation Theorem", "text": "Let $C \\subset \\R^\\ell$ be closed and convex. Let $D = \\set {\\mathbf v} \\subset C^c$. Then $C$ and $D$ can be strongly separated."}
+{"_id": "14252", "title": "Pairs of Integers whose Product with Tau Value are Equal", "text": "Let $\\tau \\left({n}\\right)$ denote the $\\tau$ function: the number of divisors of $n$. The following pairs of integers $T$ have the property that $m \\tau \\left({m}\\right)$ is equal for each $m \\in T$: :$\\left\\{ {18, 27}\\right\\}$ :$\\left\\{ {24, 32}\\right\\}$ :$\\left\\{ {56, 64}\\right\\}$"}
+{"_id": "14270", "title": "Numbers that cannot be made Prime by changing 1 Digit", "text": "The following positive integers cannot be made into prime numbers by changing just one digit: :$200, 202, 204, 205, 206, 208, \\ldots$ {{OEIS|A192545}}"}
+{"_id": "14273", "title": "Triangular Numbers which are also Pentagonal", "text": "The sequence of triangular numbers which are also pentagonal begins: :$1, 210, 40 \\, 755, 7 \\, 906 \\, 276, 1 \\, 533 \\, 776 \\, 805, 297 \\, 544 \\, 793 \\, 910, \\ldots$ {{OEIS|A014979}}"}
+{"_id": "14283", "title": "For Complete Ritz Sequence Continuous Functional approaches its Minimal Value", "text": "Let $J$ be a continuous functional. Let $\\sequence {\\phi_n}$ be a complete Ritz sequence. {{explain|The concept of $\\sequence {\\phi_n}$ does not appear to be related in any way to the statement of the theorem.}} Then: :$\\displaystyle \\lim_{n \\mathop \\to \\infty} \\mu_n = \\mu$ where $\\displaystyle \\mu = \\inf_y J \\sqbrk y$."}
+{"_id": "14285", "title": "17 Wallpaper Groups", "text": "There are $17$ wallpaper groups."}
+{"_id": "6096", "title": "Closure of Infinite Union may not equal Union of Closures", "text": "Let $T$ be a topological space. Let $I$ be an infinite indexing set. Let $\\family {H_i}_{i \\mathop \\in I}$ be an indexed family of subsets of a set $S$. Let $\\displaystyle H = \\bigcup_{i \\mathop \\in I} H_i$ be the union of $\\family {H_i}_{i \\mathop \\in I}$. Then it is not always the case that: :$\\displaystyle \\bigcup_{i \\mathop \\in I} \\map \\cl {H_i} = \\map \\cl {\\bigcup_{i \\mathop \\in I} H_i}$ where $\\map \\cl {H_i}$ denotes the closure of $H_i$."}
+{"_id": "6097", "title": "Set of Reciprocals of Positive Integers is Nowhere Dense in Reals", "text": "Let $N$ be the set defined as: :$N := \\set {\\dfrac 1 n: n \\in \\Z_{>0} }$ where $\\Z_{>0}$ is the set of (strictly) positive integers. Let $\\R$ denote the real number line with the usual (Euclidean) metric. Then $N$ is nowhere dense in $\\R$."}
+{"_id": "14291", "title": "Numbers in Even-Even Amicable Pair are not Divisible by 3", "text": "Let $\\tuple {m_1, m_2}$ be an amicable pair such that both $m_1$ and $m_2$ are even. Then neither $m_1$ nor $m_2$ is divisible by $3$."}
+{"_id": "14320", "title": "Construction of Regular 257-Gon", "text": "It is possible to construct a regular polygon with $257$ sides) using a compass and straightedge construction."}
+{"_id": "6138", "title": "Young's Inequality for Increasing Functions/Equality", "text": "Let $a_0$ and $b_0$ be strictly positive real numbers. Let $f: \\closedint 0 {a_0} \\to \\closedint 0 {b_0}$ be a strictly increasing bijection. Let $a$ and $b$ be real numbers such that $0 \\le a \\le a_0$ and $0 \\le b \\le b_0$. Then $b = \\map f a$ {{iff}}: :$\\displaystyle a b = \\int_0^a \\map f u \\rd u + \\int_0^b \\map {f^{-1} } v \\rd v$ where $\\displaystyle \\int$ denotes the Darboux integral."}
+{"_id": "14336", "title": "Filters of Lattice of Power Set form Bounded Below Ordered Set", "text": "Let $X$ be a set. Let $L = \\left({\\mathcal P\\left({X}\\right), \\cup, \\cap, \\subseteq}\\right)$ be an inclusion lattice of power set of $X$. Let $F = \\left({\\mathit{Filt}\\left({L}\\right), \\subseteq}\\right)$ be an inclusion ordered set, where $\\mathit{Filt}\\left({L}\\right)$ denotes the set of all filters on $L$. Then $F$ is bounded below and $\\bot_F = \\left\\{{X}\\right\\}$ where $\\bot_F$ denotes the smallest element of $F$."}
+{"_id": "6151", "title": "Deterministic Time Hierarchy Theorem", "text": "Let $\\map f n$ be a time-constructible function. Then there exists a decision problem which: :can be solved in worst-case deterministic time $\\map f {2 n + 1}^3$ but: :cannot be solved in worst-case deterministic time $\\map f n$. In other words, the complexity class $\\map {\\mathsf {DTIME} } {\\map f n} \\subsetneq \\map {\\mathsf {DTIME} } {\\map f {2 n + 1}^3}$."}
+{"_id": "6184", "title": "Points in Product Spaces are Near Open Sets", "text": "Let $\\family {X_i}_{i \\mathop \\in I}$ be an indexed family of topological spaces, where $I$ is an arbitrary index set. Let $X = \\displaystyle \\prod_{i \\mathop \\in I} X_i$ be the product space of $\\family {X_i}_{i \\mathop \\in I}$. Let $U$ be nonempty open subset of $X$. Let $x$ be a point in $X$. For each point $y$ in $X$, let $\\map K y = \\set {i \\in I : y_i \\ne x_i}$. Then there exists a point $u$ in $U$ such that $\\map K u$ is finite."}
+{"_id": "6193", "title": "Equivalence of Definitions of Limit of Function in Metric Space", "text": "{{TFAE|def = Limit of Function (Metric Space)|view = Limit of Function|context = Metric Space|contextview = Metric Spaces}} Let $M_1 = \\left({A_1, d_1}\\right)$ and $M_2 = \\left({A_2, d_2}\\right)$ be metric spaces. Let $c$ be a limit point of $M_1$. Let $f: A_1 \\to A_2$ be a mapping from $A_1$ to $A_2$ defined everywhere on $A_1$ ''except possibly'' at $c$. Let $L \\in M_2$."}
+{"_id": "14401", "title": "Equivalence of Definitions of Field of Quotients", "text": "Let $D$ be an integral domain. Let $F$ be a field. {{TFAE|def = Field of Quotients}}"}
+{"_id": "14406", "title": "Products of 2-Digit Pairs which Reversed reveal Same Product", "text": "The following positive integers can be expressed as the product of $2$ two-digit numbers in $2$ ways such that the factors in one of those pairs is the reversal of each of the factors in the other: :$504, 756, 806, 1008, 1148, 1209, 1472, 1512, 2016, 2208, 2418, 2924, 3024, 4416$ "}
+{"_id": "14414", "title": "Poulet Numbers which are also Magic Constant for Magic Square", "text": "The sequence of Poulet numbers which are also the magic constant of a magic square begins: :$1105, 2465, \\ldots$"}
+{"_id": "6238", "title": "Length of Contour is Well-Defined", "text": "Let $C_1, \\ldots, C_n$ be directed smooth curves. Let $C_i$ be parameterized by the smooth path $\\gamma_i: \\closedint {a_i} {b_i} \\to \\C$ for all $i \\in \\set {1, \\ldots, n}$. Let $C$ be the contour defined by the finite sequence $C_1, \\ldots, C_n$. Suppose that $\\sigma_i: \\closedint {c_i} {d_i} \\to \\C$ is a reparameterization of $C_i$ for all $i \\in \\set {1, \\ldots, n}$ Then: :$\\displaystyle \\sum_{i \\mathop = 1}^n \\int_{a_i }^{b_i} \\size {\\map {\\gamma_i'} t} \\rd t = \\sum_{i \\mathop = 1}^n \\int_{c_i}^{d_i} \\size {\\map {\\sigma_i'} t} \\rd t$ and all real integrals in the equation are defined."}
+{"_id": "14448", "title": "Equivalence of Definitions of Change of Basis Matrix", "text": "Let $R$ be a ring with unity. Let $G$ be a finite-dimensional unitary $R$-module. Let $A = \\sequence {a_n}$ and $B = \\sequence {b_n}$ be ordered bases of $G$. {{TFAE|def = Change of Basis Matrix}}"}
+{"_id": "14460", "title": "Numbers not Expressible as Sum of Fewer than 19 Fourth Powers", "text": "The following positive integer are the only ones which cannot be expressed as the sum of fewer than $19$ fourth powers: :$79, 159, 239, 319, 399, 479, 559$ {{OEIS|A046050}}"}
+{"_id": "14464", "title": "Free Module on Set is Free", "text": "Let $R$ be a ring with unity. Let $I$ be a set. Let $R^{\\paren I}$ be the free $R$-module on $I$. Then $R^{\\paren I}$ is a free $R$-module."}
+{"_id": "14475", "title": "Pandigital Square Equation", "text": "The following equations, which include each digit from $1$ to $9$ inclusive, are the only ones of their kind: {{begin-eqn}} {{eqn | l = 567^2 | r = 321 \\, 489 }} {{eqn | l = 854^2 | r = 729 \\, 316 }} {{end-eqn}}"}
+{"_id": "14477", "title": "Sequence of 11 Primes by Trebling and Adding 16", "text": "The process of multiplication by $3$ and then adding $16$ produces a sequence of $11$ primes when starting from $587$: :$587, 1777, 5347, 16 \\, 057, 48 \\, 187, 144 \\, 577, 433 \\, 747, 1 \\, 301 \\, 257, 3 \\, 903 \\, 787, 11 \\, 711 \\, 377, 35 \\, 134 \\, 147$"}
+{"_id": "14487", "title": "Consecutive Sophie Germain Primes cannot be Pair of Twin Primes", "text": "Let $p$ and $p + 2$ be twin primes. Then unless $p = 3$ it is not possible for both $p$ and $p + 2$ to be Sophie Germain primes."}
+{"_id": "6310", "title": "Ring Without Unity may have Quotient Ring with Unity", "text": "Let $\\struct {R, +, \\circ}$ be a ring. Let $I$ be an ideal of $R$. Let $\\struct {R / I, +, \\circ}$ be the associated quotient ring. Then $\\struct {R / I, +, \\circ}$ may have a unity even if $\\struct {R, +, \\circ}$ has not."}
+{"_id": "6309", "title": "Stone Space is Topological Space", "text": "Let $\\struct {B, \\preceq, \\wedge, \\vee}$ be a non-empty Boolean algebra. Let $\\struct {U, \\tau}$ be the Stone space of $B$. Then $\\struct {U, \\tau}$ is a topological space."}
+{"_id": "14514", "title": "Sum of 714 and 715", "text": "The sum of $714$ and $715$ is a $4$-digit integer which has $6$ anagrams which are prime."}
+{"_id": "6327", "title": "Limits of Real and Imaginary Parts", "text": "Let $f: D \\to \\C$ be a complex function, where $D \\subseteq \\C$. Let $z_o \\in D$ be a complex number. Suppose $f$ is continuous at $z_0$. Then: :$(1): \\quad \\displaystyle \\lim_{z \\to z_o} \\operatorname{Re} \\left({f \\left({z}\\right) }\\right) = \\operatorname{Re} \\left({ \\lim_{z \\to z_o} f \\left({z}\\right) }\\right)$ :$(2): \\quad \\displaystyle \\lim_{z \\to z_o} \\operatorname{Im} \\left({f \\left({z}\\right) }\\right) = \\operatorname{Im} \\left({ \\lim_{z \\to z_o} f \\left({z}\\right) }\\right)$ Here, $\\operatorname{Re} \\left({f \\left({z}\\right) }\\right) $ denotes the real part of $f \\left({z}\\right)$, and $\\operatorname{Im} \\left({f \\left({z}\\right) }\\right) $ denotes the imaginary part of $f \\left({z}\\right)$."}
+{"_id": "14519", "title": "Equivalence of Definitions of Synthetic Basis", "text": "Let $S$ be a set. {{TFAE|def = Synthetic Basis}}"}
+{"_id": "14523", "title": "Continuous iff Mapping at Element is Supremum of Compact Elements", "text": "Let $L = \\left({S, \\preceq_1, \\tau_1}\\right)$ and $R = \\left({T, \\preceq_2, \\tau_2}\\right)$ be complete algebraic topological lattices with Scott topologies. Let $f: S \\to T$ be a mapping. Then $f$ is continuous {{iff}} :$\\forall x \\in S: f \\left({x}\\right) = \\sup \\left\\{ {f \\left({w}\\right): w \\in S \\land w \\preceq_1 x \\land w}\\right.$ is compact$\\left.{}\\right\\}$"}
+{"_id": "14542", "title": "Sum of Pandigital Triplet of 3-Digit Primes", "text": "The smallest integer which is the sum of a set of $3$ three-digit primes using all $9$ digits from $1$ to $9$ once each is $999$: :$149 + 263 + 587 = 999$"}
+{"_id": "14546", "title": "Reciprocal of 1089", "text": ":$\\dfrac 1 {1089} = 0 \\cdotp \\dot 00091 \\, 82736 \\, 45546 \\, 37281 \\, 9 \\dot 1$"}
+{"_id": "14557", "title": "Square Numbers which are Sum of Sequence of Odd Cubes", "text": "The sequence of square numbers which can be expressed as the sum of a sequence of odd cubes from $1$ begins: :$1, 1225, 1 \\, 413 \\, 721, 1 \\, 631 \\, 432 \\, 881, \\dotsc$ {{OEIS|A046177}} The sequence of square roots of this sequence is: :$1, 35, 1189, 40 \\, 391, \\dotsc$ {{OEIS|A046176}}"}
+{"_id": "14563", "title": "Smallest Triplet of Consecutive Integers Divisible by Cube", "text": "The smallest sequence of triplets of consecutive integers each of which is divisible by a cube greater than $1$ is: :$\\tuple {1375, 1376, 1377}$"}
+{"_id": "14582", "title": "Sequence of Composite Mersenne Numbers", "text": "The sequence of Mersenne numbers which are composite begins: :$2047, 8 \\, 388 \\, 607, 536 \\, 870 \\, 911, 137 \\, 438 \\, 953 \\, 471, 2 \\, 199 \\, 023 \\, 255 \\, 551,\\ldots$ {{OEIS|A065341}} The sequence of corresponding indices $p$ such that $2^p - 1$ is composite begins: :$11, 23, 29, 37, 41, 43, 47, 53, 59, 67, 71, 73, 79, 83, \\ldots$ {{OEIS|A054723}} The sequence of corresponding integers $n$ such that the $n$th prime number $p \\left({n}\\right)$ is such that $2^{p \\left({n}\\right)} - 1$ is composite begins: :$5, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, \\ldots$ {{OEIS|A135980}}"}
+{"_id": "14584", "title": "Numbers Reversed when Multiplying by 4", "text": "Numbers of the form $\\sqbrk {21 \\paren 9 78}_{10}$ are reversed when they are multiplied by $4$: {{begin-eqn}} {{eqn | l = 2178 \\times 4 | r = 8712 }} {{eqn | l = 21 \\, 978 \\times 4 | r = 87 \\, 912 }} {{eqn | l = 219 \\, 978 \\times 4 | r = 879 \\, 912 }} {{end-eqn}} and so on."}
+{"_id": "14586", "title": "Relational Structure admits Lower Topology", "text": "Let $R = \\left({S, \\preceq}\\right)$ be a relational structure. Then there exists a relational structure with lower topology $T = \\left({S, \\preceq, \\tau}\\right)$ such that $T$ is a topological space."}
+{"_id": "14599", "title": "2520 equals Sum of 4 Divisors in 6 Ways", "text": "The number $2520$ can be expressed as the sum of $4$ of its divisors in $6$ different ways: {{begin-eqn}} {{eqn | l = 2520 | r = 1260 + 630 + 504 + 126 }} {{eqn | r = 1260 + 630 + 421 + 210 }} {{eqn | r = 1260 + 840 + 360 + 60 }} {{eqn | r = 1260 + 840 + 315 + 105 }} {{eqn | r = 1260 + 840 + 280 + 140 }} {{eqn | r = 1260 + 840 + 252 + 168 }} {{end-eqn}} This is the maximum possible number of ways it is possible to express an integer as the sum of $4$ of its divisors."}
+{"_id": "6416", "title": "Operating on Ordered Group Inequalities", "text": "If $x \\prec y$ and $z \\prec w$, then $x \\circ z \\prec y \\circ w$. If $x \\prec y$ and $z \\preceq w$, then $x \\circ z \\prec y \\circ w$. If $x \\preceq y$ and $z \\prec w$, then $x \\circ z \\prec y \\circ w$. If $x \\preceq y$ and $z \\preceq w$, then $x \\circ z \\preceq y \\circ w$."}
+{"_id": "6428", "title": "Reflexive Closure of Antisymmetric Relation is Antisymmetric", "text": "Let $S$ be a set. Let $\\mathcal R$ be an antisymmetric relation on $S$. Let $\\mathcal R^=$ be the reflexive closure of $\\mathcal R$. Then $\\mathcal R^=$ is also antisymmetric."}
+{"_id": "6436", "title": "Conditional is not Left Self-Distributive/Formulation 2", "text": "While this holds: :$\\vdash \\paren {\\paren {p \\implies q} \\implies r} \\implies \\paren {\\paren {p \\implies r} \\implies \\paren {q \\implies r} }$ its converse does not: :$\\not \\vdash \\paren {\\paren {p \\implies r} \\implies \\paren {q \\implies r} } \\implies \\paren {\\paren {p \\implies q} \\implies r}$"}
+{"_id": "6439", "title": "Self-Distributive Law for Conditional/Formulation 2", "text": ":$\\vdash \\paren {p \\implies \\paren {q \\implies r} } \\iff \\paren {\\paren {p \\implies q} \\implies \\paren {p \\implies r} }$"}
+{"_id": "6477", "title": "Rule of Exportation/Formulation 2", "text": ":$\\vdash \\paren {\\paren {p \\land q} \\implies r} \\iff \\paren {p \\implies \\paren {q \\implies r} }$"}
+{"_id": "14691", "title": "Cube of 20 is Sum of Sequence of 4 Consecutive Cubes", "text": ":$20^3 = \\displaystyle \\sum_{k \\mathop = 11}^{14} k^3$ That is: :$20^3 = 11^3 + 12^3 + 13^3 + 14^3$"}
+{"_id": "14719", "title": "Largest Integer not Sum of Two Abundant Numbers", "text": "The largest integer which is not the sum of $2$ abundant numbers is $20 \\, 161$."}
+{"_id": "14720", "title": "Smallest Integer using Three Words in English Description", "text": "The smallest integer which uses exactly $3$ words in its standard (British) English description is: :$21 \\, 000$: '''twenty-one thousand''' counting hyphenations as separate words."}
+{"_id": "14736", "title": "Carmichael Number with 4 Prime Factors", "text": "$41 \\, 041$ is the smallest Carmichael number with $4$ prime factors: :$41 \\, 041 = 7 \\times 11 \\times 13 \\times 41$"}
+{"_id": "14752", "title": "Tableau Extension Lemma/General Statement/Proof 1", "text": "Let $T$ be a finite propositional tableau. Let its hypothesis set $\\mathbf H$ be finite. {{:Tableau Extension Lemma/General Statement}}"}
+{"_id": "14761", "title": "Reciprocal of 142,857", "text": ":$\\dfrac 1 {142 \\, 857} = 0 \\cdotp \\dot 00000 \\, \\dot 7$"}
+{"_id": "14784", "title": "Numbers whose Fourth Root equals Number of Divisors", "text": "There are $4$ positive integers whose $4$th root equals the number of its divisors: {{begin-eqn}} {{eqn | l = 1 | r = 1^4 | c = }} {{eqn | l = 625 | r = 5^4 | c = }} {{eqn | l = 6561 | r = 9^4 | c = }} {{eqn | l = 4 \\, 100 \\, 625 | r = 45^4 | c = }} {{end-eqn}} {{OEIS|A143026}}"}
+{"_id": "14790", "title": "Smallest 5 Consecutive Primes in Arithmetic Sequence", "text": "The smallest $5$ consecutive primes in arithmetic sequence are: :$9 \\, 843 \\, 019 + 30 n$ for $n = 0, 1, 2, 3, 4$. Note that while there are many longer arithmetic sequences of far smaller primes, those primes are not consecutive."}
+{"_id": "14793", "title": "Smallest Triplet of Primitive Pythagorean Triangles with Same Area", "text": "The smallest set of $3$ primitive Pythagorean triangles which all have the same area are: :the $4485-5852-7373$ triangle :the $3059-8580-9109$ triangle :the $1380-19 \\, 019-19 \\, 069$ triangle. That area is $13 \\, 123 \\, 110$."}
+{"_id": "6610", "title": "Biconditional is Transitive/Formulation 1/Proof 2", "text": ":$p \\iff q, q \\iff r \\vdash p \\iff r$"}
+{"_id": "6618", "title": "Law of Identity/Formulation 2/Proof 2", "text": ": $\\vdash p \\implies p$"}
+{"_id": "14827", "title": "Exchange of Order of Indexed Summations/Rectangular Domain", "text": "Let $D = \\closedint a b \\times \\closedint c d$ be the cartesian product. Let $f: D \\to \\mathbb A$ be a mapping Then we have an equality of indexed summations: :$\\displaystyle \\sum_{i \\mathop = a}^b \\sum_{j \\mathop = c}^d \\map f {i, j} = \\sum_{j \\mathop = c}^d \\sum_{i \\mathop = a}^b \\map f {i, j}$"}
+{"_id": "14832", "title": "Sum over Union of Finite Sets", "text": "Let $\\mathbb A$ be one of the standard number systems $\\N, \\Z, \\Q, \\R, \\C$. Let $S$ and $T$ be finite sets. Let $f: S \\cup T \\to \\mathbb A$ be a mapping. Then we have the equality of summations over finite sets: :$\\displaystyle \\sum_{u \\mathop \\in S \\mathop \\cup T} \\map f u = \\sum_{s \\mathop \\in S} \\map f s + \\sum_{t \\mathop \\in T} \\map f t - \\sum_{v \\mathop \\in S \\mathop \\cap T} \\map f v$"}
+{"_id": "6644", "title": "Rule of Idempotence/Conjunction/Formulation 1/Proof", "text": ": $p \\dashv \\vdash p \\land p$"}
+{"_id": "14838", "title": "Exchange of Order of Summations over Finite Sets/Subset of Cartesian Product", "text": "Let $D\\subset S \\times T$ be a subset. Let $\\pi_1 : D \\to S$ and $\\pi_2 : D \\to T$ be the restrictions of the projections of $S\\times T$. Then we have an equality of summations over finite sets: :$\\displaystyle \\sum_{s \\mathop \\in S} \\sum_{t \\mathop \\in \\pi_2 \\left({\\pi_1^{-1} \\left({s}\\right)}\\right)} f \\left({s, t}\\right) = \\sum_{t \\mathop \\in T} \\sum_{s \\mathop \\in \\pi_1 \\left({\\pi_2^{-1} \\left({t}\\right)}\\right)} f \\left({s, t}\\right)$"}
+{"_id": "14856", "title": "Canonical Homomorphism to Polynomial Ring is Ring Monomorphism", "text": "Let $R$ be a commutative ring with unity. Let $(R[X], \\iota, X)$ be a polynomial ring over $R$ in one indeterminate $X$. Then the canonical homomorphism $\\iota : R \\to R[X]$ is a ring monomorphism."}
+{"_id": "14868", "title": "Equivalence of Definitions of Consistent Proof System", "text": "{{TFAE|def = Consistent (Logic)/Proof System/Propositional Logic|view = Consistent Proof System for Propositional Logic}} Let $\\LL_0$ be the language of propositional logic. Let $\\mathscr P$ be a proof system for $\\LL_0$."}
+{"_id": "14884", "title": "Irreducible Component is Closed", "text": "Let $T = \\left({S, \\tau}\\right)$ be a topological space. Let $Y$ be an irreducible component of $T$. Then $Y$ is closed in $T$."}
+{"_id": "6697", "title": "Homotopy Characterisation of Simply Connected Sets", "text": "Let $T = \\struct {S, \\tau}$ be a topological space. Let $X$ be a subset of $S$. Then $X$ is simply connected {{iff}} the following conditions hold: :$(1): \\quad $ $X$ is path-connected. :$(2): \\quad $ All paths in $X$ with the same initial points and final points are freely homotopic."}
+{"_id": "14890", "title": "Largest Pandigital Square including Zero", "text": "The largest pandigital square (in the sense where pandigital includes the zero) is $9 \\, 814 \\, 072 \\, 356$: :$9 \\, 814 \\, 072 \\, 356 = 99 \\, 066^2$"}
+{"_id": "6714", "title": "Rule of Distribution/Disjunction Distributes over Conjunction/Left Distributive/Formulation 1/Proof", "text": ":$p \\lor \\paren {q \\land r} \\dashv \\vdash \\paren {p \\lor q} \\land \\paren {p \\lor r}$"}
+{"_id": "14906", "title": "Multiply Perfect Number of Order 6", "text": "The number defined as: :$n = 2^{36} \\times 3^8 \\times 5^5 \\times 7^7 \\times 11 \\times 13^2 \\times 19 \\times 31^2$ ::$\\times \\ 43 \\times 61 \\times 83 \\times 223 \\times 331 \\times 379 \\times 601 \\times 757 \\times 1201$ ::$\\times \\ 7019 \\times 112 \\, 303 \\times 898 \\, 423 \\times 616 \\, 318 \\, 177$ is multiply perfect of order $6$."}
+{"_id": "6718", "title": "Rule of Distribution/Disjunction Distributes over Conjunction/Right Distributive/Formulation 1/Proof", "text": ":$\\left({q \\land r}\\right) \\lor p \\dashv \\vdash \\left({q \\lor p}\\right) \\land \\left({r \\lor p}\\right)$"}
+{"_id": "14948", "title": "Functional Equation for Completed Riemann Zeta Function", "text": "Let $\\xi : \\C \\to \\C$ be the completed Riemann zeta function. Let $s\\in \\C$ be a complex number. Then: :$\\map \\xi s = \\map \\xi {1 - s}$"}
+{"_id": "14984", "title": "Largest Integer whose Digits taken in Pairs all form Distinct Primes", "text": "The largest integer which has the property that every pair of its digits taken together is a distinct prime number is $619 \\, 737 \\, 131 \\, 179$."}
+{"_id": "14990", "title": "Smallest 22 Primes in Arithmetic Sequence", "text": "The smallest $22$ primes in arithmetic sequence are: :$11 \\, 410 \\, 337 \\, 850 \\, 553 + 4 \\, 609 \\, 098 \\, 694 \\, 200 n$ for $n = 0, 1, \\ldots, 21$."}
+{"_id": "14995", "title": "Smallest Cunningham Chain of the Second Kind of Length 13", "text": "The smallest Cunningham chain of the second kind of length $13$ is: :$758 \\, 083 \\, 947 \\, 856 \\, 951$, $1 \\, 516 \\, 167 \\, 895 \\, 713 \\, 901$, $3 \\, 032 \\, 335 \\, 791 \\, 427 \\, 801$, $6 \\, 064 \\, 671 \\, 582 \\, 855 \\, 601$, $12 \\, 129 \\, 343 \\, 165 \\, 711 \\, 201$, $24 \\, 258 \\, 686 \\, 331 \\, 422 \\, 401$, $48 \\, 517 \\, 372 \\, 662 \\, 844 \\, 801$, $97 \\, 034 \\, 745 \\, 325 \\, 689 \\, 601$, $194 \\, 069 \\, 490 \\, 651 \\, 379 \\, 201$, $388 \\, 138 \\, 981 \\, 302 \\, 758 \\, 401$, $776 \\, 277 \\, 962 \\, 605 \\, 516 \\, 801$, $1 \\, 552 \\, 555 \\, 925 \\, 211 \\, 033 \\, 601$, $3 \\, 105 \\, 111 \\, 850 \\, 422 \\, 067 \\, 201$"}
+{"_id": "15005", "title": "Repunit Expressed using Power of 10", "text": "The repunit number $R_n$ can be expressed as: :$R_n = \\dfrac {10^n - 1} 9$"}
+{"_id": "15012", "title": "Repunit in Base 9 is Triangular", "text": "Let $m$ be a repunit base $9$. Then $m$ is a triangular number."}
+{"_id": "15017", "title": "Largest nth Power which has n Digits", "text": "The largest $n$th power which has $n$ digits is $9^{21}$: :$9^{21} = 109 \\, 418 \\, 989 \\, 131 \\, 512 \\, 359 \\, 209$"}
+{"_id": "15021", "title": "Left-Truncatable Prime/Examples/357,686,312,646,216,567,629,137", "text": "The largest left-truncatable prime is $357 \\, 686 \\, 312 \\, 646 \\, 216 \\, 567 \\, 629 \\, 137$."}
+{"_id": "15027", "title": "Smallest Integer Divisible by All Numbers from 1 to 100", "text": "The smallest positive integer which is divisible by each of the integers from $1$ to $100$ is: :$69 \\, 720 \\, 375 \\, 229 \\, 712 \\, 477 \\, 164 \\, 533 \\, 808 \\, 935 \\, 312 \\, 303 \\, 556 \\, 800$"}
+{"_id": "15028", "title": "Integer which is Multiplied by 9 when moving Last Digit to First", "text": "Let $N$ be the positive integer: :$N = 10 \\, 112 \\, 359 \\, 550 \\, 561 \\, 797 \\, 752 \\, 808 \\, 988 \\, 764 \\, 044 \\, 943 \\, 820 \\, 224 \\, 719$ $N$ is the smallest positive integer $N$ such that if you move the last digit to the front, the result is the positive integer $9 N$."}
+{"_id": "15049", "title": "Yoneda Embedding Theorem", "text": "Let $C$ be a locally small category. Let $\\mathbf{Set}$ be the category of sets. Let $[C^{\\operatorname{op}}, \\mathbf{Set}]$ be the contravariant functor category. Then the Yoneda embedding $h_- : C \\to [C^{\\operatorname{op}}, \\mathbf{Set}]$ is a fully faithful embedding."}
+{"_id": "15059", "title": "Titanic Prime whose Digits are all Odd", "text": "The integer defined as: :$1358 \\times 10^{3821} - 1$ is a titanic prime all of whose digits are odd. That is: :$1357 \\paren 9_{3821}$ where $\\paren a_b$ means $b$ instances of $a$ in a string."}
+{"_id": "15061", "title": "Gigantic Palindromic Prime", "text": "The integer defined as: :$10^{11 \\, 810} + 1 \\, 465 \\, 641 \\times 10^{5902} + 1$ is a gigantic prime which is also palindromic. That is: :$1(0)_{5901}1465641(0)_{5901}1$ where $\\left({a}\\right)_b$ means $b$ instances of $a$ in a string."}
+{"_id": "15084", "title": "Existence of Topological Space which satisfies no Separation Axioms", "text": "There exists at least one example of a topological space for which none of the Tychonoff separation axioms are satisfied."}
+{"_id": "6893", "title": "Relation Compatible with Group Operation is Reflexive or Antireflexive", "text": "Let $\\struct {G, \\circ}$ be a group. Let $\\RR$ be a relation on $G$ that is compatible with $\\circ$. Then $\\RR$ is reflexive or antireflexive."}
+{"_id": "15091", "title": "Existence of Compact Hausdorff Space which is not T5", "text": "There exists at least one example of a compact $T_2$ (Hausdorff) space which is not a $T_5$ space."}
+{"_id": "15097", "title": "Existence of Hausdorff Space which is not Completely Hausdorff", "text": "There exists at least one example of a topological space which is a $T_2$ (Hausdorff) space, but is not also a completely Hausdorff space."}
+{"_id": "15104", "title": "Existence of Semiregular Topological Space which is not Urysohn Space", "text": "There exists at least one example of a semiregular topological space which is not a Urysohn space."}
+{"_id": "15107", "title": "Existence of Compact Space which is not Sequentially Compact", "text": "There exists at least one example of a compact topological space which is not also a sequentially compact space."}
+{"_id": "6918", "title": "Norm of Vector Cross Product", "text": "Let $\\mathbf a$ and $\\mathbf b$ be vectors in the Euclidean space $\\R^3$. Let $\\times$ denote the vector cross product. Then: :$(1): \\quad$ $\\left\\Vert{ \\mathbf a \\times \\mathbf b }\\right\\Vert^2 = \\left\\Vert{\\mathbf a}\\right\\Vert^2 \\left\\Vert{\\mathbf b}\\right\\Vert^2 - \\left({\\mathbf a \\cdot \\mathbf b}\\right)^2$ :$(2): \\quad$ $\\left\\Vert{ \\mathbf a \\times \\mathbf b }\\right\\Vert = \\left\\Vert{\\mathbf a}\\right\\Vert \\left\\Vert{\\mathbf b}\\right\\Vert \\left\\vert{\\sin \\theta}\\right\\vert$ where $\\theta$ is the angle between $\\mathbf a$ and $\\mathbf b$, or an arbitrary number if $\\mathbf a$ or $\\mathbf b$ is the zero vector."}
+{"_id": "15119", "title": "Existence of Separable Space which is not Second-Countable", "text": "There exists at least one example of a separable topological space which is not also a second-countable space."}
+{"_id": "15125", "title": "Existence of Paracompact Space which is not Compact", "text": "There exists at least one example of a paracompact topological space which is not also a compact topological space."}
+{"_id": "15137", "title": "Uncountable Product of First-Countable Spaces is not always First-Countable", "text": "Let $I$ be an indexing set with uncountable cardinality. Let $\\family {\\struct {S_\\alpha, \\tau_\\alpha} }_{\\alpha \\mathop \\in I}$ be a family of topological spaces indexed by $I$. Let $\\displaystyle \\struct {S, \\tau} = \\prod_{\\alpha \\mathop \\in I} \\struct {S_\\alpha, \\tau_\\alpha}$ be the product space of $\\family {\\struct {S_\\alpha, \\tau_\\alpha} }_{\\alpha \\mathop \\in I}$. Let each of $\\struct {S_\\alpha, \\tau_\\alpha}$ be a first-countable space. Then it is not necessarily the case that $\\struct {S, \\tau}$ is also a first-countable space."}
+{"_id": "15139", "title": "Uncountable Product of Separable Spaces is not always Separable", "text": "Let $I$ be an indexing set with uncountable cardinality. Let $\\family {\\struct {S_\\alpha, \\tau_\\alpha} }_{\\alpha \\mathop \\in I}$ be a family of topological spaces indexed by $I$. Let $\\displaystyle \\struct {S, \\tau} = \\prod_{\\alpha \\mathop \\in I} \\struct {S_\\alpha, \\tau_\\alpha}$ be the product space of $\\family {\\struct {S_\\alpha, \\tau_\\alpha} }_{\\alpha \\mathop \\in I}$. Let each of $\\struct {S_\\alpha, \\tau_\\alpha}$ be a separable space. Then it is not necessarily the case that $\\struct {S, \\tau}$ is also a separable space."}
+{"_id": "15141", "title": "Product of Metacompact Spaces is not always Metacompact", "text": "Let $I$ be an indexing set. Let $\\family {\\struct {S_\\alpha, \\tau_\\alpha} }_{\\alpha \\mathop \\in I}$ be a family of topological spaces indexed by $I$. Let $\\displaystyle \\struct {S, \\tau} = \\prod_{\\alpha \\mathop \\in I} \\struct {S_\\alpha, \\tau_\\alpha}$ be the product space of $\\family {\\struct {S_\\alpha, \\tau_\\alpha} }_{\\alpha \\mathop \\in I}$. Let each of $\\struct {S_\\alpha, \\tau_\\alpha}$ be a metacompact space. Then it is not necessarily the case that $\\struct {S, \\tau}$ is also metacompact space."}
+{"_id": "15162", "title": "Finite Irreducible Space is Path-Connected", "text": "Let $T = \\left({S, \\tau}\\right)$ be a finite irreducible topological space. Then $T$ is path-connected."}
+{"_id": "15173", "title": "Equivalence of Definitions of Convergent of Continued Fraction", "text": "Let $F$ be a field, such as the field of real numbers. Let $n \\in \\N \\cup \\set \\infty$ be an extended natural number. Let $C = \\sqbrk {a_0, a_1, a_2, \\dotsc}$ be a continued fraction in $F$ of length $n$. Let $k \\le n$ be a natural number. {{TFAE|def = Convergent of Continued Fraction}}"}
+{"_id": "15175", "title": "Locally Connected Space is not necessarily Locally Path-Connected", "text": "Let $T = \\struct {S, \\tau}$ be a topological space which is locally connected. Then it is not necessarily the case that $T$ is also an locally patj-connected space."}
+{"_id": "15190", "title": "Binary Product in Preadditive Category is Biproduct", "text": "Let $A$ be a preadditive category. Let $a_1, a_2$ be objects of $A$. Let $(a_1 \\times a_2, p_1, p_2)$ be their binary product, assuming it exists. Let $i_1 : a_1 \\to a_1 \\times a_2$ be the unique morphism with: :$p_1 \\circ i_1 = 1 : a_1 \\to a_1$ :$p_2 \\circ i_1 = 0 : a_1 \\to a_2$ Let $i_2 : a_1 \\to a_1 \\times a_2$ be the unique morphism with: :$p_1 \\circ i_2 = 0 : a_2 \\to a_1$ :$p_2 \\circ i_2 = 1 : a_2 \\to a_2$ where $1$ is the identity morphism and $0$ is the zero morphism. Then $(a_1 \\times a_2, i_1, i_2, p_1, p_2)$ is the binary biproduct of $a_1$ and $a_2$."}
+{"_id": "7007", "title": "Matrix Multiplication Interpretation of Relation Composition", "text": "Let $A$, $B$ and $C$ be finite non-empty sets that are initial segments of $\\N_{\\ne 0}$. Let $\\mathcal R \\subseteq B \\times A$ and $\\mathcal S \\subseteq C \\times B$ be relations. Let $\\mathbf R$ and $\\mathbf S$ be matrices which we define as follows: :$\\left[{r}\\right]_{i j} = \\begin{cases} T & : (i, j) \\in \\mathcal R \\\\ F & : (i, j) \\notin \\mathcal R\\\\ \\end{cases}$ :$\\left[{s}\\right]_{i j} = \\begin{cases} T & : (i, j) \\in \\mathcal S \\\\ F & : (i, j) \\notin \\mathcal S\\\\ \\end{cases}$ Then we can interpret the matrix product $\\mathbf R \\mathbf S$ as the composition $\\mathcal S \\circ \\mathcal R$. To do so we temporarily consider $\\left({\\left\\{ {T, F}\\right\\}, \\land, \\lor}\\right)$ to be our \"ring\" on which we are basing matrix multiplication. Then: :$\\left[{r s}\\right]_{i j} = T \\iff (i, j) \\in \\mathcal S \\circ \\mathcal R$"}
+{"_id": "7013", "title": "Set of Subsets is Cover iff Set of Complements is Free", "text": "Let $S$ be a set. Let $\\mathcal C$ be a set of sets. Then $\\mathcal C$ is a cover for $S$ {{iff}} $\\set {\\relcomp S X: X \\in \\mathcal C}$ is free."}
+{"_id": "15208", "title": "Metric Space is Perfectly Normal", "text": "Let $M = \\struct {A, d}$ be a metric space. Then $M$ is a perfectly normal space."}
+{"_id": "15211", "title": "Tutte's Wheel Theorem", "text": "Every 3-connected graph can be obtained by the following procedure: * Start with $G_0 := K_4$ * Given $G_i$ pick a vertex $v$ * Split into $v'$ and $v''$ and add edge $\\{v',v''\\}$ This procedure directly follows from the theorem: :A graph $G$ is 3-connected ('''A''') iff there exists a sequence $G_0, G_1, . . . , G_n$ of graphs with the following properties ('''B'''): :* $G_0 = K_4$ and $G_n = G$; :* $G_{i+1}$ has an edge $e = xy$ with $deg \\left({x}\\right), deg \\left({y}\\right) \\geq 3$ and $G_i = G_{i+1} \\thinspace / \\thinspace e$ for every $i < n$."}
+{"_id": "15223", "title": "G-Delta Sets in Indiscrete Topology", "text": "$H$ is a $G_\\delta$ ($G$-delta) set of $T$ {{iff}} either $H = S$ or $H = \\O$."}
+{"_id": "15225", "title": "Subset of Indiscrete Space is Sequentially Compact", "text": "$H$ is sequentially compact in $T$."}
+{"_id": "15238", "title": "Infinite Particular Point Space is not Metacompact", "text": "Let $T = \\left({S, \\tau_p}\\right)$ be an infinite particular point space. Then $T$ is not metacompact."}
+{"_id": "15244", "title": "Condition for Closed Extension Space to be T4 Space", "text": "Let $T = \\struct {S, \\tau}$ be a topological space. Let $T^*_p = \\struct {S^*_p, \\tau^*_p}$ be the closed extension space of $T$. Then: :$T^*_p$ is a $T_4$ space {{iff}} $T$ is a $T_4$ space vacuously and $T^*_p$ in this case is also a $T_4$ space vacuously."}
+{"_id": "15245", "title": "Condition for Closed Extension Space to be T5 Space", "text": "Let $T = \\struct {S, \\tau}$ be a topological space. Let $T^*_p = \\struct {S^*_p, \\tau^*_p}$ be the closed extension space of $T$. Then: :$T^*_p$ is a $T_5$ space {{iff}} $T$ is a $T_5$ space vacuously and $T^*_p$ in this case is also a $T_5$ space vacuously."}
+{"_id": "15260", "title": "Separation Properties of Alexandroff Extension of Rational Number Space", "text": "Let $\\struct {\\Q, \\tau_d}$ be the rational number space under the Euclidean topology $\\tau_d$. Let $p$ be a new element not in $\\Q$. Let $\\Q^* := \\Q \\cup \\set p$. Let $T^* = \\struct {\\Q^*, \\tau^*}$ be the Alexandroff extension on $\\struct {\\Q, \\tau_d}$. Then $T^*$ satisfies no Tychonoff separation axioms higher than a $T_1$ (Fréchet) space."}
+{"_id": "15269", "title": "Hilbert Sequence Space is not Locally Compact Hausdorff Space", "text": "Let $A$ be the set of all real sequences $\\sequence {x_i}$ such that the series $\\ds \\sum_{i \\mathop \\ge 0} x_i^2$ is convergent. Let $\\ell^2 = \\struct {A, d_2}$ be the Hilbert sequence space on $\\R$. Then $\\ell^2$ is not a locally compact Hausdorff space."}
+{"_id": "15302", "title": "Every Point except Endpoint in Connected Linearly Ordered Space is Cut Point", "text": "Let $T = \\struct {S, \\preceq, \\tau}$ be a linearly ordered space. Let $A \\subseteq S$ be a connected space. Let $p \\in A$ be a point of $A$ which is not an endpoint of $A$. Then $p$ is a cut point of $A$."}
+{"_id": "15336", "title": "Sum of Infinite Series of Product of Power and Sine", "text": "Let $r \\in \\R$ such that $\\size r < 1$. Let $x \\in \\R$ such that $x \\ne 2 m \\pi$ for any $m \\in \\Z$. Then: {{begin-eqn}} {{eqn | l = \\sum_{k \\mathop = 1}^\\infty r^k \\sin k x | r = r \\sin x + r^2 \\sin 2 x + r^3 \\sin 3 x + \\cdots | c = }} {{eqn | r = \\dfrac {r \\sin x} {1 - 2 r \\cos x + r^2} | c = }} {{end-eqn}}"}
+{"_id": "15342", "title": "Coefficients of Cosine Terms in Convergent Trigonometric Series", "text": "Let $\\map S x$ be a trigonometric series which converges to $\\map f x$ on the interval $\\openint \\alpha {\\alpha + 2 \\pi}$: :$\\map f x = \\dfrac {a_0} 2 + \\displaystyle \\sum_{m \\mathop = 1}^\\infty \\paren {a_m \\cos m x + b_m \\sin m x}$ Then: :$\\forall n \\in \\Z_{\\ge 0}: a_n = \\dfrac 1 \\pi \\displaystyle \\int_\\alpha^{\\alpha + 2 \\pi} \\map f x \\cos n x \\rd x$"}
+{"_id": "7157", "title": "De Morgan's Laws (Logic)/Conjunction/Formulation 2/Proof 2", "text": ": $\\vdash \\left({p \\land q}\\right) \\iff \\left({\\neg \\left({\\neg p \\lor \\neg q}\\right)}\\right)$"}
+{"_id": "15357", "title": "Derivation of Fourier Series over General Range", "text": "Let $\\alpha \\in \\R$ be a real number. Let $\\lambda \\in \\R_{>0}$ be a strictly positive real number. Let $f: \\R \\to \\R$ be a function such that $\\displaystyle \\int_{\\mathop \\to \\alpha}^{\\mathop \\to \\alpha + 2 \\lambda} \\map f x \\rd x$ converges absolutely. Let: :$\\displaystyle f \\sim \\frac {a_0} 2 + \\sum_{n \\mathop = 1}^\\infty \\paren {a_n \\cos \\frac {n \\pi x} \\lambda + b_n \\sin \\frac {n \\pi x} \\lambda}$ The '''Fourier coefficients''' for $f$ are calculated by: {{begin-eqn}} {{eqn | l = a_n | r = \\dfrac 1 \\lambda \\int_{\\mathop \\to \\alpha}^{\\mathop \\to \\alpha + 2 \\lambda} \\map f x \\cos \\frac {n \\pi x} \\lambda \\rd x }} {{eqn | l = b_n | r = \\dfrac 1 \\lambda \\int_{\\mathop \\to \\alpha}^{\\mathop \\to \\alpha + 2 \\lambda} \\map f x \\sin \\frac {n \\pi x} \\lambda \\rd x }} {{end-eqn}}"}
+{"_id": "15370", "title": "Half-Range Fourier Sine Series/Cosine over 0 to Pi", "text": ":500pxrightthumb$\\map f x$ and its $7$th approximation On the interval $\\openint 0 \\pi$: {{begin-eqn}} {{eqn | l = \\cos x | r = \\frac 8 \\pi \\sum_{m \\mathop = 1}^\\infty \\frac {m \\sin 2 m x} {4 m^2 - 1} | c = }} {{eqn | r = \\frac 8 \\pi \\paren {\\frac {\\sin 2 x} {1 \\times 3} + \\frac {2 \\sin 4 x} {3 \\times 5} + \\frac {3 \\sin 6 x} {5 \\times 7} + \\cdots} | c = }} {{end-eqn}}"}
+{"_id": "7194", "title": "Properties of Ordered Group/OG2/Proof 1", "text": "Let $\\left({G, \\circ, \\preceq}\\right)$ be an ordered group with identity $e$. Let $\\prec$ be the reflexive reduction of $\\preceq$. Let $x, y \\in G$. Then the following equivalences hold: :$(\\operatorname{OG}2.1):\\quad x \\preceq y \\iff e \\preceq y \\circ x^{-1}$ :$(\\operatorname{OG}2.2):\\quad x \\preceq y \\iff e \\preceq x^{-1} \\circ y$ :$(\\operatorname{OG}2.3):\\quad x \\preceq y \\iff x \\circ y^{-1} \\preceq e$ :$(\\operatorname{OG}2.4):\\quad x \\preceq y \\iff y^{-1} \\circ x \\preceq e$ :$(\\operatorname{OG}2.1'):\\quad x \\prec y \\iff e \\prec y \\circ x^{-1}$ :$(\\operatorname{OG}2.2'):\\quad x \\prec y \\iff e \\prec x^{-1} \\circ y$ :$(\\operatorname{OG}2.3'):\\quad x \\prec y \\iff x \\circ y^{-1} \\prec e$ :$(\\operatorname{OG}2.4'):\\quad x \\prec y \\iff y^{-1} \\circ x \\prec e$"}
+{"_id": "15400", "title": "Series Expansion for Pi over Root 2", "text": ":$\\displaystyle \\frac \\pi {\\sqrt 2} = \\sum_{r \\mathop = 1}^\\infty \\paren {-1}^{r - 1} \\frac {r - \\frac 1 2} {r^2 - r + \\frac 3 {16} }$"}
+{"_id": "15412", "title": "Leading Coefficient of Product of Polynomials over Integral Domain", "text": "Let $R$ be an integral domain. Let $f, g \\in R \\sqbrk x$ be polynomials. Let $c$ and $d$ be their leading coefficients. Then $f g$ has leading coefficient $c d$."}
+{"_id": "7220", "title": "Ordered Set is Upper Set in Itself", "text": "Let $(S, \\preceq)$ be an ordered set. Then $S$ is an upper set in $S$."}
+{"_id": "15419", "title": "Ideal Contained in Finite Union of Prime Ideals", "text": "Let $A$ be a commutative ring with unity. Let $\\mathfrak p_1, \\ldots, \\mathfrak p_n$ be prime ideals. Let $\\mathfrak a \\subseteq \\ds \\bigcup_{i \\mathop = 1}^n \\mathfrak p_i$ be an ideal contained in their union. Then $\\mathfrak a \\subseteq \\mathfrak p_i$ for some $i \\in \\{1, \\ldots, n\\}$."}
+{"_id": "15421", "title": "Equivalence of Definitions of Unital Associative Commutative Algebra/Correspondence", "text": "Let $B$ be a algebra over $A$ that is unital, associative and commutative. Let $(C, f)$ be a ring under $A$. {{TFAE}} #$C$ is the underlying ring of $B$ and $f : A \\to C$ is the canonical mapping to the unital algebra $B$. #$B$ is the algebra defined by $f$."}
+{"_id": "15430", "title": "Cayley-Hamilton Theorem/Matrices", "text": "Let $A$ be a commutative ring with unity. Let $\\mathbf N = \\left({a_{ij} }\\right)$ be an $n \\times n$ matrix with entries in $A$. Let $\\mathbf I_n$ denote the $n \\times n$ unit matrix. Let $p_N \\left({x}\\right)$ be the determinant $\\det \\left({x \\cdot \\mathbf I_n - \\mathbf N}\\right)$. Then: : $p_N \\left({N}\\right) = \\mathbf 0$ as an $n \\times n$ zero matrix. That is: :$ N^n + b_{n-1} N^{n-1} + \\cdots + b_1 N + b_0 = \\mathbf 0$ where the $b_i$ are the coefficients of $p_N \\left({x}\\right)$."}
+{"_id": "15435", "title": "Subalgebra of Algebraic Field Extension is Field", "text": "Let $E / F$ be an algebraic field extension. Let $A \\subseteq E$ be a unital subalgebra over $F$. Then $A$ is a field."}
+{"_id": "15443", "title": "Modulus of Gamma Function of One Half plus Imaginary Number", "text": "Let $t \\in \\R$ be a real number. Then: :$\\cmod {\\map \\Gamma {\\dfrac 1 2 + i t} } = \\sqrt {\\pi \\map \\sech {\\pi t} }$ where: :$\\Gamma$ is the Gamma function :$\\sech$ is the hyperbolic secant function."}
+{"_id": "7254", "title": "Factor Principles/Conjunction on Right/Formulation 1/Proof 1", "text": ": $p \\implies q \\vdash \\left({p \\land r}\\right) \\implies \\left ({q \\land r}\\right)$"}
+{"_id": "7268", "title": "Equivalence of Definitions of Reflexive Closure", "text": "{{TFAE|def = Reflexive Closure}} Let $\\RR$ be a relation on a set $S$."}
+{"_id": "15463", "title": "Definite Integral of Constant Multiple of Real Function", "text": "Let $f$ be a real function which is integrable on the closed interval $\\closedint a b$. {{mistake|$f$ is only integrable here, but theorems used requiring that $f$ is continuous are used in both proofs}} Let $c \\in \\R$ be a real number. Then: :$\\displaystyle \\int_a^b c \\map f x \\rd x = c \\int_a^b \\map f x \\rd x$"}
+{"_id": "15467", "title": "Mean Value Theorem for Integrals/Generalization", "text": "Let $f$ and $g$ be continuous real functions on the closed interval $\\closedint a b$ such that: :$\\forall x \\in \\closedint a b: \\map g x \\ge 0$ Then there exists a real number $k \\in \\closedint a b$ such that: :$\\displaystyle \\int_a^b \\map f x \\map g x \\rd x = \\map f k \\int_a^b \\map g x \\rd x$"}
+{"_id": "7282", "title": "Barycenter Exists and is Well Defined", "text": "Let $\\mathcal E$ be an affine space over a field $k$. Let $p_1, \\ldots, p_n \\in \\mathcal E$ be points. Let $\\lambda_1, \\ldots, \\lambda_n \\in k$ such that $\\displaystyle \\sum_{i \\mathop = 1}^n \\lambda_i = 1$. Then the barycentre of $p_1, \\ldots, p_n$ with weights $\\lambda_1, \\ldots, \\lambda_n$ exists and is unique."}
+{"_id": "15478", "title": "Definite Integral to Infinity of Power of x over Power of x plus Power of a", "text": ":$\\displaystyle \\int_0^\\infty \\dfrac {x^m \\rd x} {x^n + a^n} = \\frac {\\pi a^{m + 1 - n} } {n \\map \\sin {\\paren {m + 1} \\frac \\pi n} }$ for $0 < m + 1 < n$."}
+{"_id": "15481", "title": "Definite Integral from 0 to a of Reciprocal of Root of a Squared minus x Squared", "text": ":$\\displaystyle \\int_0^a \\dfrac {\\d x} {\\sqrt {a^2 - x^2} } = \\frac \\pi 2$ for $a > 0$."}
+{"_id": "15491", "title": "Definite Integral from 0 to Pi of Sine of m x by Sine of n x", "text": "Let $m, n \\in \\Z$ be integers. Then: :$\\displaystyle \\int_0^\\pi \\sin m x \\sin n x \\rd x = \\begin{cases} 0 & : m \\ne n \\\\ \\dfrac \\pi 2 & : m = n \\end{cases}$ That is: :$\\displaystyle \\int_0^\\pi \\sin m x \\sin n x \\rd x = \\dfrac \\pi 2 \\delta_{m n}$ where $\\delta_{m n}$ is the Kronecker delta."}
+{"_id": "7306", "title": "Equivalence of Definitions of Strict Ordering", "text": "Let $S$ be a set. Let $\\RR$ be a relation on $S$. {{TFAE|def = Strict Ordering}}"}
+{"_id": "7309", "title": "Subband of Induced Operation is Set of Subbands", "text": "Let $\\left({S, \\circ}\\right)$ be a band. Let $\\left({\\mathcal P \\left({S}\\right), \\circ_\\mathcal P}\\right)$ be the algebraic structure consisting of: : the power set $\\mathcal P \\left({S}\\right)$ of $S$ and : the operation $\\circ_\\mathcal P$ induced on $\\mathcal P \\left({S}\\right)$ by $\\circ$. Let $T \\subseteq \\mathcal P \\left({S}\\right)$. Let $\\left({T, \\circ_\\mathcal P}\\right)$ be a subband of $\\left({\\mathcal P \\left({S}\\right), \\circ_\\mathcal P}\\right)$. Then every element of $T$ is a subband of $\\left({S, \\circ}\\right)$."}
+{"_id": "7321", "title": "Equivalence of Definitions of Closed Element", "text": "Let $\\struct {S, \\preceq}$ be an ordered set. Let $\\cl$ be a closure operator on $S$. Let $x \\in S$. {{TFAE|def = Closed Element}}"}
+{"_id": "15520", "title": "Sum of Reciprocals of Cubes of Odd Integers Alternating in Sign", "text": "{{begin-eqn}} {{eqn | l = \\sum_{n \\mathop = 0}^\\infty \\dfrac {\\paren {-1}^n} {\\paren {2 n + 1}^3} | r = \\frac 1 {1^3} - \\frac 1 {3^3} + \\frac 1 {5^3} - \\frac 1 {7^3} + \\cdots | c = }} {{eqn | r = \\frac {\\pi^3} {32} | c = }} {{end-eqn}}"}
+{"_id": "7343", "title": "Closed Element of Composite Closure Operator", "text": "Let $\\left({S, \\preceq}\\right)$ be an ordered set. Let $f, g: S \\to S$ be closure operators. Let $h = f \\circ g$, where $\\circ$ represents composition. Suppose that $h$ is also a closure operator. Then an element $x \\in S$ is closed with respect to $h$ iff it is closed with respect to $f$ and with respect to $g$."}
+{"_id": "15553", "title": "Power Series Expansion of Reciprocal of Square Root of 1 + x", "text": "Let $x \\in \\R$ such that $-1 < x \\le 1$. Then: {{begin-eqn}} {{eqn | l = \\dfrac 1 {\\sqrt {1 + x} } | r = \\sum_{k \\mathop = 0}^\\infty \\left({-1}\\right)^k \\frac {\\left({2 k}\\right)!} {\\left({2^k k!}\\right)^2} x^k | c = }} {{eqn | r = 1 - \\frac 1 2 x + \\frac {1 \\times 3} {2 \\times 4} x^2 - \\frac {1 \\times 3 \\times 5} {2 \\times 4 \\times 6} x^3 + \\cdots | c = }} {{end-eqn}}"}
+{"_id": "7362", "title": "Inverse Image under Embedding of Image under Relation of Image of Point", "text": "Let $S$ and $T$ be sets. Let $\\mathcal R_S$ and $\\mathcal R_t$ be relations on $S$ and $T$, respectively. Let $\\phi: S \\to T$ be a mapping with the property that: : $\\forall p, q \\in S: \\left({ p \\mathrel{\\mathcal R_S} q \\iff \\phi(p) \\mathrel{\\mathcal R_T} \\phi(q) }\\right)$ Then for each $p \\in S$: : $\\mathcal R_S (p) = \\phi^{-1}\\left({\\mathcal R_T \\left({ \\phi(p) }\\right) }\\right)$"}
+{"_id": "15556", "title": "Power Series Expansion of Cube Root of 1 + x", "text": "Let $x \\in \\R$ such that $-1 < x \\le 1$. Then: :$\\dfrac 1 {\\sqrt [3] {1 + x} } = 1 + \\dfrac 1 3 x - \\dfrac 2 {3 \\times 6} x^2 + \\dfrac {2 \\times 5} {3 \\times 6 \\times 9} x^3 - \\cdots$"}
+{"_id": "15565", "title": "Power Series Expansion for Real Arcsecant Function", "text": "The arcsecant function has a Taylor Series expansion: {{begin-eqn}} {{eqn | l = \\operatorname {arcsec} x | r = \\frac \\pi 2 - \\sum_{n \\mathop = 0}^\\infty \\frac {\\left({2 n}\\right)!} {2^{2 n} \\left({n!}\\right)^2 \\left({2 n + 1}\\right) x^{2 n + 1} } | c = }} {{eqn | r = \\frac \\pi 2 - \\left({\\frac 1 x + \\frac 1 2 \\frac 1 {3 x^3} + \\frac {1 \\times 3} {2 \\times 4} \\frac 1 {5 x^5} + \\frac {1 \\times 3 \\times 5} {2 \\times 4 \\times 6} \\frac 1 {7 x^7} + \\cdots}\\right) | c = }} {{end-eqn}} which converges for $\\left\\lvert{x}\\right\\rvert \\ge 1$."}
+{"_id": "7377", "title": "Fuzzy Intersection is Commutative", "text": "Fuzzy intersection is commutative."}
+{"_id": "7382", "title": "Integral Domain is Reduced Ring", "text": "Let $\\left({D, +, \\circ}\\right)$ be an integral domain. Then $D$ is reduced."}
+{"_id": "7392", "title": "Rule of Distribution/Conjunction Distributes over Disjunction/Left Distributive/Formulation 2/Proof 2", "text": ":$\\vdash \\left({p \\land \\left({q \\lor r}\\right)}\\right) \\iff \\left({\\left({p \\land q}\\right) \\lor \\left({p \\land r}\\right)}\\right)$"}
+{"_id": "7403", "title": "Ring of Polynomial Functions is Commutative Ring with Unity", "text": "Let $\\struct {R, +, \\circ}$ be a commutative ring with unity. Let $R \\sqbrk {\\set {X_j: j \\in J} }$ be the ring of polynomial forms over $R$ in the indeterminates $\\set {X_j: j \\in J}$. Let $R^J$ be the free module on $J$. Let $A$ be the set of all polynomial functions $R^J \\to R$. Let $\\struct {A, +, \\circ}$ be the ring of polynomial functions on $R$. Then $\\struct {A, +, \\circ}$ is a commutative ring with unity."}
+{"_id": "15608", "title": "Moment Generating Function of Continuous Uniform Distribution", "text": "Let $X \\sim \\operatorname U \\left[{a \\,.\\,.\\, b}\\right]$ for some $a, b \\in \\R$, $a \\ne b$, where $\\operatorname U$ is the continuous uniform distribution. Then the moment generating function of $X$, $M_X$ is given by: :$\\displaystyle M_X \\left({t}\\right) = \\begin{cases} \\dfrac{ e^{t b} - e^{t a} } {t \\left({b - a}\\right)} & t \\ne 0 \\\\ 1 & t = 0 \\end{cases}$"}
+{"_id": "15615", "title": "Sum of Reciprocals of Odd Powers of Odd Integers Alternating in Sign/Corollary", "text": "Let $n \\in \\Z_{> 0}$ be a (strictly) positive integer. {{begin-eqn}} {{eqn | l = E_{2 n} | r = \\paren {-1}^{n + 1} \\dfrac {2^{2 n + 2} \\paren {2 n}!} {\\pi^{2 n + 1} } \\sum_{j \\mathop = 0}^\\infty \\frac {\\paren {-1}^j} {\\paren {2 j + 1}^{2 n + 1} } | c = }} {{eqn | r = \\paren {-1}^{n + 1} \\dfrac {2^{2 n + 2} \\paren {2 n}!} {\\pi^{2 n + 1} } \\paren {\\frac 1 {1^{2 n + 1} } - \\frac 1 {3^{2 n + 1} } + \\frac 1 {5^{2 n + 1} } - \\frac 1 {7^{2 n + 1} } + \\cdots} | c = }} {{end-eqn}}"}
+{"_id": "7425", "title": "Natural Number has Same Prime Factors as Integer Power", "text": "Let $x$ be a natural number such that $x > 1$. Let $n \\ge 1$ be a (strictly) positive integer. The $n$th power of $x$ has the same prime factors as $x$."}
+{"_id": "7460", "title": "Equivalence of Definitions of Well-Ordering", "text": "{{TFAE|def = Well-Ordering}} Let $\\left({S, \\preceq}\\right)$ be a ordered set."}
+{"_id": "15656", "title": "Contour Integral of Gamma Function", "text": "Let $\\Gamma$ denote the gamma function. Let $y$ be a positive number. Then for any positive number $c$: :$\\displaystyle \\frac 1 {2 \\pi i} \\int_{c - i \\infty}^{c + i \\infty} \\Gamma \\left({t}\\right) y^{-t} \\rd t = e^{-y}$"}
+{"_id": "15660", "title": "Sign of Composition of Permutations", "text": "Let $n \\in \\N$ be a natural number. Let $N_n$ denote the set of natural numbers $\\set {1, 2, \\ldots, n}$. Let $S_n$ denote the set of permutations on $N_n$. Let $\\map \\sgn \\pi$ denote the sign of $\\pi$ of a permutation $\\pi$ of $N_n$. Let $\\pi_1, \\pi_2 \\in S_n$. Then: :$\\map \\sgn {\\pi_1} \\, \\map \\sgn {\\pi_2} = \\map \\sgn {\\pi_1 \\circ \\pi_2}$ where $\\pi_1 \\circ \\pi_2$ denotes the composite of $\\pi_1$ and $\\pi_2$."}
+{"_id": "7472", "title": "Relational Closure from Transitive Closure", "text": "Let $A$ be a set or class. Let $\\RR$ be a relation on $A$. Let $\\RR^+$ be the transitive closure of $\\RR$. Let $B \\subseteq A$. Let $B' = B \\cup \\map {\\paren {\\RR^+}^{-1} } B$. Let $C$ be an $\\RR$-transitive subset or subclass of $A$ such that $B \\subseteq C$. Then: :$B'$ is $\\RR$-transitive :$B' \\subseteq C$ :If $B$ is a set and $\\RR$ is set-like then $B'$ is a set. That is, $B'$ is the relational closure of $B$ under $\\RR$."}
+{"_id": "15680", "title": "Product of r Choose m with m Choose k/Complex Numbers", "text": "For all $z, w \\in \\C$ such that it is not the case that $z$ is a negative integer and $t, w$ integers: :$\\dbinom z t \\dbinom t w = \\dbinom z w \\dbinom {z - w} {t - w}$ where $\\dbinom z w$ is a binomial coefficient."}
+{"_id": "15691", "title": "Approximation to 2n Choose n", "text": ":$\\displaystyle \\lim_{n \\mathop \\to \\infty} \\dbinom {2 n} n = \\dfrac {4^n} {\\sqrt {n \\pi} }$"}
+{"_id": "15704", "title": "Upper Bound for Harmonic Number", "text": ":$H_{2^m} \\le 1 + m$ where $H_{2^m}$ denotes the $2^m$th harmonic number."}
+{"_id": "15708", "title": "Smallest Strictly Positive Rational Number does not Exist", "text": "There exists no smallest element of the set of strictly positive rational numbers."}
+{"_id": "7541", "title": "Generating Function for Powers of Two", "text": "Let $\\sequence {a_n}$ be the sequence defined as: :$\\forall n \\in \\N: a_n = 2^n$ That is: :$\\sequence {a_n} = 1, 2, 4, 8, \\ldots$ Then the generating function for $\\sequence {a_n}$ is given as: :$\\displaystyle \\map G z = \\frac 1 {1 - 2 z}$ for $\\size z < \\dfrac 1 2$"}
+{"_id": "15738", "title": "Exchange of Order of Summation with Dependency on Both Indices/Example", "text": "Let $n \\in \\Z$ be an integer. Let $R: \\Z \\to \\set {\\mathrm T, \\mathrm F}$ be the propositional function on the set of integers defining: :$\\forall i \\in \\Z: \\map R 1 := \\paren {n = k i \\text { for some } k \\in \\Z}$ Let $S: \\Z \\times \\Z \\to \\set {\\mathrm T, \\mathrm F}$ be a propositional function on the Cartesian product of the set of integers with itself defining: :$\\forall i, j \\in \\Z: \\map S {i, j} := \\paren {1 \\le j < i}$ Consider the summation: :$\\displaystyle \\sum_{\\map R i} \\sum_{\\map S {i, j} } a_{i j}$ Then: :$\\displaystyle \\sum_{\\map R i} \\sum_{\\map S {i, j} } a_{i j} = \\sum_{\\map {S'} j} \\sum_{\\map {R'} {i, j} } a_{i j}$ where: :$\\map {S'} j$ denotes the propositional function: ::$\\forall j \\in \\Z: \\map {S'} j := \\paren {1 < j \\le n}$ :$\\map {R'} {i, j}$ denotes the propositional function: ::$\\forall i, j \\in \\Z: \\map {R'} {i, j} := \\paren {n = k i \\text { for some } k \\in \\Z \\text { and } i > j}$"}
+{"_id": "7552", "title": "Probability Generating Function defines Probability Distribution", "text": "Let $X$ and $Y$ be discrete random variables whose codomain, $\\Omega_X$, is a subset of the natural numbers $\\N$. Let the probability generating functions of $X$ and $Y$ be $\\map {\\Pi_X} s$ and $\\map {\\Pi_Y} s$ respectively. Then: :$\\forall s \\in \\closedint {-1} 1: \\map {\\Pi_X} s = \\map {\\Pi_Y} s$ {{iff}}: :$\\forall k \\in \\N: \\Pr \\left({X = k}\\right) = \\map \\Pr {Y = k}$ That is, discrete random variables which are integer-valued have the same PGFs {{iff}} they have the same PMF."}
+{"_id": "7560", "title": "Expectation of Square of Discrete Random Variable", "text": "Let $X$ be a discrete random variable whose probability generating function is $\\Pi_X \\paren s$. Then the square of the expectation of $X$ is given by the expression: :$\\expect {X^2} = \\Pi''_X \\paren 1 + \\Pi'_X \\paren 1$ where $\\Pi''_X \\paren 1$ and $\\Pi'_X \\paren 1$ denote the second and first derivative respectively of the PGF $\\Pi_X \\paren s$ evaluated at $1$."}
+{"_id": "15763", "title": "Modulo Operation/Examples/100 mod 7", "text": ":$100 \\bmod 7 = 2$"}
+{"_id": "7572", "title": "Expectation and Variance of Poisson Distribution equal its Parameter", "text": "Let $X$ be a discrete random variable with the Poisson distribution with parameter $\\lambda$. Then the expectation of $X$ equals the variance of $X$, that is, $\\lambda$ itself."}
+{"_id": "15773", "title": "Modulo Operation as Integer Difference by Quotient", "text": "Let $x, y, z \\in \\R$ be real numbers. Let $y > 0$. Let $0 \\le z < y$. Let: :$\\dfrac {x - z} y = k$ for some integer $k$. Then: :$z = x \\bmod y$ where $\\bmod$ denotes the modulo operation."}
+{"_id": "15777", "title": "Dirichlet Series Convergence Lemma/General", "text": "Let $\\displaystyle f \\left({s}\\right) = \\sum_{n \\mathop = 1}^\\infty a_n e^{-\\lambda_n \\left({s}\\right)}$ be a general Dirichlet series. Let $f \\left({s}\\right)$ converge at $s_0 = \\sigma_0 + i t_0$. Then $f \\left({s}\\right)$ converge for all $s = \\sigma + i t$ where $\\sigma > \\sigma_0$."}
+{"_id": "7589", "title": "Second Derivative of PGF of Negative Binomial Distribution/First Form", "text": "Let $X$ be a discrete random variable with the negative binomial distribution (first form) with parameters $n$ and $p$. Then the second derivative of the PGF of $X$ {{WRT|Differentiation}} $s$ is: :$\\dfrac {\\mathrm d^2} {\\mathrm d s^2} \\Pi_X \\left({s}\\right) = \\dfrac {n \\left({n + 1}\\right) p^2} {q^2} \\left({\\dfrac q {1 - p s} }\\right)^{n + 2}$ where $q = 1 - p$."}
+{"_id": "15790", "title": "Stirling's Formula/Refinement", "text": "A refinement of Stirling's Formula is: :$n! \\sim \\sqrt {2 \\pi n} \\paren {\\dfrac n e}^n \\paren {1 + \\dfrac 1 {12 n} }$"}
+{"_id": "15794", "title": "Legendre's Theorem/Corollary", "text": "Let $n \\in \\Z_{>0}$ be a (strictly) positive integer. Let $B$ be the binary representation of $n$. Let $r$ be the number of unit digits in $B$. Let $n!$ denote the factorial of $n$. Then $2^{n - r}$ is a divisor of $n!$, but $2^{n - r + 1}$ is not."}
+{"_id": "15821", "title": "Falling Factorial of Complex Number as Summation of Unsigned Stirling Numbers of First Kind", "text": "Let $z \\in \\C$ be a complex number whose real part is positive. Then: :$z^{\\underline r} = \\displaystyle \\sum_{k \\mathop = 0}^m \\left[{r \\atop r - k}\\right] \\left({-1}\\right)^k z^{r - k} + \\mathcal O \\left({z^{r - m - 1} }\\right)$ where: :$\\displaystyle \\left[{r \\atop r - k}\\right]$ denotes the extension of the unsigned Stirling numbers of the first kind to the complex plane :$z^{\\underline r}$ denotes $z$ to the $r$ falling :$\\mathcal O \\left({z^{r - m - 1} }\\right)$ denotes big-$\\mathcal O$ notation."}
+{"_id": "7631", "title": "Galois Field of Order q Exists iff q is Prime Power", "text": "Let $q \\ge 0$ be a positive integer. Then there exists a Galois field of order $q$ {{iff}} $q$ is a prime power."}
+{"_id": "15825", "title": "Product of r Choose k with r Minus Half Choose k/Formulation 2", "text": "Let $k \\in \\Z$, $r \\in \\R$. :$\\dbinom r k \\dbinom {r - \\frac 1 2} k = \\dfrac {\\dbinom {2 r} {2 k} \\dbinom {2 k} k} {4^k}$ where $\\dbinom r k$ denotes a binomial coefficient."}
+{"_id": "15835", "title": "Existence of Minimal Uncountable Well-Ordered Set", "text": "There exists a minimal uncountable well-ordered set. That is, there exists an uncountable well-ordered set $\\Omega$ with the property that every initial segment in $\\Omega$ is countable."}
+{"_id": "15848", "title": "Inverse of Stirling's Triangle expressed as Matrix", "text": "Consider Stirling's triangle of the first kind (signed) expressed as a (square) matrix $\\mathbf A$, with the top left element holding $s \\left({0, 0}\\right)$. :$\\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & \\cdots \\\\ 0 & 1 & 0 & 0 & 0 & 0 & \\cdots \\\\ 0 & -1 & 1 & 0 & 0 & 0 & \\cdots \\\\ 0 & 2 & -3 & 1 & 0 & 0 & \\cdots \\\\ 0 & -6 & 11 & -6 & 1 & 0 & \\cdots \\\\ 0 & 24 & -50 & 35 & -10 & 1 & \\cdots \\\\ \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\ddots \\\\ \\end{pmatrix}$ Thenconsider Stirling's triangle of the second kind expressed as a (square) matrix $\\mathbf B$, with the top left element holding $\\displaystyle \\left \\{ {0 \\atop 0}\\right\\}$. :$\\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & \\cdots \\\\ 0 & 1 & 0 & 0 & 0 & 0 & \\cdots \\\\ 0 & 1 & 1 & 0 & 0 & 0 & \\cdots \\\\ 0 & 1 & 3 & 1 & 0 & 0 & \\cdots \\\\ 0 & 1 & 7 & 6 & 1 & 0 & \\cdots \\\\ 0 & 1 & 15 & 25 & 10 & 1 & \\cdots \\\\ \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\ddots \\\\ \\end{pmatrix}$ Then: : $\\mathbf A = \\mathbf B^{-1}$ that is: : $\\mathbf B = \\mathbf A^{-1}$"}
+{"_id": "15861", "title": "Reflection Rule for Gaussian Binomial Coefficients", "text": "Let $q \\in \\R_{\\ne 1}, n \\in \\Z_{>0}, k \\in \\Z$. Then: :$\\dbinom n k_q = q^{k \\paren {n - k} } \\dbinom n k_{q^{-1} }$ where $\\dbinom n k_q$ is a Gaussian binomial coefficient."}
+{"_id": "7670", "title": "Rooted Tree Corresponds to Arborescence", "text": "Let $T = \\struct {V, E}$ be a rooted tree with root $r$. Then there is a unique orientation of $T$ which is an $r$-arborescence."}
+{"_id": "7673", "title": "Equivalence of Definitions of Arborescence", "text": "Let $G = \\struct {V, A}$ be a directed graph. Let $r \\in V$. {{TFAE|def = Arborescence}}"}
+{"_id": "15883", "title": "Inductive Construction of Sigma-Algebra Generated by Collection of Subsets", "text": "Let $\\EE$ be a set of sets which are subsets of some set $X$. Let $\\map \\sigma \\EE$ be the $\\sigma$-algebra generated by $\\EE$. Then $\\map \\sigma \\EE$ can be constructed inductively. The construction is as follows: Let $\\Omega$ denote the minimal uncountable well-ordered set. Let $\\alpha$ be an arbitrary initial segment in $\\Omega$. Considering separately the cases whether or not $\\alpha$ has an immediate predecessor $\\beta$, we define: :$\\EE_1 = \\EE$ :$\\EE_\\alpha = \\begin{cases} \\set {\\SS \\in \\powerset {\\EE_\\beta}: \\SS \\text { is countable or } \\SS^\\complement \\text{ is countable} } & \\alpha \\text{ has an immediate predecessor } \\beta \\\\ \\ds \\bigcup_{\\beta \\mathop \\prec \\alpha} \\EE_\\beta & \\text { otherwise} \\end{cases}$ :$\\EE_\\Omega = \\ds \\bigcup_{\\alpha \\mathop \\in \\Omega} \\EE_\\alpha$ Then $\\map \\sigma \\EE = \\EE_\\Omega$."}
+{"_id": "7694", "title": "Equivalence of Definitions of Set Partition", "text": "Let $S$ be a set {{TFAE|def = Set Partition}}"}
+{"_id": "15899", "title": "Summation to n of Reciprocal of k by k-1 of Harmonic Number", "text": ":$\\displaystyle \\sum_{1 \\mathop < k \\mathop \\le n} \\dfrac 1 {k \\paren {k - 1} } H_k = 2 - \\dfrac {H_n} n - \\dfrac 1 n$ where $H_n$ denotes the $n$th harmonic number."}
+{"_id": "15900", "title": "Riemann Zeta Function of 1000", "text": "To at least $100$ decimal places: :$\\zeta \\left({1000}\\right) \\approx 1$ where $\\zeta$ denotes the Riemann zeta function."}
+{"_id": "7715", "title": "Logarithmic Integral as Non-Convergent Series", "text": "The logarithmic integral can be defined in terms of a non-convergent series. That is: :$\\displaystyle \\operatorname {li} \\left({z}\\right) = \\sum_{i \\mathop = 0}^{+\\infty} \\frac {i! \\, z} {\\ln^{i + 1} z} = \\frac z {\\ln z} \\left({\\sum_{i \\mathop = 0}^{+\\infty} \\frac {i!} {\\ln^i z} }\\right)$"}
+{"_id": "7726", "title": "Bridge divides Graph into Two Components", "text": "Let $G$ be a connected graph. Let $e$ be a bridge of $G$. Then the edge deletion $G - e$ contains exactly $2$ components."}
+{"_id": "7727", "title": "Connected Graph with only Even Vertices has no Bridge", "text": "Let $G$ be a connected graph whose vertices are all even. Then no edge of $G$ is a bridge."}
+{"_id": "7725", "title": "Cut-Vertex divides Graph into Two or More Components", "text": "Let $G$ be a graph. Let $v$ be a cut-vertex of $G$. Then the vertex deletion $G - v$ contains $2$ or more components."}
+{"_id": "15930", "title": "Median to Hypotenuse of Right Triangle equals Half Hypotenuse", "text": "Let $\\triangle ABC$ be a right triangle such that $BC$ is the hypotenuse. Let $AD$ be the median to $BC$. Then $AD$ is half of $BC$."}
+{"_id": "15932", "title": "Summation to n of Square of kth Harmonic Number", "text": ":$\\displaystyle \\sum_{k \\mathop = 1}^n {H_k}^2 = \\paren {n + 1} {H_n}^2 - \\paren {2 n + 1} H_n + 2 n$ where $H_k$ denotes the $k$th harmonic number."}
+{"_id": "7741", "title": "1+1 = 2", "text": "Define $0$ as the only element in the set $P \\setminus s \\left({P}\\right)$, where: :$P$ is the Peano Structure :$s \\left({P}\\right)$ is the image of the mapping $s$ defined in Peano structure : $\\setminus$ denotes the set difference. The theorem to be proven is: :$1 + 1 = 2$ where: :$1 := s \\left({0}\\right)$ :$2 := s \\left({1}\\right) = s \\left({s \\left({0}\\right)}\\right)$ :$+$ denotes addition :$=$ denotes equality :$s \\left({n}\\right)$ denotes the successor function as defined by Peano"}
+{"_id": "15938", "title": "Highest Power of 2 Dividing Numerator of Sum of Odd Reciprocals", "text": "Let: : $S = \\dfrac p q = \\displaystyle \\sum_{k \\mathop = 1}^n \\dfrac 1 {2 k - 1}$ where $\\dfrac p q$ is the canonical form of $S$. Let $n = 2^k m$ where $m$ is odd. Then the largest power of $2$ that divides $p$ is $2^{2 k}$."}
+{"_id": "7749", "title": "Two Paths between Vertices in Cycle Graph", "text": "Let $G$ be a simple graph. Let $u, v$ be vertices in $G$ such that $u \\ne v$. Then: :for any two vertices $u, v$ in $G$ such that $u \\ne v$ there exists exactly two paths between $u$ and $v$ {{iff}}: :$G$ is a cycle graph."}
+{"_id": "7754", "title": "Value of Radian in Degrees", "text": "The value of a radian in degrees is given by: :$1 \\radians = \\dfrac {180 \\degrees} {\\pi} \\approx 57.29577 \\ 95130 \\ 8232 \\ldots \\degrees$ {{OEIS|A072097}}"}
+{"_id": "15954", "title": "Cassini's Identity/Negative Indices", "text": "Let $n \\in \\Z_{<0}$ be a negative integer. Let $F_n$ be the $n$th Fibonacci number (as extended to negative integers). Then Cassini's Identity: :$F_{n + 1} F_{n - 1} - F_n^2 = \\left({-1}\\right)^n$ continues to hold."}
+{"_id": "15977", "title": "Sum over k of n Choose k by Fibonacci Number with index m+k", "text": ":$\\displaystyle \\sum_{k \\mathop \\ge 0} \\binom n k F_{m + k} = F_{m + 2 n}$ where: : $\\dbinom n k$ denotes a binomial coefficient : $F_n$ denotes the $n$th Fibonacci number."}
+{"_id": "7786", "title": "Area of Regular Polygon", "text": "Let $P$ be a regular $n$-sided polygon whose side length is $b$. Then the area of $P$ is given by: :$\\Box P = \\dfrac 1 4 n b^2 \\cot \\dfrac \\pi n$ where $\\cot$ denotes cotangent."}
+{"_id": "15984", "title": "Fibonacci Number whose Index is Plus or Minus Prime p is Multiple of p", "text": "Let $p$ be a prime number distinct from $5$. Let $F_n$ denote the $n$th Fibonacci number. Then either $F_{p - 1}$ or $F_{p + 1}$ (but not both) is a multiple of $p$."}
+{"_id": "7796", "title": "Perimeter of Regular Polygon by Circumradius", "text": "Let $P$ be a regular $n$-gon. Let $C$ be a circumcircle of $P$. Let the radius of $C$ be $r$. Then the perimeter $\\mathcal P$ of $P$ is given by: :$\\mathcal P = 2 n r \\sin \\dfrac \\pi n$"}
+{"_id": "7797", "title": "Area of Regular Polygon by Inradius", "text": "Let $P$ be a regular $n$-gon. Let $C$ be an incircle of $P$. Let the radius of $C$ be $r$. Then the area $\\AA$ of $P$ is given by: :$\\AA = n r^2 \\tan \\dfrac \\pi n$"}
+{"_id": "16018", "title": "Zeckendorf Representation of Integer shifted Right", "text": "Let $f \\left({x}\\right)$ be the real function defined as: :$\\forall x \\in \\R: f \\left({x}\\right) = \\left\\lfloor{x + \\phi^{-1} }\\right\\rfloor$ where: :$\\left\\lfloor{\\, \\cdot \\,}\\right\\rfloor$ denotes the floor function :$\\phi$ denotes the golden mean. Let $n \\in \\Z_{\\ge 0}$ be a positive integer. Let $n$ be expressed in Zeckendorf representation: :$n = F_{k_1} + F_{k_2} + \\cdots + F_{k_r}$ with the appropriate restrictions on $k_1, k_2, \\ldots, k_r$. Then: :$F_{k_1 - 1} + F_{k_2 - 1} + \\cdots + F_{k_r - 1} = f \\left({\\phi^{-1} n}\\right)$"}
+{"_id": "16021", "title": "Linear Combination of Generating Functions", "text": "Let $G \\left({z}\\right)$ be the generating function for the sequence $\\left\\langle{a_n}\\right\\rangle$. and $H \\left({z}\\right)$ be the generating function for the sequence $\\left\\langle{b_n}\\right\\rangle$. Then $\\alpha G \\left({z}\\right) + \\beta H \\left({z}\\right)$ is the generating function for the sequence $\\left\\langle{\\alpha a_n + \\beta b_n}\\right\\rangle$."}
+{"_id": "7832", "title": "Semigroup is Group Iff Latin Square Property Holds", "text": "Let $\\left({S, \\circ}\\right)$ be a semigroup. Then $\\left({S, \\circ}\\right)$ is a group {{iff}} for all $a, b \\in S$ the Latin square property holds in $S$: :$a \\circ x = b$ :$y \\circ a = b$ for $x$ and $y$ each unique in $S$."}
+{"_id": "16032", "title": "Generating Function for Even Terms of Sequence", "text": "Let $G \\left({z}\\right)$ be the generating function for the sequence $\\left\\langle{a_n}\\right\\rangle$. Consider the subsequence $\\left\\langle{b_n}\\right\\rangle := \\left({a_0, a_2, a_4, \\ldots}\\right)$ Then the generating function for $\\left\\langle{b_n}\\right\\rangle$ is: :$\\dfrac 1 2 \\left({G \\left({z}\\right) + G \\left({-z}\\right)}\\right)$"}
+{"_id": "16047", "title": "Ultraproduct is Well-Defined", "text": "'''Definition:Ultraproduct is well-defined.''' More specificly, following the definitions on Definition:Ultraproduct, we are going to prove that: :(1) $f^\\mathcal M$ is well-defined :(2) $R^\\mathcal M$ is well-defined"}
+{"_id": "16115", "title": "Equation of Circular Arc in Complex Plane", "text": "Let $a, b \\in \\C$ be complex constants representing the points $A$ and $B$ respectively in the complex plane. Let $z \\in \\C$ be a complex variable representing the point $Z$ in the complex plane. Let $\\lambda \\in \\R$ be a real constant such that $-\\pi < \\lambda < \\pi$. Then the equation: :$\\arg \\dfrac {z - b} {z - a} = \\lambda$ represents the arc of a circle with $AB$ as a chord subtending an angle $\\lambda$ at $Z$ on the circumference."}
+{"_id": "16128", "title": "Exponential of Complex Number plus 2 pi i", "text": ":$\\map \\exp {z + 2 \\pi i} = \\map \\exp z$"}
+{"_id": "16143", "title": "Sextuple Angle Formula for Sine", "text": ":$\\dfrac {\\map \\sin {6 \\theta} } {\\sin \\theta} = 32 \\cos^5 \\theta - 32 \\cos^3 \\theta + 6 \\cos \\theta$"}
+{"_id": "16151", "title": "Real Complex Roots of Unity for Odd Index", "text": "Let $n \\in \\Z_{>0}$ be a (strictly) positive integer such that $n$ is odd. Let $U_n = \\set {z \\in \\C: z^n = 1}$ be the set of complex $n$th roots of unity. The only $x \\in U_n$ such that $x \\in \\R$ is: :$x = 1$ That is, $1$ is the only complex $n$th root of unity which is a real number."}
+{"_id": "16163", "title": "Unit Vectors in Complex Plane which are Vertices of Equilateral Triangle", "text": "Let $\\epsilon_1, \\epsilon_2, \\epsilon_3$ be complex numbers embedded in the complex plane such that: :$\\epsilon_1, \\epsilon_2, \\epsilon_3$ all have modulus $1$ :$\\epsilon_1 + \\epsilon_2 + \\epsilon_3 = 0$ Then: :$\\paren {\\dfrac {\\epsilon_2} {\\epsilon_1} }^3 = \\paren {\\dfrac {\\epsilon_3} {\\epsilon_2} }^2 = \\paren {\\dfrac {\\epsilon_1} {\\epsilon_3} }^2 = 1$"}
+{"_id": "16171", "title": "Factorisation of x^(2n)-1 in Real Domain", "text": "Let $n \\in \\Z_{>0}$ be a (strictly) positive integer. Then: :$z^{2 n} - 1 = \\paren {z - 1} \\paren {z + 1} \\displaystyle \\prod_{k \\mathop = 1}^n \\paren {z^2 - 2 \\cos \\dfrac {k \\pi} n + 1}$"}
+{"_id": "16187", "title": "4 Sine Pi over 10 by Cosine Pi over 5", "text": ":$4 \\sin \\dfrac \\pi {10} \\cos \\dfrac \\pi 5 = 1$"}
+{"_id": "8007", "title": "Secant of Complement equals Cosecant", "text": ":$\\map \\sec {\\dfrac \\pi 2 - \\theta} = \\csc \\theta$ for $\\theta \\ne n \\pi$ where $\\sec$ and $\\csc$ are secant and cosecant respectively. That is, the cosecant of an angle is the secant of its complement. This relation is defined wherever $\\sin \\theta \\ne 0$."}
+{"_id": "8008", "title": "Cosecant of Complement equals Secant", "text": ":$\\map \\csc {\\dfrac \\pi 2 - \\theta} = \\sec \\theta$ for $\\theta \\ne \\paren {2 n + 1} \\dfrac \\pi 2$ where $\\csc$ and $\\sec$ are cosecant and secant respectively. That is, the secant of an angle is the cosecant of its complement. This relation is defined wherever $\\cos \\theta \\ne 0$."}
+{"_id": "8009", "title": "Secant of Supplementary Angle", "text": ":$\\map \\sec {\\pi - \\theta} = -\\sec \\theta$ where $\\sec$ denotes secant. That is, the secant of an angle is the negative of its supplement."}
+{"_id": "16217", "title": "Absolutely Convergent Series is Convergent/Complex Numbers", "text": "Let $\\displaystyle \\sum_{n \\mathop = 1}^\\infty z_n$ be an absolutely convergent series in $\\C$. Then $\\displaystyle \\sum_{n \\mathop = 1}^\\infty z_n$ is convergent."}
+{"_id": "16225", "title": "Existence of Radius of Convergence of Complex Power Series/Absolute Convergence", "text": "Let $B_R \\paren \\xi$ denote the open $R$-ball of $\\xi$. Let $z \\in B_R \\paren \\xi$. Then $S \\paren z$ converges absolutely. If $R = +\\infty$, we define $B_R \\paren \\xi = \\C$."}
+{"_id": "16255", "title": "Imaginary Part of Complex Exponential Function", "text": "Let $z = x + i y \\in \\C$ be a complex number, where $x, y \\in \\R$. Let $\\exp z$ denote the complex exponential function. Then: :$\\Im \\paren {\\exp z} = e^x \\sin y$ where: :$\\Im z$ denotes the imaginary part of a complex number $z$ :$e^x$ denotes the real exponential function of $x$ :$\\sin y$ denotes the real sine function of $y$."}
+{"_id": "16259", "title": "Modulus of Sine of Complex Number", "text": "Let $z = x + i y \\in \\C$ be a complex number, where $x, y \\in \\R$. Let $\\sin z$ denote the complex sine function. Then: :$\\cmod {\\sin z} = \\sqrt {\\sin^2 x + \\sinh^2 y}$ where: :$\\cmod z$ denotes the modulus of a complex number $z$ :$\\sin x$ denotes the real sine function :$\\sinh$ denotes the hyperbolic sine function."}
+{"_id": "16267", "title": "Bounds for Modulus of e^z on Circle x^2 + y^2 - 2x - 2y - 2 = 0", "text": "Consider the circle $C$ embedded in the complex plane defined by the equation: :$x^2 + y^2 - 2 x - 2 y - 2 = 0$ Let $z = x + i y \\in \\C$ be a point lying on $C$. Then: :$e^{-1} \\le \\cmod {e^z} \\le e^3$"}
+{"_id": "8091", "title": "Secant of Angle plus Three Right Angles", "text": ":$\\map \\sec {x + \\dfrac {3 \\pi} 2} = \\csc x$"}
+{"_id": "8092", "title": "Cosecant of Angle plus Three Right Angles", "text": ":$\\map \\csc {x + \\dfrac {3 \\pi} 2} = -\\sec x$"}
+{"_id": "8095", "title": "Secant of Three Right Angles less Angle", "text": ":$\\map \\sec {\\dfrac {3 \\pi} 2 - \\theta} = -\\csc \\theta$ where $\\sec$ and $\\csc$ are secant and cosecant respectively."}
+{"_id": "16300", "title": "Bell Number as Summation over Lower Index of Stirling Numbers of the Second Kind/Corollary", "text": ":$B_n = \\displaystyle \\sum_{k \\mathop = 1}^n {n \\brace k}$"}
+{"_id": "16324", "title": "Structure Induced by Commutative Ring Operations is Commutative Ring", "text": "Let $\\struct {R, +, \\circ}$ be a commutative ring. Let $S$ be a set. Let $\\struct {R^S, +', \\circ'}$ be the structure on $R^S$ induced by $+'$ and $\\circ'$. Then $\\struct {R^S, +', \\circ'}$ is a commutative ring."}
+{"_id": "16326", "title": "Equivalence Relation on Power Set induced by Intersection with Subset/Cardinality of Set of Equivalence Classes", "text": "Let $A$ be finite with $\\card A = n$, where $\\card {\\, \\cdot \\,}$ denotes cardinality. The cardinality of the set of $\\alpha$-equivalence classes is given by: :$\\card {\\set {\\eqclass X \\alpha: X \\in S} } = 2^n$"}
+{"_id": "8141", "title": "Cosine to Power of Even Integer", "text": "{{begin-eqn}} {{eqn | l = \\cos^{2 n} \\theta | r = \\frac 1 {2^{2 n} } \\binom {2 n} n + \\frac 1 {2^{2 n - 1} } \\paren {\\cos 2 n \\theta + \\binom {2 n} 1 \\map \\cos {2 n - 2} \\theta + \\cdots + \\binom {2 n} {n - 1} \\cos 2 \\theta} | c = }} {{eqn | r = \\frac 1 {2^{2 n} } \\binom {2 n} n + \\frac 1 {2^{2 n - 1} } \\sum_{k \\mathop = 0}^{n - 1} \\binom {2 n} k \\map \\cos {2 n - 2 k} \\theta | c = }} {{end-eqn}}"}
+{"_id": "8155", "title": "Law of Tangents", "text": "Let $\\triangle ABC$ be a triangle whose sides $a, b, c$ are such that $a$ is opposite $A$, $b$ is opposite $B$ and $c$ is opposite $C$. Then: :$\\dfrac {a + b} {a - b} = \\dfrac {\\tan \\frac 1 2 \\paren {A + B} } {\\tan \\frac 1 2 \\paren {A - B} }$"}
+{"_id": "8164", "title": "Functionally Complete Singleton Sets", "text": "The only binary logical connectives that form singleton sets which are functionally complete are NAND and NOR."}