Datasets:
Tasks:
Text2Text Generation
Modalities:
Text
Formats:
parquet
Size:
10M - 100M
Tags:
biology
License:
from transformers import T5Tokenizer | |
import polars as pl | |
from tqdm import tqdm | |
from functools import partial | |
def detokenize(seq: str, tokenizer: T5Tokenizer): | |
output = tokenizer.decode(seq) | |
output = output.replace(" ", "") | |
output = output.replace("</s>", "") | |
assert len(output) == len(seq[:-1]) | |
return output | |
def main(): | |
tokenizer = T5Tokenizer.from_pretrained('Rostlab/ProstT5', do_lower_case=False) # noqa | |
splits = {'test': 'data/test-00000-of-00001-b109fa020c25190c.parquet', 'valid': 'data/valid-00000-of-00001-6442282fee0bc004.parquet', 'train': 'data/train-*-of-*.parquet'} # noqa | |
detokenize_func = partial(detokenize, tokenizer=tokenizer) | |
for k, v in tqdm(splits.items()): | |
df = pl.scan_parquet('hf://datasets/Rostlab/ProstT5Dataset/' + v) # noqa | |
df = df.with_columns(pl.col("input_id_x").map_elements(detokenize_func, return_dtype=pl.String).alias("3di")) # noqa | |
df = df.with_columns(pl.col("input_id_y").map_elements(detokenize_func, return_dtype=pl.String).alias("protein")) # noqa | |
df = df.drop("input_id_x").drop("input_id_y") | |
df.sink_parquet(k + ".parquet") | |
if __name__ == "__main__": | |
main() | |