|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
_DESCRIPTION = "Dataset with video and audio references for epic and ego4d tasks." |
|
_HOMEPAGE = "https://huggingface.co/datasets/gorjanradevski/dave" |
|
_LICENSE = "MIT" |
|
|
|
_MEDIA_FIELDS = [ |
|
"compressed_video_path", |
|
"event_video_path", |
|
"video_with_overlayed_audio_path", |
|
"silent_video_path", |
|
"overlayed_audio_path", |
|
] |
|
|
|
def count_files_in_directory(directory): |
|
return sum(len(files) for _, _, files in os.walk(directory)) |
|
|
|
class DaveDataset(datasets.GeneratorBasedBuilder): |
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
"compressed_video_path": datasets.Value("string"), |
|
"overlayed_event_index": datasets.Value("int32"), |
|
"events": [ |
|
{ |
|
"start": datasets.Value("string"), |
|
"end": datasets.Value("string"), |
|
"duration": datasets.Value("float64"), |
|
"narration": datasets.Value("string"), |
|
"action": datasets.Value("string"), |
|
"raw_narration": datasets.Value("string"), |
|
} |
|
], |
|
"event_video_path": datasets.Value("string"), |
|
"audio_class": datasets.Value("string"), |
|
"video_with_overlayed_audio_path": datasets.Value("string"), |
|
"silent_video_path": datasets.Value("string"), |
|
"overlayed_audio_path": datasets.Value("string"), |
|
"video_id": datasets.Value("string"), |
|
"participant_id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"raw_choices_simple_audio_classification": datasets.Sequence(datasets.Value("string")), |
|
"raw_choices_overlayed_full_audio_classification": datasets.Sequence(datasets.Value("string")), |
|
"raw_choices_video_segment": datasets.Sequence(datasets.Value("string")), |
|
"correct_temporal_order": datasets.Sequence(datasets.Value("string")), |
|
"raw_choices_temporal_video": datasets.Sequence(datasets.Value("string")), |
|
"raw_choices_multimodal": datasets.Sequence(datasets.Value("string")), |
|
"raw_choices_silent_video": datasets.Sequence(datasets.Value("string")), |
|
"raw_choices_audio": datasets.Sequence(datasets.Value("string")), |
|
"raw_choices_text_only": datasets.Sequence(datasets.Value("string")), |
|
"raw_choices_pipeline_event_classification": datasets.Sequence(datasets.Value("string")), |
|
}), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
base_url = "https://huggingface.co/datasets/gorjanradevski/dave/resolve/main/" |
|
|
|
|
|
json_files = {"ego4d": "ego4d.json", "epic": "epic.json"} |
|
zip_urls = {"ego4d": base_url + "ego4d.zip", "epic": base_url + "epic.zip"} |
|
|
|
split_generators = [] |
|
for split_name, json_file in json_files.items(): |
|
|
|
json_path = dl_manager.download(base_url + json_file) |
|
|
|
|
|
print(f"Downloading and extracting {split_name}_files.zip...") |
|
extracted_dir = dl_manager.download_and_extract(zip_urls[split_name]) |
|
|
|
print(f"Extracted to: {extracted_dir}") |
|
print(f"Total number of files extracted: {count_files_in_directory(extracted_dir)}") |
|
|
|
|
|
if isinstance(extracted_dir, str): |
|
files_dir = extracted_dir |
|
else: |
|
files_dir = extracted_dir[zip_urls[split_name]] |
|
|
|
split_generators.append( |
|
datasets.SplitGenerator( |
|
name=split_name, |
|
gen_kwargs={ |
|
"json_path": json_path, |
|
"files_dir": files_dir, |
|
"split_name": split_name, |
|
}, |
|
) |
|
) |
|
|
|
return split_generators |
|
|
|
def _generate_examples(self, json_path, files_dir, split_name): |
|
with open(json_path, "r", encoding="utf-8") as f: |
|
data = json.load(f) |
|
|
|
print(f"Processing {split_name} split with extracted files in {files_dir}") |
|
|
|
|
|
files_dir = os.path.join(files_dir, f"{split_name}_files") |
|
if not os.path.exists(files_dir): |
|
print(f"Warning: '{split_name}_files' directory not found in {files_dir}") |
|
print(f"Available directories: {os.listdir(files_dir)}") |
|
raise ValueError(f"Could not find '{split_name}_files' directory at {files_dir}") |
|
|
|
|
|
file_mapping = {} |
|
|
|
for idx, item in enumerate(data): |
|
|
|
if idx == 0: |
|
print(f"Processing first item: {item['video_id'] if 'video_id' in item else 'unknown'}") |
|
|
|
|
|
all_fields_resolved = True |
|
for field in _MEDIA_FIELDS: |
|
if field not in item or not item[field]: |
|
continue |
|
|
|
original_path = item[field] |
|
|
|
|
|
if original_path in file_mapping: |
|
item[field] = file_mapping[original_path] |
|
continue |
|
|
|
|
|
file_name = os.path.basename(original_path) |
|
local_path = os.path.join(files_dir, file_name) |
|
|
|
|
|
if os.path.exists(local_path): |
|
item[field] = local_path |
|
file_mapping[original_path] = local_path |
|
else: |
|
print(f"Warning: File not found for {field}: {local_path}") |
|
all_fields_resolved = False |
|
break |
|
|
|
if all_fields_resolved: |
|
yield idx, item |
|
|