--- dataset_info: features: - name: json_schema dtype: string - name: unique_id dtype: string splits: - name: WashingtonPost num_bytes: 2710348 num_examples: 125 - name: Snowplow num_bytes: 1613804 num_examples: 403 - name: Kubernetes num_bytes: 25623424 num_examples: 1064 - name: Github_trivial num_bytes: 780060 num_examples: 444 - name: Github_easy num_bytes: 1980784 num_examples: 1943 - name: Github_medium num_bytes: 7994298 num_examples: 1976 - name: Github_hard num_bytes: 20240875 num_examples: 1240 - name: Github_ultra num_bytes: 12235981 num_examples: 164 - name: JsonSchemaStore num_bytes: 22195651 num_examples: 492 - name: Glaiveai2K num_bytes: 1440707 num_examples: 1707 download_size: 19019152 dataset_size: 96815932 configs: - config_name: default data_files: - split: WashingtonPost path: data/WashingtonPost-* - split: Snowplow path: data/Snowplow-* - split: Kubernetes path: data/Kubernetes-* - split: Github_trivial path: data/Github_trivial-* - split: Github_easy path: data/Github_easy-* - split: Github_medium path: data/Github_medium-* - split: Github_hard path: data/Github_hard-* - split: Github_ultra path: data/Github_ultra-* - split: JsonSchemaStore path: data/JsonSchemaStore-* - split: Glaiveai2K path: data/Glaiveai2K-* pretty_name: J --- # JSONSchemaBench [![Paper](https://img.shields.io/badge/Paper-arXiv-blue)](https://arxiv.org/abs/2501.10868) JSONSchemaBench is a benchmark of **real-world JSON schemas** designed to evaluate **structured output generation** for Large Language Models (LLMs). It contains approximately **10,000 JSON schemas**, capturing diverse constraints and complexities. ## 📌 Dataset Overview - **Purpose:** Evaluate the **efficiency** and **coverage** of structured output generation. - **Sources:** GitHub, Kubernetes, API specifications, curated collections. - **Schemas:** Categorized based on complexity and domain. ### 📊 Dataset Breakdown | Dataset | Category | Count | | --------------- | ------------------- | ----- | | GlaiveAI-2K | Function Call | 1707 | | Github-Trivial | Misc | 444 | | Github-Easy | Misc | 1943 | | Snowplow | Operational API | 403 | | Github-Medium | Misc | 1976 | | Kubernetes | Kubernetes API | 1064 | | Washington Post | Resource Access API | 125 | | Github-Hard | Misc | 1240 | | JSONSchemaStore | Misc | 492 | | Github-Ultra | Misc | 164 | | **Total** | | 9558 | ## 📥 Loading the Dataset ```python from datasets import load_dataset dataset = load_dataset("epfl-dlab/JSONSchemaBench") print(dataset) ``` ## 🔍 Data Structure Each dataset split contains: - `"json_schema"`: The schema definition. - `"unique_id"`: A unique identifier for the schema. 🚀 **For more details, check out the [paper](https://arxiv.org/abs/2501.10868).** ## 📚 Citation If you use this dataset, please cite: ```bibtex @misc{geng2025jsonschemabench, title={Generating Structured Outputs from Language Models: Benchmark and Studies}, author={Saibo Geng et al.}, year={2025}, eprint={2501.10868}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2501.10868} } ``` ## License This dataset is provided under the [MIT License](https://opensource.org/licenses/MIT). Please ensure that you comply with the license terms when using or distributing this dataset. ## Acknowledgements We would like to thank the contributors and maintainers of the JSON schema projects and the open-source community for their invaluable work and support.