--- task_categories: - text-retrieval task_ids: - document-retrieval config_names: - corpus tags: - text-retrieval dataset_info: - config_name: default features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: float64 - config_name: corpus features: - name: _id dtype: string - name: text dtype: string - config_name: queries features: - name: _id dtype: string - name: text dtype: string configs: - config_name: default data_files: - split: test path: relevance.jsonl - config_name: corpus data_files: - split: corpus path: corpus.jsonl - config_name: queries data_files: - split: queries path: queries.jsonl --- The ChatDoctor-HealthCareMagic-100k dataset comprises 112,000 real-world medical question-and-answer pairs, providing a substantial and diverse collection of authentic medical dialogues. There is a slight risk to this dataset since there are grammatical inconsistencies in many of the questions and answers, but this can potentially help separate strong healthcare retrieval models from weak ones. **Usage** ``` import datasets # Download the dataset queries = datasets.load_dataset("embedding-benchmark/ChatDoctor_HealthCareMagic", "queries") documents = datasets.load_dataset("embedding-benchmark/ChatDoctor_HealthCareMagic", "corpus") pair_labels = datasets.load_dataset("embedding-benchmark/ChatDoctor_HealthCareMagic", "default") ```