# # Copyright 2024 The HuggingFace Inc. team. # SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import os from collections import OrderedDict from typing import List, Optional, Tuple, Union import numpy as np import onnx import onnx_graphsurgeon as gs import PIL.Image import tensorrt as trt import torch from cuda import cudart from huggingface_hub import snapshot_download from huggingface_hub.utils import validate_hf_hub_args from onnx import shape_inference from packaging import version from polygraphy import cuda from polygraphy.backend.common import bytes_from_path from polygraphy.backend.onnx.loader import fold_constants from polygraphy.backend.trt import ( CreateConfig, Profile, engine_from_bytes, engine_from_network, network_from_onnx_path, save_engine, ) from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict, deprecate from diffusers.image_processor import VaeImageProcessor from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.pipelines.stable_diffusion import ( StableDiffusionPipelineOutput, StableDiffusionSafetyChecker, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import ( prepare_mask_and_masked_image, retrieve_latents, ) from diffusers.schedulers import DDIMScheduler from diffusers.utils import logging from diffusers.utils.torch_utils import randn_tensor """ Installation instructions python3 -m pip install --upgrade transformers diffusers>=0.16.0 python3 -m pip install --upgrade tensorrt~=10.2.0 python3 -m pip install --upgrade polygraphy>=0.47.0 onnx-graphsurgeon --extra-index-url https://pypi.ngc.nvidia.com python3 -m pip install onnxruntime """ TRT_LOGGER = trt.Logger(trt.Logger.ERROR) logger = logging.get_logger(__name__) # pylint: disable=invalid-name # Map of numpy dtype -> torch dtype numpy_to_torch_dtype_dict = { np.uint8: torch.uint8, np.int8: torch.int8, np.int16: torch.int16, np.int32: torch.int32, np.int64: torch.int64, np.float16: torch.float16, np.float32: torch.float32, np.float64: torch.float64, np.complex64: torch.complex64, np.complex128: torch.complex128, } if np.version.full_version >= "1.24.0": numpy_to_torch_dtype_dict[np.bool_] = torch.bool else: numpy_to_torch_dtype_dict[np.bool] = torch.bool # Map of torch dtype -> numpy dtype torch_to_numpy_dtype_dict = {value: key for (key, value) in numpy_to_torch_dtype_dict.items()} def preprocess_image(image): """ image: torch.Tensor """ w, h = image.size w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 image = image.resize((w, h)) image = np.array(image).astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image).contiguous() return 2.0 * image - 1.0 class Engine: def __init__(self, engine_path): self.engine_path = engine_path self.engine = None self.context = None self.buffers = OrderedDict() self.tensors = OrderedDict() def __del__(self): [buf.free() for buf in self.buffers.values() if isinstance(buf, cuda.DeviceArray)] del self.engine del self.context del self.buffers del self.tensors def build( self, onnx_path, fp16, input_profile=None, enable_all_tactics=False, timing_cache=None, ): logger.warning(f"Building TensorRT engine for {onnx_path}: {self.engine_path}") p = Profile() if input_profile: for name, dims in input_profile.items(): assert len(dims) == 3 p.add(name, min=dims[0], opt=dims[1], max=dims[2]) extra_build_args = {} if not enable_all_tactics: extra_build_args["tactic_sources"] = [] engine = engine_from_network( network_from_onnx_path(onnx_path, flags=[trt.OnnxParserFlag.NATIVE_INSTANCENORM]), config=CreateConfig(fp16=fp16, profiles=[p], load_timing_cache=timing_cache, **extra_build_args), save_timing_cache=timing_cache, ) save_engine(engine, path=self.engine_path) def load(self): logger.warning(f"Loading TensorRT engine: {self.engine_path}") self.engine = engine_from_bytes(bytes_from_path(self.engine_path)) def activate(self): self.context = self.engine.create_execution_context() def allocate_buffers(self, shape_dict=None, device="cuda"): for binding in range(self.engine.num_io_tensors): name = self.engine.get_tensor_name(binding) if shape_dict and name in shape_dict: shape = shape_dict[name] else: shape = self.engine.get_tensor_shape(name) dtype = trt.nptype(self.engine.get_tensor_dtype(name)) if self.engine.get_tensor_mode(name) == trt.TensorIOMode.INPUT: self.context.set_input_shape(name, shape) tensor = torch.empty(tuple(shape), dtype=numpy_to_torch_dtype_dict[dtype]).to(device=device) self.tensors[name] = tensor def infer(self, feed_dict, stream): for name, buf in feed_dict.items(): self.tensors[name].copy_(buf) for name, tensor in self.tensors.items(): self.context.set_tensor_address(name, tensor.data_ptr()) noerror = self.context.execute_async_v3(stream) if not noerror: raise ValueError("ERROR: inference failed.") return self.tensors class Optimizer: def __init__(self, onnx_graph): self.graph = gs.import_onnx(onnx_graph) def cleanup(self, return_onnx=False): self.graph.cleanup().toposort() if return_onnx: return gs.export_onnx(self.graph) def select_outputs(self, keep, names=None): self.graph.outputs = [self.graph.outputs[o] for o in keep] if names: for i, name in enumerate(names): self.graph.outputs[i].name = name def fold_constants(self, return_onnx=False): onnx_graph = fold_constants(gs.export_onnx(self.graph), allow_onnxruntime_shape_inference=True) self.graph = gs.import_onnx(onnx_graph) if return_onnx: return onnx_graph def infer_shapes(self, return_onnx=False): onnx_graph = gs.export_onnx(self.graph) if onnx_graph.ByteSize() > 2147483648: raise TypeError("ERROR: model size exceeds supported 2GB limit") else: onnx_graph = shape_inference.infer_shapes(onnx_graph) self.graph = gs.import_onnx(onnx_graph) if return_onnx: return onnx_graph class BaseModel: def __init__(self, model, fp16=False, device="cuda", max_batch_size=16, embedding_dim=768, text_maxlen=77): self.model = model self.name = "SD Model" self.fp16 = fp16 self.device = device self.min_batch = 1 self.max_batch = max_batch_size self.min_image_shape = 256 # min image resolution: 256x256 self.max_image_shape = 1024 # max image resolution: 1024x1024 self.min_latent_shape = self.min_image_shape // 8 self.max_latent_shape = self.max_image_shape // 8 self.embedding_dim = embedding_dim self.text_maxlen = text_maxlen def get_model(self): return self.model def get_input_names(self): pass def get_output_names(self): pass def get_dynamic_axes(self): return None def get_sample_input(self, batch_size, image_height, image_width): pass def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape): return None def get_shape_dict(self, batch_size, image_height, image_width): return None def optimize(self, onnx_graph): opt = Optimizer(onnx_graph) opt.cleanup() opt.fold_constants() opt.infer_shapes() onnx_opt_graph = opt.cleanup(return_onnx=True) return onnx_opt_graph def check_dims(self, batch_size, image_height, image_width): assert batch_size >= self.min_batch and batch_size <= self.max_batch assert image_height % 8 == 0 or image_width % 8 == 0 latent_height = image_height // 8 latent_width = image_width // 8 assert latent_height >= self.min_latent_shape and latent_height <= self.max_latent_shape assert latent_width >= self.min_latent_shape and latent_width <= self.max_latent_shape return (latent_height, latent_width) def get_minmax_dims(self, batch_size, image_height, image_width, static_batch, static_shape): min_batch = batch_size if static_batch else self.min_batch max_batch = batch_size if static_batch else self.max_batch latent_height = image_height // 8 latent_width = image_width // 8 min_image_height = image_height if static_shape else self.min_image_shape max_image_height = image_height if static_shape else self.max_image_shape min_image_width = image_width if static_shape else self.min_image_shape max_image_width = image_width if static_shape else self.max_image_shape min_latent_height = latent_height if static_shape else self.min_latent_shape max_latent_height = latent_height if static_shape else self.max_latent_shape min_latent_width = latent_width if static_shape else self.min_latent_shape max_latent_width = latent_width if static_shape else self.max_latent_shape return ( min_batch, max_batch, min_image_height, max_image_height, min_image_width, max_image_width, min_latent_height, max_latent_height, min_latent_width, max_latent_width, ) def getOnnxPath(model_name, onnx_dir, opt=True): return os.path.join(onnx_dir, model_name + (".opt" if opt else "") + ".onnx") def getEnginePath(model_name, engine_dir): return os.path.join(engine_dir, model_name + ".plan") def build_engines( models: dict, engine_dir, onnx_dir, onnx_opset, opt_image_height, opt_image_width, opt_batch_size=1, force_engine_rebuild=False, static_batch=False, static_shape=True, enable_all_tactics=False, timing_cache=None, ): built_engines = {} if not os.path.isdir(onnx_dir): os.makedirs(onnx_dir) if not os.path.isdir(engine_dir): os.makedirs(engine_dir) # Export models to ONNX for model_name, model_obj in models.items(): engine_path = getEnginePath(model_name, engine_dir) if force_engine_rebuild or not os.path.exists(engine_path): logger.warning("Building Engines...") logger.warning("Engine build can take a while to complete") onnx_path = getOnnxPath(model_name, onnx_dir, opt=False) onnx_opt_path = getOnnxPath(model_name, onnx_dir) if force_engine_rebuild or not os.path.exists(onnx_opt_path): if force_engine_rebuild or not os.path.exists(onnx_path): logger.warning(f"Exporting model: {onnx_path}") model = model_obj.get_model() with torch.inference_mode(), torch.autocast("cuda"): inputs = model_obj.get_sample_input(opt_batch_size, opt_image_height, opt_image_width) torch.onnx.export( model, inputs, onnx_path, export_params=True, opset_version=onnx_opset, do_constant_folding=True, input_names=model_obj.get_input_names(), output_names=model_obj.get_output_names(), dynamic_axes=model_obj.get_dynamic_axes(), ) del model torch.cuda.empty_cache() gc.collect() else: logger.warning(f"Found cached model: {onnx_path}") # Optimize onnx if force_engine_rebuild or not os.path.exists(onnx_opt_path): logger.warning(f"Generating optimizing model: {onnx_opt_path}") onnx_opt_graph = model_obj.optimize(onnx.load(onnx_path)) onnx.save(onnx_opt_graph, onnx_opt_path) else: logger.warning(f"Found cached optimized model: {onnx_opt_path} ") # Build TensorRT engines for model_name, model_obj in models.items(): engine_path = getEnginePath(model_name, engine_dir) engine = Engine(engine_path) onnx_path = getOnnxPath(model_name, onnx_dir, opt=False) onnx_opt_path = getOnnxPath(model_name, onnx_dir) if force_engine_rebuild or not os.path.exists(engine.engine_path): engine.build( onnx_opt_path, fp16=True, input_profile=model_obj.get_input_profile( opt_batch_size, opt_image_height, opt_image_width, static_batch=static_batch, static_shape=static_shape, ), timing_cache=timing_cache, ) built_engines[model_name] = engine # Load and activate TensorRT engines for model_name, model_obj in models.items(): engine = built_engines[model_name] engine.load() engine.activate() return built_engines def runEngine(engine, feed_dict, stream): return engine.infer(feed_dict, stream) class CLIP(BaseModel): def __init__(self, model, device, max_batch_size, embedding_dim): super(CLIP, self).__init__( model=model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim ) self.name = "CLIP" def get_input_names(self): return ["input_ids"] def get_output_names(self): return ["text_embeddings", "pooler_output"] def get_dynamic_axes(self): return {"input_ids": {0: "B"}, "text_embeddings": {0: "B"}} def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape): self.check_dims(batch_size, image_height, image_width) min_batch, max_batch, _, _, _, _, _, _, _, _ = self.get_minmax_dims( batch_size, image_height, image_width, static_batch, static_shape ) return { "input_ids": [(min_batch, self.text_maxlen), (batch_size, self.text_maxlen), (max_batch, self.text_maxlen)] } def get_shape_dict(self, batch_size, image_height, image_width): self.check_dims(batch_size, image_height, image_width) return { "input_ids": (batch_size, self.text_maxlen), "text_embeddings": (batch_size, self.text_maxlen, self.embedding_dim), } def get_sample_input(self, batch_size, image_height, image_width): self.check_dims(batch_size, image_height, image_width) return torch.zeros(batch_size, self.text_maxlen, dtype=torch.int32, device=self.device) def optimize(self, onnx_graph): opt = Optimizer(onnx_graph) opt.select_outputs([0]) # delete graph output#1 opt.cleanup() opt.fold_constants() opt.infer_shapes() opt.select_outputs([0], names=["text_embeddings"]) # rename network output opt_onnx_graph = opt.cleanup(return_onnx=True) return opt_onnx_graph def make_CLIP(model, device, max_batch_size, embedding_dim, inpaint=False): return CLIP(model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim) class UNet(BaseModel): def __init__( self, model, fp16=False, device="cuda", max_batch_size=16, embedding_dim=768, text_maxlen=77, unet_dim=4 ): super(UNet, self).__init__( model=model, fp16=fp16, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim, text_maxlen=text_maxlen, ) self.unet_dim = unet_dim self.name = "UNet" def get_input_names(self): return ["sample", "timestep", "encoder_hidden_states"] def get_output_names(self): return ["latent"] def get_dynamic_axes(self): return { "sample": {0: "2B", 2: "H", 3: "W"}, "encoder_hidden_states": {0: "2B"}, "latent": {0: "2B", 2: "H", 3: "W"}, } def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape): latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) ( min_batch, max_batch, _, _, _, _, min_latent_height, max_latent_height, min_latent_width, max_latent_width, ) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape) return { "sample": [ (2 * min_batch, self.unet_dim, min_latent_height, min_latent_width), (2 * batch_size, self.unet_dim, latent_height, latent_width), (2 * max_batch, self.unet_dim, max_latent_height, max_latent_width), ], "encoder_hidden_states": [ (2 * min_batch, self.text_maxlen, self.embedding_dim), (2 * batch_size, self.text_maxlen, self.embedding_dim), (2 * max_batch, self.text_maxlen, self.embedding_dim), ], } def get_shape_dict(self, batch_size, image_height, image_width): latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) return { "sample": (2 * batch_size, self.unet_dim, latent_height, latent_width), "encoder_hidden_states": (2 * batch_size, self.text_maxlen, self.embedding_dim), "latent": (2 * batch_size, 4, latent_height, latent_width), } def get_sample_input(self, batch_size, image_height, image_width): latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) dtype = torch.float16 if self.fp16 else torch.float32 return ( torch.randn( 2 * batch_size, self.unet_dim, latent_height, latent_width, dtype=torch.float32, device=self.device ), torch.tensor([1.0], dtype=torch.float32, device=self.device), torch.randn(2 * batch_size, self.text_maxlen, self.embedding_dim, dtype=dtype, device=self.device), ) def make_UNet(model, device, max_batch_size, embedding_dim, inpaint=False, unet_dim=4): return UNet( model, fp16=True, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim, unet_dim=unet_dim, ) class VAE(BaseModel): def __init__(self, model, device, max_batch_size, embedding_dim): super(VAE, self).__init__( model=model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim ) self.name = "VAE decoder" def get_input_names(self): return ["latent"] def get_output_names(self): return ["images"] def get_dynamic_axes(self): return {"latent": {0: "B", 2: "H", 3: "W"}, "images": {0: "B", 2: "8H", 3: "8W"}} def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape): latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) ( min_batch, max_batch, _, _, _, _, min_latent_height, max_latent_height, min_latent_width, max_latent_width, ) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape) return { "latent": [ (min_batch, 4, min_latent_height, min_latent_width), (batch_size, 4, latent_height, latent_width), (max_batch, 4, max_latent_height, max_latent_width), ] } def get_shape_dict(self, batch_size, image_height, image_width): latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) return { "latent": (batch_size, 4, latent_height, latent_width), "images": (batch_size, 3, image_height, image_width), } def get_sample_input(self, batch_size, image_height, image_width): latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) return torch.randn(batch_size, 4, latent_height, latent_width, dtype=torch.float32, device=self.device) def make_VAE(model, device, max_batch_size, embedding_dim, inpaint=False): return VAE(model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim) class TorchVAEEncoder(torch.nn.Module): def __init__(self, model): super().__init__() self.vae_encoder = model def forward(self, x): return self.vae_encoder.encode(x).latent_dist.sample() class VAEEncoder(BaseModel): def __init__(self, model, device, max_batch_size, embedding_dim): super(VAEEncoder, self).__init__( model=model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim ) self.name = "VAE encoder" def get_model(self): vae_encoder = TorchVAEEncoder(self.model) return vae_encoder def get_input_names(self): return ["images"] def get_output_names(self): return ["latent"] def get_dynamic_axes(self): return {"images": {0: "B", 2: "8H", 3: "8W"}, "latent": {0: "B", 2: "H", 3: "W"}} def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape): assert batch_size >= self.min_batch and batch_size <= self.max_batch min_batch = batch_size if static_batch else self.min_batch max_batch = batch_size if static_batch else self.max_batch self.check_dims(batch_size, image_height, image_width) ( min_batch, max_batch, min_image_height, max_image_height, min_image_width, max_image_width, _, _, _, _, ) = self.get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape) return { "images": [ (min_batch, 3, min_image_height, min_image_width), (batch_size, 3, image_height, image_width), (max_batch, 3, max_image_height, max_image_width), ] } def get_shape_dict(self, batch_size, image_height, image_width): latent_height, latent_width = self.check_dims(batch_size, image_height, image_width) return { "images": (batch_size, 3, image_height, image_width), "latent": (batch_size, 4, latent_height, latent_width), } def get_sample_input(self, batch_size, image_height, image_width): self.check_dims(batch_size, image_height, image_width) return torch.randn(batch_size, 3, image_height, image_width, dtype=torch.float32, device=self.device) def make_VAEEncoder(model, device, max_batch_size, embedding_dim, inpaint=False): return VAEEncoder(model, device=device, max_batch_size=max_batch_size, embedding_dim=embedding_dim) class TensorRTStableDiffusionInpaintPipeline(DiffusionPipeline): r""" Pipeline for inpainting using TensorRT accelerated Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ _optional_components = ["safety_checker", "feature_extractor", "image_encoder"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: DDIMScheduler, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: CLIPVisionModelWithProjection = None, requires_safety_checker: bool = True, stages=["clip", "unet", "vae", "vae_encoder"], image_height: int = 512, image_width: int = 512, max_batch_size: int = 16, # ONNX export parameters onnx_opset: int = 17, onnx_dir: str = "onnx", # TensorRT engine build parameters engine_dir: str = "engine", force_engine_rebuild: bool = False, timing_cache: str = "timing_cache", ): super().__init__() if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config) if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config) if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( version.parse(unet.config._diffusers_version).base_version ) < version.parse("0.9.0.dev0") is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: deprecation_message = ( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" " the `unet/config.json` file" ) deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(unet.config) new_config["sample_size"] = 64 unet._internal_dict = FrozenDict(new_config) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder, ) self.stages = stages self.image_height, self.image_width = image_height, image_width self.inpaint = True self.onnx_opset = onnx_opset self.onnx_dir = onnx_dir self.engine_dir = engine_dir self.force_engine_rebuild = force_engine_rebuild self.timing_cache = timing_cache self.build_static_batch = False self.build_dynamic_shape = False self.max_batch_size = max_batch_size # TODO: Restrict batch size to 4 for larger image dimensions as a WAR for TensorRT limitation. if self.build_dynamic_shape or self.image_height > 512 or self.image_width > 512: self.max_batch_size = 4 self.stream = None # loaded in loadResources() self.models = {} # loaded in __loadModels() self.engine = {} # loaded in build_engines() self.vae.forward = self.vae.decode self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker) def __loadModels(self): # Load pipeline models self.embedding_dim = self.text_encoder.config.hidden_size models_args = { "device": self.torch_device, "max_batch_size": self.max_batch_size, "embedding_dim": self.embedding_dim, "inpaint": self.inpaint, } if "clip" in self.stages: self.models["clip"] = make_CLIP(self.text_encoder, **models_args) if "unet" in self.stages: self.models["unet"] = make_UNet(self.unet, **models_args, unet_dim=self.unet.config.in_channels) if "vae" in self.stages: self.models["vae"] = make_VAE(self.vae, **models_args) if "vae_encoder" in self.stages: self.models["vae_encoder"] = make_VAEEncoder(self.vae, **models_args) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): if isinstance(generator, list): image_latents = [ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) for i in range(image.shape[0]) ] image_latents = torch.cat(image_latents, dim=0) else: image_latents = retrieve_latents(self.vae.encode(image), generator=generator) image_latents = self.vae.config.scaling_factor * image_latents return image_latents def prepare_latents( self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, image=None, timestep=None, is_strength_max=True, return_noise=False, return_image_latents=False, ): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if (image is None or timestep is None) and not is_strength_max: raise ValueError( "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise." "However, either the image or the noise timestep has not been provided." ) if return_image_latents or (latents is None and not is_strength_max): image = image.to(device=device, dtype=dtype) if image.shape[1] == 4: image_latents = image else: image_latents = self._encode_vae_image(image=image, generator=generator) image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) if latents is None: noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # if strength is 1. then initialise the latents to noise, else initial to image + noise latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep) # if pure noise then scale the initial latents by the Scheduler's init sigma latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents else: noise = latents.to(device) latents = noise * self.scheduler.init_noise_sigma outputs = (latents,) if return_noise: outputs += (noise,) if return_image_latents: outputs += (image_latents,) return outputs # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker( self, image: Union[torch.Tensor, PIL.Image.Image], device: torch.device, dtype: torch.dtype ) -> Tuple[Union[torch.Tensor, PIL.Image.Image], Optional[bool]]: r""" Runs the safety checker on the given image. Args: image (Union[torch.Tensor, PIL.Image.Image]): The input image to be checked. device (torch.device): The device to run the safety checker on. dtype (torch.dtype): The data type of the input image. Returns: (image, has_nsfw_concept) Tuple[Union[torch.Tensor, PIL.Image.Image], Optional[bool]]: A tuple containing the processed image and a boolean indicating whether the image has a NSFW (Not Safe for Work) concept. """ if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept @classmethod @validate_hf_hub_args def set_cached_folder(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): cache_dir = kwargs.pop("cache_dir", None) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", False) token = kwargs.pop("token", None) revision = kwargs.pop("revision", None) cls.cached_folder = ( pretrained_model_name_or_path if os.path.isdir(pretrained_model_name_or_path) else snapshot_download( pretrained_model_name_or_path, cache_dir=cache_dir, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, ) ) def to(self, torch_device: Optional[Union[str, torch.device]] = None, silence_dtype_warnings: bool = False): super().to(torch_device, silence_dtype_warnings=silence_dtype_warnings) self.onnx_dir = os.path.join(self.cached_folder, self.onnx_dir) self.engine_dir = os.path.join(self.cached_folder, self.engine_dir) self.timing_cache = os.path.join(self.cached_folder, self.timing_cache) # set device self.torch_device = self._execution_device logger.warning(f"Running inference on device: {self.torch_device}") # load models self.__loadModels() # build engines self.engine = build_engines( self.models, self.engine_dir, self.onnx_dir, self.onnx_opset, opt_image_height=self.image_height, opt_image_width=self.image_width, force_engine_rebuild=self.force_engine_rebuild, static_batch=self.build_static_batch, static_shape=not self.build_dynamic_shape, timing_cache=self.timing_cache, ) return self def __initialize_timesteps(self, num_inference_steps, strength): self.scheduler.set_timesteps(num_inference_steps) offset = self.scheduler.config.steps_offset if hasattr(self.scheduler, "steps_offset") else 0 init_timestep = int(num_inference_steps * strength) + offset init_timestep = min(init_timestep, num_inference_steps) t_start = max(num_inference_steps - init_timestep + offset, 0) timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :].to(self.torch_device) return timesteps, num_inference_steps - t_start def __preprocess_images(self, batch_size, images=()): init_images = [] for image in images: image = image.to(self.torch_device).float() image = image.repeat(batch_size, 1, 1, 1) init_images.append(image) return tuple(init_images) def __encode_image(self, init_image): init_latents = runEngine(self.engine["vae_encoder"], {"images": init_image}, self.stream)["latent"] init_latents = 0.18215 * init_latents return init_latents def __encode_prompt(self, prompt, negative_prompt): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). """ # Tokenize prompt text_input_ids = ( self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) .input_ids.type(torch.int32) .to(self.torch_device) ) # NOTE: output tensor for CLIP must be cloned because it will be overwritten when called again for negative prompt text_embeddings = runEngine(self.engine["clip"], {"input_ids": text_input_ids}, self.stream)[ "text_embeddings" ].clone() # Tokenize negative prompt uncond_input_ids = ( self.tokenizer( negative_prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) .input_ids.type(torch.int32) .to(self.torch_device) ) uncond_embeddings = runEngine(self.engine["clip"], {"input_ids": uncond_input_ids}, self.stream)[ "text_embeddings" ] # Concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes for classifier free guidance text_embeddings = torch.cat([uncond_embeddings, text_embeddings]).to(dtype=torch.float16) return text_embeddings def __denoise_latent( self, latents, text_embeddings, timesteps=None, step_offset=0, mask=None, masked_image_latents=None ): if not isinstance(timesteps, torch.Tensor): timesteps = self.scheduler.timesteps for step_index, timestep in enumerate(timesteps): # Expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) latent_model_input = self.scheduler.scale_model_input(latent_model_input, timestep) if isinstance(mask, torch.Tensor): latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) # Predict the noise residual timestep_float = timestep.float() if timestep.dtype != torch.float32 else timestep noise_pred = runEngine( self.engine["unet"], {"sample": latent_model_input, "timestep": timestep_float, "encoder_hidden_states": text_embeddings}, self.stream, )["latent"] # Perform guidance noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self._guidance_scale * (noise_pred_text - noise_pred_uncond) latents = self.scheduler.step(noise_pred, timestep, latents).prev_sample latents = 1.0 / 0.18215 * latents return latents def __decode_latent(self, latents): images = runEngine(self.engine["vae"], {"latent": latents}, self.stream)["images"] images = (images / 2 + 0.5).clamp(0, 1) return images.cpu().permute(0, 2, 3, 1).float().numpy() def __loadResources(self, image_height, image_width, batch_size): self.stream = cudart.cudaStreamCreate()[1] # Allocate buffers for TensorRT engine bindings for model_name, obj in self.models.items(): self.engine[model_name].allocate_buffers( shape_dict=obj.get_shape_dict(batch_size, image_height, image_width), device=self.torch_device ) @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, image: Union[torch.Tensor, PIL.Image.Image] = None, mask_image: Union[torch.Tensor, PIL.Image.Image] = None, strength: float = 1.0, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. image (`PIL.Image.Image`): `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will be masked out with `mask_image` and repainted according to `prompt`. mask_image (`PIL.Image.Image`): `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. strength (`float`, *optional*, defaults to 0.8): Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. """ self.generator = generator self.denoising_steps = num_inference_steps self._guidance_scale = guidance_scale # Pre-compute latent input scales and linear multistep coefficients self.scheduler.set_timesteps(self.denoising_steps, device=self.torch_device) # Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 prompt = [prompt] elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: raise ValueError(f"Expected prompt to be of type list or str but got {type(prompt)}") if negative_prompt is None: negative_prompt = [""] * batch_size if negative_prompt is not None and isinstance(negative_prompt, str): negative_prompt = [negative_prompt] assert len(prompt) == len(negative_prompt) if batch_size > self.max_batch_size: raise ValueError( f"Batch size {len(prompt)} is larger than allowed {self.max_batch_size}. If dynamic shape is used, then maximum batch size is 4" ) # Validate image dimensions mask_width, mask_height = mask_image.size if mask_height != self.image_height or mask_width != self.image_width: raise ValueError( f"Input image height and width {self.image_height} and {self.image_width} are not equal to " f"the respective dimensions of the mask image {mask_height} and {mask_width}" ) # load resources self.__loadResources(self.image_height, self.image_width, batch_size) with torch.inference_mode(), torch.autocast("cuda"), trt.Runtime(TRT_LOGGER): # Spatial dimensions of latent tensor latent_height = self.image_height // 8 latent_width = self.image_width // 8 # Pre-process input images mask, masked_image, init_image = self.__preprocess_images( batch_size, prepare_mask_and_masked_image( image, mask_image, self.image_height, self.image_width, return_image=True, ), ) mask = torch.nn.functional.interpolate(mask, size=(latent_height, latent_width)) mask = torch.cat([mask] * 2) # Initialize timesteps timesteps, t_start = self.__initialize_timesteps(self.denoising_steps, strength) # at which timestep to set the initial noise (n.b. 50% if strength is 0.5) latent_timestep = timesteps[:1].repeat(batch_size) # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise is_strength_max = strength == 1.0 # Pre-initialize latents num_channels_latents = self.vae.config.latent_channels latents_outputs = self.prepare_latents( batch_size, num_channels_latents, self.image_height, self.image_width, torch.float32, self.torch_device, generator, image=init_image, timestep=latent_timestep, is_strength_max=is_strength_max, ) latents = latents_outputs[0] # VAE encode masked image masked_latents = self.__encode_image(masked_image) masked_latents = torch.cat([masked_latents] * 2) # CLIP text encoder text_embeddings = self.__encode_prompt(prompt, negative_prompt) # UNet denoiser latents = self.__denoise_latent( latents, text_embeddings, timesteps=timesteps, step_offset=t_start, mask=mask, masked_image_latents=masked_latents, ) # VAE decode latent images = self.__decode_latent(latents) images, has_nsfw_concept = self.run_safety_checker(images, self.torch_device, text_embeddings.dtype) images = self.numpy_to_pil(images) return StableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept)