|
|
|
import inspect |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
from packaging import version |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import AutoencoderKL, DiffusionPipeline, UNet2DConditionModel |
|
from diffusers.configuration_utils import FrozenDict, deprecate |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin |
|
from diffusers.models.attention import BasicTransformerBlock |
|
from diffusers.models.lora import adjust_lora_scale_text_encoder |
|
from diffusers.models.unets.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg |
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import ( |
|
PIL_INTERPOLATION, |
|
USE_PEFT_BACKEND, |
|
logging, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import UniPCMultistepScheduler |
|
>>> from diffusers.utils import load_image |
|
|
|
>>> input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png") |
|
|
|
>>> pipe = StableDiffusionReferencePipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", |
|
safety_checker=None, |
|
torch_dtype=torch.float16 |
|
).to('cuda:0') |
|
|
|
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) |
|
|
|
>>> result_img = pipe(ref_image=input_image, |
|
prompt="1girl", |
|
num_inference_steps=20, |
|
reference_attn=True, |
|
reference_adain=True).images[0] |
|
|
|
>>> result_img.show() |
|
``` |
|
""" |
|
|
|
|
|
def torch_dfs(model: torch.nn.Module): |
|
r""" |
|
Performs a depth-first search on the given PyTorch model and returns a list of all its child modules. |
|
|
|
Args: |
|
model (torch.nn.Module): The PyTorch model to perform the depth-first search on. |
|
|
|
Returns: |
|
list: A list of all child modules of the given model. |
|
""" |
|
result = [model] |
|
for child in model.children(): |
|
result += torch_dfs(child) |
|
return result |
|
|
|
|
|
class StableDiffusionReferencePipeline( |
|
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin |
|
): |
|
r""" " |
|
Pipeline for Stable Diffusion Reference. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
The pipeline also inherits the following loading methods: |
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings |
|
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights |
|
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights |
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files |
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. |
|
feature_extractor ([`CLIPImageProcessor`]): |
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`. |
|
""" |
|
|
|
_optional_components = ["safety_checker", "feature_extractor"] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__() |
|
|
|
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" |
|
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " |
|
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" |
|
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," |
|
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" |
|
" file" |
|
) |
|
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config["steps_offset"] = 1 |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
if hasattr(scheduler.config, "skip_prk_steps") and scheduler.config.skip_prk_steps is False: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} has not set the configuration" |
|
" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" |
|
" sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" |
|
" incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" |
|
" Hub, it would be very nice if you could open a Pull request for the" |
|
" `scheduler/scheduler_config.json` file" |
|
) |
|
deprecate( |
|
"skip_prk_steps not set", |
|
"1.0.0", |
|
deprecation_message, |
|
standard_warn=False, |
|
) |
|
new_config = dict(scheduler.config) |
|
new_config["skip_prk_steps"] = True |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
if safety_checker is None and requires_safety_checker: |
|
logger.warning( |
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face" |
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
) |
|
|
|
if safety_checker is not None and feature_extractor is None: |
|
raise ValueError( |
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" |
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." |
|
) |
|
|
|
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( |
|
version.parse(unet.config._diffusers_version).base_version |
|
) < version.parse("0.9.0.dev0") |
|
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 |
|
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: |
|
deprecation_message = ( |
|
"The configuration file of the unet has set the default `sample_size` to smaller than" |
|
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" |
|
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" |
|
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" |
|
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" |
|
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" |
|
" in the config might lead to incorrect results in future versions. If you have downloaded this" |
|
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" |
|
" the `unet/config.json` file" |
|
) |
|
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(unet.config) |
|
new_config["sample_size"] = 64 |
|
unet._internal_dict = FrozenDict(new_config) |
|
|
|
if unet.config.in_channels != 4: |
|
logger.warning( |
|
f"You have loaded a UNet with {unet.config.in_channels} input channels, whereas by default," |
|
f" {self.__class__} assumes that `pipeline.unet` has 4 input channels: 4 for `num_channels_latents`," |
|
". If you did not intend to modify" |
|
" this behavior, please check whether you have loaded the right checkpoint." |
|
) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
|
|
def _default_height_width( |
|
self, |
|
height: Optional[int], |
|
width: Optional[int], |
|
image: Union[PIL.Image.Image, torch.Tensor, List[PIL.Image.Image]], |
|
) -> Tuple[int, int]: |
|
r""" |
|
Calculate the default height and width for the given image. |
|
|
|
Args: |
|
height (int or None): The desired height of the image. If None, the height will be determined based on the input image. |
|
width (int or None): The desired width of the image. If None, the width will be determined based on the input image. |
|
image (PIL.Image.Image or torch.Tensor or list[PIL.Image.Image]): The input image or a list of images. |
|
|
|
Returns: |
|
Tuple[int, int]: A tuple containing the calculated height and width. |
|
|
|
""" |
|
|
|
|
|
|
|
while isinstance(image, list): |
|
image = image[0] |
|
|
|
if height is None: |
|
if isinstance(image, PIL.Image.Image): |
|
height = image.height |
|
elif isinstance(image, torch.Tensor): |
|
height = image.shape[2] |
|
|
|
height = (height // 8) * 8 |
|
|
|
if width is None: |
|
if isinstance(image, PIL.Image.Image): |
|
width = image.width |
|
elif isinstance(image, torch.Tensor): |
|
width = image.shape[3] |
|
|
|
width = (width // 8) * 8 |
|
|
|
return height, width |
|
|
|
|
|
def check_inputs( |
|
self, |
|
prompt: Optional[Union[str, List[str]]], |
|
height: int, |
|
width: int, |
|
callback_steps: Optional[int], |
|
negative_prompt: Optional[str] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
ip_adapter_image: Optional[torch.Tensor] = None, |
|
ip_adapter_image_embeds: Optional[torch.FloatTensor] = None, |
|
callback_on_step_end_tensor_inputs: Optional[List[str]] = None, |
|
) -> None: |
|
""" |
|
Check the validity of the input arguments for the diffusion model. |
|
|
|
Args: |
|
prompt (Optional[Union[str, List[str]]]): The prompt text or list of prompt texts. |
|
height (int): The height of the input image. |
|
width (int): The width of the input image. |
|
callback_steps (Optional[int]): The number of steps to perform the callback on. |
|
negative_prompt (Optional[str]): The negative prompt text. |
|
prompt_embeds (Optional[torch.FloatTensor]): The prompt embeddings. |
|
negative_prompt_embeds (Optional[torch.FloatTensor]): The negative prompt embeddings. |
|
ip_adapter_image (Optional[torch.Tensor]): The input adapter image. |
|
ip_adapter_image_embeds (Optional[torch.FloatTensor]): The input adapter image embeddings. |
|
callback_on_step_end_tensor_inputs (Optional[List[str]]): The list of tensor inputs to perform the callback on. |
|
|
|
Raises: |
|
ValueError: If `height` or `width` is not divisible by 8. |
|
ValueError: If `callback_steps` is not a positive integer. |
|
ValueError: If `callback_on_step_end_tensor_inputs` contains invalid tensor inputs. |
|
ValueError: If both `prompt` and `prompt_embeds` are provided. |
|
ValueError: If neither `prompt` nor `prompt_embeds` are provided. |
|
ValueError: If `prompt` is not of type `str` or `list`. |
|
ValueError: If both `negative_prompt` and `negative_prompt_embeds` are provided. |
|
ValueError: If both `prompt_embeds` and `negative_prompt_embeds` are provided and have different shapes. |
|
ValueError: If both `ip_adapter_image` and `ip_adapter_image_embeds` are provided. |
|
|
|
Returns: |
|
None |
|
""" |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
if ip_adapter_image is not None and ip_adapter_image_embeds is not None: |
|
raise ValueError( |
|
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." |
|
) |
|
|
|
|
|
def _encode_prompt( |
|
self, |
|
prompt: Union[str, List[str]], |
|
device: torch.device, |
|
num_images_per_prompt: int, |
|
do_classifier_free_guidance: bool, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
r""" |
|
Encodes the prompt into embeddings. |
|
|
|
Args: |
|
prompt (Union[str, List[str]]): The prompt text or a list of prompt texts. |
|
device (torch.device): The device to use for encoding. |
|
num_images_per_prompt (int): The number of images per prompt. |
|
do_classifier_free_guidance (bool): Whether to use classifier-free guidance. |
|
negative_prompt (Optional[Union[str, List[str]]], optional): The negative prompt text or a list of negative prompt texts. Defaults to None. |
|
prompt_embeds (Optional[torch.FloatTensor], optional): The prompt embeddings. Defaults to None. |
|
negative_prompt_embeds (Optional[torch.FloatTensor], optional): The negative prompt embeddings. Defaults to None. |
|
lora_scale (Optional[float], optional): The LoRA scale. Defaults to None. |
|
**kwargs: Additional keyword arguments. |
|
|
|
Returns: |
|
torch.FloatTensor: The encoded prompt embeddings. |
|
""" |
|
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." |
|
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) |
|
|
|
prompt_embeds_tuple = self.encode_prompt( |
|
prompt=prompt, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=lora_scale, |
|
**kwargs, |
|
) |
|
|
|
|
|
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) |
|
|
|
return prompt_embeds |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt: Optional[str], |
|
device: torch.device, |
|
num_images_per_prompt: int, |
|
do_classifier_free_guidance: bool, |
|
negative_prompt: Optional[str] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
clip_skip: Optional[int] = None, |
|
) -> torch.FloatTensor: |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
lora_scale (`float`, *optional*): |
|
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
""" |
|
|
|
|
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) |
|
else: |
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
if clip_skip is None: |
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) |
|
prompt_embeds = prompt_embeds[0] |
|
else: |
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True |
|
) |
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] |
|
|
|
|
|
|
|
|
|
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) |
|
|
|
if self.text_encoder is not None: |
|
prompt_embeds_dtype = self.text_encoder.dtype |
|
elif self.unet is not None: |
|
prompt_embeds_dtype = self.unet.dtype |
|
else: |
|
prompt_embeds_dtype = prompt_embeds.dtype |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
return prompt_embeds, negative_prompt_embeds |
|
|
|
|
|
def prepare_latents( |
|
self, |
|
batch_size: int, |
|
num_channels_latents: int, |
|
height: int, |
|
width: int, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
generator: Union[torch.Generator, List[torch.Generator]], |
|
latents: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
r""" |
|
Prepare the latent vectors for diffusion. |
|
|
|
Args: |
|
batch_size (int): The number of samples in the batch. |
|
num_channels_latents (int): The number of channels in the latent vectors. |
|
height (int): The height of the latent vectors. |
|
width (int): The width of the latent vectors. |
|
dtype (torch.dtype): The data type of the latent vectors. |
|
device (torch.device): The device to place the latent vectors on. |
|
generator (Union[torch.Generator, List[torch.Generator]]): The generator(s) to use for random number generation. |
|
latents (Optional[torch.Tensor]): The pre-existing latent vectors. If None, new latent vectors will be generated. |
|
|
|
Returns: |
|
torch.Tensor: The prepared latent vectors. |
|
""" |
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
|
|
def prepare_extra_step_kwargs( |
|
self, generator: Union[torch.Generator, List[torch.Generator]], eta: float |
|
) -> Dict[str, Any]: |
|
r""" |
|
Prepare extra keyword arguments for the scheduler step. |
|
|
|
Args: |
|
generator (Union[torch.Generator, List[torch.Generator]]): The generator used for sampling. |
|
eta (float): The value of eta (η) used with the DDIMScheduler. Should be between 0 and 1. |
|
|
|
Returns: |
|
Dict[str, Any]: A dictionary containing the extra keyword arguments for the scheduler step. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def prepare_image( |
|
self, |
|
image: Union[torch.Tensor, PIL.Image.Image, List[Union[torch.Tensor, PIL.Image.Image]]], |
|
width: int, |
|
height: int, |
|
batch_size: int, |
|
num_images_per_prompt: int, |
|
device: torch.device, |
|
dtype: torch.dtype, |
|
do_classifier_free_guidance: bool = False, |
|
guess_mode: bool = False, |
|
) -> torch.Tensor: |
|
r""" |
|
Prepares the input image for processing. |
|
|
|
Args: |
|
image (torch.Tensor or PIL.Image.Image or list): The input image(s). |
|
width (int): The desired width of the image. |
|
height (int): The desired height of the image. |
|
batch_size (int): The batch size for processing. |
|
num_images_per_prompt (int): The number of images per prompt. |
|
device (torch.device): The device to use for processing. |
|
dtype (torch.dtype): The data type of the image. |
|
do_classifier_free_guidance (bool, optional): Whether to perform classifier-free guidance. Defaults to False. |
|
guess_mode (bool, optional): Whether to use guess mode. Defaults to False. |
|
|
|
Returns: |
|
torch.Tensor: The prepared image for processing. |
|
""" |
|
if not isinstance(image, torch.Tensor): |
|
if isinstance(image, PIL.Image.Image): |
|
image = [image] |
|
|
|
if isinstance(image[0], PIL.Image.Image): |
|
images = [] |
|
|
|
for image_ in image: |
|
image_ = image_.convert("RGB") |
|
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]) |
|
image_ = np.array(image_) |
|
image_ = image_[None, :] |
|
images.append(image_) |
|
|
|
image = images |
|
|
|
image = np.concatenate(image, axis=0) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = (image - 0.5) / 0.5 |
|
image = image.transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image) |
|
elif isinstance(image[0], torch.Tensor): |
|
image = torch.cat(image, dim=0) |
|
|
|
image_batch_size = image.shape[0] |
|
|
|
if image_batch_size == 1: |
|
repeat_by = batch_size |
|
else: |
|
|
|
repeat_by = num_images_per_prompt |
|
|
|
image = image.repeat_interleave(repeat_by, dim=0) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
if do_classifier_free_guidance and not guess_mode: |
|
image = torch.cat([image] * 2) |
|
|
|
return image |
|
|
|
def prepare_ref_latents( |
|
self, |
|
refimage: torch.Tensor, |
|
batch_size: int, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
generator: Union[int, List[int]], |
|
do_classifier_free_guidance: bool, |
|
) -> torch.Tensor: |
|
r""" |
|
Prepares reference latents for generating images. |
|
|
|
Args: |
|
refimage (torch.Tensor): The reference image. |
|
batch_size (int): The desired batch size. |
|
dtype (torch.dtype): The data type of the tensors. |
|
device (torch.device): The device to perform computations on. |
|
generator (int or list): The generator index or a list of generator indices. |
|
do_classifier_free_guidance (bool): Whether to use classifier-free guidance. |
|
|
|
Returns: |
|
torch.Tensor: The prepared reference latents. |
|
""" |
|
refimage = refimage.to(device=device, dtype=dtype) |
|
|
|
|
|
if isinstance(generator, list): |
|
ref_image_latents = [ |
|
self.vae.encode(refimage[i : i + 1]).latent_dist.sample(generator=generator[i]) |
|
for i in range(batch_size) |
|
] |
|
ref_image_latents = torch.cat(ref_image_latents, dim=0) |
|
else: |
|
ref_image_latents = self.vae.encode(refimage).latent_dist.sample(generator=generator) |
|
ref_image_latents = self.vae.config.scaling_factor * ref_image_latents |
|
|
|
|
|
if ref_image_latents.shape[0] < batch_size: |
|
if not batch_size % ref_image_latents.shape[0] == 0: |
|
raise ValueError( |
|
"The passed images and the required batch size don't match. Images are supposed to be duplicated" |
|
f" to a total batch size of {batch_size}, but {ref_image_latents.shape[0]} images were passed." |
|
" Make sure the number of images that you pass is divisible by the total requested batch size." |
|
) |
|
ref_image_latents = ref_image_latents.repeat(batch_size // ref_image_latents.shape[0], 1, 1, 1) |
|
|
|
|
|
ref_image_latents = ref_image_latents.to(device=device, dtype=dtype) |
|
return ref_image_latents |
|
|
|
|
|
def run_safety_checker( |
|
self, image: Union[torch.Tensor, PIL.Image.Image], device: torch.device, dtype: torch.dtype |
|
) -> Tuple[Union[torch.Tensor, PIL.Image.Image], Optional[bool]]: |
|
r""" |
|
Runs the safety checker on the given image. |
|
|
|
Args: |
|
image (Union[torch.Tensor, PIL.Image.Image]): The input image to be checked. |
|
device (torch.device): The device to run the safety checker on. |
|
dtype (torch.dtype): The data type of the input image. |
|
|
|
Returns: |
|
(image, has_nsfw_concept) Tuple[Union[torch.Tensor, PIL.Image.Image], Optional[bool]]: A tuple containing the processed image and |
|
a boolean indicating whether the image has a NSFW (Not Safe for Work) concept. |
|
""" |
|
if self.safety_checker is None: |
|
has_nsfw_concept = None |
|
else: |
|
if torch.is_tensor(image): |
|
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") |
|
else: |
|
feature_extractor_input = self.image_processor.numpy_to_pil(image) |
|
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) |
|
) |
|
return image, has_nsfw_concept |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
ref_image: Union[torch.FloatTensor, PIL.Image.Image] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
attention_auto_machine_weight: float = 1.0, |
|
gn_auto_machine_weight: float = 1.0, |
|
style_fidelity: float = 0.5, |
|
reference_attn: bool = True, |
|
reference_adain: bool = True, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
ref_image (`torch.FloatTensor`, `PIL.Image.Image`): |
|
The Reference Control input condition. Reference Control uses this input condition to generate guidance to Unet. If |
|
the type is specified as `Torch.FloatTensor`, it is passed to Reference Control as is. `PIL.Image.Image` can |
|
also be accepted as an image. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
guidance_rescale (`float`, *optional*, defaults to 0.0): |
|
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are |
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of |
|
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). |
|
Guidance rescale factor should fix overexposure when using zero terminal SNR. |
|
attention_auto_machine_weight (`float`): |
|
Weight of using reference query for self attention's context. |
|
If attention_auto_machine_weight=1.0, use reference query for all self attention's context. |
|
gn_auto_machine_weight (`float`): |
|
Weight of using reference adain. If gn_auto_machine_weight=2.0, use all reference adain plugins. |
|
style_fidelity (`float`): |
|
style fidelity of ref_uncond_xt. If style_fidelity=1.0, control more important, |
|
elif style_fidelity=0.0, prompt more important, else balanced. |
|
reference_attn (`bool`): |
|
Whether to use reference query for self attention's context. |
|
reference_adain (`bool`): |
|
Whether to use reference adain. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
assert reference_attn or reference_adain, "`reference_attn` or `reference_adain` must be True." |
|
|
|
|
|
height, width = self._default_height_width(height, width, ref_image) |
|
|
|
|
|
self.check_inputs( |
|
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None |
|
) |
|
prompt_embeds = self._encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
) |
|
|
|
|
|
ref_image = self.prepare_image( |
|
image=ref_image, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=prompt_embeds.dtype, |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
ref_image_latents = self.prepare_ref_latents( |
|
ref_image, |
|
batch_size * num_images_per_prompt, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
do_classifier_free_guidance, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
MODE = "write" |
|
uc_mask = ( |
|
torch.Tensor([1] * batch_size * num_images_per_prompt + [0] * batch_size * num_images_per_prompt) |
|
.type_as(ref_image_latents) |
|
.bool() |
|
) |
|
|
|
def hacked_basic_transformer_inner_forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
timestep: Optional[torch.LongTensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
class_labels: Optional[torch.LongTensor] = None, |
|
): |
|
if self.use_ada_layer_norm: |
|
norm_hidden_states = self.norm1(hidden_states, timestep) |
|
elif self.use_ada_layer_norm_zero: |
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( |
|
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype |
|
) |
|
else: |
|
norm_hidden_states = self.norm1(hidden_states) |
|
|
|
|
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} |
|
if self.only_cross_attention: |
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
else: |
|
if MODE == "write": |
|
self.bank.append(norm_hidden_states.detach().clone()) |
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
if MODE == "read": |
|
if attention_auto_machine_weight > self.attn_weight: |
|
attn_output_uc = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1), |
|
|
|
**cross_attention_kwargs, |
|
) |
|
attn_output_c = attn_output_uc.clone() |
|
if do_classifier_free_guidance and style_fidelity > 0: |
|
attn_output_c[uc_mask] = self.attn1( |
|
norm_hidden_states[uc_mask], |
|
encoder_hidden_states=norm_hidden_states[uc_mask], |
|
**cross_attention_kwargs, |
|
) |
|
attn_output = style_fidelity * attn_output_c + (1.0 - style_fidelity) * attn_output_uc |
|
self.bank.clear() |
|
else: |
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
if self.use_ada_layer_norm_zero: |
|
attn_output = gate_msa.unsqueeze(1) * attn_output |
|
hidden_states = attn_output + hidden_states |
|
|
|
if self.attn2 is not None: |
|
norm_hidden_states = ( |
|
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) |
|
) |
|
|
|
|
|
attn_output = self.attn2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
norm_hidden_states = self.norm3(hidden_states) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] |
|
|
|
ff_output = self.ff(norm_hidden_states) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
ff_output = gate_mlp.unsqueeze(1) * ff_output |
|
|
|
hidden_states = ff_output + hidden_states |
|
|
|
return hidden_states |
|
|
|
def hacked_mid_forward(self, *args, **kwargs): |
|
eps = 1e-6 |
|
x = self.original_forward(*args, **kwargs) |
|
if MODE == "write": |
|
if gn_auto_machine_weight >= self.gn_weight: |
|
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0) |
|
self.mean_bank.append(mean) |
|
self.var_bank.append(var) |
|
if MODE == "read": |
|
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: |
|
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0) |
|
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 |
|
mean_acc = sum(self.mean_bank) / float(len(self.mean_bank)) |
|
var_acc = sum(self.var_bank) / float(len(self.var_bank)) |
|
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 |
|
x_uc = (((x - mean) / std) * std_acc) + mean_acc |
|
x_c = x_uc.clone() |
|
if do_classifier_free_guidance and style_fidelity > 0: |
|
x_c[uc_mask] = x[uc_mask] |
|
x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc |
|
self.mean_bank = [] |
|
self.var_bank = [] |
|
return x |
|
|
|
def hack_CrossAttnDownBlock2D_forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
): |
|
eps = 1e-6 |
|
|
|
|
|
output_states = () |
|
|
|
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)): |
|
hidden_states = resnet(hidden_states, temb) |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
return_dict=False, |
|
)[0] |
|
if MODE == "write": |
|
if gn_auto_machine_weight >= self.gn_weight: |
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) |
|
self.mean_bank.append([mean]) |
|
self.var_bank.append([var]) |
|
if MODE == "read": |
|
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: |
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) |
|
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 |
|
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) |
|
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) |
|
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 |
|
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc |
|
hidden_states_c = hidden_states_uc.clone() |
|
if do_classifier_free_guidance and style_fidelity > 0: |
|
hidden_states_c[uc_mask] = hidden_states[uc_mask] |
|
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc |
|
|
|
output_states = output_states + (hidden_states,) |
|
|
|
if MODE == "read": |
|
self.mean_bank = [] |
|
self.var_bank = [] |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states) |
|
|
|
output_states = output_states + (hidden_states,) |
|
|
|
return hidden_states, output_states |
|
|
|
def hacked_DownBlock2D_forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
temb: Optional[torch.FloatTensor] = None, |
|
**kwargs: Any, |
|
) -> Tuple[torch.FloatTensor, ...]: |
|
eps = 1e-6 |
|
|
|
output_states = () |
|
|
|
for i, resnet in enumerate(self.resnets): |
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
if MODE == "write": |
|
if gn_auto_machine_weight >= self.gn_weight: |
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) |
|
self.mean_bank.append([mean]) |
|
self.var_bank.append([var]) |
|
if MODE == "read": |
|
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: |
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) |
|
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 |
|
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) |
|
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) |
|
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 |
|
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc |
|
hidden_states_c = hidden_states_uc.clone() |
|
if do_classifier_free_guidance and style_fidelity > 0: |
|
hidden_states_c[uc_mask] = hidden_states[uc_mask] |
|
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc |
|
|
|
output_states = output_states + (hidden_states,) |
|
|
|
if MODE == "read": |
|
self.mean_bank = [] |
|
self.var_bank = [] |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states) |
|
|
|
output_states = output_states + (hidden_states,) |
|
|
|
return hidden_states, output_states |
|
|
|
def hacked_CrossAttnUpBlock2D_forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
upsample_size: Optional[int] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
) -> torch.FloatTensor: |
|
eps = 1e-6 |
|
|
|
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)): |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
hidden_states = resnet(hidden_states, temb) |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
return_dict=False, |
|
)[0] |
|
|
|
if MODE == "write": |
|
if gn_auto_machine_weight >= self.gn_weight: |
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) |
|
self.mean_bank.append([mean]) |
|
self.var_bank.append([var]) |
|
if MODE == "read": |
|
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: |
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) |
|
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 |
|
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) |
|
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) |
|
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 |
|
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc |
|
hidden_states_c = hidden_states_uc.clone() |
|
if do_classifier_free_guidance and style_fidelity > 0: |
|
hidden_states_c[uc_mask] = hidden_states[uc_mask] |
|
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc |
|
|
|
if MODE == "read": |
|
self.mean_bank = [] |
|
self.var_bank = [] |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, upsample_size) |
|
|
|
return hidden_states |
|
|
|
def hacked_UpBlock2D_forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], |
|
temb: Optional[torch.FloatTensor] = None, |
|
upsample_size: Optional[int] = None, |
|
**kwargs: Any, |
|
) -> torch.FloatTensor: |
|
eps = 1e-6 |
|
for i, resnet in enumerate(self.resnets): |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
if MODE == "write": |
|
if gn_auto_machine_weight >= self.gn_weight: |
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) |
|
self.mean_bank.append([mean]) |
|
self.var_bank.append([var]) |
|
if MODE == "read": |
|
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: |
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) |
|
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 |
|
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) |
|
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) |
|
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 |
|
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc |
|
hidden_states_c = hidden_states_uc.clone() |
|
if do_classifier_free_guidance and style_fidelity > 0: |
|
hidden_states_c[uc_mask] = hidden_states[uc_mask] |
|
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc |
|
|
|
if MODE == "read": |
|
self.mean_bank = [] |
|
self.var_bank = [] |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, upsample_size) |
|
|
|
return hidden_states |
|
|
|
if reference_attn: |
|
attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)] |
|
attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0]) |
|
|
|
for i, module in enumerate(attn_modules): |
|
module._original_inner_forward = module.forward |
|
module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock) |
|
module.bank = [] |
|
module.attn_weight = float(i) / float(len(attn_modules)) |
|
|
|
if reference_adain: |
|
gn_modules = [self.unet.mid_block] |
|
self.unet.mid_block.gn_weight = 0 |
|
|
|
down_blocks = self.unet.down_blocks |
|
for w, module in enumerate(down_blocks): |
|
module.gn_weight = 1.0 - float(w) / float(len(down_blocks)) |
|
gn_modules.append(module) |
|
|
|
up_blocks = self.unet.up_blocks |
|
for w, module in enumerate(up_blocks): |
|
module.gn_weight = float(w) / float(len(up_blocks)) |
|
gn_modules.append(module) |
|
|
|
for i, module in enumerate(gn_modules): |
|
if getattr(module, "original_forward", None) is None: |
|
module.original_forward = module.forward |
|
if i == 0: |
|
|
|
module.forward = hacked_mid_forward.__get__(module, torch.nn.Module) |
|
elif isinstance(module, CrossAttnDownBlock2D): |
|
module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D) |
|
elif isinstance(module, DownBlock2D): |
|
module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D) |
|
elif isinstance(module, CrossAttnUpBlock2D): |
|
module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D) |
|
elif isinstance(module, UpBlock2D): |
|
module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D) |
|
module.mean_bank = [] |
|
module.var_bank = [] |
|
module.gn_weight *= 2 |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise = randn_tensor( |
|
ref_image_latents.shape, generator=generator, device=device, dtype=ref_image_latents.dtype |
|
) |
|
ref_xt = self.scheduler.add_noise( |
|
ref_image_latents, |
|
noise, |
|
t.reshape( |
|
1, |
|
), |
|
) |
|
ref_xt = torch.cat([ref_xt] * 2) if do_classifier_free_guidance else ref_xt |
|
ref_xt = self.scheduler.scale_model_input(ref_xt, t) |
|
|
|
MODE = "write" |
|
self.unet( |
|
ref_xt, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
return_dict=False, |
|
) |
|
|
|
|
|
MODE = "read" |
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|