|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TURKCorpus: a dataset for sentence simplification evaluation""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{Xu-EtAl:2016:TACL, |
|
author = {Wei Xu and Courtney Napoles and Ellie Pavlick and Quanze Chen and Chris Callison-Burch}, |
|
title = {Optimizing Statistical Machine Translation for Text Simplification}, |
|
journal = {Transactions of the Association for Computational Linguistics}, |
|
volume = {4}, |
|
year = {2016}, |
|
url = {https://cocoxu.github.io/publications/tacl2016-smt-simplification.pdf}, |
|
pages = {401--415} |
|
} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
TURKCorpus is a dataset for evaluating sentence simplification systems that focus on lexical paraphrasing, |
|
as described in "Optimizing Statistical Machine Translation for Text Simplification". The corpus is composed of 2000 validation and 359 test original sentences that were each simplified 8 times by different annotators. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/cocoxu/simplification" |
|
|
|
_LICENSE = "GNU General Public License v3.0" |
|
|
|
_URL_LIST = [ |
|
( |
|
"test.8turkers.tok.norm", |
|
"https://raw.githubusercontent.com/cocoxu/simplification/master/data/turkcorpus/test.8turkers.tok.norm", |
|
), |
|
( |
|
"tune.8turkers.tok.norm", |
|
"https://raw.githubusercontent.com/cocoxu/simplification/master/data/turkcorpus/tune.8turkers.tok.norm", |
|
), |
|
] |
|
_URL_LIST += [ |
|
( |
|
f"{spl}.8turkers.tok.turk.{i}", |
|
f"https://raw.githubusercontent.com/cocoxu/simplification/master/data/turkcorpus/{spl}.8turkers.tok.turk.{i}", |
|
) |
|
for spl in ["tune", "test"] |
|
for i in range(8) |
|
] |
|
|
|
_URLs = dict(_URL_LIST) |
|
|
|
|
|
class Turk(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="simplification", |
|
version=VERSION, |
|
description="A set of original sentences aligned with 8 possible simplifications for each.", |
|
) |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"original": datasets.Value("string"), |
|
"simplifications": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(_URLs) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepaths": data_dir, |
|
"split": "valid", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepaths": data_dir, "split": "test"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepaths, split): |
|
""" Yields examples. """ |
|
if split == "valid": |
|
split = "tune" |
|
files = [open(filepaths[f"{split}.8turkers.tok.norm"], encoding="utf-8")] + [ |
|
open(filepaths[f"{split}.8turkers.tok.turk.{i}"], encoding="utf-8") for i in range(8) |
|
] |
|
for id_, lines in enumerate(zip(*files)): |
|
yield id_, {"original": lines[0].strip(), "simplifications": [line.strip() for line in lines[1:]]} |
|
|