|
|
|
|
|
"""The Multilingual Amazon Reviews Corpus""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
from datasets.exceptions import DefunctDatasetError |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Please refer to https://huggingface.co/datasets/defunct-datasets/amazon_reviews_multi. |
|
""" |
|
|
|
_LANGUAGES = { |
|
"de": "German", |
|
"en": "English", |
|
"es": "Spanish", |
|
"fr": "French", |
|
"ja": "Japanese", |
|
"zh": "Chinese", |
|
} |
|
_ALL_LANGUAGES = "all_languages" |
|
_VERSION = "1.0.0" |
|
_HOMEPAGE_URL = "https://huggingface.co/datasets/defunct-datasets/amazon_reviews_multi" |
|
_DOWNLOAD_URL = "https://huggingface.co/datasets/buruzaemon/amazon_reviews_multi/resolve/main/{lang}/{split}.jsonl.gz" |
|
|
|
|
|
class AmazonReviewsMultiConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for AmazonReviewsMultiConfig.""" |
|
|
|
def __init__(self, languages=None, **kwargs): |
|
super(AmazonReviewsMultiConfig, self).__init__(version=datasets.Version(_VERSION, ""), **kwargs), |
|
self.languages = languages |
|
|
|
|
|
class AmazonReviewsMulti(datasets.GeneratorBasedBuilder): |
|
"""The Multilingual Amazon Reviews Corpus""" |
|
|
|
BUILDER_CONFIGS = [ |
|
AmazonReviewsMultiConfig( |
|
name=_ALL_LANGUAGES, |
|
languages=_LANGUAGES, |
|
description="A collection of Amazon reviews specifically designed to aid research in multilingual text classification.", |
|
) |
|
] + [ |
|
AmazonReviewsMultiConfig( |
|
name=lang, |
|
languages=[lang], |
|
description=f"{_LANGUAGES[lang]} examples from a collection of Amazon reviews specifically designed to aid research in multilingual text classification", |
|
) |
|
for lang in _LANGUAGES |
|
] |
|
BUILDER_CONFIG_CLASS = AmazonReviewsMultiConfig |
|
DEFAULT_CONFIG_NAME = _ALL_LANGUAGES |
|
|
|
def _info(self): |
|
|
|
|
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"review_id": datasets.Value("string"), |
|
"product_id": datasets.Value("string"), |
|
"reviewer_id": datasets.Value("string"), |
|
"stars": datasets.Value("int32"), |
|
"review_body": datasets.Value("string"), |
|
"review_title": datasets.Value("string"), |
|
"language": datasets.Value("string"), |
|
"product_category": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
license=None, |
|
homepage=_HOMEPAGE_URL, |
|
citation=None, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
train_urls = [_DOWNLOAD_URL.format(split="train", lang=lang) for lang in self.config.languages] |
|
dev_urls = [_DOWNLOAD_URL.format(split="validation", lang=lang) for lang in self.config.languages] |
|
test_urls = [_DOWNLOAD_URL.format(split="test", lang=lang) for lang in self.config.languages] |
|
|
|
train_paths = dl_manager.download_and_extract(train_urls) |
|
dev_paths = dl_manager.download_and_extract(dev_urls) |
|
test_paths = dl_manager.download_and_extract(test_urls) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"file_paths": train_paths}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"file_paths": dev_paths}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"file_paths": test_paths}), |
|
] |
|
|
|
def _generate_examples(self, file_paths): |
|
row_count = 0 |
|
for file_path in file_paths: |
|
with open(file_path, "r", encoding="utf-8") as f: |
|
for line in f: |
|
yield row_count, json.loads(line) |
|
row_count += 1 |
|
|