import os import gradio as gr import modules.scripts as scripts from modules.upscaler import Upscaler, UpscalerData from modules import scripts, shared, images, scripts_postprocessing from modules.processing import ( StableDiffusionProcessing, StableDiffusionProcessingImg2Img, ) from modules.shared import cmd_opts, opts, state from PIL import Image import glob from modules.face_restoration import FaceRestoration from scripts.roop_logging import logger from scripts.swapper import UpscaleOptions, swap_face, ImageResult from scripts.roop_version import version_flag import os def get_models(): models_path = os.path.join(scripts.basedir(), "models" + os.path.sep + "roop" + os.path.sep + "*") models = glob.glob(models_path) models = [x for x in models if x.endswith(".onnx") or x.endswith(".pth")] return models class FaceSwapScript(scripts.Script): def title(self): return f"roop" def show(self, is_img2img): return scripts.AlwaysVisible def ui(self, is_img2img): with gr.Accordion(f"roop {version_flag}", open=False): with gr.Column(): img = gr.inputs.Image(type="pil") enable = gr.Checkbox(False, placeholder="enable", label="Enable") faces_index = gr.Textbox( value="0", placeholder="Which face to swap (comma separated), start from 0", label="Comma separated face number(s)", ) with gr.Row(): face_restorer_name = gr.Radio( label="Restore Face", choices=["None"] + [x.name() for x in shared.face_restorers], value=shared.face_restorers[0].name(), type="value", ) face_restorer_visibility = gr.Slider( 0, 1, 1, step=0.1, label="Restore visibility" ) upscaler_name = gr.inputs.Dropdown( choices=[upscaler.name for upscaler in shared.sd_upscalers], label="Upscaler", ) upscaler_scale = gr.Slider(1, 8, 1, step=0.1, label="Upscaler scale") upscaler_visibility = gr.Slider( 0, 1, 1, step=0.1, label="Upscaler visibility (if scale = 1)" ) models = get_models() if len(models) == 0: logger.warning( "You should at least have one model in models directory, please read the doc here : https://github.com/s0md3v/sd-webui-roop/" ) model = gr.inputs.Dropdown( choices=models, label="Model not found, please download one and reload automatic 1111", ) else: model = gr.inputs.Dropdown( choices=models, label="Model", default=models[0] ) swap_in_source = gr.Checkbox( False, placeholder="Swap face in source image", label="Swap in source image", visible=is_img2img, ) swap_in_generated = gr.Checkbox( True, placeholder="Swap face in generated image", label="Swap in generated image", visible=is_img2img, ) return [ img, enable, faces_index, model, face_restorer_name, face_restorer_visibility, upscaler_name, upscaler_scale, upscaler_visibility, swap_in_source, swap_in_generated, ] @property def upscaler(self) -> UpscalerData: for upscaler in shared.sd_upscalers: if upscaler.name == self.upscaler_name: return upscaler return None @property def face_restorer(self) -> FaceRestoration: for face_restorer in shared.face_restorers: if face_restorer.name() == self.face_restorer_name: return face_restorer return None @property def upscale_options(self) -> UpscaleOptions: return UpscaleOptions( scale=self.upscaler_scale, upscaler=self.upscaler, face_restorer=self.face_restorer, upscale_visibility=self.upscaler_visibility, restorer_visibility=self.face_restorer_visibility, ) def process( self, p: StableDiffusionProcessing, img, enable, faces_index, model, face_restorer_name, face_restorer_visibility, upscaler_name, upscaler_scale, upscaler_visibility, swap_in_source, swap_in_generated, ): self.source = img self.face_restorer_name = face_restorer_name self.upscaler_scale = upscaler_scale self.upscaler_visibility = upscaler_visibility self.face_restorer_visibility = face_restorer_visibility self.enable = enable self.upscaler_name = upscaler_name self.swap_in_generated = swap_in_generated self.model = model self.faces_index = { int(x) for x in faces_index.strip(",").split(",") if x.isnumeric() } if len(self.faces_index) == 0: self.faces_index = {0} if self.enable: if self.source is not None: if isinstance(p, StableDiffusionProcessingImg2Img) and swap_in_source: logger.info(f"roop enabled, face index %s", self.faces_index) for i in range(len(p.init_images)): logger.info(f"Swap in source %s", i) result = swap_face( self.source, p.init_images[i], faces_index=self.faces_index, model=self.model, upscale_options=self.upscale_options, ) p.init_images[i] = result.image() else: logger.error(f"Please provide a source face") def postprocess_batch(self, *args, **kwargs): if self.enable: return images def postprocess_image(self, p, script_pp: scripts.PostprocessImageArgs, *args): if self.enable and self.swap_in_generated: if self.source is not None: image: Image.Image = script_pp.image result: ImageResult = swap_face( self.source, image, faces_index=self.faces_index, model=self.model, upscale_options=self.upscale_options, ) pp = scripts_postprocessing.PostprocessedImage(result.image()) pp.info = {} p.extra_generation_params.update(pp.info) script_pp.image = pp.image