import copy import os from dataclasses import dataclass from typing import List, Union import cv2 import numpy as np from PIL import Image import insightface from modules.face_restoration import FaceRestoration from modules import codeformer_model from modules.upscaler import UpscalerData from modules.shared import state from scripts.reactor_logger import logger try: from modules.paths_internal import models_path except: try: from modules.paths import models_path except: model_path = os.path.abspath("models") import warnings np.warnings = warnings np.warnings.filterwarnings('ignore') providers = ["CPUExecutionProvider"] @dataclass class EnhancementOptions: do_restore_first: bool = True scale: int = 1 upscaler: UpscalerData = None upscale_visibility: float = 0.5 face_restorer: FaceRestoration = None restorer_visibility: float = 0.5 codeformer_weight: float = 0.5 MESSAGED_STOPPED = False MESSAGED_SKIPPED = False def reset_messaged(): global MESSAGED_STOPPED, MESSAGED_SKIPPED if not state.interrupted: MESSAGED_STOPPED = False if not state.skipped: MESSAGED_SKIPPED = False def check_process_halt(msgforced: bool = False): global MESSAGED_STOPPED, MESSAGED_SKIPPED if state.interrupted: if not MESSAGED_STOPPED or msgforced: logger.info("Stopped by User") MESSAGED_STOPPED = True return True if state.skipped: if not MESSAGED_SKIPPED or msgforced: logger.info("Skipped by User") MESSAGED_SKIPPED = True return True return False FS_MODEL = None CURRENT_FS_MODEL_PATH = None ANALYSIS_MODEL = None def getAnalysisModel(): global ANALYSIS_MODEL if ANALYSIS_MODEL is None: ANALYSIS_MODEL = insightface.app.FaceAnalysis( name="buffalo_l", providers=providers, root=os.path.join(models_path, "insightface") # note: allowed_modules=['detection', 'genderage'] ) return ANALYSIS_MODEL def getFaceSwapModel(model_path: str): global FS_MODEL global CURRENT_FS_MODEL_PATH if CURRENT_FS_MODEL_PATH is None or CURRENT_FS_MODEL_PATH != model_path: CURRENT_FS_MODEL_PATH = model_path FS_MODEL = insightface.model_zoo.get_model(model_path, providers=providers) return FS_MODEL def restore_face(image: Image, enhancement_options: EnhancementOptions): result_image = image if check_process_halt(msgforced=True): return result_image if enhancement_options.face_restorer is not None: original_image = result_image.copy() logger.info("Restoring the face with %s", enhancement_options.face_restorer.name()) numpy_image = np.array(result_image) if enhancement_options.face_restorer.name() == "CodeFormer": numpy_image = codeformer_model.codeformer.restore( numpy_image, w=enhancement_options.codeformer_weight ) else: numpy_image = enhancement_options.face_restorer.restore(numpy_image) restored_image = Image.fromarray(numpy_image) result_image = Image.blend( original_image, restored_image, enhancement_options.restorer_visibility ) return result_image def upscale_image(image: Image, enhancement_options: EnhancementOptions): result_image = image if check_process_halt(msgforced=True): return result_image if enhancement_options.upscaler is not None and enhancement_options.upscaler.name != "None": original_image = result_image.copy() logger.info( "Upscaling with %s scale = %s", enhancement_options.upscaler.name, enhancement_options.scale, ) result_image = enhancement_options.upscaler.scaler.upscale( original_image, enhancement_options.scale, enhancement_options.upscaler.data_path ) if enhancement_options.scale == 1: result_image = Image.blend( original_image, result_image, enhancement_options.upscale_visibility ) return result_image def enhance_image(image: Image, enhancement_options: EnhancementOptions): result_image = image if check_process_halt(msgforced=True): return result_image if enhancement_options.do_restore_first: result_image = restore_face(result_image, enhancement_options) result_image = upscale_image(result_image, enhancement_options) else: result_image = upscale_image(result_image, enhancement_options) result_image = restore_face(result_image, enhancement_options) return result_image def get_gender(face, face_index): gender = [ x.sex for x in face ] gender.reverse() try: face_gender = gender[face_index] except: logger.error("Gender Detection: No face with index = %s was found", face_index) return "None" return face_gender def get_face_gender( face, face_index, gender_condition, operated: str, gender_detected, ): face_gender = gender_detected if face_gender == "None": return None, 0 logger.info("%s Face %s: Detected Gender -%s-", operated, face_index, face_gender) if (gender_condition == 1 and face_gender == "F") or (gender_condition == 2 and face_gender == "M"): logger.info("OK - Detected Gender matches Condition") try: return sorted(face, key=lambda x: x.bbox[0])[face_index], 0 except IndexError: return None, 0 else: logger.info("WRONG - Detected Gender doesn't match Condition") return sorted(face, key=lambda x: x.bbox[0])[face_index], 1 def get_face_age(face, face_index): age = [ x.age for x in face ] age.reverse() try: face_age = age[face_index] except: logger.error("Age Detection: No face with index = %s was found", face_index) return "None" return face_age # def reget_face_single(img_data: np.ndarray, face, det_size, face_index, gender_source, gender_target): # det_size_half = (det_size[0] // 2, det_size[1] // 2) # return get_face_single(img_data, face, face_index=face_index, det_size=det_size_half, gender_source=gender_source, gender_target=gender_target) def half_det_size(det_size): logger.info("Trying to halve 'det_size' parameter") return (det_size[0] // 2, det_size[1] // 2) def analyze_faces(img_data: np.ndarray, det_size=(640, 640)): face_analyser = copy.deepcopy(getAnalysisModel()) face_analyser.prepare(ctx_id=0, det_size=det_size) return face_analyser.get(img_data) def get_face_single(img_data: np.ndarray, face, face_index=0, det_size=(640, 640), gender_source=0, gender_target=0): buffalo_path = os.path.join(models_path, "insightface/models/buffalo_l.zip") if os.path.exists(buffalo_path): os.remove(buffalo_path) face_age = "None" try: face_age = get_face_age(face, face_index) except: logger.error("Cannot detect any Age for Face index = %s", face_index) face_gender = "None" try: face_gender = get_gender(face, face_index) gender_detected = face_gender face_gender = "Female" if face_gender == "F" else ("Male" if face_gender == "M" else "None") except: logger.error("Cannot detect any Gender for Face index = %s", face_index) if gender_source != 0: if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320: det_size_half = half_det_size(det_size) return get_face_single(img_data, analyze_faces(img_data, det_size_half), face_index, det_size_half, gender_source, gender_target) faces, wrong_gender = get_face_gender(face,face_index,gender_source,"Source",gender_detected) return faces, wrong_gender, face_age, face_gender if gender_target != 0: if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320: det_size_half = half_det_size(det_size) return get_face_single(img_data, analyze_faces(img_data, det_size_half), face_index, det_size_half, gender_source, gender_target) faces, wrong_gender = get_face_gender(face,face_index,gender_target,"Target",gender_detected) return faces, wrong_gender, face_age, face_gender if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320: det_size_half = half_det_size(det_size) return get_face_single(img_data, analyze_faces(img_data, det_size_half), face_index, det_size_half, gender_source, gender_target) try: return sorted(face, key=lambda x: x.bbox[0])[face_index], 0, face_age, face_gender except IndexError: return None, 0, face_age, face_gender def swap_face( source_img: Image.Image, target_img: Image.Image, model: Union[str, None] = None, source_faces_index: List[int] = [0], faces_index: List[int] = [0], enhancement_options: Union[EnhancementOptions, None] = None, gender_source: int = 0, gender_target: int = 0, ): result_image = target_img if check_process_halt(): return result_image, [], 0 if model is not None: if isinstance(source_img, str): # source_img is a base64 string import base64, io if 'base64,' in source_img: # check if the base64 string has a data URL scheme # split the base64 string to get the actual base64 encoded image data base64_data = source_img.split('base64,')[-1] # decode base64 string to bytes img_bytes = base64.b64decode(base64_data) else: # if no data URL scheme, just decode img_bytes = base64.b64decode(source_img) source_img = Image.open(io.BytesIO(img_bytes)) source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR) target_img = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR) output: List = [] output_info: str = "" swapped = 0 logger.info("Analyzing Source Image...") source_faces = analyze_faces(source_img) if source_faces is not None: logger.info("Analyzing Target Image...") target_faces = analyze_faces(target_img) logger.info("Detecting Source Face, Index = %s", source_faces_index[0]) source_face, wrong_gender, source_age, source_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[0], gender_source=gender_source) if source_age != "None" or source_gender != "None": logger.info("Detected: -%s- y.o. %s", source_age, source_gender) output_info = f"SourceFaceIndex={source_faces_index[0]};Age={source_age};Gender={source_gender}\n" output.append(output_info) if len(source_faces_index) != 0 and len(source_faces_index) != 1 and len(source_faces_index) != len(faces_index): logger.info("Source Faces must have no entries (default=0), one entry, or same number of entries as target faces.") elif source_face is not None: result = target_img face_swapper = getFaceSwapModel(model) source_face_idx = 0 for face_num in faces_index: if check_process_halt(): return result_image, [], 0 if len(source_faces_index) > 1 and source_face_idx > 0: logger.info("Detecting Source Face, Index = %s", source_faces_index[source_face_idx]) source_face, wrong_gender, source_age, source_gender = get_face_single(source_img, source_faces, face_index=source_faces_index[source_face_idx], gender_source=gender_source) if source_age != "None" or source_gender != "None": logger.info("Detected: -%s- y.o. %s", source_age, source_gender) output_info = f"SourceFaceIndex={source_faces_index[source_face_idx]};Age={source_age};Gender={source_gender}\n" output.append(output_info) source_face_idx += 1 if source_face is not None and wrong_gender == 0: logger.info("Detecting Target Face, Index = %s", face_num) target_face, wrong_gender, target_age, target_gender = get_face_single(target_img, target_faces, face_index=face_num, gender_target=gender_target) if target_age != "None" or target_gender != "None": logger.info("Detected: -%s- y.o. %s", target_age, target_gender) output_info = f"TargetFaceIndex={face_num};Age={target_age};Gender={target_gender}\n" output.append(output_info) if target_face is not None and wrong_gender == 0: logger.info("Swapping Source into Target") result = face_swapper.get(result, target_face, source_face) swapped += 1 elif wrong_gender == 1: wrong_gender = 0 if source_face_idx == len(source_faces_index): result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)) if enhancement_options is not None and len(source_faces_index) > 1: result_image = enhance_image(result_image, enhancement_options) return result_image, output, swapped else: logger.info(f"No target face found for {face_num}") elif wrong_gender == 1: wrong_gender = 0 if source_face_idx == len(source_faces_index): result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)) if enhancement_options is not None and len(source_faces_index) > 1: result_image = enhance_image(result_image, enhancement_options) return result_image, output, swapped else: logger.info(f"No source face found for face number {source_face_idx}.") result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)) if enhancement_options is not None and swapped > 0: result_image = enhance_image(result_image, enhancement_options) else: logger.info("No source face(s) in the provided Index") else: logger.info("No source face(s) found") return result_image, output, swapped