|
import copy |
|
import math |
|
import os |
|
import tempfile |
|
from dataclasses import dataclass |
|
from typing import List, Union, Dict, Set, Tuple |
|
|
|
import cv2 |
|
import numpy as np |
|
from PIL import Image |
|
|
|
import insightface |
|
import onnxruntime |
|
from scripts.cimage import convert_to_sd |
|
|
|
from modules.face_restoration import FaceRestoration, restore_faces |
|
from modules.upscaler import Upscaler, UpscalerData |
|
from scripts.roop_logging import logger |
|
|
|
providers = ["CPUExecutionProvider"] |
|
|
|
|
|
@dataclass |
|
class UpscaleOptions: |
|
scale: int = 1 |
|
upscaler: UpscalerData = None |
|
upscale_visibility: float = 0.5 |
|
face_restorer: FaceRestoration = None |
|
restorer_visibility: float = 0.5 |
|
|
|
FS_MODEL = None |
|
CURRENT_FS_MODEL_PATH = None |
|
|
|
|
|
def getFaceSwapModel(model_path: str): |
|
global FS_MODEL |
|
global CURRENT_FS_MODEL_PATH |
|
if CURRENT_FS_MODEL_PATH is None or CURRENT_FS_MODEL_PATH != model_path: |
|
CURRENT_FS_MODEL_PATH = model_path |
|
FS_MODEL = insightface.model_zoo.get_model(model_path, providers=providers) |
|
|
|
return FS_MODEL |
|
|
|
|
|
def upscale_image(image: Image, upscale_options: UpscaleOptions): |
|
result_image = image |
|
if upscale_options.upscaler is not None and upscale_options.upscaler.name != "None": |
|
original_image = result_image.copy() |
|
logger.info( |
|
"Upscale with %s scale = %s", |
|
upscale_options.upscaler.name, |
|
upscale_options.scale, |
|
) |
|
result_image = upscale_options.upscaler.scaler.upscale( |
|
image, upscale_options.scale, upscale_options.upscaler.data_path |
|
) |
|
if upscale_options.scale == 1: |
|
result_image = Image.blend( |
|
original_image, result_image, upscale_options.upscale_visibility |
|
) |
|
|
|
if upscale_options.face_restorer is not None: |
|
original_image = result_image.copy() |
|
logger.info("Restore face with %s", upscale_options.face_restorer.name()) |
|
numpy_image = np.array(result_image) |
|
numpy_image = upscale_options.face_restorer.restore(numpy_image) |
|
restored_image = Image.fromarray(numpy_image) |
|
result_image = Image.blend( |
|
original_image, restored_image, upscale_options.restorer_visibility |
|
) |
|
|
|
return result_image |
|
|
|
|
|
def get_face_single(img_data: np.ndarray, face_index=0, det_size=(640, 640)): |
|
face_analyser = insightface.app.FaceAnalysis(name="buffalo_l", providers=providers) |
|
face_analyser.prepare(ctx_id=0, det_size=det_size) |
|
face = face_analyser.get(img_data) |
|
|
|
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320: |
|
det_size_half = (det_size[0] // 2, det_size[1] // 2) |
|
return get_face_single(img_data, face_index=face_index, det_size=det_size_half) |
|
|
|
try: |
|
return sorted(face, key=lambda x: x.bbox[0])[face_index] |
|
except IndexError: |
|
return None |
|
|
|
|
|
@dataclass |
|
class ImageResult: |
|
path: Union[str, None] = None |
|
similarity: Union[Dict[int, float], None] = None |
|
|
|
def image(self) -> Union[Image.Image, None]: |
|
if self.path: |
|
return Image.open(self.path) |
|
return None |
|
|
|
|
|
def swap_face( |
|
source_img: Image.Image, |
|
target_img: Image.Image, |
|
model: Union[str, None] = None, |
|
faces_index: Set[int] = {0}, |
|
upscale_options: Union[UpscaleOptions, None] = None, |
|
) -> ImageResult: |
|
result_image = target_img |
|
converted = convert_to_sd(target_img) |
|
scale, fn = converted[0], converted[1] |
|
if model is not None and not scale: |
|
if isinstance(source_img, str): |
|
import base64, io |
|
if 'base64,' in source_img: |
|
base64_data = source_img.split('base64,')[-1] |
|
img_bytes = base64.b64decode(base64_data) |
|
else: |
|
|
|
img_bytes = base64.b64decode(source_img) |
|
source_img = Image.open(io.BytesIO(img_bytes)) |
|
source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR) |
|
target_img = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR) |
|
source_face = get_face_single(source_img, face_index=0) |
|
if source_face is not None: |
|
result = target_img |
|
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model) |
|
face_swapper = getFaceSwapModel(model_path) |
|
|
|
for face_num in faces_index: |
|
target_face = get_face_single(target_img, face_index=face_num) |
|
if target_face is not None: |
|
result = face_swapper.get(result, target_face, source_face) |
|
else: |
|
logger.info(f"No target face found for {face_num}") |
|
|
|
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)) |
|
if upscale_options is not None: |
|
result_image = upscale_image(result_image, upscale_options) |
|
else: |
|
logger.info("No source face found") |
|
result_image.save(fn.name) |
|
return ImageResult(path=fn.name) |
|
|