artdwn's picture
Upload folder using huggingface_hub
e574ffe
import copy
import math
import os
import tempfile
from dataclasses import dataclass
from typing import List, Union, Dict, Set, Tuple
import cv2
import numpy as np
from PIL import Image
import insightface
import onnxruntime
from scripts.cimage import convert_to_sd
from modules.face_restoration import FaceRestoration, restore_faces
from modules.upscaler import Upscaler, UpscalerData
from scripts.roop_logging import logger
providers = ["CPUExecutionProvider"]
@dataclass
class UpscaleOptions:
scale: int = 1
upscaler: UpscalerData = None
upscale_visibility: float = 0.5
face_restorer: FaceRestoration = None
restorer_visibility: float = 0.5
FS_MODEL = None
CURRENT_FS_MODEL_PATH = None
def getFaceSwapModel(model_path: str):
global FS_MODEL
global CURRENT_FS_MODEL_PATH
if CURRENT_FS_MODEL_PATH is None or CURRENT_FS_MODEL_PATH != model_path:
CURRENT_FS_MODEL_PATH = model_path
FS_MODEL = insightface.model_zoo.get_model(model_path, providers=providers)
return FS_MODEL
def upscale_image(image: Image, upscale_options: UpscaleOptions):
result_image = image
if upscale_options.upscaler is not None and upscale_options.upscaler.name != "None":
original_image = result_image.copy()
logger.info(
"Upscale with %s scale = %s",
upscale_options.upscaler.name,
upscale_options.scale,
)
result_image = upscale_options.upscaler.scaler.upscale(
image, upscale_options.scale, upscale_options.upscaler.data_path
)
if upscale_options.scale == 1:
result_image = Image.blend(
original_image, result_image, upscale_options.upscale_visibility
)
if upscale_options.face_restorer is not None:
original_image = result_image.copy()
logger.info("Restore face with %s", upscale_options.face_restorer.name())
numpy_image = np.array(result_image)
numpy_image = upscale_options.face_restorer.restore(numpy_image)
restored_image = Image.fromarray(numpy_image)
result_image = Image.blend(
original_image, restored_image, upscale_options.restorer_visibility
)
return result_image
def get_face_single(img_data: np.ndarray, face_index=0, det_size=(640, 640)):
face_analyser = insightface.app.FaceAnalysis(name="buffalo_l", providers=providers)
face_analyser.prepare(ctx_id=0, det_size=det_size)
face = face_analyser.get(img_data)
if len(face) == 0 and det_size[0] > 320 and det_size[1] > 320:
det_size_half = (det_size[0] // 2, det_size[1] // 2)
return get_face_single(img_data, face_index=face_index, det_size=det_size_half)
try:
return sorted(face, key=lambda x: x.bbox[0])[face_index]
except IndexError:
return None
@dataclass
class ImageResult:
path: Union[str, None] = None
similarity: Union[Dict[int, float], None] = None # face, 0..1
def image(self) -> Union[Image.Image, None]:
if self.path:
return Image.open(self.path)
return None
def swap_face(
source_img: Image.Image,
target_img: Image.Image,
model: Union[str, None] = None,
faces_index: Set[int] = {0},
upscale_options: Union[UpscaleOptions, None] = None,
) -> ImageResult:
result_image = target_img
converted = convert_to_sd(target_img)
scale, fn = converted[0], converted[1]
if model is not None and not scale:
if isinstance(source_img, str): # source_img is a base64 string
import base64, io
if 'base64,' in source_img: # check if the base64 string has a data URL scheme
base64_data = source_img.split('base64,')[-1]
img_bytes = base64.b64decode(base64_data)
else:
# if no data URL scheme, just decode
img_bytes = base64.b64decode(source_img)
source_img = Image.open(io.BytesIO(img_bytes))
source_img = cv2.cvtColor(np.array(source_img), cv2.COLOR_RGB2BGR)
target_img = cv2.cvtColor(np.array(target_img), cv2.COLOR_RGB2BGR)
source_face = get_face_single(source_img, face_index=0)
if source_face is not None:
result = target_img
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model)
face_swapper = getFaceSwapModel(model_path)
for face_num in faces_index:
target_face = get_face_single(target_img, face_index=face_num)
if target_face is not None:
result = face_swapper.get(result, target_face, source_face)
else:
logger.info(f"No target face found for {face_num}")
result_image = Image.fromarray(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
if upscale_options is not None:
result_image = upscale_image(result_image, upscale_options)
else:
logger.info("No source face found")
result_image.save(fn.name)
return ImageResult(path=fn.name)