File size: 17,568 Bytes
e574ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import os, glob
import gradio as gr
from PIL import Image

from typing import List

import modules.scripts as scripts
from modules.upscaler import Upscaler, UpscalerData
from modules import scripts, shared, images, scripts_postprocessing
from modules.processing import (
    Processed,
    StableDiffusionProcessing,
    StableDiffusionProcessingImg2Img,
)
from modules.face_restoration import FaceRestoration
from modules.images import save_image
try:
    from modules.paths_internal import models_path
except:
    try:
        from modules.paths import models_path
    except:
        model_path = os.path.abspath("models")

from scripts.reactor_logger import logger
from scripts.reactor_swapper import EnhancementOptions, swap_face, check_process_halt, reset_messaged
from scripts.reactor_version import version_flag, app_title
from scripts.console_log_patch import apply_logging_patch
from scripts.reactor_helpers import make_grid, get_image_path


MODELS_PATH = None

def get_models():
    global MODELS_PATH
    models_path_init = os.path.join(models_path, "insightface/*")
    models = glob.glob(models_path_init)
    models = [x for x in models if x.endswith(".onnx") or x.endswith(".pth")]
    models_names = []
    for model in models:
        model_path = os.path.split(model)
        if MODELS_PATH is None:
            MODELS_PATH = model_path[0]
        model_name = model_path[1]
        models_names.append(model_name)
    return models_names


class FaceSwapScript(scripts.Script):
    def title(self):
        return f"{app_title}"

    def show(self, is_img2img):
        return scripts.AlwaysVisible

    def ui(self, is_img2img):
        with gr.Accordion(f"{app_title}", open=False):
            with gr.Tab("Main"):
                with gr.Column():
                    img = gr.Image(type="pil")
                    enable = gr.Checkbox(False, label="Enable", info=f"The Fast and Simple FaceSwap Extension - {version_flag}")
                    save_original = gr.Checkbox(False, label="Save Original", info="Save the original image(s) made before swapping; If you use \"img2img\" - this option will affect with \"Swap in generated\" only")
                    gr.Markdown("<br>")
                    gr.Markdown("Source Image (above):")
                    with gr.Row():
                        source_faces_index = gr.Textbox(
                            value="0",
                            placeholder="Which face(s) to use as Source (comma separated)",
                            label="Comma separated face number(s); Example: 0,2,1",
                        )
                        gender_source = gr.Radio(
                            ["No", "Female Only", "Male Only"],
                            value="No",
                            label="Gender Detection (Source)",
                            type="index",
                        )
                    gr.Markdown("<br>")
                    gr.Markdown("Target Image (result):")
                    with gr.Row():
                        faces_index = gr.Textbox(
                            value="0",
                            placeholder="Which face(s) to Swap into Target (comma separated)",
                            label="Comma separated face number(s); Example: 1,0,2",
                        )
                        gender_target = gr.Radio(
                            ["No", "Female Only", "Male Only"],
                            value="No",
                            label="Gender Detection (Target)",
                            type="index",
                        )
                    gr.Markdown("<br>")
                    with gr.Row():
                        face_restorer_name = gr.Radio(
                            label="Restore Face",
                            choices=["None"] + [x.name() for x in shared.face_restorers],
                            value=shared.face_restorers[0].name(),
                            type="value",
                        )
                        with gr.Column():
                            face_restorer_visibility = gr.Slider(
                                0, 1, 1, step=0.1, label="Restore Face Visibility"
                            )
                            codeformer_weight = gr.Slider(
                                0, 1, 0.5, step=0.1, label="CodeFormer Weight", info="0 = maximum effect, 1 = minimum effect"
                            )
                    gr.Markdown("<br>")
                    swap_in_source = gr.Checkbox(
                        False,
                        label="Swap in source image",
                        visible=is_img2img,
                    )
                    swap_in_generated = gr.Checkbox(
                        True,
                        label="Swap in generated image",
                        visible=is_img2img,
                    )                    
            with gr.Tab("Upscale"):
                restore_first = gr.Checkbox(
                    True,
                    label="1. Restore Face -> 2. Upscale (-Uncheck- if you want vice versa)",
                    info="Postprocessing Order"
                )
                upscaler_name = gr.Dropdown(
                    choices=[upscaler.name for upscaler in shared.sd_upscalers],
                    label="Upscaler",
                    value="None",
                    info="Won't scale if you choose -Swap in Source- via img2img, only 1x-postprocessing will affect (texturing, denoising, restyling etc.)"
                )
                gr.Markdown("<br>")
                with gr.Row():
                    upscaler_scale = gr.Slider(1, 8, 1, step=0.1, label="Scale by")
                    upscaler_visibility = gr.Slider(
                        0, 1, 1, step=0.1, label="Upscaler Visibility (if scale = 1)"
                    )
            with gr.Tab("Settings"):
                models = get_models()
                with gr.Row():
                    if len(models) == 0:
                        logger.warning(
                            "You should at least have one model in models directory, please read the doc here : https://github.com/Gourieff/sd-webui-reactor/"
                        )
                        model = gr.Dropdown(
                            choices=models,
                            label="Model not found, please download one and reload WebUI",
                        )
                    else:
                        model = gr.Dropdown(
                            choices=models, label="Model", value=models[0]
                        )
                    console_logging_level = gr.Radio(
                        ["No log", "Minimum", "Default"],
                        value="Minimum",
                        label="Console Log Level",
                        type="index",
                    )

        return [
            img,
            enable,
            source_faces_index,
            faces_index,
            model,
            face_restorer_name,
            face_restorer_visibility,
            restore_first,
            upscaler_name,
            upscaler_scale,
            upscaler_visibility,
            swap_in_source,
            swap_in_generated,
            console_logging_level,
            gender_source,
            gender_target,
            save_original,
            codeformer_weight,
        ]


    @property
    def upscaler(self) -> UpscalerData:
        for upscaler in shared.sd_upscalers:
            if upscaler.name == self.upscaler_name:
                return upscaler
        return None

    @property
    def face_restorer(self) -> FaceRestoration:
        for face_restorer in shared.face_restorers:
            if face_restorer.name() == self.face_restorer_name:
                return face_restorer
        return None

    @property
    def enhancement_options(self) -> EnhancementOptions:
        return EnhancementOptions(
            do_restore_first = self.restore_first,
            scale=self.upscaler_scale,
            upscaler=self.upscaler,
            face_restorer=self.face_restorer,
            upscale_visibility=self.upscaler_visibility,
            restorer_visibility=self.face_restorer_visibility,
            codeformer_weight=self.codeformer_weight,
        )

    def process(
        self,
        p: StableDiffusionProcessing,
        img,
        enable,
        source_faces_index,
        faces_index,
        model,
        face_restorer_name,
        face_restorer_visibility,
        restore_first,
        upscaler_name,
        upscaler_scale,
        upscaler_visibility,
        swap_in_source,
        swap_in_generated,
        console_logging_level,
        gender_source,
        gender_target,
        save_original,
        codeformer_weight,
    ):
        self.enable = enable
        if self.enable:

            reset_messaged()
            if check_process_halt():
                return
            
            global MODELS_PATH
            self.source = img
            self.face_restorer_name = face_restorer_name
            self.upscaler_scale = upscaler_scale
            self.upscaler_visibility = upscaler_visibility
            self.face_restorer_visibility = face_restorer_visibility
            self.restore_first = restore_first
            self.upscaler_name = upscaler_name       
            self.swap_in_generated = swap_in_generated
            self.model = os.path.join(MODELS_PATH,model)
            self.console_logging_level = console_logging_level
            self.gender_source = gender_source
            self.gender_target = gender_target
            self.save_original = save_original
            self.codeformer_weight = codeformer_weight
            if self.gender_source is None or self.gender_source == "No":
                self.gender_source = 0
            if self.gender_target is None or self.gender_target == "No":
                self.gender_target = 0
            self.source_faces_index = [
                int(x) for x in source_faces_index.strip(",").split(",") if x.isnumeric()
            ]
            self.faces_index = [
                int(x) for x in faces_index.strip(",").split(",") if x.isnumeric()
            ]
            if len(self.source_faces_index) == 0:
                self.source_faces_index = [0]
            if len(self.faces_index) == 0:
                self.faces_index = [0]
            if self.save_original is None:
                self.save_original = False

            if self.source is not None:
                apply_logging_patch(console_logging_level)
                if isinstance(p, StableDiffusionProcessingImg2Img) and swap_in_source:
                    logger.info("Working: source face index %s, target face index %s", self.source_faces_index, self.faces_index)

                    for i in range(len(p.init_images)):
                        if len(p.init_images) > 1:
                            logger.info("Swap in %s", i)
                        result, output, swapped = swap_face(
                            self.source,
                            p.init_images[i],
                            source_faces_index=self.source_faces_index,
                            faces_index=self.faces_index,
                            model=self.model,
                            enhancement_options=self.enhancement_options,
                            gender_source=self.gender_source,
                            gender_target=self.gender_target,
                        )
                        p.init_images[i] = result
                        # result_path = get_image_path(p.init_images[i], p.outpath_samples, "", p.all_seeds[i], p.all_prompts[i], "txt", p=p, suffix="-swapped")
                        # if len(output) != 0:
                        #     with open(result_path, 'w', encoding="utf8") as f:
                        #         f.writelines(output)

                        if shared.state.interrupted or shared.state.skipped:
                            return
            
            else:
                logger.error("Please provide a source face")

    def postprocess(self, p: StableDiffusionProcessing, processed: Processed, *args):
        if self.enable:

            reset_messaged()
            if check_process_halt():
                return

            if self.save_original:

                postprocess_run: bool = True

                orig_images : List[Image.Image] = processed.images[processed.index_of_first_image:]
                orig_infotexts : List[str] = processed.infotexts[processed.index_of_first_image:]

                result_images: List = processed.images
                # result_info: List = processed.infotexts

                if self.swap_in_generated:
                    logger.info("Working: source face index %s, target face index %s", self.source_faces_index, self.faces_index)
                    if self.source is not None:
                        for i,(img,info) in enumerate(zip(orig_images, orig_infotexts)):
                            if check_process_halt():
                                postprocess_run = False
                                break
                            if len(orig_images) > 1:
                                logger.info("Swap in %s", i)
                            result, output, swapped = swap_face(
                                self.source,
                                img,
                                source_faces_index=self.source_faces_index,
                                faces_index=self.faces_index,
                                model=self.model,
                                enhancement_options=self.enhancement_options,
                                gender_source=self.gender_source,
                                gender_target=self.gender_target,
                            )
                            if result is not None and swapped > 0:
                                result_images.append(result)
                                suffix = "-swapped"
                                try:
                                    img_path = save_image(result, p.outpath_samples, "", p.all_seeds[0], p.all_prompts[0], "png",info=info, p=p, suffix=suffix)
                                except:
                                    logger.error("Cannot save a result image - please, check SD WebUI Settings (Saving and Paths)")
                            elif result is None:
                                logger.error("Cannot create a result image")
                            
                            # if len(output) != 0:
                            #     split_fullfn = os.path.splitext(img_path[0])
                            #     fullfn = split_fullfn[0] + ".txt"
                            #     with open(fullfn, 'w', encoding="utf8") as f:
                            #         f.writelines(output)
                
                if shared.opts.return_grid and len(result_images) > 2 and postprocess_run:
                    grid = make_grid(result_images)
                    result_images.insert(0, grid)
                    try:
                        save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], shared.opts.grid_format, info=info, short_filename=not shared.opts.grid_extended_filename, p=p, grid=True)
                    except:
                        logger.error("Cannot save a grid - please, check SD WebUI Settings (Saving and Paths)")
                
                processed.images = result_images
                # processed.infotexts = result_info
    
    def postprocess_batch(self, p, *args, **kwargs):
        if self.enable and not self.save_original:
            images = kwargs["images"]

    def postprocess_image(self, p, script_pp: scripts.PostprocessImageArgs, *args):
        if self.enable and self.swap_in_generated and not self.save_original:

            current_job_number = shared.state.job_no + 1
            job_count = shared.state.job_count
            if current_job_number == job_count:
                reset_messaged()
            if check_process_halt():
                return
            
            if self.source is not None:
                logger.info("Working: source face index %s, target face index %s", self.source_faces_index, self.faces_index)
                image: Image.Image = script_pp.image
                result, output, swapped = swap_face(
                    self.source,
                    image,
                    source_faces_index=self.source_faces_index,
                    faces_index=self.faces_index,
                    model=self.model,
                    enhancement_options=self.enhancement_options,
                    gender_source=self.gender_source,
                    gender_target=self.gender_target,
                )
                try:
                    pp = scripts_postprocessing.PostprocessedImage(result)
                    pp.info = {}
                    p.extra_generation_params.update(pp.info)
                    script_pp.image = pp.image

                    # if len(output) != 0:
                    #     result_path = get_image_path(script_pp.image, p.outpath_samples, "", p.all_seeds[0], p.all_prompts[0], "txt", p=p, suffix="-swapped")
                    #     if len(output) != 0:
                    #         with open(result_path, 'w', encoding="utf8") as f:
                    #             f.writelines(output)
                except:
                    logger.error("Cannot create a result image")