--- dataset_info: features: - name: image_id dtype: int64 - name: image dtype: image - name: width dtype: int64 - name: height dtype: int64 - name: objects sequence: - name: bbox_id dtype: int64 - name: category dtype: class_label: names: '0': person '1': bicycle '2': car '3': motorcycle '4': airplane '5': bus '6': train '7': truck '8': boat '9': traffic light '10': fire hydrant '11': stop sign '12': parking meter '13': bench '14': bird '15': cat '16': dog '17': horse '18': sheep '19': cow '20': elephant '21': bear '22': zebra '23': giraffe '24': backpack '25': umbrella '26': handbag '27': tie '28': suitcase '29': frisbee '30': skis '31': snowboard '32': sports ball '33': kite '34': baseball bat '35': baseball glove '36': skateboard '37': surfboard '38': tennis racket '39': bottle '40': wine glass '41': cup '42': fork '43': knife '44': spoon '45': bowl '46': banana '47': apple '48': sandwich '49': orange '50': broccoli '51': carrot '52': hot dog '53': pizza '54': donut '55': cake '56': chair '57': couch '58': potted plant '59': bed '60': dining table '61': toilet '62': tv '63': laptop '64': mouse '65': remote '66': keyboard '67': cell phone '68': microwave '69': oven '70': toaster '71': sink '72': refrigerator '73': book '74': clock '75': vase '76': scissors '77': teddy bear '78': hair drier '79': toothbrush - name: bbox sequence: float64 length: 4 - name: area dtype: float64 - name: od_string dtype: string splits: - name: train num_bytes: 19253514712.75 num_examples: 117266 - name: val num_bytes: 811554160.0 num_examples: 4952 download_size: 19991132145 dataset_size: 20065068872.75 configs: - config_name: default data_files: - split: train path: data/train-* - split: val path: data/val-* --- Processed the bounding boxes from coco to paligemma like. Reference dataset -> [`detection-datasets/coco`](https://huggingface.co/datasets/detection-datasets/coco)