Adding debug to loading script
Browse files- CTSpine1K.py +30 -45
CTSpine1K.py
CHANGED
@@ -157,20 +157,20 @@ class CTSpine1K(datasets.GeneratorBasedBuilder):
|
|
157 |
|
158 |
training, validation, test = self._load_split(downloaded_files[split_file_idx])
|
159 |
|
160 |
-
self._validate_check(downloaded_files)
|
161 |
|
162 |
return [
|
163 |
datasets.SplitGenerator(
|
164 |
name=datasets.Split.TRAIN,
|
165 |
-
gen_kwargs={"
|
166 |
),
|
167 |
datasets.SplitGenerator(
|
168 |
name=datasets.Split.VALIDATION,
|
169 |
-
gen_kwargs={"
|
170 |
),
|
171 |
datasets.SplitGenerator(
|
172 |
name=datasets.Split.TEST,
|
173 |
-
gen_kwargs={"
|
174 |
),
|
175 |
]
|
176 |
|
@@ -201,21 +201,15 @@ class CTSpine1K(datasets.GeneratorBasedBuilder):
|
|
201 |
return training, validation, test
|
202 |
|
203 |
def _validate_check(self, files: list[str]) -> dict:
|
204 |
-
|
205 |
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
]
|
214 |
-
label_candidates = [
|
215 |
-
file
|
216 |
-
for file in sorted(cache_dir.rglob("rawdata/labels/*/*"))
|
217 |
-
if "nii.gz" in file.as_uri().lower()
|
218 |
-
]
|
219 |
|
220 |
if len(data_candidates) != len(label_candidates):
|
221 |
msg = (
|
@@ -224,29 +218,14 @@ class CTSpine1K(datasets.GeneratorBasedBuilder):
|
|
224 |
)
|
225 |
raise RuntimeError(msg)
|
226 |
|
227 |
-
pairs = zip(
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
file_path, segmentation_path = pairs_lookup[stem]
|
236 |
-
|
237 |
-
if stem not in segmentation_path.name:
|
238 |
-
msg = (
|
239 |
-
"Naming convention seems invalid or violated. ",
|
240 |
-
"Ensure all data was downloaded successfully.",
|
241 |
-
)
|
242 |
-
raise RuntimeError(msg)
|
243 |
-
|
244 |
-
if not ((file_path).is_file() and (segmentation_path).is_file()):
|
245 |
-
msg = (
|
246 |
-
"Data is not a file. Ensure all data was downloaded successfully."
|
247 |
-
f"Failed for {file_path} and {segmentation_path}."
|
248 |
-
)
|
249 |
-
raise RuntimeError(msg)
|
250 |
|
251 |
image_slices = self._get_sample_length(file_path)
|
252 |
segmentation_slices = self._get_sample_length(segmentation_path)
|
@@ -258,9 +237,15 @@ class CTSpine1K(datasets.GeneratorBasedBuilder):
|
|
258 |
)
|
259 |
raise ValueError(msg)
|
260 |
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
-
return
|
264 |
|
265 |
@lru_cache(maxsize=1) # since it does not change # noqa: B019
|
266 |
def _sorted_lookup(self) -> list[Path]:
|
@@ -296,8 +281,8 @@ class CTSpine1K(datasets.GeneratorBasedBuilder):
|
|
296 |
|
297 |
return volume.get_fdata()
|
298 |
|
299 |
-
def _generate_examples(self,
|
300 |
-
print("
|
301 |
for idx in range(len(self)):
|
302 |
image, segmentation, patient_id = self[idx]
|
303 |
yield {
|
|
|
157 |
|
158 |
training, validation, test = self._load_split(downloaded_files[split_file_idx])
|
159 |
|
160 |
+
lookup = self._validate_check(downloaded_files)
|
161 |
|
162 |
return [
|
163 |
datasets.SplitGenerator(
|
164 |
name=datasets.Split.TRAIN,
|
165 |
+
gen_kwargs={"pairs": [lookup[stem] for stem in training]},
|
166 |
),
|
167 |
datasets.SplitGenerator(
|
168 |
name=datasets.Split.VALIDATION,
|
169 |
+
gen_kwargs={"pairs": [lookup[stem] for stem in validation]},
|
170 |
),
|
171 |
datasets.SplitGenerator(
|
172 |
name=datasets.Split.TEST,
|
173 |
+
gen_kwargs={"pairs": [lookup[stem] for stem in test]},
|
174 |
),
|
175 |
]
|
176 |
|
|
|
201 |
return training, validation, test
|
202 |
|
203 |
def _validate_check(self, files: list[str]) -> dict:
|
204 |
+
ffiles = sorted(file for file in files if "nii.gz" in file)
|
205 |
|
206 |
+
data_candidates = []
|
207 |
+
label_candidates = []
|
208 |
+
for file in ffiles:
|
209 |
+
if "labels" in file:
|
210 |
+
label_candidates.append(file)
|
211 |
+
else:
|
212 |
+
data_candidates.append(file)
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
if len(data_candidates) != len(label_candidates):
|
215 |
msg = (
|
|
|
218 |
)
|
219 |
raise RuntimeError(msg)
|
220 |
|
221 |
+
pairs: list[tuple[str, str]] = zip(
|
222 |
+
data_candidates,
|
223 |
+
label_candidates,
|
224 |
+
strict=True,
|
225 |
+
)
|
226 |
+
lookup = {}
|
227 |
+
for input_, label in pairs:
|
228 |
+
file_path, segmentation_path = Path(input_), Path(label)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
image_slices = self._get_sample_length(file_path)
|
231 |
segmentation_slices = self._get_sample_length(segmentation_path)
|
|
|
237 |
)
|
238 |
raise ValueError(msg)
|
239 |
|
240 |
+
# convert 'some/path/to/file/dummy_123.nii.gz' to dummy_123.nii.gz
|
241 |
+
stem = file_path.name
|
242 |
+
if stem.removesuffix("nii.gz") not in segmentation_path:
|
243 |
+
msg = f"Mismatch in sorted pairs. {input_} vs. {label}"
|
244 |
+
raise ValueError(msg)
|
245 |
+
|
246 |
+
lookup[stem] = (file_path, segmentation_path)
|
247 |
|
248 |
+
return lookup
|
249 |
|
250 |
@lru_cache(maxsize=1) # since it does not change # noqa: B019
|
251 |
def _sorted_lookup(self) -> list[Path]:
|
|
|
281 |
|
282 |
return volume.get_fdata()
|
283 |
|
284 |
+
def _generate_examples(self, pairs: list[tuple[Path, Path]]) -> Generator:
|
285 |
+
print("pairs: ", pairs)
|
286 |
for idx in range(len(self)):
|
287 |
image, segmentation, patient_id = self[idx]
|
288 |
yield {
|