import math import re import gradio as gr import modules.scripts as scripts from modules import devices, images, processing, shared from modules.processing import Processed from modules.shared import opts, state from PIL import Image class SDUpscale(scripts.Script): def title(self): return "SD Upscale" def show(self, is_img2img): return is_img2img def ui(self, is_img2img): gr.HTML( """

Upscale the image by the selected Scale Factor; use the Width and Height to set the tile size; use the Batch size to process multiple tiles at once

""" ) with gr.Row(): upscaler_index = gr.Dropdown( label="Upscaler", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index", elem_id=self.elem_id("upscaler_index"), ) scale_factor = gr.Slider( label="Scale Factor", value=2.0, minimum=1.0, maximum=8.0, step=0.05, elem_id=self.elem_id("scale_factor"), ) with gr.Row(): overlap = gr.Slider( label="Tile Overlap", value=64, minimum=0, maximum=256, step=16, elem_id=self.elem_id("overlap"), ) override = gr.Checkbox( label="Save to Extras folder instead", value=False, elem_id=self.elem_id("override"), ) return [overlap, upscaler_index, scale_factor, override] def run(self, p, overlap, upscaler_index, scale_factor, override): if isinstance(upscaler_index, str): upscaler = next( (x for x in shared.sd_upscalers if x.name == upscaler_index), None, ) assert upscaler is not None else: assert isinstance(upscaler_index, int) upscaler = shared.sd_upscalers[upscaler_index] processing.fix_seed(p) p.extra_generation_params["SD Upscale - Overlap"] = overlap p.extra_generation_params["SD Upscale - Upscaler"] = upscaler.name initial_info = None seed = p.seed init_img = p.init_images[0] init_img = images.flatten(init_img, opts.img2img_background_color) if upscaler.name != "None": img = upscaler.scaler.upscale(init_img, scale_factor, upscaler.data_path) else: img = init_img devices.torch_gc() grid = images.split_grid(img, tile_w=p.width, tile_h=p.height, overlap=overlap) batch_size = p.batch_size upscale_count = p.n_iter p.n_iter = 1 p.do_not_save_grid = True p.do_not_save_samples = True work = [] for _, _, row in grid.tiles: for tiledata in row: work.append(tiledata[2]) batch_count = math.ceil(len(work) / batch_size) state.job_count = batch_count * upscale_count print( f""" [SD Upscale] - Processing {len(grid.tiles[0][2])}x{len(grid.tiles)} tiles - totaling {len(work)} images at a batch size of {batch_size} - resulting in {state.job_count} iterations """ ) result_images = [] for n in range(upscale_count): start_seed = seed + n p.seed = start_seed work_results = [] for i in range(batch_count): p.batch_size = batch_size p.init_images = work[i * batch_size : (i + 1) * batch_size] state.job = f"Batch {i + 1 + n * batch_count} out of {state.job_count}" processed = processing.process_images(p) if initial_info is None: initial_info = processed.info p.seed = processed.seed + 1 work_results += processed.images image_index = 0 for _, _, row in grid.tiles: for tiledata in row: tiledata[2] = ( work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height)) ) image_index += 1 combined_image = images.combine_grid(grid) result_images.append(combined_image) if opts.samples_save: if override: images.save_image( combined_image, path=opts.outdir_samples or opts.outdir_extras_samples, basename="", extension=opts.samples_format, info=initial_info, short_filename=True, no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=None, forced_filename=None, suffix="", ) else: images.save_image( combined_image, p.outpath_samples, "", start_seed, p.prompt, opts.samples_format, info=initial_info, p=p, ) new_w, new_h = img.size pattern = r"Size: (\d+)x(\d+)" initial_info = re.sub(pattern, f"Size: {new_w}x{new_h}", initial_info) return Processed(p, result_images, seed, initial_info)