import cv2 import ldm_patched.modules.clip_vision import torch from ldm_patched.modules import model_management from ldm_patched.modules.model_patcher import ModelPatcher from modules.modelloader import load_file_from_url from modules_forge.forge_util import numpy_to_pytorch, resize_image_with_pad from modules_forge.shared import add_supported_preprocessor, preprocessor_dir class PreprocessorParameter: def __init__(self, **kwargs): self.gradio_update_kwargs = dict( minimum=kwargs.pop("minimum", 0.0), maximum=kwargs.pop("maximum", 1.0), step=kwargs.pop("step", 0.1), label=kwargs.pop("label", "n.a."), value=kwargs.pop("value", 0.5), interactive=kwargs.pop("visible", False), # NOTE: now uses `interactive` instead of `visible` **kwargs ) class Preprocessor: def __init__(self): self.name: str = "Base" self.tags: list[str] = [] self.model_filename_filters: list[str] = [] self.slider_resolution = PreprocessorParameter( label="Preprocessor Resolution", minimum=128, maximum=1024, value=512, step=64, visible=True, ) self.slider_1 = PreprocessorParameter() self.slider_2 = PreprocessorParameter() self.model_patcher: ModelPatcher = None self.show_control_mode: bool = True self.do_not_need_model: bool = False self.sorting_priority: int = 0 self.corp_image_with_a1111_mask_when_in_img2img_inpaint_tab: bool = True self.fill_mask_with_one_when_resize_and_fill: bool = False self.use_soft_projection_in_hr_fix: bool = False self.expand_mask_when_resize_and_fill: bool = False def setup_model_patcher(self, model, load_device=None, offload_device=None, dtype=torch.float16, **kwargs): if load_device is None: load_device = model_management.get_torch_device() if offload_device is None: offload_device = torch.device("cpu") if not model_management.should_use_fp16(load_device): dtype = torch.float32 model.eval() model = model.to(device=offload_device, dtype=dtype) self.model_patcher = ModelPatcher(model=model, load_device=load_device, offload_device=offload_device, **kwargs) self.model_patcher.dtype = dtype return self.model_patcher def move_all_model_patchers_to_gpu(self): model_management.load_models_gpu([self.model_patcher]) def send_tensor_to_model_device(self, x): return x.to( device=self.model_patcher.current_device, dtype=self.model_patcher.dtype, ) def process_after_running_preprocessors(self, process, params, *args, **kwargs): pass def process_before_every_sampling(self, process, cond, mask, *args, **kwargs): return cond, mask def process_after_every_sampling(self, process, params, *args, **kwargs): pass def __call__(self, input_image, resolution, slider_1=None, slider_2=None, input_mask=None, **kwargs): return input_image class PreprocessorNone(Preprocessor): def __init__(self): super().__init__() self.name = "None" self.slider_resolution = PreprocessorParameter(visible=False) class PreprocessorCanny(Preprocessor): def __init__(self): super().__init__() self.name = "canny" self.tags = ["Canny"] self.model_filename_filters = ["canny"] self.slider_1 = PreprocessorParameter( minimum=0, maximum=256, step=1, value=100, label="Low Threshold", visible=True, ) self.slider_2 = PreprocessorParameter( minimum=0, maximum=256, step=1, value=200, label="High Threshold", visible=True, ) self.sorting_priority = 100 self.use_soft_projection_in_hr_fix = True def __call__(self, input_image, resolution, slider_1=None, slider_2=None, **kwargs): input_image, remove_pad = resize_image_with_pad(input_image, resolution) canny_image = cv2.cvtColor( cv2.Canny(input_image, int(slider_1), int(slider_2)), cv2.COLOR_GRAY2RGB, ) return remove_pad(canny_image) add_supported_preprocessor(PreprocessorNone()) add_supported_preprocessor(PreprocessorCanny()) class PreprocessorClipVision(Preprocessor): global_cache = {} def __init__(self, name, url, filename): super().__init__() self.name = name self.url = url self.filename = filename self.slider_resolution = PreprocessorParameter(visible=False) self.corp_image_with_a1111_mask_when_in_img2img_inpaint_tab = False self.show_control_mode = False self.sorting_priority = 1 self.clipvision = None def load_clipvision(self): if self.clipvision is not None: return self.clipvision ckpt_path = load_file_from_url( url=self.url, model_dir=preprocessor_dir, file_name=self.filename, ) if ckpt_path in PreprocessorClipVision.global_cache: self.clipvision = PreprocessorClipVision.global_cache[ckpt_path] else: self.clipvision = ldm_patched.modules.clip_vision.load(ckpt_path) PreprocessorClipVision.global_cache[ckpt_path] = self.clipvision return self.clipvision @torch.no_grad() def __call__(self, input_image, resolution, slider_1=None, slider_2=None, **kwargs): clipvision = self.load_clipvision() return clipvision.encode_image(numpy_to_pytorch(input_image))