WhiteAiZ's picture
Upload 1420 files
0070fce verified
import math
import gradio as gr
from modules import images, processing, scripts
from modules.processing import Processed
from modules.shared import opts, state
class Loopback(scripts.Script):
def title(self):
return "Loopback"
def show(self, is_img2img):
return is_img2img
def ui(self, is_img2img):
with gr.Row():
loops = gr.Slider(
minimum=1,
maximum=8,
step=1,
label="Loops",
value=2,
elem_id=self.elem_id("loops"),
)
final_denoising_strength = gr.Slider(
label="Final Denoising Strength",
minimum=0,
maximum=1,
step=0.01,
value=0.5,
elem_id=self.elem_id("final_denoising_strength"),
)
denoising_curve = gr.Dropdown(
label="Denoising Strength Curve",
choices=("Aggressive", "Linear", "Lazy"),
value="Linear",
elem_id=self.elem_id("denoising_strength_curve"),
)
return [loops, final_denoising_strength, denoising_curve]
def run(self, p, loops: int, final_denoising_strength: float, denoising_curve: str):
processing.fix_seed(p)
p.extra_generation_params = {
"Final Denoising Strength": final_denoising_strength,
"Denoising Strength Curve": denoising_curve,
}
batch_count = p.n_iter
p.batch_size = 1
p.n_iter = 1
info = None
initial_seed = None
initial_info = None
initial_denoising_strength = p.denoising_strength
grids = []
all_images = []
original_init_image = p.init_images
original_inpainting_fill = p.inpainting_fill
state.job_count = loops * batch_count
initial_color_corrections = [
processing.setup_color_correction(p.init_images[0])
]
def calculate_denoising_strength(loop):
strength = initial_denoising_strength
if loops == 1:
return strength
progress = loop / (loops - 1)
if denoising_curve == "Aggressive":
strength = math.sin((progress) * math.pi * 0.5)
elif denoising_curve == "Lazy":
strength = 1 - math.cos((progress) * math.pi * 0.5)
else:
strength = progress
change = (final_denoising_strength - initial_denoising_strength) * strength
return initial_denoising_strength + change
history = []
for n in range(batch_count):
# Reset to original init image at the start of each batch
p.init_images = original_init_image
# Reset to original denoising strength
p.denoising_strength = initial_denoising_strength
last_image = None
for i in range(loops):
p.n_iter = 1
p.batch_size = 1
p.do_not_save_grid = True
if opts.img2img_color_correction:
p.color_corrections = initial_color_corrections
state.job = f"Iteration {i + 1}/{loops}, batch {n + 1}/{batch_count}"
processed = processing.process_images(p)
# Generation cancelled
if state.interrupted or state.stopping_generation:
break
if initial_seed is None:
initial_seed = processed.seed
initial_info = processed.info
p.seed = processed.seed + 1
p.denoising_strength = calculate_denoising_strength(i + 1)
if state.skipped:
break
last_image = processed.images[0]
p.init_images = [last_image]
# Set "masked content" to "original" for next loop
p.inpainting_fill = 1
if batch_count == 1:
history.append(last_image)
all_images.append(last_image)
if batch_count > 1 and not state.skipped and not state.interrupted:
history.append(last_image)
all_images.append(last_image)
p.inpainting_fill = original_inpainting_fill
if state.interrupted or state.stopping_generation:
break
if len(history) > 1:
grid = images.image_grid(history, rows=1)
if opts.grid_save:
images.save_image(
grid,
p.outpath_grids,
"grid",
initial_seed,
p.prompt,
opts.grid_format,
info=info,
short_filename=not opts.grid_extended_filename,
grid=True,
p=p,
)
if opts.return_grid:
grids.append(grid)
all_images = grids + all_images
return Processed(p, all_images, initial_seed, initial_info)