|
import math
|
|
|
|
import gradio as gr
|
|
from modules import images, processing, scripts
|
|
from modules.processing import Processed
|
|
from modules.shared import opts, state
|
|
|
|
|
|
class Loopback(scripts.Script):
|
|
def title(self):
|
|
return "Loopback"
|
|
|
|
def show(self, is_img2img):
|
|
return is_img2img
|
|
|
|
def ui(self, is_img2img):
|
|
with gr.Row():
|
|
loops = gr.Slider(
|
|
minimum=1,
|
|
maximum=8,
|
|
step=1,
|
|
label="Loops",
|
|
value=2,
|
|
elem_id=self.elem_id("loops"),
|
|
)
|
|
final_denoising_strength = gr.Slider(
|
|
label="Final Denoising Strength",
|
|
minimum=0,
|
|
maximum=1,
|
|
step=0.01,
|
|
value=0.5,
|
|
elem_id=self.elem_id("final_denoising_strength"),
|
|
)
|
|
denoising_curve = gr.Dropdown(
|
|
label="Denoising Strength Curve",
|
|
choices=("Aggressive", "Linear", "Lazy"),
|
|
value="Linear",
|
|
elem_id=self.elem_id("denoising_strength_curve"),
|
|
)
|
|
|
|
return [loops, final_denoising_strength, denoising_curve]
|
|
|
|
def run(self, p, loops: int, final_denoising_strength: float, denoising_curve: str):
|
|
processing.fix_seed(p)
|
|
p.extra_generation_params = {
|
|
"Final Denoising Strength": final_denoising_strength,
|
|
"Denoising Strength Curve": denoising_curve,
|
|
}
|
|
|
|
batch_count = p.n_iter
|
|
p.batch_size = 1
|
|
p.n_iter = 1
|
|
|
|
info = None
|
|
initial_seed = None
|
|
initial_info = None
|
|
initial_denoising_strength = p.denoising_strength
|
|
|
|
grids = []
|
|
all_images = []
|
|
original_init_image = p.init_images
|
|
original_inpainting_fill = p.inpainting_fill
|
|
state.job_count = loops * batch_count
|
|
|
|
initial_color_corrections = [
|
|
processing.setup_color_correction(p.init_images[0])
|
|
]
|
|
|
|
def calculate_denoising_strength(loop):
|
|
strength = initial_denoising_strength
|
|
|
|
if loops == 1:
|
|
return strength
|
|
|
|
progress = loop / (loops - 1)
|
|
if denoising_curve == "Aggressive":
|
|
strength = math.sin((progress) * math.pi * 0.5)
|
|
elif denoising_curve == "Lazy":
|
|
strength = 1 - math.cos((progress) * math.pi * 0.5)
|
|
else:
|
|
strength = progress
|
|
|
|
change = (final_denoising_strength - initial_denoising_strength) * strength
|
|
return initial_denoising_strength + change
|
|
|
|
history = []
|
|
|
|
for n in range(batch_count):
|
|
|
|
p.init_images = original_init_image
|
|
|
|
|
|
p.denoising_strength = initial_denoising_strength
|
|
|
|
last_image = None
|
|
|
|
for i in range(loops):
|
|
p.n_iter = 1
|
|
p.batch_size = 1
|
|
p.do_not_save_grid = True
|
|
|
|
if opts.img2img_color_correction:
|
|
p.color_corrections = initial_color_corrections
|
|
|
|
state.job = f"Iteration {i + 1}/{loops}, batch {n + 1}/{batch_count}"
|
|
|
|
processed = processing.process_images(p)
|
|
|
|
|
|
if state.interrupted or state.stopping_generation:
|
|
break
|
|
|
|
if initial_seed is None:
|
|
initial_seed = processed.seed
|
|
initial_info = processed.info
|
|
|
|
p.seed = processed.seed + 1
|
|
p.denoising_strength = calculate_denoising_strength(i + 1)
|
|
|
|
if state.skipped:
|
|
break
|
|
|
|
last_image = processed.images[0]
|
|
p.init_images = [last_image]
|
|
|
|
p.inpainting_fill = 1
|
|
|
|
if batch_count == 1:
|
|
history.append(last_image)
|
|
all_images.append(last_image)
|
|
|
|
if batch_count > 1 and not state.skipped and not state.interrupted:
|
|
history.append(last_image)
|
|
all_images.append(last_image)
|
|
|
|
p.inpainting_fill = original_inpainting_fill
|
|
|
|
if state.interrupted or state.stopping_generation:
|
|
break
|
|
|
|
if len(history) > 1:
|
|
grid = images.image_grid(history, rows=1)
|
|
if opts.grid_save:
|
|
images.save_image(
|
|
grid,
|
|
p.outpath_grids,
|
|
"grid",
|
|
initial_seed,
|
|
p.prompt,
|
|
opts.grid_format,
|
|
info=info,
|
|
short_filename=not opts.grid_extended_filename,
|
|
grid=True,
|
|
p=p,
|
|
)
|
|
|
|
if opts.return_grid:
|
|
grids.append(grid)
|
|
|
|
all_images = grids + all_images
|
|
|
|
return Processed(p, all_images, initial_seed, initial_info)
|
|
|