File size: 10,812 Bytes
0070fce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import contextlib

import ldm_patched.modules.clip_vision
import ldm_patched.modules.model_patcher
import ldm_patched.modules.utils
import torch
from ldm_patched.ldm.util import instantiate_from_config
from ldm_patched.modules import model_detection, model_management
from ldm_patched.modules.model_base import ModelType, model_sampling
from ldm_patched.modules.sd import CLIP, VAE, load_model_weights
from modules import sd_hijack, shared
from modules.sd_models_config import find_checkpoint_config
from modules.sd_models_types import WebuiSdModel
from modules_forge import forge_clip
from modules_forge.unet_patcher import UnetPatcher
from omegaconf import OmegaConf


class FakeObject:
    def __init__(self, *args, **kwargs):
        return

    def eval(self, *args, **kwargs):
        return self

    def parameters(self, *args, **kwargs):
        return []


class ForgeObjects:
    def __init__(self, unet, clip, vae, clipvision):
        self.unet = unet
        self.clip = clip
        self.vae = vae
        self.clipvision = clipvision

    def shallow_copy(self):
        return ForgeObjects(self.unet, self.clip, self.vae, self.clipvision)


@torch.no_grad()
def load_checkpoint_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True) -> ForgeObjects:
    clip = None
    clipvision = None
    vae = None
    model = None
    model_patcher = None
    clip_target = None

    parameters = ldm_patched.modules.utils.calculate_parameters(sd, "model.diffusion_model.")
    unet_dtype = model_management.unet_dtype(model_params=parameters)
    load_device = model_management.get_torch_device()
    manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device)

    class WeightsLoader(torch.nn.Module):
        pass

    model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", unet_dtype)
    model_config.set_manual_cast(manual_cast_dtype)

    if model_config is None:
        raise RuntimeError("Could not detect model type")

    if model_config.clip_vision_prefix is not None:
        if output_clipvision:
            clipvision = ldm_patched.modules.clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)

    if output_model:
        initial_load_device = model_management.unet_initial_load_device(parameters, unet_dtype)
        print("UNet dtype:", unet_dtype)
        model = model_config.get_model(sd, "model.diffusion_model.", device=initial_load_device)
        model.load_model_weights(sd, "model.diffusion_model.")

    if output_vae:
        vae_sd = ldm_patched.modules.utils.state_dict_prefix_replace(sd, {"first_stage_model.": ""}, filter_keys=True)
        vae_sd = model_config.process_vae_state_dict(vae_sd)
        vae = VAE(sd=vae_sd)

    if output_clip:
        w = WeightsLoader()
        clip_target = model_config.clip_target()
        if clip_target is not None:
            clip = CLIP(clip_target, embedding_directory=embedding_directory)
            w.cond_stage_model = clip.cond_stage_model
            sd = model_config.process_clip_state_dict(sd)
            load_model_weights(w, sd)

    left_over = sd.keys()
    if len(left_over) > 0:
        print("left over keys:", left_over)

    if output_model:
        model_patcher = UnetPatcher(
            model,
            load_device=load_device,
            offload_device=model_management.unet_offload_device(),
            current_device=initial_load_device,
        )
        if initial_load_device != torch.device("cpu"):
            print("loaded straight to GPU")
            model_management.load_model_gpu(model_patcher)

    return ForgeObjects(model_patcher, clip, vae, clipvision)


@torch.no_grad()
def load_model_for_a1111(timer, checkpoint_info=None, state_dict=None) -> WebuiSdModel:
    ztsnr = False
    if state_dict is not None:
        ztsnr = state_dict.pop("ztsnr", None) is not None

    a1111_config_filename = find_checkpoint_config(state_dict, checkpoint_info)
    a1111_config = OmegaConf.load(a1111_config_filename)
    timer.record("forge solving config")

    for obj in ("unet_config", "network_config", "first_stage_config"):
        if hasattr(a1111_config.model.params, obj):
            getattr(a1111_config.model.params, obj).target = "modules_forge.forge_loader.FakeObject"

    sd_model: WebuiSdModel = instantiate_from_config(a1111_config.model)

    del a1111_config
    timer.record("forge instantiate config")

    forge_objects = load_checkpoint_guess_config(
        state_dict,
        output_vae=True,
        output_clip=True,
        output_clipvision=True,
        embedding_directory=shared.cmd_opts.embeddings_dir,
        output_model=True,
    )

    sd_model.forge_objects = forge_objects
    sd_model.forge_objects_original = forge_objects.shallow_copy()
    sd_model.forge_objects_after_applying_lora = forge_objects.shallow_copy()

    del state_dict
    timer.record("forge load real models")

    sd_model.first_stage_model = forge_objects.vae.first_stage_model
    sd_model.model.diffusion_model = forge_objects.unet.model.diffusion_model

    conditioner = getattr(sd_model, "conditioner", None)
    sd_model.is_sdxl = conditioner is not None

    if sd_model.is_sdxl:
        for i in range(len(conditioner.embedders)):
            embedder = conditioner.embedders[i]
            typename = type(embedder).__name__

            if typename == "FrozenCLIPEmbedder":  # Clip L
                embedder.tokenizer = forge_objects.clip.tokenizer.clip_l.tokenizer
                embedder.transformer = forge_objects.clip.cond_stage_model.clip_l.transformer
                model_embeddings = embedder.transformer.text_model.embeddings
                model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(model_embeddings.token_embedding, sd_hijack.model_hijack)
                conditioner.embedders[i] = forge_clip.CLIP_SD_XL_L(embedder, sd_hijack.model_hijack)

            elif typename == "FrozenOpenCLIPEmbedder2":  # Clip G
                embedder.tokenizer = forge_objects.clip.tokenizer.clip_g.tokenizer
                embedder.transformer = forge_objects.clip.cond_stage_model.clip_g.transformer
                embedder.text_projection = forge_objects.clip.cond_stage_model.clip_g.text_projection
                model_embeddings = embedder.transformer.text_model.embeddings
                model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(model_embeddings.token_embedding, sd_hijack.model_hijack, textual_inversion_key="clip_g")
                conditioner.embedders[i] = forge_clip.CLIP_SD_XL_G(embedder, sd_hijack.model_hijack)

            elif typename == "ConcatTimestepEmbedderND":
                embedder.device = model_management.text_encoder_device()

        sd_model.cond_stage_model = conditioner

    else:
        assert type(sd_model.cond_stage_model).__name__ == "FrozenCLIPEmbedder"
        sd_model.cond_stage_model.tokenizer = forge_objects.clip.tokenizer.clip_l.tokenizer
        sd_model.cond_stage_model.transformer = forge_objects.clip.cond_stage_model.clip_l.transformer
        model_embeddings = sd_model.cond_stage_model.transformer.text_model.embeddings
        model_embeddings.token_embedding = sd_hijack.EmbeddingsWithFixes(model_embeddings.token_embedding, sd_hijack.model_hijack)

        sd_model.cond_stage_model = forge_clip.CLIP_SD_15_L(sd_model.cond_stage_model, sd_hijack.model_hijack)

    timer.record("forge set components")

    sd_model_hash = checkpoint_info.calculate_shorthash()
    timer.record("calculate hash")

    if getattr(sd_model, "parameterization", None) == "v":
        sd_model.forge_objects.unet.model.model_sampling = model_sampling(sd_model.forge_objects.unet.model.model_config, ModelType.V_PREDICTION)
        sd_model.alphas_cumprod_original = sd_model.alphas_cumprod

    sd_model.ztsnr = ztsnr
    sd_model.is_sd2 = False
    sd_model.is_sd1 = not sd_model.is_sdxl
    sd_model.sd_model_hash = sd_model_hash
    sd_model.sd_model_checkpoint = checkpoint_info.filename
    sd_model.sd_checkpoint_info = checkpoint_info

    apply_alpha_schedule_override(sd_model)

    @torch.inference_mode()
    def patched_decode_first_stage(x):
        sample = sd_model.forge_objects.unet.model.model_config.latent_format.process_out(x)
        sample = sd_model.forge_objects.vae.decode(sample).movedim(-1, 1) * 2.0 - 1.0
        return sample.to(x)

    @torch.inference_mode()
    def patched_encode_first_stage(x):
        sample = sd_model.forge_objects.vae.encode(x.movedim(1, -1) * 0.5 + 0.5)
        sample = sd_model.forge_objects.unet.model.model_config.latent_format.process_in(sample)
        return sample.to(x)

    sd_model.ema_scope = lambda *args, **kwargs: contextlib.nullcontext()
    sd_model.get_first_stage_encoding = lambda x: x
    sd_model.decode_first_stage = patched_decode_first_stage
    sd_model.encode_first_stage = patched_encode_first_stage
    sd_model.clip = sd_model.cond_stage_model
    sd_model.tiling_enabled = False
    timer.record("forge finalize")

    sd_model.current_lora_hash = str([])
    return sd_model


def rescale_zero_terminal_snr_abar(alphas_cumprod):
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas_bar[-1] = 4.8973451890853435e-08
    return alphas_bar


def apply_alpha_schedule_override(sd_model, p=None):
    """
    Applies an override to the alpha schedule of the model according to settings.
    - downcasts the alpha schedule to half precision
    - rescales the alpha schedule to have zero terminal SNR
    """

    if not (hasattr(sd_model, "alphas_cumprod") and hasattr(sd_model, "alphas_cumprod_original")):
        return

    sd_model.alphas_cumprod = sd_model.alphas_cumprod_original.to(shared.device)

    if shared.opts.use_downcasted_alpha_bar:
        if p is not None:
            p.extra_generation_params["Downcast alphas_cumprod"] = shared.opts.use_downcasted_alpha_bar
        sd_model.alphas_cumprod = sd_model.alphas_cumprod.half().to(shared.device)

    if getattr(sd_model, "ztsnr", False) or shared.opts.sd_noise_schedule == "Zero Terminal SNR":
        if p is not None:
            p.extra_generation_params["Noise Schedule"] = "Zero Terminal SNR"
        sd_model.alphas_cumprod = rescale_zero_terminal_snr_abar(sd_model.alphas_cumprod).to(shared.device)


ForgeSD = ForgeObjects