File size: 5,660 Bytes
0070fce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import { unescapeHtml } from '.'
// Fork from https://github.com/jiw0220/stable-diffusion-image-metadata/blob/main/src/index.ts
type ImageMeta = {
prompt?: string;
negativePrompt?: string;
steps?: string;
sampler?: string;
cfgScale?: string;
seed?: string;
clipSkip?: string;
hashes?: { [k: string]: any };
width?: number;
height?: number;
resources?: Resource[];
} & Record<string, any>;
type Resource = {
type: string;
name: string;
weight?: number;
hash?: string;
};
type PreProcessValueFn = (v: string) => string;
type PreProcessValue = string;
const imageMetadataKeys: Array<[string, string]> = [
['Seed', 'seed'],
['CFG scale', 'cfgScale'],
['Sampler', 'sampler'],
['Steps', 'steps'],
['Clip skip', 'clipSkip'],
['Size', 'size'],
];
const imageMetaKeyMap = new Map<string, string>(imageMetadataKeys);
const automaticExtraNetsRegex = /<(lora|hypernet):([a-zA-Z0-9_.]+):([0-9.]+)>/g;
const automaticNameHash = /([a-zA-Z0-9_.]+)\(([a-zA-Z0-9]+)\)/;
const getImageMetaKey = (key: string, keyMap: Map<string, string>) => keyMap.get(key.trim()) ?? key.trim();
const stripKeys = ['Template: ', 'Negative Template: '] as const;
function preproccessFormatJSONValueFn(v: string) {
try {
return JSON.parse(encodeURIComponent(v));
} catch (e) {
return v;
}
}
function preproccessFormatHandler(configValue: PreProcessValue | PreProcessValueFn, inputValue: string) {
if (typeof configValue === 'function') {
return configValue.call(null, inputValue);
}
return configValue;
}
const tryParseJson = (v: string) => {
try {
return JSON.parse(v);
} catch (e) {
return v;
}
}
const preproccessConfigs = [
{ reg: /(ControlNet \d+): "([^"]+)"/g },
{ reg: /(Lora hashes): "([^"]+)"/g },
{ reg: /(Hashes): ({[^}]+})/g, key: 'hashes', value: preproccessFormatJSONValueFn },
//...There should be many configs that need to be preprocessed in the future
];
export function parse(parameters: string): ImageMeta {
const metadata: ImageMeta = {};
if (!parameters) return metadata;
const metaLines = parameters.split('\n').filter((line) => {
return line.trim() !== '' && !stripKeys.some((key) => line.startsWith(key));
});
const detailsLineIndex = metaLines.findIndex((line) => line.startsWith('Steps: '));
let detailsLine = metaLines[detailsLineIndex] || '';
// Strip it from the meta lines
if (detailsLineIndex > -1) metaLines.splice(detailsLineIndex, 1);
// Remove meta keys I wish I hadn't made... :(
detailsLine = unescapeHtml(detailsLine)
const preprecessedMatchValuesList = [] as any[];
preproccessConfigs.forEach(({ reg, key: configKey, value: configValue }) => {
const matchData: any = {};
const matchValues = [];
let match;
while ((match = reg.exec(detailsLine)) !== null) {
const key = configKey !== void 0 ? preproccessFormatHandler(configKey, match[1]) : match[1];
const value = configValue !== void 0 ? preproccessFormatHandler(configValue, match[2]) : match[2];
matchData[key] = value;
matchValues.push(match[0]);
}
matchValues.forEach((value) => (detailsLine = detailsLine.replace(value, '')));
preprecessedMatchValuesList.push(matchData);
});
const regex = /\s*([\w ]+):\s*("(?:\\"[^,]|\\"|\\|[^"])+"|[^,]*)(?:,|$)/g;
let match;
while ((match = regex.exec(detailsLine)) !== null) {
let k = match[1];
const v = match[2].replace(/\\(.)/g, '$1');
if (!k) continue;
k = getImageMetaKey(k, imageMetaKeyMap);
metadata[k.trim()] = tryParseJson((v ?? '').trim());
}
// 这些信息不是很重要,所以推后
preprecessedMatchValuesList.forEach((matchData) => {
Object.assign(metadata, matchData);
});
// Extract prompts
const [prompt, ...negativePrompt] = metaLines
.join('\n')
.split('Negative prompt:')
.map((x) => x.trim());
metadata.prompt = prompt;
metadata.negativePrompt = negativePrompt.join(' ').trim();
// Extract resources
const extranets = [...prompt.matchAll(automaticExtraNetsRegex)];
const resources: Resource[] = extranets.map(([, type, name, weight]) => ({
type,
name,
weight: parseFloat(weight),
}));
if (metadata.Size || metadata.size) {
const sizes = (metadata.Size || metadata.size || '0x0').split('x');
if (!metadata.width) {
metadata.width = parseFloat(sizes[0]) || 0;
}
if (!metadata.height) {
metadata.height = parseFloat(sizes[1]) || 0;
}
}
if (metadata['Model'] && metadata['Model hash']) {
const model = metadata['Model'] as string;
const modelHash = metadata['Model hash'] as string;
if (typeof metadata.hashes !== 'object') metadata.hashes = {};
if (!metadata.hashes['model']) metadata.hashes['model'] = modelHash;
resources.push({
type: 'model',
name: model,
hash: modelHash,
});
}
if (metadata['Hypernet'] && metadata['Hypernet strength'])
resources.push({
type: 'hypernet',
name: metadata['Hypernet'] as string,
weight: parseFloat(metadata['Hypernet strength'] as string),
});
if (metadata['AddNet Enabled'] === 'True') {
let i = 1;
// eslint-disable-next-line no-constant-condition
while (true) {
const fullname = metadata[`AddNet Model ${i}`] as string;
if (!fullname) break;
const [, name, hash] = fullname.match(automaticNameHash) ?? [];
resources.push({
type: (metadata[`AddNet Module ${i}`] as string).toLowerCase(),
name,
hash,
weight: parseFloat(metadata[`AddNet Weight ${i}`] as string),
});
i++;
}
}
metadata.resources = resources;
return metadata;
}
|