{ "paper_id": "S18-1003", "header": { "generated_with": "S2ORC 1.0.0", "date_generated": "2023-01-19T15:45:07.831739Z" }, "title": "SemEval 2018 Task 2: Multilingual Emoji Prediction", "authors": [ { "first": "Francesco", "middle": [], "last": "Barbieri", "suffix": "", "affiliation": { "laboratory": "Large Scale Text Understanding Systems Lab", "institution": "TALN. UPF", "location": { "settlement": "Barcelona", "country": "Spain" } }, "email": "" }, { "first": "Jose", "middle": [], "last": "Camacho-Collados", "suffix": "", "affiliation": { "laboratory": "", "institution": "IMIM-UPF", "location": { "settlement": "Barcelona", "country": "Spain" } }, "email": "camachocolladosj@cardiff.ac.uk" }, { "first": "Francesco", "middle": [], "last": "Ronzano", "suffix": "", "affiliation": { "laboratory": "", "institution": "University of Turin", "location": { "country": "Italy" } }, "email": "" }, { "first": "Luis", "middle": [], "last": "Espinosa-Anke", "suffix": "", "affiliation": { "laboratory": "", "institution": "IMIM-UPF", "location": { "settlement": "Barcelona", "country": "Spain" } }, "email": "espinosa-ankel@cardiff.ac.uk" }, { "first": "Miguel", "middle": [], "last": "Ballesteros", "suffix": "", "affiliation": {}, "email": "miguel.ballesteros@ibm.com" }, { "first": "Valerio", "middle": [], "last": "Basile", "suffix": "", "affiliation": { "laboratory": "", "institution": "University of Turin", "location": { "country": "Italy" } }, "email": "basile@di.unito.it" }, { "first": "Viviana", "middle": [], "last": "Patti", "suffix": "", "affiliation": { "laboratory": "", "institution": "University of Turin", "location": { "country": "Italy" } }, "email": "patti@di.unito.it" }, { "first": "Horacio", "middle": [], "last": "Saggion", "suffix": "", "affiliation": { "laboratory": "Large Scale Text Understanding Systems Lab", "institution": "TALN. UPF", "location": { "settlement": "Barcelona", "country": "Spain" } }, "email": "" } ], "year": "", "venue": null, "identifiers": {}, "abstract": "This paper describes the results of the first shared task on Multilingual Emoji Prediction, organized as part of SemEval 2018. Given the text of a tweet, the task consists of predicting the most likely emoji to be used along such tweet. Two subtasks were proposed, one for English and one for Spanish, and participants were allowed to submit a system run to one or both subtasks. In total, 49 teams participated in the English subtask and 22 teams submitted a system run to the Spanish subtask. Evaluation was carried out emoji-wise, and the final ranking was based on macro F-Score. Data and further information about this task can be found at https://competitions. codalab.org/competitions/17344.", "pdf_parse": { "paper_id": "S18-1003", "_pdf_hash": "", "abstract": [ { "text": "This paper describes the results of the first shared task on Multilingual Emoji Prediction, organized as part of SemEval 2018. Given the text of a tweet, the task consists of predicting the most likely emoji to be used along such tweet. Two subtasks were proposed, one for English and one for Spanish, and participants were allowed to submit a system run to one or both subtasks. In total, 49 teams participated in the English subtask and 22 teams submitted a system run to the Spanish subtask. Evaluation was carried out emoji-wise, and the final ranking was based on macro F-Score. Data and further information about this task can be found at https://competitions. codalab.org/competitions/17344.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Abstract", "sec_num": null } ], "body_text": [ { "text": "Emojis are small ideograms depicting objects, people, and scenes (Cappallo et al., 2015) . Emojis are one of the main components of a novel way of communication emerging from the advent of social media. They complement (usually) short text messages with a visual enhancement which is, as of now, a de-facto standard for online communication (Barbieri et al., 2017) . Figure 1 shows an example of a social media message displaying an emoji.", "cite_spans": [ { "start": 65, "end": 88, "text": "(Cappallo et al., 2015)", "ref_id": "BIBREF12" }, { "start": 341, "end": 364, "text": "(Barbieri et al., 2017)", "ref_id": "BIBREF3" } ], "ref_spans": [ { "start": 367, "end": 375, "text": "Figure 1", "ref_id": "FIGREF0" } ], "eq_spans": [], "section": "Introduction", "sec_num": "1" }, { "text": "Sometimes I think I wanna change the world... and I forget it just starts with changing me. Emojis 1 can be considered somehow an evolution of character-based emoticons (Pavalanathan and Eisenstein, 2015) , and currently they represent a widespread and pervasive global communication device largely adopted by almost any social media service and instant messaging platforms.", "cite_spans": [ { "start": 169, "end": 204, "text": "(Pavalanathan and Eisenstein, 2015)", "ref_id": "BIBREF39" } ], "ref_spans": [], "eq_spans": [], "section": "Introduction", "sec_num": "1" }, { "text": "Any system targeting the task of modeling social media communication is expected to tackle the usage of emojis. In fact, their semantic load is sufficiently rich that oversimplifying them to sentiment carriers or boosters would be to neglect the semantic richness of these ideograms, which in addition to mood ( ) include in their vocabulary references to food ( ), sports ( ), scenery ( ), etc 2 . In general, however, effectively predicting the emoji associated with a piece of content may help to improve different NLP tasks (Novak et al., 2015) , such as information retrieval, generation of emoji-enriched social media content, suggestion of emojis when writing text messages or sharing pictures online. Given that emojis may also mislead humans (Barbieri et al., 2017; Miller et al., 2017) , the automated prediction of emojis may help to achieve better language understanding. As a consequence, by modeling the semantics of emojis, we can improve highly-subjective tasks like sentiment analysis, emotion recognition and irony detection (Felbo et al., 2017) .", "cite_spans": [ { "start": 528, "end": 548, "text": "(Novak et al., 2015)", "ref_id": "BIBREF38" }, { "start": 751, "end": 774, "text": "(Barbieri et al., 2017;", "ref_id": "BIBREF3" }, { "start": 775, "end": 795, "text": "Miller et al., 2017)", "ref_id": "BIBREF34" }, { "start": 1043, "end": 1063, "text": "(Felbo et al., 2017)", "ref_id": "BIBREF21" } ], "ref_spans": [], "eq_spans": [], "section": "Introduction", "sec_num": "1" }, { "text": "In this context, Barbieri et al. (2017) introduced the task of emoji prediction in Twitter by training several models based on bidirectional Long Short-Term Memory networks (LSTMs) (Graves, 2012) , and showing they can outperform humans in solv-ing the same task. These promising results motivated us to propose the first shared task on Multilingual Emoji Prediction. Following the experimental setting proposed by Barbieri et al. (2017) , the task consists of predicting most likely emoji associated of a given text-only Twitter message. Only tweets with a single emoji are included in the task datasets (trial, train and test sets), so that the challenge can be cast as a single label classification problem.", "cite_spans": [ { "start": 17, "end": 39, "text": "Barbieri et al. (2017)", "ref_id": "BIBREF3" }, { "start": 181, "end": 195, "text": "(Graves, 2012)", "ref_id": "BIBREF23" }, { "start": 415, "end": 437, "text": "Barbieri et al. (2017)", "ref_id": "BIBREF3" } ], "ref_spans": [], "eq_spans": [], "section": "Introduction", "sec_num": "1" }, { "text": "In this paper, we first motivate and describe the main elements of this shared task (Section 2 and 3). Then, we cover the dataset compilation, curation and release process (Section 4). In Section 5 we detail the evaluation metrics and describe the overall results obtained by participating systems. Finally, we wrap this task description paper up with the main conclusions drawn from the organization of this challenge, as well as outlining potential avenues for future work, in Section 6.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Introduction", "sec_num": "1" }, { "text": "Modeling the semantics of emojis, and their applications thereof, is a relatively novel research problem with direct applications in any social media task. By explicitly modeling emojis as selfcontaining semantic units, the goal is to alleviate the lack of an associated grammar. This context, which makes it difficult to encode a clear and univocous single meaning for each emoji, has given rise to work considering emojis as function words or even affective markers (Na'aman et al., 2017) , potentially affecting the overall semantics of longer utterances like sentences (Monti et al., 2016; Donato and Paggio, 2017) .", "cite_spans": [ { "start": 468, "end": 490, "text": "(Na'aman et al., 2017)", "ref_id": "BIBREF37" }, { "start": 573, "end": 593, "text": "(Monti et al., 2016;", "ref_id": "BIBREF36" }, { "start": 594, "end": 618, "text": "Donato and Paggio, 2017)", "ref_id": "BIBREF18" } ], "ref_spans": [], "eq_spans": [], "section": "Related Work", "sec_num": "2" }, { "text": "The polysemy of emoji has been explored userwise (Miller et al., 2017) , location-wise, specifically in countries (Barbieri et al., 2016b ) and cities (Barbieri et al., 2016a) , gender-wise, time-wise (Barbieri et al., 2018b; Chen et al., 2017) , and even device-wise, due to the fact that emojis may have different pictorial characteristics (and therefore, different interpretations), depending on the device (e.g., Iphone, Android, Samsung, etc.) or app (Whatsapp, Twitter, Facebook, and so forth) 3 (Tigwell and Flatla, 2016; Miller et al., 2016) .", "cite_spans": [ { "start": 49, "end": 70, "text": "(Miller et al., 2017)", "ref_id": "BIBREF34" }, { "start": 114, "end": 137, "text": "(Barbieri et al., 2016b", "ref_id": "BIBREF6" }, { "start": 151, "end": 175, "text": "(Barbieri et al., 2016a)", "ref_id": "BIBREF5" }, { "start": 201, "end": 225, "text": "(Barbieri et al., 2018b;", "ref_id": "BIBREF7" }, { "start": 226, "end": 244, "text": "Chen et al., 2017)", "ref_id": "BIBREF15" }, { "start": 502, "end": 528, "text": "(Tigwell and Flatla, 2016;", "ref_id": "BIBREF45" }, { "start": 529, "end": 549, "text": "Miller et al., 2016)", "ref_id": "BIBREF35" } ], "ref_spans": [], "eq_spans": [], "section": "Related Work", "sec_num": "2" }, { "text": "Today, modeling emoji semantics via vector representations is a well defined avenue of work. Contributions in this respect include models trained on Twitter data (Barbieri et al., 2016c) , Twitter data together with the official unicode description (Eisner et al., 2016) , or using text from a popular keyboard app . In the latter contribution it is argued that emojis used in an affective context are more likely to become popular, and in general, the most important factor for an emoji to become popular is to have a clear meaning. In fact, the area of emoji vector evaluation has also experienced a significant growth as of recent. For instance, Wijeratne et al. (2017a) propose a platform for exploring emoji semantics. Further studies on evaluating emoji semantics may now be carried out by leveraging two recently introduced datasets with pairwise emoji similarity, with human annotations, namely EmoTwi50 (Barbieri et al., 2016c) and EmoSim508 (Wijeratne et al., 2017b) . In the application avenue, emoji similarity has been studied for proposing efficient keyboard emoji organization, essentially for placing similar emojis close in the keyboard (Pohl et al., 2017 ).", "cite_spans": [ { "start": 162, "end": 186, "text": "(Barbieri et al., 2016c)", "ref_id": "BIBREF8" }, { "start": 249, "end": 270, "text": "(Eisner et al., 2016)", "ref_id": "BIBREF20" }, { "start": 912, "end": 936, "text": "(Barbieri et al., 2016c)", "ref_id": "BIBREF8" }, { "start": 941, "end": 976, "text": "EmoSim508 (Wijeratne et al., 2017b)", "ref_id": null }, { "start": 1154, "end": 1172, "text": "(Pohl et al., 2017", "ref_id": "BIBREF40" } ], "ref_spans": [], "eq_spans": [], "section": "Related Work", "sec_num": "2" }, { "text": "An aspect related with emoji semantic modeling in which awareness is increasing dramatically is the inherent bias existing in these representations. For example, Barbieri and Camacho-Collados (2018) show that emoji modifiers can affect the semantics of emojis (they looked specifically into skin tones and gender). This recent line of research has also been explored in Robertson et al. (2018) who argue, for example, that users with darker-skinned profile photos employ skin modifiers more often than users with lighterskinned profile photos, and that the vast majority of skin tone usage matches the color of a user's profile photo.", "cite_spans": [ { "start": 162, "end": 198, "text": "Barbieri and Camacho-Collados (2018)", "ref_id": "BIBREF4" } ], "ref_spans": [], "eq_spans": [], "section": "Related Work", "sec_num": "2" }, { "text": "The application of well defined emoji representations in extrinsic tasks is, an open area of research. A natural application, however, lies in the context of sentiment analysis. This has fostered research, for example, in creating sentiment lexicons for emojis (Novak et al., 2015; Kimura and Katsurai, 2017; Rodrigues et al., 2018) , or in studying how emojis may be used to retrieve tweets with specific emotional content (Wood and Ruder, 2016) . Moreover, Hu et al. (2017) study how emojis affect the sentiment of a text message, and show that not all emojis have the same impact. Finally, the fact that emojis carry sentiment and emotion information is verified in the study by Felbo et al. (2017) , where an emoji prediction classifier is used as pre-trained system, and then is fine-tuned for predicting sentiment, emotions and irony.", "cite_spans": [ { "start": 261, "end": 281, "text": "(Novak et al., 2015;", "ref_id": "BIBREF38" }, { "start": 282, "end": 308, "text": "Kimura and Katsurai, 2017;", "ref_id": "BIBREF30" }, { "start": 309, "end": 332, "text": "Rodrigues et al., 2018)", "ref_id": "BIBREF43" }, { "start": 424, "end": 446, "text": "(Wood and Ruder, 2016)", "ref_id": "BIBREF50" }, { "start": 682, "end": 701, "text": "Felbo et al. (2017)", "ref_id": "BIBREF21" } ], "ref_spans": [], "eq_spans": [], "section": "Related Work", "sec_num": "2" }, { "text": "The last item to be covered in this review involves multimodality. Recently, emojis have been also studied from a prism where visual signals are incorporated, taking advantage of existing social media platforms like Instagram, with a strong focus on visual content. Recent contributions show that the usage of emojis depends on both textual and visual content, but seem to agree in that, in general, textual information is more relevant for the task of emoji prediction (Cappallo et al., 2015 (Cappallo et al., , 2018 Barbieri et al., 2018a) .", "cite_spans": [ { "start": 470, "end": 492, "text": "(Cappallo et al., 2015", "ref_id": "BIBREF12" }, { "start": 493, "end": 517, "text": "(Cappallo et al., , 2018", "ref_id": "BIBREF13" }, { "start": 518, "end": 541, "text": "Barbieri et al., 2018a)", "ref_id": "BIBREF2" } ], "ref_spans": [], "eq_spans": [], "section": "Related Work", "sec_num": "2" }, { "text": "Given a text message including an emoji, the emoji prediction task consists of predicting that emoji by relying exclusively on the textual content of that message. In particular, in this task we focused on the one emoji occurring inside tweets, thus relying on Twitter data.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Task Description", "sec_num": "3" }, { "text": "Last hike in our awesome camping weekend! Figure 2 : Example of tweet with an emoji at the end, considered in the emoji prediction task.", "cite_spans": [], "ref_spans": [ { "start": 42, "end": 50, "text": "Figure 2", "ref_id": null } ], "eq_spans": [], "section": "Task Description", "sec_num": "3" }, { "text": "The task is divided into two subtasks respectively dealing with the prediction of the emoji associated to English and Spanish tweets. The motivation for providing a multilingual setting stems from previous findings about the idiosyncrasy of use of emojis across languages (Barbieri et al., 2016b ) (see Figure 3 ): one emoji may be used with completely different meanings depending not only on the language of the speaker, but also on regional dialects (Barbieri et al., 2016a) .", "cite_spans": [ { "start": 272, "end": 295, "text": "(Barbieri et al., 2016b", "ref_id": "BIBREF6" }, { "start": 453, "end": 477, "text": "(Barbieri et al., 2016a)", "ref_id": "BIBREF5" } ], "ref_spans": [ { "start": 303, "end": 311, "text": "Figure 3", "ref_id": null } ], "eq_spans": [], "section": "Task Description", "sec_num": "3" }, { "text": "For each subtask we selected the tweets that included one of the twenty emojis that occur most frequently in the Twitter data we collected (Table 1 ). Therefore, the task can be viewed as a multilabel classification problem with twenty labels.", "cite_spans": [], "ref_spans": [ { "start": 139, "end": 148, "text": "(Table 1", "ref_id": "TABREF0" } ], "eq_spans": [], "section": "Task Description", "sec_num": "3" }, { "text": "Twitter datasets were shared among participants by providing a list of tweet IDs 4 or directly the 4 Participants were provided with a Javabased crawler (https://github.com/fra82/ twitter-crawler) to ease the download of the textual It's flipping hot out here! Iniciamos el nuevo a\u00f1o con ilusi\u00f3n! Figure 3 : Example of distinct use of the fire emoji across languages: the first tweet (English) comments on the torrid weather, while the second one (Spanish) exploits the same emoji to wish an happy new year ('We start the new year with enthusiasm!'). text of each tweet. The last approach was adopted to share the test sets (more details are provided in Section 4).", "cite_spans": [ { "start": 99, "end": 100, "text": "4", "ref_id": null } ], "ref_spans": [ { "start": 297, "end": 305, "text": "Figure 3", "ref_id": null } ], "eq_spans": [], "section": "Task Description", "sec_num": "3" }, { "text": "The data for the task consists of a list of tweets associated with a given emoji (i.e. label). As explained in the previous section, the dataset includes tweets that contain one and only one emoji, of the 20 most frequent emojis. We split the data in trial 5 , training and test data. The quantity of tweets per set is displayed in Table 2 .", "cite_spans": [], "ref_spans": [ { "start": 332, "end": 339, "text": "Table 2", "ref_id": "TABREF1" } ], "eq_spans": [], "section": "Task Data", "sec_num": "4" }, { "text": "The tweets were retrieved with the Twitter APIs and geolocalized in United States and Spain for subtasks 1 and 2, respectively. As for the trial and training data, the tweets were gathered from October 2015 to February 2017, whereas for the test data we decided to gather the tweets corresponding to the last months until the evaluation period started (from May 2017 to Jan 2018). This would prevent participants from gathering these tweets before-hand and also would enable us to test the emoji prediction task on a more realistic setting, as the test data is subsequent to the training data. content of tweets from the ID list.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Task Data", "sec_num": "4" }, { "text": "English 50,000 500,000 50,000 Spanish 10,000 100,000 10,000 ", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Test", "sec_num": null }, { "text": "This section introduces the overall evaluation setting of this shared task. We first describe briefly the evaluation metrics used and then provide a succinct description of the baseline system.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Evaluation", "sec_num": "5" }, { "text": "As this was a single label classification problem, the classic precision (Prec.), recall (Recall), fscore (F1) and accuracy (Acc.) were used as official evaluation metrics. Note that because of the skewed distribution of the label set we opted for macro average over all labels.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Evaluation Metrics", "sec_num": "5.1" }, { "text": "The baseline system for this task was a classifier based on FastText 6 (Joulin et al., 2017) . Given a set of N documents, the loss that the model attempts to minimize is the negative log-likelihood over the labels (in our case, the emojis):", "cite_spans": [ { "start": 71, "end": 92, "text": "(Joulin et al., 2017)", "ref_id": "BIBREF29" } ], "ref_spans": [], "eq_spans": [], "section": "Baseline", "sec_num": "5.2" }, { "text": "loss = \u2212 1 N n=1 N e n log(softmax (BA xn ))", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Baseline", "sec_num": "5.2" }, { "text": "where e n is the emoji included in the n-th Twitter post, represented as hot vector, and used as label. Hyperparameters were set as default 7 .", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Baseline", "sec_num": "5.2" }, { "text": "Due to the overwhelming number of participants, we cannot describe all systems. 8 We do, however, 6 github.com/facebookresearch/fastText 7 https://github.com/facebookresearch/ fastText#full-documentation 8 This is the list of systems that ranked below the baseline in either of the subtasks: #TeamINF (Ribeiro and Silva, 2018) , CENNLP (J R et al., 2018), DUTH (Effrosynidis et al., 2018) , ECNU (Lu et al., 2018) , EICA (Xie and Song, 2018), EPUTION (Zhou et al., 2018) , LIS (Guibon et al., 2018) , Manchester Metropolitan (Gerber and Shardlow, 2018), Peperomia (Chen et al., 2018) , PickleTeam! (Groot et al., 2018) , Shi (Shiyun et al., 2018) , SyntNN (Zanzotto and Santilli, 2018), TAJJEB (Basile and Lino, 2018) , The Dabblers (Alexa et al., 2018) , THU NGN , Tweety (Kopev et al., 2018) , UMDSub (Wang and Pedersen, 2018) , YNU-HPCC . Note that some participants did not submit a final paper but they are included in the results table.", "cite_spans": [ { "start": 80, "end": 81, "text": "8", "ref_id": null }, { "start": 98, "end": 99, "text": "6", "ref_id": null }, { "start": 301, "end": 326, "text": "(Ribeiro and Silva, 2018)", "ref_id": "BIBREF41" }, { "start": 361, "end": 388, "text": "(Effrosynidis et al., 2018)", "ref_id": "BIBREF19" }, { "start": 396, "end": 413, "text": "(Lu et al., 2018)", "ref_id": "BIBREF33" }, { "start": 451, "end": 470, "text": "(Zhou et al., 2018)", "ref_id": "BIBREF54" }, { "start": 477, "end": 498, "text": "(Guibon et al., 2018)", "ref_id": "BIBREF25" }, { "start": 564, "end": 583, "text": "(Chen et al., 2018)", "ref_id": "BIBREF44" }, { "start": 598, "end": 618, "text": "(Groot et al., 2018)", "ref_id": "BIBREF24" }, { "start": 625, "end": 646, "text": "(Shiyun et al., 2018)", "ref_id": "BIBREF44" }, { "start": 694, "end": 717, "text": "(Basile and Lino, 2018)", "ref_id": "BIBREF9" }, { "start": 733, "end": 753, "text": "(Alexa et al., 2018)", "ref_id": "BIBREF1" }, { "start": 773, "end": 793, "text": "(Kopev et al., 2018)", "ref_id": "BIBREF31" }, { "start": 803, "end": 828, "text": "(Wang and Pedersen, 2018)", "ref_id": "BIBREF47" } ], "ref_spans": [], "eq_spans": [], "section": "Participant Systems", "sec_num": "5.3" }, { "text": "briefly mention the main features of some significant systems ranked above the baseline in either of the subtasks.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Participant Systems", "sec_num": "5.3" }, { "text": "\u2022 T\u00fcbingen-Oslo (\u00c7\u00f6ltekin and Rama, 2018).", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Participant Systems", "sec_num": "5.3" }, { "text": "This supervised system consists of an SVM classifier with bag-of-n-grams features (both characters and words). T\u00fcbingen-Oslo is the top performing system in both tasks.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Participant Systems", "sec_num": "5.3" }, { "text": "\u2022 NTUA-SLP (Baziotis et al., 2018) . This system uses a Bi-LSTM with attention, and pretrained word2vec vectors. They used external resources for associating each tweet with information on emotions, concreteness, familiarity, and others. They only participated in the English subtask but they classified second (according to the F1 score) with the highest recall.", "cite_spans": [ { "start": 11, "end": 34, "text": "(Baziotis et al., 2018)", "ref_id": "BIBREF10" } ], "ref_spans": [], "eq_spans": [], "section": "Participant Systems", "sec_num": "5.3" }, { "text": "\u2022 EmoNLP (Liu, 2018) . This system is based on a Gradient Boosting Regression Tree Approach combined with a Bi-LSTM on character and word ngrams. It is complemented with several lexicons as well as learning sentiment specific word embeddings.", "cite_spans": [ { "start": 9, "end": 20, "text": "(Liu, 2018)", "ref_id": "BIBREF32" } ], "ref_spans": [], "eq_spans": [], "section": "Participant Systems", "sec_num": "5.3" }, { "text": "\u2022 UMDuluth-CS8761 (Beaulieu and Asamoah Owusu, 2018) This supervised system combines an SVM with a bag-of-words approach for extracting salient features. This is one of the most competitive systems with the highest precision in English and the third best result in Spanish.", "cite_spans": [ { "start": 18, "end": 52, "text": "(Beaulieu and Asamoah Owusu, 2018)", "ref_id": "BIBREF11" } ], "ref_spans": [], "eq_spans": [], "section": "Participant Systems", "sec_num": "5.3" }, { "text": "\u2022 Hatching Chick (Coster et al., 2018) . This system builds an SVM classifier (with gradient descent optimization) on words and character ngrams. They obtained the second best result in the Spanish subtask, but their English system performed worse than the baseline.", "cite_spans": [ { "start": 17, "end": 38, "text": "(Coster et al., 2018)", "ref_id": "BIBREF17" } ], "ref_spans": [], "eq_spans": [], "section": "Participant Systems", "sec_num": "5.3" }, { "text": "\u2022 TAJJEB (Basile and Lino, 2018) . This system made use of an SVM classifier over wide variety of features such as tf-idf, part-ofspeech tags and bigrams. The system was competitive on both languages, outperforming the baseline on the Spanish dataset.", "cite_spans": [ { "start": 9, "end": 32, "text": "(Basile and Lino, 2018)", "ref_id": "BIBREF9" } ], "ref_spans": [], "eq_spans": [], "section": "Participant Systems", "sec_num": "5.3" }, { "text": "\u2022 Duluth UROP (Jin and Pedersen, 2018 (19) . We also report the relative frequency percentage of each emoji in the test set.", "cite_spans": [ { "start": 14, "end": 37, "text": "(Jin and Pedersen, 2018", "ref_id": "BIBREF28" }, { "start": 38, "end": 42, "text": "(19)", "ref_id": null } ], "ref_spans": [], "eq_spans": [], "section": "Participant Systems", "sec_num": "5.3" }, { "text": "Each system was evaluated according to its capacity to perform well across all emojis under consideration. As mentioned, and due to the skewed distribution of the label set, we evaluated each participating system according to Macro F-Score (F1). The overall results are provided in Table 3 , and already several interesting conclusions can be drawn from them. For instance, it is noteworthy the fact that the best systems for both subtasks are more than 10 points apart (English better), which suggests that a one-size-fits-all model may be suboptimal for this task, and that indeed the particularities of each individual language should be taken into consideration for best performance. The most precise systems were EmoNLP and T\u00fcbingen-Oslo, whereas the highest Recall was obtained by NTUA-SLP and again T\u00fcbingen-Oslo (English and Spanish respectively, in both cases). Clearly, the T\u00fcbingen-Oslo system shows a fine balance between precision and recall, perhaps due to its little preprocessing, fine-tuning and reliance on external libraries. It seems reasonable to assume, thus, that combining word and ngram embeddings as features, with SVMs and NN classifiers, provides a robust and high performing architecture for emoji prediction, with the added value of being resource/knowledge agnostic.", "cite_spans": [], "ref_spans": [ { "start": 282, "end": 289, "text": "Table 3", "ref_id": null } ], "eq_spans": [], "section": "Results", "sec_num": "5.4" }, { "text": "This evaluation is finally complemented with the overall emoji-wise performance across all systems (Table 4 ). The lexical notion of near synonymy seems to clearly apply to emojis as well, as we can clearly see a worse performance on those emojis which are pictorically similar (e.g., the photo camera with and without flash, or the expected confusion between least frequent hearts and the red heart, which accounts for over 20% of the whole label set in the test data).", "cite_spans": [], "ref_spans": [ { "start": 99, "end": 107, "text": "(Table 4", "ref_id": "TABREF3" } ], "eq_spans": [], "section": "Analysis", "sec_num": "5.5" }, { "text": "Finally, emojis with several interpretations and less frequent seem to be much more difficult to predict (e.g., the face in the English and Spanish dataset, and in the Spanish dataset). Zhou et al. (2018) showed in their system description paper how exploiting user-specific features may provide significance performance boosts. 9 This additional user-specific information may clearly help in these difficult cases which proved to be hard for all systems.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Analysis", "sec_num": "5.5" }, { "text": "In this paper we have described the SemEval 2018 shared task in multilingual emoji prediction. The task, consisting in predicting the most likely emoji given the text of a tweet, was well received, with almost 50 system runs submitted to the English subtask and more than 20 to the Spanish subtask. One of the main conclusions that can be drawn is that the baseline we used (FastText) was highly competitive, with only 6 and 5 system runs performing better in English and Spanish. Table 3 : Ranking of the participating systems by precision, recall, F1 and accuracy for the English track and the Spanish track. Those above the horizontal line ranked above the task baseline.", "cite_spans": [], "ref_spans": [ { "start": 481, "end": 488, "text": "Table 3", "ref_id": null } ], "eq_spans": [], "section": "Conclusions", "sec_num": "6" }, { "text": "In terms of participating systems, and according to the post-participation survey the participants completed, we can see a high prevalence of neural approaches, with only 9 systems opting for more traditional linear models (6 SVMs, 3 Random Forests). Among the chosen neural architectures, LSTMs and CNNs are by far the preferred ones. It is noteworthy, however, the excellent performance of SVMs as used in the best performing system on both English and Spanish datasets.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Conclusions", "sec_num": "6" }, { "text": "This task has set the foundations for upcoming work on modeling emoji semantics, first, by providing a standardized testbed for emoji prediction in two languages, and second, by providing a comprehensive evaluation with a wide range of ideas, which we hope are of use for future research. Emojis, undoubtedly, are becoming increasingly important in understanding social media communication and in human-computer interaction, and thus we believe the problem of modeling emoji semantics can be further extended as follows. 1Leveraging multimodal information (e.g., associated images (Barbieri et al., 2018a) ); (2) incorporating more and more diverse languages (one step in this direction will be the re-run of this task for Italian at the Evalita 2018 evaluation campaign 10 ); and (3) considering individual and communicative contexts for overall performance improvements.", "cite_spans": [ { "start": 581, "end": 605, "text": "(Barbieri et al., 2018a)", "ref_id": "BIBREF2" } ], "ref_spans": [], "eq_spans": [], "section": "Conclusions", "sec_num": "6" }, { "text": "https://unicode.org/emoji/charts/ full-emoji-list.html 2 https://unicode.org/emoji/charts/ emoji-ordering.html", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null }, { "text": "The image that represents the same emoji can vary, e.g., for the emoji U+1F40F, the following are over different renderings by platform in Unicode v11 (up to April 2018): Apple , Google , Twitter , EmojiOne , Facebook , Samsung , Windows .", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null }, { "text": "Trial data was used as development by participants.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null }, { "text": "The use of user-specific data was not allowed by the main competition regulations and therefore none of the systems in the final ranking made use of it.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null } ], "back_matter": [ { "text": "We thank all the participants of the task. Francesco B. and Horacio S. acknowledge support from the TUNER project (TIN2015-65308-C5-5-R, MINECO/FEDER, UE) and the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502). The work of V. Patti and V. Basile was partially funded by the IHatePrejudice project (S1618 L2 BOSC 01).", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Acknowledgments", "sec_num": null } ], "bib_entries": { "BIBREF0": { "ref_id": "b0", "title": "Untangling emoji popularity through semantic embeddings", "authors": [ { "first": "Wei", "middle": [], "last": "Ai", "suffix": "" }, { "first": "Xuan", "middle": [], "last": "Lu", "suffix": "" }, { "first": "Xuanzhe", "middle": [], "last": "Liu", "suffix": "" }, { "first": "Ning", "middle": [], "last": "Wang", "suffix": "" }, { "first": "Gang", "middle": [], "last": "Huang", "suffix": "" }, { "first": "Qiaozhu", "middle": [], "last": "Mei", "suffix": "" } ], "year": 2017, "venue": "ICWSM", "volume": "", "issue": "", "pages": "2--11", "other_ids": {}, "num": null, "urls": [], "raw_text": "Wei Ai, Xuan Lu, Xuanzhe Liu, Ning Wang, Gang Huang, and Qiaozhu Mei. 2017. Untangling emoji popularity through semantic embeddings. In ICWSM, pages 2-11.", "links": null }, "BIBREF1": { "ref_id": "b1", "title": "The dabblers at semeval-2018 task 2: Multilingual emoji prediction", "authors": [ { "first": "Larisa", "middle": [], "last": "Alexa", "suffix": "" }, { "first": "Alina", "middle": [], "last": "Lorent", "suffix": "" }, { "first": "Daniela", "middle": [], "last": "Gifu", "suffix": "" }, { "first": "Diana", "middle": [], "last": "Trandabat", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "10", "issue": "", "pages": "402--406", "other_ids": {}, "num": null, "urls": [], "raw_text": "Larisa Alexa, Alina Lorent, Daniela Gifu, and Diana Trandabat. 2018. The dabblers at semeval-2018 task 2: Multilingual emoji prediction. In Proceedings of The 12th International Workshop on Semantic Eval- uation, pages 402-406, New Orleans, Louisiana. Association for Computational Linguistics. 10 http://www.evalita.it/2018", "links": null }, "BIBREF2": { "ref_id": "b2", "title": "Multimodal emoji prediction", "authors": [ { "first": "Francesco", "middle": [], "last": "Barbieri", "suffix": "" }, { "first": "Miguel", "middle": [], "last": "Ballesteros", "suffix": "" }, { "first": "Francesco", "middle": [], "last": "Ronzano", "suffix": "" }, { "first": "Horacio", "middle": [], "last": "Saggion", "suffix": "" } ], "year": 2018, "venue": "Proceedings of NAACL: Short Papers", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Francesco Barbieri, Miguel Ballesteros, Francesco Ronzano, and Horacio Saggion. 2018a. Multimodal emoji prediction. In Proceedings of NAACL: Short Papers, New Orleans, US. Association for Compu- tational Linguistics.", "links": null }, "BIBREF3": { "ref_id": "b3", "title": "Are emojis predictable?", "authors": [ { "first": "Francesco", "middle": [], "last": "Barbieri", "suffix": "" }, { "first": "Miguel", "middle": [], "last": "Ballesteros", "suffix": "" }, { "first": "Horacio", "middle": [], "last": "Saggion", "suffix": "" } ], "year": 2017, "venue": "Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics", "volume": "2", "issue": "", "pages": "105--111", "other_ids": {}, "num": null, "urls": [], "raw_text": "Francesco Barbieri, Miguel Ballesteros, and Horacio Saggion. 2017. Are emojis predictable? In Pro- ceedings of the 15th Conference of the European Chapter of the Association for Computational Lin- guistics: Volume 2, Short Papers, pages 105-111, Valencia, Spain. Association for Computational Lin- guistics.", "links": null }, "BIBREF4": { "ref_id": "b4", "title": "How Gender and Skin Tone Modifiers Affect Emoji Semantics in Twitter", "authors": [ { "first": "Francesco", "middle": [], "last": "Barbieri", "suffix": "" }, { "first": "Jose", "middle": [], "last": "Camacho-Collados", "suffix": "" } ], "year": 2018, "venue": "Proceedings of the 7th Joint Conference on Lexical and Computational Semantics (*SEM 2018)", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Francesco Barbieri and Jose Camacho-Collados. 2018. How Gender and Skin Tone Modifiers Affect Emoji Semantics in Twitter. In Proceedings of the 7th Joint Conference on Lexical and Computational Seman- tics (*SEM 2018), New Orleans, LA, United States.", "links": null }, "BIBREF5": { "ref_id": "b5", "title": "Revealing patterns of Twitter emoji usage in Barcelona and Madrid", "authors": [ { "first": "Francesco", "middle": [], "last": "Barbieri", "suffix": "" }, { "first": "Luis", "middle": [], "last": "Espinosa-Anke", "suffix": "" }, { "first": "Horacio", "middle": [], "last": "Saggion", "suffix": "" } ], "year": 2016, "venue": "Frontiers in Artificial Intelligence and Applications", "volume": "288", "issue": "", "pages": "239--283", "other_ids": {}, "num": null, "urls": [], "raw_text": "Francesco Barbieri, Luis Espinosa-Anke, and Horacio Saggion. 2016a. Revealing patterns of Twitter emoji usage in Barcelona and Madrid. Frontiers in Artifi- cial Intelligence and Applications. 2016;(Artificial Intelligence Research and Development) 288: 239- 44.", "links": null }, "BIBREF6": { "ref_id": "b6", "title": "How cosmopolitan are emojis?: Exploring emojis usage and meaning over different languages with distributional semantics", "authors": [ { "first": "Francesco", "middle": [], "last": "Barbieri", "suffix": "" }, { "first": "German", "middle": [], "last": "Kruszewski", "suffix": "" }, { "first": "Francesco", "middle": [], "last": "Ronzano", "suffix": "" }, { "first": "Horacio", "middle": [], "last": "Saggion", "suffix": "" } ], "year": 2016, "venue": "Proceedings of the 2016 ACM on Multimedia Conference", "volume": "", "issue": "", "pages": "531--535", "other_ids": {}, "num": null, "urls": [], "raw_text": "Francesco Barbieri, German Kruszewski, Francesco Ronzano, and Horacio Saggion. 2016b. How cos- mopolitan are emojis?: Exploring emojis usage and meaning over different languages with distributional semantics. In Proceedings of the 2016 ACM on Mul- timedia Conference, pages 531-535. ACM.", "links": null }, "BIBREF7": { "ref_id": "b7", "title": "Exploring Emoji Usage and Prediction Through a Temporal Variation Lens", "authors": [ { "first": "Francesco", "middle": [], "last": "Barbieri", "suffix": "" }, { "first": "Luis", "middle": [], "last": "Marujo", "suffix": "" }, { "first": "William", "middle": [], "last": "Brendel", "suffix": "" } ], "year": 2018, "venue": "1st International Workshop on Emoji Understanding and Applications in Social Media", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Francesco Barbieri, Luis Marujo, William Brendel, Pradeep Karuturim, and Horacio Saggion. 2018b. Exploring Emoji Usage and Prediction Through a Temporal Variation Lens. In 1st International Work- shop on Emoji Understanding and Applications in Social Media (at ICWSM 2018).", "links": null }, "BIBREF8": { "ref_id": "b8", "title": "What does this emoji mean? a vector space skip-gram model for Twitter emojis", "authors": [ { "first": "Francesco", "middle": [], "last": "Barbieri", "suffix": "" }, { "first": "Francesco", "middle": [], "last": "Ronzano", "suffix": "" }, { "first": "Horacio", "middle": [], "last": "Saggion", "suffix": "" } ], "year": 2016, "venue": "Proc. of LREC", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Francesco Barbieri, Francesco Ronzano, and Horacio Saggion. 2016c. What does this emoji mean? a vec- tor space skip-gram model for Twitter emojis. In Proc. of LREC 2016.", "links": null }, "BIBREF9": { "ref_id": "b9", "title": "Tajjeb at semeval-2018 task 2: Traditional approaches just do the job with emoji prediction", "authors": [ { "first": "Angelo", "middle": [], "last": "Basile", "suffix": "" }, { "first": "Kenny", "middle": [ "W" ], "last": "Lino", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "467--473", "other_ids": {}, "num": null, "urls": [], "raw_text": "Angelo Basile and Kenny W. Lino. 2018. Tajjeb at semeval-2018 task 2: Traditional approaches just do the job with emoji prediction. In Proceedings of The 12th International Workshop on Semantic Evalua- tion, pages 467-473, New Orleans, Louisiana. As- sociation for Computational Linguistics.", "links": null }, "BIBREF10": { "ref_id": "b10", "title": "Ntua-slp at semeval-2018 task 2: Predicting emojis using rnns with context-aware attention", "authors": [ { "first": "Christos", "middle": [], "last": "Baziotis", "suffix": "" }, { "first": "Athanasiou", "middle": [], "last": "Nikolaos", "suffix": "" }, { "first": "Athanasia", "middle": [], "last": "Kolovou", "suffix": "" }, { "first": "Georgios", "middle": [], "last": "Paraskevopoulos", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "435--441", "other_ids": {}, "num": null, "urls": [], "raw_text": "Christos Baziotis, Athanasiou Nikolaos, Athanasia Kolovou, Georgios Paraskevopoulos, Nikolaos Elli- nas, and Alexandros Potamianos. 2018. Ntua-slp at semeval-2018 task 2: Predicting emojis using rnns with context-aware attention. In Proceedings of The 12th International Workshop on Semantic Evalua- tion, pages 435-441, New Orleans, Louisiana. As- sociation for Computational Linguistics.", "links": null }, "BIBREF11": { "ref_id": "b11", "title": "Umduluth-cs8761 at semeval-2018 task 2: Emojis: Too many choices?", "authors": [ { "first": "Jonathan", "middle": [], "last": "Beaulieu", "suffix": "" }, { "first": "Dennis Asamoah", "middle": [], "last": "Owusu", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "397--401", "other_ids": {}, "num": null, "urls": [], "raw_text": "Jonathan Beaulieu and Dennis Asamoah Owusu. 2018. Umduluth-cs8761 at semeval-2018 task 2: Emo- jis: Too many choices? In Proceedings of The 12th International Workshop on Semantic Evalua- tion, pages 397-401, New Orleans, Louisiana. As- sociation for Computational Linguistics.", "links": null }, "BIBREF12": { "ref_id": "b12", "title": "Image2emoji: Zero-shot emoji prediction for visual media", "authors": [ { "first": "Spencer", "middle": [], "last": "Cappallo", "suffix": "" }, { "first": "Thomas", "middle": [], "last": "Mensink", "suffix": "" }, { "first": "G", "middle": [ "M" ], "last": "Cees", "suffix": "" }, { "first": "", "middle": [], "last": "Snoek", "suffix": "" } ], "year": 2015, "venue": "Proceedings of the 23rd ACM international conference on Multimedia", "volume": "", "issue": "", "pages": "1311--1314", "other_ids": {}, "num": null, "urls": [], "raw_text": "Spencer Cappallo, Thomas Mensink, and Cees GM Snoek. 2015. Image2emoji: Zero-shot emoji pre- diction for visual media. In Proceedings of the 23rd ACM international conference on Multimedia, pages 1311-1314. ACM.", "links": null }, "BIBREF13": { "ref_id": "b13", "title": "The new modality: Emoji challenges in prediction, anticipation, and retrieval", "authors": [ { "first": "Spencer", "middle": [], "last": "Cappallo", "suffix": "" }, { "first": "Stacey", "middle": [], "last": "Svetlichnaya", "suffix": "" }, { "first": "Pierre", "middle": [], "last": "Garrigues", "suffix": "" }, { "first": "Thomas", "middle": [], "last": "Mensink", "suffix": "" }, { "first": "G", "middle": [ "M" ], "last": "Cees", "suffix": "" }, { "first": "", "middle": [], "last": "Snoek", "suffix": "" } ], "year": 2018, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": { "arXiv": [ "arXiv:1801.10253" ] }, "num": null, "urls": [], "raw_text": "Spencer Cappallo, Stacey Svetlichnaya, Pierre Gar- rigues, Thomas Mensink, and Cees GM Snoek. 2018. The new modality: Emoji challenges in pre- diction, anticipation, and retrieval. arXiv preprint arXiv:1801.10253.", "links": null }, "BIBREF14": { "ref_id": "b14", "title": "Peperomia at semeval-2018 task 2: Vector similarity based approach for emoji prediction", "authors": [ { "first": "Jing", "middle": [], "last": "Chen", "suffix": "" }, { "first": "Dechuan", "middle": [], "last": "Yang", "suffix": "" }, { "first": "Xilian", "middle": [], "last": "Li", "suffix": "" }, { "first": "Wei", "middle": [], "last": "Chen", "suffix": "" }, { "first": "Tengjiao", "middle": [], "last": "Wang", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "425--429", "other_ids": {}, "num": null, "urls": [], "raw_text": "Jing Chen, Dechuan Yang, Xilian Li, Wei Chen, and Tengjiao Wang. 2018. Peperomia at semeval-2018 task 2: Vector similarity based approach for emoji prediction. In Proceedings of The 12th International Workshop on Semantic Evaluation, pages 425-429, New Orleans, Louisiana. Association for Computa- tional Linguistics.", "links": null }, "BIBREF15": { "ref_id": "b15", "title": "Through a gender lens: An empirical study of emoji usage over large-scale android users", "authors": [ { "first": "Zhenpeng", "middle": [], "last": "Chen", "suffix": "" }, { "first": "Xuan", "middle": [], "last": "Lu", "suffix": "" }, { "first": "Sheng", "middle": [], "last": "Shen", "suffix": "" }, { "first": "Wei", "middle": [], "last": "Ai", "suffix": "" }, { "first": "Xuanzhe", "middle": [], "last": "Liu", "suffix": "" }, { "first": "Qiaozhu", "middle": [], "last": "Mei", "suffix": "" } ], "year": 2017, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": { "arXiv": [ "arXiv:1705.05546" ] }, "num": null, "urls": [], "raw_text": "Zhenpeng Chen, Xuan Lu, Sheng Shen, Wei Ai, Xu- anzhe Liu, and Qiaozhu Mei. 2017. Through a gender lens: An empirical study of emoji us- age over large-scale android users. arXiv preprint arXiv:1705.05546.", "links": null }, "BIBREF16": { "ref_id": "b16", "title": "T\u00fcbingenoslo at semeval-2018 task 2: Svms perform better than rnns in emoji prediction", "authors": [ { "first": "\u00c7", "middle": [], "last": "Agr\u0131 \u00c7\u00f6ltekin", "suffix": "" }, { "first": "Taraka", "middle": [], "last": "Rama", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "32--36", "other_ids": {}, "num": null, "urls": [], "raw_text": "\u00c7 agr\u0131 \u00c7\u00f6ltekin and Taraka Rama. 2018. T\u00fcbingen- oslo at semeval-2018 task 2: Svms perform better than rnns in emoji prediction. In Proceedings of The 12th International Workshop on Semantic Evalua- tion, pages 32-36, New Orleans, Louisiana. Associ- ation for Computational Linguistics.", "links": null }, "BIBREF17": { "ref_id": "b17", "title": "Hatching chick at semeval-2018 task 2: Multilingual emoji prediction", "authors": [ { "first": "Jol", "middle": [], "last": "Coster", "suffix": "" }, { "first": "Reinder", "middle": [], "last": "Gerard Van Dalen", "suffix": "" }, { "first": "Nathalie Adrinne Jacqueline", "middle": [], "last": "Stierman", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "442--445", "other_ids": {}, "num": null, "urls": [], "raw_text": "Jol Coster, Reinder Gerard van Dalen, and Nathalie Adrinne Jacqueline Stierman. 2018. Hatching chick at semeval-2018 task 2: Multilingual emoji pre- diction. In Proceedings of The 12th International Workshop on Semantic Evaluation, pages 442-445, New Orleans, Louisiana. Association for Computa- tional Linguistics.", "links": null }, "BIBREF18": { "ref_id": "b18", "title": "Investigating redundancy in emoji use: Study on a Twitter based corpus", "authors": [ { "first": "Giulia", "middle": [], "last": "Donato", "suffix": "" }, { "first": "Patrizia", "middle": [], "last": "Paggio", "suffix": "" } ], "year": 2017, "venue": "Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis", "volume": "", "issue": "", "pages": "118--126", "other_ids": {}, "num": null, "urls": [], "raw_text": "Giulia Donato and Patrizia Paggio. 2017. Investigat- ing redundancy in emoji use: Study on a Twitter based corpus. In Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Senti- ment and Social Media Analysis, pages 118-126.", "links": null }, "BIBREF19": { "ref_id": "b19", "title": "Duth at semeval-2018 task 2: Emoji prediction in tweets", "authors": [ { "first": "Dimitrios", "middle": [], "last": "Effrosynidis", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "463--466", "other_ids": {}, "num": null, "urls": [], "raw_text": "Dimitrios Effrosynidis, Georgios Peikos, Symeon Symeonidis, and Avi Arampatzis. 2018. Duth at semeval-2018 task 2: Emoji prediction in tweets. In Proceedings of The 12th International Workshop on Semantic Evaluation, pages 463-466, New Orleans, Louisiana. Association for Computational Linguis- tics.", "links": null }, "BIBREF20": { "ref_id": "b20", "title": "emoji2vec: Learning emoji representations from their description", "authors": [ { "first": "Ben", "middle": [], "last": "Eisner", "suffix": "" }, { "first": "Tim", "middle": [], "last": "Rockt\u00e4schel", "suffix": "" }, { "first": "Isabelle", "middle": [], "last": "Augenstein", "suffix": "" }, { "first": "Matko", "middle": [], "last": "Bo\u0161njak", "suffix": "" }, { "first": "Sebastian", "middle": [], "last": "Riedel", "suffix": "" } ], "year": 2016, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": { "arXiv": [ "arXiv:1609.08359" ] }, "num": null, "urls": [], "raw_text": "Ben Eisner, Tim Rockt\u00e4schel, Isabelle Augenstein, Matko Bo\u0161njak, and Sebastian Riedel. 2016. emoji2vec: Learning emoji representations from their description. arXiv preprint arXiv:1609.08359.", "links": null }, "BIBREF21": { "ref_id": "b21", "title": "Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm", "authors": [ { "first": "Bjarke", "middle": [], "last": "Felbo", "suffix": "" }, { "first": "Alan", "middle": [], "last": "Mislove", "suffix": "" }, { "first": "Anders", "middle": [], "last": "S\u00f8gaard", "suffix": "" }, { "first": "Iyad", "middle": [], "last": "Rahwan", "suffix": "" }, { "first": "Sune", "middle": [], "last": "Lehmann", "suffix": "" } ], "year": 2017, "venue": "Proc. of EMNLP", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Bjarke Felbo, Alan Mislove, Anders S\u00f8gaard, Iyad Rahwan, and Sune Lehmann. 2017. Using millions of emoji occurrences to learn any-domain represen- tations for detecting sentiment, emotion and sar- casm. Proc. of EMNLP 2017.", "links": null }, "BIBREF22": { "ref_id": "b22", "title": "Manchester metropolitan at semeval-2018 task 2: Random forest with an ensemble of features for predicting emoji in tweets", "authors": [ { "first": "Luciano", "middle": [], "last": "Gerber", "suffix": "" }, { "first": "Matthew", "middle": [], "last": "Shardlow", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "488--493", "other_ids": {}, "num": null, "urls": [], "raw_text": "Luciano Gerber and Matthew Shardlow. 2018. Manch- ester metropolitan at semeval-2018 task 2: Random forest with an ensemble of features for predicting emoji in tweets. In Proceedings of The 12th Inter- national Workshop on Semantic Evaluation, pages 488-493, New Orleans, Louisiana. Association for Computational Linguistics.", "links": null }, "BIBREF23": { "ref_id": "b23", "title": "Supervised Sequence Labelling with Recurrent Neural Networks", "authors": [ { "first": "Alex", "middle": [], "last": "Graves", "suffix": "" } ], "year": 2012, "venue": "Studies in Computational Intelligence", "volume": "385", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Alex Graves. 2012. Supervised Sequence Labelling with Recurrent Neural Networks, volume 385 of Studies in Computational Intelligence. Springer.", "links": null }, "BIBREF24": { "ref_id": "b24", "title": "Pickleteam! at semeval-2018 task 2: English and spanish emoji prediction from tweets", "authors": [ { "first": "Daphne", "middle": [], "last": "Groot", "suffix": "" }, { "first": "R\u00e9mon", "middle": [], "last": "Kruizinga", "suffix": "" }, { "first": "Hennie", "middle": [], "last": "Veldthuis", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "451--455", "other_ids": {}, "num": null, "urls": [], "raw_text": "Daphne Groot, R\u00e9mon Kruizinga, Hennie Veldthuis, Simon de Wit, and Hessel Haagsma. 2018. Pick- leteam! at semeval-2018 task 2: English and spanish emoji prediction from tweets. In Proceedings of The 12th International Workshop on Semantic Evalua- tion, pages 451-455, New Orleans, Louisiana. As- sociation for Computational Linguistics.", "links": null }, "BIBREF25": { "ref_id": "b25", "title": "Lis at semeval-2018 task 2: Mixing word embeddings and bag of features for multilingual emoji prediction", "authors": [ { "first": "Ga\u00ebl", "middle": [], "last": "Guibon", "suffix": "" }, { "first": "Magalie", "middle": [], "last": "Ochs", "suffix": "" }, { "first": "Patrice", "middle": [], "last": "Bellot", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "499--503", "other_ids": {}, "num": null, "urls": [], "raw_text": "Ga\u00ebl Guibon, Magalie Ochs, and Patrice Bellot. 2018. Lis at semeval-2018 task 2: Mixing word embed- dings and bag of features for multilingual emoji pre- diction. In Proceedings of The 12th International Workshop on Semantic Evaluation, pages 499-503, New Orleans, Louisiana. Association for Computa- tional Linguistics.", "links": null }, "BIBREF26": { "ref_id": "b26", "title": "Spice up Your Chat: The Intentions and Sentiment Effects of Using Emoji", "authors": [ { "first": "Tianran", "middle": [], "last": "Hu", "suffix": "" }, { "first": "Han", "middle": [], "last": "Guo", "suffix": "" }, { "first": "Hao", "middle": [], "last": "Sun", "suffix": "" }, { "first": "Thuy", "middle": [ "-" ], "last": "", "suffix": "" }, { "first": "Thi", "middle": [], "last": "Nguyen", "suffix": "" }, { "first": "Jiebo", "middle": [], "last": "Luo", "suffix": "" } ], "year": 2017, "venue": "Proc. of ICWSM", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Tianran Hu, Han Guo, Hao Sun, Thuy-vy Thi Nguyen, and Jiebo Luo. 2017. Spice up Your Chat: The Intentions and Sentiment Effects of Using Emoji. Proc. of ICWSM 2017.", "links": null }, "BIBREF27": { "ref_id": "b27", "title": "Cennlp@semeval-2018 task 2: Enhanced distributed representation of text using target classes for emoji prediction representation", "authors": [ { "first": "J R", "middle": [], "last": "Naveen", "suffix": "" }, { "first": "V", "middle": [], "last": "Hariharan", "suffix": "" }, { "first": "Barathi", "middle": [], "last": "Ganesh", "suffix": "" }, { "first": "H", "middle": [ "B" ], "last": "", "suffix": "" }, { "first": "Anand", "middle": [], "last": "Kumar", "suffix": "" }, { "first": "M", "middle": [], "last": "Soman", "suffix": "" }, { "first": "K P", "middle": [], "last": "", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "483--487", "other_ids": {}, "num": null, "urls": [], "raw_text": "Naveen J R, Hariharan V, Barathi Ganesh H. B., Anand Kumar M, and Soman K P. 2018. Cennlp@semeval- 2018 task 2: Enhanced distributed representation of text using target classes for emoji prediction repre- sentation. In Proceedings of The 12th International Workshop on Semantic Evaluation, pages 483-487, New Orleans, Louisiana. Association for Computa- tional Linguistics.", "links": null }, "BIBREF28": { "ref_id": "b28", "title": "Duluth urop at semeval-2018 task 2: Multilingual emoji prediction with ensemble learning and oversampling", "authors": [ { "first": "Shuning", "middle": [], "last": "Jin", "suffix": "" }, { "first": "Ted", "middle": [], "last": "Pedersen", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "479--482", "other_ids": {}, "num": null, "urls": [], "raw_text": "Shuning Jin and Ted Pedersen. 2018. Duluth urop at semeval-2018 task 2: Multilingual emoji prediction with ensemble learning and oversampling. In Pro- ceedings of The 12th International Workshop on Se- mantic Evaluation, pages 479-482, New Orleans, Louisiana. Association for Computational Linguis- tics.", "links": null }, "BIBREF29": { "ref_id": "b29", "title": "Bag of tricks for efficient text classification", "authors": [ { "first": "Armand", "middle": [], "last": "Joulin", "suffix": "" }, { "first": "Edouard", "middle": [], "last": "Grave", "suffix": "" }, { "first": "Piotr", "middle": [], "last": "Bojanowski", "suffix": "" }, { "first": "Tomas", "middle": [], "last": "Mikolov", "suffix": "" } ], "year": 2017, "venue": "European Chapter of the Association for Computational Linguistics", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2017. Bag of tricks for efficient text classification. In European Chapter of the Associa- tion for Computational Linguistics, Valencia, Spain.", "links": null }, "BIBREF30": { "ref_id": "b30", "title": "Automatic construction of an emoji sentiment lexicon", "authors": [ { "first": "Mayu", "middle": [], "last": "Kimura", "suffix": "" }, { "first": "Marie", "middle": [], "last": "Katsurai", "suffix": "" } ], "year": 2017, "venue": "Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining", "volume": "", "issue": "", "pages": "1033--1036", "other_ids": {}, "num": null, "urls": [], "raw_text": "Mayu Kimura and Marie Katsurai. 2017. Automatic construction of an emoji sentiment lexicon. In Pro- ceedings of the 2017 IEEE/ACM International Con- ference on Advances in Social Networks Analysis and Mining 2017, pages 1033-1036. ACM.", "links": null }, "BIBREF31": { "ref_id": "b31", "title": "Tweety at semeval-2018 task 2: Predicting emojis using hierarchical attention neural networks and support vector machine", "authors": [ { "first": "Daniel", "middle": [], "last": "Kopev", "suffix": "" }, { "first": "Atanas", "middle": [], "last": "Atanasov", "suffix": "" }, { "first": "Dimitrina", "middle": [], "last": "Zlatkova", "suffix": "" }, { "first": "Momchil", "middle": [], "last": "Hardalov", "suffix": "" }, { "first": "Ivan", "middle": [], "last": "Koychev", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "494--498", "other_ids": {}, "num": null, "urls": [], "raw_text": "Daniel Kopev, Atanas Atanasov, Dimitrina Zlatkova, Momchil Hardalov, Ivan Koychev, Ivelina Nikolova, and Galia Angelova. 2018. Tweety at semeval-2018 task 2: Predicting emojis using hierarchical atten- tion neural networks and support vector machine. In Proceedings of The 12th International Workshop on Semantic Evaluation, pages 494-498, New Orleans, Louisiana. Association for Computational Linguis- tics.", "links": null }, "BIBREF32": { "ref_id": "b32", "title": "Emonlp at semeval-2018 task 2: English emoji prediction with gradient boosting regression tree method and bidirectional lstm", "authors": [ { "first": "Man", "middle": [], "last": "Liu", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "387--391", "other_ids": {}, "num": null, "urls": [], "raw_text": "Man Liu. 2018. Emonlp at semeval-2018 task 2: En- glish emoji prediction with gradient boosting regres- sion tree method and bidirectional lstm. In Pro- ceedings of The 12th International Workshop on Se- mantic Evaluation, pages 387-391, New Orleans, Louisiana. Association for Computational Linguis- tics.", "links": null }, "BIBREF33": { "ref_id": "b33", "title": "Ecnu at semeval-2018 task 2: Leverage traditional nlp features and neural networks methods to address twitter emoji prediction task", "authors": [ { "first": "Xingwu", "middle": [], "last": "Lu", "suffix": "" }, { "first": "Xin", "middle": [], "last": "Mao", "suffix": "" }, { "first": "Man", "middle": [], "last": "Lan", "suffix": "" }, { "first": "Yuanbin", "middle": [], "last": "Wu", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "430--434", "other_ids": {}, "num": null, "urls": [], "raw_text": "Xingwu Lu, Xin Mao, Man Lan, and Yuanbin Wu. 2018. Ecnu at semeval-2018 task 2: Leverage tra- ditional nlp features and neural networks methods to address twitter emoji prediction task. In Pro- ceedings of The 12th International Workshop on Se- mantic Evaluation, pages 430-434, New Orleans, Louisiana. Association for Computational Linguis- tics.", "links": null }, "BIBREF34": { "ref_id": "b34", "title": "Understanding emoji ambiguity in context: The role of text in emoji-related miscommunication", "authors": [ { "first": "Hannah", "middle": [], "last": "Miller", "suffix": "" }, { "first": "Daniel", "middle": [], "last": "Kluver", "suffix": "" }, { "first": "Jacob", "middle": [], "last": "Thebault-Spieker", "suffix": "" }, { "first": "Loren", "middle": [], "last": "Terveen", "suffix": "" }, { "first": "Brent", "middle": [], "last": "Hecht", "suffix": "" } ], "year": 2017, "venue": "11th International Conference on Web and Social Media, ICWSM 2017", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Hannah Miller, Daniel Kluver, Jacob Thebault-Spieker, Loren Terveen, and Brent Hecht. 2017. Understand- ing emoji ambiguity in context: The role of text in emoji-related miscommunication. In 11th In- ternational Conference on Web and Social Media, ICWSM 2017. AAAI Press.", "links": null }, "BIBREF35": { "ref_id": "b35", "title": "Blissfully happy\" or \"ready to fight\": Varying interpretations of emoji", "authors": [ { "first": "Hannah", "middle": [], "last": "Miller", "suffix": "" }, { "first": "Jacob", "middle": [], "last": "Thebault-Spieker", "suffix": "" }, { "first": "Shuo", "middle": [], "last": "Chang", "suffix": "" }, { "first": "Isaac", "middle": [], "last": "Johnson", "suffix": "" }, { "first": "Loren", "middle": [], "last": "Terveen", "suffix": "" }, { "first": "Brent", "middle": [], "last": "Hecht", "suffix": "" } ], "year": 2016, "venue": "Proc. of ICWSM16", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Hannah Miller, Jacob Thebault-Spieker, Shuo Chang, Isaac Johnson, Loren Terveen, and Brent Hecht. 2016. \"Blissfully happy\" or \"ready to fight\": Vary- ing interpretations of emoji. Proc. of ICWSM16.", "links": null }, "BIBREF36": { "ref_id": "b36", "title": "Emojitalianobot and emojiworldbot -new online tools and digital environments for translation into emoji", "authors": [ { "first": "Johanna", "middle": [], "last": "Monti", "suffix": "" }, { "first": "Federico", "middle": [], "last": "Sangati", "suffix": "" }, { "first": "Francesca", "middle": [], "last": "Chiusaroli", "suffix": "" }, { "first": "Martin", "middle": [], "last": "Benjamin", "suffix": "" }, { "first": "Sina", "middle": [], "last": "Mansour", "suffix": "" } ], "year": 2016, "venue": "Proceedings of Third Italian Conference on Computational Linguistics (CLiC-it 2016)", "volume": "1749", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Johanna Monti, Federico Sangati, Francesca Chiusaroli, Martin Benjamin, and Sina Man- sour. 2016. Emojitalianobot and emojiworldbot -new online tools and digital environments for translation into emoji. In Proceedings of Third Italian Conference on Computational Linguistics (CLiC-it 2016), Napoli, Italy, December 5-7, 2016., volume 1749 of CEUR Workshop Proceedings.", "links": null }, "BIBREF37": { "ref_id": "b37", "title": "Varying linguistic purposes of emoji in (Twitter) context", "authors": [ { "first": "Noa", "middle": [], "last": "Na'aman", "suffix": "" }, { "first": "Hannah", "middle": [], "last": "Provenza", "suffix": "" }, { "first": "Orion", "middle": [], "last": "Montoya", "suffix": "" } ], "year": 2017, "venue": "Proceedings of ACL 2017", "volume": "", "issue": "", "pages": "136--141", "other_ids": {}, "num": null, "urls": [], "raw_text": "Noa Na'aman, Hannah Provenza, and Orion Montoya. 2017. Varying linguistic purposes of emoji in (Twit- ter) context. In Proceedings of ACL 2017, Student Research Workshop, pages 136-141.", "links": null }, "BIBREF38": { "ref_id": "b38", "title": "Borut Sluban, and Igor Mozeti\u010d", "authors": [ { "first": "Petra", "middle": [ "Kralj" ], "last": "Novak", "suffix": "" }, { "first": "Jasmina", "middle": [], "last": "Smailovi\u0107", "suffix": "" } ], "year": 2015, "venue": "PloS one", "volume": "10", "issue": "12", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Petra Kralj Novak, Jasmina Smailovi\u0107, Borut Sluban, and Igor Mozeti\u010d. 2015. Sentiment of emojis. PloS one, 10(12):e0144296.", "links": null }, "BIBREF39": { "ref_id": "b39", "title": "Emoticons vs. emojis on Twitter: A causal inference approach", "authors": [ { "first": "Umashanthi", "middle": [], "last": "Pavalanathan", "suffix": "" }, { "first": "Jacob", "middle": [], "last": "Eisenstein", "suffix": "" } ], "year": 2015, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": { "arXiv": [ "arXiv:1510.08480" ] }, "num": null, "urls": [], "raw_text": "Umashanthi Pavalanathan and Jacob Eisenstein. 2015. Emoticons vs. emojis on Twitter: A causal inference approach. arXiv preprint arXiv:1510.08480.", "links": null }, "BIBREF40": { "ref_id": "b40", "title": "Beyond just text: Semantic emoji similarity modeling to support expressive communication", "authors": [ { "first": "Henning", "middle": [], "last": "Pohl", "suffix": "" }, { "first": "Christian", "middle": [], "last": "Domin", "suffix": "" }, { "first": "Michael", "middle": [], "last": "Rohs", "suffix": "" } ], "year": 2017, "venue": "ACM Transactions on Computer-Human Interaction (TOCHI)", "volume": "24", "issue": "1", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Henning Pohl, Christian Domin, and Michael Rohs. 2017. Beyond just text: Semantic emoji similar- ity modeling to support expressive communication. ACM Transactions on Computer-Human Interaction (TOCHI), 24(1):6.", "links": null }, "BIBREF41": { "ref_id": "b41", "title": "#teaminf at semeval-2018 task 2: Emoji prediction in tweets", "authors": [ { "first": "Alison", "middle": [], "last": "Ribeiro", "suffix": "" }, { "first": "Ndia", "middle": [], "last": "Silva", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "412--415", "other_ids": {}, "num": null, "urls": [], "raw_text": "Alison Ribeiro and Ndia Silva. 2018. #teaminf at semeval-2018 task 2: Emoji prediction in tweets. In Proceedings of The 12th International Workshop on Semantic Evaluation, pages 412-415, New Orleans, Louisiana. Association for Computational Linguis- tics.", "links": null }, "BIBREF42": { "ref_id": "b42", "title": "Self-Representation on Twitter Using Emoji Skin Color Modifiers", "authors": [ { "first": "Alexander", "middle": [], "last": "Robertson", "suffix": "" }, { "first": "Walid", "middle": [], "last": "Magdy", "suffix": "" }, { "first": "Sharon", "middle": [], "last": "Goldwater", "suffix": "" } ], "year": 2018, "venue": "Proc. of ICWSM", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Alexander Robertson, Walid Magdy, and Sharon Gold- water. 2018. Self-Representation on Twitter Using Emoji Skin Color Modifiers. Proc. of ICWSM 2018.", "links": null }, "BIBREF43": { "ref_id": "b43", "title": "Lisbon emoji and emoticon database (leed): Norms for emoji and emoticons in seven evaluative dimensions", "authors": [ { "first": "David", "middle": [], "last": "Rodrigues", "suffix": "" }, { "first": "Mar\u00edlia", "middle": [], "last": "Prada", "suffix": "" }, { "first": "Rui", "middle": [], "last": "Gaspar", "suffix": "" }, { "first": "V", "middle": [], "last": "Margarida", "suffix": "" }, { "first": "Diniz", "middle": [], "last": "Garrido", "suffix": "" }, { "first": "", "middle": [], "last": "Lopes", "suffix": "" } ], "year": 2018, "venue": "Behavior research methods", "volume": "", "issue": "", "pages": "392--405", "other_ids": {}, "num": null, "urls": [], "raw_text": "David Rodrigues, Mar\u00edlia Prada, Rui Gaspar, Mar- garida V Garrido, and Diniz Lopes. 2018. Lis- bon emoji and emoticon database (leed): Norms for emoji and emoticons in seven evaluative dimen- sions. Behavior research methods, pages 392-405.", "links": null }, "BIBREF44": { "ref_id": "b44", "title": "Shi at semeval-2018 task 2: An effective attentionbased recurrent neural network model for emoji prediction with characters gated words", "authors": [ { "first": "Chen", "middle": [], "last": "Shiyun", "suffix": "" }, { "first": "Wang", "middle": [], "last": "Maoquan", "suffix": "" }, { "first": "He", "middle": [], "last": "Liang", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "420--424", "other_ids": {}, "num": null, "urls": [], "raw_text": "Chen Shiyun, Wang Maoquan, and He Liang. 2018. Shi at semeval-2018 task 2: An effective attention- based recurrent neural network model for emoji pre- diction with characters gated words. In Proceed- ings of The 12th International Workshop on Se- mantic Evaluation, pages 420-424, New Orleans, Louisiana. Association for Computational Linguis- tics.", "links": null }, "BIBREF45": { "ref_id": "b45", "title": "Oh that's what you meant!: reducing emoji misunderstanding", "authors": [ { "first": "W", "middle": [], "last": "Garreth", "suffix": "" }, { "first": "", "middle": [], "last": "Tigwell", "suffix": "" }, { "first": "", "middle": [], "last": "David R Flatla", "suffix": "" } ], "year": 2016, "venue": "Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct", "volume": "", "issue": "", "pages": "859--866", "other_ids": {}, "num": null, "urls": [], "raw_text": "Garreth W Tigwell and David R Flatla. 2016. Oh that's what you meant!: reducing emoji misunderstanding. In Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile De- vices and Services Adjunct, pages 859-866. ACM.", "links": null }, "BIBREF46": { "ref_id": "b46", "title": "Ynuhpcc at semeval-2018 task 2: Multi-ensemble bi-gru model with attention mechanism for multilingual emoji prediction", "authors": [ { "first": "Nan", "middle": [], "last": "Wang", "suffix": "" }, { "first": "Jin", "middle": [], "last": "Wang", "suffix": "" }, { "first": "Xuejie", "middle": [], "last": "Zhang", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "456--462", "other_ids": {}, "num": null, "urls": [], "raw_text": "Nan Wang, Jin Wang, and Xuejie Zhang. 2018. Ynu- hpcc at semeval-2018 task 2: Multi-ensemble bi-gru model with attention mechanism for multilingual emoji prediction. In Proceedings of The 12th Inter- national Workshop on Semantic Evaluation, pages 456-462, New Orleans, Louisiana. Association for Computational Linguistics.", "links": null }, "BIBREF47": { "ref_id": "b47", "title": "Umdsub at semeval-2018 task 2: Multilingual emoji prediction multi-channel convolutional neural network on subword embedding", "authors": [ { "first": "Zhenduo", "middle": [], "last": "Wang", "suffix": "" }, { "first": "Ted", "middle": [], "last": "Pedersen", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "392--396", "other_ids": {}, "num": null, "urls": [], "raw_text": "Zhenduo Wang and Ted Pedersen. 2018. Umdsub at semeval-2018 task 2: Multilingual emoji prediction multi-channel convolutional neural network on sub- word embedding. In Proceedings of The 12th Inter- national Workshop on Semantic Evaluation, pages 392-396, New Orleans, Louisiana. Association for Computational Linguistics.", "links": null }, "BIBREF48": { "ref_id": "b48", "title": "Emojinet: An open service and api for emoji sense discovery", "authors": [ { "first": "Lakshika", "middle": [], "last": "Sanjaya Wijeratne", "suffix": "" }, { "first": "Amit", "middle": [], "last": "Balasuriya", "suffix": "" }, { "first": "Derek", "middle": [], "last": "Sheth", "suffix": "" }, { "first": "", "middle": [], "last": "Doran", "suffix": "" } ], "year": 2017, "venue": "International AAAI Conference on Web and Social Media", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Sanjaya Wijeratne, Lakshika Balasuriya, Amit Sheth, and Derek Doran. 2017a. Emojinet: An open ser- vice and api for emoji sense discovery. International AAAI Conference on Web and Social Media (ICWSM 2017). Montreal, Canada.", "links": null }, "BIBREF49": { "ref_id": "b49", "title": "A semantics-based measure of emoji similarity. International Conference on Web Intelligence (Web Intelligence", "authors": [ { "first": "Lakshika", "middle": [], "last": "Sanjaya Wijeratne", "suffix": "" }, { "first": "Amit", "middle": [], "last": "Balasuriya", "suffix": "" }, { "first": "Derek", "middle": [], "last": "Sheth", "suffix": "" }, { "first": "", "middle": [], "last": "Doran", "suffix": "" } ], "year": 2017, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Sanjaya Wijeratne, Lakshika Balasuriya, Amit Sheth, and Derek Doran. 2017b. A semantics-based mea- sure of emoji similarity. International Confer- ence on Web Intelligence (Web Intelligence 2017). Leipzig, Germany.", "links": null }, "BIBREF50": { "ref_id": "b50", "title": "Emoji as emotion tags for tweets. Emotion and Sentiment Analysis Workshop", "authors": [ { "first": "Ian", "middle": [], "last": "Wood", "suffix": "" }, { "first": "Sebastian", "middle": [], "last": "Ruder", "suffix": "" } ], "year": 2016, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Ian Wood and Sebastian Ruder. 2016. Emoji as emo- tion tags for tweets. Emotion and Sentiment Analy- sis Workshop, LREC.", "links": null }, "BIBREF51": { "ref_id": "b51", "title": "Thu ngn at semeval-2018 task 2: Residual cnn-lstm network with attention for english emoji prediction", "authors": [ { "first": "Chuhan", "middle": [], "last": "Wu", "suffix": "" }, { "first": "Fangzhao", "middle": [], "last": "Wu", "suffix": "" }, { "first": "Sixing", "middle": [], "last": "Wu", "suffix": "" }, { "first": "Zhigang", "middle": [], "last": "Yuan", "suffix": "" }, { "first": "Junxin", "middle": [], "last": "Liu", "suffix": "" }, { "first": "Yongfeng", "middle": [], "last": "Huang", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "407--411", "other_ids": {}, "num": null, "urls": [], "raw_text": "Chuhan Wu, Fangzhao Wu, Sixing Wu, Zhigang Yuan, Junxin Liu, and Yongfeng Huang. 2018. Thu ngn at semeval-2018 task 2: Residual cnn-lstm network with attention for english emoji prediction. In Pro- ceedings of The 12th International Workshop on Se- mantic Evaluation, pages 407-411, New Orleans, Louisiana. Association for Computational Linguis- tics.", "links": null }, "BIBREF52": { "ref_id": "b52", "title": "Eica team at semeval-2018 task 2: Semantic and metadata-based features for multilingual emoji prediction", "authors": [ { "first": "Yufei", "middle": [], "last": "Xie", "suffix": "" }, { "first": "Qingqing", "middle": [], "last": "Song", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "416--419", "other_ids": {}, "num": null, "urls": [], "raw_text": "Yufei Xie and Qingqing Song. 2018. Eica team at semeval-2018 task 2: Semantic and metadata-based features for multilingual emoji prediction. In Pro- ceedings of The 12th International Workshop on Se- mantic Evaluation, pages 416-419, New Orleans, Louisiana. Association for Computational Linguis- tics.", "links": null }, "BIBREF53": { "ref_id": "b53", "title": "Syntnn at semeval-2018 task 2: is syntax useful for emoji prediction? embedding syntactic trees in multi layer perceptrons", "authors": [ { "first": "Fabio", "middle": [], "last": "Massimo Zanzotto", "suffix": "" }, { "first": "Andrea", "middle": [], "last": "Santilli", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "474--478", "other_ids": {}, "num": null, "urls": [], "raw_text": "Fabio Massimo Zanzotto and Andrea Santilli. 2018. Syntnn at semeval-2018 task 2: is syntax useful for emoji prediction? embedding syntactic trees in multi layer perceptrons. In Proceedings of The 12th Inter- national Workshop on Semantic Evaluation, pages 474-478, New Orleans, Louisiana. Association for Computational Linguistics.", "links": null }, "BIBREF54": { "ref_id": "b54", "title": "Epution at semeval-2018 task 2: Emoji prediction with user adaption", "authors": [ { "first": "Liyuan", "middle": [], "last": "Zhou", "suffix": "" }, { "first": "Qiongkai", "middle": [], "last": "Xu", "suffix": "" }, { "first": "Hanna", "middle": [], "last": "Suominen", "suffix": "" }, { "first": "Tom", "middle": [], "last": "Gedeon", "suffix": "" } ], "year": 2018, "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation", "volume": "", "issue": "", "pages": "446--450", "other_ids": {}, "num": null, "urls": [], "raw_text": "Liyuan Zhou, Qiongkai Xu, Hanna Suominen, and Tom Gedeon. 2018. Epution at semeval-2018 task 2: Emoji prediction with user adaption. In Pro- ceedings of The 12th International Workshop on Se- mantic Evaluation, pages 446-450, New Orleans, Louisiana. Association for Computational Linguis- tics.", "links": null } }, "ref_entries": { "FIGREF0": { "num": null, "uris": null, "text": "Message from Twitter including a single red heart emoji.", "type_str": "figure" }, "TABREF0": { "text": "The 20 most frequent emojis of each language (due to a data processing issue we only considered 19 emojis in the Spanish task).", "html": null, "num": null, "type_str": "table", "content": "" }, "TABREF1": { "text": "Number of tweets for trial, training and test for each of the subtasks.", "html": null, "num": null, "type_str": "table", "content": "
" }, "TABREF2": { "text": "Random Forests, etc.). Infrequent classes are oversampled using the SMOTE algorithm. As for features, they use both unigrams and bigrams.", "html": null, "num": null, "type_str": "table", "content": "
gistic Regression, EnglishSpanish
Emo F1% Emo F1%
87.8 21.669.6 21.4
37.8 9.737.3 14.1
47.1 9.153.4 15
26.9 5.28.53.5
55.5 7.414.9 5.1
16.2 3.226.94
22.6439.8 3.1
36.2 5.516.3 4.5
243.1131.8
22.2 2.449.9 4.2
402.914.7 3.4
64.7 3.914.2 4.1
63.7 2.56.82.4
17.1 2.27.72.7
132.65.60.9
29.2 2.5204.2
14.3 2.323.7 2.1
73.6 3.18.61.3
38.4 4.85.12.1
92---
).
This system consists of a soft voting en-
semble approach combining different ma-
chine learning algorithms (Na\u00efve Bayes, Lo-
" }, "TABREF3": { "text": "Best F1 measure (among all the teams) for each emoji in English (20) and Spanish", "html": null, "num": null, "type_str": "table", "content": "" } } } }