{ "paper_id": "O00-1001", "header": { "generated_with": "S2ORC 1.0.0", "date_generated": "2023-01-19T07:58:59.419741Z" }, "title": "", "authors": [], "year": "", "venue": null, "identifiers": {}, "abstract": "", "pdf_parse": { "paper_id": "O00-1001", "_pdf_hash": "", "abstract": [], "body_text": [ { "text": "\u82e5\u4e09\u5b57\u7d44(c 1 c 2 c 3 )\uff0c\u5176\u4e2d c 1 c 2 \u5c6c\u65bc\u96d9\u97f3\u8a5e\u4e14 c 3 \u5c6c\u65bc\u884d\u751f\u5f8c\u7db4\u6216\u63a5\u5c3e\u8a5e\u8005\uff0c\u4e26\u4e14 \u4e09\u5b57\u7d44(c 1 c 2 c 3 )\u51fa\u73fe\u65bc\u8a9e\u6599\u4e2d\uff0c\u5176\u90e8\u5206\u5b57\u7d44\u4e0d\u5f97\u6bcf\u6b21\u8207\u76f8\u9130\u5b57\u5143\u69cb\u6210\u96d9\u97f3\u8a5e\u6216\u4e09 \u97f3\u8a5e\u3002 (\u4e09\u97f3\u8a5e\u8403\u53d6\u6cd5\u5247\u4e8c): \u82e5\u4e09\u5b57\u7d44(c 1 c 2 c 3 )\uff0c\u5176\u4e2d c 2 c 3 \u5c6c\u65bc\u96d9\u97f3\u8a5e\u4e14 c 1 \u5c6c\u65bc\u884d\u751f\u524d\u7db4\u6216\u63a5\u982d\u8a5e\u8005\uff0c\u4e26\u4e14 \u4e09\u5b57\u7d44(c 1 c 2 c 3 )\u51fa\u73fe\u65bc\u8a9e\u6599\u4e2d\uff0c\u5176\u90e8\u5206\u5b57\u7d44\u4e0d\u5f97\u6bcf\u6b21\u8207\u76f8\u9130\u5b57\u5143\u69cb\u6210\u96d9\u97f3\u8a5e\u6216\u4e09 \u97f3\u8a5e\u3002 3-3", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null }, { "text": "\u2211 = j ij ij ij G T G T G P ) ( ) ( ) ( \u5176\u4e2d T(G ij )\u8868\u793a\u9577\u5ea6\u70ba i \u7684\u7b2c j \u500b\u5b57\u7d44 G ij \u7684\u51fa\u73fe\u6b21\u6578\u3002\u5b57\u7d44\u9593\u7684\u7279\u5fb5\u6709 (1) \u76f8\u5c0d\u983b\u7387(relative frequency count)[Wu 93]\u662f\u5c07\u5b57\u7d44\u7684\u51fa\u73fe\u6b21\u6578\u9664\u4ee5\u6240\u6709\u5b57\u7d44 \u7684\u5e73\u5747\u51fa\u73fe\u6b21\u6578\u5982\u516c\u5f0f(4.2)\u3002 \u5176\u4e2d r ij \u662f\u6307\u9577\u5ea6\u70ba i \u7684\u5b57\u7d44\u5eab\u4e2d\u7684\u7b2c j \u500b\u5b57\u7d44\uff0cf ij \u662f r ij \u7684\u51fa\u73fe\u6b21\u6578\uff0cK i \u662f\u6307\u9577\u5ea6\u70ba i \u7684\u5b57\u7d44\u5eab\u4e2d\u6240\u6709\u5b57\u7d44\u7684\u5e73\u5747\u51fa\u73fe\u6b21\u6578\u3002\u4e00\u822c\u7684\u60c5\u6cc1\u4f86\u8aaa\uff0c\u76f8\u5c0d\u983b\u7387\u8d8a\u9ad8\u7684\u5b57\u7d44\uff0c\u53ef\u80fd \u662f\u5c6c\u65bc\u8a5e\u985e\u7684\u6a5f\u7387\u8d8a\u9ad8\u3002 (4.1) i ij ij K f r =", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null }, { "text": "= = = = z P y P x P z y x P z y x D \u5176\u4e2d P(x=1,y=1,z=1) \u662f\u4e2d\u6587\u5b57 z \u7dca\u8ddf\u8457 xy \u51fa\u73fe\u7684\u6a5f\u7387\uff0cP(x=1)\u3001P(y=1)\u8207 P(z=1)", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null }, { "text": "\u2211 \u2208 \u2212 = ) ( ) ( ) ( _ log ) ( _ ) ( _ i j i G LN C j G T j i C L P C L P G L H \u2211 \u2208 \u2212 = ) ( ) ( ) ( _ log ) ( _ ) ( _ i j i G RN C j G T j i C R P C R P G R H (4.7a) (4.7b) \u5176\u4e2d H_L(G i )\u8207 H_R(G i )\u5206\u5225\u4ee3\u8868\u5b57\u7d44 G i \u7684\u5de6\u71b5\u8207\u53f3\u71b5\uff0cLN(G i )\u8207 RN(G i )\u5206\u5225\u4ee3\u8868\u5b57 \u7d44 G i \u7684\u5de6\u76f8\u9130\u5b57\u5143\u96c6\u5408\u8207\u53f3\u76f8\u9130\u5b57\u5143\u96c6\u5408\uff0cP_L(C j )\u8207 P_R(C j )\u5247\u5206\u5225\u4ee3\u8868\u5b57\u5143 C j \u5728 G i \u7684\u5de6\u76f8\u9130\u5b57\u5143\u96c6\u5408\u7684\u51fa\u73fe\u6a5f\u7387\uff0c\u8207\u53f3\u76f8\u9130\u5b57\u5143\u96c6\u5408\u7684\u51fa\u73fe\u6a5f\u7387\u3002 \u5f9e\u5be6\u9a57\u4e2d\u6211\u5011\u767c\u73fe\u5e7e\u4e4e\u6240\u6709\u5b57\u7d44\u7684\u76f8\u5c0d\u983b\u7387\u8207\u9ab0\u5b50\u77e9\u9663\u7684\u7279\u5fb5\u503c\u90fd\u843d\u5728\u503c\u57df\u7684 \u6700\u5c0f\u767e\u5206\u4e4b\u4e94\uff0c\u5c24\u5176\u9ab0\u5b50\u77e9\u9663\u5e7e\u4e4e\u5168\u90fd\u843d\u5728 0 \u5230 0.05 \u4e4b\u9593\uff0c\u9019\u6a23\u7684\u5206\u4f48\u5e7e\u4e4e\u986f\u4e0d\u51fa\u5b57 \u7d44\u7684\u5dee\u7570\u6027\u3002\u800c\u4e8c\u5b57\u7d44\u7684\u76f8\u95dc\u5ea6\u5206\u4f48\u60c5\u5f62\u76f8\u7576\u63a5\u8fd1\u9ad8\u65af\u5206\u4f48(Normal Distribution) \uff0c \u5de6\u71b5\u8207\u53f3\u71b5\u9664\u4e86\u7279\u5fb5\u503c\u70ba 0 \u7684\u500b\u6578\u8f03\u591a\u4e4b\u5916\uff0c\u5176\u9918\u7684\u5206\u4f48\u8f03\u70ba\u5e73\u5747\u3002\u56e0\u6b64\u6211\u5011\u9996\u5148\u4ee5 \u76f8\u95dc\u5ea6\u3001\u5de6\u71b5\u8207\u53f3\u71b5\u4f5c\u70ba\u7cfb\u7d71\u7684\u8f38\u5165\u7279\u5fb5\u3002\u82e5\u8981\u8003\u616e\u81ea\u52d5\u7279\u5fb5\u9078\u53d6\u7684\u554f\u984c\u53ef\u4ee5\u53c3\u8003\u5faa \u5e8f \u5411 \u524d \u9078 \u53d6 (Sequential Forward Selection) \u3001 Generalized \"", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null }, { "text": "EQUATION", "cite_spans": [], "ref_spans": [], "eq_spans": [ { "start": 0, "end": 8, "text": "EQUATION", "ref_id": "EQREF", "raw_str": ") ( ) )( ( 2 ) ( ) 1 ( 2 1 exp 1 2 1 ) | , ( \u03c3 \u00b5 \u03c3 \u03c3 \u00b5 \u00b5 \u03c3 \u00b5 \u03c3 \u03c0\u03c3 ) ( ) ( : ) ( _ i i j j G T G C T C L P \u2212 (4.7c) ) ( ) ( : ) ( _ i j i j G T C G T C R P \u2212 (4.7d) (4.8a) \uf8f4 \uf8fe \uf8f4 \uf8fd \uf8fc \uf8f4 \uf8f3 \uf8f4 \uf8f2 \uf8f1 \uf8f7 \uf8f7 \uf8f8 \uf8f6 \uf8ec \uf8ec \uf8ed \uf8eb \u2212 + \u2212 \u2212 \u2212 \u2212 \u2212 \u2212 \u2212 = \u2212 r r r a r a m a r a R R A r A r r Word Non R A f 2 ' 2 ' ' ' ' ' ' 2 ' 2 ' 2 ' 2 ' ' ' ) ( ) )( ( 2 ) ( ) 1 ( 2 1 exp 1 2 1 ) | , ( \u03c3 \u00b5 \u03c3 \u03c3 \u00b5 \u00b5 \u03c3 \u00b5 \u03c3 \u03c0\u03c3 \u5176\u4e2d A \u548c R \u662f\u4ee3\u8868\u76f8\u95dc\u5ea6\u8207\u76f8\u5c0d\u983b\u7387\u7684\u8b8a\u6578\u3002\u5047\u8a2d A \u548c R \u90fd\u662f\u5c6c\u65bc\u9ad8\u65af\u5206\u4f48\uff0c\u800c\u03bc a \u662f\u8a5e\u985e\u5b57\u7d44\u7684\u76f8\u95dc\u5ea6\u5e73\u5747\u6578\u3001\u03bc ' a \u662f\u8a5e\u985e\u5b57\u7d44\u7684\u76f8\u95dc\u5ea6\u5e73\u5747\u6578\uff0c\u03bc a \u662f\u8a5e\u985e\u5b57\u7d44\u7684\u76f8\u5c0d \u983b\u7387\u5e73\u5747\u6578\u3001\u03bc ' a \u662f\u8a5e\u985e\u5b57\u7d44\u7684\u76f8\u5c0d\u983b\u7387\u5e73\u5747\u6578\uff0c\u03c3 a \u662f\u8a5e\u985e\u5b57\u7d44\u7684\u76f8\u95dc\u5ea6\u6a19\u6e96\u5dee\uff0c\u03c3 ' a \u662f\u975e\u8a5e\u985e\u5b57\u7d44\u7684\u76f8\u95dc\u5ea6\u6a19\u6e96\u5dee\uff0c\u03c3 r \u662f\u8a5e\u985e\u5b57\u7d44\u7684\u76f8\u5c0d\u983b\u7387\u6a19\u6e96\u5dee\uff0c\u03c3 ' r \u662f\u975e\u8a5e\u985e\u5b57\u7d44 \u7684\u76f8\u5c0d\u983b\u7387\u6a19\u6e96\u5dee\uff0cr \u662f\u8a5e\u985e\u5b57\u7d44\u76f8\u95dc\u5ea6\u8207\u76f8\u5c0d\u983b\u7387\u7684\u76f8\u95dc\u4fc2\u6578\uff0cr ' \u662f\u975e\u8a5e\u985e\u5b57\u7d44\u76f8\u95dc \u5ea6\u8207\u76f8\u5c0d\u983b\u7387\u7684\u76f8\u95dc\u4fc2\u6578\u3002\u5b9a\u7fa9\u4e86\u6a5f\u7387\u51fd\u6578\u5f8c\uff0c\u5c07\u6a5f\u7387\u51fd\u6578\u5957\u5165\u5c0d\u6578\u53ef\u80fd\u5ea6\u6bd4\u7387\u6a21\u7d44\uff0c \u82e5\u662f log\u03bb\u5c0f\u65bc\u9580\u6abb\u503c T lrm \u5247\u662f\u5c6c\u65bc\u975e\u8a5e\u985e\uff0c\u82e5\u662f log\u03bb\u5927\u65bc T lrm \u5247\u5c6c\u65bc\u8a5e\u985e\uff0c\u5728\u672c\u7cfb \u7d71 T lrm \u7684\u9810\u8a2d\u503c\u662f 0\u3002 \u6211\u5011\u6240\u9078\u53d6\u7684\u7279\u5fb5\u662f\u76f8\u95dc\u5ea6\u3001\u5de6\u71b5\u8207\u53f3\u71b5\uff0c\u56e0\u6b64\u6211\u5011\u4f7f\u7528\u591a\u8b8a\u6578\u7684\u9ad8\u65af\u51fd\u6578\u4f86\u4f5c \u70ba\u53ef\u80fd\u6a5f\u7387\u51fd\u6578[Duda 73]\uff1a \uf8fa \uf8fb \uf8f9 \uf8ef \uf8f0 \uf8ee \u2212 \u03a3 \u2212 \u2212 \u03a3 = \u2212 ) ( ) ( 2 1 exp | | ) 2 ( 1 ) | ( 1 2 / 1 2 / \u00b5 \u00b5 \u03c0 x x word x f t d ] | [ word x E = \u00b5 ] ) )( [( t x x E \u00b5 \u00b5 \u2212 \u2212 = \u03a3 \uf8fa \uf8fb \uf8f9 \uf8ef \uf8f0 \uf8ee \u2212 \u03a3 \u2212 \u2212 \u03a3 = \u2212 \u2212 ) ( ) ( 2 1 exp | | ) 2 ( 1 ) | ( ' 1 ' ' 2 / 1 ' 2 / \u00b5 \u00b5 \u03c0 x x word Non x f t d ] | [ ' word Non x E \u2212 = \u00b5 ] ) )( [( ' ' ' t x x E \u00b5 \u00b5 \u2212 \u2212 = \u03a3 \u5176\u4e2d x \u4ee3\u8868\u4e00\u500b\u884c\u5411\u91cf[A LH RH] t \uff0cA\u3001LH \u8207 RH \u5206\u5225\u4ee3\u8868\u76f8\u95dc\u5ea6\u3001\u5de6\u71b5\u8207\u53f3\u71b5\u7684\u8b8a \u6578\uff0c\u4e26\u5047\u8a2d\u6b64\u4e09\u8b8a\u6578\u662f\u5c6c\u65bc\u9ad8\u65af\u5206\u4f48\uff0c\u03bc\u662f\u4ee3\u8868\u8a5e\u985e\u5b57\u7d44\u7684\u7279\u5fb5\u5e73\u5747\u503c\uff0c\u03bc=[\u03bc A \u03bc LH \u03bc RH ] t \uff0c\u03bc A \u03bc LH \u03bc RH \u5206\u5225\u4ee3\u8868\u8a5e\u985e\u5b57\u7d44\u7684\u76f8\u95dc\u5ea6\u3001\u5de6\u71b5\u8207\u53f3\u71b5\u7684\u5e73\u5747\u503c\uff0c\u03bc ' \u662f \u4ee3\u8868\u975e\u8a5e\u985e\u5b57\u7d44\u7684\u7279\u5fb5\u5e73\u5747\u503c\uff0c\u03bc ' =[\u03bc ' A \u03bc ' LH \u03bc ' RH ] t \uff0c\u03bc ' A \u03bc ' LH \u03bc ' RH \u5206\u5225\u4ee3\u8868\u975e (4.9d)", "eq_num": "(" } ], "section": "", "sec_num": null } ], "back_matter": [], "bib_entries": { "BIBREF0": { "ref_id": "b0", "title": "Mandarin Chinese", "authors": [ { "first": "Charles", "middle": [ "N" ], "last": "Li", "suffix": "" }, { "first": "Sandra", "middle": [ "A" ], "last": "Thompson", "suffix": "" } ], "year": 1992, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Li, Charles N. and Thompson, Sandra A., \"Mandarin Chinese,\" University of California Press, New York, 1992.", "links": null }, "BIBREF1": { "ref_id": "b1", "title": "Rule-Based Word Identification for Mandarin Chinese Sentences -A Unification Approach", "authors": [ { "first": "Ching-Long", "middle": [], "last": "Yeh", "suffix": "" }, { "first": "", "middle": [], "last": "Lee", "suffix": "" }, { "first": "", "middle": [], "last": "His-Jian", "suffix": "" } ], "year": 1991, "venue": "Computer Processing of Chinese & Oriental Languages", "volume": "5", "issue": "2", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Yeh, Ching-Long and Lee, His-Jian, \"Rule-Based Word Identification for Mandarin Chinese Sentences -A Unification Approach,\" Computer Processing of Chinese & Oriental Languages, Vol. 5, No.2, March 1991.", "links": null }, "BIBREF2": { "ref_id": "b2", "title": "Retrieving Collocations from Text: Xtract", "authors": [ { "first": "Frank", "middle": [], "last": "Smadja", "suffix": "" } ], "year": 1993, "venue": "Computational Linguistics", "volume": "19", "issue": "1", "pages": "143--177", "other_ids": {}, "num": null, "urls": [], "raw_text": "Smadja, Frank, \"Retrieving Collocations from Text: Xtract,\" Computational Linguistics, Vol. 19, No. 1, 1993, pp. 143-177.", "links": null }, "BIBREF3": { "ref_id": "b3", "title": "Translating Collocations for Bilingual Lexicons", "authors": [ { "first": "Frank", "middle": [], "last": "Smadja", "suffix": "" }, { "first": "K", "middle": [ "R" ], "last": "Mckeown", "suffix": "" }, { "first": "V", "middle": [], "last": "Hatzivasiloglou", "suffix": "" } ], "year": 1996, "venue": "Computational Linguistics", "volume": "22", "issue": "1", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Smadja, Frank, McKeown, K.R. and Hatzivasiloglou, V. \"Translating Collocations for Bilingual Lexicons,\" A Statistical Approach,\" Computational Linguistics, Vol. 22, No. 1, 1996.", "links": null }, "BIBREF4": { "ref_id": "b4", "title": "Introduction to Artificial Neural Systems", "authors": [ { "first": "Jacek", "middle": [ "M" ], "last": "Zurada", "suffix": "" } ], "year": 1992, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Zurada, Jacek M., \"Introduction to Artificial Neural Systems\", West Publishing Company, USA, 1992.", "links": null }, "BIBREF5": { "ref_id": "b5", "title": "Combining Dictionary, Rules and Statistical Information in Segmentation of Chinese", "authors": [ { "first": "Jian", "middle": [], "last": "Nie", "suffix": "" }, { "first": "", "middle": [], "last": "Yun", "suffix": "" }, { "first": "Marie-Louise", "middle": [], "last": "Hannan", "suffix": "" }, { "first": "Wanying", "middle": [], "last": "Hannan", "suffix": "" } ], "year": 1995, "venue": "Computer Processing of Chinese and Oriental Languages", "volume": "9", "issue": "2", "pages": "125--143", "other_ids": {}, "num": null, "urls": [], "raw_text": "Nie, Jian Yun, Hannan, Marie-Louise and Hannan, Wanying, \"Combining Dictionary, Rules and Statistical Information in Segmentation of Chinese,\" Computer Processing of Chinese and Oriental Languages, Vol. 9, No. 2, December 1995, pp. 125-143.", "links": null }, "BIBREF6": { "ref_id": "b6", "title": "Automatic Lexicon Acquisition and Precision-Recall Maximization for Untagged Text Corpora", "authors": [ { "first": "Jing", "middle": [], "last": "Chang", "suffix": "" }, { "first": "", "middle": [], "last": "Shin", "suffix": "" } ], "year": 1997, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Chang, Jing Shin, \"Automatic Lexicon Acquisition and Precision-Recall Maximization for Untagged Text Corpora\", National Tsing-Hua University, P.h.D. thesis, 1997.", "links": null }, "BIBREF7": { "ref_id": "b7", "title": "Chinese Word Segmentation through Constraint Satisfaction and Statistical Optimization", "authors": [ { "first": "J", "middle": [ "S" ], "last": "Chang", "suffix": "" }, { "first": "C", "middle": [ "D" ], "last": "Chen", "suffix": "" }, { "first": "S", "middle": [ "D" ], "last": "Chen", "suffix": "" } ], "year": 1991, "venue": "Chinese) Proceedings of ROCLING-IV, R.O.C. Computational Linguistics Conferences", "volume": "", "issue": "", "pages": "147--165", "other_ids": {}, "num": null, "urls": [], "raw_text": "Chang, J. S., Chen, C. D. and Chen, S. D., \"Chinese Word Segmentation through Constraint Satisfaction and Statistical Optimization,\" (in Chinese) Proceedings of ROCLING-IV, R.O.C. Computational Linguistics Conferences, Taiwan ROC, 1991, pp. 147-165.", "links": null }, "BIBREF8": { "ref_id": "b8", "title": "Word Association Norms, Mutual Information and Lexicography", "authors": [ { "first": "K", "middle": [], "last": "Church", "suffix": "" }, { "first": "P", "middle": [], "last": "Hanks", "suffix": "" } ], "year": 1990, "venue": "Computational Linguistics", "volume": "16", "issue": "", "pages": "22--29", "other_ids": {}, "num": null, "urls": [], "raw_text": "Church, K. and Hanks, P., \"Word Association Norms, Mutual Information and Lexicography,\" Computational Linguistics, Vol.16, March. 1990, pp. 22-29.", "links": null }, "BIBREF9": { "ref_id": "b9", "title": "Unknown Word Detection for Chinese by a Corpus-based Learning Method", "authors": [ { "first": "Keh", "middle": [], "last": "Chen", "suffix": "" }, { "first": "", "middle": [], "last": "Jiann", "suffix": "" }, { "first": "Ming", "middle": [], "last": "Bai", "suffix": "" }, { "first": "", "middle": [], "last": "Hong", "suffix": "" } ], "year": 1997, "venue": "Proceedings of ROCLING X", "volume": "", "issue": "", "pages": "159--174", "other_ids": {}, "num": null, "urls": [], "raw_text": "Chen, Keh Jiann, Bai, Ming Hong, \"Unknown Word Detection for Chinese by a Corpus-based Learning Method,\" Proceedings of ROCLING X, Taipei, Taiwan, ROC, 1997, pp. 159-174.", "links": null }, "BIBREF10": { "ref_id": "b10", "title": "A preliminary study on unknown word problem in Chinese word segmentation", "authors": [ { "first": "M", "middle": [ "Y" ], "last": "Lin", "suffix": "" }, { "first": "T", "middle": [ "H" ], "last": "Chang", "suffix": "" }, { "first": "K", "middle": [ "Y" ], "last": "Su", "suffix": "" } ], "year": 1993, "venue": "Proceedings of 1993 R.O.C. Computational Linguistics Conference", "volume": "", "issue": "", "pages": "119--137", "other_ids": {}, "num": null, "urls": [], "raw_text": "Lin, M.Y., Chang, T. H. and Su, K. Y., \"A preliminary study on unknown word problem in Chinese word segmentation,\" Proceedings of 1993 R.O.C. Computational Linguistics Conference, Taiwan, 1993, pp.119-137.", "links": null }, "BIBREF11": { "ref_id": "b11", "title": "Corpus-based Automatic Compound Extraction with Mutual Information and Relative Frequency Count", "authors": [ { "first": "M", "middle": [ "W" ], "last": "Wu", "suffix": "" }, { "first": "K", "middle": [ "Y" ], "last": "Su", "suffix": "" } ], "year": 1993, "venue": "Proceedings of ROCLING VI", "volume": "", "issue": "", "pages": "207--216", "other_ids": {}, "num": null, "urls": [], "raw_text": "Wu, M. W. and Su, K. Y. \"Corpus-based Automatic Compound Extraction with Mutual Information and Relative Frequency Count,\" Proceedings of ROCLING VI, Nantou, Taiwan, ROC, Sep. 1993pp. 207-216.", "links": null }, "BIBREF12": { "ref_id": "b12", "title": "A Statistical Method For Finding Word Boundaries In Chinese Text", "authors": [ { "first": "Richard", "middle": [], "last": "Sproat", "suffix": "" }, { "first": "Chilin", "middle": [], "last": "Shin", "suffix": "" } ], "year": 1990, "venue": "Computer Processing of Chinese & Oriental Language", "volume": "4", "issue": "4", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Sproat, Richard and Shin, Chilin \"A Statistical Method For Finding Word Boundaries In Chinese Text,\" Computer Processing of Chinese & Oriental Language, Vol. 4, No. 4, March 1990.", "links": null }, "BIBREF13": { "ref_id": "b13", "title": "The Processing of English Compound and Complex Words in an English-Chinese Machine Translation System", "authors": [ { "first": "S", "middle": [ "C" ], "last": "Chen", "suffix": "" }, { "first": "K", "middle": [ "Y" ], "last": "Su", "suffix": "" } ], "year": 1988, "venue": "Proceedings of ROCLING I", "volume": "", "issue": "", "pages": "87--98", "other_ids": {}, "num": null, "urls": [], "raw_text": "Chen, S. C. and Su, K. Y. \"The Processing of English Compound and Complex Words in an English-Chinese Machine Translation System,\" Proceedings of ROCLING I, Nantou, Taiwan, 1988, pp. 87-98.", "links": null } }, "ref_entries": { "FIGREF0": { "type_str": "figure", "text": "\u76f8\u95dc\u5ea6(Association)[Sproat 90]\u5b9a\u7fa9\u5982\u4e0b\uff1a \u5176\u4e2d P(a)\u3001P(b) \u5206\u5225\u4ee3\u8868\u4e2d\u6587\u5b57 a \u8207 b \u7684\u51fa\u73fe\u6a5f\u7387\u3002P(ab)\u4ee3\u8868\u96d9\u5b57\u7d44 ab \u7684\u51fa\u73fe\u6a5f\u7387\u3002 \u6b64\u7d71\u8a08\u7279\u5fb5\u6709\u4e00\u7f3a\u9ede\uff0c\u7576 P(a)\u3001P(b)\u90fd\u5f88\u5c0f\u7684\u6642\u5019\uff0cA(ab)\u5bb9\u6613\u8b8a\u5f97\u5f88\u5927\u3002\u4e09\u5b57\u7d44\u7684\u76f8 \u95dc\u5ea6 A(abc)\u5b9a\u7fa9\u70ba\uff1a \u5176\u4e2d P(a)\u3001P(b) \u3001P(c) \u5206\u5225\u4ee3\u8868\u4e2d\u6587\u5b57 a\u3001b \u8207 c \u7684\u51fa\u73fe\u6a5f\u7387\uff0cP(abc)\u5247\u4ee3\u8868\u4e09\u5b57\u7d44 abc \u7684\u51fa\u73fe\u6a5f\u7387\u3002 x=1,y=1) \u662f\u4e2d\u6587\u5b57 y \u7dca\u8ddf\u8457\u4e2d\u6587\u5b57 x \u51fa\u73fe\u7684\u6a5f\u7387\uff0cP(x=1)\u8207 P(y=1)\u5247\u5206\u5225\u662f\u4e2d \u6587\u5b57 x\u3001y \u51fa\u73fe\u7684\u6a5f\u7387\u3002\u7531\u4e0a\u5f0f\u53ef\u767c\u73fe\u9ab0\u5b50\u77e9\u9663\u8207\u76f8\u95dc\u5ea6\u5f88\u50cf\uff0c\u7576 P(x=1)\u8207 P(y=1)\u90fd", "num": null, "uris": null }, "TABREF3": { "text": "1\uff0c1]\uff0c\u82e5\u662f\u8f38\u51fa\u503c\u5927\u65bc T mlff \u5247\u8996\u70ba\u8a5e\u5f59\uff0c \u82e5\u662f\u8f38\u51fa\u503c\u5c0f\u65bc T mlff \u5247\u8996\u70ba\u975e\u8a5e\u5f59\u985e\u5225\uff0c\u7cfb\u7d71\u9810\u8a2d\u7684 T mlff \u662f 0\u3002 \u5716 4-1 \u662f\u8abf\u6574\u4e0d\u540c\u9580\u6abb\u503c T mlff \u8207 T lrm \u6642\uff0c\u985e\u795e\u7d93\u7db2\u8def\u6a21\u7d44\u8207\u53ef\u80fd\u5ea6\u6bd4\u7387\u6a21\u7d44\u96d9\u97f3", "content": "
\u8a5e\u985e\u5b57\u7d44\u7684\u76f8\u95dc\u5ea6\u3001\u5de6\u71b5\u8207\u53f3\u71b5\u7684\u5e73\u5747\u503c\uff0c\u03a3\u662f\u4ee3\u8868\u8a5e\u985e\u5b57\u7d44\u7279\u5fb5\u7684\u76f8\u95dc\u4fc2\u6578\u77e9\u9663\uff0c \u8a5e\u8403\u53d6\u6b63\u78ba\u7387\u8207\u53ec\u56de\u7387\u7684\u8b8a\u5316\u60c5\u5f62\u3002\u5728\u96d9\u5b57\u7d44\u7684\u65b0\u8a5e\u8403\u53d6\u65b9\u9762\uff0c\u7576\u9ad8\u53ec\u56de\u7387\u7684\u60c5\u5f62\u6642\uff0c
\u03a3 ' \u4ee3\u8868\u975e\u8a5e\u985e\u5b57\u7d44\u7684\u7279\u5fb5\u76f8\u95dc\u4fc2\u6578\u77e9\u9663\u3002 \u985e\u795e\u7d93\u7db2\u8def\u6a21\u7d44\u7684\u6b63\u78ba\u7387\u512a\u65bc\u53ef\u80fd\u5ea6\u6bd4\u7387\u6a21\u7d44;\u800c\u7576\u4f4e\u53ec\u56de\u7387\u7684\u60c5\u5f62\u6642\uff0c\u53ef\u80fd\u5ea6\u6bd4\u7387\u6a21
4.8b) \u6211\u5011\u5229\u7528\u5728 3.4 \u7bc0\u5b9a\u7fa9\u7684\u6b63\u78ba\u7387\u8207\u53ec\u56de\u7387\u4f86\u8a55\u4f30\u7cfb\u7d71\u7684\u6548\u80fd\uff0c\u53e6\u5916\u4ee5\u52a0\u6b0a\u5f0f\u6b63\u78ba \u7d44\u7684\u6b63\u78ba\u7387\u5247\u512a\u65bc\u985e\u795e\u7d93\u7db2\u8def\u6a21\u7d44\u3002
\u53ec\u56de\u7387(weighted precision recall,WPR)\u505a\u70ba\u8861\u91cf\uff0c
\u52a0\u6b0a\u5f0f\u6b63\u78ba\u53ec\u56de\u7387=W 1\u00d7\u6b63\u78ba\u7387+W 2\u00d7, \u53ec\u56de\u7387(4.10)
\u5176\u4e2d W 1 \u8207 W 2 \u7686\u8a2d\u5b9a\u70ba\u4e8c\u5206\u4e4b\u4e00\u3002
\u6211\u5011\u4ee5\u4e82\u6578\u9078\u53d6\u4e09\u5206\u4e4b\u4e8c\u7684\u5b57\u7d44\u4f5c\u70ba\u8a13\u7df4\u8cc7\u6599\uff0c\u5206\u5225\u4f7f\u7528\u53ef\u80fd\u5ea6\u6bd4\u7387\u6a21\u7d44\u8207\u985e\u795e
\u7d93\u7db2\u8def\u6a21\u7d44\u9032\u884c\u65b0\u8a5e\u8403\u53d6\u3002\u6211\u5011\u4f7f\u7528\u76f8\u95dc\u5ea6\u3001\u5de6\u71b5\u8207\u53f3\u71b5\u4f5c\u70ba\u7d71\u8a08\u5f0f\u7279\u5fb5\uff0c\u4e26\u4e14\u5229\u7528
\u591a\u8b8a\u6578\u9ad8\u65af\u51fd\u6578\u4f5c\u70ba\u53ef\u80fd\u5ea6\u6bd4\u7387\u6a21\u7d44\u7684\u6a5f\u7387\u5206\u4f48\uff0c\u8a08\u7b97\u8a13\u7df4\u8cc7\u6599\u7684\u5e73\u5747\u503c\u8207\u76f8\u95dc\u4fc2\u6578
\u77e9\u9663\uff0c\u53ef\u5f97\u5230\u9ad8\u65af\u51fd\u6578\u7684\u53c3\u6578\uff0c\u5957\u5165\u9ad8\u65af\u51fd\u6578\u5f8c\u53ef\u5f97\u5230\u53ef\u80fd\u5ea6\u6bd4\u7387\u6a21\u7d44\u3002
\u5728\u985e\u795e\u7d93\u7db2\u8def\u8403\u53d6\u6a21\u7d44\u65b9\u9762\uff0c\u7531\u65bc\u76f8\u95dc\u5ea6\u7684\u503c\u57df\u6bd4\u5de6\u71b5\u8207\u53f3\u71b5\u5927\u8a31\u591a\uff0c\u56e0\u6b64\u6211\u5011
\u5148\u5c07\u6b64\u4e09\u7a2e\u7279\u5fb5\u4f5c\u4e00\u7c21\u55ae\u7684\u503c\u57df\u8f49\u63db\uff0c\u5c07\u7279\u5fb5\u7684\u503c\u57df\u8f49\u63db\u5230[0.05\uff0c0.95]\u53ca[-0.95\uff0c \u5716 4-2\uff1a\u4e09\u97f3\u8a5e\u8403\u53d6\u6548\u80fd\u6bd4\u8f03\u5716 \u5716 4-3\uff1a\u4e09\u97f3\u8a5e\u8403\u53d6\u6548\u80fd\u6bd4\u8f03\u5716
-0.05]\u3002\u56e0\u70ba 0 \u5728\u5012\u50b3\u905e\u7db2\u8def\u4e2d\uff0c\u662f\u6c92\u6709\u4f5c\u7528\u7684\uff0c\u56e0\u6b64\u907f\u958b 0\u3002\u82e5\u662f\u7279\u5fb5 X \u7684\u503c\u6c38\u9060\u5927
\u65bc\u96f6\uff0c\u5247\u4f7f\u7528\u4ee5\u4e0b\u7684\u8f49\u63db\u51fd\u6578 5. \u7d50\u8ad6
\u5716 4-1 \u96d9\u97f3\u8a5e\u8403\u53d6\u6548\u80fd\u6bd4\u8f03\u5716 \u672c\u8ad6\u6587\u63d0\u51fa\u4e00\u500b\u5169\u968e\u6bb5\u7684\u4e2d\u6587\u65b0\u8a5e\u8403\u53d6\u6280\u8853\uff0c\u53ef\u61c9\u7528\u65bc\u4e2d\u6587\u6587\u4ef6\u8655\u7406\u7cfb\u7d71\uff0c\u5c07\u8a9e\u6599\u4e2d
(4.9a) (4.9b) (4.9c) (4.9e) (4.9f) \u56e0\u70ba\u6211\u5011\u9996\u5148\u53ea\u4f7f\u7528\u4e09\u7a2e\u7279\u5fb5\uff0c\u6240\u4ee5\u8f38\u5165\u5c64\u7684\u7bc0\u9ede\u500b\u6578\u662f\u4e09\u500b\uff0c\u8f38\u51fa\u503c\u4ea6\u53ea\u6709\u4e00\u500b\uff0c 05 . 0 min) ( min max 05 . 0 95 . 0 ) ( + \u2212 \u2212 \u2212 = x x f \u5426\u5247\u4f7f\u7528\u6b64\u51fd\u6578 05 . 0 ) ( max 05 . 0 95 . 0 ) ( + \u2212 = x x f , if x \u2267 0 05 . 0 ) ( max 05 . 0 95 . 0 ) ( \u2212 \u2212 = x x f , if x < 0 (4.11b) (4.11c) \u5728\u4e09\u97f3\u8a5e\u7684\u8403\u53d6\u65b9\u9762\uff0c\u985e\u795e\u7d93\u7db2\u8def\u6a21\u7d44\u5728\u9580\u6abb\u503c\u70ba\u9810\u8a2d\u503c\u6642\uff0c\u7565\u512a\u65bc\u53ef\u80fd\u5ea6\u6bd4\u7387 \u6a21\u7d44\u3002\u89c0\u5bdf\u5716 4-2\uff0c\u767c\u73fe\u985e\u795e\u7d93\u7db2\u8def\u6a21\u7d44\u8207\u53ef\u80fd\u5ea6\u6bd4\u7387\u6a21\u7d44\u65bc\u4e09\u97f3\u8a5e\u7684\u8403\u53d6\u80fd\u529b\u4e26\u7121 \u660e\u986f\u7684\u512a\u52a3\u5206\u5225\u3002 \u7531\u65bc\u4e09\u5b57\u7d44\u4e2d\u5176\u4e8c\u5b57\u7d44\u7684\u8cc7\u8a0a\u662f\u6709\u610f\u7fa9\u7684\u56e0\u6b64\u5728\u985e\u795e\u7d93\u7db2\u8def\u6a21\u7d44\u4e09\u5b57\u7d44 c 1 c 2 c 3 \u65b0 \u8a5e\u8403\u53d6\u4e2d\u9664\u4e86\u539f\u672c\u4f7f\u7528\u7684\u76f8\u95dc\u5ea6\u3001\u5de6\u71b5\u8207\u53f3\u71b5\u7684\u4e09\u500b\u7279\u5fb5\u5916\uff0c\u6211\u5011\u53e6\u52a0\u5165\u5176\u90e8\u5206\u5b57\u7d44 c 1 c 2 \u8207 c 2 c 3 \u7684\u76f8\u95dc\u5ea6\u3001\u5de6\u71b5\u8207\u53f3\u71b5\u4f5c\u70ba\u7279\u5fb5\uff0c\u7279\u5fb5\u500b\u6578\u589e\u52a0\u70ba\u4e5d\u500b\u3002\u5728\u8868 4.1 \u548c\u5716 4-3 \u53ef\u77e5\u4ee5\u7279\u5fb5\u6578\u7684\u589e\u52a0\u78ba\u5be6\u53ef\u63d0\u9ad8\u5206\u8fa8\u7684\u6b63\u78ba\u7387\u3002 \u53ef\u80fd\u5ea6\u6bd4\u7387\u6a21\u7d44 \u985e\u795e\u7d93\u7db2\u8def\u6a21\u7d44 (\u4e09\u7a2e\u7279\u5fb5) \u985e\u795e\u7d93\u7db2\u8def\u6a21\u7d44 (\u4e5d\u7a2e\u7279\u5fb5) \u6b63\u78ba\u7387 16.32\uff05 13.68\uff05 18.97\uff05 \u53ec\u56de\u7387 59.3\uff05 63.32\uff05 77.89\uff05 \u52a0\u6b0a\u5f0f\u6b63\u78ba\u53ec\u56de\u7387 37.81\uff05 38.5\uff05 48.83\uff05 \u8868 4-1 \u4e09\u97f3\u8a5e\u8403\u53d6\u6548\u80fd\u6bd4\u8f03\u8868 \u6709\u610f\u7fa9\u7684\u65b0\u8a5e\u8403\u53d6\u51fa\u4f86\u3002\u5be6\u9a57\u6578\u64da\u7684\u5206\u6790\u986f\u793a\u5229\u7528\u69cb\u8a5e\u5b78\u7684\u65b9\u6cd5\u78ba\u5be6\u80fd\u6709\u6548\u7684\u5c07\u4e09\u97f3 \u65b0\u8a5e\u8403\u53d6\u51fa\u4f86\uff0c\u4e26\u4e14\u6b63\u78ba\u5730\u5c07\u5927\u90e8\u5206\u975e\u8a5e\u5f59\u5b57\u7d44\u904e\u6ffe\u6389\u3002\u53e6\u4e00\u65b9\u9762\u5229\u7528\u985e\u795e\u7d93\u7db2\u8def\u7d50 \u5408\u5404\u7a2e\u7d71\u8a08\u5f0f\u8cc7\u8a0a\u4f86\u8403\u53d6\u65b0\u8a5e\uff0c\u53ef\u5f4c\u88dc\u69cb\u8a5e\u6cd5\u5247\u7684\u4fb7\u9650\u6027\u3002\u6700\u5f8c\u6211\u5011\u4ea6\u63a2\u8a0e\u7279\u5fb5\u7684\u9078 \u53d6\u5c0d\u65bc\u8403\u53d6\u7684\u5f71\u97ff\uff0c\u4e26\u8207\u53ef\u80fd\u5ea6\u6a21\u7d44\u6bd4\u8f03\u3002\u5f9e\u5be6\u9a57\u7684\u7d50\u679c\u6211\u5011\u5f97\u77e5\u4e09\u97f3\u8a5e\u4e2d\u4e8c\u5b57\u7d44\u7279 \u5fb5\u7684\u52a0\u5165\u78ba\u5be6\u80fd\u63d0\u9ad8\u4e09\u97f3\u8a5e\u65b0\u8a5e\u7684\u6b63\u78ba\u7387\u8207\u53ec\u56de\u7387\u3002 \u672c\u8ad6\u6587\u7684\u5f8c\u7e8c\u7814\u7a76\u65b9\u5411\u4e3b\u8981\u6709\u7279\u5fb5\u7684\u81ea\u52d5\u9078\u53d6\u3002\u5728\u4f7f\u7528\u985e\u795e\u7d93\u8403\u53d6\u6a21\u7d44\u6642\uff0c\u9078\u53d6 \u7684\u7279\u5fb5\u7684\u597d\u58de\u6703\u76f4\u63a5\u5f71\u97ff\u5230\u7cfb\u7d71\u7684\u6548\u80fd\uff0c\u5728\u672c\u8ad6\u6587\u4f7f\u7528\u5206\u6790\u5176\u503c\u57df\u5206\u4f48\u60c5\u5f62\u4f86\u4f5c\u7279\u5fb5 \u9078\u53d6\u3002\u4f46\u662f\u7576\u53ef\u4f7f\u7528\u7279\u5fb5\u5f88\u591a\uff0c\u5c0e\u81f4\u96e3\u4ee5\u9010\u500b\u5206\u6790\u6642\uff0c\u5247\u9700\u5229\u7528\u7279\u5fb5\u81ea\u52d5\u9078\u53d6\u4f86\u89e3\u6c7a \u6211\u5011\u4f7f\u7528\u7684\u8f49\u63db\u51fd\u6578\u662f\u96d9\u5f4e\u66f2\u51fd\u6578\u5176\u503c\u57df\u70ba[-(4.11a) \u9019\u500b\u554f\u984c\u3002\u8207\u6b64\u554f\u984c\u76f8\u95dc\u7684\u9084\u6709\u7279\u5fb5\u7684\u503c\u57df\u8f49\u63db\u554f\u984c\uff0c\u7576\u5404\u7a2e\u7279\u5fb5\u8cc7\u8a0a\u7684\u503c\u57df\u7bc4\u570d\u76f8
\u5dee\u592a\u5927\u6642\uff0c\u5c31\u9700\u8981\u7279\u5fb5\u7684\u503c\u57df\u8f49\u63db\uff0c\u907f\u514d\u7cfb\u7d71\u88ab\u5c11\u6578\u5e7e\u500b\u7279\u5fb5\u6240\u4e3b\u5bb0\u3002
", "html": null, "num": null, "type_str": "table" } } } }