{ "paper_id": "2020", "header": { "generated_with": "S2ORC 1.0.0", "date_generated": "2023-01-19T12:53:52.697899Z" }, "title": "Chinese question answering method based on multi-head attention and BiLSTM improved DAM model", "authors": [ { "first": "Hanzhong", "middle": [], "last": "Qin", "suffix": "", "affiliation": {}, "email": "" }, { "first": "Chongchong", "middle": [], "last": "Yu", "suffix": "", "affiliation": {}, "email": "" }, { "first": "Weijie", "middle": [], "last": "Jiang", "suffix": "", "affiliation": {}, "email": "" }, { "first": "Xia", "middle": [], "last": "Zhao", "suffix": "", "affiliation": {}, "email": "zhaox@btbu.edu.cn" } ], "year": "", "venue": null, "identifiers": {}, "abstract": "Aiming at the current problem of Deep Attention Matching Network(DAM) can not effectively match response details, and will cause semantic confusion, a Chinese question answering method based on multi-head attention and Bi-directional Long Short-Term Memory (BiLSTM) improved DAM model was proposed. This method can model longer multiple rounds of dialogue and handle the matching relationship between the response selection and the context. In addition, this paper uses the BiLSTM Network in the feature fusion process to improve the accuracy of multi-turn response selection tasks by capturing the time-dependent relation. In this paper, we test the improved DAM on two public multi-turn response selection datasets, the Douban Conversion Corpus and the E-commerce Dialogue Corpus. Experimental results show our model outperforms the baseline model by 1.5% in Recall-10-at-1 with the word vector enhancement.", "pdf_parse": { "paper_id": "2020", "_pdf_hash": "", "abstract": [ { "text": "Aiming at the current problem of Deep Attention Matching Network(DAM) can not effectively match response details, and will cause semantic confusion, a Chinese question answering method based on multi-head attention and Bi-directional Long Short-Term Memory (BiLSTM) improved DAM model was proposed. This method can model longer multiple rounds of dialogue and handle the matching relationship between the response selection and the context. In addition, this paper uses the BiLSTM Network in the feature fusion process to improve the accuracy of multi-turn response selection tasks by capturing the time-dependent relation. In this paper, we test the improved DAM on two public multi-turn response selection datasets, the Douban Conversion Corpus and the E-commerce Dialogue Corpus. Experimental results show our model outperforms the baseline model by 1.5% in Recall-10-at-1 with the word vector enhancement.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Abstract", "sec_num": null } ], "body_text": [ { "text": "1 \u5f15\u8a00 \u4eba\u673a\u5bf9\u8bdd\u7cfb\u7edf\u662f\u4e00\u4e2a\u590d\u6742\u7684\u7814\u7a76\u65b9\u5411\uff0c\u6784\u5efa\u4eba\u673a\u5bf9\u8bdd\u7cfb\u7edf\u7684\u65b9\u6cd5\u4e4b\u4e00\u662f\u68c0\u7d22\u5f0f\u65b9\u6cd5\u3002\u68c0\u7d22 \u5f0f\u65b9\u6cd5\u9996\u5148\u9700\u63d0\u53d6\u8f93\u5165\u5bf9\u8bdd\u7684\u7279\u5f81\uff0c\u968f\u540e\u5728\u5019\u9009\u56de\u590d\u5e93\u5339\u914d\u591a\u4e2a\u76ee\u6807\u5019\u9009\u56de\u590d\uff0c\u6309\u7167\u67d0\u79cd\u6307\u6807 \u8fdb\u884c\u6392\u5e8f\uff0c\u8f93\u51fa\u5f97\u5206\u6700\u9ad8\u7684\u56de\u590d\u3002\u5c06\u4e4b\u524d\u7684\u5bf9\u8bdd\u8f93\u51fa\u4f5c\u4e3a\u5386\u53f2\u5bf9\u8bdd\uff0c\u5373\u5f62\u6210\u591a\u8f6e\u5bf9\u8bdd\u7684\u5f62\u5f0f\u3002 \u8fd1\u5e74\u6765\uff0c\u968f\u7740\u6df1\u5ea6\u5b66\u4e60\u7684\u53d1\u5c55\uff0c\u5173\u4e8e\u4eba\u673a\u5bf9\u8bdd\u7684\u7814\u7a76\u91cd\u70b9\u9010\u6e10\u7531\u57fa\u4e8e\u6a21\u677f\u3001\u89c4\u5219\u7684\u4f20\u7edf\u65b9 \u6cd5\u8f6c\u53d8\u4e3a\u57fa\u4e8e\u7aef\u5230\u7aef\u7684\u6df1\u5ea6\u5b66\u4e60\u6a21\u578b\u65b9\u6cd5\u3002 (Wu Y et al.,2016) \u63d0\u51fa\u5e8f\u5217\u5339\u914d\u7f51\u7edc(Sequence Matching Network\uff0cSMN)\u6a21\u578b\uff0c\u6a21\u578b\u53ef\u5206\u4e3a\"\u8868\u793a-\u5339\u914d-\u878d\u5408\"\u4e09\u4e2a\u90e8\u5206\uff0c\u6574\u4f53\u4e0a\u57fa\u4e8e CNN \u548c RNN \u5b9e\u73b0\u4ee5\u8bed\u4e49\u878d\u5408\u4e3a\u4e2d\u5fc3\u7684\u591a\u8f6e\u5bf9\u8bdd\u56de\u590d\u9009\u62e9\u3002 (Zhang Z et al.,2018) \u63d0\u51fa\u6df1\u5ea6\u8868\u8fbe\u878d\u5408 (Deep Utterance Aggregation\uff0cDUA)\u6a21\u578b\uff0c\u9488\u5bf9 SMN \u6a21\u578b\u5c06\u5386\u53f2\u5bf9\u8bdd\u76f4\u63a5\u62fc\u63a5\u4e3a\u4e0a\u4e0b\u6587\u5b58\u5728 \u566a\u58f0\u548c\u5197\u4f59\u7684\u95ee\u9898\uff0c\u91c7\u7528\u6ce8\u610f\u529b\u673a\u5236\u6316\u6398\u5173\u952e\u4fe1\u606f\u5e76\u5ffd\u7565\u5197\u4f59\u4fe1\u606f\uff0c\u6700\u7ec8\u83b7\u5f97\u5bf9\u8bdd\u8868\u8fbe\u548c\u5019\u9009 \u54cd\u5e94\u7684\u5339\u914d\u5f97\u5206\u3002 (Zhou X et al.,2018) (Zhou X et al.,2018) \u6570\u636e\u9884\u5904\u7406\u7684\u7b2c\u4e00\u90e8\u5206\u662f\u6570\u636e\u6e05\u6d17\uff0c\u5229\u7528 response.txt \u4e2d\u7684\u5019\u9009\u56de\u590d\u8868\uff0c\u53ef\u7d22\u5f15 ", "cite_spans": [ { "start": 189, "end": 207, "text": "(Wu Y et al.,2016)", "ref_id": "BIBREF8" }, { "start": 307, "end": 328, "text": "(Zhang Z et al.,2018)", "ref_id": "BIBREF9" }, { "start": 449, "end": 469, "text": "(Zhou X et al.,2018)", "ref_id": null }, { "start": 470, "end": 490, "text": "(Zhou X et al.,2018)", "ref_id": null } ], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null }, { "text": "\u63d0\u51fa\u7684 DAM \u6a21\u578b\u7684\u6574\u4f53\u7ed3\u6784\u5982\u56fe 1 \u6240\u793a\uff0c\u53ef\u4ee5\u5206\u4e3a\u8f93\u5165\u3001\u8868\u793a\u3001\u5339 \u914d\u3001\u805a\u5408\u56db\u4e2a\u90e8\u5206\u3002\u6a21\u578b\u7684\u8f93\u5165\u662f\u591a\u8f6e\u5bf9\u8bdd\u548c\u5019\u9009\u56de\u590d\uff0c\u8f93\u51fa\u662f\u6bcf\u4e2a\u5019\u9009\u56de\u590d\u7684\u5f97\u5206\u3002 \u56fe 1. DAM \u6a21\u578b\u7684\u6574\u4f53\u7ed3\u6784 DAM \u6a21\u578b\u7684\u6ce8\u610f\u529b\u6a21\u5757\u542b\u6709\u67e5\u8be2\u5411\u91cf Q\u3001\u952e\u5411\u91cf K \u548c\u503c\u5411\u91cf V \u4e09\u4e2a\u8f93\u5165\u3002\u6a21\u5757\u9996\u5148\u5229\u7528 \u4ee5\u4e0b\u516c\u5f0f\u8ba1\u7b97\u8f93\u5165\u7684\u7f29\u653e\u70b9\u79ef\u6ce8\u610f\u529b\uff1a ) , , ( V att V K Q Attention \uf03d (1) \u4e4b\u540e\u6a21\u5757\u5c06 att V \u548c Q \u76f4\u63a5\u76f8\u52a0\uff0c\u4ea7\u751f\u7684\u548c\u5305\u542b\u4e8c\u8005\u7684\u8054\u5408\u8bed\u4e49\u4fe1\u606f\u3002\u4e3a\u9632\u6b62\u68af\u5ea6\u6d88\u5931\u6216\u68af \u5ea6\u7206\u70b8\uff0c\u5bf9 att V \u548c Q \u76f8\u52a0\u7684\u7ed3\u679c\u5e94\u7528\u5c42\u5f52\u4e00\u5316\uff0c\u7ed3\u679c\u8bb0\u4e3a ln V \u3002\u63a5\u7740\u5c06 ln V \u4f20\u5165\u4e00\u4e2a\u57fa\u4e8e ReLU \u51fd \u6570\u6fc0\u6d3b\u7684\u53cc\u5c42\u524d\u9988\u7f51\u7edc FFN\uff0c\u8fdb\u4e00\u6b65\u5904\u7406\u878d\u5408\u4fe1\u606f\u3002FFN \u7684\u8f93\u51fa\u4e0e\u8f93\u5165\u8fdb\u884c\u4e00\u6b21\u6b8b\u5dee\u8fde\u63a5\uff0c\u4ea7 \u751f\u7684\u7ed3\u679c\u518d\u6b21\u5e94\u7528\u5c42\u5f52\u4e00\u5316\uff0c\u6b64\u65f6\u7684 O \u662f\u6574\u4e2a\u6ce8\u610f\u529b\u6a21\u5757\u8ba1\u7b97\u8fc7\u7a0b\u7684\u6700\u7ec8\u8f93\u51fa\uff0c\u5c06\u5176\u8868\u793a\u4e3a\uff1a ) , , ( V K Q odule AttentionM O \uf03d (2) DAM \u6a21\u578b\u7684\u8bed\u4e49\u8868\u793a\u7f51\u7edc\u7531\u591a\u4e2a\u76f8\u540c\u7684\u6ce8\u610f\u529b\u6a21\u5757\u9996\u5c3e\u76f8\u8fde\uff0c\u5f62\u6210\u5806\u53e0\u7684\u7f51\u7edc\u7ed3\u6784\u3002\u7f51\u7edc \u4e2d\u6bcf\u4e2a\u6ce8\u610f\u529b\u6a21\u5757\u7684\u4e09\u4e2a\u8f93\u5165\u76f8\u540c\uff0c\u8ba1\u7b97\u81ea\u6ce8\u610f\u529b\uff0c\u516c\u5f0f\u8868\u793a\u4e3a\uff1a ) , , ( 1 i l i l i l i l U U U odule AttentionM U \uf03d \uf02b (3) ) , , ( 1 l l l l R R R odule AttentionM R \uf03d \uf02b (4) \u5176\u4e2d l \u7684\u8303\u56f4\u4ece 0 \u5230 1 \uf02d L \uff0cL \u8868\u793a\u6a21\u5757\u5806\u53e0\u7684\u6570\u91cf\uff0c i i u U \uf03d 0 \u4ee5\u53ca r R \uf03d 0 \u662f\u539f\u59cb\u8f93\u5165\u3002 DAM \u6a21\u578b\u4e2d\u7279\u5f81\u5339\u914d\u7684\u8f93\u5165\u662f\u8bed\u4e49\u8868\u793a\u7f51\u7edc\u7684\u8f93\u51fa i U \u548c R\u3002\u9488\u5bf9\u4e0d\u540c\u7c92\u5ea6 l\uff0c\u7f51\u7edc\u5c06\u4ea7\u751f \u4e24\u79cd\u5339\u914d\u77e9\u9635\uff0c\u4e00\u79cd\u662f\u81ea\u5339\u914d\u77e9\u9635 l r u self i M , , \uff0c\u53e6\u4e00\u79cd\u662f\u4e92\u5339\u914d\u77e9\u9635 l r u cross i M , , \u3002 l r u self i M , , \u662f i U \u548c R \u7684\u70b9 \u79ef\uff0c\u77e9\u9635\u4e2d\u542b\u6709 i U \u548c R \u5143\u7d20\u95f4\u7684\u8bed\u4e49\u4f9d\u8d56\u5173\u7cfb\u3002 l r u cross i M , , \u7684\u4ea7\u751f\u57fa\u4e8e\u5bf9\u6ce8\u610f\u529b\u6a21\u5757\u8f93\u5165\u7684\u4fee\u6539\uff0c \u901a\u8fc7\u4ee4 i U \u548c R \u4e2d\u5bf9\u5e94\u5143\u7d20\u4e92\u76f8\u5173\u6ce8\uff0c\u6784\u9020\u51fa\u65b0\u7684\u8bed\u4e49\u8868\u793a l i \u0168 \u548c l R \uff0c\u7528\u4e8e\u6355\u6349\u8de8\u8d8a\u5bf9\u8bdd\u8868\u8fbe\u4e0e \u5019\u9009\u56de\u590d\u4e4b\u95f4\u7684\u4ea4\u53c9\u5173\u8054\u7279\u5f81\u3002\u4e8c\u8005\u7684\u8ba1\u7b97\u516c\u5f0f\u4e3a\uff1a ) , , ( i l l l i l R R U odule AttentionM U \uf03d (5) ) , , ( l l i l i l U U R odule AttentionM R \uf03d (6) \u901a\u8fc7\u8ba1\u7b97 l i \u0168 \u548c l R \u7684\u70b9\u79ef\uff0c \u5f97\u5230 l r u cross i M , , \uff0c DAM \u6a21\u578b\u4e2d\u7684\u7279\u5f81\u878d\u5408\u7f51\u7edc\u5c06\u591a\u4e2a\u7c92\u5ea6\u7684 l r u self i M , , \u548c l r u cross i M , , \u4f5c\u4e3a\u8f93\u5165\uff0c\u5728 i \u548c l \u4e24\u4e2a\u7ef4\u5ea6\u62fc\u63a5\u4e24\u4e2a\u77e9\u9635\uff0c\u5f97\u5230\u77e9\u9635 l i P , \u5982\u4e0b\uff1a l r u cross l r u self i i M M P , , , , l , i \uf0c5 \uf03d (7) \u5728 DAM \u6a21\u578b\u4e2d\uff0c l i P , \u88ab\u79f0\u4e3a\u50cf\u7d20\u70b9\uff0c\u7531 l i P , \u7ec4\u5408\u5f62\u6210\u7684\u9ad8\u7ef4\u77e9\u9635 P \u88ab\u79f0\u4e3a\u56fe\u50cf\uff0c\u8fd9\u6837\u7684\u547d \u540d\u662f\u4e3a\u4e86\u65b9\u4fbf\u4f7f\u7528 CNN\u3002P \u4e2d\u7684\u56fe\u50cf\u6df1\u5ea6\u5bf9\u5e94\u4e8e\u591a\u8f6e\u5bf9\u8bdd\u7684\u8f6e\u6b21\uff0c\u56fe\u50cf\u5bbd\u5ea6\u5bf9\u5e94\u4e8e\u6bcf\u8f6e\u5bf9\u8bdd\u548c \u5019\u9009\u56de\u590d\u5728\u53e5\u5b50\u5c42\u7ea7\u7684\u5339\u914d\u4fe1\u606f\uff0c\u56fe\u50cf\u9ad8\u5ea6\u5bf9\u5e94\u4e8e\u6bcf\u8f6e\u5bf9\u8bdd\u548c\u5019\u9009\u56de\u590d\u5728\u5355\u8bcd\u5c42\u7ea7\u7684\u5339\u914d\u4fe1\u606f\u3002 \u7531\u4e8e P \u542b\u6709\u4e09\u4e2a\u7ef4\u5ea6\u7684\u7279\u5f81\uff0cDAM \u6a21\u578b\u91c7\u7528 3D \u5377\u79ef\u8fdb\u884c\u7279\u5f81\u63d0\u53d6\u3002\u7ecf\u8fc7\u4e24\u6b21 3D \u5377\u79ef\u548c\u6700\u5927 \u6c60\u5316\uff0cP \u6700\u7ec8\u53d8\u6210\u4e00\u7ef4\u7279\u5f81 f\uff0c\u518d\u7ecf\u8fc7\u4e00\u4e2a\u7ebf\u6027\u5206\u7c7b\u5668\u5373\u53ef\u83b7\u5f97\u5339\u914d\u5206\u6570 ) , ( r c g \u3002 3 \u57fa\u4e8e\u591a\u5934\u6ce8\u610f\u529b\u673a\u5236\u548c BiLSTM \u7f51\u7edc\u7684 Ex-DAM \u6a21\u578b 3.1 \u57fa\u4e8e\u591a\u5934\u6ce8\u610f\u529b\u548c BiLSTM \u7684 Ex-DAM \u6a21\u578b \u4e3a\u4f7f DAM \u6a21\u578b\u66f4\u9002\u5408\u5904\u7406\u542b\u6709\u7ec6\u5fae\u53d8\u5316\u7684\u6570\u636e\uff0c \u8fdb\u4e00\u6b65\u63d0\u9ad8\u9009\u62e9\u76ee\u6807\u5019\u9009\u56de\u590d\u7684\u51c6\u786e\u7387\uff0c \u672c\u6587\u5229\u7528\u591a\u5934\u6ce8\u610f\u529b\u8868\u793a\u7f51\u7edc\u548c\u53cc\u901a\u9053\u7279\u5f81\u878d\u5408\u7f51\u7edc\uff0c\u7ed3\u5408 DAM \u6a21\u578b\u4e2d\u7684\u4ea4\u4e92\u5339\u914d\u7f51\u7edc\uff0c\u57fa \u4e8e\u6b64\u6784\u6210\u4e00\u4e2a\u65b0\u7684\u7aef\u5230\u7aef\u68c0\u7d22\u5f0f\u591a\u8f6e\u5bf9\u8bdd\u7cfb\u7edf\u6a21\u578b\uff0c\u5c06\u8be5\u6a21\u578b\u547d\u540d\u4e3a\u57fa\u4e8e\u591a\u5934\u6ce8\u610f\u529b\u548c BiLSTM \u7684 Ex-DAM \u6a21\u578b\u3002\u6a21\u578b\u7684\u6574\u4f53\u7ed3\u6784\u5982\u56fe 2 \u6240\u793a\u3002 Matching Score M ru M u M rl M un-1, l M u0, l R l r u 0 i=1~L Multi-Head Attention Layer i Multi-Head Attention Layer i Multi-Head Attention Layer i u n-1 U 0, l \u2026 \u2026 U n-1, l Attention Layer Attention Layer Attention Layer \u2026 BiLSTM \uf0c5 BiLSTM \uf0c5 BiLSTM \uf0c5 M ur F MLP Representation Matching Aggregation Prediction \u56fe 2. Ex-DAM \u6a21\u578b\u6574\u4f53\u7ed3\u6784 \u6a21\u578b\u7684\u8f93\u5165\u662f\u8bcd\u5411\u91cf\u5f62\u5f0f\u7684\u591a\u8f6e\u5bf9\u8bdd\u548c\u5019\u9009\u56de\u590d\uff0c\u9996\u5148\u7ecf\u8fc7 L \u4e2a\u591a\u5934\u6ce8\u610f\u529b\u5c42\u4ee5\u83b7\u53d6\u5b83\u4eec \u7684\u591a\u7c92\u5ea6\u8868\u793a\u3002\u5728\u8fd9\u4e9b\u8868\u793a\u5411\u91cf\u4e2d\uff0c\u6bcf\u4e00\u8f6e\u5bf9\u8bdd\u90fd\u548c\u5019\u9009\u56de\u590d\u8fdb\u884c\u4e00\u6b21\u666e\u901a\u7684\u6ce8\u610f\u529b\u8ba1\u7b97\uff0c\u5f97 \u5230\u591a\u4e2a\u4e3b\u5339\u914d\u77e9\u9635\u3002\u6b64\u5916\uff0c\u5019\u9009\u56de\u590d\u518d\u989d\u5916\u5730\u4e0e\u6700\u540e\u4e00\u8f6e\u5bf9\u8bdd\u8ba1\u7b97\u4e00\u6b21\u6ce8\u610f\u529b\uff0c\u4ee5\u83b7\u5f97\u6b21\u5339\u914d \u77e9\u9635\u3002\u968f\u540e\uff0c\u4e3b\u3001\u6b21\u5339\u914d\u77e9\u9635\u5206\u522b\u4f5c\u4e3a\u4e24\u4e2a\u901a\u9053\u7684\u8f93\u5165\u8fdb\u884c\u7279\u5f81\u878d\u5408\u3002\u5728\u8fd9\u4e2a\u8fc7\u7a0b\u4e2d\uff0c\u6240\u6709\u7684 \u5339\u914d\u77e9\u9635\u7ecf\u8fc7 BiLSTM \u548c\u62fc\u63a5\u64cd\u4f5c\u4f9d\u6b21\u8fdb\u884c\u5e8f\u5217\u7279\u5f81\u63d0\u53d6\u548c\u7ef4\u5ea6\u7edf\u4e00\u3002\u6700\u540e\uff0c\u628a\u4e24\u4e2a\u901a\u9053\u7684\u8f93 \u51fa\u5411\u91cf\u9996\u5c3e\u62fc\u63a5\uff0c\u7ecf\u8fc7\u591a\u5c42\u611f\u77e5\u5668\u5c31\u80fd\u83b7\u5f97\u6bcf\u4e2a\u5019\u9009\u56de\u590d\u4e0e\u591a\u8f6e\u5bf9\u8bdd\u4e4b\u95f4\u7684\u5339\u914d\u5206\u6570\u3002 3.2 Ex-DAM \u6a21\u578b\u4e2d\u7684\u591a\u5934\u6ce8\u610f\u529b\u6a21\u5757\u548c\u8bed\u4e49\u8868\u793a\u7f51\u7edc \u666e\u901a\u7684\u6ce8\u610f\u529b\u673a\u5236\u5728\u6587\u672c\u5e8f\u5217\u4e2d\u53ef\u4ee5\u5f88\u597d\u5730\u63d0\u53d6\u8bcd\u5411\u91cf\u89d2\u5ea6\u7684\u5173\u952e\u4fe1\u606f\uff0c\u4f46\u51e0\u4e4e\u65e0\u6cd5\u8bc6\u522b \u5bf9\u8bcd\u5411\u91cf\u8fdb\u884c\u7edf\u4e00\u4fee\u6539\u7684\u64cd\u4f5c\u3002\u591a\u5934\u6ce8\u610f\u529b\u673a\u5236\u6b63\u597d\u53ef\u4ee5\u89e3\u51b3\u6b64\u7c7b\u95ee\u9898\uff0c\u5728\u8ba1\u7b97\u65f6\u9996\u5148\u8f93\u5165\u591a \u6b21\u6620\u5c04\uff0c\u6bcf\u4e2a\u6620\u5c04\u4f7f\u7528\u4e0d\u540c\u53c2\u6570\u8fdb\u884c\u76f8\u540c\u8ba1\u7b97\uff0c\u6700\u540e\u5c06\u5404\u4e2a\u8f93\u51fa\u5408\u5e76\u5728\u4e00\u8d77\uff0c\u56e0\u6b64\u6bd4\u7f29\u653e\u70b9\u79ef \u6ce8\u610f\u529b\u66f4\u9002\u5408\u5904\u7406\u542b\u6709\u7ec6\u5fae\u53d8\u5316\u7684\u6570\u636e\uff0c\u672c\u6587\u4f7f\u7528\u591a\u5934\u6ce8\u610f\u529b\u6a21\u5757\u7ed3\u6784\u5982\u56fe 3 \u6240\u793a\u3002 \u56fe 3. \u591a\u5934\u6ce8\u610f\u529b\u6a21\u5757 \u591a\u5934\u6ce8\u610f\u529b\u6a21\u5757\u542b\u6709\u67e5\u8be2\u5411\u91cf Q\u3001\u952e\u5411\u91cf K \u548c\u503c\u5411\u91cf V \u4e09\u4e2a\u8f93\u5165\uff0c\u6574\u4f53\u8ba1\u7b97\u516c\u5f0f\u4e3a\uff1a )) , , ( ( ) , , ( V K Q MultiHead Q LayerNorm V K Q MHAModule \uf02b \uf03d (8) \u672c\u6587\u5728\u6a21\u5757\u4e2d\u5e94\u7528\u4e86\u6b8b\u5dee\u8fde\u63a5\uff0c\u5c06\u8f93\u5165 Q \u4e0e\u524d\u9988\u5c42\u7684\u8f93\u51fa\u6052\u7b49\u53e0\u52a0\uff0c\u4e0d\u4f1a\u5f15\u5165\u989d\u5916\u7684\u53c2\u6570\uff0c \u4e5f\u4e0d\u4f1a\u589e\u52a0\u6a21\u578b\u7684\u8ba1\u7b97\u590d\u6742\u5ea6\uff0c\u5728\u53e0\u52a0\u8fc7\u7a0b\u4e2d\u53ef\u5f3a\u5316\u8f93\u5165\u4e2d\u7684\u91cd\u70b9\u5185\u5bb9\uff0c\u63d0\u5347\u8bad\u7ec3\u6548\u679c\u3002\u591a\u5934 \u6ce8\u610f\u529b\u7684\u5934\u90e8\u80fd\u5728\u4e0d\u540c\u5b50\u7a7a\u95f4\u5904\u7406\u540c\u4e00\u5e8f\u5217\uff0c\u4ece\u800c\u83b7\u5f97\u66f4\u4e30\u5bcc\u7684\u8bed\u4e49\u8868\u793a\u4fe1\u606f\u3002\u7531\u591a\u5934\u6ce8\u610f\u529b \u6a21\u5757\u7ec4\u6210 Ex-DAM \u6a21\u578b\u7684\u8bed\u4e49\u8868\u793a\u7f51\u7edc\uff0c\u7ed3\u6784\u5982\u56fe 2 \u4e2d\u7684 Representation \u6a21\u5757\u6240\u793a\u3002 \u8f93\u5165 = 1 [ ] i T i i u \uf03d \u548c 2 10 1 [ ] i i i r \uf0a3 \uf0a3 \uf03d \u5206\u522b\u662f\u6bcf\u8f6e\u5bf9\u8bdd\u548c\u5019\u9009\u56de\u590d\u7684\u8bcd\u5411\u91cf\uff0c\u8fd9\u4e9b\u8bcd\u5411\u91cf\u5df2\u7ecf\u8fc7\u589e\u5f3a\u5904\u7406\uff0c \u540c\u65f6\u542b\u6709\u610f\u56fe\u4fe1\u606f\u548c\u8bed\u4e49\u4fe1\u606f\u3002\u8bcd\u5411\u91cf\u8fdb\u5165\u591a\u5934\u6ce8\u610f\u529b\u6a21\u5757\u8ba1\u7b97\u8bed\u4e49\u8868\u793a\u7684\u516c\u5f0f\u4e3a\uff1a ) , , ( 1 i l i l i l i l U U U MHAModule U \uf03d \uf02b (9) ) , , ( 1 l l l l R R R MHAModule R \uf03d \uf02b (10) \u4ee5 i i u U \uf03d 0 \u548c r R \uf03d 0 \u4e3a\u591a\u5934\u6ce8\u610f\u529b\u6a21\u5757\u7684\u539f\u59cb\u8f93\u5165\uff0c\u7ecf 1 \uf02d L \u4e2a\u5806\u53e0\u7684\u76f8\u540c\u6a21\u5757\u53ef\u9010\u5c42\u83b7\u5f97\u591a \u7c92\u5ea6\u7684\u8bed\u4e49\u8868\u793a\uff0c\u5373 ] ,..., [ 0 L i i i U U U \uf03d \u548c ] ,..., [ 0 L i i R R R \uf03d \u3002\u7531\u4e8e\u540e\u7eed\u5904\u7406\u7684\u8ba1\u7b97\u91cf\u8f83\u5927\uff0c\u4e3a\u907f\u514d\u5185 \u5b58\u6ea2\u51fa\u9700\u63a7\u5236\u8f93\u5165\u6570\u91cf\uff0c\u672c\u6587\u9488\u5bf9 i U \u548c R \u4e2d\u7684\u5143\u7d20\u9009\u62e9\u5236\u5b9a\u4e86\u4ee5\u4e0b\u4e09\u4e2a\u5904\u7406\u7b56\u7565\uff1a \u7b2c\u4e00\u4e2a\u7b56\u7565\u662f\u5f53 L \u6570\u503c\u8f83\u5c0f\u65f6\uff0c\u4fdd\u7559\u6240\u6709 i U \u548c R\uff0c\u5373\u4f7f\u7528\u6240\u6709\u7c92\u5ea6\u7684\u8bed\u4e49\u8868\u793a\u4f5c\u4e3a\u7279\u5f81\u5339 \u914d\u7f51\u7edc\u7684\u8f93\u5165\uff0c\u8bb0\u4f5c Ex-DAML\uff1b\u7b2c\u4e8c\u4e2a\u7b56\u7565\u662f\u5f53 L \u6570\u503c\u8f83\u5927\u65f6\uff0c\u4fdd\u7559 i U \u548c R \u4e2d\u7684\u540e m \u4e2a\u5143\u7d20\uff0c \u5373\u4ec5\u4f7f\u7528\u6df1\u5c42\u7c92\u5ea6\u7684\u8bed\u4e49\u8868\u793a\u4f5c\u4e3a\u7279\u5f81\u5339\u914d\u7f51\u7edc\u7684\u8f93\u5165\uff0c\u8bb0\u4f5c Ex-DAML-m\uff1b\u7b2c\u4e09\u4e2a\u7b56\u7565\u662f\u5f53 L \u6570\u503c\u8f83\u5927\u65f6\uff0c\u4fdd\u7559 i U \u548c R \u4e2d\u7684\u7b2c\u4e00\u4e2a\u5143\u7d20\u548c\u540e m \u4e2a\u5143\u7d20\uff0c\u5c06\u539f\u59cb\u8f93\u5165\u540c\u65f6\u4f5c\u4e3a\u8bed\u4e49\u8868\u793a\u7f51\u7edc\u548c \u7279\u5f81\u5339\u914d\u7f51\u7edc\u7684\u8f93\u5165\uff0c\u800c\u540e\u8005\u7684\u8f93\u5165\u8fd8\u5305\u542b\u539f\u59cb\u8f93\u5165\u7684\u591a\u7c92\u5ea6\u8bed\u4e49\u8868\u793a\uff0c\u8bb0\u4f5c Ex-DAML-0-m\u3002 3.3 Ex-DAM \u6a21\u578b\u4e2d\u7684\u53cc\u901a\u9053 BiLSTM \u7279\u5f81\u878d\u5408\u7f51\u7edc \u672c\u6587\u63d0\u51fa\u7684 Ex-DAM \u6a21\u578b\u7684\u7279\u5f81\u5339\u914d\u7f51\u7edc\u4eff\u7167 DAM \u6a21\u578b\uff0c\u4ee5\u8bed\u4e49\u8868\u793a\u7f51\u7edc\u7684\u8f93\u51fa i U \u548c R \u4f5c\u4e3a\u8f93\u5165\uff0c\u5229\u7528 DAM \u6a21\u578b\u4e2d\u7684\u6ce8\u610f\u529b\u6a21\u5757\u6784\u9020\u81ea\u5339\u914d\u77e9\u9635 l r u self i M , , \u548c\u4e92\u5339\u914d\u77e9\u9635 l r u cross i M , , \uff0c\u5982\u56fe 2 \u4e2d\u7684 Matching \u6a21\u5757\uff0c\u7531\u4e8e\u672c\u6587\u5728\u8be5\u7f51\u7edc\u4e2d\u672a\u505a\u6539\u52a8\uff0c\u8fd9\u91cc\u4e0d\u505a\u8d58\u8ff0\u3002\u5728 DAM \u6a21\u578b\u7684\u7279\u5f81\u878d\u5408 \u7f51\u7edc\u4e2d\uff0c3D \u5377\u79ef\u4f5c\u4e3a\u6ce8\u610f\u529b\u673a\u5236\u7684\u4e00\u79cd\u8f85\u52a9\u7b56\u7565\uff0c\u5728\u8fdb\u4e00\u6b65\u63d0\u53d6\u7279\u5f81\u7684\u540c\u65f6\u7f29\u5c0f\u6570\u636e\u7ef4\u5ea6\u3002\u7531 \u4e8e\u672c\u6587\u5df2\u5c06\u7f29\u653e\u70b9\u79ef\u6ce8\u610f\u529b\u66ff\u6362\u4e3a\u591a\u5934\u6ce8\u610f\u529b\uff0c\u56e0\u6b64\u672c\u6587\u5728 Ex-DAM \u6a21\u578b\u4e2d\u4e5f\u5c06 3D \u5377\u79ef\u8fdb\u884c \u4e86\u66ff\u6362\uff0cEx-DAM \u6a21\u578b\u7684\u7279\u5f81\u878d\u5408\u7f51\u7edc\u5982\u56fe 2 \u4e2d Aggregation \u6a21\u5757\u6240\u793a\u3002 \u5728 Ex-DAM \u6a21\u578b\u7684\u7279\u5f81\u878d\u5408\u7f51\u7edc\u4e2d\uff0c\u6587\u672c\u9996\u5148\u5bf9 l r u self i M , , \u548c l r u cross i M , , \u8fdb\u884c\u52a0\u6743\u6c42\u548c\uff0c\u63d0\u53d6\u5339\u914d \u77e9\u9635\u4e2d\u7684\u91cd\u8981\u5339\u914d\u7279\u5f81\uff0c\u5176\u4e2d l w \u662f\u5171\u4eab\u6743\u91cd\uff0c\u4f5c\u7528\u662f\u589e\u5f3a\u6a21\u578b\u7684\u6cdb\u5316\u6027\u5e76\u51cf\u5c11\u8ba1\u7b97\u5f00\u9500\u3002\u8ba1\u7b97 \u5f97\u5230\u7684 i self M \u542b\u6709\u6bcf\u8f6e\u5bf9\u8bdd\u4e0e\u524d\u4e00\u8f6e\u5bf9\u8bdd\u4e4b\u95f4\u7684\u5339\u914d\u4f9d\u8d56\u4fe1\u606f\uff0c\u800c i cross M \u4e2d\u542b\u6709\u6bcf\u8f6e\u5bf9\u8bdd\u4e0e\u5019\u9009 \u56de\u590d\u4e4b\u95f4\u7684\u5339\u914d\u4f9d\u8d56\u4fe1\u606f\u3002 \u63a5\u4e0b\u6765\uff0c\u672c\u6587\u5229\u7528\u4e24\u4e2a\u4e0d\u540c\u7684 BiLSTM \u7f51\u7edc\u5206\u522b\u5904\u7406 i self M \u548c i cross M \uff0c\u63d0\u53d6\u5176\u4e2d\u7ec6\u5fae\u7247\u6bb5\u4e4b \u95f4\u7684\u5339\u914d\u5173\u7cfb\u3002\u4e0e\u539f\u59cb DAM \u6a21\u578b\u4e2d\u4f7f\u7528\u7684 3D \u5377\u79ef\u4e0d\u540c\uff0cEx-DAM \u6a21\u578b\u653e\u5f03\u4ece\"\u8f6e\u6b21-\u5bf9\u8bdd- \u5019\u9009\u56de\u590d\"\u7684\u89d2\u5ea6\u5165\u624b\uff0c\u8f6c\u800c\u8003\u8651\u4ee5\u8f6e\u6b21\u4e3a\u5355\u4e00\u4e3b\u7ebf\uff0c\u5206\u522b\u5bf9\"\u5bf9\u8bdd-\u5bf9\u8bdd\"\u4ee5\u53ca\"\u5bf9\u8bdd-\u5019\u9009\u56de \u590d\"\u8fdb\u884c\u72ec\u7acb\u8ba1\u7b97\u3002\u540c\u65f6\uff0c\u7531\u4e8e\u5c06\u5728\u5b9e\u9a8c\u4e2d\u5f15\u5165\u57fa\u4e8e\u610f\u56fe\u8bc6\u522b\u7684\u8bcd\u5411\u91cf\u589e\u5f3a\uff0c\u4ee5\u7d2f\u52a0\u5f62\u5f0f\u5d4c\u5165\u5230 \u5bf9\u8bdd\u4e2d\u7684\u610f\u56fe\u5d4c\u5165\u5411\u91cf\u4e5f\u8f83\u5bb9\u6613\u5f15\u8d77 BiLSTM \u7684\u5173\u6ce8\u3002\u5c06\u4ee3\u8868\u4e0d\u540c\u8f6e\u6b21\u7684\u9690\u85cf\u72b6\u6001\u77e9\u9635\u9996\u5c3e\u62fc \u63a5\uff0c\u4fbf\u53ef\u5f97\u5230\u4e24\u79cd\u4e0d\u540c\u7684\u878d\u5408\u7279\u5f81\u77e9\u9635--agr self M \u548c agr oss M cr \u3002\u7279\u5f81\u878d\u5408\u7f51\u7edc\u7684\u672b\u5c3e\u90e8\u5206\u4e0e\u4e4b\u524d\u7684 \u76f8\u5173\u7814\u7a76\u4fdd\u6301\u4e00\u81f4\uff0c\u91c7\u7528\u5168\u8fde\u63a5\u795e\u7ecf\u7f51\u7edc\u5904\u7406 agr self M \u548c", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null }, { "text": "T i \u548c F i \u5f97\u5230 2~10 \u4e2a\u5019\u9009\u56de\u590d\uff0c\u8bb0\u4f5c 2 10 1 [ ] i i i R r \uf0a3 \uf0a3 \uf03d \uf03d \u3002\u7edf\u8ba1 R \u4e2d\u6bcf\u4e2a\u5019\u9009\u56de\u590d i r \u7684\u5355\u8bcd\u6570 r i n \uff0c\u82e5\u6ee1\u8db3 max W n r i \uf0a3 (11) \u8868\u793a i r \u4e2d\u7684\u5355\u8bcd\u6570\u7b26\u5408\u5e38\u89c4\uff0c\u5176\u4e2d max W \u662f\u672c\u6587\u81ea\u884c\u8bbe\u7f6e\u7684\u5355\u8bcd\u5904\u7406\u6700\u5927\u503c\uff0c\u672c\u6587\u8bbe\u4e3a 100\u3002 \u672c\u6587\u5229\u7528 C \u4e2d\u7684\u5c06 C \u5206\u5272\u6210\u591a\u4e2a\u5355\u8f6e\u5bf9\u8bdd\uff0c \u540c\u65f6\u6839\u636e\u7684\u4e2a\u6570\u5feb\u901f\u7edf\u8ba1 C \u7684\u8f6e\u6b21\u6570\uff0c \u5f97\u5230 1 [ ] i t i i C c \uf03d \uf03d \uf03d \uff0c\u5176\u4e2d t \u662f\u8f6e\u6b21\u6570\uff0c\u82e5\u6ee1\u8db3 max T t \uf0a3 (12) \u8868\u793a C \u7684\u8f6e\u6b21\u6570\u7b26\u5408\u5e38\u89c4\uff0c\u5176\u4e2d max T \u662f\u672c\u6587\u81ea\u884c\u8bbe\u7f6e\u7684\u8f6e\u6b21\u5904\u7406\u6700\u5927\u503c\u3002\u6b64\u5916\uff0c\u8fd8\u9700\u9488\u5bf9 \u6ee1\u8db3\u6761\u4ef6\u7684 C \u7edf\u8ba1\u5176\u4e2d i c \u7684\u5355\u8bcd\u6570 c i n \uff0c\u82e5\u6ee1\u8db3 max min W n W c i \uf0a3 \uf0a3 (13) \u8868\u793a c i n \u4e2d\u7684\u5355\u8bcd\u6570\u7b26\u5408\u5e38\u89c4\uff0c\u5176\u4e2d ] , [ max min W W \u662f\u5355\u8bcd\u5904\u7406\u9608\u503c\u533a\u95f4\uff0c max W \u4e0e\u672c\u6587\u5bf9 r i n \u7684 \u9650\u5236\u76f8\u540c\uff0c min W \u662f\u7279\u522b\u9488\u5bf9 i c \u8bbe\u7f6e\u7684\u5355\u8bcd\u5904\u7406\u6700\u5c0f\u503c\uff0c\u672c\u6587\u8bbe\u4e3a 2\u3002 \u968f\u540e\uff0c\u672c\u6587\u5c06\u6e05\u6d17\u540e\u5f97\u5230\u7684\u6570\u636e\u8fdb\u884c\u6570\u636e\u89c4\u8303\u3002\u9488\u5bf9\u5019\u9009\u56de\u590d 2 10 1 [ ] i i i R r \uf0a3 \uf0a3 \uf03d \uf03d \uff0c\u672c\u6587\u5728 ] , [ max min W W \u533a\u95f4\u5185\u8bbe\u7f6e\u4e00\u4e2a\u8868\u8fbe\u957f\u5ea6\u503c W\uff0c\u901a\u8fc7\u5904\u7406\u6240\u6709 i r \uff0c\u4f7f\u5176\u6ee1\u8db3 W n r i \uf03d (14) \u82e5 r i n W \uf03c \uff0c\u5c06\u82e5\u5e72\u7279\u6b8a\u6807\u8bc6\u7b26\u589e\u52a0\u81f3 i r \u5c3e\u90e8\uff0c\u4f7f\u5176\u957f\u5ea6\u8fbe\u6807\u3002\u672c\u8eab\u4e0d\u5177\u5907\u8bed \u4e49\uff0c\u56e0\u6b64\u4e5f\u4e0d\u4f1a\u5f71\u54cd\u5230 i r \u7684\u8bed\u4e49\u3002\u82e5 r i n W \uf03e \uff0c\u5220\u9664\u8d85\u51fa\u90e8\u5206\u7684\u5355\u8bcd\u3002 \u7ecf\u8fc7\u4e0a\u8ff0\u5904\u7406\uff0c\u6bcf\u4e2a\u591a\u8f6e\u5bf9\u8bdd\u90fd\u7531 T \u8f6e\u5bf9\u8bdd\u7ec4\u6210\uff0c\u6bcf\u8f6e\u5bf9\u8bdd\u548c\u6bcf\u4e2a\u5019\u9009\u56de\u590d\u90fd\u7531 W \u4e2a\u5355\u8bcd \u7ec4\u6210\u3002\u501f\u52a9 vocab.txt \u4e2d\u5355\u8bcd\u4e0e\u8bcd\u5e8f\u4e4b\u95f4\u7684\u5bf9\u5e94\u5173\u7cfb\u8868\uff0c\u672c\u6587\u5c06\u6570\u636e\u4e2d\u7684\u6240\u6709\u5355\u8bcd(\u5305\u62ec) \u8f6c\u6362\u4e3a\u6570\u5b57\uff0c\u5b9e\u73b0\u6587\u672c\u6570\u636e\u7684\u5411\u91cf\u5316\u8fc7\u7a0b\u3002 4.2 \u57fa\u4e8e\u610f\u56fe\u8bc6\u522b\u7684\u8bcd\u5411\u91cf\u589e\u5f3a \u5f97\u5230\u4e0a\u8ff0\u89c4\u8303\u6570\u636e\uff0c\u5176\u4e2d\u5c06\u5355\u8bcd\u8f6c\u5316\u6210\u7684\u6570\u5b57\u540c\u65f6\u4e0e word2vec.txt \u6587\u4ef6\u4e2d\u7684\u9884\u8bad\u7ec3\u8bcd\u5411\u91cf \u4e00\u4e00\u5bf9\u5e94\uff0c\u6839\u636e\u8fd9\u79cd\u5bf9\u5e94\u5173\u7cfb\u53ef\u5c06\u6bcf\u4e2a\u6570\u5b57\u8f6c\u6362\u6210 200 \u7ef4\u7684\u8bcd\u5411\u91cf\uff0c\u5176\u4e2d\u7684\u8bcd\u5411\u91cf\u662f 200 \u7ef4\u7684\u96f6\u5411\u91cf\u3002 i r \u548c i c \u5747\u662f\u7ef4\u5ea6\u4e3a ) 200 , (W \u7684\u5411\u91cf\uff0cC \u7684\u7ef4\u5ea6\u662f ) 200 , , ( W T \u3002 \u53d7\u4f4d\u7f6e\u7f16\u7801\u7684\u542f\u53d1\uff0c\u672c\u6587\u5f15\u5165\u610f\u56fe\u5d4c\u5165\u5411\u91cf\u4ee5\u5904\u7406\u610f\u56fe\u8bc6\u522b\u7ed3\u679c\u3002\u9488\u5bf9\u5019\u9009\u56de\u590d\u96c6\u5408 2 10 1 [ ] i i i R r \uf0a3 \uf0a3 \uf03d \uf03d \uff0c\u53d6\u5176\u6b63\u786e\u5019\u9009\u56de\u590d\u96c6\u5408 T R \uff0c\u5bf9\u542b\u6709\u67d0\u79cd\u610f\u56fe\u7684 C \u548c T R \u540c\u65f6\u91c7\u7528\u5982\u4e0b\u7684\u7f16\u7801\u65b9\u5f0f\uff1a ) 10000 / 1 sin( 10 1 ) ( 1 dm d a ID \uf02d \uf03d (15) ) 10000 / 1 sin( 10 1 ) ( m d d b ID \uf03d (16) \u672c\u6587\u5c06 200 \u7ef4\u7684\u610f\u56fe\u5d4c\u5165\u5411\u91cf\u76f4\u63a5\u4e0e\u76f8\u5e94\u7684\u8bcd\u5411\u91cf\u76f8\u52a0\uff0c\u7531\u6784\u6210\u7684\u5355\u8bcd\u548c\u5bf9\u8bdd\u4fdd\u6301 \u4e0d\u53d8\uff0c\u5f97\u5230\u7684\u7ed3\u679c\u5373\u4e3a\u8bcd\u5411\u91cf\u589e\u5f3a\u7684\u7ed3\u679c\u3002\u8fd9\u6837\u8bbe\u8ba1\u7684\u597d\u5904\u662f\uff0c\u5bf9\u4e8e\u76f8\u540c\u610f\u56fe\u7684 C \u548c T R \uff0c\u4e8c\u8005 \u7684\u610f\u56fe\u5d4c\u5165\u5411\u91cf\u5b8c\u5168\u76f8\u540c\uff0c\u589e\u5f3a\u4e86\u4e8c\u8005\u7684\u76f8\u5173\u7a0b\u5ea6\u3002\u6b64\u5916\uff0c\u9884\u8bad\u7ec3\u8bcd\u5411\u91cf\u7684\u6570\u503c\u8303\u56f4\u662f 0~1\uff0c \u800c\u610f\u56fe\u5d4c\u5165\u5411\u91cf\u7684\u6570\u503c\u8303\u56f4\u662f 0~0.1\uff0c\u4e8c\u8005\u76f4\u63a5\u76f8\u52a0\u7684\u6570\u636e\u53d8\u5316\u5bf9\u9884\u8bad\u7ec3\u8bcd\u5411\u91cf\u5f71\u54cd\u5f88\u5c0f\u3002 4.3 \u5b9e\u9a8c\u8bbe\u7f6e\u4e0e\u7ed3\u679c\u5206\u6790 4.3.1 \u8bc4\u4ef7\u6307\u6807\u53ca\u5b9e\u9a8c\u8bbe\u7f6e \u672c\u6587\u91c7\u7528\u68c0\u7d22\u5f0f\u591a\u8f6e\u5bf9\u8bdd\u7cfb\u7edf\u5e38\u7528\u7684\u51e0\u79cd\u8bc4\u4ef7\u6307\u6807\uff0c\u7528\u6765\u8861\u91cf\u6a21\u578b\u7684\u6027\u80fd\u3002\u5047\u8bbe\u591a\u8f6e\u5bf9\u8bdd \u6570\u636e\u96c6 C \u7531 N \u4e2a\u96c6\u5408 c \u7ec4\u6210\uff0c\u6bcf\u4e2a\u96c6\u5408 c \u5305\u542b\u6b63\u786e\u56de\u590d t \u4e2a\u3001\u9519\u8bef\u56de\u590d f \u4e2a\u3002\u5728\u6574\u4e2a\u6570\u636e\u96c6\u4e0a \u8ba1\u7b97\u5404\u9879\u8bc4\u4ef7\u6307\u6807\u7684\u5e73\u5747\u503c\uff0c\u5f97\u5230\u5e73\u5747\u7cbe\u5ea6\u5747\u503c(Mean Average Precision\uff0cMAP) \u3001\u5012\u6570\u6392\u5e8f\u5747 \u503c (Mean Reciprocal Rank\uff0c MRR) \u3001 \u9996\u4f4d\u51c6\u786e\u7387 (Precision-at-1\uff0c P@1) \u548c\u8ba1\u7b97\u53ec\u56de\u7387 (Recall-n-at-k\uff0c k R n @ ) \uff1a \uf0e5 \uf0ce \uf03d ) ( 1 c AP N MAP C c (17) \uf0e5 \uf0ce \uf03d ) ( 1 c RR N MRR C c (18) \uf0e5 \uf0ce \uf03d @1(c) 1 1 @ P N P C c (19) ) ( @ 1 @ c k R N k R n C c n \uf0e5 \uf0ce \uf03d (20) \u5176\u4e2d AP \u4e3a\u5e73\u5747\u7cbe\u5ea6(Average Precision) \uff0cRR \u4e3a\u5012\u6570\u6392\u5e8f\u6307\u6570(Reciprocal Rank) \u3002 \u672c\u6b21\u5b9e\u9a8c\u4e2d\u4f7f\u7528\u7684\u6570\u636e\u5747\u5df2\u7ecf\u8fc7\u6570\u636e\u9884\u5904\u7406\uff0c\u8bad\u7ec3\u8fc7\u7a0b\u76f8\u5173\u914d\u7f6e\u4f7f\u7528 Adam \u4f18\u5316\u5668\u8c03\u8282\u6a21 \u578b\u53c2\u6570\uff0cDAM \u6a21\u578b\u548c Ex-DAM \u6a21\u578b\u8d85\u53c2\u6570\u7684\u53d6\u503c\u5747\u5982\u8868 2 \u6240\u793a\u3002 \u8868 2.DAM(Ex-DAM)", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null } ], "back_matter": [], "bib_entries": { "BIBREF1": { "ref_id": "b1", "title": "Modern information retrieval", "authors": [ { "first": "R", "middle": [], "last": "Baeza-Yates", "suffix": "" }, { "first": "Ribeiro-Neto B ;", "middle": [], "last": "\u9648\u6668", "suffix": "" }, { "first": "\u4e25\u777f", "middle": [], "last": "\u6731\u6674\u6674", "suffix": "" }, { "first": "\u7b49", "middle": [], "last": "", "suffix": "" } ], "year": 1999, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Baeza-Yates R, Ribeiro-Neto B. Modern information retrieval[M]. New York: ACM press, 1999. \u9648\u6668, \u6731\u6674\u6674, \u4e25\u777f, \u7b49. \u57fa\u4e8e\u6df1\u5ea6\u5b66\u4e60\u7684\u5f00\u653e\u9886\u57df\u5bf9\u8bdd\u7cfb\u7edf\u7814\u7a76\u7efc\u8ff0[J].", "links": null }, "BIBREF3": { "ref_id": "b3", "title": "Deep Sparse Rectifier Neural Networks[C]. international conference on artificial intelligence and statistics", "authors": [ { "first": "X", "middle": [], "last": "Glorot", "suffix": "" }, { "first": "A", "middle": [], "last": "Bordes", "suffix": "" }, { "first": "Y", "middle": [], "last": "Bengio", "suffix": "" } ], "year": 2011, "venue": "", "volume": "", "issue": "", "pages": "315--323", "other_ids": {}, "num": null, "urls": [], "raw_text": "Glorot X, Bordes A, Bengio Y, et al. Deep Sparse Rectifier Neural Networks[C]. international conference on artificial intelligence and statistics, 2011: 315-323.", "links": null }, "BIBREF4": { "ref_id": "b4", "title": "Deep Residual Learning for Image Recognition", "authors": [ { "first": "K", "middle": [], "last": "He", "suffix": "" }, { "first": "X", "middle": [], "last": "Zhang", "suffix": "" }, { "first": "S", "middle": [], "last": "Ren", "suffix": "" } ], "year": 2016, "venue": "computer vision and pattern recognition", "volume": "", "issue": "", "pages": "770--778", "other_ids": {}, "num": null, "urls": [], "raw_text": "He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]. computer vision and pattern recognition, 2016: 770-778.", "links": null }, "BIBREF5": { "ref_id": "b5", "title": "A Method for Stochastic Optimization", "authors": [ { "first": "D P", "middle": [], "last": "Kingma", "suffix": "" }, { "first": "J", "middle": [], "last": "Ba", "suffix": "" }, { "first": "", "middle": [], "last": "Adam", "suffix": "" } ], "year": 2014, "venue": "J]. Computer ence", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Kingma D P, Ba J. Adam: A Method for Stochastic Optimization[J]. Computer ence, 2014", "links": null }, "BIBREF6": { "ref_id": "b6", "title": "Spatiotemporal Features with 3D Convolutional Networks[C]. international conference on computer vision", "authors": [ { "first": "D", "middle": [], "last": "Tran", "suffix": "" }, { "first": "L", "middle": [], "last": "Bourdev", "suffix": "" }, { "first": "R", "middle": [], "last": "Fergus", "suffix": "" } ], "year": 2015, "venue": "", "volume": "", "issue": "", "pages": "4489--4497", "other_ids": {}, "num": null, "urls": [], "raw_text": "Tran D, Bourdev L, Fergus R, et al. Learning Spatiotemporal Features with 3D Convolutional Networks[C]. international conference on computer vision, 2015: 4489-4497.", "links": null }, "BIBREF7": { "ref_id": "b7", "title": "The TREC-8 question answering track", "authors": [ { "first": "E", "middle": [], "last": "Voorhees", "suffix": "" } ], "year": 1999, "venue": "", "volume": "99", "issue": "", "pages": "77--82", "other_ids": {}, "num": null, "urls": [], "raw_text": "Voorhees E M. The TREC-8 question answering track report[C]//Trec. 1999, 99: 77-82.", "links": null }, "BIBREF8": { "ref_id": "b8", "title": "Sequential matching network: A new architecture for multi-turn response selection in retrieval-based chatbots", "authors": [ { "first": "Y", "middle": [], "last": "Wu", "suffix": "" }, { "first": "W", "middle": [], "last": "Wu", "suffix": "" }, { "first": "C", "middle": [], "last": "Xing", "suffix": "" } ], "year": 2016, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": { "arXiv": [ "arXiv:1612.01627" ] }, "num": null, "urls": [], "raw_text": "Wu Y, Wu W, Xing C, et al. Sequential matching network: A new architecture for multi-turn response selection in retrieval-based chatbots[J]. arXiv preprint arXiv:1612.01627, 2016.", "links": null }, "BIBREF9": { "ref_id": "b9", "title": "Modeling multi-turn conversation with deep utterance aggregation", "authors": [ { "first": "Z", "middle": [], "last": "Zhang", "suffix": "" }, { "first": "J", "middle": [], "last": "Li", "suffix": "" }, { "first": "P", "middle": [], "last": "Zhu", "suffix": "" } ], "year": 2018, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": { "arXiv": [ "arXiv:1806.09102" ] }, "num": null, "urls": [], "raw_text": "Zhang Z, Li J, Zhu P, et al. Modeling multi-turn conversation with deep utterance aggregation[J]. arXiv preprint arXiv:1806.09102, 2018.", "links": null }, "BIBREF10": { "ref_id": "b10", "title": "Multi-turn response selection for chatbots with deep attention matching network", "authors": [ { "first": "X", "middle": [], "last": "Zhou", "suffix": "" }, { "first": "L", "middle": [], "last": "Li", "suffix": "" }, { "first": "D", "middle": [], "last": "Dong", "suffix": "" } ], "year": null, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Zhou X, Li L, Dong D, et al. Multi-turn response selection for chatbots with deep attention matching network[C].", "links": null }, "BIBREF11": { "ref_id": "b11", "title": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics", "authors": [], "year": 2018, "venue": "", "volume": "1", "issue": "", "pages": "1118--1127", "other_ids": {}, "num": null, "urls": [], "raw_text": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2018: 1118-1127.", "links": null } }, "ref_entries": { "TABREF0": { "type_str": "table", "num": null, "content": "
2 DAM \u6a21\u578b
", "text": "\u63d0\u51fa\u6df1\u5ea6\u6ce8\u610f\u529b\u5339\u914d(Deep Attention Matching\uff0cDAM) \u6a21\u578b\u3002\u5728 SMN \u6a21\u578b\u7684\u57fa\u7840\u4e0a\uff0c\u7701\u53bb CNN \u548c RNN \u7b49\u7ed3\u6784\uff0c\u4ec5\u4f9d\u9760\u6ce8\u610f\u529b\u673a\u5236\u5b8c\u6210\u591a\u8f6e\u5bf9\u8bdd\u7684 \u56de\u590d\u9009\u62e9\uff0c\u4f7f\u6a21\u578b\u53c2\u6570\u5927\u5e45\u5ea6\u51cf\u5c11\uff0c\u5927\u5e45\u63d0\u5347\u4e86\u8bad\u7ec3\u901f\u5ea6\u3002\u800c\u8fd9\u7c7b\u65b9\u6cd5\u7684\u5c40\u9650\u6027\u5728\u4e8e\u5019\u9009\u96c6\u4e2d \u88ab\u9009\u5b9a\u7684\u56de\u590d\u4ec5\u9002\u7528\u4e8e\u672c\u8f6e\u5bf9\u8bdd\uff0c\u4e0e\u4e0a\u4e0b\u6587\u5e76\u4e0d\u80fd\u5f62\u6210\u826f\u597d\u7684\u5339\u914d\uff0c\u6216\u5728\u5339\u914d\u6a21\u578b\u4e2d\u6ca1\u6709\u5b66\u4e60 \u5230\u771f\u6b63\u7684\u8bed\u4e49\u5173\u7cfb\uff0c\u5bf9\u591a\u8f6e\u5bf9\u8bdd\u7684\u5185\u5bb9\u4ea7\u751f\u4e86\u6df7\u6dc6\uff0c\u96be\u4ee5\u9009\u62e9\u6b63\u786e\u7684\u5019\u9009\u56de\u590d\u3002 \u5728\"\u8868\u793a-\u5339\u914d-\u878d\u5408\"\u8fd9\u4e00\u6846\u67b6\u4e0b\uff0c\u540c\u65f6\u4f18\u5316\u4e09\u4e2a\u90e8\u5206\u662f\u73b0\u9636\u6bb5\u7684\u7814\u7a76\u96be\u70b9\u3002\u5728\u524d\u4eba\u7814\u7a76 \u7684\u57fa\u7840\u4e0a\uff0c\u672c\u6587\u5bf9\u6bd4 DAM \u6a21\u578b\uff0c\u901a\u8fc7\u5f15\u5165\u591a\u5934\u6ce8\u610f\u529b\u673a\u5236\uff0c\u4f7f\u6a21\u578b\u66f4\u9002\u5408\u5904\u7406\u542b\u6709\u7ec6\u5fae\u53d8\u5316 \u7684\u6570\u636e\uff0c\u80fd\u8ba9\u9009\u5b9a\u7684\u76ee\u6807\u5019\u9009\u56de\u590d\u4e0e\u4e0a\u4e0b\u6587\u5f62\u6210\u826f\u597d\u7684\u5339\u914d\u5173\u7cfb\u3002\u6b64\u5916\uff0c\u672c\u6587\u5728\u7279\u5f81\u878d\u5408\u8fc7\u7a0b \u4e2d\u91c7\u7528 BiLSTM \u6a21\u578b\uff0c\u901a\u8fc7\u6355\u83b7\u591a\u8f6e\u5bf9\u8bdd\u4e2d\u7684\u5e8f\u5217\u4f9d\u8d56\u5173\u7cfb\uff0c\u5e2e\u52a9\u6a21\u578b\u5efa\u7acb\u6bcf\u8f6e\u5bf9\u8bdd\u4e0e\u524d\u4e00\u8f6e \u5bf9\u8bdd\u3001\u5019\u9009\u56de\u590d\u4e4b\u95f4\u7684\u5339\u914d\u4fe1\u606f\uff0c\u4f7f\u5339\u914d\u6a21\u578b\u5b66\u4e60\u5230\u771f\u6b63\u7684\u8bed\u4e49\u5173\u7cfb\uff0c\u8fdb\u4e00\u6b65\u63d0\u9ad8\u9009\u62e9\u76ee\u6807\u5019 \u9009\u56de\u590d\u7684\u51c6\u786e\u7387\uff0c\u57fa\u4e8e\u6b64\u5efa\u7acb\u57fa\u4e8e\u591a\u5934\u6ce8\u610f\u529b\u548c BiLSTM \u6539\u8fdb\u7684 DAM \u6a21\u578b Ex-DAM\uff0c\u5728\u8c46\u74e3\u3001 \u7535\u5546\u8fd9\u4e24\u4e2a\u591a\u8f6e\u4e2d\u6587\u5bf9\u8bdd\u6570\u636e\u96c6\u4e0a\u8fdb\u884c\u7814\u7a76\u3002 \u8bba\u6587\u7684\u7ed3\u6784\u5b89\u6392\u5982\u4e0b\uff1a\u7b2c 1 \u8282\u4ecb\u7ecd\u4e86\"\u68c0\u7d22\u5f0f\u4eba\u673a\u591a\u8f6e\u5bf9\u8bdd\"\u7684\u6982\u5ff5\u53ca\u7279\u70b9\uff0c\u6982\u8ff0\u4e86\u8fd1\u51e0\u5e74 \u6df1\u5ea6\u5b66\u4e60\u6a21\u578b\u65b9\u6cd5\uff1b\u7b2c 2 \u8282\u4ecb\u7ecd\u4e86\u6df1\u5ea6\u6ce8\u610f\u529b\u673a\u5236\u6a21\u578b DAM \u7684\u6574\u4f53\u7ed3\u6784\uff1b\u7b2c 3 \u8282\u4ecb\u7ecd\u57fa\u4e8e\u591a \u5934\u6ce8\u610f\u529b\u548c BiLSTM \u6539\u8fdb\u7684 DAM \u6a21\u578b Ex-DAM\uff0c\u4e3b\u8981\u5305\u62ec\u591a\u5934\u6ce8\u610f\u529b\u6a21\u5757\u3001\u8bed\u4e49\u8868\u793a\u7f51\u7edc\u548c \u53cc\u901a\u9053 BiLSTM \u7279\u5f81\u878d\u5408\u7f51\u7edc\uff1b \u7b2c 4 \u8282\u4ecb\u7ecd\u5b9e\u9a8c\u6570\u636e\u3001 \u5b9e\u9a8c\u5185\u5bb9\u3001 \u5b9e\u9a8c\u7ed3\u679c\u53ca\u5206\u6790\uff0c \u9a8c\u8bc1 Ex-DAM \u6a21\u578b\u7684\u6709\u6548\u6027\uff1b\u6700\u540e\u5728\u7b2c 5 \u8282\u8fdb\u884c\u603b\u7ed3\u3002", "html": null }, "TABREF2": { "type_str": "table", "num": null, "content": "
4.3.2 DAM \u6a21\u578b\u5b9e\u9a8c\u7ed3\u679c \u7531\u8868 4 \u548c\u8868 5 \u770b\u51fa\uff0c\u65e0\u8bba\u662f\u5426\u5bf9\u6570\u636e\u96c6\u8fdb\u884c\u8bcd\u5411\u91cf\u589e\u5f3a\uff0cEx-DAM \u6a21\u578b\u7684\u5b9e\u9645\u8868\u73b0\u90fd\u4f18\u4e8e
\u57fa\u7ebf\u6a21\u578b\u3002\u5373\u4f7f\u8bcd\u5411\u91cf\u589e\u5f3a\u66fe\u5728\u4e4b\u524d\u7684\u5b9e\u9a8c\u4e2d\u5bfc\u81f4\u57fa\u7ebf\u6a21\u578b\u7684\u6027\u80fd\u4e0d\u5347\u53cd\u964d\uff0c\u5374\u5e2e\u52a9 Ex-DAM
\u672c\u6587\u5148\u5728\u4e24\u4e2a\u6570\u636e\u96c6\u7684\u8bad\u7ec3\u96c6\u4e0a\u8bad\u7ec3 DAM \u6a21\u578b\uff0c\u7136\u540e\u5728\u6d4b\u8bd5\u96c6\u4e0a\u8bc4\u4f30\u6a21\u578b\u7684\u6027\u80fd\uff0c\u5b9e\u9a8c \u6a21\u578b\u8fbe\u5230\u4e86\u6700\u4f73\u6027\u80fd\uff0c\u8bf4\u660e\u591a\u5934\u6ce8\u610f\u529b\u673a\u5236\u4e0e BiLSTM \u7684\u5171\u540c\u4f5c\u7528\u8981\u4f18\u4e8e\u666e\u901a\u81ea\u6ce8\u610f\u529b\u673a\u5236\u3002
\u7ed3\u679c\u5982\u8868 3 \u6240\u793a\u3002 \u5728\u8868 4 \u4e2d\uff0cEx-DAM5 \u6a21\u578b\u6027\u80fd\u4f18\u4e8e\u5176\u4f59\u6a21\u578b\uff0c\u8be5\u6a21\u578b\u4e0e\u5176\u4f59\u6a21\u578b\u7684\u4e0d\u540c\u4e4b\u5904\u5728\u4e8e\u8bed\u4e49\u8868\u793a
\u8868 3. DAM \u6a21\u578b\u5b9e\u9a8c\u7ed3\u679c \u7f51\u7edc\u7684\u8f93\u51fa\u542b\u6709 5 \u79cd\u7c92\u5ea6\u7684\u8bed\u4e49\u8868\u793a\u3002\u82e5\u5c06\u6700\u5e95\u5c42\u7c92\u5ea6\u8bed\u4e49\u8868\u793a\u53bb\u9664\u6216\u4ee5\u539f\u59cb\u8f93\u5165\u66ff\u6362\u6700\u5e95\u5c42
\u8c46\u74e3\u5bf9\u8bdd\u6570\u636e\u96c6 \u8bed\u4e49\u8868\u793a\uff0c\u90fd\u5c06\u635f\u5931\u4e00\u90e8\u5206\u6a21\u578b\u6027\u80fd\u3002\u7136\u800c\u5728\u8868 5 \u4e2d\uff0c\u4ee5\u539f\u59cb\u8f93\u5165\u66ff\u6362\u6700\u5e95\u5c42\u8bed\u4e49\u8868\u793a\u7684 \u7535\u5546\u5bf9\u8bdd\u6570\u636e\u96c6 \u5b9e\u9a8c\u5185\u5bb9 MAP MRR P@1 R10@1 R10@1 R10@2 R10@5 Ex-DAM5-0-4 \u6a21\u578b\u5374\u6bd4 Ex-DAM5 \u6a21\u578b\u6027\u80fd\u66f4\u4f18\u3002\u8fd9\u662f\u7531\u4e8e\u5bf9\u539f\u59cb\u8f93\u5165\u8fdb\u884c\u4e86\u8bcd\u5411\u91cf\u589e\u5f3a\uff0c\u5bfc\u81f4
DAM\u6a21\u578b \u539f\u59cb\u8f93\u5165\u542b\u6709\u989d\u5916\u7684\u610f\u56fe\u7279\u5f81\uff0c\u800c\u8bed\u4e49\u8868\u793a\u7f51\u7edc\u4e2d\u6bcf\u4e2a\u7c92\u5ea6\u7684\u8bed\u4e49\u8868\u793a\u90fd\u6e90\u4e8e\u539f\u59cb\u8f93\u5165\uff0c\u76f8\u5f53 0.550 0.601 0.427 0.254 0.406 0.547 0.810
+\u8bcd\u5411\u91cf\u589e\u5f3a \u4e8e\u5728\u8ba1\u7b97\u8fc7\u7a0b\u4e2d\u4e0d\u65ad\u5f3a\u5316\u8fd9\u79cd\u610f\u56fe\u7279\u5f81\uff0c\u4fc3\u4f7f\u6a21\u578b\u91cd\u70b9\u5bf9\u610f\u56fe\u7279\u5f81\u5efa\u6a21\u3002 0.539 0.583 0.409 0.238 0.3920.5300.798
+\u6570\u636e\u9884\u5904\u7406 \u672c\u6587\u8fdb\u884c\u7684\u5b9e\u9a8c\u5747\u5c06\u5806\u53e0\u6ce8\u610f\u529b\u6a21\u5757\u6570\u8bbe\u7f6e\u4e3a 5\uff0c\u4e3a\u63a2\u7a76 Ex-DAML-0-m \u6a21\u578b\u4e2d L \u548c m \u7684\u53d6 0.556 0.606 0.434 0.259 0.414 0.557 0.819
+\u6570\u636e\u9884\u5904\u7406+\u8bcd\u5411\u91cf\u589e\u5f3a \u503c\u5bf9\u6a21\u578b\u6027\u80fd\u7684\u5f71\u54cd\uff0c\u672c\u6587\u4f7f\u7528\u7ecf\u6570\u636e\u9884\u5904\u7406\u548c\u8bcd\u5411\u91cf\u589e\u5f3a\u7684\u7535\u5546\u5bf9\u8bdd\u6570\u636e\u96c6\u8fdb\u884c\u4e86\u989d\u5916\u7684\u5b9e 0.548 0.587 0.425 0.248 0.396 0.539 0.807
\u7531\u8868 3 \u53ef\u4ee5\u770b\u51fa\uff0c\u6570\u636e\u9884\u5904\u7406\u6709\u52a9\u4e8e\u6a21\u578b\u6027\u80fd\u7684\u63d0\u5347\uff0c\u5bf9\u539f\u59cb\u6570\u636e\u96c6\u8fdb\u884c\u6570\u636e\u9884\u5904\u7406\uff0c\u5728 \u9a8c\uff0c\u5c06\u8bc4\u4ef7\u6307\u6807 R10@1 \u7ed3\u679c\u7ed8\u5236\u6210\u6298\u7ebf\u56fe 4 \u6240\u793a\u3002
\u8c46\u74e3\u5bf9\u8bdd\u6570\u636e\u96c6\u4e0a\u7684\u5404\u9879\u8bc4\u4ef7\u6307\u6807\u83b7\u5f97\u4e86 0.5%~0.7%\u7684\u63d0\u5347\uff0c\u5728\u7535\u5546\u5bf9\u8bdd\u6570\u636e\u96c6\u4e0a\u7684\u5404\u9879\u8bc4\u4ef7
\u6307\u6807\u83b7\u5f97\u4e86 0.8%~1%\u7684\u63d0\u5347\u3002\u8fd8\u53ef\u4ee5\u770b\u51fa\uff0c\u5c06\u57fa\u4e8e\u610f\u56fe\u8bc6\u522b\u7684\u8bcd\u5411\u91cf\u589e\u5f3a\u76f4\u63a5\u5e94\u7528\u4e8e DAM \u6a21
\u578b\u4ea7\u751f\u4e86\u4e0d\u7406\u60f3\u7684\u6548\u679c\uff0c\u5728\u4e24\u4e2a\u6570\u636e\u96c6\u4e0a\u7684\u5404\u9879\u8bc4\u4ef7\u6307\u6807\u5747\u4e0b\u964d\u4e86 1%\u4ee5\u4e0a\uff0c\u5373\u4f7f\u7ecf\u8fc7\u6570\u636e\u9884\u5904
\u7406\uff0c\u6a21\u578b\u6548\u679c\u6709\u4e86\u7565\u5fae\u63d0\u5347\uff0c\u4f46\u4e5f\u59cb\u7ec8\u4f4e\u4e8e\u57fa\u7ebf\u6c34\u5e73\u3002\u6b64\u7ed3\u679c\u7684\u4ea7\u751f\u539f\u56e0\u4e3b\u8981\u662f DAM \u6a21\u578b\u5b8c
\u5168\u7531\u81ea\u6ce8\u610f\u529b\u673a\u5236\u6784\u9020\u800c\u6210\uff0c\u5176\u4e2d\u7684\u8ba1\u7b97\u8fc7\u7a0b\u4f9d\u8d56\u4e8e\u8bcd\u5411\u91cf\uff0c\u672c\u6587\u5728\u8bcd\u5411\u91cf\u5c42\u9762\u8fdb\u884c\u7684\u4efb\u4f55\u6539
\u52a8\u90fd\u5c06\u9010\u5c42\u5e72\u6270\u6ce8\u610f\u529b\u673a\u5236\u7684\u8ba1\u7b97\uff0c\u4ece\u800c\u5bfc\u81f4 DAM \u6a21\u578b\u6027\u80fd\u6025\u5267\u4e0b\u964d\u3002
4.3.3 Ex-DAM \u6a21\u578b\u5b9e\u9a8c\u7ed3\u679c \u56fe 4. \u4e0d\u540c\u53c2\u6570\u642d\u914d\u5bf9 Ex-DAML-0-m \u6a21\u578b\u7684\u5f71\u54cd
\u672c\u6587\u5728\u5b9e\u9a8c\u4e2d\u59cb\u7ec8\u4fdd\u6301\u8bed\u4e49\u8868\u793a\u7f51\u7edc\u7684\u8f93\u51fa\u7c92\u5ea6\u4e0d\u8d85\u8fc7 5\uff0c\u8fd9\u662f\u7531\u4e8e\u6a21\u578b\u5360\u7528\u7684\u663e\u5b58\u6240\u81f4\uff0c
\u4e3a\u4e86\u9a8c\u8bc1\u672c\u6587\u63d0\u51fa\u7684 Ex-DAM \u6a21\u578b\u662f\u5426\u6709\u6548\uff0c\u5c06\u7ecf\u8fc7\u6570\u636e\u9884\u5904\u7406\u7684\u4e24\u79cd\u5b9e\u9a8c\u6a21\u578b\u4f5c\u4e3a\u57fa\u7ebf \u82e5\u8d85\u51fa\u6b64\u503c\u5fc5\u987b\u4fee\u6539\u8d85\u53c2\u6570\uff0c\u800c\u8ba1\u7b97\u65b9\u9762\u7684\u6d88\u8017\u5c06\u5448\u6307\u6570\u7ea7\u589e\u957f\uff0c\u5f88\u96be\u4e0e\u4e4b\u524d\u7684\u5b9e\u9a8c\u505a\u5bf9\u6bd4\u3002
\u6a21\u578b\uff0c\u4ece\u662f\u5426\u8fdb\u884c\u8bcd\u5411\u91cf\u589e\u5f3a\u7684\u89d2\u5ea6\u8fdb\u884c\u4e86\u72ec\u7acb\u5b9e\u9a8c\u3002\u5176\u4e2d Ex-DAM5 \u8868\u793a\u5806\u53e0\u6ce8\u610f\u529b\u6a21\u5757\u6570\u8bbe \u56fe 4 \u6807\u8bb0\u7684\u6a21\u578b\u5bf9\u6bd4\u70b9\u662f\u4e0a\u4e00\u5b9e\u9a8c\u4e2d\u7684 Ex-DAM5-0-4 \u6a21\u578b\uff0c\u7531\u56fe\u53ef\u77e5\uff0c\u591a\u7c92\u5ea6\u8bed\u4e49\u8868\u793a\u786e\u5b9e\u80fd\u5728
\u7f6e\u4e3a 5\uff0c\u4fdd\u7559\u6240\u6709 i \u4e00\u5b9a\u7a0b\u5ea6\u4e0a\u63d0\u5347\u6a21\u578b\u6027\u80fd\uff0c\u5f53\u6a21\u578b\u5c06 4 \u4e2a\u5806\u53e0\u591a\u5934\u6ce8\u610f\u529b\u6a21\u5757\u7684\u8f93\u51fa\u4e0e\u539f\u59cb\u8f93\u5165\u5171\u540c\u4f5c\u4e3a\u8bed\u4e49 U \u548c R\uff0c\u5373\u4f7f\u7528\u6240\u6709\u7c92\u5ea6\u7684\u8bed\u4e49\u8868\u793a\u4f5c\u4e3a\u7279\u5f81\u5339\u914d\u7f51\u7edc\u7684\u8f93\u5165\uff1bEx-DAM5-4 \u8868\u793a\u7f51\u7edc\u7684\u8f93\u51fa\u65f6\uff0c\u901a\u5e38\u80fd\u53d6\u5f97\u6700\u9ad8\u6027\u80fd\u3002\u82e5\u5806\u53e0\u591a\u5934\u6ce8\u610f\u529b\u6a21\u5757\u6570\u8d85\u8fc7 5\uff0c\u65e0\u8bba\u5982\u4f55\u9009\u62e9 m
\u8868\u793a\u6a21\u5757\u6570\u8bbe\u7f6e\u4e3a 5\uff0c\u4fdd\u7559 i U \u548c R \u4e2d\u7684\u540e 4 \u4e2a\u5143\u7d20\uff1bEx-DAM5-0-4 \u8868\u793a\u6a21\u5757\u6570\u8bbe\u7f6e\u4e3a 5\uff0c\u4fdd\u7559 i \u7684\u503c\uff0c\u6a21\u578b\u90fd\u5c06\u9010\u6e10\u51fa\u73b0\u8fc7\u62df\u5408\u73b0\u8c61\uff0c\u8fd9\u662f\u7531\u4e8e\u968f\u7740\u5806\u53e0\u591a\u5934\u6ce8\u610f\u529b\u6a21\u5757\u6570\u7684\u589e\u52a0\uff0c\u88ab\u591a\u5934\u6ce8 U \u610f\u529b\u673a\u5236\u91cd\u70b9\u5173\u6ce8\u7684\u4fe1\u606f\u4f1a\u4ece\u524d\u4e00\u5c42\u4e0d\u65ad\u7d2f\u52a0\u5230\u4e0b\u4e00\u5c42\uff0c\u5bfc\u81f4\u8fd9\u4e9b\u4fe1\u606f\u5728\u6df1\u5c42\u8ba1\u7b97\u8fc7\u7a0b\u4e2d\u57fa\u672c
\u548c R \u4e2d\u7684\u7b2c 1 \u4e2a\u5143\u7d20\u548c\u540e 4 \u4e2a\u5143\u7d20\uff0c\u5b9e\u9a8c\u7ed3\u679c\u5206\u522b\u5982\u8868 4 \u548c\u8868 5 \u6240\u793a\uff1a \u4fdd\u6301\u4e0d\u53d8\uff0c\u4e25\u91cd\u5f71\u54cd\u6a21\u578b\u8bad\u7ec3\u3002
\u8868 4. \u4e0d\u542b\u8bcd\u5411\u91cf\u589e\u5f3a\u7684 Ex-DAM \u6a21\u578b\u5b9e\u9a8c\u7ed3\u679c
5\u5b9e\u9a8c\u5185\u5bb9\u8c46\u74e3\u5bf9\u8bdd\u6570\u636e\u96c6\u7535\u5546\u5bf9\u8bdd\u6570\u636e\u96c6
MAPMRRP@1R10@1R10@1R10@2R10@5
DAM\u6a21\u578b0.5560.6060.434\u6a21\u578b\u8d85\u53c2\u6570\u8868 0.2590.4140.5570.819
Ex-DAM5\u8d85\u53c2\u65700.562\u53c2\u6570\u542b\u4e49 0.6100.4410.264\u53c2\u6570\u503c 0.4230.5630.822
Ex-DAM5-4W0.557\u8868\u8fbe\u957f\u5ea6\u503c 0.6050.4370.2600.419500.5610.819
Ex-DAM5-0-4T0.559\u5bf9\u8bdd\u8f6e\u6b21\u503c 0.6070.4380.2590.42090.5610.820
epoch\u6570\u636e\u96c6\u8fed\u4ee3\u6b21\u65703
layer\u5806\u53e0\u591a\u5934\u6ce8\u610f\u529b\u6a21\u5757\u6570 \u8868 5. \u542b\u6709\u8bcd\u5411\u91cf\u589e\u5f3a\u7684 Ex-DAM \u6a21\u578b\u5b9e\u9a8c\u7ed3\u679c5
batch_size\u5355\u6b21\u8bad\u7ec3\u6837\u672c\u6570 \u8c46\u74e3\u5bf9\u8bdd\u6570\u636e\u96c6128 \u7535\u5546\u5bf9\u8bdd\u6570\u636e\u96c6
learning_rate \u5b9e\u9a8c\u5185\u5bb9MAP\u521d\u59cb\u5b66\u4e60\u7387 MRRP@1R10@10.001 R10@1R10@2R10@5
DAM\u6a21\u578bdecay_step0.548\u5b66\u4e60\u7387\u8870\u51cf\u6b65\u957f 0.587 0.4250.2480.3965000.5390.807
Ex-DAM5decay_rate0.568\u5b66\u4e60\u7387\u8870\u51cf\u7387 0.607 0.4420.2650.4250.90.5640.830
Ex-DAM5-40.5650.6050.4400.2620.4210.5610.828
Ex-DAM5-0-40.5700.6150.4480.2700.4270.5660.831
", "text": "\u7ed3\u8bba\u53ca\u540e\u7eed\u5de5\u4f5c \u672c\u6587\u63d0\u51fa\u4e86\u57fa\u4e8e\u591a\u5934\u6ce8\u610f\u529b\u548c BiLSTM \u6539\u8fdb\u7684 DAM \u6a21\u578b Ex-DAM\uff0c\u8be5\u6a21\u578b\u7528\u4e8e\u5904\u7406\u4e2d\u6587 \u591a\u8f6e\u5bf9\u8bdd\u95ee\u7b54\u5339\u914d\u95ee\u9898\u3002\u672c\u6587\u5c06 DAM \u6a21\u578b\u4f5c\u4e3a\u57fa\u7ebf\u6a21\u578b\uff0c\u5229\u7528\u591a\u5934\u6ce8\u610f\u529b\u673a\u5236\u5728\u591a\u4e2a\u4e0d\u540c\u5b50 \u7a7a\u95f4\u5185\u8ba1\u7b97\u7279\u5f81\uff0c\u4ece\u800c\u6709\u80fd\u529b\u5efa\u6a21\u8f83\u957f\u7684\u591a\u8f6e\u5bf9\u8bdd\u3002Ex-DAM \u6a21\u578b\u7684\u5377\u79ef\u6838\u4f7f\u7528 BiLSTM \u6765\u6355 \u83b7\u5e8f\u5217\u4e0a\u7684\u4f9d\u8d56\u5173\u7cfb\u3002\u5b9e\u9a8c\u8bc1\u660e\uff0cEx-DAM \u6a21\u578b\u6027\u80fd\u5728\u7535\u5546\u548c\u8c46\u74e3\u7684\u6570\u636e\u96c6\u4e0a\u5747\u4f18\u4e8e\u57fa\u7ebf\u6a21\u578b\u3002 \u5728\u672a\u6765\u7684\u7814\u7a76\u4e2d\uff0c\u5c06\u5c1d\u8bd5\u52a0\u5165\u547d\u540d\u5b9e\u4f53\u8bc6\u522b\u3001\u60c5\u611f\u5206\u6790\u7b49\u591a\u79cd\u8f85\u52a9\u624b\u6bb5\uff0c\u4f7f\u5f97 Ex-DAM \u6a21 \u578b\u53ef\u4ee5\u5728\u6587\u672c\u7247\u6bb5\u4e2d\u5c3d\u53ef\u80fd\u63d0\u53d6\u66f4\u591a\u7684\u7279\u5f81\u3002 \u81f4\u8c22 *\u901a\u4fe1\u4f5c\u8005(chongzhy@vip.sina.com) \uff0c\u672c\u6587\u627f\u56fd\u5bb6\u6559\u80b2\u90e8\u4eba\u6587\u793e\u4f1a\u79d1\u5b66\u7814\u7a76\u89c4\u5212\u57fa\u91d1\u8d44\u52a9 \u9879\u76ee(16YJAZH072) \u3001\u56fd\u5bb6\u793e\u4f1a\u79d1\u5b66\u57fa\u91d1\u91cd\u5927\u9879\u76ee(14ZDB156) \u3001\u98df\u54c1\u5b89\u5168\u5927\u6570\u636e\u6280\u672f\u5317\u4eac\u5e02 \u91cd\u70b9\u5b9e\u9a8c\u5ba4\u8d44\u52a9\u3002", "html": null } } } }