{ "paper_id": "2020", "header": { "generated_with": "S2ORC 1.0.0", "date_generated": "2023-01-19T12:53:44.203470Z" }, "title": "Research on Response Generation via Dialogue Constraints", "authors": [ { "first": "Mengyu", "middle": [], "last": "Guan\uff0c", "suffix": "", "affiliation": { "laboratory": "", "institution": "Soochow University", "location": { "settlement": "Suzhou", "country": "China" } }, "email": "" }, { "first": "Wang\uff0c", "middle": [ "\uff0c" ], "last": "\uff0cshoushan", "suffix": "", "affiliation": { "laboratory": "", "institution": "Soochow University", "location": { "settlement": "Suzhou", "country": "China" } }, "email": "" }, { "first": "Li\uff0c", "middle": [ "\uff0c" ], "last": "\uff0cguodong Zhou", "suffix": "", "affiliation": { "laboratory": "", "institution": "Soochow University", "location": { "settlement": "Suzhou", "country": "China" } }, "email": "" } ], "year": "", "venue": null, "identifiers": {}, "abstract": "Existing dialogue systems tend to generate meaningless general replies such as \"OK\" and \"I don't know\". In daily dialogs, every utterance usually has obvious emotional and intentional tendencies. So this paper proposes a response generation model based on dialogue constraints. Based on the Seq2Seq model, it combines the recognition of utterances' themes, sentiments and intentions. This method constrains the topics, emotions and intentions of the generated responses, generating responses with reasonable sentiment and intention tendencies and related to the topic of the conversation. Experiments show that the method proposed in this paper can effectively improve the quality of generated responses.", "pdf_parse": { "paper_id": "2020", "_pdf_hash": "", "abstract": [ { "text": "Existing dialogue systems tend to generate meaningless general replies such as \"OK\" and \"I don't know\". In daily dialogs, every utterance usually has obvious emotional and intentional tendencies. So this paper proposes a response generation model based on dialogue constraints. Based on the Seq2Seq model, it combines the recognition of utterances' themes, sentiments and intentions. This method constrains the topics, emotions and intentions of the generated responses, generating responses with reasonable sentiment and intention tendencies and related to the topic of the conversation. Experiments show that the method proposed in this paper can effectively improve the quality of generated responses.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Abstract", "sec_num": null } ], "body_text": [ { "text": "\u4eba\u673a\u4ea4\u4e92(Human Computer Interaction, HCI)\u4f5c\u4e3a\u4fe1\u606f\u65f6\u4ee3\u4eba\u7c7b\u4e0e\u8ba1\u7b97\u673a\u4e4b\u95f4\u4fe1\u606f\u4ea4\u6d41 \u7684\u57fa\u7840\u6280\u672f\uff0c\u53d7\u5230\u5b66\u672f\u754c\u548c\u5de5\u4e1a\u754c\u7684\u5e7f\u6cdb\u5173\u6ce8\u3002\u4eba\u673a\u5bf9\u8bdd(Human-Machine Dialogue)\u662f\u4eba\u673a \u4ea4\u4e92\u6280\u672f\u7684\u6838\u5fc3\u9886\u57df\uff0c\u65e8\u5728\u6700\u5927\u9650\u5ea6\u5730\u6a21\u4eff\u4eba\u4e0e\u4eba\u4e4b\u95f4\u7684\u5bf9\u8bdd\u65b9\u5f0f\uff0c\u4f7f\u5f97\u4eba\u7c7b\u80fd\u591f\u7528\u66f4\u81ea \u7136\u7684\u65b9\u5f0f\u4e0e\u673a\u5668\u8fdb\u884c\u4ea4\u6d41\u3002\u5176\u5e94\u7528\u573a\u666f\u5e7f\u6cdb\uff0c\u5177\u6709\u8f83\u9ad8\u7684\u7814\u7a76\u4ef7\u503c\u548c\u5546\u4e1a\u4ef7\u503c\u3002\u6784\u5efa\u4e00\u4e2a \u8f83\u5b8c\u5907\u7684\u4eba\u673a\u5bf9\u8bdd\u7cfb\u7edf\u6d89\u53ca\u5230NLP\u6280\u672f\u7684\u5f88\u591a\u65b9\u9762\uff0c\u6bd4\u5982\u53e5\u6cd5\u5206\u6790 (Fried et al., 2017 )\uff0c\u547d \u540d\u5b9e\u4f53\u8bc6\u522b (Huang et al., 2015) \u7b49\u3002\u672c\u6587\u4e3b\u8981\u7814\u7a76\u591a\u8f6e\u5bf9\u8bdd\u7684\u56de\u590d\u751f\u6210\u3002\u7b80\u800c\u8a00\u4e4b\u5c31\u662f\u6839\u636e \u5386\u53f2\u5bf9\u8bdd\u4fe1\u606f\uff0c\u81ea\u52a8\u751f\u6210\u81ea\u7136\u5408\u7406\u7684\u56de\u590d\uff0c\u5728\u4fe1\u606f\u4ea4\u4e92\u7684\u8fc7\u7a0b\u4e2d\u534f\u52a9\u7528\u6237\u5b8c\u6210\u7279\u5b9a\u7684\u4efb\u52a1\u3002 \u968f\u7740\u7aef\u5230\u7aef\u6846\u67b6\u5728\u673a\u5668\u7ffb\u8bd1 (Brown et al., 1993) \u4efb\u52a1\u4e0a\u7684\u826f\u597d\u8868\u73b0\uff0c\u7814\u7a76\u4eba\u5458\u5c06\u5176\u8fc1\u79fb\u5e94\u7528 \u4e8e\u5bf9\u8bdd\u751f\u6210\u4efb\u52a1\u4e2d\u3002\u5bf9\u8bdd\u751f\u6210\u53ef\u4ee5\u7b80\u5316\u4e3a\u8f93\u5165\u8f93\u51fa\u7684\u6620\u5c04\u95ee\u9898\uff0c\u5373\u5bf9\u5bf9\u8bdd\u7684\u8f93\u5165\u8fdb\u884c\u7f16\u7801\u548c \u89e3\u7801\u4ece\u800c\u5f97\u5230\u5e94\u7b54\u3002\u56e0\u4e3a\u5bf9\u8bdd\u662f\u6709\u65f6\u5e8f\u7684\uff0c\u53ef\u4ee5\u89c6\u4e3a\u5e8f\u5217\uff0c\u6240\u4ee5\u7aef\u5bf9\u7aef\u6846\u67b6\u4e0b\u7684\u5e8f\u5217\u5bf9\u5e8f\u5217 \u6a21(Sequence-to-Sequence, Seq2Seq) (Sutskever et al., 2014; Cho et al., 2014) \u975e\u5e38\u9002\u5408\u5bf9\u8bdd\u751f\u6210 \u6a21\u578b\u3002 \u4e3b\u9898\u7b80\u8981\u5730\u8868\u660e\u4e86\u6574\u6bb5\u5bf9\u8bdd\u7684\u5185\u5bb9\uff0c\u7528\u4e8e\u7406\u89e3\u5bf9\u8bdd\u7684\u542b\u4e49\uff1b\u60c5\u611f\u8868\u660e\u4e86\u8bdd\u8bed\u7684\u6781\u6027\uff0c\u7528 \u4e8e\u8bc6\u522b\u8bf4\u8bdd\u8005\u7684\u89c2\u70b9\uff1b\u610f\u56fe\u4f5c\u4e3a\u8bdd\u8bed\u7684\u8bed\u4e49\u6807\u7b7e\uff0c\u7528\u4e8e\u63cf\u8ff0\u8bf4\u8bdd\u8005\u7684\u52a8\u4f5c\u610f\u56fe\u3002\u539f\u5219\u4e0a\uff0c\u5bf9 \u4e3b\u9898\u3001\u60c5\u611f\u548c\u610f\u56fe\u7684\u8bc6\u522b\u6709\u52a9\u4e8e\u5bf9\u8bdd\u8bed\u5185\u5bb9\u7684\u7406\u89e3\u3002\u8868 1\u7ed9\u51fa\u4e86\u4e00\u7ec4\u5bf9\u8bdd\u793a\u4f8b\uff0c\u6574\u6bb5\u5bf9\u8bdd\u662f\u5173 \u4e8e\"\u65e5\u5e38\u751f\u6d3b\"\u7684\u8ba8\u8bba\u4e14\u5bf9\u8bdd\u4e2d\u7684\u6bcf\u53e5\u8bdd\u90fd\u6709\u660e\u786e\u7684\u60c5\u611f\u548c\u610f\u56fe\u503e\u5411\u3002\u6211\u4eec\u53d1\u73b0\uff0c\u540c\u4e00\u8bf4\u8bdd\u8005\u7684 \u60c5\u611f\u5f80\u5f80\u662f\u4fdd\u6301\u4e0d\u53d8\u7684\uff1b\u8bf4\u8bdd\u8005B\u4f5c\u4e3a\u5bf9\u8bdd\u4e2d\u88ab\u52a8\u7684\u4e00\u65b9\uff0c\u610f\u56fe\u5f80\u5f80\u53d7\u5230\u5bf9\u8bdd\u53d1\u8d77\u8005A\u7684\u610f\u56fe \u7684\u5f71\u54cd\u3002\u56e0\u6b64\u672c\u6587\u901a\u8fc7\u8bc6\u522b\u5bf9\u8bdd\u7684\u4e3b\u9898\u53ca\u6bcf\u4e2a\u8bdd\u8bed\u7684\u60c5\u611f\u548c\u610f\u56fe\uff0c\u5bf9\u751f\u6210\u7684\u56de\u590d\u8fdb\u884c\u7ea6\u675f\u3002 \u82e5\u6211\u4eec\u8981\u751f\u6210\u7684\u662f\u7b2c\u4e8c\u8f6e\u4e2d\u8bf4\u8bdd\u8005B\u7684\u56de\u590d\uff0c\u6211\u4eec\u7684\u65b9\u6cd5\u5c06\u751f\u6210\u4e0e\u5bf9\u8bdd\u4e3b\u9898\u76f8\u5173\u3001\u60c5\u611f\u503e\u5411 \u4e8e\"\u4e2d\u6027\"\u3001\u610f\u56fe\u503e\u5411\u4e8e\"\u627f\u8bfa\"\u7684\u56de\u590d\uff0c\u800c\u4e0d\u662f\u6211\u4eec\u901a\u5e38\u5f97\u5230\u7684\u4f8b\u5982\"\u597d\u7684\"\uff0c\"\u6211\u4e0d\u77e5\u9053\"\u7b49\u5b89\u5168 \u56de\u590d (McKay and Piperno, 2014) ", "cite_spans": [ { "start": 220, "end": 239, "text": "(Fried et al., 2017", "ref_id": "BIBREF4" }, { "start": 250, "end": 270, "text": "(Huang et al., 2015)", "ref_id": "BIBREF7" }, { "start": 352, "end": 372, "text": "(Brown et al., 1993)", "ref_id": "BIBREF0" }, { "start": 508, "end": 532, "text": "(Sutskever et al., 2014;", "ref_id": "BIBREF20" }, { "start": 533, "end": 550, "text": "Cho et al., 2014)", "ref_id": "BIBREF1" }, { "start": 903, "end": 928, "text": "(McKay and Piperno, 2014)", "ref_id": "BIBREF13" } ], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null }, { "text": "EQUATION", "cite_spans": [], "ref_spans": [], "eq_spans": [ { "start": 0, "end": 8, "text": "EQUATION", "ref_id": "EQREF", "raw_str": "3 \u57fa \u57fa \u57fa\u4e8e \u4e8e \u4e8e\u5bf9 \u5bf9 \u5bf9\u8bdd \u8bdd \u8bdd\u7ea6 \u7ea6 \u7ea6\u675f \u675f \u675f\u7684 \u7684 \u7684\u56de \u56de \u56de\u590d \u590d \u590d\u751f \u751f \u751f\u6210 \u6210 \u6210\u6a21 \u6a21 \u6a21\u578b \u578b \u578b \u6211\u4eec\u7684\u4efb\u52a1\u65e8\u5728\u81ea\u52a8\u751f\u6210\u5408\u7406\u81ea\u7136\u7684\u5bf9\u8bdd\u56de\u590d\u3002\u4e00\u7ec4\u5bf9\u8bdd\u7531\u4e24\u4e2a\u5bf9\u8bdd\u8005\u4e4b\u95f4\u53d1\u8d77\u7684m/2\u8f6e \u5bf9\u8bdd\u7ec4\u6210\uff0c\u53ef\u8868\u793a\u4e3a\u5bf9\u8bdd\u5e8f\u5217D = {U 1 , U 2 , ..., U m }\uff0c\u5176\u4e2dU x (x = 1, 2. . . )\u79f0\u4e3a\u5bf9\u8bdd\u7684\u5b50\u53e5\u3002\u5bf9 \u8bdd\u751f\u6210\u6a21\u578b\u7684\u76ee\u7684\u662f\u5728\u7b2cm/2\u8f6e\u65f6\uff0c\u6839\u636e\u524d\u9762\u7684m \u2212 1\u4e2a\u5b50\u53e5{U 1 , U 2 , ..., U m\u22121 }\u8ba1\u7b97\u5728\u6b64\u60c5\u51b5 \u4e0b\u751f\u6210\u53e5\u5b50U m \u7684\u6982\u7387\uff0c\u5373P (U m |U 1 , U 2 , ..., U m\u22121 )\u3002\u6bcf\u4e2a\u53e5\u5b50U m \u662f\u53ef\u53d8\u957f\u7684\u5355\u8bcd\u5e8f\u5217\uff0c\u53ef\u8868\u793a \u4e3aU m = {w m,1 , w m,2 , ..., w m,Nm }\u3002\u5176\u4e2dw m,n \u8868\u793a\u7b2cm\u4e2a\u53e5\u5b50\u4e2d\u7684\u7b2cn\u4e2a\u5355\u8bcd\uff0cN m \u8868\u793aU m \u4e2d\u7684\u5355 \u8bcd\u4e2a\u6570\u3002\u901a\u8fc7\u524dm-1\u4e2a\u5b50\u53e5\u548c\u5f53\u524d\u5df2\u7ecf\u751f\u6210\u7684\u5355\u8bcd\u6765\u9010\u5b57\u9884\u6d4b\u4e0b\u4e00\u4e2a\u8bcd\uff0c\u76f4\u5230\u8fbe\u5230\u7279\u5b9a\u7684\u53e5\u5b50 \u957f\u5ea6\u6216\u8005\u751f\u6210\u7ed3\u675f\u7b26\uff0c\u9884\u6d4b\u7ed3\u675f\uff0c\u5f97\u5230\u56de\u590dU m \u3002P (U m |U 1 , U 2 , ..., U m\u22121 )\u53ef\u8868\u793a\u4e3a\u5982\u4e0b\u516c\u5f0f\uff1a P (w m,1 , w m,2 , ...., w m,n |U 1 , U 2 , ..., U m\u22121 ) = Nm n=1 P (w m,n |U 1 , U 2 , .., U m\u22121 , w 11.73%2.32%7.49%16.60%42.52%85.96%33.40%\u4e2d\u6027 \u79ef\u6781 \u6d88\u6781\u9648\u8ff0 \u63d0\u95ee \u6307\u793a \u627f\u8bfa(a) \u60c5\u611f\u7c7b\u522b\u5206\u5e03(b) \u610f\u56fe\u7c7b\u522b\u5206\u5e03\u6821\u56ed\u751f\u6d3b1.99% 3.26%7.80%4.68%5.35%13.44%\u5de5\u4f5c \u5065\u5eb70.67%3.17%\u65e5\u5e38\u751f\u6d3b \u4eba\u9645\u5173\u7cfb\u6587\u5316\u4e0e\u6559\u80b228.74%\u653f\u6cbb30.92%\u6001\u5ea6\u4e0e\u60c5\u611f\u65c5\u6e38\u91d1\u878d(c) \u8bdd\u9898\u7c7b\u522b\u5206\u5e03\u8fd9\u91ccW a s \uff0cB a s \u4e3a\u6a21\u578b\u53c2\u6570\uff0cP a s \u662f\u610f\u56fe\u9884\u6d4b\u6a21\u578b\u7684\u8f93\u51fa\uff0c\u7528\u4e8e\u610f\u56fe\u5206\u7c7b\u3002 \u56fe 2. \u60c5\u611f\u3001\u610f\u56fe\u3001\u8bdd\u9898\u7c7b\u522b\u6982\u7387\u5206\u5e03\u56fe\u5e38\u5e38\u4f1a\u53d7\u5230\u524d\u8005\u7684\u5f71\u54cd\uff0c\u800c\u524d\u8005\u662f\u5bf9\u8bdd\u7684\u53d1\u8d77\u65b9\uff0c\u5904\u4e8e\u4e3b\u5bfc\u5730\u4f4d\u3002\u4f8b\u5982\uff0c\u63d0\u95ee\u548c\u9648\u8ff0\u5f80\u5f80\u662f4.1 \u6570 \u6570 \u6570\u636e \u636e \u636e\u96c6 \u96c6 \u96c6 \u540c\u65f6\u53d1\u751f\u7684\uff0c\u56e0\u4e3a\u5f53\u6709\u4eba\u5411\u6211\u4eec\u63d0\u95ee\u65f6\uff0c\u6211\u4eec\u901a\u5e38\u4e0d\u4f1a\u8f6c\u79fb\u8bdd\u9898\uff0c\u800c\u662f\u793c\u8c8c\u5730\u56de\u590d\u522b\u4eba\u7684\u95ee\u9898\u3002\u53e6\u5916\u6307\u793a\u548c\u627f\u8bfa\u5f80\u5f80\u4e5f\u662f\u540c\u65f6\u53d1\u751f\u7684\uff0c\u5f53\u6709\u4eba\u5411\u6211\u4eec\u63d0\u51fa\u5efa\u8bae\u65f6\uff0c\u6211\u4eec\u4e00\u822c\u4f1a\u5bf9\u5bf9\u65b9\u6240\u63d0 \u672c\u5b9e\u9a8c\u4f7f\u7528DailyDialog\u5bf9\u8bdd\u8bed\u6599 (Li et al., 2017b)\uff0c\u8be5\u8bed\u6599\u6536\u96c6\u4e8e\u82f1\u8bed\u5b66\u4e60\u7f51\u7ad9\u7684\u5bf9\u8bdd \u7684\u5efa\u8bae\u505a\u51fa\u56de\u5e94\u3002\u56fe 4\u663e\u793a\u4e86\u540c\u4e00\u8bf4\u8bdd\u8005\u524d\u4e00\u53e5\u7684\u60c5\u611f\u786e\u5b9a\u7684\u6761\u4ef6\u4e0b\uff0c\u540e\u4e00\u53e5\u7684\u60c5\u611f\u7c7b\u522b\u7684\u6982 \u7ec3\u4e60\u3002\u8be5\u8bed\u6599\u7684\u57fa\u672c\u7edf\u8ba1\u4fe1\u606f\u5982\u8868 2\u6240\u793a\uff0c\u5171\u5305\u542b13118\u4e2a\u591a\u56de\u5408\u5bf9\u8bdd\uff0c\u5e73\u5747\u6bcf\u7ec4\u5bf9\u8bdd\u8f6e\u6570 \u7387\u5206\u5e03\u3002\u4e3a\u4e86\u907f\u514d\u65e0\u60c5\u611f\u8bdd\u8bed\u7684\u5e72\u6270\uff0c\u6211\u4eec\u53ea\u7edf\u8ba1\u4e86\u8bdd\u8bed\u7684\u60c5\u611f\u4e3a\u79ef\u6781\u6216\u8005\u6d88\u6781\u7684\u60c5\u51b5\u3002\u4ece\u56fe \u7ea6\u4e3a8,\u5e73\u5747\u6bcf\u53e5\u5bf9\u8bdd\u7684\u5355\u8bcd\u6570\u7ea6\u4e3a15\uff0c\u5e73\u5747\u6bcf\u7ec4\u5bf9\u8bdd\u7684\u5355\u8bcd\u6570\u7ea6\u4e3a115\u3002\u8be5\u6570\u636e\u96c6\u4e2d\u7684\u5bf9\u8bdd \u4e2d\u6211\u4eec\u770b\u51fa\u76f8\u540c\u60c5\u611f\u540c\u65f6\u51fa\u73b0\u7684\u6982\u7387\u8fdc\u8fdc\u9ad8\u4e8e\u5176\u4ed6\u60c5\u611f\uff0c\u8fd9\u8bf4\u660e\u540c\u4e00\u8bf4\u8bdd\u8005\u7684\u60c5\u611f\u57fa\u8c03\u901a\u5e38\u662f \u53cd\u6620\u4e86\u6211\u4eec\u7684\u65e5\u5e38\u4ea4\u6d41\u65b9\u5f0f\uff0c\u6db5\u76d6\u4e86\u6211\u4eec\u65e5\u5e38\u751f\u6d3b\u7684\u5404\u79cd\u8bdd\u9898\u3002\u8be5\u8bed\u6599\u4e2d\u7684\u6bcf\u53e5\u8bdd\u90fd\u6807\u6ce8 \u4fdd\u6301\u4e0d\u53d8\u7684\u3002\u57fa\u4e8e\u4e0a\u8ff0\u5206\u6790\uff0c\u6211\u4eec\u53ef\u4ee5\u53d1\u73b0\u5bf9\u5bf9\u8bdd\u7684\u60c5\u611f\u548c\u610f\u56fe\u8bc6\u522b\u5728\u56de\u590d\u751f\u6210\u4e2d\u662f\u975e\u5e38\u91cd\u8981 \u4e86\u60c5\u611f\u548c\u610f\u56fe\u7c7b\u522b\uff0c\u8fd9\u4e9b\u6807\u6ce8\u75313\u540d\u8bed\u8a00\u4e13\u5bb6\u5171\u540c\u5b8c\u6210\uff0c\u5177\u6709\u8f83\u9ad8\u7684\u53ef\u9760\u6027\u3002\u5176\u4e2d\u4e3b\u9898\u5206 \u4e3a10\u7c7b\uff1a\u6821\u56ed\u751f\u6d3b(School Life)\u3001\u5de5\u4f5c(Work)\u3001\u5065\u5eb7(Health)\u3001\u65e5\u5e38\u751f\u6d3b(Ordinary Life)\u3001\u4eba\u9645 \u7684\u3002\u5173\u7cfb(Relationship)\u3001\u6587\u5316\u4e0e\u6559\u80b2(Culture & Education)\u3001\u653f\u6cbb(Politics)\u3001\u6001\u5ea6\u4e0e\u60c5\u611f(Attitude 0.4 0.6 \u8ff0(Inform)\u3001\u8be2\u95ee(Question)\u3001\u6307\u793a(Directive)\u3001\u8bb8\u8bfa(Commissive)\u3002 0.5 0.6 0.8 \u60c5\u611f\uff0c\u5c06\u60c5\u611f\u91cd\u65b0\u5206\u4e3a\u4e2d\u6027(Neutal)\u3001\u79ef\u6781(Positive)\u3001\u6d88\u6781(Negative)\u4e09\u7c7b\uff1b\u610f\u56fe\u5206\u4e3a4\u7c7b\uff1a\u9648 0.7 1 & Emotion)\u3001\u65c5\u6e38(Tourism)\u3001\u91d1\u878d(Finance)\uff1b\u60c5\u611f\u5206\u4e3a7\u7c7b\uff0c\u5728\u672c\u5b9e\u9a8c\u4e2d\u6211\u4eec\u4e3a\u4e86\u66f4\u597d\u7684\u8bc6\u522b 0.8 1.20.1 0.2 0.3\u5bf9 \u5bf9 \u5bf9\u8bdd \u8bdd \u8bdd\u603b \u603b \u603b\u6570 \u6570 \u65700.2 13118 0.40 \u56fe 3. \u540c\u4e00\u8f6e\u5bf9\u8bdd\u4e2d\u610f\u56fe\u7684\u5f71\u54cd \u9648\u8ff0 \u8be2\u95ee \u6307\u793a \u627f\u8bfa \u9648\u8ff0 \u8be2\u95ee \u6307\u793a \u627f\u8bfa \u5e73 \u5e73 \u8868 2. DailyDialog\u57fa\u672c\u4fe1\u606f\u7edf\u8ba1 0 \u56fe 4. \u540c\u4e00\u8bf4\u8bdd\u8005\u60c5\u611f\u7684\u5f71\u54cd \u79ef\u6781 \u6d88\u6781 \u79ef\u6781 \u6d88\u6781 \u672c\u6587\u4f7f\u7528BLEU(Bilingual Evaluation Under-study)\u672c\u5b9e\u9a8c\u4e2d\uff0c\u6211\u4eec\u7814\u7a76\u56db\u8f6e\u5bf9\u8bdd\uff0c\u56e0\u6b64\u6211\u4eec\u8fc7\u6ee4\u4e86\u5c11\u4e8e\u516b\u53e5\u7684\u5bf9\u8bdd\uff0c\u5e76\u622a\u53d6\u5927\u4e8e\u7b49\u4e8e\u516b\u53e5\u5bf9\u8bdd\u4e2d\u7684\u524d\u516b\u53e5\u3002\u5728\u4ee5\u4e0a\u6761\u4ef6\u4e0b\uff0c\u6311\u90095835\u7ec4\u5bf9\u8bdd\u4f5c\u4e3a\u8bad\u7ec3\u96c6\uff0c200\u7ec4\u4f5c\u4e3a\u6d4b\u8bd5\u96c6\u3002\u56fe 2\u4e2d\u5206\u522b\u7ed9\u51fa\u4e86\u8fc7\u6ee4\u540e\u7684\u6570\u636e\u96c6\u4e2d\u8bdd\u9898\u3001\u60c5\u611f\u3001\u610f\u56fe\u7684\u7c7b\u522b\u6982\u7387\u5206\u5e03\u3002\u4ece\u56fe\u4e2d\u6211\u4eec\u53d1\u73b0\uff0c\u5bf9\u8bdd\u4e2d\u60c5\u611f\u4e3a\u4e2d\u6027\u7684\u8bdd\u8bed\u5360\u5927\u591a\u6570\uff0c\u610f\u56fe\u4e3a\u9648\u8ff0\u548c\u8be2\u95ee\u7684\u8bdd\u8bed\u5360\u6bd4\u9ad8\u4e8e\u5176\u4ed6\u4e24\u79cd\u610f\u56fe\u3002\u56fe 3\u5c55\u793a\u4e86\u540c\u4e00\u8f6e\u5bf9\u8bdd\u4e2d\u524d\u4e00\u53e5\u7684\u610f\u56fe\u786e\u5b9a\u65f6\uff0c\u540e\u4e00\u53e5\u8bdd\u7684\u610f\u56fe\u7c7b\u522b\u7684\u6982\u7387\u5206\u5e03\u3002\u4ece\u56fe\u4e2d\u6211\u4eec\u53d1\u73b0\u5bf9\u8bdd\u4e2d\u4e0d\u540c\u7684\u89d2\u8272\u4e4b\u95f4\u7684\u610f\u56fe\u662f\u76f8\u4e92\u5f71\u54cd\u3002\u5bf9\u8bdd\u53d1\u751f\u5728\u524d\u540e\u4e24\u4e2a\u89d2\u8272\u4e4b\u95f4\uff0c\u540e\u8005\u7684\u610f", "num": null, "text": "\u5e73\u5747 \u5747 \u5747\u6bcf \u6bcf \u6bcf\u7ec4 \u7ec4 \u7ec4\u5bf9 \u5bf9 \u5bf9\u8bdd \u8bdd \u8bdd\u8f6e \u8f6e \u8f6e\u6570 \u6570 \u6570 7.9 \u5e73 \u5e73 \u5e73\u5747 \u5747 \u5747\u6bcf \u6bcf \u6bcf\u4e2a \u4e2a \u4e2a\u5b50 \u5b50 \u5b50\u53e5 \u53e5 \u53e5\u7684 \u7684 \u7684\u5355 \u5355 \u5355\u8bcd \u8bcd \u8bcd\u6570 \u6570 \u6570 14.6 \u5e73 \u5e73 \u5e73\u5747 \u5747 \u5747\u6bcf \u6bcf \u6bcf\u7ec4 \u7ec4 \u7ec4\u5bf9 \u5bf9 \u5bf9\u8bdd \u8bdd \u8bdd\u7684 \u7684 \u7684\u5355 \u5355 \u5355\u8bcd \u8bcd \u8bcd\u6570 \u6570 \u6570 114.7", "type_str": "table" }, "TABREF2": { "html": null, "content": "
2) 3) \u6211\u4eec\u7684\u6a21\u578b\u7684\u5b9e\u9a8c\u7ed3\u679c\u8d85\u8fc7\u4e86\u6240\u6709\u7684\u57fa\u51c6\u6a21\u578b\uff0c\u5145\u5206\u8bf4\u660e\u4e86\u6211\u4eec\u63d0\u51fa\u7684\u6a21\u578b\u80fd\u6709\u6548\u5730\u63d0\u9ad8\u751f
\u6210\u7684\u5bf9\u8bdd\u56de\u590d\u7684\u8d28\u91cf\u3002
4.4 \u4e0d \u4e0d \u4e0d\u540c \u540c \u540c\u56e0 \u56e0 \u56e0\u7d20 \u7d20 \u7d20\u7684 \u7684 \u7684\u5f71 \u5f71 \u5f71\u54cd \u54cd \u54cd
\u4e3a\u4e86\u9a8c\u8bc1\u6211\u4eec\u6a21\u578b\u7684\u6709\u6548\u6027\uff0c\u5c06\u6211\u4eec\u7684\u6a21\u578b\u4e0e\u5206\u522b\u5355\u72ec\u8003\u8651\u8bdd\u9898\u3001\u60c5\u611f\u3001\u610f\u56fe\u9884\u6d4b\u6a21\u578b\u8fdb
\u884c\u5bf9\u6bd4\u5b9e\u9a8c\u3002\u5b9e\u9a8c\u7ed3\u679c\u5982\u8868 5\u6240\u793a\u3002\u6211\u4eec\u5171\u6d89\u53ca\u4e865\u7ec4\u5bf9\u6bd4\u5b9e\u9a8c\u3002Multi\u6a21\u578b\u5728\u4e0a\u4e00\u8282\u4e2d\u5df2\u7ecf\u4ecb
\u7ecd\uff0c\u4e0d\u518d\u8d58\u8ff0\uff1bJoint Topic\u6a21\u578b\u662f\u5728Multi\u6a21\u578b\u7684\u57fa\u7840\u4e0a\u52a0\u5165\u5bf9\u8bdd\u610f\u56fe\u7684\u8bc6\u522b\uff1bJoint Senti\u6a21\u578b
\u662f\u5728Multi\u6a21\u578b\u7684\u57fa\u7840\u4e0a\u52a0\u5165\u8bdd\u8bed\u60c5\u611f\u7684\u8bc6\u522b\uff1bJoint Act\u6a21\u578b\u662f\u5728Multi\u6a21\u578b\u7684\u57fa\u7840\u4e0a\u52a0\u5165\u8bdd\u8bed
\u610f\u56fe\u7684\u8bc6\u522b\u3002
\u6a21 \u6a21 \u6a21\u578b \u578b \u578b\u540d \u540d \u540d\u79f0 \u79f0 \u79f0BLEU-1 BLEU-2 BLEU-3 Average Greedy Extrema
Multi15.646.485.3362.1444.3337.20
Joint Topic18.018.877.6063.3445.3239.26
Joint Senti16.897.746.3462.7443.9337.32
Joint Act17.978.777.4663.2245.5038.84
JTEA(Ours)19.4110.409.0164.5648.1341.46
\u8868 5. \u4e0d\u540c\u56e0\u7d20\u7684\u5f71\u54cd
\u4ece\u8868\u4e2d\u53ef\u4ee5\u53d1\u73b0\uff0c\u6240\u6709\u5177\u6709\u7ea6\u675f\u6761\u4ef6\u7684\u6a21\u578b(Joint Topic, Joint Senti, Joint Act, JTEA)\u90fd
\u4f18\u4e8e\u57fa\u51c6Multi\u6a21\u578b\uff0c\u8fd9\u8868\u660e\u6240\u6709\u7684\u7ea6\u675f\u6761\u4ef6\u5bf9\u4e8e\u56de\u590d\u751f\u6210\u90fd\u662f\u6709\u6548\u7684\u3002\u53e6\u5916\uff0c\u6211\u4eec\u7684\u6a21\u578b\u5373\u8003
\u8651\u6240\u6709\u7684\u7ea6\u675f\u6761\u4ef6\u4f18\u4e8e\u5355\u72ec\u8003\u8651\u6bcf\u4e2a\u7ea6\u675f\u6761\u4ef6\u7684\u6a21\u578b\uff0c\u8fd9\u8868\u660e\u6211\u4eec\u5e94\u8be5\u96c6\u6210\u6240\u6709\u7ea6\u675f\u6761\u4ef6\u6765\u751f
\u6210\u66f4\u9ad8\u8d28\u91cf\u7684\u56de\u590d\u3002\u6211\u4eec\u8fd8\u53ef\u4ee5\u53d1\u73b0\u60c5\u611f\u7684\u7ea6\u675f\u76f8\u5bf9\u4e8e\u4e3b\u9898\u548c\u610f\u56fe\u7684\u7ea6\u675f\u6548\u679c\u8981\u7a0d\u5dee\u4e00\u70b9\uff0c\u662f
\u56e0\u4e3a\u5728\u6211\u4eec\u7684\u8bed\u6599\u4e2d\u7edd\u5927\u90e8\u5206\u8bdd\u8bed\u7684\u60c5\u611f\u90fd\u662f\u4e2d\u7acb\u7684\uff0c\u60c5\u611f\u5bf9\u56de\u590d\u7684\u5f71\u54cd\u76f8\u5bf9\u8f83\u5c0f\u3002
\u4f7f\u7528\u81ea\u6ce8\u610f\u529b\u673a\u5236\u6765\u66f4\u65b0\u4e0a\u4e0b\u6587\u548c\u88ab\u5c4f\u853d\u7684\u54cd\u5e94\u8868 \u793a\uff0c\u5e76\u5728\u89e3\u7801\u8fc7\u7a0b\u4e2d\u4f7f\u7528\u4e0a\u4e0b\u6587\u548c\u54cd\u5e94\u8868\u793a\u4e4b\u95f4\u7684\u6ce8\u610f\u529b\u6743\u91cd\u3002 4.5 \u6848 \u6848 \u6848\u4f8b \u4f8b \u4f8b\u5206 \u5206 \u5206\u6790 \u6790 \u6790
\u6211\u4eec\u5bf9\u57fa\u7ebfMulti\u6a21\u578b\u548c\u6211\u4eec\u7684\u6a21\u578b\u751f\u6210\u7684\u5bf9\u8bdd\u56de\u590d\u8fdb\u884c\u5bf9\u6bd4\u5206\u6790\uff0c\u8868 6\u7ed9\u51fa\u4e86\u4e09\u7ec4\u5bf9\u8bdd\u793a HRG\u6a21 \u6a21 \u6a21\u578b \u578b \u578b\uff1a \uff1a \uff1a (Zhang and Zhang, 2019)\u91c7\u7528\u5206\u5c42\u54cd\u5e94\u751f\u6210\u6846\u67b6\u4ee5\u81ea\u7136\u548c\u8fde\u8d2f\u7684\u65b9\u5f0f\u6355\u83b7\u5bf9 \u8bdd\u610f\u56fe\u3002 \u4f8b\uff0c\u6211\u4eec\u622a\u53d6\u4e86\u5bf9\u8bdd\u7684\u4e3b\u8981\u5185\u5bb9\u4e14\u5bf9\u8bdd\u5185\u5bb9\u90fd\u5df2\u7ffb\u8bd1\u4e3a\u4e2d\u6587\u5c55\u793a\u3002
\u6a21 \u6a21 \u6a21\u578b \u578b \u578b\u540d \u540d \u540d\u79f0 \u79f0 \u79f0BLEU-1 BLEU-2 BLEU-3 Average Greedy Extrema
Seq2Seq12.945.644.8057.8842.0136.06
Multi15.646.485.3362.1444.3337.20
Dir-VHRED10.903.822.2659.9241.2632.70
ReCoSa17.248.376.8962.6346.5940.42
HRG17.587.555.8863.2945.3438.50
JTEA(Ours)19.4110.409.0164.5648.1341.46
\u8868 4. \u4e0e\u57fa\u7ebf\u6a21\u578b\u6bd4\u8f83
\u8868 4\u5c55\u793a\u4e86\u6211\u4eec\u7684\u6a21\u578b\u548c\u57fa\u7ebf\u6a21\u578b\u7684\u6bd4\u8f83\u7ed3\u679c\u3002\u4ece\u8868\u4e2d\u6211\u4eec\u53ef\u4ee5\u5f97\u51fa\u4ee5\u4e0b\u7ed3\u8bba\uff1a
1) Multi\u6a21\u578b\u6bd4Seq2Seq\u6a21\u578b\u8868\u73b0\u597d\u3002\u56e0\u4e3aSeq2Seq\u6a21\u578b\u662f\u5c06\u6240\u6709\u5386\u53f2\u53e5\u5b50\u4fe1\u606f\u62fc\u63a5\u4f5c\u4e3a\u8f93\u5165\u5e8f
\u5217\uff0c\u5bfc\u81f4\u524d\u9762\u5b50\u53e5\u7684\u8bed\u4e49\u4fe1\u606f\u88ab\u9010\u6e10\u7a00\u91ca\u6389\uff0c\u751f\u6210\u7684\u4e2d\u95f4\u8bed\u4e49\u5411\u91cf\u4e0d\u80fd\u5145\u5206\u63d0\u53d6\u5386\u53f2\u4fe1\u606f
\u4e2d\u7684\u7279\u5f81\u3002\u540c\u65f6\u4e5f\u8bc1\u660e\u4e86\u5c06\u5386\u53f2\u4fe1\u606f\u4e2d\u7684\u6bcf\u4e00\u4e2a\u5b50\u53e5\u5206\u522b\u7ecf\u8fc7LSTM\u7f51\u7edc\uff0c\u53d6\u5e73\u5747\u503c\u4f5c\u4e3a
\u4e2d\u95f4\u8bed\u4e49\u5411\u91cf\u66f4\u52a0\u5408\u7406\u3002
", "num": null, "text": "\u6211 \u4eec \u7684 \u6a21 \u578b \u76f8 \u8f83 \u4e8eMulti\u6a21 \u578b \uff0cBLEU-1\u3001BLEU-2\u3001BLEU-3\u503c \u5206 \u522b \u63d0 \u5347 \u4e863.77\u30014.76\u30013.68\u4e2a \u767e \u5206 \u70b9 \uff0cAverage\u3001Greedy\u3001Extrema\u5206 \u522b \u63d0 \u5347 \u4e862.42\u30013.8\u30014.26\u4e2a \u767e\u5206\u70b9\u3002\u800c\u6211\u4eec\u7684\u6a21\u578b\u662f\u5728Multi\u6a21\u578b\u7684\u57fa\u7840\u4e0a\u4e86\u5f15\u5165\u4e86\u4e3b\u9898\u3001\u60c5\u611f\u548c\u610f\u56fe\u7684\u8bc6\u522b\uff0c\u8fd9\u8bc1\u660e \u4e86\u5bf9\u5bf9\u8bdd\u56de\u590d\u8fdb\u884c\u7ea6\u675f\u53ef\u4ee5\u6709\u6548\u5730\u63d0\u9ad8\u751f\u6210\u56de\u590d\u7684\u8d28\u91cf\u3002", "type_str": "table" } } } }