Benjamin Aw
Add updated pkl file v3
6fa4bc9
{
"paper_id": "O16-1031",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T08:04:53.185617Z"
},
"title": "\u69cb\u5efa\u4e00\u500b\u4e2d\u6587\u570b\u5c0f\u6578\u5b78\u6587\u5b57\u554f\u984c\u8a9e\u6599\u5eab Building a Corpus for Developing the Chinese Elementary School Math Word Problem Solver",
"authors": [
{
"first": "\u7e46\u614e\u8018",
"middle": [],
"last": "Shen",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Yun",
"middle": [],
"last": "Miao",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Su-Chu",
"middle": [],
"last": "\u6797\u7d20\u6731",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "",
"middle": [],
"last": "Lin",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Wei-Yun",
"middle": [],
"last": "\u99ac\u5049\u96f2",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "",
"middle": [],
"last": "Ma",
"suffix": "",
"affiliation": {},
"email": "ma@iis.sinica.edu.tw"
},
{
"first": "Keh-Yih",
"middle": [],
"last": "\u8607\u514b\u6bc5",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "",
"middle": [],
"last": "Su",
"suffix": "",
"affiliation": {},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "",
"pdf_parse": {
"paper_id": "O16-1031",
"_pdf_hash": "",
"abstract": [],
"body_text": [
{
"text": "\u6a5f\u5668\u95b1\u8b80\u7684\u8a9e\u610f\u8868\u9054 http://sunlight.iis.sinica.edu.tw/SC4MR/ 2 \u4e2d\u6587\u53e5\u7d50\u69cb\u6a39\u8cc7\u6599\u5eab http://TreeBank.sinica.edu.tw 3 \u5ee3\u7fa9\u77e5\u7db2 http://ehownet.iis.sinica.edu.tw/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "\u570b\u6c11\u6559\u80b2\u793e\u7fa4\u7db2\uff0c\u4e5d\u5e74\u4e00\u8cab\u8ab2\u7a0b\u984c\u7db1\uff0c\u6578\u5b78\u80fd\u529b\u6307\u6a19 http://teach.eje.edu.tw/9CC/fields/math_3_1.php",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Designing a Tag-Based Statistical Math Word Problem Solver with Reasoning and Explanation",
"authors": [
{
"first": "Y.-C",
"middle": [],
"last": "Lin",
"suffix": ""
}
],
"year": 2015,
"venue": "International Journal of Computational Linguistics and Chinese Language Processing (IJCLCLP)",
"volume": "20",
"issue": "2",
"pages": "1--26",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Y.-C. Lin et al., \"Designing a Tag-Based Statistical Math Word Problem Solver with Reasoning and Explanation,\" International Journal of Computational Linguistics and Chinese Language Processing (IJCLCLP), vol. 20, no. 2, pp. 1-26, Dec. 2015. [Online].",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Available",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Available: http://www.aclclp.org.tw/clclp/v20n2/v20n2a1.pdf.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "A tag-based English math word problem Solver with understanding, reasoning and explanation",
"authors": [
{
"first": "C.-C",
"middle": [],
"last": "Liang",
"suffix": ""
},
{
"first": "K.-Y",
"middle": [],
"last": "Hsu",
"suffix": ""
},
{
"first": "C.-T",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "C.-M",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "S.-Y",
"middle": [],
"last": "Miao",
"suffix": ""
},
{
"first": "K.-Y.",
"middle": [],
"last": "Su",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations",
"volume": "",
"issue": "",
"pages": "67--71",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "C.-C. Liang, K.-Y. Hsu, C.-T. Huang, C.-M. Li, S.-Y. Miao, and K.-Y. Su, \"A tag-based English math word problem Solver with understanding, reasoning and explanation,\" in Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, Association for Computational Linguistics (ACL), 2016, pp. 67-71. [Online]. Available: http://aclweb.org/anthology/N/N16/N16-3014.pdf.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Learning to automatically solve algebra word problems",
"authors": [
{
"first": "N",
"middle": [],
"last": "Kushman",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Artzi",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Barzilay",
"suffix": ""
}
],
"year": 2014,
"venue": "Association for Computational Linguistics (ACL)",
"volume": "1",
"issue": "",
"pages": "271--281",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "N. Kushman, Y. Artzi, L. Zettlemoyer, and R. Barzilay, \"Learning to automatically solve algebra word problems,\" Association for Computational Linguistics (ACL), vol. 1, pp. 271-281, Jun. 2014. [Online]. Available: http://homes.cs.washington.edu/~lsz/papers/kazb-acl14.pdf.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Reasoning about quantities in natural language",
"authors": [
{
"first": "S",
"middle": [],
"last": "Roy",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Vieira",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Roth",
"suffix": ""
}
],
"year": 2015,
"venue": "Transactions of the Association for Computational Linguistics (TACL)",
"volume": "3",
"issue": "",
"pages": "1--13",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Roy, T. Vieira, and D. Roth, \"Reasoning about quantities in natural language,\" Transactions of the Association for Computational Linguistics (TACL), vol. 3, pp. 1-13, Jan. 2015. [Online]. Available: https://transacl.org/ojs/index.php/tacl/article/view/452/102.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Solving general arithmetic word problems",
"authors": [
{
"first": "S",
"middle": [],
"last": "Roy",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Roth",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1743--1752",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Roy and D. Roth, \"Solving general arithmetic word problems,\" in Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2015, pp. 1743-1752. [Online]. Available: http://www.emnlp2015.org/proceedings/EMNLP/pdf/EMNLP202.pdf.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "A tree-to-tree alignmentbased model for statistical machine translation",
"authors": [
{
"first": "Z",
"middle": [],
"last": "Min",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Hongfei",
"suffix": ""
},
{
"first": "T",
"middle": [
"A"
],
"last": "Ai",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Jun",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Sheng",
"suffix": ""
},
{
"first": "L",
"middle": [
"T"
],
"last": "Chew",
"suffix": ""
}
],
"year": 2007,
"venue": "",
"volume": "",
"issue": "",
"pages": "535--542",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Z. Min, J. Hongfei, T. A. Ai, S. Jun, L. Sheng, and L. T. Chew, \"A tree-to-tree alignment- based model for statistical machine translation,\" in MT-Summit, 2007, pp. 535-542. [Online]. Available: https://www.semanticscholar.org/paper/A-Tree-to-tree-Alignment-based-Model-for-Zha ng-Jiang/5fb3ded74c75a78f637e198337b8a83c54975010/pdf.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "The proposition bank: An annotated corpus of semantic roles",
"authors": [
{
"first": "M",
"middle": [],
"last": "Palmer",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Gildea",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Kingsbury",
"suffix": ""
}
],
"year": 2005,
"venue": "Computational Linguistics",
"volume": "31",
"issue": "1",
"pages": "106--71",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. Palmer, D. Gildea, and P. Kingsbury, \"The proposition bank: An annotated corpus of semantic roles,\" Computational Linguistics, vol. 31, no. 1, pp. 106-71, Jan. 2005. [Online]. Available: http://dl.acm.org/citation.cfm?id=1122628.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "CCGbank: A Corpus of CCG Derivations and Dependency Structures Extracted from the Penn Treebank",
"authors": [
{
"first": "J",
"middle": [],
"last": "Hockenmaier",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Steedman",
"suffix": ""
}
],
"year": 2007,
"venue": "Computational Linguistics",
"volume": "33",
"issue": "3",
"pages": "355--396",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Hockenmaier and M. Steedman, \"CCGbank: A Corpus of CCG Derivations and Dependency Structures Extracted from the Penn Treebank,\" Computational Linguistics, vol. 33, no. 3, pp. 355-396, Jan. 2007. [Online]. Available: http://dl.acm.org/citation.cfm?id=1288685.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "The Penn Chinese TreeBank: Phrase structure annotation of a large corpus",
"authors": [
{
"first": "N",
"middle": [],
"last": "Xue",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Xia",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Chiou",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Palmer",
"suffix": ""
}
],
"year": 2005,
"venue": "Natural Language Engineering",
"volume": "11",
"issue": "2",
"pages": "207--238",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "N. Xue, F. Xia, F. Chiou, and M. Palmer, \"The Penn Chinese TreeBank: Phrase structure annotation of a large corpus,\" Natural Language Engineering, vol. 11, no. 2, pp. 207- 238, Jan. 2005. [Online]. Available: http://dl.acm.org/citation.cfm?id=1064785.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "The Chinese discourse TreeBank: A Chinese corpus annotated with discourse relations",
"authors": [
{
"first": "Y",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Xue",
"suffix": ""
}
],
"year": 2014,
"venue": "Language Resources and Evaluation",
"volume": "49",
"issue": "2",
"pages": "397--431",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Y. Zhou and N. Xue, \"The Chinese discourse TreeBank: A Chinese corpus annotated with discourse relations,\" Language Resources and Evaluation, vol. 49, no. 2, pp. 397-431, Nov. 2014.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Annotating a Japanese text corpus with Predicate-Argument and Coreference relations",
"authors": [
{
"first": "R",
"middle": [],
"last": "Iida",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Komachi",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Inui",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Matsumoto",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of the Linguistic Annotation Workshop",
"volume": "",
"issue": "",
"pages": "132--139",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. Iida, M. Komachi, K. Inui, and Y. Matsumoto, \"Annotating a Japanese text corpus with Predicate-Argument and Coreference relations,\" in Proceedings of the Linguistic Annotation Workshop, Association for Computational Linguistics (ACL), 2007, pp. 132-139. [Online]. Available: http://aclasb.dfki.de/nlp/bib/W07-1522.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Aligning predicate argument structures in monolingual comparable texts",
"authors": [
{
"first": "M",
"middle": [],
"last": "Roth",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Frank",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the Sixth International Workshop on Semantic Evaluation",
"volume": "1",
"issue": "",
"pages": "218--227",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. Roth and A. Frank, \"Aligning predicate argument structures in monolingual comparable texts,\" in the First Joint Conference on Lexical and Computational Semantics-Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation, Association for Computational Linguistics (ACL), 2012, pp. 218-227. [Online].",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Available",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Available: http://dl.acm.org/citation.cfm?id=2387672.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Binarizing Syntax Trees to Improve Syntax-Based Machine Translation Accuracy",
"authors": [
{
"first": "W",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Knight",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Marcu",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning",
"volume": "",
"issue": "",
"pages": "746--754",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "W. Wang, K. Knight, and D. Marcu, \"Binarizing Syntax Trees to Improve Syntax-Based Machine Translation Accuracy,\" in Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), 2007, pp. 746-754. [Online]. Available: http://aclasb.dfki.de/nlp/bib/D07-1078.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Forest-Based Translation",
"authors": [
{
"first": "H",
"middle": [],
"last": "Mi",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "Q",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2008,
"venue": "",
"volume": "",
"issue": "",
"pages": "192--199",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "H. Mi, L. Huang, and Q. Liu, \"Forest-Based Translation,\" Association for Computational Linguistics (ACL), 2008, pp. 192-199. [Online]. Available: http://www.aclweb.org/anthology/P/P08/P08-1023.pdf.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Soft Syntactic Constraints for Hierarchical Phrased-Based Translation",
"authors": [
{
"first": "Y",
"middle": [],
"last": "Marton",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Resnik",
"suffix": ""
}
],
"year": 2008,
"venue": "",
"volume": "",
"issue": "",
"pages": "1003--1011",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Y. Marton and P. Resnik, \"Soft Syntactic Constraints for Hierarchical Phrased-Based Translation,\" Association for Computational Linguistics (ACL), 2008, pp. 1003-1011. [Online]. Available: http://www.anthology.aclweb.org/P/P08/P08-1114.pdf.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Learning translation boundaries for phrase-based Decoding",
"authors": [
{
"first": "D",
"middle": [],
"last": "Xiong",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Li",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "136--144",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Xiong, M. Zhang, and H. Li, \"Learning translation boundaries for phrase-based Decoding,\" in Proceedings of Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Association for Computational Linguistics (ACL), 2010, pp. 136-144.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Learning noun-modifier semantic relations with corpus-based and WordNet-based features",
"authors": [
{
"first": "V",
"middle": [],
"last": "Nastase",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Sayyad-Shirabad",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Sokolova",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Szpakowicz",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of the national conference on Artificial intelligence (AAAI-06",
"volume": "",
"issue": "",
"pages": "781--786",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "V. Nastase, J. Sayyad-Shirabad, M. Sokolova, and S. Szpakowicz, \"Learning noun-modifier semantic relations with corpus-based and WordNet-based features,\" in Proceedings of the national conference on Artificial intelligence (AAAI-06), 2006, pp. 781-786. [Online]. Available: http://dl.acm.org/citation.cfm?id=1597538.1597663&coll=&dl=&preflayout=tabs.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "The SALSA corpus: A German corpus resource for lexical semantics",
"authors": [
{
"first": "A",
"middle": [],
"last": "Burchardt",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Erk",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Frank",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Kowalski",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Pad\u00f3",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Pinkal",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of the International Conference on Language Resources and Evaluation",
"volume": "",
"issue": "",
"pages": "969--974",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. Burchardt, K. Erk, A. Frank, A. Kowalski, S. Pad\u00f3, and M. Pinkal, \"The SALSA corpus: A German corpus resource for lexical semantics,\" in Proceedings of the International Conference on Language Resources and Evaluation, 2006, pp. 969-974. [Online]. Available: http://www.nlpado.de/~sebastian/pub/papers/lrec06_burchardt1.pdf.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Corpus-based semantic role approach in information retrieval",
"authors": [
{
"first": "P",
"middle": [],
"last": "Moreda",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Navarro",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Palomar",
"suffix": ""
}
],
"year": 2007,
"venue": "Data & Knowledge Engineering",
"volume": "61",
"issue": "3",
"pages": "467--483",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "P. Moreda, B. Navarro, and M. Palomar, \"Corpus-based semantic role approach in information retrieval,\" Data & Knowledge Engineering, vol. 61, no. 3, pp. 467-483, Jun. 2007. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0169023X06001133.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Developing a large semantically annotated corpus",
"authors": [
{
"first": "V",
"middle": [],
"last": "Basile",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Bos",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Evang",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Venhuizen",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the International Conference on Language Resources and Evaluation",
"volume": "",
"issue": "",
"pages": "3196--3200",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "V. Basile, J. Bos, K. Evang, and N. Venhuizen, \"Developing a large semantically annotated corpus,\" in Proceedings of the International Conference on Language Resources and Evaluation, 2012, pp. 3196-3200. [Online]. Available: http://www.lrec-conf.org/proceedings/lrec2012/pdf/534_Paper.pdf.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Syntactic Dependencies for multilingual and multilevel corpus Annotation",
"authors": [
{
"first": "S",
"middle": [],
"last": "Mille",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Wanner",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the International Conference on Language Resources and Evaluation",
"volume": "",
"issue": "",
"pages": "1889--1896",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Mille and L. Wanner, \"Syntactic Dependencies for multilingual and multilevel corpus Annotation,\" in Proceedings of the International Conference on Language Resources and Evaluation, 2010, pp. 1889-1896. [Online]. Available: http://lrec-conf.org/proceedings/lrec2010/pdf/697_Paper.pdf.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Automatically solving number word problems by semantic parsing and reasoning",
"authors": [
{
"first": "S",
"middle": [],
"last": "Shi",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "C.-Y",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "X",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Rui",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "1132--1142",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Shi, Y. Wang, C.-Y. Lin, X. Liu, and Y. Rui, \"Automatically solving number word problems by semantic parsing and reasoning,\" in Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP), Lisbon, Portugal, 2015, pp. 1132-1142. [Online]. Available: http://www.aclweb.org/anthology/D/D15/D15-1135.pdf.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Parsing algebraic word problems into equations",
"authors": [
{
"first": "R",
"middle": [],
"last": "Koncel-Kedziorski",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Hajishirzi",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Sabharwal",
"suffix": ""
},
{
"first": "O",
"middle": [],
"last": "Etzioni",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Dumas",
"suffix": ""
}
],
"year": 2015,
"venue": "Transactions of the Association for Computational Linguistics (TACL)",
"volume": "3",
"issue": "",
"pages": "585--597",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. Koncel-Kedziorski, H. Hajishirzi, A. Sabharwal, O. Etzioni, and S. Dumas, \"Parsing algebraic word problems into equations,\" Transactions of the Association for Computational Linguistics (TACL), vol. 3, pp. 585-597, 2015. [Online]. Available: https://transacl.org/ojs/index.php/tacl/article/viewFile/692/164.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Sinica Treebank: Design criteria, representational issues and implementation",
"authors": [
{
"first": "K.-J",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 2003,
"venue": "Treebanks: Building and Using Parsed. Kluwer Acade",
"volume": "",
"issue": "",
"pages": "231--248",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "K.-J. Chen et al., \"Sinica Treebank: Design criteria, representational issues and implementation,\" in A. Abeille (ed.), Treebanks: Building and Using Parsed. Kluwer Acade, 2003, pp. 231-248. [Online]. Available: https://www.researchgate.net/profile/Chu-Ren_Huang/publication/226727962_Sinica_T reebank/links/0912f509c0082732b9000000.pdf.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Sinica Treebank: design criteria, annotation guidelines, and on-line interface",
"authors": [
{
"first": "C.-R",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "F.-Y",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "K.-J",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Z",
"middle": [],
"last": "Gao",
"suffix": ""
}
],
"year": 2000,
"venue": "Proceedings of the second workshop on Chinese language processing held in conjunction with the 38th Annual Meeting of the Association for Computational Linguistics",
"volume": "12",
"issue": "",
"pages": "29--37",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "C.-R. Huang, F.-Y. Chen, K.-J. Chen, and Z. Gao, \"Sinica Treebank: design criteria, annotation guidelines, and on-line interface,\" in Proceedings of the second workshop on Chinese language processing held in conjunction with the 38th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics (ACL), 2000, vol. 12, pp. 29-37. [Online]. Available: http://www.aclweb.org/old_anthology/W/W00/W00-1205.pdf.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Extended-HowNet-A Representational Framework for Concepts",
"authors": [
{
"first": "K.-J",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "S.-L",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "Y.-Y",
"middle": [],
"last": "Shih",
"suffix": ""
},
{
"first": "Y.-J",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 2005,
"venue": "OntoLex 2005 -Ontologies and Lexical Resources IJCNLP-05 Workshop",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "K.-J. Chen, S.-L. Huang, Y.-Y. Shih, and Y.-J. Chen, \"Extended-HowNet-A Representational Framework for Concepts,\" in OntoLex 2005 -Ontologies and Lexical Resources IJCNLP-05 Workshop, Jeju Island, South Korea, 2005. [Online]. Available: http://ckip.iis.sinica.edu.tw/CKIP/paper/Extended-HowNet-_A_Representational_Fram ework_for_Concepts.pdf.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Resolving the Representational Problems of Polarity and Interaction between Process and State Verbs",
"authors": [
{
"first": "S.-L",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "Y.-M",
"middle": [],
"last": "Hsieh",
"suffix": ""
},
{
"first": "S.-C",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "K.-J",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 2014,
"venue": "International Journal of Computational Linguistics and Chinese Language Processing (IJCLCLP)",
"volume": "19",
"issue": "2",
"pages": "33--52",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S.-L. Huang, Y.-M. Hsieh, S.-C. Lin, and K.-J. Chen, \"Resolving the Representational Problems of Polarity and Interaction between Process and State Verbs,\" International Journal of Computational Linguistics and Chinese Language Processing (IJCLCLP), vol. 19, no. 2, pp. 33-52, Jun. 2014. [Online]. Available: http://godel.iis.sinica.edu.tw/CKIP/paper/2014_IJCLCLP_33-52.pdf.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "A Probe into Ambiguities of Determinative-Measure Compounds",
"authors": [
{
"first": "S.-M",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "S.-C",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "C.-H",
"middle": [],
"last": "Tai",
"suffix": ""
},
{
"first": "K.-J",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 2006,
"venue": "International Journal of Computational Linguistics and Chinese Language Processing (IJCLCLP)",
"volume": "11",
"issue": "3",
"pages": "245--280",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S.-M. Li, S.-C. Lin, C.-H. Tai, and K.-J. Chen, \"A Probe into Ambiguities of Determinative-Measure Compounds,\" International Journal of Computational Linguistics and Chinese Language Processing (IJCLCLP), vol. 11, no. 3, pp. 245-280, Sep. 2006. [Online]. Available: http://www.airitilibrary.com/Publication/alDetailedMesh?DocID=1027376x-200609-11- 3-245-280-a.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Automatic Sense Derivation for Determinative-Measure Compounds under the Framework of E-HowNet",
"authors": [
{
"first": "C.-H",
"middle": [],
"last": "Tai",
"suffix": ""
},
{
"first": "J.-Z",
"middle": [],
"last": "Fan",
"suffix": ""
},
{
"first": "S.-L",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "K.-J",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 2009,
"venue": "International Journal of Computational Linguistics and Chinese Language Processing (IJCLCLP)",
"volume": "14",
"issue": "1",
"pages": "19--44",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "C.-H. Tai, J.-Z. Fan, S.-L. Huang, and K.-J. Chen, \"Automatic Sense Derivation for Determinative-Measure Compounds under the Framework of E-HowNet,\" International Journal of Computational Linguistics and Chinese Language Processing (IJCLCLP), vol. 14, no. 1, pp. 19-44, Mar. 2009. [Online]. Available: http://www.aclweb.org/anthology/O09-3002.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "DRAW: A challenging and diverse algebra word problem set",
"authors": [
{
"first": "S",
"middle": [],
"last": "Upadhyay",
"suffix": ""
},
{
"first": "M.-W",
"middle": [],
"last": "Chang",
"suffix": ""
}
],
"year": 2015,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Upadhyay and M.-W. Chang, \"DRAW: A challenging and diverse algebra word problem set,\" Number MSR-TR-2015-78, Oct. 2015. [Online]. Available: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tech_rep.pdf.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "MAWPS: A math word problem repository",
"authors": [
{
"first": "R",
"middle": [],
"last": "Koncel-Kedziorski",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Roy",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Amini",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Kushman",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Hajishirzi",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "",
"issue": "",
"pages": "1152--1157",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. Koncel-Kedziorski, S. Roy, A. Amini, N. Kushman, and H. Hajishirzi, \"MAWPS: A math word problem repository,\" in Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics (ACL), 2016, pp. 1152-1157.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "How well do computers solve math word problems? Large-scale Dataset construction and evaluation",
"authors": [
{
"first": "D",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Shi",
"suffix": ""
},
{
"first": "C.-Y",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Yin",
"suffix": ""
},
{
"first": "W.-Y",
"middle": [],
"last": "Ma",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "887--896",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Huang, S. Shi, C.-Y. Lin, J. Yin, and W.-Y. Ma, \"How well do computers solve math word problems? Large-scale Dataset construction and evaluation,\" in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, Association for Computational Linguistics (ACL), 2016, pp. 887-896. [Online]. Available: http://www.aclweb.org/anthology/P/P16/P16-1084.pdf.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "LIM-G: Learner-initiating instruction model based on cognitive knowledge for geometry word problem comprehension",
"authors": [
{
"first": "W.-K",
"middle": [],
"last": "Wong",
"suffix": ""
},
{
"first": "S.-C",
"middle": [],
"last": "Hsu",
"suffix": ""
},
{
"first": "S.-H",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "C.-W",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "W.-L",
"middle": [],
"last": "Hsu",
"suffix": ""
}
],
"year": 2007,
"venue": "Computers & Education",
"volume": "48",
"issue": "4",
"pages": "582--601",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "W.-K. Wong, S.-C. Hsu, S.-H. Wu, C.-W. Lee, and W.-L. Hsu, \"LIM-G: Learner-initiating instruction model based on cognitive knowledge for geometry word problem comprehension,\" Computers & Education, vol. 48, no. 4, pp. 582-601, 2007. [Online]. Available:",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "Empirical study of Mandarin Chinese discourse analysis: An event-based approach",
"authors": [
{
"first": "Y.-K",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Y.-S",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "W.-L",
"middle": [],
"last": "Hsu",
"suffix": ""
}
],
"year": null,
"venue": "Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No.98CH36294), Institute of Electrical & Electronics Engineers",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Y.-K. Wang, Y.-S. Chen, and W.-L. Hsu, \"Empirical study of Mandarin Chinese discourse analysis: An event-based approach,\" in Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No.98CH36294), Institute of Electrical & Electronics Engineers (IEEE). [Online]. Available: http://iasl.iis.sinica.edu.tw/webpdf/paper-1998-Empirical_Study_of_Mandarin_Chinese _Discourse_.pdf.",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "The Anaphoric expressions of Chinese algebraic word problem",
"authors": [
{
"first": "Y.-K",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "W.-L",
"middle": [],
"last": "Hsu",
"suffix": ""
},
{
"first": "Y.-C",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 1998,
"venue": "Proceedings of the 1998 International Symposium on Multimedia Information Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Y.-K. Wang, W.-L. Hsu, and Y.-C. Chen, \"The Anaphoric expressions of Chinese algebraic word problem,\" in Proceedings of the 1998 International Symposium on Multimedia Information Processing, 1998. [Online]. Available: http://iasl.iis.sinica.edu.tw/webpdf/paper-1998-The_Anaphoric_Expressions_of_Chines e_Algebraic_.pdf.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"num": null,
"uris": null,
"type_str": "figure",
"text": "(a) \u7d19\u672c\u984c\u76ee\u539f\u6a23 (b) \u8cc7\u6599\u5eab\u984c\u76ee\u6a23\u8c8c \u5716\u4e8c\u3001\u683c\u5f0f\u8f49\u63db\u7684\u7b26\u865f\u4e1f\u5931\u554f\u984c \u7576\u7136\uff0c\u5728\u8655\u7406\u9019\u4e9b\u984c\u76ee\u6642\uff0c\u6211\u5011\u9084\u9047\u5230\u4e00\u4e9b\u4e0d\u53ef\u907f\u514d\u7684\u96dc\u8a0a\u554f\u984c\u3002\u4f8b\u5982\uff1a\u6587\u672c\u4e2d\u5e36 \u6709\u8a31\u591a\u7684\u5783\u573e\u7b26\u865f(\u5716\u4e00(a)(b)) \uff0c\u4e26\u4e14\u5728\u683c\u5f0f\u8f49\u63db\u6642\u56e0\u7b26\u865f\u8cc7\u8a0a\u4e1f\u5931\u800c\u5c0e\u81f4\u984c\u76ee\u5167\u5bb9\u8868 3\"\u90e8\u5206(\u4e43\u984c\u76ee\u4e2d\u63d0\u4f9b \u89e3\u984c\u6240\u9700\u4e4b\u8cc7\u8a0a\uff1b\u4f46\u53ef\u80fd\u5305\u542b\u984d\u5916\u7684\u4e0d\u76f8\u95dc\u8a0a\u606f)\u548c\"\u554f\u53e5\"\u90e8\u5206\u5169\u6bb5\u6210\u5206\u3002\u5728\u4e00\u500b\u984c\u76ee \u4e2d\uff0c\"\u554f\u53e5\"\u4e3b\u8981\u662f\u4ecb\u65bc\u554f\u865f\u4e4b\u524d\u548c\u6700\u5f8c\u4e00\u500b\u9017\u865f\u4e4b\u5f8c\u3002\u800c\u5c0d\u65bc\u591a\u91cd\u554f\u53e5\uff0c\u6211\u5011\u5247\u662f\u5c07\u984c \u76ee\u4ee5\u624b\u52d5\u65b9\u5f0f\u5206\u958b\u6210\u4e00\u500b\"\u4e3b\u5e79\"\u548c\u591a\u500b\"\u554f\u53e5\"\uff0c\u4f7f\u4e0d\u540c\u7684\"\u554f\u53e5\"\u548c\u76f8\u540c\u7684\"\u4e3b\u5e79\"\u53ef\u4ee5\u5206 \u5225\u9023\u63a5\u5728\u4e00\u8d77\u6c42\u89e3\u3002 )\u4e2d\u7b2c\u4e00\u5217\"Train-G3-001533\"\uff0c\u8868\u793a\u6b64\u984c\u662f\u88ab\u6307\u5b9a\u70ba\u8a13\u7df4\u96c6\u4e2d\u5c6c\u65bc\u4e09\u5e74 \u7d1a\u7684\u7b2c 1533 \u865f\u984c\u76ee (\u4e5f\u5c31\u662f\u6b64\u984c\u662f\u88ab\u5132\u5b58\u5728\u8a13\u7df4\u96c6\u4e2d\uff0c\u4e09\u5e74\u7d1a\u7684\u7b2c 16 \u500b XML \u6a94\u6848\u88e1) \uff0c \u4ee5\u65b9\u4fbf\u7814\u7a76\u8005\u5b9a\u4f4d\u6216\u67e5\u8a62\u3002\u53e6\u5916\uff0c\u6bcf\u500b\u984c\u76ee\u9084\u9644\u6709\u4e00\u500b\u5e74\u7d1a\u7e3d\u7de8\u865f(\u5373\u5716\u56db(a)\u4e2d\u7b2c\u4e00 \u5217\u7684 ID) \u3002\u5982\u6b64\u4f8b\u4e2d\"IIS-MR-MATH-GRADE03-001752\"\uff0c\u8868\u793a\u6b64\u984c\u865f\u662f\u4f4d\u65bc\u5168\u90e8\u4e09\u5e74\u7d1a \u4e2d\u7b2c 1752 \u865f\u984c\u76ee(\u6b64\u7de8\u865f\u70ba\u6b64\u984c\u5728\u539f\u59cb\u984c\u5eab\u7684\u4f4d\u7f6e\uff0c\u4ee5\u4fbf\u5c0d\u6bd4\u539f\u59cb\u8cc7\u6599\u4f5c\u6821\u5c0d) \u3002 \u5728 XML \u6a94\u6848\u4e2d\uff0c\u6bcf\u4e00\u500b\u984c\u76ee\u5747\u5305\u542b\u4e86\"\u4e3b\u5e79\"\u3001 \"\u554f\u53e5\"\u3001\u548c\"\u7b54\u6848\"\u90e8\u5206(\u6211\u5011\u5728\u5169 \u7aef\u5206\u5225\u7d66\u4e88\"Body\"\u3001\"Question\"\u548c\"Answer\"\u7684\u6a19\u7c64) (\u5982\u5716\u56db(a)\u6240\u793a) \u3002\u5982 3.2 \u7bc0\u6240\u8ff0\uff0c \u6bcf\u4e00\u500b\u554f\u53e5\u548c\u4e00\u500b\u7b54\u6848\u70ba\u4e00\u7d44\u3002\u56e0\u6b64\u6bcf\u4e00\u7d44\u554f\u53e5\u548c\u7b54\u6848\u7686\u6709\u4e00\u500b\u7de8\u865f(QA idx\uff0c\u5982\u5716\u56db (b)\u6240\u793a) \uff0c\u76ee\u7684\u5728\u65bc\u6c42\u89e3\u591a\u91cd\u554f\u53e5\u984c\u76ee\u6642\uff0c\u80fd\u53c3\u8003\u5148\u524d\u554f\u7b54\u6240\u63d0\u4f9b\u7684\u89e3\u984c\u8a0a\u606f\uff0c\u4ee5\u6c42\u89e3 \u4e0b\u4e00\u500b\u554f\u7b54\u3002\u4ee5\u5716\u56db(b)\u70ba\u4f8b\uff0c\u53ef\u7531\u7b2c\u4e00\u500b\u554f\u53e5\u7684\u6c42\u89e3\u904e\u7a0b(77\u00f79\uff1d8 \u9918 5)\u4f86\u7372\u5f97\u7b2c\u4e8c \u500b\u554f\u53e5(\"\u5269\u4e0b\u5e7e\u516c\u5206\uff1f\")\u7684\u7b54\u6848(\u5373\"5 \u516c\u5206\")\u3002 \u6bcf\u4e00\u500b\u984c\u76ee\u9664\u5305\u542b\"\u4e3b\u5e79\"\u90e8\u5206\u548c\"\u554f\u53e5\"\u90e8\u5206\u5916\uff0c\u9084\u6a19\u8a3b\u4e86\u4ee5\u4e0b\u8a0a\u606f\uff1a(1)\u7b54\u6848\u7684\u55ae \u4f4d\uff0c(2)\u6982\u6578\u548c\u5206\u6578\u554f\u984c\u7684\u6a19\u8a3b\u3002\u9019\u5169\u9805\u7684\u6a19\u8a3b\u5de5\u4f5c\uff0c\u6211\u5011\u4ecd\u7136\u5229\u7528 Microsoft Office Excel \u548c\u6587\u5b57\u7de8\u8f2f\u5668\u5de5\u5177\u4f86\u5e6b\u52a9\u5b8c\u6210\u3002\u5177\u9ad4\u5167\u5bb9\u8a73\u8ff0\u5982\u4e0b\u3002"
},
"TABREF0": {
"content": "<table><tr><td>\u5167\u5bb9\uff0c\u6211\u5011\u50c5\u50c5\u6e05\u9664\u4e86\u7121\u95dc\u89e3\u984c\u7684\u5783\u573e\u7b26\u865f\uff0c\u4e26\u4e0d\u589e\u522a\u539f\u59cb\u5167\u5bb9\uff0c\u4ee5\u5b8c\u6574\u5448\u73fe\u6587\u5b57\u6558\u8ff0 \u4f9d\u5b58\u7d50\u69cb[10]\u3001\u7247\u8a9e\u7d50\u69cb[11]\u3001\u8a9e\u7bc7 (Discourse) [12]\u3001\u5171\u540c\u6307\u7a31\u95dc\u4fc2 (Coreference Relations) \u7d1a\u5206\u5225\u5efa\u7acb(\u975e\u4e0d\u5206\u5e74\u7d1a\u6df7\u5728\u4e00\u8d77) \uff0c\u5305\u542b\u6240\u6709\u6578\u5b78\u554f\u984c(\u53ea\u904e\u6ffe\u6389\u90a3\u4e9b\u7d14\u6578\u5b57\u554f\u984c) \uff0c \u7b2c\u56db\uff0c\u96a8\u8457\u5404\u500b\u5e74\u7d1a\u4e0d\u540c\uff0c\u6578\u5b78\u6587\u5b57\u554f\u984c\u7684\u96e3\u6613\u7a0b\u5ea6\u4e5f\u4e0d\u76f8\u540c\u3002\u6211\u5011\u4e0d\u61c9\u5c07\u4ed6\u5011\u6df7 \u4e9b\u662f\u5229\u7528\u6587\u5b57\u8868\u793a(\u4f8b\u5982\uff1a\u662f\u975e\u984c\u3001\u9078\u64c7\u984c\u3001\u61c9\u7528\u984c\u3001\u586b\u7a7a\u984c\u7b49\u7b49) \uff0c\u6709\u4e9b\u5247\u4ee5\u6578\u5b78\u7b26</td></tr><tr><td>\u4e4b\u539f\u8c8c\u3002\u6b64\u5916\uff0c\u6211\u5011\u9084\u52a0\u8a3b\u4e86\u984d\u5916\u7684\u8a0a\u606f\uff0c\u4e26\u5728\u90e8\u5206\u984c\u76ee\u4e0a\u6a19\u8a3b\u984c\u578b\u548c\u8a9e\u8a00\u5206\u6790\uff0c\u4ee5\u52a9 [13]\u3001\u548c\u8ff0\u8a9e\u53c3\u6578(Predicate-Argument)[13, 14]\u7b49\u3002\u7136\u800c\u6578\u5b78\u6587\u5b57\u554f\u984c\u6587\u672c\u7684\u7279\u6027\uff0c\u8207 \u4e26\u4e14\u8a3b\u8a18\u6559\u80b2\u90e8\u9812\u5e03\u7684\u80fd\u529b\u6307\u6a19\u6240\u5c0d\u61c9\u7684\u6578\u5b78\u4e3b\u984c\u3002\u53e6\u5916\uff0c\u70ba\u4e86\u8b93\u6211\u5011\u7684\u8cc7\u6599\u4e0d\u5931\u771f\uff0c \u5408\u800c\u4e0d\u52a0\u5206\u8fa8\uff0c\u800c\u61c9\u5206\u5225\u6a19\u8a18\u5176\u5c0d\u61c9\u7684\u5404\u500b\u5e74\u7d1a\uff0c\u4ee5\u4fbf\u77e5\u9053\u5404\u500b\u89e3\u984c\u7cfb\u7d71\u5230\u9054\u4f55\u7a2e\u7a0b\u5ea6\u3002 \u865f\u6216\u8a08\u7b97\u5f0f\u7684\u65b9\u5f0f\u5448\u73fe(\u4f8b\u5982\uff1a\u8a08\u7b97\u984c) \uff0c\u53e6\u5916\u9084\u6709\u4ee5\u5716\u6848\u8868\u9054\u3001\u4f5c\u7b54\u4e4b\u65b9\u5f0f(\u4f8b\u5982\uff1a</td></tr><tr><td>\u7814\u7a76\u8005\u77ad\u89e3\u6578\u5b78\u6587\u5b57\u554f\u984c\u4e4b\u7279\u6027\u53ca\u5efa\u7acb\u6a21\u578b\u3002 \u5176\u4ed6\u9818\u57df\u7684\u6587\u672c\u7279\u6027\u4e26\u4e0d\u76f8\u540c(\u5982\u542b\u6709\u76f8\u7576\u591a\u7684\u96f6\u6307\u4ee3(Zero Anaphora)\u7b49) \uff0c\u800c\u4e14\u9700 \u6211\u5011\u4e0d\u5c0d\u4efb\u4f55\u6587\u53e5\u4f5c\u589e\u522a\u3002\u56e0\u6b64\u672c\u8a9e\u6599\u5eab\u4e26\u975e\u91dd\u5c0d\u67d0\u4e00\u500b\u7279\u5b9a\u89e3\u984c\u7cfb\u7d71\u6240\u69cb\u5efa\uff0c\u53ef\u9069\u7528 \u914d\u5408\u984c\u3001\u756b\u756b\u770b\u3001\u91cf\u91cf\u770b\u3001\u770b\u5716\u505a\u505a\u770b\u7b49\u7b49) \uff0c\u4e0d\u52dd\u679a\u8209\u3002\u672c\u8a9e\u6599\u5eab\u50c5\u53d6\u51fa\u4ee5\u6587\u5b57\u8868\u793a \u7b2c\u4e94\uff0c\u570b\u5c0f\u6578\u5b78\u6587\u5b57\u554f\u984c\u61c9\u5305\u62ec\u6240\u6709\u51fa\u73fe\u7684\u6578\u5b78\u904b\u7b97\u984c\u578b\u3002\u800c\u4e14\u6bcf\u500b\u6578\u5b78\u554f\u984c\u61c9\u6a19 \u8981\u984d\u5916\u7684\u5e74\u7d1a\u5206\u985e\u3001\u6578\u5b78\u4e3b\u984c\u3001\u6240\u9700\u6578\u5b78\u904b\u7b97\u53ca\u7b54\u6848\u7b49\u5176\u4ed6\u975e\u8a9e\u8a00\u5b78\u7684\u6a19\u8a3b\u3002\u56e0\u6b64\u82e5\u8981 \u65bc\u4efb\u4f55\u5c0f\u5b78\u6578\u5b78\u6587\u5b57\u554f\u984c\u6c42\u89e3\u5668\u4e4b\u7814\u767c\u3002\u6700\u5f8c\uff0c\u6211\u5011\u9084\u5728\u90e8\u5206\u984c\u76ee\u4e0a\u6a19\u8a3b\u5c0d\u61c9\u7684\u8a9e\u8a00\u5206 \u7684\u6578\u5b78\u984c\u76ee\u4f5c\u70ba\u6211\u5011\u7684\u8a9e\u6599\u3002\u8868\u4e00\u986f\u793a\u4e09\u7a2e\u4e0d\u540c\u7684\u984c\u76ee\u985e\u578b\u539f\u59cb\u8cc7\u6599\u7684\u5448\u73fe\u65b9\u5f0f\u3002 \u672c\u8a9e\u6599\u5eab\u662f\u7b2c\u4e00\u500b\u5b8c\u6574\u7684\u4e2d\u6587\u570b\u5c0f\u6578\u5b78\u6587\u5b57\u554f\u984c\u8a9e\u6599\u5eab\u3002\u4f9d\u5404\u500b\u5e74\u7d1a\u5206\u985e\uff0c\u542b\u6709\u6578 \u7a2e\u88dc\u5145\u8cc7\u8a0a\uff0c\u4fbf\u65bc\u8a55\u4f30\u5404\u89e3\u984c\u7cfb\u7d71\u7684\u89e3\u984c\u80fd\u529b\uff1b\u4ea6\u53ef\u8b93\u4f7f\u7528\u8005\u6309\u500b\u5225\u61c9\u7528\u9700\u6c42\uff0c\u5851\u9020\u4e0d \u5efa\u7acb\u4e00\u500b\u6578\u5b78\u6587\u5b57\u554f\u984c\u89e3\u984c\u7cfb\u7d71\uff0c\u6709\u5fc5\u8981\u69cb\u5efa\u4e00\u500b\u5c0d\u61c9\u7684\u6578\u5b78\u6587\u5b57\u554f\u984c\u8a9e\u6599\u5eab\u3002 \u8a3b\u5176\u6240\u5c6c\u7684\u4e3b\u984c(\u5982\u6642\u9593\u3001\u7a7a\u9593\u7b49)\u53ca\u7b54\u6848\uff0c\u4ee5\u65b9\u4fbf\u5728\u7814\u767c\u89e3\u984c\u7cfb\u7d71\u6642\uff0c\u53ef\u4ee5\u660e\u78ba\u77e5\u9053 \u6790\uff0c\u4ee5\u4f9b\u8a2d\u8a08\u767c\u5c55\u7cfb\u7d71\u7684\u4eba\u4f5c\u70ba\u53c3\u8003\u3002 \u8868\u4e00\u3001\u4e09\u7a2e\u7279\u5b9a\u984c\u578b\u7684\u539f\u59cb\u984c\u76ee\u8cc7\u6599 \u7cfb\u7d71\u7684\u7f3a\u6f0f\u4e26\u80fd\u81ea\u52d5\u8a55\u4f30\u6b63\u78ba\u7387\u3002 \u7b2c\u516d\uff0c\u81f3\u5c11\u5728\u90e8\u5206\u6578\u5b78\u554f\u984c\u4e0a\uff0c\u61c9\u6a19\u8a3b\u984c\u76ee\u4e2d\u7684\u8a9e\u8a00 \u540c\u7d44\u614b\u7684\u7279\u6b8a\u8a9e\u6599\u5eab\uff0c\u5c07\u6709\u52a9\u65bc\u5f9e\u4e8b\u76f8\u95dc\u7814\u7a76\u8005\u4e4b\u5de5\u4f5c\u3002 \u76ee\u524d\u570b\u969b\u4e0a\u5df2\u6709\u6578\u500b\u82f1\u6587\u6578\u5b78\u6587\u5b57\u554f\u984c\u984c\u5eab[2, 5-6, 32-34]\u53ef\u4f9b\u89e3\u984c\u7cfb\u7d71\u6bd4\u8f03\u3002\u5b83\u5011 \u4e3b\u8981\u662f\u5f9e\u7f8e\u570b\u6578\u5b78\u8ad6\u58c7\u7db2\u7ad9\uff0c\u6293\u53d6\u7279\u5b9a\u7684\u6578\u5b78\u984c\u76ee\u3002\u7136\u800c\u5b83\u5011\u53ea\u6db5\u84cb\u5c11\u6578\u6578\u5b78\u904b\u7b97\u5b50 (\u5373 \u672c\u8ad6\u6587\u5176\u9918\u90e8\u5206\u7684\u5b89\u6392\u5982\u4e0b\uff1a\u7b2c\u4e8c\u7ae0\uff0c\u63ed\u793a\u4e00\u500b\u7406\u60f3\u7684\u6578\u5b78\u6587\u5b57\u554f\u984c\u8a9e\u6599\u5eab\u8a72\u5982\u4f55 \u69cb\u5efa\uff1b\u7b2c\u4e09\u7ae0\uff0c\u6558\u8ff0\u5efa\u69cb\u8a9e\u6599\u5eab\u7684\u904e\u7a0b\u53ca\u5de5\u4f5c\uff1b\u7136\u5f8c\u5728\u7b2c\u56db\u7ae0\u8a0e\u8ad6\u6211\u5011\u5728\u5efa\u69cb\u8a9e\u6599\u5eab\u6642\uff0c \u5b78\u73fe\u8c61(\u4f8b\u5982\uff1a\u53e5\u6cd5\u5206\u6790\u3001\u6307 \u984c\u578b \u6587\u5b57\u984c\u76ee</td></tr><tr><td>\u52a0\u6cd5\uff0c\u6e1b\u6cd5\uff0c\u4e58\u6cd5\uff0c\u9664\u6cd5\u548c\u4ee3\u6578\u65b9\u7a0b) \uff0c\u4e26\u4e14\u522a\u9664\u8d85\u904e\u4ed6\u5011\u7cfb\u7d71\u89e3\u984c\u80fd\u529b\u7684\u984c\u76ee(\u6216\u5c0d \u6240\u9047\u5230\u7684\u554f\u984c\u548c\u6240\u5b78\u5230\u7684\u7d93\u9a57\uff1b\u7b2c\u4e94\u7ae0\uff0c\u56de\u9867\u76f8\u95dc\u7684\u7814\u7a76\u5de5\u4f5c\uff1b\u6700\u5f8c\uff0c\u7d50\u8ad6\u5c07\u64b0\u5beb\u5728\u7b2c \u4ee3\u3001\u860a\u6db5\u3001\u6307\u7a31\u7b49)\u53ca\u6240\u5c0d\u61c9\u7684\u6578\u5b78\u904b\u7b97\u5f0f\uff0c\u4ee5\u65b9\u4fbf\u5728\u7814\u767c\u89e3\u984c\u7cfb\u7d71\u6642\uff0c\u7814\u7a76\u8005\u53ef\u4ee5\u64da \u9078\u64c7\u984c 1 \u96bb\u8718\u86db\u6709 8 \u96bb\u8173\uff0c8 \u96bb\u8718\u86db\u5171\u6709\u5e7e\u96bb\u8173\uff1f(\u246042 \u96bb\u246164 \u96bb\u246274 \u96bb)</td></tr><tr><td>\u95dc\u9375\u8a5e\uff1a\u6578\u5b78\u6587\u5b57\u554f\u984c\uff0c\u8a9e\u6599\u5eab\uff0c\u6a19\u8a3b \u984c\u76ee\u5167\u5bb9\u52a0\u4ee5\u4eba\u70ba\u4fee\u6539\uff0c\u4ee5\u6eff\u8db3\u7cfb\u7d71\u8981\u6c42) \u3002\u6b64\u5916\uff0c\u4e5f\u6c92\u6709\u5c0d\u6578\u5b78\u984c\u76ee\u505a\u5e74\u7d1a\u5206\u5c64\u3002\u6700 \u516d\u7ae0\u3002 \u4ee5\u5206\u6790\u5efa\u6a21\uff0c\u4e26\u53ef\u57f7\u884c\u534a\u6559\u5c0e\u5f0f\u5b78\u7fd2(Semi-supervised Learning) \u3002 \u82e5\u4e00\u500b\u6578\u5b78\u6587\u5b57\u554f\u984c \u61c9\u7528\u984c 6 \u5305\u7cd6\u679c\u8ce3 186 \u5143\uff0c10 \u5305\u7cd6\u679c\u8ce3\u5e7e\u5143\uff1f</td></tr><tr><td>1. \u7dd2\u8ad6 \u5f8c\uff0c\u984c\u5eab\u4e0a\u6c92\u6709\u6a19\u8a3b\u4efb\u4f55\u8a9e\u8a00\u5b78\u8cc7\u8a0a(\u56e0\u6b64\u7121\u6cd5\u53c3\u7167\u5c0d\u61c9\u7684\u8a9e\u8a00\u5206\u6790) \u3002\u4f8b\u5982\uff0cKushman \u586b\u7a7a\u984c \u91cf\u89d2\u5668\u4e2d\u5f9e\u523b\u5ea6 0 \u7684\u7dda\u65cb\u8f49\u5230\u523b\u5ea6 20 \u7684\u7dda\uff0c\u6240\u5f62\u6210\u7684\u89d2\u662f()\u5ea6\u3002 \u8a9e\u6599\u5eab\uff0c\u80fd\u6eff\u8db3\u4e0a\u8ff0\u6240\u5217\u7684\u516d\u500b\u689d\u4ef6\uff0c\u5c31\u53ef\u7528\u4f86\u6e05\u695a\u7684\u8a55\u4f30\u89e3 \u7b49\u4eba[5]\u50c5\u50c5\u6293\u53d6\u4ee3\u6578\u6587\u5b57\u554f\u984c\u7684\u984c\u76ee\uff1b\u800c Hosseini \u7b49\u4eba[2]\u4e5f\u53ea\u662f\u622a\u53d6\u51fa\u7d44\u5408\u52a0\u6cd5\u3001\u6e1b \u6cd5\u3001\u4e00\u5143\u4e00\u6b21\u65b9\u7a0b\u548c\u7f8e\u5143\u6587\u5b57\u554f\u984c\u3002\u6700\u8fd1\uff0cRoy \u7b49\u4eba[6]\u5247\u662f\u767c\u4f48\u76f8\u5c0d\u8f03\u5927\u7684\u8a9e\u6599\u5eab\u3002\u4ed6 \u5728\u8868\u4e00\u6240\u793a\u7684\u9078\u64c7\u984c\u8207\u586b\u7a7a\u984c\u7576\u4e2d\uff0c\u901a\u5e38\u542b\u6709\u975e\u6587\u5b57\u3001\u6578\u5b57\u7b49\u8207\u89e3\u984c\u7121\u95dc\u7684\u7b26\u865f\uff0c 2. \u7406\u60f3\u6578\u5b78\u6587\u5b57\u554f\u984c\u8a9e\u6599\u5eab\u7684\u7279\u6027 \u984c\u7cfb\u7d71\u7684\u771f\u6b63\u7a0b\u5ea6(\u4e26\u53ef\u8207\u570b\u5c0f\u5404\u500b\u5e74\u7d1a\u5c0d\u61c9) \u3001\u516c\u5e73\u6bd4\u8f03\u4e0d\u540c\u7cfb\u7d71\u7684\u89e3\u984c\u80fd\u529b\u3001\u4e26\u660e \u56e0\u6b64\u6211\u5011\u5fc5\u9808\u505a\u4e9b\u4fee\u6b63\u3002\u4f8b\u5982\uff1a\u5c07\u9078\u64c7\u984c\u9078\u9805\u90e8\u5206\u522a\u9664\u3001\u628a\u586b\u7a7a\u984c\u62ec\u865f\u6539\u70ba\u570b\u5b57\"\u5e7e\"\uff0c</td></tr><tr><td>\u6c42\u89e3\u6578\u5b78\u6587\u5b57\u554f\u984c(Math Word Problem)[1-4]\uff0c\u57fa\u65bc\u4ee5\u4e0b\u7684\u539f\u56e0[3, 4]\u5e38\u88ab\u9078\u4f5c\u7814\u7a76\u81ea\u7136\u8a9e \u8a00\u7406\u89e3\u7684\u6e2c\u8a66\u6848\u4f8b\uff1a(1) \u6578\u5b78\u6587\u5b57\u554f\u984c\u7684\u7b54\u6848\uff0c\u7121\u6cd5\u55ae\u7d14\u5730\u85c9\u7531\u5be6\u884c\u95dc\u9375\u5b57\u6216\u7279\u5fb5\u914d\u5c0d \u88ab\u64f7\u53d6(\u5982\u50b3\u7d71\u7684\u554f\u7b54(Q&amp;A)\u7cfb\u7d71) \uff0c\u56e0\u6b64\u53ef\u4ee5\u6e05\u695a\u5730\u986f\u793a\u51fa\u7406\u89e3\u548c\u63a8\u7406\u7684\u512a\u52e2\u3002(2) \u8207\u5176\u4ed6\u9818\u57df\u76f8\u6bd4\uff0c\u6578\u5b78\u6587\u5b57\u554f\u984c\u901a\u5e38\u4e0d\u5177\u6709\u90a3\u9ebc\u8907\u96dc\u7684\u8a9e\u6cd5(\u5982\u4eba\u6587\u793e\u6703\u9818\u57df) \uff0c\u4e26\u50c5 \u5011\u5728\u984c\u76ee\u4e2d\u589e\u52a0\u4e86\u9700\u8981\u5169\u500b\u4ee5\u4e0a\u904b\u7b97\u5b50(Multi-step)\u7684\u7b97\u8853\u554f\u984c\uff0c\u4f46\u522a\u53bb\u4e86\u9700\u8981\u80cc\u666f \u77e5\u8b58\u7684\u554f\u984c\u3002\u6b64\u5916\uff0c\u6982\u6578\u554f\u984c\u4e5f\u4e00\u4f75\u88ab\u522a\u6389\u3002Upadhyay \u548c Chang[32]\u3001Koncel-Kedziorski \u7b49\u4eba[33]\u3001Huang \u7b49\u4eba[34]\u96d6\u7136\u5229\u7528\u722c\u87f2\u7a0b\u5f0f(Crawler)\u6216\u81ea\u52d5\u62bd\u53d6\u7a0b\u5f0f\u500b\u5225\u5efa\u7acb\u4e86\u5927 \u578b(1,000 \u984c\u30013,320 \u984c\u548c 18,000 \u984c)\u7684\u591a\u6a23\u6027\u6578\u5b78\u6587\u5b57\u554f\u984c\u984c\u5eab\uff0c\u66f4\u63a1\u7528\u6700\u4f73\u5316\u6f14\u7b97 \u78ba\u6307\u51fa\u5404\u7cfb\u7d71\u7684\u504f\u9817\u53ca\u7f3a\u5931\u3002\u6b64\u5916\uff0c\u82e5\u6709\u500b\u5225\u7684\u61c9\u7528\u6216\u898f\u683c\uff0c\u4ea6\u80fd\u8b93\u7814\u767c\u4eba\u54e1\u6309\u5176\u5404\u81ea \u4e26\u5c07\u53e5\u865f\u63db\u4e0a\u554f\u865f\u800c\u6210\u70ba\u554f\u53e5\uff0c\u5982\u4e0b\u8868\u6240\u793a\u3002 \u5728\u8a2d\u8a08\u69cb\u5efa\u4e00\u500b\u6578\u5b78\u6587\u5b57\u554f\u984c\u8a9e\u6599\u5eab\u4e4b\u524d\uff0c\u6211\u5011\u5fc5\u9808\u5148\u78ba\u7acb\u4e00\u4e9b\u6e96\u5247\uff0c\u4ee5\u4fbf\u5728\u5404\u7a2e\u8a2d\u8a08 \u9700\u6c42\uff0c\u7d44\u5408\u51fa\u5c0d\u61c9\u7684\u6aa2\u7d22\u689d\u4ef6\uff0c\u5f9e\u5b8c\u6574\u7684\u8a9e\u6599\u5eab\u4e2d\u62bd\u53d6\u51fa\u4e0d\u540c\u7d44\u614b\u7684\u7279\u6b8a\u8a9e\u6599\u5eab\uff0c\u4fbf\u65bc \u9078\u9805\u4e0a\uff0c\u80fd\u6709\u6240\u53d6\u6368\u3002\u7531\u65bc\u6c42\u89e3\u6578\u5b78\u6587\u5b57\u554f\u984c\u662f\u81ea\u7136\u8a9e\u8a00\u7406\u89e3\u5728\u4eba\u5de5\u667a\u6167\u4e0a\u9762\u7684\u61c9\u7528\uff0c \u8868\u4e8c\u3001\u8655\u7406\u5f8c\u7684\u6578\u5b78\u6587\u5b57\u8cc7\u6599 \u4f9b\u5404\u7814\u7a76\u7cfb\u7d71\u4f86\u8a55\u91cf\u81ea\u5df1\u7684\u6548\u80fd\u3002\u4f8b\u5982\uff1a\u53ef\u6309\u5e74\u7d1a\u5206\u5c64\u3001\u4f9d\u4e3b\u984c\u5206\u985e\u3001\u4f9d\u6578\u5b78\u984c\u578b\u5206\u985e\u3001 \u56e0\u6b64\u4e00\u500b\u7406\u60f3\u7684\u6578\u5b78\u6587\u5b57\u554f\u984c\u8a9e\u6599\u5eab\uff0c\u6211\u5011\u8a8d\u70ba\u61c9\u8a72\u5177\u5099\u4e0b\u5217\u7279\u6027(\u800c\u524d\u8ff0\u7684\u82f1\u6587\u6578\u5b78 \u6587\u5b57\u554f\u984c\u984c\u5eab\uff0c\u90fd\u6216\u591a\u6216\u5c11\u9055\u53cd\u9019\u4e9b\u539f\u5247) \u3002 \u6216\u7d44\u5408\u4e0a\u8ff0\u689d\u4ef6\u7b49\u3002 \u984c\u578b \u6587\u5b57\u984c\u76ee</td></tr><tr><td>\u9700\u8981\u5c11\u91cf\u7684\u9818\u57df\u77e5\u8b58(\u8207\u7269\u7406\u5316\u5b78\u9818\u57df\u76f8\u8f03) \uff0c\u56e0\u6b64\u7814\u7a76\u4eba\u54e1\u53ef\u4ee5\u8457\u91cd\u65bc\u81ea\u7136\u8a9e\u8a00\u7406\u89e3 \u548c\u63a8\u7406\u7684\u4efb\u52d9\u4e0a\u3002(3) \u6578\u5b78\u6587\u5b57\u554f\u984c\u7684\"\u4e3b\u5e79\"\u90e8\u5206(\u5373\u63cf\u8ff0\u554f\u984c\u7d66\u5b9a\u8cc7\u8a0a\u7684\u90e8\u5206) \uff0c\u901a\u5e38 \u6cd5\u964d\u4f4e\u5927\u91cf\u65b9\u7a0b\u5f0f\u6a23\u677f\u548c\u8fad\u5f59\u7684\u91cd\u8907\u7387[33]\uff0c\u53ef\u60dc\u90fd\u9084\u662f\u4ee5\u7dda\u6027\u4ee3\u6578\u554f\u984c\u70ba\u4e3b\uff0c\u800c\u6839\u672c \u5ffd\u7565\u90a3\u4e9b\u7dda\u6027\u4ee3\u6578\u4ee5\u5916\u7684\u6578\u5b78\u554f\u984c\u3002 \u7b2c\u4e00\uff0c\u5b83\u61c9\u5305\u542b\u5404\u7a2e\u81ea\u7136\u8a9e\u8a00\u7684\u63cf\u8ff0\u65b9\u5f0f(\u56e0\u70ba\u6c42\u89e3\u7cfb\u7d71\u61c9\u8a72\u5177\u5099\u76f8\u7576\u7684\u81ea\u7136\u8a9e\u8a00 \u9078\u64c7\u984c 1 \u96bb\u8718\u86db\u6709 8 \u96bb\u8173\uff0c8 \u96bb\u8718\u86db\u5171\u6709\u5e7e\u96bb\u8173\uff1f 3. \u8a9e\u6599\u5eab\u69cb\u5efa \u586b\u7a7a\u984c \u91cf\u89d2\u5668\u4e2d\u5f9e\u523b\u5ea6 0 \u7684\u7dda\u65cb\u8f49\u5230\u523b\u5ea6 20 \u7684\u7dda\uff0c\u6240\u5f62\u6210\u7684\u89d2\u662f\u5e7e\u5ea6\uff1f</td></tr><tr><td>\u53ea\u7531\u5c11\u6578\u53e5\u5b50\u7d44\u6210\uff0c\u56e0\u6b64\u7406\u89e3\u548c\u63a8\u7406\u904e\u7a0b\u80fd\u88ab\u7a0b\u5f0f\u5feb\u901f\u57f7\u884c\uff0c\u52a0\u901f\u7814\u767c\u9032\u7a0b\u3002(4) \u6578\u5b78 \u6587\u5b57\u554f\u984c\u6c42\u89e3\u5668\u6709\u5be6\u969b\u7684\u61c9\u7528\uff0c\u5982\u5c0f\u5b78\u6578\u5b78\u5bb6\u6559\uff0c\u548c\u751f\u6d3b\u6578\u5b78\u52a9\u624b\u7b49\u3002 \u5728 2014 \u5e74\u4ee5\u524d\uff0c\u5927\u591a\u6578\u63d0\u51fa\u7684\u65b9\u6cd5\u90fd\u662f\u57fa\u65bc\u898f\u5247(Rule-based)\u7684[1-2, 35-37]\uff0c\u4e5f \u7406\u89e3\u80fd\u529b) \u3002\u56e0\u6b64\u6211\u5011\u4e0d\u61c9\u5c0d\u984c\u76ee\u8868\u9054\u65b9\u5f0f\u52a0\u4ee5\u4eba\u70ba\u4fee\u6539(\u5373\u4eba\u5de5\u7c21\u5316\u53e5\u578b) \uff0c\u800c\u61c9\u5b8c\u6574 \u672c\u7ae0\u7bc0\u5b89\u6392\u5982\u4e0b\uff1a3.1 \u7bc0\u63d0\u53ca\u539f\u59cb\u984c\u5eab\u7684\u4f86\u6e90\u8207\u7d44\u6210\uff1b\u7136\u5f8c\u6211\u5011\u5728 3.2 \u7bc0\u8a0e\u8ad6\u8a9e\u6599\u5eab\u9810 \u81f3\u4eca\u96d6\u7136\u6709\u5c11\u6578\u7814\u7a76\u4e2d\u6587\u6578\u5b78\u6587\u5b57\u554f\u984c\u7684\u8ad6\u6587\u767c\u8868[35-37]\uff0c\u4f46\u64da\u6211\u5011\u6240\u77e5\uff0c\u9084\u6c92\u6709 \u4fdd\u7559\u6240\u6709\u6578\u5b78\u6587\u5b57\u554f\u984c\u7684\u73fe\u5b58\u578b\u5f0f(\u9664\u4e86\u6e05\u9664\u4e82\u78bc\u53ca\u5783\u573e\u8cc7\u8a0a\u5916) \uff0c\u4ee5\u4fbf\u516c\u5e73\u6bd4\u8f03\u4e0d\u540c \u8655\u7406\u7684\u7a0b\u5e8f\uff1b3.3 \u7bc0\u63ed\u793a\u6a19\u8a3b\u6578\u5b78\u8a9e\u6599\u5eab\u7684\u904e\u7a0b\uff1b\u6700\u5f8c\uff0c3.4 \u7bc0\u5c07\u6558\u8ff0\u5c0d\u8a9e\u6599\u5eab\u6240\u505a\u7684\u7d71 \u4efb\u4f55\u516c\u958b\u3001\u53ef\u4f9b\u7814\u7a76\u4f7f\u7528\u7684\u4e2d\u6587\u6578\u5b78\u6587\u5b57\u554f\u984c\u8a9e\u6599\u5eab\uff0c\u56e0\u6b64\u6211\u5011\u69cb\u5efa\u4e86\u7b2c\u4e00\u500b\u4e2d\u6587\u570b\u5c0f \u6578\u5b78\u6587\u5b57\u554f\u984c\u8a9e\u6599\u5eab\u3002\u5efa\u7acb\u9019\u500b\u8a9e\u6599\u5eab\u7684\u76ee\u7684\uff0c\u662f\u8981\u63d0\u4f9b\u8a9e\u6599\u5eab\u4ee5\u7814\u7a76\u6578\u5b78\u6587\u5b57\u554f\u984c\u6587 \u89e3\u984c\u7cfb\u7d71\u7684\u81ea\u7136\u8a9e\u8a00\u7406\u89e3\u80fd\u529b\u3002 \u8a08\u5206\u6790\u3002</td></tr><tr><td>\u5c31\u662f\u4ee5\u4eba\u5de5\u5efa\u69cb\u7684\u898f\u5247\u505a\u5404\u7a2e\u76f8\u95dc\u6c7a\u7b56\u7684\u5224\u65b7\u3002\u4f46\u69cb\u5efa\u4e00\u500b\u9ad8\u6db5\u84cb\u5ea6(Coverage Rate) \u672c\u7684\u7279\u6027\uff0c\u4ee5\u4fbf\u627e\u51fa\u8cbc\u5207\u7684\u7279\u5fb5\u3001\u63d0\u51fa\u5408\u9069\u7684\u67b6\u69cb\u548c\u6a21\u578b\uff0c\u4e26\u63d0\u4f9b\u7d71\u8a08\u5206\u985e\u5668\u6240\u9700\u8981\u7684 \u7b2c\u4e8c\uff0c\u6c42\u89e3\u6578\u5b78\u6587\u5b57\u554f\u984c\u662f\u4eba\u5de5\u667a\u6167\u7684\u61c9\u7528\u3002\u56e0\u6b64\u4e00\u500b\u89e3\u984c\u7cfb\u7d71\u61c9\u5177\u5099\u8655\u7406\u666e\u901a\u5e38 3.1 \u539f\u59cb\u984c\u5eab</td></tr><tr><td>\u6458\u8981 \u672c\u7bc7\u8ad6\u6587\u63d0\u51fa\u4e86\u4e00\u500b\u7406\u60f3\u6578\u5b78\u6587\u5b57\u554f\u984c\u8a9e\u6599\u5eab\u6240\u61c9\u5177\u5099\u7684\u7279\u6027\uff0c\u4e26\u6558\u8ff0\u6211\u5011\u5982\u4f55\u5efa\u7f6e\u4e00 \u500b\u5b8c\u5584\u7684\u4e2d\u6587\u570b\u5c0f\u6578\u5b78\u6587\u5b57\u554f\u984c\u8a9e\u6599\u5eab\uff1a\u5176\u904e\u7a0b\u3001\u6240\u6a19\u8a3b\u7684\u5167\u5bb9\u3001\u4ee5\u53ca\u906d\u9047\u7684\u56f0\u96e3\u3002\u6c42 \u89e3\u6578\u5b78\u6587\u5b57\u554f\u984c\u662f\u81ea\u7136\u8a9e\u8a00\u7406\u89e3\u5728\u4eba\u5de5\u667a\u6167\u9818\u57df\u7684\u4e00\u500b\u5e38\u898b\u61c9\u7528\u3002\u8fd1\u5e74\u4f86\u6709\u95dc\u65bc\u82f1\u6587\u6578 \u7684\u898f\u5247\u96c6\uff0c\u662f\u76f8\u7576\u56f0\u96e3\u4e14\u6240\u8cbb\u4e0d\u8cb2\u7684\u5de5\u4f5c\u3002\u6b64\u5916\uff0c\u5728\u6c42\u89e3\u6b67\u7570\u554f\u984c\u4e0a\u4e5f\u986f\u5f97\u7b28\u62d9\u3002\u56e0\u6b64 \u8fd1\u4f86\u5927\u90e8\u5206\u63d0\u51fa\u7684\u65b9\u6cd5[3-7]\u90fd\u662f\u57fa\u65bc\u7d71\u8a08(Statistic-based)\u7684\uff0c\u4e5f\u5c31\u662f\u5176\u4e2d\u4e00\u4e9b(\u6216\u5168 \u80fd\u8a13\u7df4\u6a21\u578b\u3002\u56e0\u70ba\u76ee\u524d\u6578\u5b78\u6587\u5b57\u554f\u984c\u6c42\u89e3\u5668\u4ee5\u5c0f\u5b78\u7a0b\u5ea6\u70ba\u4e3b\uff0c\u6240\u4ee5\u6211\u5011\u5fc5\u9808\u5148\u69cb\u5efa\u4e00\u500b \u8207\u524d\u8ff0\u7684\u82f1\u6587\u6578\u5b78\u6587\u5b57\u554f\u984c\u984c\u5eab[2, 5-6, 32-34]\u76f8\u6bd4\uff0c\u6211\u5011\u7684\u6578\u5b78\u6587\u5b57\u554f\u984c\u8a9e\u6599\u5eab\u662f \u95b1 3.3.1 \u7bc0\u8868\u4e09)\u53ca\u9700\u8981\u5169\u500b\u4ee5\u4e0a\u904b\u7b97\u5b50(Multi-step operation)\u7684\u7b97\u8853\u554f\u984c\u3002\u6211\u5011\u4e0d\u61c9 \u6b64\u8cc7\u6599\u5167\u5bb9\u9664\u4e86\u984c\u76ee\u8207\u984c\u865f\u4e4b\u5916\uff0c\u4e5f\u9644\u6709\u76f8\u5c0d\u61c9\u7684\u5b78\u671f\u5e74\u7d1a\u3001\u984c\u578b\u3001\u6559\u80b2\u90e8\u8a02\u5b9a\u7684\u80fd\u529b \u570b\u5c0f\u6578\u5b78\u6587\u5b57\u554f\u984c\u8a9e\u6599\u5eab\uff0c\u4ee5\u4fbf\u5f9e\u4e8b\u76f8\u95dc\u7684\u7814\u7a76\u3002 \u5b78\u6216\u63d0\u4f9b\u7d66\u5b78\u751f\u7df4\u7fd2\u3002\u5176\u4e2d\u5305\u542b\u570b\u8a9e\u3001\u6578\u5b78\u3001\u793e\u6703\u3001\u81ea\u7136\u3001\u751f\u6d3b\u3001\u5065\u5eb7\u9ad4\u80b2\u7b49\u79d1\u76ee\uff0c\u800c \u7b2c\u4e09\uff0c\u5373\u4f7f\u662f\u570b\u5c0f\u6578\u5b78\u6587\u5b57\u554f\u984c\uff0c\u5b83\u5011\u5df2\u7d93\u6db5\u84cb\u5341\u516d\u7a2e\u4e0d\u540c\u7684\u6578\u5b78\u904b\u7b97\u984c\u578b(\u8acb\u53c3 \u6240\u6709\u7684\u570b\u5c0f\u6578\u5b78\u985e\u578b\u4e26\u4e88\u4ee5\u5206\u7d1a\uff0c\u4e26\u4e14\u5728\u90e8\u5206\u984c\u76ee\u4e0a\u6a19\u8a3b\u8a9e\u8a00\u5b78\u8cc7\u8a0a\u3002 Access(.mdb)\u548c Microsoft Office Word(.doc)\u6a94\u6848) \uff0c\u4ee5\u65b9\u4fbf\u4efb\u8ab2\u6559\u5e2b\u81ea\u7531\u53d6\u6750\uff0c\u505a\u8f14\u52a9\u6559 \u90e8)\u7684\u76f8\u95dc\u6c7a\u7b56\u662f\u900f\u904e\u7d71\u8a08\u5206\u985e\u9032\u884c\u7684\u3002\u4f46\u7d71\u8a08\u5206\u985e\u5668\u9700\u8981\u5148\u6709\u4e00\u500b\u76f8\u95dc\u7684\u8a13\u7df4\u96c6\uff0c\u624d \u8b58\u7684\u80fd\u529b\u3002\u70ba\u4e86\u5fe0\u5be6\u7684\u53cd\u6620\u5404\u500b\u89e3\u984c\u7cfb\u7d71\u4e4b\u8868\u73fe\uff0c\u6211\u5011\u4e0d\u61c9\u522a\u6e1b\u9700\u8981\u80cc\u666f\u77e5\u8b58\u7684\u554f\u984c (\u6216 \u8a13\u7df4\u6578\u64da\u3002\u53e6\u4e00\u65b9\u9762\uff0c\u5efa\u7acb\u9019\u6a23\u4e00\u500b\u6a19\u8a3b\u904e\u7684\u8a9e\u6599\u5eab\uff0c\u5c07\u7c21\u5316\u5176\u4ed6\u7814\u7a76\u8005\u5728\u6578\u5b78\u6587\u5b57\u554f \u984c\u4e0a\u5f80\u5f8c\u7684\u7814\u7a76\u5de5\u4f5c\u3002\u6b64\u5916\uff0c\u85c9\u7531\u4f7f\u7528\u9019\u500b\u8a9e\u6599\u5eab\uff0c\u6211\u5011\u53ef\u4ee5\u8a55\u4f30\u7cfb\u7d71\u9054\u5230\u600e\u9ebc\u6a23\u7684\u7a0b \u5ea6\u3002\u6700\u5f8c\uff0c\u70ba\u4e86\u514b\u670d\u4e0a\u8ff0\u7684\u73fe\u6709\u82f1\u6587\u6578\u5b78\u6587\u5b57\u554f\u984c\u984c\u5eab\u7f3a\u9677\uff0c\u9019\u500b\u65b0\u7684\u8a9e\u6599\u5eab\u61c9\u8a72\u5305\u542b \u6211\u5011\u6240\u62ff\u5230\u7684\u570b\u5c0f\u6578\u5b78\u6587\u5b57\u554f\u984c\u539f\u59cb\u984c\u5eab\uff0c\u662f\u7531\u53f0\u7063\u4e09\u500b\u570b\u5c0f\u6559\u79d1\u66f8\u548c\u53c3\u8003\u66f8\u7684\u51fa\u7248\u793e (a) \u6587\u672c\u4e2d\u5783\u573e\u7b26\u865f (b) \u539f\u59cb\u984c\u76ee\u7bc4\u4f8b \u5c0d\u984c\u76ee\u5167\u5bb9\u52a0\u4ee5\u4eba\u70ba\u4fee\u6539) \uff0c\u800c\u61c9\u5b8c\u6574\u4fdd\u7559\u6240\u6709\u7684\u6b64\u985e\u6578\u5b78\u6587\u5b57\u554f\u984c\uff0c\u4ee5\u4fbf\u8861\u91cf\u4e0d\u540c\u89e3 \u984c\u7cfb\u7d71\u5728\u4eba\u5de5\u667a\u6167\u7684\u63a8\u8ad6\u80fd\u529b\u3002 \u6240\u63d0\u4f9b\u3002\u9019\u4e9b\u8cc7\u6599\u90fd\u5c01\u88dd\u6210\u96fb\u5b50\u66f8\u8edf\u9ad4\u3001\u6216\u4ee5\u96fb\u8166\u6a94\u6848\u578b\u614b\u5448\u73fe(\u5982 Microsoft Office \u5716\u4e00\u3001\u539f\u59cb\u6587\u672c\u4e2d\u7684\u7b26\u865f\u554f\u984c</td></tr><tr><td>\u5b78\u6587\u5b57\u554f\u984c\u7684\u7814\u7a76\uff0c\u90fd\u662f\u4ee5\u6a5f\u5668\u5b78\u7fd2\u7684\u65b9\u6cd5\u70ba\u4e3b\u3002\u4f46\u4e0d\u8ad6\u662f\u57f7\u884c\u6a5f\u5668\u5b78\u7fd2\uff0c\u6216\u6bd4\u8f03\u4e0d\u540c \u5728\u904e\u53bb\u6709\u8a31\u591a\u6a19\u8a3b\u6216\u672a\u6a19\u8a3b\u7684\u8a9e\u6599\u5eab\u88ab\u5efa\u7acb\u3002\u4f46\u5176\u6587\u672c\u64da\u6211\u5011\u6240\u77e5\uff0c\u90fd\u6c92\u6709\u91dd\u5c0d\u6578 \u53d6\u81ea\u4e09\u500b\u53f0\u7063\u51fa\u7248\u793e\u984c\u5eab(\u975e\u5f9e\u6578\u5b78\u8ad6\u58c7\u7db2\u7ad9\u6293\u53d6\u7279\u5b9a\u7684\u6578\u5b78\u984c\u76ee) \uff0c\u4f9d\u64da\u570b\u5c0f\u5b78\u751f\u5e74 \u91dd\u5c0d\u4efb\u4e00\u7cfb\u7d71\u522a\u6e1b\u6389\u8d85\u904e\u4ed6\u5011\u89e3\u984c\u80fd\u529b\u7684\u984c\u76ee\uff0c\u800c\u61c9\u5b8c\u6574\u4fdd\u7559\u6240\u6709\u51fa\u73fe\u7684\u6578\u5b78\u6587\u5b57\u554f \u6307\u6a19\u3001\u984c\u76ee\u96e3\u6613\u5ea6\uff0c\u4ee5\u53ca\u8a66\u984c\u5c6c\u6027\u7b49\u3002</td></tr><tr><td>\u7684\u89e3\u984c\u7cfb\u7d71\uff0c\u90fd\u9700\u8981\u4e00\u500b\u5b8c\u5584\u7684\u8a9e\u6599\u5eab\u3002\u76ee\u524d\u570b\u969b\u4e0a\u96d6\u7136\u5df2\u6709\u6578\u500b\u516c\u958b\u7684\u82f1\u6587\u6578\u5b78\u6587\u5b57 \u554f\u984c\u984c\u5eab\uff0c\u4f46\u4ed6\u5011\u6240\u6536\u9304\u7684\u6578\u5b78\u984c\u5eab\u591a\u504f\u9817\u65bc\u81ea\u5bb6\u89e3\u984c\u7cfb\u7d71\u7684\u7279\u6027\uff0c\u96e3\u4ee5\u516c\u5e73\u8a55\u4f30\u5404\u7cfb \u984c\uff0c\u4ee5\u4fbf\u6e2c\u8a66\u89e3\u984c\u7cfb\u7d71\u7684\u771f\u6b63\u7a0b\u5ea6\uff0c\u4e26\u80fd\u516c\u5e73\u6bd4\u8f03\u4e0d\u540c\u7cfb\u7d71\u7684\u89e3\u984c\u80fd\u529b\u3002 \u5b78\u6587\u5b57\u554f\u984c\u7684\uff1b\u800c\u4e14\u5b83\u5011\u5927\u90e8\u5206\u8457\u91cd\u5728\u6a19\u8a3b\u8a9e\u8a00\u5b78\u77e5\u8b58\uff0c\u5982\u5256\u6790\u6a39[8]\u3001\u8a9e\u610f\u89d2\u8272[9]\u3001 \u6b64\u4e09\u5bb6\u51fa\u7248\u793e\u7684\u539f\u59cb\u6578\u5b78\u984c\u76ee\u8cc7\u6599\u4e2d\uff0c\u5305\u542b\u4e86\u8a31\u591a\u985e\u578b(\u6307\u984c\u76ee\u5448\u73fe\u7684\u65b9\u5f0f) \uff0c\u6709</td></tr><tr><td>\u7d71\u7684\u771f\u5be6\u6027\u80fd\u3002\u800c\u5728\u4e2d\u6587\u65b9\u9762\uff0c\u8fc4\u4eca\u5c1a\u7121\u4efb\u4f55\u4e00\u500b\u516c\u958b\u7684\u6578\u5b78\u6587\u5b57\u554f\u984c\u984c\u5eab\u53ef\u8cc7\u4f7f\u7528\u3002</td></tr><tr><td>\u70ba\u4e86\u80fd\u6709\u4e00\u500b\u53ef\u4f9b\u7814\u7a76\u4f7f\u7528\u7684\u6578\u5b78\u6587\u5b57\u554f\u984c\u8a9e\u6599\u5eab\uff0c\u4e26\u4fee\u6b63\u524d\u8ff0\u82f1\u6587\u984c\u5eab\u4e4b\u7f3a\u5931\uff0c</td></tr><tr><td>\u6211\u5011\u5efa\u7acb\u4e86\u4e00\u500b\u9817\u5177\u898f\u6a21\u7684\u4e2d\u6587\u570b\u5c0f\u6578\u5b78\u6587\u5b57\u554f\u984c\u8a9e\u6599\u5eab\u3002\u6b64\u8a9e\u6599\u5eab\u539f\u59cb\u8cc7\u6599\u662f\u7531\u53f0\u7063</td></tr><tr><td>\u4e09\u500b\u570b\u5c0f\u6559\u79d1\u66f8\u53ca\u53c3\u8003\u66f8\u7684\u51fa\u7248\u793e\u6240\u6388\u6b0a\u63d0\u4f9b\u3002\u70ba\u5b8c\u6574\u63d0\u4f9b\u6240\u6709\u7684\u6578\u5b78\u6587\u5b57\u554f\u984c\u984c\u578b\u53ca</td></tr></table>",
"html": null,
"text": "The 2016 Conference on Computational Linguistics and Speech Processing ROCLING 2016, pp. 352-371 \uf0d3 The Association for Computational Linguistics and Chinese Language Processing",
"num": null,
"type_str": "table"
},
"TABREF1": {
"content": "<table><tr><td>\u8aaa\u660e\uff0c\u5982\"(\u5148\u7528\u56db\u6368\u4e94\u5165\u6cd5...)\"\u7b49\u3002\u53e6\u5916\uff0c\u6211\u5011\u5728\u6bcf\u500b\u5206\u6578\u984c\u76ee\u4e4b\u5f8c\uff0c\u4e5f\u52a0\u5165\"(\u8acb\u7528 \u5e36\u5206\u6578\u8868\u793a\u7b54\u6848)\"\u4f5c\u70ba\u984c\u76ee\u7684\u88dc\u5145\u8cc7\u8a0a\u3002\u6b64\u90e8\u5206\u6a19\u8a3b\u5de5\u4f5c\u4e5f\u4ee5\u6587\u5b57\u7de8\u8f2f\u5668\u5de5\u5177\u641c\u5c0b\u5305 \u542b\u95dc\u9375\u5b57\u5f59(\u5982\"\u5927\u7d04\"\u3001\"\u7d04\"\u3001\"*\u5206\u4e4b*\"\u7b49)\u7684\u984c\u76ee\uff0c\u518d\u7531\u4eba\u5de5\u65b9\u5f0f\u6a19\u8a3b\uff0c\u5982\u4e0b\u5716\u6240\u793a\u3002 (a)\u6982\u6578\u554f\u984c (b)\u5206\u6578\u554f\u984c \u53ef\u4ee5\u5f88\u65b9\u4fbf\u7684\u9032\u884c\u8a9e\u7fa9\u7d50\u5408\u7684\u64cd\u4f5c\u8207\u8868\u9054\u3002\u73fe\u968e\u6bb5\u6211\u5011\u7684\u8a9e\u7fa9\u7d50\u5408\u50c5\u5448\u73fe\u6578\u91cf\u8a5e\u7684\u7d50 \u5728\u53e6\u4e00\u65b9\u9762\uff0c\u8868\u4e03\u986f\u793a\u8a5e\u6027\u6a19\u8a3b\u7684\u5206\u6790\u7d50\u679c\u3002\u5728\"\u4e3b\u5e79\"\u90e8\u5206\u7684\u8a5e\u6027\u6bd4\u4f8b\u6392\u5e8f\u524d\u4e94\u540d \u70ba\u6700\u591a\uff0c\u5176\u9918\u6578\u91cf\u5247\u4f4e\u65bc 10%\uff1b\u5728\u7d44\u5408\u6307\u6a19\u65b9\u9762(\u5982\u8868\u516b(b) \u6240\u793a) \uff0c\u4e3b\u8981\u4ee5\"\u6578\u8207\u91cf+ \u7d71\u4e4b\u771f\u6b63\u80fd\u529b\u3002\u76f8\u53cd\u5730\uff0c\u6211\u5011\u7684\u4e2d\u6587\u6578\u5b78\u8a9e\u6599\u5eab\u537b\u662f\u4f9d\u5404\u500b\u5e74\u7d1a\u5206\u985e\uff0c\u4e14\u4e0d\u505a\u4efb\u4f55\u589e\u6e1b\uff0c \u8868\u56db\u3001\u4e2d\u6587\u6578\u5b78\u8a9e\u6599\u5eab\u7d71\u8a08 \u4f9d\u5e8f\u662f\u666e\u901a\u540d\u8a5e(Na)\u4f54 29%\u3001\u6578\u8a5e\u5b9a\u8a5e(Neu)\u4f54 26.1%\u3001\u5c08\u6709\u540d\u8a5e(Nb)\u4f54 13.3%\u3001\u52d5\u4f5c\u53ca \u4ee3\u6578\"(13.25%)\u8f03\u591a\uff0c\u8868\u793a\u6b64\u6578\u5b78\u8a9e\u6599\u8457\u91cd\u65bc\u5efa\u7acb\u570b\u5c0f\u6578\u5b78\u7684\u57fa\u672c\u6982\u5ff5\u548c\u57fa\u790e\u904b\u7b97\uff0c\u4f46 \u56e0\u6b64\u53ef\u4ee5\u5145\u5206\u8a55\u6e2c\u3001\u6bd4\u8f03\u4e0d\u540c\u7684\u7cfb\u7d71\u3002 \u5408\uff0c\u5982 \"2 \"weight={\u516c\u65a4}\"\u4ee5\u53ca \"2\"\u7684\u5b9a\u7fa9\u5f0f: \"quantity={2}\"\u9032\u884c\u8a9e\u7fa9\u7d50\u5408\u5f8c\u7684\u7d50\u679c\u3002 \u5728\u6578\u5b78\u6587 \u5b57\u984c\u7684\u8a9e\u610f\u8868\u9054\u4e2d\uff0c\u6578\u8a5e\u8207\u91cf\u8a5e\u662f\u5f88\u91cd\u8981\u7684\u74b0\u7bc0\uff0c\u6703\u5f71\u97ff\u5f8c\u7e8c\u89e3\u984c\u8207\u63a8 \u8ad6\u3002\u6578\u8a5e\u7684\u503c(\u5305\u542b\u963f\u62c9\u4f2f\u6578\u5b57\u3001\u570b\u5b57\u6216\u5169\u8005\u6df7\u5408\u7684\u6578\u8a5e)\u6709\u6574\u6578\u3001\u5c0f\u6578\u3001\u5206\u6578\u548c\u7591\u554f \u8a5e\u7b49\u5f62\u5f0f\uff0c\u5982\u5716\u516d\u7684\u300c\u5e7e\u5206\u4e4b\u5e7e\u300ddef: quantity={Ques|\u7591\u554f/Ques|\u7591\u554f}\u4fbf\u662f\u7591\u554f\u8a5e\u8207\u5206 \u6578\u7d50\u5408\u7684\u8868\u9054\u65b9\u5f0f\u3002\u800c\u4e2d\u6587\u88e1\u591a\u5143\u800c\u8c50\u5bcc\u7684\u91cf\u8a5e\u8a9e\u7fa9\u985e\u578b[30]\u8207\u6578\u8a5e\u7684\u7d50\u5408\u4e5f\u6703\u5f62\u6210\u8a9e \u8a9e\u6599\u5eab \u96c6\u5408 \u5404\u5e74\u7d1a\u984c\u76ee\u6578\u91cf \u4e00\u5e74\u7d1a \u4e8c\u5e74\u7d1a \u4e09\u5e74\u7d1a \u56db\u5e74\u7d1a \u4e94\u5e74\u7d1a \u516d\u5e74\u7d1a \u5408\u8a08 \u8a13\u7df4\u96c6 1,380 3,042 4,610 3,738 3,462 3,861 20,093 \u7269\u52d5\u8a5e(VC)\u4f54 6.3%\uff0c\u800c\u5730\u65b9\u8a5e(Nc)\u4f54 5.5%\uff0c\u5176\u4ed6\u96f6\u661f\u8a5e\u985e\u6bd4\u4f8b\u4f54 19.8%\uff1b\u5728\"\u554f\u53e5\"\u90e8 \u7a7a\u9593\u5e7e\u4f55\u3001\u4ee3\u6578\u3001\u7d71\u8a08\u6a5f\u7387\u7b49\u9032\u968e\u985e\u5225\u5247\u8f03\u5c11\u3002 6. \u7d50\u8ad6 \u5206\u5247\u4ee5\u666e\u901a\u540d\u8a5e(Na)\u4f54 41.2%\u70ba\u6700\u591a\uff0c\u5176\u6b21\u4f9d\u5e8f\u662f\u5c08\u6709\u540d\u8a5e(Nb)\u4f54 11.8%\u3001\u52d5\u4f5c\u53ca\u7269\u52d5 \u8a5e(VC)\u4f54 8.7%\u3001\u6578\u8a5e\u5b9a\u8a5e(Neu)\u4f54 7.6%\u3001\u5730\u65b9\u8a5e(Nc)\u4f54 5.2%\uff0c\u800c\u5176\u4ed6\u96f6\u661f\u8a5e\u985e\u5247\u4f54 4. \u8a0e\u8ad6 \u7e3d\u62ec\u4f86\u8aaa\uff0c\u6211\u5011\u6240\u5efa\u7acb\u7684\u4e2d\u6587\u570b\u5c0f\u6578\u5b78\u6587\u5b57\u554f\u984c\u8a9e\u6599\u5eab\uff0c\u4e43\u5b8c\u6574\u53d6\u6750\u81ea\u51fa\u7248\u793e\u6578\u5b78\u984c\u5eab \u767c\u5c55\u96c6 200 300 300 300 300 300 1,700 \u6e2c\u8a66\u96c6 200 300 300 300 300 25.5%\u3002\u7531\u65bc\u984c\u76ee\u4e2d\u6240\u6709\u89e3\u984c\u8cc7\u8a0a(\u542b\u591a\u6578\u540d\u8a5e\u3001\u6578\u8a5e\u3001\u52d5\u4f5c\u53ca\u7269\u52d5\u8a5e)\u7686\u7531\"\u4e3b\u5e79\"\u63d0 \u5728\u8655\u7406\u6578\u5b78\u8a9e\u6599\u5eab\u7684\u5404\u968e\u6bb5\u4efb\u52d9\u4e2d\uff0c\u6211\u5011\u9047\u5230\u4e00\u4e9b\u4e0d\u540c\u7684\u554f\u984c\uff1a\u5305\u62ec\u4e86\u984c\u76ee\u5207\u5272\u3001\u6a19\u8a3b \u4e2d\u7684\u6587\u5b57\u554f\u984c\uff0c\u4e26\u4e14\u6309\u7167\u5e74\u7d1a\u5206\u5c64\u5c07\u6bcf\u984c(\u5305\u542b\u5207\u5272\u984c\u76ee\u70ba\"\u4e3b\u5e79\"\u548c\"\u554f\u53e5\"\u5169\u90e8\u5206)\u8f49 300 1,700 \u4f9b\uff0c\u800c\"\u554f\u53e5\"\u4e3b\u8981\u5728\u8a62\u554f\u55ae\u4e00\u540d\u8a5e\u7684\u6578\u91cf\uff0c\u56e0\u6b64\"\u4e3b\u5e79\"\u7684\u8a5e\u985e\u4ee5\u666e\u901a\u540d\u8a5e\u3001\u6578\u8a5e\u5b9a\u8a5e\u6700 \u55ae\u4f4d\uff0c\u4ee5\u53ca\u65b7\u8a5e\u932f\u8aa4\u7b49\u65b9\u9762\u3002\u9996\u5148\uff0c\u7576\u6211\u5011\u57f7\u884c\u5728 3.2 \u7bc0\u4e2d\u6240\u63d0\u5207\u5272\u4e3b\u5e79\u53ca\u554f\u53e5\u7684\u539f\u5247 \u6210\u89e3\u984c\u7cfb\u7d71\u5bb9\u6613\u4f7f\u7528\u7684\u683c\u5f0f\u3002\u4e0d\u50c5\u5982\u6b64\uff0c\u6211\u5011\u9084\u5728\u984c\u76ee\u4e2d\u6dfb\u52a0\u7b54\u6848\u55ae\u4f4d\u3001\u5206\u6578\u8207\u6982\u6578\u984c \u5408\u8a08 1,780 3,642 5,210 4,338 4,062 4,461 23,493 \u591a\uff0c\u4f46\"\u554f\u53e5\"\u5247\u4ee5\u666e\u901a\u540d\u8a5e\u6700\u591a\uff0c\u800c\u6578\u8a5e\u5b9a\u8a5e\u504f\u5c11\u3002 (\u5373\"\u554f\u53e5\"\u4e3b\u8981\u662f\u4ecb\u65bc\u554f\u865f\u4e4b\u524d\u8207\u6700\u5f8c\u4e00\u500b\u9017\u865f\u4e4b\u5f8c)\u5f8c\uff0c\u767c\u73fe\u5927\u90e8\u5206\u984c\u76ee\u90fd\u80fd\u6b63\u78ba\u5730 \u7684\u88dc\u5145\u8a0a\u606f\u3001\u53ca\u6559\u80b2\u90e8\u6307\u6a19\u5206\u985e\uff1b\u4e26\u65bc\u5c11\u90e8\u5206\u8a9e\u6599\u4e2d\u6a19\u8a3b\u5341\u516d\u7a2e\u984c\u76ee\u985e\u578b\u548c\u8a9e\u8a00\u5b78\u73fe\u8c61 \u610f\u7684\u5dee\u5225\u3002\u6211\u5011\u5c07\u6578\u91cf\u8907\u5408\u8a5e\u4fee\u98fe\u540d\u8a5e\u7684\u8a9e\u610f\u52a0\u4ee5\u6b63\u898f\u5316\uff0c\u7d66\u4e88\u4e00\u81f4\u6027\u7684\u8868\u9054\u65b9\u5f0f\uff0c\u4ee5 \u8868\u4e03\u3001\u4e2d\u6587\u6578\u5b78\u8a9e\u6599\u5eab\u8a5e\u6027\u6a19\u8a3b\u7d71\u8a08\u8868 \u88ab\u5207\u5272\u958b\u4f86\uff0c\u4f46\u6709\u6975\u5c11\u6578\u7684\u984c\u76ee\u4e26\u4e0d\u4e00\u5b9a\u9069\u7528(\u5982\"[\u5c0f\u7389\u548c\u5bb6\u4eba\u4e00\u8d77\u53bb\u722c\u5c71\uff0c\u4e0a\u5c71\u82b1\u4e86 (\u53e5\u6cd5\u5206\u6790\u3001\u6307\u4ee3\u3001\u860a\u6db5\u3001\u6307\u7a31\u7b49) \uff0c\u4f7f\u7814\u7a76\u8005\u53ef\u4ee5\u77ad\u89e3\u6578\u5b78\u6587\u5b57\u554f\u984c\u7684\u6587\u672c\u7279\u6027\uff0c\u4e26 \u5229\u6578\u5b78\u8a08\u7b97\u6216\u5728\u4e0d\u540c\u91cf\u8a5e\u55ae\u4f4d\u4e2d\u8f49\u63db\u3002\u4e0b\u8ff0\u70ba\u5e7e\u500b\u6578\u91cf\u8907\u5408\u8a5e\u7684\u4f8b\u5b50\uff1a \u8868\u4e94\u3001\u4e2d\u6587\u6578\u5b78\u984c\u76ee\u7684\u5e73\u5747\u9577\u5ea6 145 \u5206\uff0c\u4e0b\u5c71\u82b1\u4e86 2 \u6642 18 \u5206\uff0c\u4e0a\u5c71\u82b1\u7684\u6642\u9593\u6bd4\u8f03\u9577\uff0c][\u9084\u662f\u4e0b\u5c71\u82b1\u7684\u6642\u9593\u6bd4\u8f03\u9577\uff1f]\")\u3002 \u53ef\u8b93\u89e3\u984c\u7cfb\u7d71\u6e2c\u8a66\u6a21\u578b\u53ca\u57f7\u884c\u534a\u6559\u5c0e\u5f0f\u5b78\u7fd2\u3002 \u5716\u4e94\u3001\u6982\u6578\u8207\u5206\u6578\u7684\u984c\u76ee\u6a19\u8a3b 3.3.1 \u984c\u578b\u53ca\u8a9e\u8a00\u5b78\u6a19\u8a3b \u70ba\u4e86\u77ad\u89e3\u6587\u672c\u7684\u6027\u8cea\u3001\u57f7\u884c\u534a\u6559\u5c0e\u5f0f\u5b78\u7fd2(Semi-supervised Learning)\u53ca\u6e2c\u8a66\u6a21\u578b\uff0c\u9664 \u4e86\u5c0d\u6bcf\u4e00\u500b\u984c\u76ee\u52a0\u8a3b\u57fa\u672c\u8cc7\u8a0a\u5916(\u5982\u4e0a\u7bc0\u6240\u8ff0) \uff0c\u6211\u5011\u9084\u5f9e\u8a9e\u6599\u5eab\u7576\u4e2d\u9078\u64c7\u82e5\u5e72\u984c\u76ee\u9032 \u884c\u6578\u5b78\u984c\u578b\u53ca\u8a9e\u8a00\u5b78\u6a19\u8a3b(\u56e0\u8a9e\u6599\u5eab\u6a19\u8a3b\u975e\u5e38\u8017\u6642\u8017\u529b\uff0c\u6545\u672c\u7814\u7a76\u50c5\u6a19\u8a18 75 \u984c\u8a13\u7df4\u8a9e \u6599\u3001200 \u984c\u767c\u5c55\u96c6\u8a9e\u6599\u53ca 200 \u984c\u6e2c\u8a66\u8a9e\u6599)\u4f5c\u70ba\u5148\u5c0e\u7814\u7a76(Pilot Study)\u4e4b\u7528\uff0c\u4ee5\u671f\u5e6b \u5716\u516d\u3001\u570b\u5c0f\u6578\u5b78\u8a9e\u6599\u7684\u8a9e\u610f\u8868\u9054\u6a19\u8a18 \u8868\u4e09\u986f\u793a\u6240\u6a19\u8a3b\u7684\u5341\u516d\u7a2e\u6578\u5b78\u984c\u578b(\u4ee5\u6578\u5b78\u89e3\u984c\u65b9\u5f0f\u5206\u985e\uff0c\u800c\u975e\u4ee5\u6578\u64da\u5f62\u5f0f\u5206\u985e\uff1b \u4e26\u4f9d\u5404\u984c\u578b\u5728\u8a13\u7df4\u96c6\u4e2d\u7684\u767e\u5206\u6bd4\u6392\u5e8f) \u3002\u56e0\u540c\u984c\u4e2d\u53ef\u80fd\u6709\u591a\u500b\u554f\u53e5\uff0c\u56e0\u6b64 75 \u984c\u8a13\u7df4\u96c6\u88ab 1 \u9846\u86cb def:{\u86cb|egg: quantifier={\u9846.null|\u7121\u7fa9: quantity={1}}} 1 \u76d2\u86cb def:{\u86cb|egg: \u76d2.container={\u76d2\u5b50|box: quantity={1}}} 1 \u6253\u86cb def:{\u86cb|egg: \u6253.quantity={12: quantity={1}}} 1 \u516c\u65a4\u86cb def:{\u86cb|egg: \u516c\u65a4.weight={\u516c\u65a4: quantity={1}}} \u6211\u5011\u4f9d\u7167\u91cf\u8a5e\u4e0d\u540c\u7684\u8a9e\u7fa9\u5167\u6db5\uff0c\u7d66\u4e88\u4e0d\u540c\u7684\u5ee3\u7fa9\u77e5\u7db2\u8a5e\u5f59\u5b9a\u7fa9\uff0c\u800c\u6578\u8a5e\u548c\u91cf\u8a5e\u7d50\u5408 \u5f8c\u7684\u6578\u91cf\u8a5e\u8a9e\u610f\u8868\u9054\u65b9\u5f0f[31]\u57fa\u672c\u4e0a\u8207\u529f\u80fd\u8a5e\u76f8\u540c\uff0c\u7686\u4ee5 relation={value} \u5f62\u5f0f\u51fa\u73fe\u3002 \u4e0d\u540c\u7684\u91cf\u8a5e\u55ae\u4f4d\u5e36\u4f86\u4e0d\u540c\u7684\u8a9e\u7fa9\uff0c\u5728\u6578\u5b78\u6587\u5b57\u984c\u4e2d\u66f4\u653e\u5927\u5b83\u7684\u7279\u6b8a\u6027\uff0c\u4e8b\u7269\u5fc5\u9808\u80fd\u5920\u5728 \u984c\u76ee\u7684 \u5169\u90e8\u5206 \u5e73\u5747\u4e2d\u6587\u5b57\u6578 (Char.) \u5e73\u5747\u4e2d\u6587\u8a5e\u6578 (Word) \u8a5e\u985e \u4e3b\u5e79 \u554f\u53e5 \u666e\u901a\u540d\u8a5e(Na) 29.0% 41.2% \u6578\u8a5e\u5b9a\u8a5e(Neu) 26.1% 7.6% \u518d\u8005\uff0c\u5728\"\u4e3b\u5e79\"\u90e8\u5206\u4ee5\u641c\u5c0b\u95dc\u9375\u5b57\"\u5927\u7d04\"\u3001 \"*\u5206\u4e4b*\"\u4f86\u67e5\u627e\u6982\u6578\u3001\u5206\u6578\u984c\u76ee\u662f\u4e0d\u5bb9\u6613 \u672c\u8a9e\u6599\u5eab\u662f\u7b2c\u4e00\u500b\u5b8c\u6574\u7684\u4e2d\u6587\u570b\u5c0f\u6578\u5b78\u6587\u5b57\u554f\u984c\u7684\u8a9e\u6599\u5eab\uff0c\u53ef\u7528\u4f86\u6e05\u695a\u7684\u8a55\u4f30\u89e3\u984c \u7684\uff0c\u53cd\u800c\u5fc5\u9808\u85c9\u7531\"\u554f\u53e5\"\u6240\u8981\u6c42\u7b54\u6848\u7684\u6558\u8ff0(\u5982\"\u5927\u7d04\"\u3001\"\u7d04\"\u3001\"*\u5206\u4e4b*\"\u7b49) \uff0c\u624d\u5f97\u4ee5\u627e \u7cfb\u7d71\u7684\u771f\u6b63\u7a0b\u5ea6(\u8207\u570b\u5c0f\u5404\u500b\u5e74\u7d1a\u5c0d\u61c9) \u3001\u516c\u5e73\u6bd4\u8f03\u4e0d\u540c\u7cfb\u7d71\u7684\u89e3\u984c\u80fd\u529b\u3001\u4e26\u53ef\u6e05\u695a\u7684 \u5230\u6b64\u985e\u984c\u76ee\u3002\u4ee5\u4e0a\u9019\u4e9b\u554f\u984c\uff0c\u7686\u662f\u85c9\u7531\u4eba\u5de5\u6aa2\u8996\u5f8c\u624d\u4e88\u4ee5\u78ba\u8a8d\u4e26\u4fee\u8a02\u3002 \u53cd\u6620\u51fa\u5404\u7cfb\u7d71\u7684\u504f\u9817\u53ca\u7f3a\u5931\u3002\u6b64\u5916\uff0c\u82e5\u6709\u500b\u5225\u7684\u61c9\u7528\u6216\u898f\u683c\uff0c\u4ea6\u80fd\u8b93\u7814\u767c\u4eba\u54e1\u6309\u5176\u9700\u6c42 \u5c08\u6709\u540d\u8a5e(Nb) 13.3% 11.8% \u4e3b\u5e79 27 18.2 \u554f\u53e5 9.4 \u6700\u5f8c\uff0c\u6211\u5011\u767c\u73fe\u56e0\u70ba\u6578\u5b78\u6587\u5b57\u554f\u984c\u8a9e\u6599\u8207\u7528\u4f86\u767c\u5c55\u65b7\u8a5e\u5de5\u5177\u7684\u901a\u7528\u578b\u8a9e\u6599\u5dee\u7570\u751a \u7d44\u5408\u51fa\u60f3\u8981\u7684\u6aa2\u7d22\uff0c\u4fbf\u65bc\u5851\u9020\u4e0d\u540c\u7d44\u614b\u7684\u7279\u6b8a\u8a9e\u6599\u5eab\u3002 \u52d5\u4f5c\u53ca\u7269\u52d5\u8a5e(VC) 6.3% 8.7% 6.8 \u8a72\u65b7\u8a5e\u5de5\u5177\u6703\u4ee5\u6a19\u9ede\u7b26\u865f\u5c07\u984c\u76ee\u65b7\u958b\u6210\u6578\u500b\u53e5\u5b50\uff0c\u7d93\u904e\u5206\u6790\u5f8c\u767c\u73fe\uff1a\"\u4e3b\u5e79\"\u8207\"\u554f \u5730\u65b9\u8a5e(Nc) 5.5% 5.2% \u5176\u4ed6\u8a5e\u985e 19.8% 25.5% \u5927\uff0c\u800c\u5c0e\u81f4\u5728\u4eba\u540d(\u5982\"[\u5c0f][\u8070]\")\u53ca\u52d5\u8a5e\u7247\u8a9e(\u5982\"[\u62fc\u62fc][\u5716]\")\u5e38\u6709\u65b7\u8a5e\u932f\u8aa4\u7684\u60c5\u5f62\u3002 \u81f4\u8b1d \u56e0\u6b64\u5728\u89e3\u984c\u7cfb\u7d71\u6240\u7528\u7684\u65b7\u8a5e\u5de5\u5177\uff0c\u6709\u5fc5\u8981\u57f7\u884c\u9818\u57df\u8abf\u9069(Domain Adaptation)\u3002 \u52a9\u6a5f\u5668\u5b78\u7fd2\u9032\u884c\u984c\u578b\u5206\u985e\u3002\u5176\u4e2d 200 \u984c\u767c\u5c55\u96c6\u8a9e\u6599\u53ca 200 \u984c\u6e2c\u8a66\u8a9e\u6599\u70ba\u96a8\u6a5f\u62bd\u9078\uff1b\u800c\u70ba \u4e86\u6db5\u84cb\u6bcf\u4e00\u7a2e\u6578\u5b78\u984c\u578b\uff0c75 \u984c\u8a13\u7df4\u8a9e\u6599\u5247\u70ba\u4eba\u5de5\u5f9e\u8a13\u7df4\u96c6\u4e2d\u6bcf\u4e00\u985e\u984c\u578b\u62bd\u5e7e\u984c\u7d44\u6210\u3002 \u8868\u4e09\u3001\u5341\u516d\u7a2e\u984c\u578b\u5206\u4f48\u7d71\u8a08(\u55ae\u4f4d\uff1a\u767e\u5206\u6bd4) \u89e3\u984c\u985e\u578b \u8a13\u7df4\u96c6 \u767c\u5c55\u96c6 \u6e2c\u8a66\u96c6 5%)\u548c\u52a0 \u4e0d\u540c\u91cf\u8a5e\u55ae\u4f4d\u4e2d\u8f49\u63db\u7d50\u5408\u7684\u8a9e\u610f\uff0c\u5f97\u4ee5\u6b63\u78ba\u7684\u7406\u89e3\u6587\u5b57\u984c\u7684\u984c\u5e79\u3002\u8a9e\u6cd5\u7d50\u69cb\u6a19\u8a18\u53ca\u8a9e\u610f \u8868\u9054\u6a19\u8a18\uff0c\u662f\u5148\u7531\u7a0b\u5f0f\u505a\u731c\u6e2c\uff0c\u518d\u7531\u6a19\u8a3b\u4eba\u54e1(\u4ff1\u8a9e\u8a00\u5b78\u5c08\u696d\u80cc\u666f)\u505a\u6aa2\u67e5\u3001\u66f4\u6b63\u3002 \u53e5\"\u53e5\u9577\u70ba 5 \u81f3 8 \u500b\u8a5e\u7684\u53e5\u6578\u6bd4\u4f8b\uff0c\u5206\u5225\u4f54\u53e5\u5b50\u7e3d\u6578(79,822 \u53e5)\u7684 63%\u548c 70%\uff0c\u5176\u4e2d \"\u4e3b\u5e79\"\u4ee5 7 \u500b\u8a5e\u7684\u6bd4\u4f8b\u70ba\u6700\u591a(21.8%) \uff0c\"\u554f\u53e5\"\u4ee5 6 \u500b\u8a5e\u6578\u70ba\u6700\u591a(19.4%) (\u5982\u8868\u516d(a) \u5408\u8a08 100% 100% \u6700\u5f8c\uff0c\u8868\u516b\u986f\u793a\u6559\u80b2\u90e8\u80fd\u529b\u6307\u6a19 4 \u985e\u5225(\u539f\u59cb\u984c\u5eab\u6240\u63d0\u4f9b)\u7684\u5206\u4f48\u60c5\u5f62\u3002\u56e0\u70ba\u4e00\u500b \u672c\u7814\u7a76\u611f\u8b1d\u4e2d\u592e\u7814\u7a76\u9662\u8cc7\u8a0a\u79d1\u5b78\u7814\u7a76\u6240\u8a31\u805e\u5ec9\u6559\u6388\u4e3b\u6301\u4e4b\u667a\u6167\u578b\u4ee3\u7406\u4eba\u7cfb\u7d71\u5be6\u9a57 5. \u76f8\u95dc\u7814\u7a76 \u5ba4\u63d0\u4f9b\u4e26\u6388\u6b0a\u570b\u5c0f\u984c\u5eab\uff0c\u4ee5\u53ca\u611f\u8b1d\u79d1\u6280\u90e8\u300c\u5efa\u7acb\u4e00\u500b\u9818\u57df\u76f8\u95dc\u6a5f\u5668\u95b1\u8b80\u7cfb\u7d71\u4e4b\u63a2\u8a0e\u300d \u6cd5(14.0%)\u6bd4\u4f8b\u6700\u591a\uff0c\u4ee5\u5206\u6578(0.4%)\u8207\u96c6\u5408(0.4%)\u984c\u578b\u6bd4\u4f8b\u6700\u5c11\u3002 \u5c0d\u8a9e\u8a00\u5b78\u7684\u6a19\u8a3b 1 \uff0c\u4e3b\u8981\u5305\u542b\u8a9e\u6cd5\u7d50\u69cb\u6a19\u8a18\u53ca\u8a9e\u610f\u8868\u9054\u6a19\u8a18\u3002\u8a9e\u6cd5\u7d50\u69cb\u6a19\u8a18\u8207\u4e2d\u7814 \u6240\u793a) \u3002\u6b64\u5916\uff0c\u7531\u8868\u516d(b)\u53ef\u898b\uff0c\u4e0d\u8ad6\"\u4e3b\u5e79\"\u6216\"\u554f\u53e5\"\uff0c\u8a5e\u9577\u7686\u4ee5 2 \u500b\u5b57\u6240\u4f54\u7684\u6bd4\u4f8b\u70ba\u6700 \u984c\u76ee\u53ef\u80fd\u5305\u542b\u591a\u7a2e\u80fd\u529b\u6307\u6a19\uff0c\u56e0\u6b64\u5728\u984c\u5eab\u8cc7\u8a0a\u4e2d\u6709\u55ae\u4e00\u985e\u5225(\u4f54\u8a9e\u6599\u5eab 80.90%\u7684\u984c\u76ee) \u5728\u904e\u53bb\u8a9e\u6599\u5eab\u6a19\u8a3b\u65b9\u9762\uff0c\u4e0d\u4e4f\u8457\u91cd\u65bc\u7814\u7a76\u5256\u6790\u6a39[8, 15-18]\u3001\u8a9e\u610f\u89d2\u8272[9, 19-22]\u3001\u4f9d\u5b58\u7d50 (MOST104-2221-E-001-025)\u8a08\u5283\u7d93\u8cbb\u88dc\u52a9\u3002\u6b64\u5916\uff0c\u6211\u5011\u4e5f\u8981\u8b1d\u8b1d\u672c\u6240\u7684\u81ea\u7136\u8a9e\u8a00\u7406\u89e3\u5be6 3.4 \u76f8\u95dc\u7d71\u8a08\u8cc7\u6599 \u591a(50.1%\u8207 64.1%) \uff0c\u8207\u4e00\u822c\u8a9e\u6599\u6240\u898b\u76f8\u540c\u3002 \u8207\u7d44\u5408\u985e\u5225(\u7531\u55ae\u4e00\u985e\u5225\u505a\u7d44\u5408) (\u4f54\u8a9e\u6599\u5eab 19.10%\u7684\u984c\u76ee)\u4e4b\u5206\u3002 \u69cb[10, 23]\u3001\u7247\u8a9e\u7d50\u69cb[11]\uff0c\u6216\u8005\u662f\u8a9e\u7bc7[12]\u3001\u5171\u540c\u6307\u7a31\u95dc\u4fc2[13]\u548c\u8ff0\u8a9e\u53c3\u6578[13, 14]\u7b49\u7b49 \u9a57\u5ba4\u53ca\u8a5e\u5eab\u5c0f\u7d44\u5be6\u9a57\u5ba4\u5176\u4ed6\u53c3\u8207\u7814\u7a76\u548c\u5354\u540c\u6307\u5c0e\u4e4b\u8001\u5e2b\u8207\u76f8\u95dc\u540c\u4ec1\u3002\u6700\u5f8c\uff0c\u6211\u5011\u611f\u8b1d\u6240</td></tr><tr><td>9.\u4ee3\u6578 \u9662\u7684\u4e2d\u6587\u53e5\u7d50\u69cb\u6a39\u8cc7\u6599\u5eab 2 [26, 27]\u6a19\u8a18\u65b9\u5f0f\u4e00\u81f4\uff0c\u542b\u62ec\u8a5e\u985e\u3001\u8a9e\u6cd5\u7d50\u69cb\u548c\u8a9e\u610f\u89d2\u8272\u8a0a\u606f\u3002 3.45 2.8 2.2 1.\u5e7e\u4f55 18.39 6.9 4.8 \u5728\u524d\u4e00\u7bc0\u4e2d\uff0c\u6211\u5011\u5df2\u63d0\u5230\u6240\u6709\u7684\u984c\u76ee\u88ab\u5206\u6210\u516d\u500b\u5e74\u7d1a\uff0c\u4e26\u4e14\u4ee5\u4e82\u6578\u62bd\u53d6\u65b9\u5f0f\u5206\u6210\u4e09\u500b\u96c6 \u8868\u516d\u3001\u4e2d\u6587\u6578\u5b78\u8a9e\u6599\u5eab\u65b7\u8a5e\u7d71\u8a08\u8868 \u8868\u516b\u3001\u6559\u80b2\u90e8\u80fd\u529b\u6307\u6a19\u5206\u985e\u7d71\u8a08\u8868 \u65b9\u9762\uff0c\u537b\u7f3a\u4e4f\u91dd\u5c0d\u6578\u5b78\u6587\u5b57\u554f\u984c\u7684\u8a9e\u6599\u5eab\u3002 \u6709\u533f\u540d\u5be9\u7a3f\u6559\u6388\u7684\u5bf6\u8cb4\u610f\u898b\uff0c\u4ee5\u6539\u5584\u6b64\u8ad6\u6587\u95d5\u6f0f\u4e4b\u8655\u3002</td></tr><tr><td>10.\u52a0\u6cd5 11.\u55ae\u4f4d\u8f49\u63db 12.\u6700\u5c0f\u516c\u500d\u6578 2.30 2.30 2.30 13.\u5dee\u8ddd 1.15 14.\u6700\u5927\u516c\u56e0\u6578 1.15 15.\u96c6\u5408 1.15 16.\u5206\u6578 0 \u800c\u8a9e\u610f\u8868\u9054\u6a19\u8a18\u5247\u5206\u6210\u5169\u90e8\u5206\uff0c\u7b2c\u4e00\u90e8\u5206\u63a1\u7528\u4e2d\u7814\u9662\u53e5\u7d50\u69cb\u6a39\u7684\u8a9e\u7fa9\u89d2\u8272\u4ee5\u53ca\u76f8\u4f9d\u95dc 14.7 14.0 4.1 2.6 0 0.9 0.9 1.3 0.5 0.9 1.4 0.4 0.5 0.4 2.\u4e58\u6cd5 16.09 13.8 21.1 3.\u9664\u6cd5 16.09 18.8 19.3 4.\u7e3d\u5408 14.94 8.3 6.1 5.\u6e1b\u6cd5 8.05 20.6 17.5 6.\u6bd4\u8f03 4.60 2.8 3.5 7.\u9918\u6578 4.60 1.8 2.6 8.\u6bd4/\u6bd4\u4f8b 3.45 2.3 2.2 \u4fc2\uff0c\u4f46\u8f49\u63db\u6210\u5ee3\u7fa9\u77e5\u7db2 3 [28, 29]\u6240\u63a1\u7528\u7684\u7dda\u6027\u8a9e\u610f\u8868\u9054\u5f62\u5f0f\uff0c\u5167\u5bb9\u5305\u542b\u8a9e\u610f\u89d2\u8272\u3001\u8a5e\u5f59 \u8207\u8a5e\u5e8f\uff0c\u5c11\u6578\u4e2d\u5fc3\u8a9e\u7701\u7565\u6703\u5728\u9019\u968e\u6bb5\u88dc\u56de\u3002\u6b64\u5916\uff0c\u8868\u9054\u5f0f\u4e2d\u66f4\u9644\u52a0\u4e86\u5171\u540c\u6307\u7a31\u8a0a\u606f\uff0c\u5728 \u65b9\u62ec\u865f\u5167\u4ee5 x \u8207\u6578\u5b57\u6a19\u8a3b\u5169\u500b\u8a5e\u5f59\u6709\u76f8\u540c\u7684\u6307\u7a31\uff0c\u5982\u5716\u516d\u4e2d\u7b2c\u4e00\u53e5\u77ed\u8a9e\u548c\u7b2c\u4e09\u53e5\u77ed\u8a9e\u51fa \u73fe\u7684\u300c\u8c46\u5b50\u300d\u8207\u7b2c\u4e8c\u53e5\u77ed\u8a9e\u7684\u300c\u5176\u4e2d\u300d\u4e09\u500b\u8a5e\u5f59\u7686\u6307\u7a31\u76f8\u540c\u4e8b\u7269\uff0c\u56e0\u6b64\u4ee5[x1]\u5171\u540c\u6a19\u8a18 \u4e4b\u3002\u7b2c\u4e8c\u90e8\u5206\u5247\u662f\u5c07\u8a5e\u5f59\u7684\u8a9e\u610f\u9075\u7167\u5ee3\u7fa9\u77e5\u7db2\u7684\u8a5e\u5f59\u5b9a\u7fa9\u89e3\u6b67\u5f8c\uff0c\u4f9d\u5e8f\u5206\u5225\u5217\u65bc\u5176\u4e0b\uff1b \u82e5\u8a5e\u5f59\u70ba\u5ee3\u7fa9\u77e5\u7db2\u4e2d\u672a\u51fa\u73fe\u904e\u7684\u672a\u77e5\u8a5e\uff0c\u5247\u6703\u900f\u904e\u8a9e\u7fa9\u731c\u6e2c\u6a21\u7d44\u4f86\u7d66\u4e88\u9069\u7576\u5b9a\u7fa9\u5f0f\u3002\u5982 6 \u4ee5\u4e0a 3.2% 0.1% 8 11.6% 15.1% \u5c0f\u8a08 80.90% \u554f\u984c\u7684\u984c\u5eab\uff0c\u5728\u984c\u76ee\u62bd\u6a23\u4e0a\u7686\u6709\u6240\u504f\u9817\uff0c\u7121\u6cd5\u516c\u5e73\u6bd4\u8f03\u4e0d\u540c\u89e3\u984c\u7cfb\u7d71\u53ca\u53cd\u6620\u5404\u500b\u89e3\u984c\u7cfb \u984c\u76ee\u4e2d\u300c\u67cf\u582f\u300d\u53ef\u81ea\u52d5\u731c\u6e2c\u70ba\u4eba\u540d\uff0c\u4e26\u7d66\u4e88\u5b9a\u7fa9\u5f0f\uff1b\u6b64\u5916\uff0c\u5ee3\u7fa9\u77e5\u7db2\u7684\u8868\u9054\u512a\u52e2\u4e4b\u4e00\u662f \u5408\uff0c\u5176\u4e2d\u8a13\u7df4\u96c6\u6709 20,093 \u984c\uff0c\u767c\u5c55\u96c6\u548c\u6e2c\u8a66\u96c6\u90fd\u5404\u6709 1,700 \u984c(\u5305\u542b\u4e0a\u7bc0\u6240\u8ff0\u4e4b\u5df2\u6a19\u8a3b (a)\u53e5\u9577\u5206\u6790(#79,822 \u53e5) (b)\u8a5e\u9577\u5206\u6790(#608,732 \u8a5e) (a)\u55ae\u4e00\u6307\u6a19\u985e\u5225 (b)\u7d44\u5408\u6307\u6a19\u985e\u5225 \u8fd1\u5e74\u96d6\u7136\u5df2\u6709\u95dc\u65bc\u6578\u5b78\u6587\u5b57\u554f\u984c\u7814\u7a76\u7684\u984c\u5eab\u51fa\u73fe[2, 5-6, 24-25]\uff0c\u4f46\u90fd\u662f\u5f9e\u7db2\u7ad9\u8ad6\u58c7 \u53c3\u8003\u6587\u737b \u7684\u8a9e\u6599\u53ca\u5176\u4ed6\u672a\u6a19\u8a3b\u7684\u8a9e\u6599) \uff0c\u56e0\u6b64\u6211\u5011\u570b\u5c0f\u6578\u5b78\u8a9e\u6599\u5eab\u5408\u8a08\u6709 23,493 \u984c(\u5982\u8868\u56db\u6240 \u793a) \u3002\u5404\u5e74\u7d1a\u984c\u76ee\u6578\u91cf\u4ee5\u4e09\u5e74\u7d1a 5,210 \u984c\u70ba\u6700\u591a\uff0c\u5176\u9918\u4f9d\u5e8f\u70ba\u516d\u5e74\u7d1a 4,461 \u984c\u3001\u56db\u5e74\u7d1a 4,338 \u984c\u3001\u4e94\u5e74\u7d1a 4,062 \u984c\u3001\u4e8c\u5e74\u7d1a 3,642 \u984c\uff0c\u800c\u4ee5\u4e00\u5e74\u7d1a 1,780 \u984c\u70ba\u6700\u5c11\u3002\u8868\u4e94\u986f\u793a\u984c \u76ee\"\u4e3b\u5e79\"\u90e8\u5206\u7684\u5e73\u5747\u9577\u5ea6\u70ba 27 \u500b\u4e2d\u6587\u5b57\u3002\u4f7f\u7528\u4e2d\u7814\u9662\u4e2d\u6587\u8a5e\u5eab\u5c0f\u7d44\u7684\u65b7\u8a5e\u548c\u6a19\u8a5e\u6027\u5de5 5 5.3% 0.6% 7 21.8% 19.0% \u5c0f\u8a08 19.10% \u9023\u7d50 0.40% \u5ea6\u91cd\u758a\u7684\u8fad\u5f59\u8207\u516c\u5f0f\u3002\u63db\u53e5\u8a71\u8aaa\uff0c\u8a31\u591a\u984c\u76ee\u7686\u5927\u540c\u5c0f\u7570\u3002\u7e3d\u800c\u8a00\u4e4b\uff0c\u4e0a\u8ff0\u9019\u4e9b\u6578\u5b78\u6587\u5b57 \u5747\u9577\u5ea6\u5247\u70ba 9.4 \u500b\u4e2d\u6587\u5b57\uff0c\u4ee5\u53ca 6.8 \u500b\u4e2d\u6587\u8a5e\u3002 4 13.3% 3.0% 6 16.8% 19.4% \u6578\u8207\u91cf+\u4ee3\u6578+\u5e7e\u4f55 1.20% \u7d71\u8a08\u8207\u6a5f\u7387 0.05% \u984c\uff0cKoncel-Kedziorski \u7b49\u4eba[25]\u53ea\u6293\u53d6\u4ee3\u6578\u6587\u5b57\u76f8\u95dc\u7684\u554f\u984c(\u53d6\u6750\u81ea[2]) \uff0c\u4f46\u5176\u4e2d\u6709\u9ad8 \u5177\u52a0\u4ee5\u65b7\u8a5e\u5f8c\uff0c\u6bcf\u500b\u984c\u76ee\u5e73\u5747\u542b\u6709 18.2 \u500b\u4e2d\u6587\u8a5e\u3002\u5728\u53e6\u4e00\u65b9\u9762\uff0c\u984c\u76ee\"\u554f\u53e5\"\u90e8\u5206\u7684\u5e73 \u8a5e\u9577(\u5b57\u6578) \u4e3b\u5e79 \u554f\u53e5 1 7.7% 14.4% 2 50.1% 64.1% 3 20.4% 17.8% \u53e5\u9577(\u8a5e\u6578) \u4e3b\u5e79 \u554f\u53e5 1~3 1.0% 0.7% 4 4.9% 6.3% 5 12.7% 16.4% \u7d44\u5408\u985e\u5225 \u767e\u5206\u6bd4 \u6578\u8207\u91cf+\u4ee3\u6578 \u6578\u8207\u91cf+\u5e7e\u4f55 \u4ee3\u6578+\u5e7e\u4f55 0.21% \u5e7e\u4f55 1.68% \u7684\u554f\u984c\uff0c\u537b\u628a\u9700\u8981\u80cc\u666f\u77e5\u8b58\u7684\u6982\u6578\u984c\u76ee\u6392\u9664\u5728\u5916\uff0cShi \u7b49\u4eba[24]\u53ea\u6293\u53d6\u6578\u5b57\u904b\u7b97\u6587\u5b57\u554f 4.44% \u4ee3\u6578 6.72% \u6578\u5b57\u8cc7\u8a0a\u548c\u8fad\u5f59\u7a7a\u7f3a(Lexical Gap) ) \uff0cRoy \u7b49\u4eba[6]\u96d6\u7136\u589e\u52a0\u4e86\u5169\u500b\u4ee5\u4e0a\u904b\u7b97\u5b50 (\u591a\u6b65\u9a5f) 13.25% \u6293\u53d6\u7684\u7279\u5b9a\u6578\u64da\u8cc7\u6599\u7d44\u6210\u7684\uff1a\u5982 Kushman \u7b49\u4eba[5]\u522a\u6389\u4e86\u975e\u7dda\u6027\u4ee3\u6578\u554f\u984c\u7684\u984c\u76ee\uff0c \u55ae\u4e00\u985e\u5225 \u767e\u5206\u6bd4 \u6578\u8207\u91cf 72.04% Hosseini \u7b49\u4eba[2]\u53ea\u6293\u53d6\u7d44\u5408\u52a0\u6cd5\u3001\u6e1b\u6cd5\u3001\u4e00\u5143\u4e00\u6b21\u65b9\u7a0b\u548c\u7f8e\u5143\u6587\u5b57\u7b49\u554f\u984c(\u4f46\u5e36\u6709\u591a\u9918 [1] A.</td></tr><tr><td>9 10~12 14.8% 11.1% 9.3% 9.2% \u8868\u516b(a)\u986f\u793a\u6211\u5011\u7684\u4e2d\u6587\u6578\u5b78\u8a9e\u6599\u5eab\u5728\u55ae\u4e00\u80fd\u529b\u6307\u6a19\u65b9\u9762\uff0c\u4e3b\u8981\u4ee5\"\u6578\u8207\u91cf\"(72.04%)</td></tr><tr><td>13 \u4ee5\u4e0a 7.1% 2.8%</td></tr></table>",
"html": null,
"text": "\u516c\u65a4 \"\u7684 \u5b9a \u7fa9 \u5f0f \uff1a \"weight={ \u516c\u65a4 : quantity={2}}\" \u662f\u7531 \" \u516c\u65a4 \" \u7684 \u5b9a \u7fa9 \u5f0f \uff1a Mukherjee and U. Garain, \"A review of methods for automatic understanding of natural language mathematical problems,\" Artificial Intelligence Review, vol. 29, no. 2, pp. 93-122, Apr. 2008.[2] M. J. Hosseini, H. Hajishirzi, O. Etzioni, and N. Kushman, \"Learning to solve arithmetic word problems with verb Categorization,\" in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014. [Online]. Available: http://ssli.ee.washington.edu/~hannaneh/algebra-emnlp14.pdf.",
"num": null,
"type_str": "table"
}
}
}
}