import os # 切换到当前文件所在的目录 os.chdir(os.path.dirname(__file__)) # 导入必要的库 import torch from datasets import load_dataset, Dataset from transformers import ( AutoModelForCausalLM, # 用于加载预训练的语言模型 AutoTokenizer, # 用于加载与模型相匹配的分词器 BitsAndBytesConfig, # 用于配置4-bit量化 HfArgumentParser, # 用于解析命令行参数 TrainingArguments, # 用于设置训练参数 pipeline, # 用于创建模型的pipeline logging, # 用于记录日志 ) from peft import LoraConfig, PeftModel # 用于配置和加载QLoRA模型 from trl import SFTTrainer # 用于执行监督式微调的Trainer # 设置预训练模型的名称 model_name = "meta-llama/Llama-3.1-8B-Instruct" # 设置微调后模型的名称 new_model = "Llama-3.1-8b-Instruct-fine-tuned" # LoRA的注意力维度 lora_r = 64 # Alpha参数用于LoRA缩放 lora_alpha = 16 # LoRA层的dropout概率 lora_dropout = 0.1 # 激活4-bit精度的基础模型加载 use_4bit = True # 4-bit基础模型的计算数据类型 bnb_4bit_compute_dtype = "float16" # 4-bit量化类型(fp4或nf4) bnb_4bit_quant_type = "nf4" # 激活4-bit基础模型的嵌套量化(双重量化) use_nested_quant = False # 输出目录,用于存储模型预测和检查点 output_dir = "./results" # 训练周期数 num_train_epochs = 1 # 是否启用fp16/bf16训练(在A100上将bf16设置为True) fp16 = False bf16 = True # GPU上每个训练批次的样本数 per_device_train_batch_size = 4 # GPU上每个评估批次的样本数 per_device_eval_batch_size = 4 # 累积梯度的更新步骤数 gradient_accumulation_steps = 1 # 是否启用梯度检查点 gradient_checkpointing = True # 最大梯度归一化(梯度裁剪) max_grad_norm = 0.3 # 初始学习率(AdamW优化器) learning_rate = 2e-4 # 权重衰减,应用于全部layer(不包括bias/LayerNorm的权重) weight_decay = 0.001 # 优化器 optim = "paged_adamw_32bit" # 学习率计划 lr_scheduler_type = "cosine" # 训练步数(覆盖num_train_epochs) max_steps = -1 # 线性预热的步数比率(从0到学习率) warmup_ratio = 0.03 # 按长度分组序列 group_by_length = True # 每X更新步骤保存检查点 save_steps = 0 # 每X更新步骤记录日志 logging_steps = 25 # SFT参数配置 # 最大序列长度 max_seq_length = None # 打包多个短示例到同一输入序列以提高效率 packing = False # 将整个模型加载到 GPU 0 device_map = {"": 0} # 加载数据集 dataset = load_dataset(path="json", data_dir="./num_list", data_files="num_list_500_per_sample_100_length.json") fine_tune_dataset = [] print("Loading dataset...") for instance in dataset["train"]: prompt = instance["system_prompt"] + "\n\n" + instance["description"] + "\nQuestion: " + instance["data"]["question"] + "\nData: " + instance["data"]["struct_data"] answer = instance["data"]["answer"] completion = f"The answer is {answer}." fine_tune_dataset.append({"prompt": prompt, "completion": completion}) fine_tune_dataset = Dataset.from_list(fine_tune_dataset) compute_dtype = getattr(torch, bnb_4bit_compute_dtype) bnb_config = BitsAndBytesConfig( load_in_4bit=use_4bit, bnb_4bit_quant_type=bnb_4bit_quant_type, bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_use_double_quant=use_nested_quant, ) if compute_dtype == torch.float16 and use_4bit: major, _ = torch.cuda.get_device_capability() if major >= 8: print("GPU支持bfloat16") # 加载模型 model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, device_map=device_map ) model.config.use_cache = False model.config.pretraining_tp = 1 # 加载分词器 tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right" # 修复fp16训练中的溢出问题 peft_config = LoraConfig( lora_alpha=lora_alpha, lora_dropout=lora_dropout, r=lora_r, bias="none", task_type="CAUSAL_LM", ) training_arguments = TrainingArguments( output_dir=output_dir, num_train_epochs=num_train_epochs, per_device_train_batch_size=per_device_train_batch_size, gradient_accumulation_steps=gradient_accumulation_steps, optim=optim, save_steps=save_steps, logging_steps=logging_steps, learning_rate=learning_rate, weight_decay=weight_decay, fp16=fp16, bf16=bf16, max_grad_norm=max_grad_norm, max_steps=max_steps, warmup_ratio=warmup_ratio, group_by_length=group_by_length, lr_scheduler_type=lr_scheduler_type, report_to="tensorboard", ) # 设置监督式微调参数 trainer = SFTTrainer( model=model, train_dataset=fine_tune_dataset, peft_config=peft_config, dataset_text_field="text", max_seq_length=max_seq_length, tokenizer=tokenizer, args=training_arguments, packing=packing, ) # 训练模型 trainer.train() trainer.model.save_pretrained(new_model)