File size: 3,268 Bytes
3c1dbaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fb0a55
3c1dbaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4fef5c
3c1dbaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import datasets
import pandas as pd

_CITATION = """\
@InProceedings{huggingface:dataset,
title = {anti-spoofing_Live},
author = {TrainingDataPro},
year = {2023}
}
"""

_DESCRIPTION = """\
The dataset consists of 40,000 videos and selfies with unique people.
15,000 attack replays from 4,000 unique devices.
"""
_NAME = 'anti-spoofing_Live'

_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"

_LICENSE = ""

_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"


class AntiSpoofingLive(datasets.GeneratorBasedBuilder):

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({
                'phone': datasets.Value('string'),
                'selfie': datasets.Image(),
                'video': datasets.Value('string'),
                'worker_id': datasets.Value('string'),
                'age': datasets.Value('int8'),
                'country': datasets.Value('string'),
                'gender': datasets.Value('string')
            }),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data = dl_manager.download(f"{_DATA}data.tar.gz")
        annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
        data = dl_manager.iter_archive(data)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN,
                                    gen_kwargs={
                                        "data": data,
                                        'annotations': annotations
                                    }),
        ]

    def _generate_examples(self, data, annotations):
        annotations_df = pd.read_csv(annotations, sep=';')
        for idx, (image_path, image) in enumerate(data):
            if image_path.endswith('.jpg'):
                yield idx, {
                    'phone':
                        annotations_df.loc[
                            annotations_df['selfie_link'] == image_path]
                        ['phone'].values[0],
                    'selfie': {
                        'path': image_path,
                        'bytes': image.read()
                    },
                    'video':
                        annotations_df.loc[
                            annotations_df['selfie_link'] == image_path]
                        ['video_link'].values[0],
                    'worker_id':
                        annotations_df.loc[
                            annotations_df['selfie_link'] == image_path]
                        ['worker_id'].values[0],
                    'age':
                        annotations_df.loc[
                            annotations_df['selfie_link'] == image_path]
                        ['age'].values[0],
                    'country':
                        annotations_df.loc[
                            annotations_df['selfie_link'] == image_path]
                        ['country'].values[0],
                    'gender':
                        annotations_df.loc[
                            annotations_df['selfie_link'] == image_path]
                        ['gender'].values[0],
                }