TJURL-Lab commited on
Commit
59a7ea7
·
verified ·
1 Parent(s): 7dceaa2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -1
README.md CHANGED
@@ -2,4 +2,94 @@
2
  license: bsd-3-clause
3
  task_categories:
4
  - question-answering
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: bsd-3-clause
3
  task_categories:
4
  - question-answering
5
+ ---
6
+
7
+ # UniEQA Dataset
8
+ ## UniEQA Dataset Directory Structure
9
+
10
+ ```text
11
+ |- Part
12
+ |- capability dimension (eg.,object_type)
13
+ |- core
14
+ |- images
15
+ |- data.json
16
+ | - ...
17
+ |- ...
18
+ ```
19
+ The UniEQA dataset includes questions, images, and answers, and the question-images-answer pairs are in [data.json](https://huggingface.co/datasets/TJURL-Lab/UniEQA/blob/main/object_type/core/data.json).
20
+
21
+ ## Download Dataset
22
+
23
+ **Step 1:** Download dataset [UniEQA](https://drive.google.com/drive/folders/1az4jSfFvKU2_SMWksUICBeU1P-tAwWpo?usp=drive_link).
24
+
25
+ **Step 2:** Download HM3D. The RGB frames for the HM3D episode histories are available in this [third party location](https://www.dropbox.com/scl/fi/t79gsjqlan8dneg7o63sw/open-eqa-hm3d-frames-v0.tgz?rlkey=1iuukwy2g3f5t06q4a3mxqobm) (12 Gb). You can use the following commands to download and extract the data:
26
+
27
+ ```bash
28
+ wget -O open-eqa-hm3d-frames-v0.tgz <link above>
29
+ md5sum open-eqa-hm3d-frames-v0.tgz # 286aa5d2fda99f4ed1567ae212998370
30
+ tar -xzf open-eqa-hm3d-frames-v0.tgz -C Part1/images
31
+ rm open-eqa-hm3d-frames-v0.tgz
32
+ ```
33
+
34
+ Afterwards, your directory should look like this:
35
+
36
+ ```text
37
+ |- Part1
38
+ |- images
39
+ |- hm3d
40
+ |- 000-hm3d-BFRyYbPCCPE
41
+ |- ...
42
+ | - ...
43
+ ```
44
+ **Step 3:** Download [ScanNet](http://www.scan-net.org) by following the instructions [here](https://github.com/ScanNet/ScanNet#scannet-data).
45
+
46
+ Place the data in `data/raw/scannet`. Afterwards, your directory should look like this:
47
+
48
+ ```text
49
+ |- data
50
+ |- raw
51
+ |- scannet
52
+ |- scans
53
+ |- <scanId>
54
+ |- <scanId>.sens
55
+ |- ...
56
+ |- scans_test
57
+ |- <scanId>
58
+ |- <scanId>.sens
59
+ |- ...
60
+ |- ...
61
+ ```
62
+
63
+ **Step 4:** Extract episode histories $H$ from ScanNet scenes.
64
+
65
+ You can either only extract RGB frames or extract RGB, depth, camera intrinsics, and camera pose information.
66
+
67
+ | Format | Size | Extraction Time |
68
+ | --- | --- | --- |
69
+ | RGB-only | 62 Gb | ~8 hrs|
70
+ | RGB-D + Intrinsics + Pose | 70 Gb | ~10 hrs|
71
+
72
+ To extract only the RGB frames, run:
73
+
74
+ ```bash
75
+ python data/raw/scannet/extract-frames.py --rgb-only
76
+ ```
77
+
78
+ To extract the RGB, depth, camera intrinsics, and camera pose information, run:
79
+
80
+ ```bash
81
+ python data/raw/scannet/extract-frames.py
82
+ ```
83
+
84
+ Place the RGB frames in `Part1/images/scannet`. Afterwards, your directory structure should look like this:
85
+
86
+ ```text
87
+ |- Part1
88
+ |- images
89
+ |- scannet
90
+ |- 002-scannet-scene0709_00
91
+ |- ...
92
+ |- hm3d
93
+ | - ...
94
+ ```
95
+