import base64 import requests import time import logging from io import BytesIO from PIL import Image from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type from utils import parse_llm_answer from prompts import ( INITIAL_PROMPT_TEMPLATE, REPROMPT_PROMPT_TEMPLATE, get_answer_format_instruction, get_example_instruction, get_specific_instructions_reprompt ) # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # OpenRouter API endpoint OPENROUTER_API_ENDPOINT = "https://openrouter.ai/api/v1/chat/completions" # Define exceptions for retry logic RETRYABLE_EXCEPTIONS = ( requests.exceptions.Timeout, requests.exceptions.ConnectionError, requests.exceptions.RequestException # Catch broader request errors for retries ) # Define status codes that warrant a retry RETRYABLE_STATUS_CODES = {500, 502, 503, 504} # Retry decorator configuration retry_config = dict( stop=stop_after_attempt(3), # Retry up to 3 times wait=wait_exponential(multiplier=1, min=2, max=10), # Exponential backoff: 2s, 4s, 8s... retry=(retry_if_exception_type(RETRYABLE_EXCEPTIONS)) # Retry on specific exceptions # We will handle status code retries manually within the function for more control ) def encode_image_to_base64(image: Image.Image) -> str: """Encodes a PIL Image object to a base64 string.""" buffered = BytesIO() # Ensure image is in RGB format for broad compatibility if image.mode != 'RGB': image = image.convert('RGB') image.save(buffered, format="JPEG") # Save as JPEG for potentially smaller size img_str = base64.b64encode(buffered.getvalue()).decode('utf-8') return img_str def construct_reprompt_prompt(previous_raw_response: str, question_type: str) -> list: """Constructs the message list for a re-prompt API call based on question_type.""" specific_instructions = get_specific_instructions_reprompt(question_type) prompt_text = REPROMPT_PROMPT_TEMPLATE.format( previous_raw_response=previous_raw_response, question_type=question_type, specific_instructions=specific_instructions ) messages = [{"role": "user", "content": prompt_text}] return messages def construct_initial_prompt(base64_image: str, exam_name: str, exam_year: str, question_type: str) -> list: """Constructs the initial message list with image for the OpenRouter API call, tailored by question_type.""" answer_format_instruction = get_answer_format_instruction(question_type) example_instruction = get_example_instruction(question_type) prompt_text = INITIAL_PROMPT_TEMPLATE.format( exam_name=exam_name, exam_year=exam_year, question_type=question_type, answer_format_instruction=answer_format_instruction, example_instruction=example_instruction ) messages = [ { "role": "user", "content": [ {"type": "text", "text": prompt_text}, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_image}" } } ] } ] return messages @retry(**retry_config) def get_openrouter_prediction( model_identifier: str, api_key: str, image: Image.Image | None = None, # Image is now optional previous_raw_response: str | None = None, # Added for re-prompting exam_name: str | None = None, exam_year: str | None = None, question_type: str = "MCQ_SINGLE_CORRECT", # New parameter with default max_tokens: int = 100, request_timeout: int = 60 ) -> tuple[list[int] | str | None, str | None]: # Allow predicted_answer to be "SKIP" """ Gets a prediction from an OpenRouter model. Handles initial image prompts and text-only re-prompts. Args: model_identifier (str): The OpenRouter model identifier (e.g., "openai/gpt-4o"). api_key (str): The OpenRouter API key. image (Image.Image | None): The question image (for initial prompt). Default None. previous_raw_response (str | None): The raw response from a previous failed parse attempt (for re-prompt). Default None. exam_name (str | None): The name of the exam (e.g., "NEET", "JEE"). Required if 'image' is provided for initial prompt. exam_year (str | None): The year of the exam. Required if 'image' is provided for initial prompt. question_type (str): Type of question, e.g., "MCQ_SINGLE_CORRECT", "MCQ_MULTIPLE_CORRECT", "INTEGER". max_tokens (int): Max tokens for the response. request_timeout (int): Timeout for the API request in seconds. Returns: tuple[list[int] | str | None, str | None]: A tuple containing: - The parsed answer as a list of integers, the string "SKIP", or None if failed. - The raw response text from the LLM (or None if API call failed). Raises: ValueError: If arguments are inconsistent (e.g., image provided without exam details for initial prompt). requests.exceptions.RequestException: If the API call fails after retries. """ logging.info(f"Requesting prediction from model: {model_identifier} for question_type: {question_type}") if image is not None and previous_raw_response is None: # Initial prompt with image if not exam_name or not exam_year: # exam_name and exam_year are crucial for initial prompt context raise ValueError("'exam_name' and 'exam_year' must be provided when 'image' is specified for an initial prompt.") logging.debug(f"Constructing initial prompt with image for {exam_name} {exam_year}, type: {question_type}.") base64_image = encode_image_to_base64(image) messages = construct_initial_prompt(base64_image, exam_name, exam_year, question_type) elif image is None and previous_raw_response is not None: # Re-prompt based on previous response logging.debug(f"Constructing re-prompt based on previous response for type: {question_type}.") messages = construct_reprompt_prompt(previous_raw_response, question_type) else: # This condition means either both image and previous_raw_response are None, or both are provided. # The latter (both provided) is ambiguous for which prompt to use. # The former (both None) means no input to act on. raise ValueError("Provide 'image' (with 'exam_name' and 'exam_year') for an initial call, OR 'previous_raw_response' for a re-prompt. Not neither or both.") try: headers = { "Authorization": f"Bearer {api_key}", "Content-Type": "application/json" } data = { "model": model_identifier, "messages": messages, "max_tokens": max_tokens } response = requests.post( OPENROUTER_API_ENDPOINT, headers=headers, json=data, timeout=request_timeout ) if response.status_code in RETRYABLE_STATUS_CODES: logging.warning(f"Received retryable status code {response.status_code} from {model_identifier} for {question_type}. Retrying might occur.") response.raise_for_status() if not response.ok: logging.error(f"API Error for model {model_identifier} ({question_type}): Status {response.status_code} - {response.text}") return None, None response_json = response.json() raw_response_text = response_json.get("choices", [{}])[0].get("message", {}).get("content") if not raw_response_text: logging.warning(f"Empty response content received from model: {model_identifier} for {question_type}") return None, None logging.info(f"Raw response received from {model_identifier} ({question_type}): '{raw_response_text[:100]}...'") # Pass question_type to parse_llm_answer parsed_answer = parse_llm_answer(raw_response_text, question_type=question_type) if parsed_answer is None: logging.warning(f"Failed to parse answer from model {model_identifier} for {question_type}.") return parsed_answer, raw_response_text except requests.exceptions.Timeout as e: logging.error(f"Request timed out for model {model_identifier} ({question_type}): {e}") raise except requests.exceptions.RequestException as e: logging.error(f"Request failed for model {model_identifier} ({question_type}): {e}") raise except Exception as e: logging.error(f"An unexpected error occurred for model {model_identifier} ({question_type}): {e}") return None, None # Example Usage (requires a valid API key in .env and Pillow/requests/tenacity installed) if __name__ == '__main__': from src.utils import load_api_key try: dummy_image = Image.new('RGB', (60, 30), color = 'black') api_key = load_api_key() test_model = "anthropic/claude-3-haiku" print(f"\n--- Testing with model: {test_model} ---") # Test Case 1: Initial call - MCQ_SINGLE_CORRECT print("\nTest Case 1: Initial - MCQ_SINGLE_CORRECT") parsed_ans_1, raw_resp_1 = get_openrouter_prediction( model_identifier=test_model, api_key=api_key, image=dummy_image, exam_name="DUMMY_EXAM", exam_year="2024", question_type="MCQ_SINGLE_CORRECT" ) print(f"Parsed: {parsed_ans_1}, Raw: {raw_resp_1[:60] if raw_resp_1 else None}...") # Test Case 2: Initial call - MCQ_MULTIPLE_CORRECT print("\nTest Case 2: Initial - MCQ_MULTIPLE_CORRECT") parsed_ans_2, raw_resp_2 = get_openrouter_prediction( model_identifier=test_model, api_key=api_key, image=dummy_image, exam_name="DUMMY_EXAM", exam_year="2024", question_type="MCQ_MULTIPLE_CORRECT" ) print(f"Parsed: {parsed_ans_2}, Raw: {raw_resp_2[:60] if raw_resp_2 else None}...") # Test Case 3: Initial call - INTEGER print("\nTest Case 3: Initial - INTEGER") parsed_ans_3, raw_resp_3 = get_openrouter_prediction( model_identifier=test_model, api_key=api_key, image=dummy_image, exam_name="DUMMY_EXAM", exam_year="2024", question_type="INTEGER" ) print(f"Parsed: {parsed_ans_3}, Raw: {raw_resp_3[:60] if raw_resp_3 else None}...") # Test Case 4: Re-prompt - MCQ_SINGLE_CORRECT (simulating bad initial response) print("\nTest Case 4: Re-prompt - MCQ_SINGLE_CORRECT") bad_initial_resp_mcq_single = "1 2 This is some extra text." reprompt_ans_4, reprompt_raw_4 = get_openrouter_prediction( model_identifier=test_model, api_key=api_key, previous_raw_response=bad_initial_resp_mcq_single, question_type="MCQ_SINGLE_CORRECT" ) print(f"Parsed: {reprompt_ans_4}, Raw: {reprompt_raw_4[:60] if reprompt_raw_4 else None}...") # Test Case 5: Re-prompt - MCQ_MULTIPLE_CORRECT (simulating bad initial response) print("\nTest Case 5: Re-prompt - MCQ_MULTIPLE_CORRECT") bad_initial_resp_mcq_multi = "The answer is option 1 and 4 because reasons." reprompt_ans_5, reprompt_raw_5 = get_openrouter_prediction( model_identifier=test_model, api_key=api_key, previous_raw_response=bad_initial_resp_mcq_multi, question_type="MCQ_MULTIPLE_CORRECT" ) print(f"Parsed: {reprompt_ans_5}, Raw: {reprompt_raw_5[:60] if reprompt_raw_5 else None}...") except ValueError as e: print(f"Setup or Argument Error: {e}") except Exception as e: print(f"Runtime Error during example execution: {e}")