from collections.abc import Iterable from pathlib import Path from typing import Any from xml.etree import ElementTree as ET import datasets import numpy as np import pyvips from datasets import Dataset from datasets.splits import NamedSplit from PIL import Image, ImageDraw from tqdm import tqdm # https://drive.google.com/file/d/1kdOl3s6uQBRv0nToSIf1dPuceZunzL4N/view patient_data = { "TCGA-55-1594": "Lung", "TCGA-69-7760": "Lung", "TCGA-69-A59K": "Lung", "TCGA-73-4668": "Lung", "TCGA-78-7220": "Lung", "TCGA-86-7713": "Lung", "TCGA-86-8672": "Lung", "TCGA-L4-A4E5": "Lung", "TCGA-MP-A4SY": "Lung", "TCGA-MP-A4T7": "Lung", "TCGA-5P-A9K0": "Kidney", "TCGA-B9-A44B": "Kidney", "TCGA-B9-A8YI": "Kidney", "TCGA-DW-7841": "Kidney", "TCGA-EV-5903": "Kidney", "TCGA-F9-A97G": "Kidney", "TCGA-G7-A8LD": "Kidney", "TCGA-MH-A560": "Kidney", "TCGA-P4-AAVK": "Kidney", "TCGA-SX-A7SR": "Kidney", "TCGA-UZ-A9PO": "Kidney", "TCGA-UZ-A9PU": "Kidney", "TCGA-A2-A0CV": "Breast", "TCGA-A2-A0ES": "Breast", "TCGA-B6-A0WZ": "Breast", "TCGA-BH-A18T": "Breast", "TCGA-D8-A1X5": "Breast", "TCGA-E2-A154": "Breast", "TCGA-E9-A22B": "Breast", "TCGA-E9-A22G": "Breast", "TCGA-EW-A6SD": "Breast", "TCGA-S3-AA11": "Breast", "TCGA-EJ-5495": "Prostate", "TCGA-EJ-5505": "Prostate", "TCGA-EJ-5517": "Prostate", "TCGA-G9-6342": "Prostate", "TCGA-G9-6499": "Prostate", "TCGA-J4-A67Q": "Prostate", "TCGA-J4-A67T": "Prostate", "TCGA-KK-A59X": "Prostate", "TCGA-KK-A6E0": "Prostate", "TCGA-KK-A7AW": "Prostate", "TCGA-V1-A8WL": "Prostate", "TCGA-V1-A9O9": "Prostate", "TCGA-X4-A8KQ": "Prostate", "TCGA-YL-A9WY": "Prostate", "TCGA-49-6743": "Lung", "TCGA-50-6591": "Lung", "TCGA-55-7570": "Lung", "TCGA-55-7573": "Lung", "TCGA-73-4662": "Lung", "TCGA-78-7152": "Lung", "TCGA-2Z-A9JG": "Kidney", "TCGA-2Z-A9JN": "Kidney", "TCGA-DW-7838": "Kidney", "TCGA-DW-7963": "Kidney", "TCGA-F9-A8NY": "Kidney", "TCGA-IZ-A6M9": "Kidney", "TCGA-MH-A55W": "Kidney", "TCGA-A2-A04X": "Breast", "TCGA-D8-A3Z6": "Breast", "TCGA-E2-A108": "Breast", "TCGA-EW-A6SB": "Breast", "TCGA-G9-6356": "Prostate", "TCGA-G9-6367": "Prostate", "TCGA-VP-A87E": "Prostate", "TCGA-VP-A87H": "Prostate", "TCGA-X4-A8KS": "Prostate", "TCGA-YL-A9WL": "Prostate", } features = datasets.Features( { "patient": datasets.Value("string"), "image": datasets.Image(mode="RGB"), "instances": datasets.Sequence(datasets.Image(mode="1")), "categories": datasets.Sequence( datasets.ClassLabel( names=[ "Ambiguous", "Epithelial", "Lymphocyte", "Macrophage", "Neutrophil", ], ) ), "tissue": datasets.ClassLabel( names=[ "Breast", "Kidney", "Lung", "Prostate", ] ), } ) def get_masks( path: Path, mask_size: tuple[int, int] ) -> tuple[list[Image.Image], list[str]]: masks = [] categories = [] root = ET.parse(path).getroot() for annotation in root.findall("Annotation"): for region in annotation.findall("Regions/Region"): polygon = [ (float(vertex.attrib["X"]), float(vertex.attrib["Y"])) for vertex in region.findall("Vertices/Vertex") ] if len(polygon) < 2: continue mask = Image.new("1", size=mask_size) canvas = ImageDraw.Draw(mask) canvas.polygon(xy=polygon, outline=True, fill=True) masks.append(mask) categories.append(annotation.find("Attributes/Attribute").attrib["Name"]) return masks, categories def process(src: str) -> Iterable[dict[str, Any]]: files = list(Path(src).rglob("*.xml")) for file in tqdm(files): try: image = np.asarray(Image.open(file.with_suffix(".tif"))) except FileNotFoundError: image = pyvips.Image.new_from_file(file.with_suffix(".svs")) image = image.numpy() masks, categories = get_masks(file, mask_size=(image.shape[1], image.shape[0])) patient_id = file.parent.stem[:12] yield { "patient": patient_id, "image": Image.fromarray(image.astype(np.uint8)), "instances": masks, "categories": categories, "tissue": patient_data[patient_id], } if __name__ == "__main__": train = Dataset.from_generator( process, gen_kwargs={"src": "data/raw/MoNuSAC/MoNuSAC_images_and_annotations"}, features=features, split=NamedSplit("train"), keep_in_memory=True, ) train.push_to_hub("RationAI/MoNuSAC") test = Dataset.from_generator( process, gen_kwargs={"src": "data/raw/MoNuSAC/MoNuSAC Testing Data and Annotations"}, features=features, split=NamedSplit("test"), keep_in_memory=True, ) test.push_to_hub("RationAI/MoNuSAC")