Datasets:
ArXiv:
DOI:
License:
Delete VGGFace2.py
Browse files- VGGFace2.py +0 -186
VGGFace2.py
DELETED
@@ -1,186 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2022 The HuggingFace Datasets Authors and ProgramComputer.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""VGGFace2 audio-visual human speech dataset."""
|
18 |
-
|
19 |
-
import json
|
20 |
-
import os
|
21 |
-
import re
|
22 |
-
from urllib.parse import urlparse, parse_qs
|
23 |
-
from getpass import getpass
|
24 |
-
from hashlib import sha256
|
25 |
-
from itertools import repeat
|
26 |
-
from multiprocessing import Manager, Pool, Process
|
27 |
-
from pathlib import Path
|
28 |
-
from shutil import copyfileobj
|
29 |
-
from warnings import catch_warnings, filterwarnings
|
30 |
-
from urllib3.exceptions import InsecureRequestWarning
|
31 |
-
|
32 |
-
import pandas as pd
|
33 |
-
import requests
|
34 |
-
|
35 |
-
import datasets
|
36 |
-
|
37 |
-
_DESCRIPTION = "VGGFace2 is a large-scale face recognition dataset. Images are downloaded from Google Image Search and have large variations in pose, age, illumination, ethnicity and profession."
|
38 |
-
_CITATION = """\
|
39 |
-
@article{DBLP:journals/corr/abs-1710-08092,
|
40 |
-
author = {Qiong Cao and
|
41 |
-
Li Shen and
|
42 |
-
Weidi Xie and
|
43 |
-
Omkar M. Parkhi and
|
44 |
-
Andrew Zisserman},
|
45 |
-
title = {VGGFace2: {A} dataset for recognising faces across pose and age},
|
46 |
-
journal = {CoRR},
|
47 |
-
volume = {abs/1710.08092},
|
48 |
-
year = {2017},
|
49 |
-
url = {http://arxiv.org/abs/1710.08092},
|
50 |
-
eprinttype = {arXiv},
|
51 |
-
eprint = {1710.08092},
|
52 |
-
timestamp = {Wed, 04 Aug 2021 07:50:14 +0200},
|
53 |
-
biburl = {https://dblp.org/rec/journals/corr/abs-1710-08092.bib},
|
54 |
-
bibsource = {dblp computer science bibliography, https://dblp.org}
|
55 |
-
}
|
56 |
-
"""
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
_URLS = {
|
61 |
-
"default": {
|
62 |
-
"train": "https://huggingface.co/datasets/ProgramComputer/VGGFace2/resolve/main/data/vggface2_train.tar.gz",
|
63 |
-
"test": "https://huggingface.co/datasets/ProgramComputer/VGGFace2/resolve/main/data/vggface2_test.tar.gz",
|
64 |
-
}
|
65 |
-
}
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
class VGGFace2(datasets.GeneratorBasedBuilder):
|
70 |
-
"""VGGFace2 is dataset contains faces from Google Search"""
|
71 |
-
|
72 |
-
VERSION = datasets.Version("1.0.0")
|
73 |
-
|
74 |
-
BUILDER_CONFIGS = [
|
75 |
-
datasets.BuilderConfig( version=VERSION
|
76 |
-
)
|
77 |
-
]
|
78 |
-
|
79 |
-
def _info(self):
|
80 |
-
features = {
|
81 |
-
"image": datasets.Image(),
|
82 |
-
"image_id": datasets.Value("string"),
|
83 |
-
"class_id": datasets.Value("string"),
|
84 |
-
"identity": datasets.Value("string"),
|
85 |
-
'gender': datasets.Value("string"),
|
86 |
-
'sample_num':datasets.Value("uint64"),
|
87 |
-
'flag':datasets.Value("bool"),
|
88 |
-
"male": datasets.Value("bool"),
|
89 |
-
"black_hair": datasets.Value("bool"),
|
90 |
-
"gray_hair": datasets.Value("bool"),
|
91 |
-
"blond_hair": datasets.Value("bool"),
|
92 |
-
"long_hair": datasets.Value("bool"),
|
93 |
-
"mustache_or_beard": datasets.Value("bool"),
|
94 |
-
"wearing_hat": datasets.Value("bool"),
|
95 |
-
"eyeglasses": datasets.Value("bool"),
|
96 |
-
"sunglasses": datasets.Value("bool"),
|
97 |
-
"mouth_open": datasets.Value("bool"),
|
98 |
-
}
|
99 |
-
|
100 |
-
return datasets.DatasetInfo(
|
101 |
-
description=_DESCRIPTION,
|
102 |
-
supervised_keys=datasets.info.SupervisedKeysData("file", "class_id"),
|
103 |
-
features=datasets.Features(features),
|
104 |
-
citation=_CITATION,
|
105 |
-
)
|
106 |
-
|
107 |
-
def _split_generators(self, dl_manager):
|
108 |
-
targets = (
|
109 |
-
["01-Male.txt", "02-Black_Hair.txt","03-Brown_Hair.txt","04-Gray_Hair.txt","05-Blond_Hair.txt","06-Long_Hair.txt","07-Mustache_or_Beard.txt","08-Wearing_Hat.txt","09-Eyeglasses.txt","10-Sunglasses.txt","11-Mouth_Open.txt"]
|
110 |
-
)
|
111 |
-
target_dict = dict(
|
112 |
-
(
|
113 |
-
re.sub(r"^\d+-|\.txt$","",target),
|
114 |
-
f"https://raw.githubusercontent.com/ox-vgg/vgg_face2/master/attributes/{target}",
|
115 |
-
)
|
116 |
-
for target in targets
|
117 |
-
)
|
118 |
-
target_dict['identity'] = "https://huggingface.co/datasets/ProgramComputer/VGGFace2/raw/main/meta/identity_meta.csv"
|
119 |
-
metadata = dl_manager.download(
|
120 |
-
target_dict
|
121 |
-
)
|
122 |
-
|
123 |
-
mapped_paths_train = dl_manager.iter_archive(
|
124 |
-
_URLS["default"]["train"]
|
125 |
-
)
|
126 |
-
mapped_paths_test = dl_manager.iter_archive(
|
127 |
-
_URLS["default"]["test"]
|
128 |
-
)
|
129 |
-
return [
|
130 |
-
datasets.SplitGenerator(
|
131 |
-
name="train",
|
132 |
-
gen_kwargs={
|
133 |
-
"paths": mapped_paths_train,
|
134 |
-
"meta_paths": metadata,
|
135 |
-
},
|
136 |
-
),
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name="test",
|
139 |
-
gen_kwargs={
|
140 |
-
"paths": mapped_paths_test,
|
141 |
-
"meta_paths": metadata,
|
142 |
-
},
|
143 |
-
),
|
144 |
-
]
|
145 |
-
|
146 |
-
def _generate_examples(self, paths, meta_paths):
|
147 |
-
key = 0
|
148 |
-
meta = pd.read_csv(
|
149 |
-
meta_paths["identity"],
|
150 |
-
sep=", "
|
151 |
-
)
|
152 |
-
for key,conf in [(k,v) for (k,v) in meta_paths.items() if k != "identity"]:
|
153 |
-
|
154 |
-
temp = pd.read_csv(conf,sep='\t', header=None)
|
155 |
-
temp.columns = ['Image_Path', key]
|
156 |
-
|
157 |
-
temp['Class_ID'] = temp['Image_Path'].str.split('/').str[0]
|
158 |
-
#temp['Image_Name'] = temp['Image_Path'].str.split('/').str[1]
|
159 |
-
|
160 |
-
temp.drop(columns=['Image_Path'], inplace=True)
|
161 |
-
|
162 |
-
meta = meta.merge(temp, on='Class_ID', how='left')
|
163 |
-
for file_path, file_obj in paths:
|
164 |
-
|
165 |
-
label = file_path.split("/")[2]
|
166 |
-
yield file_path, {
|
167 |
-
"image": {"path": file_path, "bytes": file_obj.read()},
|
168 |
-
# "image_id": datasets.Value("string"),
|
169 |
-
# "class_id": datasets.Value("string"),
|
170 |
-
# "identity": datasets.Value("string"),
|
171 |
-
# 'gender': dataset.Value("string"),
|
172 |
-
# 'sample_num':dataset.Value("uint64"),
|
173 |
-
# 'flag':dataset.Value("bool"),
|
174 |
-
# "male": datasets.Value("bool"),
|
175 |
-
# "black_hair": datasets.Value("bool"),
|
176 |
-
# "gray_hair": datasets.Value("bool"),
|
177 |
-
# "blond_hair": datasets.Value("bool"),
|
178 |
-
# "long_hair": datasets.Value("bool"),
|
179 |
-
# "mustache_or_beard": datasets.Value("bool"),
|
180 |
-
# "wearing_hat": datasets.Value("bool"),
|
181 |
-
# "eyeglasses": datasets.Value("bool"),
|
182 |
-
# "sunglasses": datasets.Value("bool"),
|
183 |
-
#"mouth_open": datasets.Value("bool")
|
184 |
-
}
|
185 |
-
key+= 1
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|