import traceback import cv2 import numpy as np from modules import images from PIL import Image from scripts.reactor_entities.rect import Point, Rect class FaceArea: def __init__(self, entire_image: np.ndarray, face_area: Rect, face_margin: float, face_size: int, upscaler: str): self.face_area = face_area self.center = face_area.center left, top, right, bottom = face_area.to_square() self.left, self.top, self.right, self.bottom = self.__ensure_margin( left, top, right, bottom, entire_image, face_margin ) self.width = self.right - self.left self.height = self.bottom - self.top self.image = self.__crop_face_image(entire_image, face_size, upscaler) self.face_size = face_size self.scale_factor = face_size / self.width self.face_area_on_image = self.__get_face_area_on_image() self.landmarks_on_image = self.__get_landmarks_on_image() def __get_face_area_on_image(self): left = int((self.face_area.left - self.left) * self.scale_factor) top = int((self.face_area.top - self.top) * self.scale_factor) right = int((self.face_area.right - self.left) * self.scale_factor) bottom = int((self.face_area.bottom - self.top) * self.scale_factor) return self.__clip_values(left, top, right, bottom) def __get_landmarks_on_image(self): landmarks = [] if self.face_area.landmarks is not None: for landmark in self.face_area.landmarks: landmarks.append( Point( int((landmark.x - self.left) * self.scale_factor), int((landmark.y - self.top) * self.scale_factor), ) ) return landmarks def __crop_face_image(self, entire_image: np.ndarray, face_size: int, upscaler: str): cropped = entire_image[self.top : self.bottom, self.left : self.right, :] if upscaler: return images.resize_image(0, Image.fromarray(cropped), face_size, face_size, upscaler) else: return Image.fromarray(cv2.resize(cropped, dsize=(face_size, face_size))) def __ensure_margin(self, left: int, top: int, right: int, bottom: int, entire_image: np.ndarray, margin: float): entire_height, entire_width = entire_image.shape[:2] side_length = right - left margin = min(min(entire_height, entire_width) / side_length, margin) diff = int((side_length * margin - side_length) / 2) top = top - diff bottom = bottom + diff left = left - diff right = right + diff if top < 0: bottom = bottom - top top = 0 if left < 0: right = right - left left = 0 if bottom > entire_height: top = top - (bottom - entire_height) bottom = entire_height if right > entire_width: left = left - (right - entire_width) right = entire_width return left, top, right, bottom def get_angle(self) -> float: landmarks = getattr(self.face_area, "landmarks", None) if landmarks is None: return 0 eye1 = getattr(landmarks, "eye1", None) eye2 = getattr(landmarks, "eye2", None) if eye2 is None or eye1 is None: return 0 try: dx = eye2.x - eye1.x dy = eye2.y - eye1.y if dx == 0: dx = 1 angle = np.arctan(dy / dx) * 180 / np.pi if dx < 0: angle = (angle + 180) % 360 return angle except Exception: print(traceback.format_exc()) return 0 def rotate_face_area_on_image(self, angle: float): center = [ (self.face_area_on_image[0] + self.face_area_on_image[2]) / 2, (self.face_area_on_image[1] + self.face_area_on_image[3]) / 2, ] points = [ [self.face_area_on_image[0], self.face_area_on_image[1]], [self.face_area_on_image[2], self.face_area_on_image[3]], ] angle = np.radians(angle) rot_matrix = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]) points = np.array(points) - center points = np.dot(points, rot_matrix.T) points += center left, top, right, bottom = (int(points[0][0]), int(points[0][1]), int(points[1][0]), int(points[1][1])) left, right = (right, left) if left > right else (left, right) top, bottom = (bottom, top) if top > bottom else (top, bottom) width, height = right - left, bottom - top if width < height: left, right = left - (height - width) // 2, right + (height - width) // 2 elif height < width: top, bottom = top - (width - height) // 2, bottom + (width - height) // 2 return self.__clip_values(left, top, right, bottom) def __clip_values(self, *args): result = [] for val in args: if val < 0: result.append(0) elif val > self.face_size: result.append(self.face_size) else: result.append(val) return tuple(result)