File size: 3,656 Bytes
85a2cfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa04c35
85a2cfd
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Dataset Card for PSRB (Persian Speech Recognition Benchmark) - 1-Hour Sample

## Dataset Summary

The Persian Speech Recognition Benchmark (PSRB) is a comprehensive dataset designed to evaluate Persian Automatic Speech Recognition (ASR) systems under diverse real-world conditions.  
This 1-hour sample provides a representative subset of the full PSRB corpus, capturing various accents, speech styles, speaker demographics, and acoustic environments.


## Supported Tasks and Leaderboards

- Automatic Speech Recognition (ASR)

## Languages

- Persian (Farsi)

## Dataset Structure

### Data Instances

Each data instance in this sample is structured as:

```json
{
  "audio_path": "file1.wav",
  "text": "می‌گم نمی‌خواین طبق نقشه جلو بریم؟ نقشه رو بی‌خیال غمت نباشه ما مستر رد پا رو داریم. حس بویایی و شم‌ام اشتباه نمی‌کنه. همین الان اشتباه کرده.",
  "audio_duration": 11.88,
  "number_of_speakers": 3,
  "gender": "male",
  "age": "mix",
  "accents": "standard",
  "formality": "informal",
  "semantic_content": "artistic&literary",
  "data_source": "animation",
  "acoustic_environment": "noisy",
  "spontaneous": 1
}
```

### Data Fields

- **`audio_path`**: Path to the `.wav` audio file.
- **`text`**: Transcription of the audio in Persian.
- **`audio_duration`**: Duration of the audio file in seconds.
- **`number_of_speakers`**: Number of speakers present in the clip.
- **`gender`**: Gender of the speaker(s).
- **`age`**: Age category (e.g., child, teen, adult, senior, or mix).
- **`accents`**: Regional accent of the speaker or "standard."
- **`formality`**: Formality level ("formal" or "informal").
- **`semantic_content`**: Semantic topic or domain of the speech (e.g., artistic&literary, technological, medical).
- **`data_source`**: Source type of the data (e.g., animation, podcast, lecture).
- **`acoustic_environment`**: Recording environment (e.g., clean, noisy).
- **`spontaneous`**: 1 if speech is spontaneous, 0 if scripted.
---

## Dataset Creation

### Curation Rationale

The PSRB dataset was created to address the lack of comprehensive Persian ASR resources, covering linguistic diversity (accents, formality) and acoustic variability (clean, noisy, phone calls).

### Source Data

Data sources include:
- News broadcasts
- Movies and TV shows
- Podcasts
- Lectures
- Audiobooks
- Talk shows

Collected from platforms such as Telewebion, Aparat, YouTube, and Iranseda.

### Annotations

- Transcriptions manually created by expert native Persian speakers.
- Strict two-pass quality control review to ensure consistency and correctness.
- Rich metadata labeling for speaker demographics and speech conditions.

### Personal and Sensitive Information

- All data was anonymized to protect the identity of participants.
- No personally identifiable information (PII) is present in this dataset.
---

## Considerations for Using the Data

### Limitations

- This sample may not capture the full variability of the complete PSRB corpus.
---

## Additional Information


### Licensing Information

This dataset is made available for **research and educational purposes only**.  

---

## Citation Information

If you use this dataset in your research, please cite:

```bibtex
@misc{psrb2025,
  title={PSRB: A Comprehensive Benchmark for Evaluating Persian Automatic Speech Recognition Systems},
  author={Nima Sedghiye and Sara Sadeghi and Reza Khodadadi and Farzin Kashani and Omid Aghdaei and Somayeh Rahimi and Mohammad Sadegh Safari},
  year={2025},
  publisher={Part AI Research Center},
  note={Preprint}
}