klamike commited on
Commit
43a7ac7
·
verified ·
1 Parent(s): 5feb0d5

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -57,3 +57,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ train/SOCOPF/dual/xac filter=lfs diff=lfs merge=lfs -text
61
+ train/SOCOPF/dual/xab filter=lfs diff=lfs merge=lfs -text
62
+ train/SOCOPF/dual/xaa filter=lfs diff=lfs merge=lfs -text
PGLearn-Large-9241_pegase.py ADDED
@@ -0,0 +1,429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from dataclasses import dataclass
3
+ from pathlib import Path
4
+ import json
5
+ import shutil
6
+
7
+ import datasets as hfd
8
+ import h5py
9
+ import pgzip as gzip
10
+ import pyarrow as pa
11
+
12
+ # ┌──────────────┐
13
+ # │ Metadata │
14
+ # └──────────────┘
15
+
16
+ @dataclass
17
+ class CaseSizes:
18
+ n_bus: int
19
+ n_load: int
20
+ n_gen: int
21
+ n_branch: int
22
+
23
+ CASENAME = "9241_pegase"
24
+ SIZES = CaseSizes(n_bus=9241, n_load=4895, n_gen=1445, n_branch=16049)
25
+ NUM_TRAIN = 64309
26
+ NUM_TEST = 16078
27
+ NUM_INFEASIBLE = 19631
28
+ SPLITFILES = {
29
+ "train/SOCOPF/dual.h5.gz": ["train/SOCOPF/dual/xaa", "train/SOCOPF/dual/xab", "train/SOCOPF/dual/xac"],
30
+ }
31
+
32
+ URL = "https://huggingface.co/datasets/PGLearn/PGLearn-Large-9241_pegase"
33
+ DESCRIPTION = """\
34
+ The 9241_pegase PGLearn optimal power flow dataset, part of the PGLearn-Large collection. \
35
+ """
36
+ VERSION = hfd.Version("1.0.0")
37
+ DEFAULT_CONFIG_DESCRIPTION="""\
38
+ This configuration contains feasible input, primal solution, and dual solution data \
39
+ for the ACOPF, DCOPF, and SOCOPF formulations on the {case} system. For case data, \
40
+ download the case.json.gz file from the `script` branch of the repository. \
41
+ https://huggingface.co/datasets/PGLearn/PGLearn-Large-9241_pegase/blob/script/case.json.gz
42
+ """
43
+ USE_ML4OPF_WARNING = """
44
+ ================================================================================================
45
+ Loading PGLearn-Large-9241_pegase through the `datasets.load_dataset` function may be slow.
46
+
47
+ Consider using ML4OPF to directly convert to `torch.Tensor`; for more info see:
48
+ https://github.com/AI4OPT/ML4OPF?tab=readme-ov-file#manually-loading-data
49
+
50
+ Or, use `huggingface_hub.snapshot_download` and an HDF5 reader; for more info see:
51
+ https://huggingface.co/datasets/PGLearn/PGLearn-Large-9241_pegase#downloading-individual-files
52
+ ================================================================================================
53
+ """
54
+ CITATION = """\
55
+ @article{klamkinpglearn,
56
+ title={{PGLearn - An Open-Source Learning Toolkit for Optimal Power Flow}},
57
+ author={Klamkin, Michael and Tanneau, Mathieu and Van Hentenryck, Pascal},
58
+ year={2025},
59
+ }\
60
+ """
61
+
62
+ IS_COMPRESSED = True
63
+
64
+ # ┌──────────────────┐
65
+ # │ Formulations │
66
+ # └──────────────────┘
67
+
68
+ def acopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
69
+ features = {}
70
+ if primal: features.update(acopf_primal_features(sizes))
71
+ if dual: features.update(acopf_dual_features(sizes))
72
+ if meta: features.update({f"ACOPF/{k}": v for k, v in META_FEATURES.items()})
73
+ return features
74
+
75
+ def dcopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
76
+ features = {}
77
+ if primal: features.update(dcopf_primal_features(sizes))
78
+ if dual: features.update(dcopf_dual_features(sizes))
79
+ if meta: features.update({f"DCOPF/{k}": v for k, v in META_FEATURES.items()})
80
+ return features
81
+
82
+ def socopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
83
+ features = {}
84
+ if primal: features.update(socopf_primal_features(sizes))
85
+ if dual: features.update(socopf_dual_features(sizes))
86
+ if meta: features.update({f"SOCOPF/{k}": v for k, v in META_FEATURES.items()})
87
+ return features
88
+
89
+ FORMULATIONS_TO_FEATURES = {
90
+ "ACOPF": acopf_features,
91
+ "DCOPF": dcopf_features,
92
+ "SOCOPF": socopf_features,
93
+ }
94
+
95
+ # ┌───────────────────┐
96
+ # │ BuilderConfig │
97
+ # └───────────────────┘
98
+
99
+ class PGLearnLarge9241_pegaseConfig(hfd.BuilderConfig):
100
+ """BuilderConfig for PGLearn-Large-9241_pegase.
101
+ By default, primal solution data, metadata, input, casejson, are included for the train and test splits.
102
+
103
+ To modify the default configuration, pass attributes of this class to `datasets.load_dataset`:
104
+
105
+ Attributes:
106
+ formulations (list[str]): The formulation(s) to include, e.g. ["ACOPF", "DCOPF"]
107
+ primal (bool, optional): Include primal solution data. Defaults to True.
108
+ dual (bool, optional): Include dual solution data. Defaults to False.
109
+ meta (bool, optional): Include metadata. Defaults to True.
110
+ input (bool, optional): Include input data. Defaults to True.
111
+ casejson (bool, optional): Include case.json data. Defaults to True.
112
+ train (bool, optional): Include training samples. Defaults to True.
113
+ test (bool, optional): Include testing samples. Defaults to True.
114
+ infeasible (bool, optional): Include infeasible samples. Defaults to False.
115
+ """
116
+ def __init__(self,
117
+ formulations: list[str],
118
+ primal: bool=True, dual: bool=False, meta: bool=True, input: bool = True, casejson: bool=True,
119
+ train: bool=True, test: bool=True, infeasible: bool=False,
120
+ compressed: bool=IS_COMPRESSED, **kwargs
121
+ ):
122
+ super(PGLearnLarge9241_pegaseConfig, self).__init__(version=VERSION, **kwargs)
123
+
124
+ self.case = CASENAME
125
+ self.formulations = formulations
126
+
127
+ self.primal = primal
128
+ self.dual = dual
129
+ self.meta = meta
130
+ self.input = input
131
+ self.casejson = casejson
132
+
133
+ self.train = train
134
+ self.test = test
135
+ self.infeasible = infeasible
136
+
137
+ self.gz_ext = ".gz" if compressed else ""
138
+
139
+ @property
140
+ def size(self):
141
+ return SIZES
142
+
143
+ @property
144
+ def features(self):
145
+ features = {}
146
+ if self.casejson: features.update(case_features())
147
+ if self.input: features.update(input_features(SIZES))
148
+ for formulation in self.formulations:
149
+ features.update(FORMULATIONS_TO_FEATURES[formulation](SIZES, self.primal, self.dual, self.meta))
150
+ return hfd.Features(features)
151
+
152
+ @property
153
+ def splits(self):
154
+ splits: dict[hfd.Split, dict[str, str | int]] = {}
155
+ if self.train:
156
+ splits[hfd.Split.TRAIN] = {
157
+ "name": "train",
158
+ "num_examples": NUM_TRAIN
159
+ }
160
+ if self.test:
161
+ splits[hfd.Split.TEST] = {
162
+ "name": "test",
163
+ "num_examples": NUM_TEST
164
+ }
165
+ if self.infeasible:
166
+ splits[hfd.Split("infeasible")] = {
167
+ "name": "infeasible",
168
+ "num_examples": NUM_INFEASIBLE
169
+ }
170
+ return splits
171
+
172
+ @property
173
+ def urls(self):
174
+ urls: dict[str, None | str | list] = {
175
+ "case": None, "train": [], "test": [], "infeasible": [],
176
+ }
177
+
178
+ if self.casejson:
179
+ urls["case"] = f"case.json" + self.gz_ext
180
+ else:
181
+ urls.pop("case")
182
+
183
+ split_names = []
184
+ if self.train: split_names.append("train")
185
+ if self.test: split_names.append("test")
186
+ if self.infeasible: split_names.append("infeasible")
187
+
188
+ for split in split_names:
189
+ if self.input: urls[split].append(f"{split}/input.h5" + self.gz_ext)
190
+ for formulation in self.formulations:
191
+ if self.primal:
192
+ filename = f"{split}/{formulation}/primal.h5" + self.gz_ext
193
+ if filename in SPLITFILES: urls[split].append(SPLITFILES[filename])
194
+ else: urls[split].append(filename)
195
+ if self.dual:
196
+ filename = f"{split}/{formulation}/dual.h5" + self.gz_ext
197
+ if filename in SPLITFILES: urls[split].append(SPLITFILES[filename])
198
+ else: urls[split].append(filename)
199
+ if self.meta:
200
+ filename = f"{split}/{formulation}/meta.h5" + self.gz_ext
201
+ if filename in SPLITFILES: urls[split].append(SPLITFILES[filename])
202
+ else: urls[split].append(filename)
203
+ return urls
204
+
205
+ # ┌────────────────────┐
206
+ # │ DatasetBuilder │
207
+ # └────────────────────┘
208
+
209
+ class PGLearnLarge9241_pegase(hfd.ArrowBasedBuilder):
210
+ """DatasetBuilder for PGLearn-Large-9241_pegase.
211
+ The main interface is `datasets.load_dataset` with `trust_remote_code=True`, e.g.
212
+
213
+ ```python
214
+ from datasets import load_dataset
215
+ ds = load_dataset("PGLearn/PGLearn-Large-9241_pegase", trust_remote_code=True,
216
+ # modify the default configuration by passing kwargs
217
+ formulations=["DCOPF"],
218
+ dual=False,
219
+ meta=False,
220
+ )
221
+ ```
222
+ """
223
+
224
+ DEFAULT_WRITER_BATCH_SIZE = 10000
225
+ BUILDER_CONFIG_CLASS = PGLearnLarge9241_pegaseConfig
226
+ DEFAULT_CONFIG_NAME=CASENAME
227
+ BUILDER_CONFIGS = [
228
+ PGLearnLarge9241_pegaseConfig(
229
+ name=CASENAME, description=DEFAULT_CONFIG_DESCRIPTION.format(case=CASENAME),
230
+ formulations=list(FORMULATIONS_TO_FEATURES.keys()),
231
+ primal=True, dual=True, meta=True, input=True, casejson=False,
232
+ train=True, test=True, infeasible=False,
233
+ )
234
+ ]
235
+
236
+ def _info(self):
237
+ return hfd.DatasetInfo(
238
+ features=self.config.features, splits=self.config.splits,
239
+ description=DESCRIPTION + self.config.description,
240
+ homepage=URL, citation=CITATION,
241
+ )
242
+
243
+ def _split_generators(self, dl_manager: hfd.DownloadManager):
244
+ hfd.logging.get_logger().warning(USE_ML4OPF_WARNING)
245
+
246
+ filepaths = dl_manager.download_and_extract(self.config.urls)
247
+
248
+ splits: list[hfd.SplitGenerator] = []
249
+ if self.config.train:
250
+ splits.append(hfd.SplitGenerator(
251
+ name=hfd.Split.TRAIN,
252
+ gen_kwargs=dict(case_file=filepaths.get("case", None), data_files=tuple(filepaths["train"]), n_samples=NUM_TRAIN),
253
+ ))
254
+ if self.config.test:
255
+ splits.append(hfd.SplitGenerator(
256
+ name=hfd.Split.TEST,
257
+ gen_kwargs=dict(case_file=filepaths.get("case", None), data_files=tuple(filepaths["test"]), n_samples=NUM_TEST),
258
+ ))
259
+ if self.config.infeasible:
260
+ splits.append(hfd.SplitGenerator(
261
+ name=hfd.Split("infeasible"),
262
+ gen_kwargs=dict(case_file=filepaths.get("case", None), data_files=tuple(filepaths["infeasible"]), n_samples=NUM_INFEASIBLE),
263
+ ))
264
+ return splits
265
+
266
+ def _generate_tables(self, case_file: str | None, data_files: tuple[hfd.utils.track.tracked_str | list[hfd.utils.track.tracked_str]], n_samples: int):
267
+ case_data: str | None = json.dumps(json.load(open_maybe_gzip_cat(case_file))) if case_file is not None else None
268
+ data: dict[str, h5py.File] = {}
269
+ for file in data_files:
270
+ v = h5py.File(open_maybe_gzip_cat(file), "r")
271
+ if isinstance(file, list):
272
+ k = "/".join(Path(file[0].get_origin()).parts[-3:-1]).split(".")[0]
273
+ else:
274
+ k = "/".join(Path(file.get_origin()).parts[-2:]).split(".")[0]
275
+ data[k] = v
276
+ for k in list(data.keys()):
277
+ if "/input" in k: data[k.split("/", 1)[1]] = data.pop(k)
278
+
279
+ batch_size = self._writer_batch_size or self.DEFAULT_WRITER_BATCH_SIZE
280
+ for i in range(0, n_samples, batch_size):
281
+ effective_batch_size = min(batch_size, n_samples - i)
282
+
283
+ sample_data = {
284
+ f"{dk}/{k}":
285
+ hfd.features.features.numpy_to_pyarrow_listarray(v[i:i + effective_batch_size, ...])
286
+ for dk, d in data.items() for k, v in d.items() if f"{dk}/{k}" in self.config.features
287
+ }
288
+
289
+ if case_data is not None:
290
+ sample_data["case/json"] = pa.array([case_data] * effective_batch_size)
291
+
292
+ yield i, pa.Table.from_pydict(sample_data)
293
+
294
+ for f in data.values():
295
+ f.close()
296
+
297
+ # ┌──────────────┐
298
+ # │ Features │
299
+ # └──────────────┘
300
+
301
+ FLOAT_TYPE = "float32"
302
+ INT_TYPE = "int64"
303
+ BOOL_TYPE = "bool"
304
+ STRING_TYPE = "string"
305
+
306
+ def case_features():
307
+ # FIXME: better way to share schema of case data -- need to treat jagged arrays
308
+ return {
309
+ "case/json": hfd.Value(STRING_TYPE),
310
+ }
311
+
312
+ META_FEATURES = {
313
+ "meta/seed": hfd.Value(dtype=INT_TYPE),
314
+ "meta/formulation": hfd.Value(dtype=STRING_TYPE),
315
+ "meta/primal_objective_value": hfd.Value(dtype=FLOAT_TYPE),
316
+ "meta/dual_objective_value": hfd.Value(dtype=FLOAT_TYPE),
317
+ "meta/primal_status": hfd.Value(dtype=STRING_TYPE),
318
+ "meta/dual_status": hfd.Value(dtype=STRING_TYPE),
319
+ "meta/termination_status": hfd.Value(dtype=STRING_TYPE),
320
+ "meta/build_time": hfd.Value(dtype=FLOAT_TYPE),
321
+ "meta/extract_time": hfd.Value(dtype=FLOAT_TYPE),
322
+ "meta/solve_time": hfd.Value(dtype=FLOAT_TYPE),
323
+ }
324
+
325
+ def input_features(sizes: CaseSizes):
326
+ return {
327
+ "input/pd": hfd.Sequence(length=sizes.n_load, feature=hfd.Value(dtype=FLOAT_TYPE)),
328
+ "input/qd": hfd.Sequence(length=sizes.n_load, feature=hfd.Value(dtype=FLOAT_TYPE)),
329
+ "input/gen_status": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=BOOL_TYPE)),
330
+ "input/branch_status": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=BOOL_TYPE)),
331
+ "input/seed": hfd.Value(dtype=INT_TYPE),
332
+ }
333
+
334
+ def acopf_primal_features(sizes: CaseSizes):
335
+ return {
336
+ "ACOPF/primal/vm": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
337
+ "ACOPF/primal/va": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
338
+ "ACOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
339
+ "ACOPF/primal/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
340
+ "ACOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
341
+ "ACOPF/primal/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
342
+ "ACOPF/primal/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
343
+ "ACOPF/primal/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
344
+ }
345
+ def acopf_dual_features(sizes: CaseSizes):
346
+ return {
347
+ "ACOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
348
+ "ACOPF/dual/kcl_q": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
349
+ "ACOPF/dual/vm": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
350
+ "ACOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
351
+ "ACOPF/dual/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
352
+ "ACOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
353
+ "ACOPF/dual/ohm_pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
354
+ "ACOPF/dual/ohm_qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
355
+ "ACOPF/dual/ohm_qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
356
+ "ACOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
357
+ "ACOPF/dual/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
358
+ "ACOPF/dual/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
359
+ "ACOPF/dual/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
360
+ "ACOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
361
+ "ACOPF/dual/sm_fr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
362
+ "ACOPF/dual/sm_to": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
363
+ "ACOPF/dual/slack_bus": hfd.Value(dtype=FLOAT_TYPE),
364
+ }
365
+ def dcopf_primal_features(sizes: CaseSizes):
366
+ return {
367
+ "DCOPF/primal/va": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
368
+ "DCOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
369
+ "DCOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
370
+ }
371
+ def dcopf_dual_features(sizes: CaseSizes):
372
+ return {
373
+ "DCOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
374
+ "DCOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
375
+ "DCOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
376
+ "DCOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
377
+ "DCOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
378
+ "DCOPF/dual/slack_bus": hfd.Value(dtype=FLOAT_TYPE),
379
+ }
380
+ def socopf_primal_features(sizes: CaseSizes):
381
+ return {
382
+ "SOCOPF/primal/w": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
383
+ "SOCOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
384
+ "SOCOPF/primal/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
385
+ "SOCOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
386
+ "SOCOPF/primal/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
387
+ "SOCOPF/primal/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
388
+ "SOCOPF/primal/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
389
+ "SOCOPF/primal/wr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
390
+ "SOCOPF/primal/wi": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
391
+ }
392
+ def socopf_dual_features(sizes: CaseSizes):
393
+ return {
394
+ "SOCOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
395
+ "SOCOPF/dual/kcl_q": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
396
+ "SOCOPF/dual/w": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
397
+ "SOCOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
398
+ "SOCOPF/dual/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
399
+ "SOCOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
400
+ "SOCOPF/dual/ohm_pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
401
+ "SOCOPF/dual/ohm_qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
402
+ "SOCOPF/dual/ohm_qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
403
+ "SOCOPF/dual/jabr": hfd.Array2D(shape=(sizes.n_branch, 4), dtype=FLOAT_TYPE),
404
+ "SOCOPF/dual/sm_fr": hfd.Array2D(shape=(sizes.n_branch, 3), dtype=FLOAT_TYPE),
405
+ "SOCOPF/dual/sm_to": hfd.Array2D(shape=(sizes.n_branch, 3), dtype=FLOAT_TYPE),
406
+ "SOCOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
407
+ "SOCOPF/dual/wr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
408
+ "SOCOPF/dual/wi": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
409
+ "SOCOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
410
+ "SOCOPF/dual/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
411
+ "SOCOPF/dual/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
412
+ "SOCOPF/dual/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
413
+ }
414
+
415
+ # ┌───────────────┐
416
+ # │ Utilities │
417
+ # └───────────────┘
418
+
419
+ def open_maybe_gzip_cat(path: str | list):
420
+ if isinstance(path, list):
421
+ dest = Path(path[0]).parent.with_suffix(".h5")
422
+ if not dest.exists():
423
+ with open(dest, "wb") as dest_f:
424
+ for piece in path:
425
+ with open(piece, "rb") as piece_f:
426
+ shutil.copyfileobj(piece_f, dest_f)
427
+ shutil.rmtree(Path(piece).parent)
428
+ path = dest.as_posix()
429
+ return gzip.open(path, "rb") if path.endswith(".gz") else open(path, "rb")
README.md ADDED
@@ -0,0 +1,293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ tags:
4
+ - energy
5
+ - optimization
6
+ - optimal_power_flow
7
+ - power_grid
8
+ pretty_name: PGLearn Optimal Power Flow (9241_pegase)
9
+ task_categories:
10
+ - tabular-regression
11
+ dataset_info:
12
+ config_name: 9241_pegase
13
+ features:
14
+ - name: input/pd
15
+ sequence: float32
16
+ length: 4895
17
+ - name: input/qd
18
+ sequence: float32
19
+ length: 4895
20
+ - name: input/gen_status
21
+ sequence: bool
22
+ length: 1445
23
+ - name: input/branch_status
24
+ sequence: bool
25
+ length: 16049
26
+ - name: input/seed
27
+ dtype: int64
28
+ - name: ACOPF/primal/vm
29
+ sequence: float32
30
+ length: 9241
31
+ - name: ACOPF/primal/va
32
+ sequence: float32
33
+ length: 9241
34
+ - name: ACOPF/primal/pg
35
+ sequence: float32
36
+ length: 1445
37
+ - name: ACOPF/primal/qg
38
+ sequence: float32
39
+ length: 1445
40
+ - name: ACOPF/primal/pf
41
+ sequence: float32
42
+ length: 16049
43
+ - name: ACOPF/primal/pt
44
+ sequence: float32
45
+ length: 16049
46
+ - name: ACOPF/primal/qf
47
+ sequence: float32
48
+ length: 16049
49
+ - name: ACOPF/primal/qt
50
+ sequence: float32
51
+ length: 16049
52
+ - name: ACOPF/dual/kcl_p
53
+ sequence: float32
54
+ length: 9241
55
+ - name: ACOPF/dual/kcl_q
56
+ sequence: float32
57
+ length: 9241
58
+ - name: ACOPF/dual/vm
59
+ sequence: float32
60
+ length: 9241
61
+ - name: ACOPF/dual/pg
62
+ sequence: float32
63
+ length: 1445
64
+ - name: ACOPF/dual/qg
65
+ sequence: float32
66
+ length: 1445
67
+ - name: ACOPF/dual/ohm_pf
68
+ sequence: float32
69
+ length: 16049
70
+ - name: ACOPF/dual/ohm_pt
71
+ sequence: float32
72
+ length: 16049
73
+ - name: ACOPF/dual/ohm_qf
74
+ sequence: float32
75
+ length: 16049
76
+ - name: ACOPF/dual/ohm_qt
77
+ sequence: float32
78
+ length: 16049
79
+ - name: ACOPF/dual/pf
80
+ sequence: float32
81
+ length: 16049
82
+ - name: ACOPF/dual/pt
83
+ sequence: float32
84
+ length: 16049
85
+ - name: ACOPF/dual/qf
86
+ sequence: float32
87
+ length: 16049
88
+ - name: ACOPF/dual/qt
89
+ sequence: float32
90
+ length: 16049
91
+ - name: ACOPF/dual/va_diff
92
+ sequence: float32
93
+ length: 16049
94
+ - name: ACOPF/dual/sm_fr
95
+ sequence: float32
96
+ length: 16049
97
+ - name: ACOPF/dual/sm_to
98
+ sequence: float32
99
+ length: 16049
100
+ - name: ACOPF/dual/slack_bus
101
+ dtype: float32
102
+ - name: ACOPF/meta/seed
103
+ dtype: int64
104
+ - name: ACOPF/meta/formulation
105
+ dtype: string
106
+ - name: ACOPF/meta/primal_objective_value
107
+ dtype: float32
108
+ - name: ACOPF/meta/dual_objective_value
109
+ dtype: float32
110
+ - name: ACOPF/meta/primal_status
111
+ dtype: string
112
+ - name: ACOPF/meta/dual_status
113
+ dtype: string
114
+ - name: ACOPF/meta/termination_status
115
+ dtype: string
116
+ - name: ACOPF/meta/build_time
117
+ dtype: float32
118
+ - name: ACOPF/meta/extract_time
119
+ dtype: float32
120
+ - name: ACOPF/meta/solve_time
121
+ dtype: float32
122
+ - name: DCOPF/primal/va
123
+ sequence: float32
124
+ length: 9241
125
+ - name: DCOPF/primal/pg
126
+ sequence: float32
127
+ length: 1445
128
+ - name: DCOPF/primal/pf
129
+ sequence: float32
130
+ length: 16049
131
+ - name: DCOPF/dual/kcl_p
132
+ sequence: float32
133
+ length: 9241
134
+ - name: DCOPF/dual/pg
135
+ sequence: float32
136
+ length: 1445
137
+ - name: DCOPF/dual/ohm_pf
138
+ sequence: float32
139
+ length: 16049
140
+ - name: DCOPF/dual/pf
141
+ sequence: float32
142
+ length: 16049
143
+ - name: DCOPF/dual/va_diff
144
+ sequence: float32
145
+ length: 16049
146
+ - name: DCOPF/dual/slack_bus
147
+ dtype: float32
148
+ - name: DCOPF/meta/seed
149
+ dtype: int64
150
+ - name: DCOPF/meta/formulation
151
+ dtype: string
152
+ - name: DCOPF/meta/primal_objective_value
153
+ dtype: float32
154
+ - name: DCOPF/meta/dual_objective_value
155
+ dtype: float32
156
+ - name: DCOPF/meta/primal_status
157
+ dtype: string
158
+ - name: DCOPF/meta/dual_status
159
+ dtype: string
160
+ - name: DCOPF/meta/termination_status
161
+ dtype: string
162
+ - name: DCOPF/meta/build_time
163
+ dtype: float32
164
+ - name: DCOPF/meta/extract_time
165
+ dtype: float32
166
+ - name: DCOPF/meta/solve_time
167
+ dtype: float32
168
+ - name: SOCOPF/primal/w
169
+ sequence: float32
170
+ length: 9241
171
+ - name: SOCOPF/primal/pg
172
+ sequence: float32
173
+ length: 1445
174
+ - name: SOCOPF/primal/qg
175
+ sequence: float32
176
+ length: 1445
177
+ - name: SOCOPF/primal/pf
178
+ sequence: float32
179
+ length: 16049
180
+ - name: SOCOPF/primal/pt
181
+ sequence: float32
182
+ length: 16049
183
+ - name: SOCOPF/primal/qf
184
+ sequence: float32
185
+ length: 16049
186
+ - name: SOCOPF/primal/qt
187
+ sequence: float32
188
+ length: 16049
189
+ - name: SOCOPF/primal/wr
190
+ sequence: float32
191
+ length: 16049
192
+ - name: SOCOPF/primal/wi
193
+ sequence: float32
194
+ length: 16049
195
+ - name: SOCOPF/dual/kcl_p
196
+ sequence: float32
197
+ length: 9241
198
+ - name: SOCOPF/dual/kcl_q
199
+ sequence: float32
200
+ length: 9241
201
+ - name: SOCOPF/dual/w
202
+ sequence: float32
203
+ length: 9241
204
+ - name: SOCOPF/dual/pg
205
+ sequence: float32
206
+ length: 1445
207
+ - name: SOCOPF/dual/qg
208
+ sequence: float32
209
+ length: 1445
210
+ - name: SOCOPF/dual/ohm_pf
211
+ sequence: float32
212
+ length: 16049
213
+ - name: SOCOPF/dual/ohm_pt
214
+ sequence: float32
215
+ length: 16049
216
+ - name: SOCOPF/dual/ohm_qf
217
+ sequence: float32
218
+ length: 16049
219
+ - name: SOCOPF/dual/ohm_qt
220
+ sequence: float32
221
+ length: 16049
222
+ - name: SOCOPF/dual/jabr
223
+ dtype:
224
+ array2_d:
225
+ shape:
226
+ - 16049
227
+ - 4
228
+ dtype: float32
229
+ - name: SOCOPF/dual/sm_fr
230
+ dtype:
231
+ array2_d:
232
+ shape:
233
+ - 16049
234
+ - 3
235
+ dtype: float32
236
+ - name: SOCOPF/dual/sm_to
237
+ dtype:
238
+ array2_d:
239
+ shape:
240
+ - 16049
241
+ - 3
242
+ dtype: float32
243
+ - name: SOCOPF/dual/va_diff
244
+ sequence: float32
245
+ length: 16049
246
+ - name: SOCOPF/dual/wr
247
+ sequence: float32
248
+ length: 16049
249
+ - name: SOCOPF/dual/wi
250
+ sequence: float32
251
+ length: 16049
252
+ - name: SOCOPF/dual/pf
253
+ sequence: float32
254
+ length: 16049
255
+ - name: SOCOPF/dual/pt
256
+ sequence: float32
257
+ length: 16049
258
+ - name: SOCOPF/dual/qf
259
+ sequence: float32
260
+ length: 16049
261
+ - name: SOCOPF/dual/qt
262
+ sequence: float32
263
+ length: 16049
264
+ - name: SOCOPF/meta/seed
265
+ dtype: int64
266
+ - name: SOCOPF/meta/formulation
267
+ dtype: string
268
+ - name: SOCOPF/meta/primal_objective_value
269
+ dtype: float32
270
+ - name: SOCOPF/meta/dual_objective_value
271
+ dtype: float32
272
+ - name: SOCOPF/meta/primal_status
273
+ dtype: string
274
+ - name: SOCOPF/meta/dual_status
275
+ dtype: string
276
+ - name: SOCOPF/meta/termination_status
277
+ dtype: string
278
+ - name: SOCOPF/meta/build_time
279
+ dtype: float32
280
+ - name: SOCOPF/meta/extract_time
281
+ dtype: float32
282
+ - name: SOCOPF/meta/solve_time
283
+ dtype: float32
284
+ splits:
285
+ - name: train
286
+ num_bytes: 222452467695
287
+ num_examples: 64309
288
+ - name: test
289
+ num_bytes: 55615711263
290
+ num_examples: 16078
291
+ download_size: 242538350400
292
+ dataset_size: 278068178958
293
+ ---
case.json.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:329c320caaa60358aabd7b788c334c5ccde691db3be04de2b61f41a2ab90f174
3
+ size 9154663
config.toml ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ export_dir = "data/pglearn/9241_pegase"
2
+ # Name of the reference PGLib case. Must be a valid PGLib case name.
3
+ pglib_case = "pglib_opf_case9241_pegase"
4
+ floating_point_type = "Float32"
5
+
6
+ [sampler]
7
+ # data sampler options
8
+ [sampler.load]
9
+ noise_type = "ScaledUniform"
10
+ l = 0.6 # Lower bound of base load factor
11
+ u = 1.0 # Upper bound of base load factor
12
+ sigma = 0.20 # Relative (multiplicative) noise level.
13
+
14
+
15
+ [OPF]
16
+
17
+ [OPF.ACOPF]
18
+ type = "ACOPF"
19
+ solver.name = "Ipopt"
20
+ solver.attributes.tol = 1e-6
21
+ solver.attributes.linear_solver = "ma27"
22
+
23
+ [OPF.DCOPF]
24
+ # Formulation/solver options
25
+ type = "DCOPF"
26
+ solver.name = "HiGHS"
27
+
28
+ [OPF.SOCOPF]
29
+ type = "SOCOPF"
30
+ solver.name = "Clarabel"
31
+ # Tight tolerances
32
+ solver.attributes.tol_gap_abs = 1e-6
33
+ solver.attributes.tol_gap_rel = 1e-6
34
+ solver.attributes.tol_feas = 1e-6
35
+ solver.attributes.tol_infeas_rel = 1e-6
36
+ solver.attributes.tol_ktratio = 1e-6
37
+ # Reduced accuracy settings
38
+ solver.attributes.reduced_tol_gap_abs = 1e-6
39
+ solver.attributes.reduced_tol_gap_rel = 1e-6
40
+ solver.attributes.reduced_tol_feas = 1e-6
41
+ solver.attributes.reduced_tol_infeas_abs = 1e-6
42
+ solver.attributes.reduced_tol_infeas_rel = 1e-6
43
+ solver.attributes.reduced_tol_ktratio = 1e-6
44
+
45
+ [slurm]
46
+ n_samples = 250000
47
+ n_jobs = 44
48
+ minibatch_size = 32
49
+ cpus_per_task = 8
50
+ queue = "embers"
51
+ charge_account = "gts-phentenryck3-ai4opt"
52
+ sysimage_memory = "128G"
53
+ sampler_memory = "8G"
54
+ extract_memory = "500G"
infeasible/ACOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:691c9dc1e5c2c8b8a7e8fd926c6ff5eca891e1839fea71d7dc854bd29a5b097d
3
+ size 13591905928
infeasible/ACOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b236b74ce39ecddfbfcd04261e50aabaaeed0ea145974bdc3e4eb55ed693b92a
3
+ size 694636
infeasible/ACOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bad9edfaa6017040f6d087cb3747a1b73401034045eba83f42a2e4710de5d51e
3
+ size 6067978519
infeasible/DCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c8d7b4cfb0d6e0c210bb6c5de8a278cfcce6ea68b66d7afbfaf3e1b6c5eb169
3
+ size 1493048959
infeasible/DCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b8286ecfb697c596a5531f2c58d4233ac7291d2ac1d68d37af15655809e4e28
3
+ size 683104
infeasible/DCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3121c356c723c8e78b26d139dc7438e0a40c11381c7d04bbb689bb210cb58d15
3
+ size 1662274637
infeasible/SOCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d378441502ca2bd35688e37ef0413c3b1dae3f8c60a2ae293d41a56037265f4
3
+ size 25240760107
infeasible/SOCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a803e975ff7645fce4102fa0128fc6614c921e3c8a20497a3612f894a997deb
3
+ size 596167
infeasible/SOCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c12b1ed6f300395f4de6c4c1666fb501ef86da6a4099016deac24ce88ad805e6
3
+ size 7602493486
infeasible/input.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bb4a8fe425d67c3875817257d61d48df32313111553852834abbf4e37e5c26c
3
+ size 709475360
test/ACOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9993f32a2328658c7a398bdd9e1affeda92749382c0963e603ea2a16f2617e66
3
+ size 10974565123
test/ACOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:059a46419a7cbb7a22e337cae042aeda5330b246dc30d360dde0f649a7c219fb
3
+ size 547718
test/ACOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4994afae7d292117aad89e70d2204d86ba25f0430180a7f0223f3d49124a8c2f
3
+ size 4951113837
test/DCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:455c7d42473fed9847d476d19cf7ee38ca0767445ca82f551b9427c855b02da4
3
+ size 1292805643
test/DCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b9e2d707c1003480a71006cf2e039da72f8d47301d7d9468f6259dc72481de2
3
+ size 551155
test/DCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5054b799a285646d78ce92565763df0ef43e4f33c6926156b5d16baeb50d1a46
3
+ size 1437479103
test/SOCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db576d7336798f81619c2912531d819c3cc2e6c2db266a3f35bb95ed3c8f3cbe
3
+ size 20628664463
test/SOCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f9ed39579409298d24be1ef91614dfa98c863dd51dadffeec6470963f0144ae
3
+ size 549581
test/SOCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8021d63174ac8939e0d1a8e93110b550a1a412836f6127cdc61a1a011ca23ff7
3
+ size 6230273304
test/input.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd19a7692b2a45c43874b154ce0861533bd77206dfad2c7279fd1e550c78ac51
3
+ size 581042861
train/ACOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a42778da89687bdb8c4a79b177fa1ba2af12a45daf5936b1d606f38b1c575b7
3
+ size 43895744321
train/ACOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1911df724c5f55c01b27545f72729f04df38fe980d9680d1cd5285529c0c7d27
3
+ size 2161836
train/ACOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:297199b5461834d3d23aaaade4852720a6e95ed9cb92f61eec779fcdb8f8cb43
3
+ size 19803124522
train/DCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b637a869cc9b02163eca7816ec2fccb5dad9f5d36527ab969739a94662de1b98
3
+ size 5170963864
train/DCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1484d7f6ef9e07c3ebe18f86311ed14c8a565f20e487561b77ebaeba37490a1
3
+ size 2169377
train/DCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f814bdcb869b749adb6e2f823e502e9c247fa70ef918f79ba8287e99d4d5a16c
3
+ size 5749500723
train/SOCOPF/dual/xaa ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b23082e8abfe3070d89411ad209b493a3fe690941c7e8eaa82756474ef7854c
3
+ size 32212254720
train/SOCOPF/dual/xab ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59a139ae4e2181ac0a475b9b180034b7c5346da9136359d07bdcd86bbfc32aee
3
+ size 32212254720
train/SOCOPF/dual/xac ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08f1dc681a3f984b74b6e79e110b93c07606b46ecb428ac2865c940526eb96e0
3
+ size 30146256264
train/SOCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:203dee18e38827a7f98beda63265d9602e88f74b4a598a96e2e016716f6834ea
3
+ size 2164022
train/SOCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d280031d75f19f1af1d599266ea11962e9649707a5f17292fb42b2ae2f0197dc
3
+ size 24920099597
train/input.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adb85fdbfe303750cb194b0bb3cd48b9ccb11a3ce777897deeae04fd5a03659a
3
+ size 2324063646