File size: 7,299 Bytes
7292dc0
 
 
 
 
 
 
 
 
 
 
bc49816
7292dc0
 
 
 
 
5002088
7292dc0
 
 
 
bc49816
 
 
 
7292dc0
 
 
 
bc49816
 
7292dc0
 
 
 
 
 
 
bc49816
7292dc0
 
 
bc49816
7292dc0
 
 
 
 
 
 
 
 
 
 
bc49816
 
 
 
 
7292dc0
 
bc49816
9bc9157
 
 
 
7292dc0
 
bc49816
 
5002088
bc49816
5002088
bc49816
 
5002088
bc49816
 
 
7292dc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc49816
7292dc0
5002088
 
7292dc0
 
 
 
 
5002088
7292dc0
 
 
 
 
 
 
5002088
 
7292dc0
 
5002088
 
 
 
 
 
 
 
7292dc0
 
 
 
5002088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""HyperForensics++ dataset"""


import csv
import json
import os
import numpy as np

import datasets

_CITATION = """\
@InProceedings{hyperforensics:dataset,
title={HyperForensics++: Toward Adversarial Perturbed and Object Replacement in Hyperspectral Imaging Dataset},
author={Chih-Chung Hsu, Chia-Ming Lee, Min-Tzo Ko, En-Chao Liu, Yi-Ching Cheng, Ming-Ching Chang},
year={2025}
}
"""

_DESCRIPTION = """\
The HyperForensics++ dataset is an advanced benchmark designed for hyperspectral image (HSI) forgery detection.
It builds upon the foundational HyperForensics dataset by introducing new manipulation scenarios and enhanced techniques.
"""

_HOMEPAGE = "https://huggingface.co/datasets/OtoroLin/HyperForensics-plus-plus"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

_URL = "https://huggingface.co/datasets/OtoroLin/HyperForensics-plus-plus/resolve/main/data.tar.gz"


class HyperForensicsPlusPlus(datasets.GeneratorBasedBuilder):
    """HyperForensics++ dataset"""

    VERSION = datasets.Version("1.1.0")

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="data",
            version=VERSION,
            description="Full dataset with all the HSI in npy format",),
        # datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
    ]

    DEFAULT_CONFIG_NAME = "data"  # It's not mandatory to have a default configuration. Just use one if it make sense.
    def __init__(self, **kwargs):
        # You can add any custom arguments here that you want to pass to the builder
        # They will be passed to the constructor of the parent class
        super(HyperForensicsPlusPlus, self).__init__(writer_batch_size=4, **kwargs)

    def _info(self):
        features = datasets.Features(
            {
                "origin": datasets.Array3D(dtype="int16", shape=(256, 256, 172)), # The original HSI
                "label": datasets.Value("string"), # The label of the image
                "forgery": datasets.Array3D(dtype="int16", shape=(256, 256, 172)), # The HSI after forgery
                "method": datasets.Value("string"), # The forgery method used
                # The bounding box of the forgery area, in the format [x1, x2, y1, y2, z1, y2]
                "bbox": datasets.Sequence(feature=datasets.Value(dtype='int16'), length=6)
            }
        )
 
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        urls = _URL
        data_dir = dl_manager.download_and_extract(urls)


        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir,
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir,
                    "split": "validation",
                },
            ),
            #datasets.SplitGenerator(
            #    name=datasets.Split.TEST,
            #    # These kwargs will be passed to _generate_examples
            #    gen_kwargs={
            #        "filepath": data_dir,
            #        "split": "testing"
            #    },
            #),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        filepath = os.path.join(filepath, "data_testing")
        with open(os.path.join(filepath, "metadata.jsonl"), encoding="utf-8") as f:
            metadata = json.load(f)  # Load the nested JSON object (train, validation, testing)

            # Select the appropriate split (train, validation, or testing)
            records = metadata[split]

            for key, record in enumerate(records):
                file_prefix = record["file_prefix"]
                label = record["label"]
                bbox = record["bbox"]

                # Construct paths for the origin and forgery files
                origin_path = os.path.join(
                    filepath, "ADMM-ADAM", "config0", f"{file_prefix}_inpaint_result(0).npy"
                )
                forgery_path = os.path.join(
                    filepath, "ADMM-ADAM", "config0", f"{file_prefix}_inpaint_result(0).npy"
                )

                # Load the .npy files as images
                origin_image = np.load(origin_path) #np.load(origin_path)
                forgery_image = np.load(forgery_path) #np.load(forgery_path)
                # Yield the example
                yield key, {
                    "origin": origin_image,
                    "label": label,
                    "forgery": forgery_image,
                    "method": "ADMM-ADAM",  # Hardcoded for now; can be dynamic if needed
                    "bbox": bbox,
                }