Dataset Viewer
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   ConfigNamesError
Exception:    ReadTimeout
Message:      (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 7d886a0f-4e08-4535-a1eb-51770b39409b)')
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
                  config_names = get_dataset_config_names(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1031, in dataset_module_factory
                  raise e1 from None
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 996, in dataset_module_factory
                  return HubDatasetModuleFactory(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 591, in get_module
                  standalone_yaml_path = cached_path(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 167, in cached_path
                  resolved_path = huggingface_hub.HfFileSystem(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 198, in resolve_path
                  repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 125, in _repo_and_revision_exist
                  self._api.repo_info(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
                  return fn(*args, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 2816, in repo_info
                  return method(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
                  return fn(*args, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 2673, in dataset_info
                  r = get_session().get(path, headers=headers, timeout=timeout, params=params)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 602, in get
                  return self.request("GET", url, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 589, in request
                  resp = self.send(prep, **send_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 703, in send
                  r = adapter.send(request, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_http.py", line 96, in send
                  return super().send(request, *args, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/adapters.py", line 635, in send
                  raise ReadTimeout(e, request=request)
              requests.exceptions.ReadTimeout: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 7d886a0f-4e08-4535-a1eb-51770b39409b)')

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

NFI Fireworks Development Dataset for the "Vuurwerkverkenner" Application

The Netherlands Forensic Institute (NFI) Fireworks development dataset consists of scans of fireworks wrappers from fireworks that were investigated in casework in the Netherlands from 2010 onwards. Artificially created snippets are available for all wrappers, and for a subset of the wrappers photographs of actual fireworks snippets (pieces of the wrapper post-detonation) are included.

Data overview

The data consists of 347 wrappers in 216 categories. There are 36 categories with multiple wrappers, and real snippets are available for 40 wrapper categories.

Data collection

Fireworks wrappers were scanned from all physically available specimens at the NFI or by partners from casework conducted between 2010-2025.

As for the collection of fireworks snippets, fireworks were detonated and the resulting fragments (snippets) gathered manually. The snippets were then cleaned, dried, and categorized by wrapper design. Photographs of the snippets were taken against a white background; each photograph may contain multiple snippet pieces.

Creation of the real snippets was based on the availability of fireworks during the data collection period. To enhance the dataset's diversity and volume, additional wrappers were selected to be printed and affixed to Cobra 6 fireworks, in collaboration with domain experts.

Data structure

The top level of our data structure is organized by the data collection method. For instance, the artificial_snippets folder contains artificially created virtual snippets, whereas real_snippets comprises images of actual exploded fireworks. The mock_snippets folder includes images of real exploded fireworks within more realistic settings, such as with a ruler, varying background colors, or different lighting conditions.

Each data collection method folder is further subdivided into train, test, and validation folders, supporting effective model training. Additionally, the artificial_snippets folder features a reference folder containing data used for calculating reference embeddings.

For the artificial_snippets and real_snippets folders, the third layer groups fireworks by category, based on wrapper similarity. For example, variants from different years, such as Cobra 6 from 2018 and 2019, are grouped together in a category due to similar wrapper design. This classification was established with input from domain experts. The structure differs slightly for the mock_snippets folder, which includes images resembling those from a mock crime scene, and can be directly used as input for the model.

Finally, the lowest layer comprises folders named after specific fireworks wrappers, containing multiple snippet images (e.g., 0.png, 1.png) available for each wrapper.

Below is a visual representation of the data structure:

└───  artificial_snippets (#347 categories)
     └───reference (#35 images per wrapper)
          └───cobrawit
                └───cobra t.t 
                     └───0.png
                     └───1.png
                     └───2.png
          └───butterfly
                └───butterfly 100
                     └───0.png
                     └───1.png
                     └───2.png
     └───train (#35 images per wrapper)
     └───test (#5 images per wrapper)
     └───val (#5 images per wrapper)
└───  mock_snippets (#2489 images)
     └───train (#1741 images)
       └───SH-HNT-VT-M1-2_zwart.jpg
       └───SH-HNT-C8-A1-10.jpg
       └───SH-HNT-C8-A9-11.jpg
     └───test (#374 images)
     └───val (#374 images)
└───  real_snippets (#40 categories)
     └───train(#1-150 images per available category/label)
          └───cobrazwart
                └───super cobra 62g (uk 2014)
                     └───0.png
                     └───1.png
                     └───2.png
          └───jokerroze
                └───joker
                     └───0.png
                     └───1.png
                     └───2.png
     └───test (#1-148 images per available category/label)
     └───val (#4-149 images per available category/label)

Firework wrappers

README.md Images of the scanned wrappers have been resized to a maximum dimension of 2000 pixels in either height or width.

Categorisation

Below is an overview of the number of wrappers found in categories and how many categories contain that amount of wrappers:

Number of wrappers Number of categories
1 180
2 22
3 7
4 3
5 1
10 1
12 1
63 1

Number of wrappers per category:

Category Number of wrappers
match_cracker2 1
shell2 1
shell1 1
3040 1
ghost1 1
achtung2 1
achtung_skull 1
achtung1 1
alarm5 1
appletrate 1
aquilacentinaio 1
zorro 1
atomyc 4
mascleta 2
bigboy 3
dumbumzwart 12
bigjumbo 1
bigthunder 1
bigtigertropic 1
blackdeath 1
blackthunder1 1
blackthunder2 1
blackthunder3 1
blackvlinder 2
blackwidow 3
blitzschlag 1
bluestorm1 2
bluestorm2 1
zink1 1
bomb1 1
bomb2 1
butterfly 1
caramella1 1
caramella2 3
celebrationcracker 1
chooet 2
circoblitz 1
cobrazwart 63
zink2 3
zink4 1
zink3 3
zink5 1
signalrakete901blauw 1
silverdemon 1
siouxwarior 1
sp1010 1
spanishcracker 1
stielhandgranate 1
succubus 1
supercracker 1
superexplosion2 1
superexplosion4 1
superexplosion1 1
superexplosion3 1
supertop 1
thumpingthunder 1
thundercracker 1
thunderking 1
tigerboom 1
titan 1
shell5 1
tp2 1
tuonoblauw 1
tuonogolf 4
tuonorood 2
tuonovuur 2
tuonogoud 2
tuonott4 1
txp001 1
viperbruin 1
vipergeel 1
viperzwart 4
viperrood 1
viper2 1
virus3 1
virus 1
vlinder1 1
xplode 2
yellowshock 1
bulldog 1
mario200 1
monster1 1
viperduo 1
virus2 1
blackthunder4 1
euphoria 1
bigboyboom 1
duxmealux 1
fotzenblitz 1
padrino 1
numero40 1
numberone2 1
shell4 1
gigantmaroon2 1
gun 1
redbutterfly 1
gretathunder1 1
gretathunder2 1
vitaminf50 1
tirex 1
panzerfaust1 1
cobrazilver 5
cobrawit 1
cobratraat1 1
cobratraat2 1
colorreport 1
colourflower 1
bp0038p 1
coloursalute 1
corona 1
torpedo 1
crazybang 1
crazyrobots 2
delovarana3 1
delovarana1 2
delovarana2 2
diablo (blauw) 1
diablo (rood) 1
diablo (zwart) 1
dieptebom 1
dinamite 1
thunderstorm 2
doppelschlag 1
dragonboom1 1
dragonboom2 1
dumbumvuurretorno100 1
dumbumzwartrood 2
dumbumoranje 1
dumbumzwartzilver 3
echobomb 1
ekstra_cobra 1
cometa 1
matabrujas 1
raptor 1
flashing thunder 1
folgore 1
nitraat9 1
jorge1 1
jorge2 2
funkenschlag1 1
funkenschlag2 1
ghost2 1
gigantmaroon1 1
gladiator1 1
gladiator2 1
goldthunder 1
gorillabomb 1
handgranade 1
horror 2
joker2 1
joker4 1
jokerroze 1
joker1 1
joker3 1
jr101 2
kalasnikov 1
kittywhr 1
nitraat5 1
817 1
krachmen 1
labomba 1
littlecooper 1
lupo 3
match_cracker1 2
megabomb 1
retorno2 2
batterij fb 1
nitraat11 1
nitraat6 1
napolitaansebom 1
newrambo 1
nitraat2 1
nitraat3 1
nitraat4 1
nitrobomb 1
numberone1 1
cs1 1
p1000 1
nitraat8 1
bombbon 1
859 1
nitraat7 1
petarde 2
nitraat1 1
profi 2
shark2 2
pyropower 1
pyrostar 1
rambo 1
rastatraat 1
reaper 1
redbaron 1
reddevil 1
redflower 1
redthunder 1
retorno3 1
retorno1 1
rex1 1
rocket2 1
rocket3 1
saperp2000 1
schockerxxl 1
scream 10
screamineagle 1
shark1 2
shell3 1
barracuda 1
purplestorm 1
pitbull 1
lupoblauw 1
pertardof2 1
nebelschlagpaars 1
nebelschlagrood 1
nebelschlaggeel 1
nebelschlagblauw 1
explod 1

Training

The methodology adopted by the NFI for model training with this dataset is detailed in the model card of the Vuurwerkverkenner at https://huggingface.co/NetherlandsForensicInstitute/vuurwerkverkenner, also linked to this dataset.

Possible bias

The reference set of firework wrappers reflects the fireworks investigated by the NFI, which may not be representative of those available in other countries or in the future.

The snippet dataset was influenced by the availability of fireworks. Due to limited availability, some snippets result from wrappers glued to Cobra 6 fireworks rather than the original fireworks, which were noted to detach more easily than those on original fireworks, potentially affecting snippet creation.

Very small snippets have not been included in the dataset.

Downloads last month
1,226

Models trained or fine-tuned on NetherlandsForensicInstitute/vuurwerkverkenner-development-data