|
from cassis import * |
|
import csv |
|
from nltk.tokenize import word_tokenize |
|
|
|
sentence_id = 0 |
|
number = 0 |
|
|
|
max_length = 0 |
|
min_length = 10000 |
|
sum_length = 0 |
|
count = 0 |
|
|
|
annotator_1 = [['Annotator_1','Annotated_part_1','Final_Dataset_tsv'],['Annotator_1','Annotated_part_2','ratemy_professor_data_from_sorted_list_shuffle_1']] |
|
annotator_2=[['Annotator_3','Annotated_part_6','Final_Dataset_tsv']] |
|
annotator_3 = [['Annotator_2','Annotated_part_3','Final_Dataset_tsv'],['Annotator_2','Annotated_part_4','ratemy_professor_data_from_sorted_list_shuffle_1'],['Annotator_2','Annotated_part_5','additional_100_of_rate_my_proffesor']] |
|
annotators = [annotator_1,annotator_2,annotator_3] |
|
path_for_folder = "./Annotated Student Feedback Data/" |
|
|
|
with open(path_for_folder+'Annotator_3/Annotated_part_6/TypeSystem.xml', 'rb') as f: |
|
typesystem_tmp = load_typesystem(f) |
|
for annotator in annotators: |
|
for path_for_data in annotator: |
|
|
|
|
|
with open('/content/drive/Shareddrives/FYP/Annotated Data/'+path_for_data[0]+'/'+path_for_data[1]+'/'+path_for_data[2]+'.xmi', 'rb') as f: |
|
doc_tmp = load_cas_from_xmi(f, typesystem=typesystem_tmp) |
|
|
|
data = doc_tmp.sofa_string |
|
for (_, sentence) in enumerate(doc_tmp.select('webanno.custom.'+"Document_levelopinion")): |
|
if sentence.Document_levelopinion != None: |
|
count +=1 |
|
length = len(word_tokenize(sentence.get_covered_text())) |
|
sum_length += (length) |
|
if length > max_length: |
|
max_length = length |
|
if length < min_length: |
|
min_length = length |
|
print("max = ",max_length) |
|
print("min = ",min_length) |
|
print("sum = ",sum_length/count) |