File size: 15,450 Bytes
95d0568 3710f75 4c0ceea 95d0568 3710f75 95d0568 974c47b 95d0568 3710f75 cdd9e5f 95d0568 3710f75 95d0568 3710f75 4c0ceea cdd9e5f 4c0ceea 95d0568 974c47b 95d0568 3710f75 870f86a 3710f75 cdd9e5f 3710f75 95d0568 3710f75 95d0568 3710f75 95d0568 3710f75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
__doc__ = """\
GLENDA (Gynecologic Laparoscopy ENdometriosis DAtaset) comprises over 350 annotated endometriosis lesion images taken from 100+ gynecologic laparoscopy surgeries as well as over 13K unannotated non pathological images of 20+ surgeries. The dataset is purposefully created to be utilized for a variety of automatic content analysis problems in the context of Endometriosis recognition.
Description
Endometriosis is a benign but potentially painful condition among women in child bearing age involving the growth of uterine-like tissue in locations outside of the uterus. Corresponding lesions can be found in various positions and severities, often in multiple instances per patient requiring a physician to determine its extent. This most frequently is accomplished by calculating its magnitude via utilizing the combination of two popular classification systems, the revised American Society for Reproductive Medicine (rASRM) and the European Enzian scores. Endometriosis can not reliably identified by laymen, therefore, the dataset has been created with the help of medical experts in the field of endometriosis treatment.
Purposes
* (endometriosis) classification (binary or using 4 pathological endometriosis categories)
* detection/localization
Overview
The dataset includes region-based annotations of 4 pathological endometriosis categories as well as non pathological counter example images. Annotations are created for single video frames that may be part of larger sequences comprising several consecutive frames (all showing the annotated condition). Frames can contain multiple annotations, potentially of different categories. Each single annotation is exported as a binary image (similar to below examples, albeit one image per annotation).
Disclaimer
The dataset is exclusively provided for scientific research purposes and as such cannot be used commercially or for any other purpose. If any other purpose is intended, you may directly contact the originator of the videos, Prof. Dr. Jörg Keckstein.
In addition, reference must be made to the following publication when this dataset is used in any academic and research reports:
A. Leibetseder, S. Kletz, K. Schoeffmann, S. Keckstein and J. Keckstein. 2020. GLENDA: Gynecologic Laparoscopy Endometriosis Dataset. In Proceedings of the 26th International Conference on Multimedia Modeling, MMM 2020. Springer, Cham.
"""
import json
from pathlib import Path
import re
import datasets
DESCRIPTION = str(__doc__)
LICENSE = "cc-by-nc-4.0"
CITATION = "Leibetseder, A., Kletz, S., Schoeffmann, K., Keckstein, S., Keckstein, J. (2020). GLENDA: Gynecologic Laparoscopy Endometriosis Dataset. In: , et al. MultiMedia Modeling. MMM 2020. Lecture Notes in Computer Science(), vol 11962. Springer, Cham. https://doi.org/10.1007/978-3-030-37734-2_36"
HOMEPAGE = "http://ftp.itec.aau.at/datasets/GLENDA/index.html"
VERSION = "1.5"
URLS = {
"endometriosis_classes": "http://ftp.itec.aau.at/datasets/GLENDA/downloads//Glenda_v1.5_classes.zip",
"no_pathology": "http://ftp.itec.aau.at/datasets/GLENDA/downloads/GLENDA_v1.5_no_pathology.zip",
}
CLASS_NAMES = {
"binary_classification": ("no_pathology", "endometriosis"),
"multiclass_classification": (
"No-Pathology",
"6.1.1.1_Endo-Peritoneum",
"6.1.1.2_Endo-Ovar",
"6.1.1.3_Endo-TIE",
"6.1.1.4_Endo-Uterus",
),
}
ENDOMETRIOSIS_IMAGE_METADATA_REGEX = re.compile(
r"c_(?P<case_id>[0-9]+)_v_\(video_(?P<video_id>[0-9]+).mp4\)_f_(?P<frame_id>[0-9]+).jpg"
)
NO_PATHOLOGY_IMAGE_METADATA_REGEX = re.compile(
r"v_(?P<video_id>[0-9]+)_s_(?P<from_seconds>[0-9]+)-(?P<to_seconds>[0-9]+)/f_(?P<frame_id>[0-9]+).jpg"
)
class GLENDA(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="binary_classification",
description="Contains images without visible pathology in relation to endometriosis (label = 'no_pathology') and different endometriosis classes (label = 'endometriosis').",
version=datasets.Version(f"{VERSION}.0"),
),
datasets.BuilderConfig(
name="multiclass_classification",
description="Contains images without visible pathology in relation to endometriosis (label = 'No-Pathology') and different endometriosis classes (label is exactly one of: 6.1.1.1_Endo-Peritoneum, 6.1.1.2_Endo-Ovar, 6.1.1.3_Endo-TIE, 6.1.1.4_Endo-Uterus).",
version=datasets.Version(f"{VERSION}.0"),
),
datasets.BuilderConfig(
name="object_detection",
description="Contains images without visible pathology in relation to endometriosis and different endometriosis classes with corresponding COCO bounding box annotations.",
version=datasets.Version(f"{VERSION}.0"),
),
# datasets.BuilderConfig(
# name="instance_segmentation",
# description="Contains images without visible pathology in relation to endometriosis and different endometriosis classes with COCO instance segmentation annotations.",
# version=datasets.Version(f"{VERSION}.0"),
# ),
]
def _info(self):
features = {
"image": datasets.Image(),
"metadata": {
"id": datasets.Value(dtype="int32"),
"width": datasets.Value(dtype="int32"),
"height": datasets.Value(dtype="int32"),
"file_name": datasets.Value(dtype="string"),
"path": datasets.Value(dtype="string"),
"fickr_url": datasets.Value(dtype="string"),
"coco_url": datasets.Value(dtype="string"),
"date_captured": datasets.Value(dtype="string"),
"case_id": datasets.Value("int32"),
"video_id": datasets.Value("int32"),
"frame_id": datasets.Value("int32"),
"from_seconds": datasets.Value("int32"),
"to_seconds": datasets.Value("int32"),
},
}
task_templates = None
if self.config.name in ("binary_classification", "multiclass_classification"):
class_names = CLASS_NAMES[self.config.name]
features["labels"] = datasets.ClassLabel(
num_classes=len(class_names),
names=class_names,
)
supervised_keys = (("image", "labels"),)
task_templates = [
datasets.ImageClassification(
image_column="image", label_column="labels"
)
]
elif self.config.name == "object_detection":
features["objects"] = {
"area": datasets.Value("int32"),
"bbox": datasets.Sequence(feature=datasets.Value("int32")),
"category": datasets.Value("string"),
"id": datasets.Value("int32"),
}
supervised_keys = (("image", "objects"),)
elif self.config.name == "instance_segmentation":
# features["segmentation"] = {
# }
supervised_keys = (("image", "objects"),)
else:
raise NotImplementedError()
return datasets.DatasetInfo(
description=__doc__,
features=datasets.Features(features),
homepage=HOMEPAGE,
license=LICENSE,
citation=CITATION,
task_templates=task_templates,
supervised_keys=supervised_keys,
)
def _split_generators(self, dl_manager):
endometriosis_data_path = Path(
dl_manager.download_and_extract(URLS["endometriosis_classes"])
).joinpath(f"Glenda_v{VERSION}_classes")
no_pathology_data_path = Path(
dl_manager.download_and_extract(URLS["no_pathology"])
).joinpath("no_pathology", "frames")
coco_annotation_filepath = Path(endometriosis_data_path).joinpath("coco.json")
with open(coco_annotation_filepath, "r") as coco_annotation_file:
coco_annotations = json.load(coco_annotation_file)
category_id2_name = {
category["id"]: category["name"]
for category in coco_annotations["categories"]
}
image_filepaths, image_metadata = [], []
if self.config.name in ("binary_classification", "multiclass_classification"):
label_name = "labels"
annotation_list = []
elif self.config.name == "object_detection":
label_name = "objects"
annotation_list = []
elif self.config.name == "instance_segmentation":
label_name = "segmentation"
annotation_list = []
else:
raise NotImplementedError(f"Unsupported task: '{self.config.name}'")
for annotation, metadata in zip(
coco_annotations["annotations"],
coco_annotations["images"],
):
image_filepaths.append(
endometriosis_data_path.joinpath(
metadata["coco_url"],
)
)
regex_match = re.search(
string=metadata["file_name"],
pattern=ENDOMETRIOSIS_IMAGE_METADATA_REGEX,
)
metadata.update(
{
field_name: int(field_value)
for field_name, field_value in regex_match.groupdict().items()
}
)
# NOTE: Only defined for `no_pathology` images
metadata["from_seconds"] = None
metadata["to_seconds"] = None
_ = metadata.pop("metadata")
# This field does not accurately reflect the dataset license,
# so let's not include it to avoid confusion.
_ = metadata.pop("license")
image_metadata.append(metadata)
if self.config.name == "binary_classification":
_, positive_label_name = CLASS_NAMES[self.config.name]
annotation_list.append(positive_label_name)
elif self.config.name == "multiclass_classification":
annotation_list.append(category_id2_name[annotation["category_id"]])
elif self.config.name == "object_detection":
annotation_list.append({
"area": annotation["area"],
"bbox": annotation["bbox"],
"category": category_id2_name[annotation["category_id"]],
"id": annotation["category_id"],
})
# elif self.config.name == "instance_segmentation":
# annotation_list.append({
# })
# raise ValueError(annotation["category_id"], annotation["segmentation"])
# raise ValueError(annotation)
# raise NotImplementedError()
else:
raise NotImplementedError()
max_id = max(metadata["id"] for metadata in image_metadata)
for image_id, image_filepath in enumerate(
no_pathology_data_path.glob("*/*.jpg"), start=max_id + 1
):
image_filepaths.append(image_filepath)
*_, parent_folder, image_filename = image_filepath.parts
image_filename_with_parent_folder = f"{parent_folder}/{image_filename}"
metadata = {
"id": image_id,
"width": image_metadata[-1]["width"],
"height": image_metadata[-1]["height"],
"file_name": image_filepath.name,
"path": f"frames/{image_filename_with_parent_folder}",
"fickr_url": None,
"coco_url": f"frames/{image_filename_with_parent_folder}",
"date_captured": None,
}
match = re.search(
string=str(image_filename_with_parent_folder),
pattern=NO_PATHOLOGY_IMAGE_METADATA_REGEX,
)
try:
metadata.update(
{
field_name: int(field_value)
for field_name, field_value in match.groupdict().items()
}
)
except AttributeError:
if match is None:
print(
"Could not get metadata for: ",
image_filename_with_parent_folder,
)
continue
metadata.update(
{
"video_id": None,
"frame_id": None,
"from_seconds": None,
"to_seconds": None,
}
)
# NOTE: Only defined for `endometriosis` images
metadata["case_id"] = None
image_metadata.append(metadata)
if self.config.name in (
"binary_classification",
"multiclass_classification",
):
negative_class_label_name, *_ = CLASS_NAMES[self.config.name]
annotation_list.append(negative_class_label_name)
elif self.config.name == "object_detection":
negative_category_id = 0
negative_class_label_name, *_ = CLASS_NAMES["multiclass_classification"]
annotation_list.append({
"area": None,
"bbox": [],
"category": negative_class_label_name,
"id": negative_category_id,
})
elif self.config.name == "instance_segmentation":
raise NotImplementedError()
else:
raise NotImplementedError()
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"image_filepaths": image_filepaths,
"metadata": image_metadata,
label_name: annotation_list,
},
)
]
def _generate_examples(self, **kwargs):
if self.config.name in ("binary_classification", "multiclass_classification"):
for example_id, (image_filepath, label, image_metadata) in enumerate(
zip(
kwargs["image_filepaths"],
kwargs["labels"],
kwargs["metadata"]
)
):
with open(image_filepath, "rb") as image_file:
yield example_id, {
"image": {"path": str(image_filepath), "bytes": image_file.read()},
"labels": label,
"metadata": image_metadata,
}
elif self.config.name == "object_detection":
for example_id, (image_filepath, objects, image_metadata) in enumerate(
zip(
kwargs["image_filepaths"],
kwargs["objects"],
kwargs["metadata"]
)
):
with open(image_filepath, "rb") as image_file:
yield example_id, {
"image": {"path": str(image_filepath), "bytes": image_file.read()},
"objects": objects,
"metadata": image_metadata,
}
else:
raise NotImplementedError()
|