from model_inference import * from config import result_parsers, dataset_files, max_tokens from tqdm import tqdm import json import os models = [chatglm2, chatglm3, deepseek7b, falcon7b, gemma2b, gemma7b, llama2_7b, mistral7b, phi2, qwen7b, vicuna7b, yi6b, chatgpt, gpt4o] tasks = ["poi_category_recognition", "poi_identification", "urban_region_function_recognition", "administrative_region_determination", "point_trajectory", "point_region", "trajectory_region", "trajectory_identification", "trajectory_trajectory", "direction_determination", "trajectory_anomaly_detection", "trajectory_classification", "trajectory_prediction"] if not os.path.exists("./logs"): os.mkdir("./logs") for fun in models: model = fun() for task in tasks: error_writer = open("./logs/{}.log".format(task), 'a') error_writer.write(model.model_path+'\n') result_parser = result_parsers[task] for dataset_path in dataset_files[task]: dataset = open(dataset_path, 'r') dataset = dataset.readlines() correct = 0 total = 0 exception = 0 for i, item in tqdm(enumerate(dataset), total=len(dataset)): item = json.loads(item) response = model.generate(item["Question"], max_tokens[task]) score = result_parser(response, item["Answer"], error_writer) if task!='trajectory_prediction' or score is not None: total +=1 if score is None: exception += 1 else: correct += score if i%100==0: print("Dataset: {}\nTotal: {}, correct:{}, exception:{}, accuracy:{}\n\n".format(dataset_path, total, correct, exception, correct/total)) error_writer.write("Dataset: {}\nTotal: {}, correct:{}, exception:{}, accuracy:{}\n\n".format(dataset_path, total, correct, exception, correct/total)) error_writer.flush() error_writer.write("\n") error_writer.close()